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Abstract. The article investigates the relation between global solutions of

hyperbolic balance laws and viscous balance laws on the circle. It is themati-
cally located at the crossroads of hyperbolic and parabolic partial differential

equations with one-dimensional space variable and periodic boundary condi-

tions. The two equations are given by:

ut + f(u)x = g(u).

and
ut + f(u)x = εuxx + g(u).

The main result of the paper corrects a result on the persistence of hete-

roclinic connections by Fan and Hale [FH95] for the case ε → 0 (Connection

Lemma 2.8). It states that a connection can only persist if the zero number
of the source state is a multiple of the zero number of the target state. The

Cascading Theorem 2.12 then yields convergence of heteroclinic connections

to a sequence of heteroclinic connections and stationary solutions in case of
non-persistence.

In addition a full description of the connection problem of rotating waves

on the parabolic attractor is given.

1. Introduction

Parabolic differential equations with scalar spatial variable have been studied for
a long time. In particular viscous balance laws can be described as exceptionally
well understood: existence, uniqueness of solutions, long time behavior, global
attractors, heteroclinic orbits etc. have been analyzed in detail for a range of
boundary conditions.

The same is true for scalar hyperbolic partial differential equations. In particular
for hyperbolic balance laws, where again questions of existence, uniqueness, the long
time behavior, global attractors and heteroclinics have been studied thoroughly.

However, when the two fields, viscous balance laws and hyperbolic balance laws
come together many question marks appear.

This article investigates the behavior of solutions on the global attractor Aε
of the viscous balance law (P) for vanishing viscosity ε → 0. It analyzes if and in
which sense these solutions persist to solutions on the global attractor of the limiting
equation - the hypberbolic balance law (H). The results have strong implications
on the question whether the global attractor of (H) can be obtained as a limit of
the global attractors of (P) when viscosity vanishes.

Before going into further details we set the formal stage that clarifies the frame-
work we will be working in.
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The viscous balance law is given by

(P) ut(x, t) + [f(u(x, t))]x = εuxx(x, t) + g(u(x, t)).

The hyperbolic balance law is given by

(H) ut(x, t) + [f(u(x, t))]x = g(u(x, t)).

The sub index denotes the partial derivative with respect to the index. We solve
for x ∈ S1 with S1 := R/(2πZ). This is equivalent to imposing periodic boundary
conditions on a domain of length 2π. If we scale x̃ = Lx

2π all our results remain
true for the situation of periodic boundary conditions in a domain of size L for any
bounded and fixed L ∈ R. u is a function mapping from S1 × R→ R.

The non-linearities f, g map from R → R. Furthermore we make additional
hypotheses:

(H1) f is C2 and strictly convex (∃γ ∈ R s.t. f ′′ > γ > 0) and f ′(0) = 0.
(H2) g is C2 and dissipative, i.e. there exists a constant M > 0 such that

(1) ug(u) < M

for all |u| > M .
(H3) g has three simple zeros at u− < u0 < u+, and u0 = 0.

The three hypotheses guarantee existence and uniqueness of solutions and exis-
tence of a global attractor for both the parabolic and hyperbolic equation (see next
subsections).

The paper is organized as follows: the remainder of the introduction will provide
the necessary background in the theory of hyperbolic (Section 1.1) and parabolic
(Section 1.2) equations on the circle. The main results of the paper the Connection
Lemma 2.8: necessary condition on persistence; and the Cascading Theorem 2.12
are stated and proved in Section 2. Theorems 2.9 and 2.10 then give the neces-
sary tools to prove that convergence in fact fails. The proof of these theorems is
presented in Section 3 where we investigate the structure of the global attractor
of the parabolic equation (P) including a description of all rotating waves and the
connection problem. We conclude with a brief discussion in the last section.

1.1. The hyperbolic equation. We obtain equation (H) by setting ε = 0 in the
parabolic equation (P). In this sense (H) is the limiting equation of the viscous bal-
ance law (P) for vanishing viscosity. In the limit the type of the equations changes
from parabolic to hyperbolic. This has many implications on the solution theory.
In general there is no unique solution of the Cauchy problem of (H). However we
will use the notion of entropy solutions introduced by Volpert [Vol67] and Kruzhkov
[Kr70]:

Definition 1.1. We call u ∈ BV ([0,∞)×S1,R) an entropy or admissible solution
of equation (H) to the initial condition u0(x)

• if u(x, 0) = u0(x);
• if it solves equation (H) in the weak sense:

(2)

∫
S1×R+

[uϕt + f(u)ϕx − g(u)ϕ]dxdt = 0

for all ϕ ∈ C1
0 (S1 × R+,R);
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• and if the entropy condition

(3) u(x+, t) ≤ u(x−, t)

holds for all t > 0.

Here u(x+, t) defines the right hand, u(x−, t) the left hand limit of u in x at time
t and BV ([0,∞) × S1,R) denotes the space of functions with bounded variation
mapping from [0,∞)× S1 to R.

In this framework equation (H) has a unique entropy solution and defines a semi-
flow on BV ([0,∞) × S1,R) which we denote by Φ0 . Fan and Hale could prove
in [FH95] that (H) possesses a global attractor defined as the maximal compact
invariant subset A0 of the phase space BV that attracts all bounded subsets B ⊂ X .
In our case this is equivalent to defining the global attractor as set of all global
orbits, i.e. orbits that exist for all times t ∈ R.

Proposition 1.2 ([FH95]). Assume (H1), (H2) and (H3) hold. Then

(4) A0 :=
{
u0 ∈ BV (S1) : Φ0(u0, t) exists for all t ∈ R and is bounded

}
is the global attractor of (H) in Lp(S1), for any p ∈ [1,∞], i.e. it is invariant and
attracts bounded sets in Lp(S1).

Regarding the structure of the global attractor several authors proved Poincaré
Bendixson type results for the scalar balance laws. See for example Fan and Hale
[FH93], Sinestrari [Sin97] or Lyberopoulos [Lyb94]:

Proposition 1.3. For t→∞ any entropy solution of (H) tends either to a homo-
geneous solution u ≡ u−, u0, u+ or it converges to a rotating wave solution

u(x, t) = v(x− ct)

where the wave-speed c can only take the value c = f ′(u0) = 0.

Hence all waves are frozen waves in our case. Note that (H3) only simplifies the
situation but is not a principle restriction. In case the hypothesis is not fulfilled
and g has more than three zeros the wave speed of a wave is given by c = f ′(ui)
where the ui is one of zeros of g with g′(ui) > 0 (unstable zero).

For global solutions a theorem similar to 1.3 holds true in backward time. This
leads to a description of the global attractor A0 as the unification of the homo-
geneous steady states, the frozen waves and heteroclinic connections between all
these objects. This leads naturally to the definition of the following sets. Let

• E0 denote the set of homogeneous equilibria of (H);
• F0 denote the set of frozen waves of (H);

we then define a heteroclinic connection as a solution u0(x, t) of (H) that has
the property that

(5)
lim

t→+∞
u0(x, t) ∈ E0 ∪ F0

lim
t→−∞

u0(x, t) ∈ E0 ∪ F0.

and denote the set of all heteroclinic connections withH0. Then the global attractor
A0 of (H) can be described as

(6) A0 = E0 ∪ F0 ∪H0.
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In [Sin95] Sinestrari was able to settle the description of all rotating or frozen waves.
He proved that for any closed set Z ⊆ S1 there exists a unique wave uZ with wave
speed c = 0 and the property

Z = {y ∈ S1 : uZ(y) = u0 = 0}.
The uniqueness automatically proves that these are all waves of (H).

The connection problem, i.e. the question which

u0 ∈ E0 ∪ F0

are connected to one another was solved by Sinestrari [Sin97] and Härterich [Haer99].
Sinestrari proved that if two rotating waves u0−∞, u

0
∞ are connected, then necessar-

ily

(7) Z(u0∞) ⊂ Z(u0−∞).

Here Z(·) assigns each solution u(·, t) ∈ BV (S1) its zero set:

(8) Z(u(·, t)) := {x ∈ S1;u(x, t) = u0 = 0}.
Härterich proved that condition (7) was not only necessary but sufficient. His
results are summarized in the three Theorems A, B and C in [Haer99]:

Theorem 1.4 (Theorem A). For any rotating wave u−∞ there exist heteroclinic
orbits which connect u−∞ to the homogeneous states u ≡ u− and u ≡ u+.

Theorem 1.5 (Theorem B). For any rotating wave u+∞ there exist (several) het-
eroclinic orbits that connect the spatially homogeneous solution u ≡ u0 = 0 to u+∞.

Theorem 1.6 (Theorem C). Suppose that for two rotating waves u−∞ and u+∞
the condition Z(u∞) ⊂ Z(u−∞) holds. Then there is a heteroclinic solution that
approaches u±∞ as the time t tends to ±∞.

The three theorems allow a full description of the connection problem on the
global attractor of equation (H) and give together with the result on rotating waves
of Sinestrari [Sin97] a full description of the structure of the global attractor of
equation (H). The remaining problem of the description of the dynamics on the
attractor was solved by the author in [Ehrt2010/2] for all finite dimensional sub-
attractors of A0.

1.2. The parabolic equation. It is known that the initial value problem (Cauchy
problem) of the PDE (P) together with Neumann, Dirichlet or periodic boundary
conditions is well posed and has unique solutions for sufficiently regular initial
conditions.

On the Sobolev space of twice weakly differentiable L2-functions

X = W 2,2([0, 2π],R) = H2([0, 2π],R)

that satisfy the boundary conditions, the PDE generates a C1 semi flow. The books
of Henry [Hen81] or Pazy [Pazy83] give a more detailed description for the semi
group theory related to parabolic PDEs.

In the S1 case dissipativity of the non-linearities is sufficient for the existence
of a global attractor on X = H2. This is ensured by our hypotheses (H2) and the
fact that f(u)x grows sub-quadratically in ux. For an explicit general definition of
dissipativity in the S1 case I refer to [MN97].

Angenent and Fielder [AF88] and Matano [Ma88] could show that, similar to
the Neumann case, any solution uε(·, t) of (P) tends to a set of functions Γ(v) :=
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{v(· + θ) : θ ∈ S1} for t → +∞. Here v(x) is given by a solution of the ordinary
differential equation

(9) vxx − (f ′(v) + c)vx + g(v) = 0

for some value of c ∈ R and x ∈ S1. The same holds true in backward time if
the solution uε(·, t) stays bounded. Equation (9) is called rotating wave equation
and can be obtained by plugging the rotating wave ansatz u(x, t) := v(x− ct) into
the PDE (P). Following the definitions in the previous paragraph we define the
following sets:

Let

• Eε denote the set of homogeneous equilibria;
• Fε denote the set of frozen waves;
• Rε denote the set of rotating waves and
• Hε denote the set of heteroclinic connections.

Heteroclinic connections are similarly defined as in equation (5) as solutions uε(x, t)
of (P) with the property

lim
t→±∞

uε(·, t) ∈ Eε ∪ Fε ∪Rε.

It is important to note that in the parabolic case Rε is not necessarily empty and
the wave speed c is neither a priory zero nor the same for all waves of the equation
as it is the case in the hyperbolic equation.

The following theorem holds due to Angenent and Fiedler [AF88] or Mantano
[Ma88]:

Theorem 1.7. Let the non-linearity of equation (P) be dissipative and C2. Then
the global attractor Aεof the PDE can be described as follows:

(10) Aε = Eε ∪ Fε ∪Rε ∪Hε.

In particular, any time periodic orbit is a rotating wave and any orbit in Aε\(Eε ∪
Fε∪Rε) is a heteroclinic connection connecting u1, u2 ∈ Eε∪Fε∪Rε with u1 6= u2.

In [FRW04] Fiedler, Rocha and Wolfrum were able to develop tools to resolve the
connection problem for the periodic boundary conditions case. Their idea was to
use homotopies, such that every solution of the S1 case solves a Neumann problem
and vice versa. Then they could apply their earlier results on the Neumann case
[FR96].

The key ingredient is the concept of k − (P)-adjacency (see Definition 3.10 in
Section 3), that was developed and used for the Neumann case in [FR96] and later
in [Wol02a] and [Wol02b]. The whole approach relies heavily on nodal properties
that have their origin in the fact that the linearization of the PDE (P) is a Sturm-
Liouville type problem. This goes back to Sturm [Stu1836]. A key observation is
that the number of strict sign changes in a solution can only drop along trajectories,
hence can be considered as a discrete Lyapunov function. This is also true for the
difference of two solutions.

The connection problem will be solved in Section 3. The basis for this analysis
is the complete description of all rotating waves of equation (P). The results will
be used to prove that certain heteroclinic connections do not persist.
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2. Non-persistence of heteroclinic connections

In the following we will formulate and prove the two main results of the work:
non-persistence of heteroclinic connections and the cascading result. Before that, we
will investigate the result by Fan and Hale from 1995 [FH95] mentioned earlier where
they address the question of viscous regularizations of the hyperbolic equation.

In the first part of the paper they investigate the connection problem of the global
attractor of the hyperbolic equation (H). In the second part of the publication Fan
and Hale investigate the regularized equation, which is precisely our equation (P).

In Theorem 4.7 they state a persistence result for heteroclinic connections within
this framework:

Theorem 2.1. If B = {uε(x, t), 0 < ε ≤ ε0} is a set of connecting (heteroclinic)
orbits of the parabolic equation (P), then there is a sub-sequence {uεn(x, t)} of B
converging to u0(x, t) as ε→ 0 a.e. in S1 × R where u0(x, t) is a connecting orbit
of the hyperbolic equation (H).

Unfortunately this theorem is wrong. The claim that convergence is a.e. on
S1 × R is not true. As a result of this the limiting solution u0 is not necessarily a
heteroclinic connection.

Taking a closer look at the proof of their theorem one realizes that it is almost
completely correct. Only their conclusion using a diagonalizing sequence argument
at the very end of the proof does not work. Hence a minor change corrects the result
- however this has vast implications on the persistence of heteroclinic connections.

The corrected version of the Fan Hale theorem reads:

Theorem 2.2 (Global Solution). Let B := {uε(x, t) ∈ Hε : 0 < ε < ε0} for some
ε0 << 1 and let T ∈ R+ be arbitrary. Then there exists a subset {uεn(x, t)} of B
with the property that

(11) lim
n→∞

uεn(x, t) = u0(x, t)

a.e. on S1 for all t ∈ [−T, T ]. Moreover u0(x, t) is a global solution of equation
(H).

I do not include a proof here. It would be an exact copy of the original proof
found in [FH95] omitting the last few lines. In addition a more detailed version of
the proof can as well be found in [Ehrt2010] in Chapter 3.2.

Certainly the question arises why “global solution” does not imply “heteroclinic
connection” in this case. The main obstacle for this is the occurrence of additional
equilibria.

In order to rigorously prove that non-persistence is possible this we need some
results on the convergence of rotating waves:

Corollary 2.3. Let C := {uε(x, t) ∈ Fε ∪Rε; 0 < ε < ε0} for some 0 < ε0 << 1.
Then there exists a subset {uεn(x, t)} of C with the property that

lim
n→∞

uεn(x, t) = u0(x, t)

a.e. on S1 × [−T, T ]. Moreover u0(x, t) is a global solution of (H).

Secondly, we make a statement on all possible limits of solutions in the set B:
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Corollary 2.4. Let T ∈ R and B be defined as in Theorem 2.2. Let u0 ∈ BV (S1×
[−T, T ],R) with

(12) u0(x, t) := lim
n→0

uεn(·, τn + t)

a.e. on S1 × [−T, T ] for sequences {εn} → 0 and {τn} and all bounded T ∈ R.
Then

u(·, t) ∈ A0.

Proof. Certainly u must be globally bounded and due to the convergence of
the limit be a solution of the hyperbolic equation. Therefore it must be a global
solution and hence

u(·, t) ∈ A0.

�

In the case of rotating waves Corollary 2.3 can be improved considerably. The
limiting object is not only a global solution but a frozen wave of the hyperbolic
equation. This is the content of the following Theorem. Note that we use ODE
theory to obtain convergence for all ε. Before stating the theorem we introduce the
zero-number of a function u : S1 → R:

Let therefore u : S1 → R then we define

(13) z(u) := ]{x ∈ S1;u(x) = 0},
if the zero set of u is not countable we define z(u) =∞.

Theorem 2.5 (Rotating Waves). Let a = 2α for α ∈ N and uεa be the unique
rotating or frozen wave of (P) with the property

(14)
z(uεa) = a

uεa(0, 0) = 0 ∂xu
ε
a(0, 0) > 0.

Then there exists a rotating wave u0α ∈ F0 such that

(15) lim
ε→0
||uεa(x, t)− u0α(x, t)|| = 0

holds for all t ∈ R. Moreover we have

(16) z(u0α) = α.

Proof. We perform the proof in several steps:

(i) For the existence of the limit we assume a = 2, the other cases just work
with the same argument.
We observe that, according to Lemma 3.6, the rotating wave profile vεa
associated to uεa(·, t) and its derivative lie in a O(ε) channel around φ(x)
outside a (ε log ε)-neighborhood of some x2(ε).
Because x2(ε1)−x2(ε2) < C|ε1−ε2| for some constant C and 0 < ε1, ε2 <<
1 , the limit of uε for ε → 0 exists outside any open neighborhood of x2
and is in fact uniform. This proves the existence of a solution u0α such that
equation (15) holds. It remains to prove that u0 is a rotating wave.

(ii) From Corollary 2.3 we obtain that u0(x, t) is a global solution and there-
for lies on the attractor. Because it converges uniformly to φ outside a
neighborhood of x2, the solution u0 neither can be a homogeneous solu-
tion, nor a heteroclinic connection. From equation (6) follows that it must
be a rotating wave which is unique up to shifts. This proves the claim.



8 JULIA EHRT

(iii) The relation between the zero-numbers of the parabolic wave and the hy-
perbolic wave is obvious. All frozen waves for ε = 0 have positive derivative
in all their zeros [Ehrt2010/2]. From (i) it follows that they persist. For
ε > 0 all rotating wave profiles are continuous and thus have alternating
signs in the derivative. Together with the already proved persistence this
yields equation (16).

Remark 2.6. The relation of the zero-number between solutions on the parabolic
attractor uε ∈ Aε and their limits is true for all elements u ∈ Aε with simple zeros.
The zero-number drops by one half when taking the limit ε→ 0.

The zero-number property is true because all solutions u ∈ A0 have the prop-
erty that the derivative in isolated zeros is positive [Ehrt2010/2], whereas it has
alternating sign for all uε ∈ Aε.

Coming back to rotating waves, we summarize that all rotating waves persist
for ε→ 0. Moreover there is the relation between the zero-number of the rotating
wave for ε > 0 and the number of zeros of the limiting frozen wave, this allows the
following definition.

Definition 2.7. Let a := 2α for some α ∈ N be given and let ε0 be sufficiently
small. Then uεa(·, ·) denotes the up to rotation unique rotating wave with zero-
numbers z = a for all 0 < ε < ε0.
A set of rotating and frozen waves uεa with a given zero-number z(uεa) = a shall be
denoted by

Ba := {uεa ∈ Fε ∪Rε : 0 < ε < ε0} .
Moreover we fix the notation of Theorem 2.5 by defining

u0α(·, t) := lim
ε→0

uεa(·, t)

for all t ∈ R after potentially taking a sub sequence in ε.

As mentioned above, the persistence result that is valid for This implies that no
U jab can contain a full heteroclinic connection of the hyperbolic problem and hence
the rotating waves, is not true for heteroclinic orbits although Theorem 2.2 yields
convergence to a global solution. The next Lemma will provide a criterion when
heteroclinic orbits cannot persist. In order to prove this criterion we define the set
of heteroclinic orbits connecting two rotating waves uεa and uεb with zero-number a
and b by

(17)
Bab := {uε ∈ Hε : limt→−∞ ||uε(·, t)− uεa||L1 = 0

limt→∞ ||uε(·, t)− uεb||L1 = 0, 0 < ε < ε0} .
The rotating wave uεa is called the source and uεb the target.

Lemma 2.8 (Connection Lemma). Let Ba, Bb and Bab be defined as above with
a = 2α and b = 2β for α, β ∈ N, α > β. We assume there exists u0 ∈ BV and a
sub sequence {εn} such that

(18) lim
n→∞

||uεn(x, t)− u0(x, t)||L1 = 0

for t ∈ R and u0α, u
0
β are the limiting waves of Ba and Bb respectively. Then there

exists k ∈ N such that

(19) a = kb.
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In other words, if a 6= kb for all k ∈ N then the limit of the heteroclinic orbits
connecting the rotating waves uεa and uεb does not persist to a heteroclinic connection
connecting the limits of source and target u0a, u

0
b .

Proof. For all 0 < ε < ε0 the rotating waves uεa and uεb are periodic solutions
of the rotating wave equation. Their period is given by Ta = 2π

α and Tb = 2π
β .

If the heteroclinic connection uε(·, t) persits, u0α and u0β have to be connected by

a heteroclinic orbit. According to condition (7) this implies

(20) Z(u0β) ⊂ Z(u0α).

Taking the limit ε → 0 for the rotating waves, we obtain that the zeros of u0α and
u0β must be periodic in x and the distance of neighboring zeros is given by Ta and
Tb respectively.
Then equation (20) implies

Tb = kTa

for some k ∈ N.
Hence

α = kβ

which implies

a = kb

just as desired. �

Certainly the result of the Connection Lemma is void if all connections a priory
fulfill the a = kb condition. A consequence of the two following theorems is that
this is not the case and hence there are more connections than those with a = kb.
First Theorem 2.9 states that if ε > 0 is small enough there exists a up to rotation
unique rotating wave for each given zero number a ∈ 2N:

Theorem 2.9. For every n ∈ 2N there exists 0 < εn ∈ R such that for each
0 < ε < εn there exists a solution vεn of the rotating wave equation (9) with

z(vεn) = n.

Let ũ ∈ Fε ∪ Rε with z(ũε) = n. Then ũ ∈ {vεn(·+ θ)|θ ∈ S1} hence ũ is a shifted
copy of vεn. For n = 0 there exist two unique stationary solutions uε0 ≡ u±.
In addition we have

(i) The morse index (see Definition 3.1) of the wave ũ associated to the profile
vεn is given by

(21) i(uεn) = n− 1.

For uε ≡ u± we have

(22) i(uε ≡ u±) = 0.

(ii) The maximum/minimum of the profile vεn decreases/increases with increas-
ing number of zeros. In other words for m > n we have

u+ > max
x∈S1

vεn > max
x∈S1

vεm > 0.

and

u− < min
x∈S1

vεn < min
x∈S1

vεm < 0.
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Figure 1. Structure of connections between rotating and frozen
waves and homogeneous equilibria with zero number z ≤ 8 and
z ≤ 14.

Theorem 2.10 then states that there exists a heteroclinic connection between
rotating waves uεa and uεb if and only if the zero number of the target wave is
strictly smaller than the zero number of the source:

Theorem 2.10. Let uεa, u
ε
b ∈ Eε ∪ Fε ∪ Rε with zero numbers z(uεa) = a and

z(uεb) = b. Then there exists a heteroclinic orbit connecting uεa and uεb, i.e. a
heteroclinic orbit with source uεa and target uεb if, and only if, a > b.

Hence the structure of the global attractors of equation (P) is Chaffee-Infante
like [CI74] which implies that the condition in the connection Lemma 2.8 is not
empty and not all heteroclinic connections of the parabolic equation persist. In
fact persistence becomes less likely for connections between waves with increasing
zero number. Figure 1 shows the structure of connections up to zero number z = 8
and z = 14. The dashed connections are the ones which cannot persist according
to the Connection Lemma. In the right figure we have omitted connections to the
homogeneous states with z = 0. Note that the Lemma does not imply persistence
of the other connections. The proofs of the two theorems can be found in the
following section.

The remainder of this section is devoted to the question of what happens in the
limit of vanishing viscosity if a connection does not persist. The main difficulty lies
in the fact that nothing is known about the geometric structure of a heteroclinic
connection except for their target and source. However any set of heteroclinic
connections Bab of the parabolic equation where a 6= kb cannot converge to one
global solution of the hyperbolic equation, but, somehow has to converge to several.
The question which solution the a set of heteroclinics Bab converges to depends on
the time parametrization of the uε ∈ Bab (every heteroclinic connection can be
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shifted by a arbitrary time σ ∈ R!) and in addition depends on the choice of the
sub sequence {εn}.

The Cascading Theorem 2.12 yields that the number of different heteroclinic
connections that can occur between a source uεa and uεb in the limit in fact is

bounded by a−b
2 = α− β. This is true because of nodal properties which translate

from the parabolic to the hyperbolic equation. We recall that the zero number
along a heteroclinic orbit uεab drops strictly with time. In the limit the sources have
zero number α the targets have zero number β. As the zero number has to drop
strictly in every heteroclinic connection of the limiting equation (H) at most α− β
different heteroclinic connections can be contained in the limit. This constitutes
the key observation leading to the Cascading Theorem 2.12.

In order to prove this theorem we first fix one sub sequence {εn}. Then we will
investigate the set of all time shifted connections uεnab (·, t+σn) where the time shifts
σn are chosen such that the uεnab still converge for n→∞. We will denote this set
by Uab: Let therefor Bab be defined as usual, and T > 0. Let {εn} be a sequence
such that there exists u0 ∈ BV such that

lim
n→∞

||uεn(x, t)− u0(x, t)||L1 = 0

for all t ∈ [−T, T ]. Now let {σn} be a sequence such that there exists u{σn} ∈
BV (S1 × [−T, T ])

(23) lim
n→∞

||uεn(x, t− σn)− u{σn}(x, t)||L1 = 0

for all t ∈ [−T, T ]. In general there will be many sequences {σ̃n} with property
(23). We call two sequences {σn}1,2 equivalent if and only if u{σn}1 = u{σn}2 in
(23) a.e.. We denote the representative of all equivalent sequences by {σn} and
denote its equivalent class by [{σn}]

Then we define the set

Uab :=
{
ũ ∈ BV (S1)|∃ u{σn} ∈ BV (S1 × [−T, T ]) with the property (23), then

ũ := u{σn}(·, 0)
}

The set Uab is well defined: Let u1, u2 ∈ Uab with sequences {σn}1 and {σn}2
then

u1 = u2 ⇐⇒ [{σn}1] = [{σn}2]

It is important to note that the sequences {σn} in the above definition are not
necessarily bounded. The set Uab consist of all possible time shifted limits of a set
of heteroclinic connections indexed by εn.

Lemma 2.11. The set Uab defined above has the following properties:

(i) Uab is not empty
(ii) Uab ⊂ A0

(iii) u0α ∈ Uab and u0β ∈ Uab, where u0α,β are the limits of the sources and targets
for εn → 0

(iv) For all u ∈ Uab we have α ≥ z(u) ≥ β

Proof. (i) is obvious as uεn(x, t−σn) converges by definition if we set all σn = 0
Property (ii) is a direct consequence of the global solution Theorem 2.2 and

Corollary 2.4.
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For (iii) we just prove u0β ∈ Uab: Due to the fact that all uεn are heteroclinic

connections with target uεnb ∈ Fε ∪Rε we have limt→∞ ||uεn(·, t)−uεnb || = 0 for all
εn. Hence for every εn there exists σn such that

||uεn(·, σn)− uεna (·)||L2 < εn.

In addition we know that ||uεna − u0α||L2 = δn for some vanishing sequence δn. We
conclude that

||uεn(σn)− u0α|| < ||uεn(σn)− uεna ||+ ||uεna − u0α|| ≤ en + δn

converges to zero for n→∞ and hence yields the result.
(iv) is a direct consequence of Remark 2.6 and the fact that a ≥ z(uεn(t)) ≥ b

for all t ∈ R. �

Theorem 2.12 (Cascading). Let a = 2α and b = 2β be given. Let Bab and Uab be
defined as above. Then there are at most α−β different heteroclinic orbits contained
in Uab.

Proof.Let m := α− β. Then we define

τnj := inf
τ∈R
{z(uεn(·, τ)) > a− 2j}

for j ∈ 1 . . .m. Hence at time τnj the zero number of uεn drops from a− 2j + 2 to
a− 2j.

Now we define

U jab :=
{
u{σn} ∈ Uab|τ

j
n < σn ≤ τ j+1

n for all n > N0 ∈ N
}

for 1 ≤ j ≤ m− 1,

U0
ab :=

{
u{σn} ∈ Uab|σn ≤ τ

1
n for all n > N0 for someN0 ∈ N

}
and

Umab :=
{
u{σn} ∈ Uab|τ

m
n ≤ σn for all n > N0 for someN0 ∈ N

}
We first observe that clearly

m⋃
j=0

U jab = Uab

by definition of the U jab. Moreover all ũ ∈ U jab have the same zero number, namely
z(ũ) = a− 2j for all 0 ≤ j ≤ m.

This implies that no U jab can contain a full heteroclinic connection of the hyperbolic
problem and hence the Theorem follows. �

As a Corollary to Theorem 2.12 we obtain two necessary conditions on the per-
sistence of a heteroclinic orbits.

Corollary 2.13 (Persistence). Let uε(x, t) be a heteroclinic orbit connecting uεa
with uεb. Then the following statements are true:

(i) Let the set Uab as defined contain above at least one solution u0(x, t) that
is not stationary. If

lim
t→−∞

u0(·, t) = u0α(·)

and
lim
t→∞

u0(·, t) = u0β(·)

then the heteroclinic connection uε(x, t) persists.
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(ii) If Uab ∩ F0 = {u0α, u0β} then the heteroclinic orbit persists.

Corollary 2.13 yields two independent sufficient conditions for the persistence of
a heteroclinic orbit.
In addition Theorem 2.12 gives a result on the structure of the limit of heteroclinic
connections in case of non-persistence: a cascade of heteroclinic connections in A0.

3. Rotating waves and heteroclinic connections for the parabolic
equation

This section is devoted to the proof of Theorems 2.9 and 2.10. The methods
and ideas used in the proofs go back to results of Fiedler, Rocha and Wolfrum
in [FRW04] which allow to decide whether two rotating waves are connected or
not. However this requires information on all existing rotating waves which makes
a complete description of all rotating waves necessary to tackle the connection
problem. Although not easy this is a huge simplification as for the rotating waves
classification we only have to solve an ODE problem.

Let therefor L(u) define the linear operator obtained when the PDE (P) is lin-
earized in the solution u ∈ Eε ∪ Fε ∪ Rε, and let σ(L(u)) denote the spectrum of
L(u). We follow the definition given in [MN97] for the Morse index i(u).

Definition 3.1. For each u ∈ Eε ∪ Fε ∪ Rε we define the Morse index i(u) and
the generalized Morse index i0(u) by

i(u) := ]{λ ∈ σ(L(u)); Re(λ) > 0}
and

i0(u) := ]{λ ∈ σ(L(u)); Re(λ) ≥ 0}.
Here ] counts eigenvalues repeatedly according to their multiplicity.

In terms of the Morse index we call a homogeneous stationary solution u hyper-
bolic, if

i0(u) = i(u).

We call a rotating wave u hyperbolic, if

i0(u) = i(u) + 1.

Note that ux is always an eigenfunction of L(u) to λ = 0. Hence the wave is called
hyperbolic, if zero is a simple eigenvalue, and ux is the only eigenvector to λ = 0.

Remark 3.2. The Morse index i corresponds to the number of strong unstable
eigendirections of the solution uε ∈ Eε ∪ Fε ∪ Rε, hence equals the dimension of
the strong unstable manifold of uε in case of fixed points. For rotating waves uε the
dimension of the strong unstable manifold is given by the Morse index +1.

The proof of Theorem 2.9 is accomplished by a series of Lemmata. We begin by
rewriting the rotating wave equation in Lienard coordinates:

(24)
εvx = f(v)− c(ε)v + p
px = −g(v).

These coordinates are adapted to the geometry of the problem. However, sometimes
it is more convenient to work with standard phase plane coordinates:

(25)
εwx = q

qx = (f ′(w)−c(ε))q
ε − g(w)
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We will use both sets of coordinates as each one has its advantages. We will always
use (v, p) when referring to the Lienard version and (w, q) when utilizing phase
plane coordinates.

The coordinates can be transformed into each other by the transformation:

w(v, p) = v v(w, q) = w(26)

q(v, p) = f(v)− p p(w, q) = f(w)− q.(27)

In phase plane coordinates the system (25) is a rotated vector field (mod q = 0)
with respect to the parameter c.

The notion of rotated vector fields was introduced by Duff [Duf53] and refined
by Perko [Per75, Per93]. For exact definitions I refer to their papers or to Definition
4.1 in [Haer03].

The geometric interpretation of this is that the whole vector field rotates in the
same direction when changing the parameter c except on the curve q = 0.

We now define the cyclicity set Cp:

Definition 3.3. The cyclicity set Cp consists of all points (w, q) ∈ R2 that lie on
a periodic orbit of equation (25) for some value of c or correspond to homogeneous
equilibria (e, 0) of (P) that undergo a Hopf bifurcation for some value of c.

We immediately observe that in our situation Cp is non-empty because the ho-
mogeneous solution associated with the middle equilibrium w ≡ 0 undergoes a Hopf
bifurcation at c = 0.

According to Lemma 4.2 in [FRW04] the cyclicity set has in this case the following
properties

Lemma 3.4. The cyclicity set Cp is bounded and open. There exist C2-functions

(28) c, T : Cp → R

with the properties:

(i) For each non-stationary point (w, q) ∈ Cp the value c(w, q) defines the
unique wave speed for which (w, q) lies on a periodic orbit of (25). Simi-
larly, T (w, q) defines the minimal period of this orbit.

(ii) The wave speeds c are uniformly bounded.
(iii) The minimal periods T tend to infinity at the boundary ∂Cp of Cp.
(iv) ∂Cp consists of saddles and of points which are homoclinic or heteroclinic

to saddles for some parameter value of c.

We do not give a proof here but refer the reader to the paper quoted above. We
now prove three Lemmata that will finally yield the proof of Theorem 2.9.

Lemma 3.5. Let ε > 0 be arbitrary. Then the following is true:

a) The cyclicity set Cp is homeomorphic to a disc, i.e. it consists of one
connected component and has no holes.

b) Let (w(x), q(x)) 6= (0, 0) be a periodic orbit. Then w(x) 6= 0 except at two
points x1, x2.

c) All periodic orbits can be uniquely parametrized by their maxima (α, 0) and
α > 0.

Proof. We first prove c): we assume that v1 6= v2 are two rotating waves with
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b)

c)

a)

w

w

w

q

q α

v1

v2

Cp

q

∂Cp

Figure 2. Illustration for the proof of Lemma 3.5.

wave speeds c1 and c2 and identical maximum

(29) α = max
x∈S1
{v1(x)} = max

x∈S1
{v2(x)}.

We observe that the origin (0, 0) has to lie in the interior of the area encircled by
v1 and v2 respectively. This is a direct consequence of the persistence of the slow
manifold q = 0 in phase plane coordinates outside a neighborhood of (0, 0) due to
its normal hyperbolicity (see [Fen79]).
If v1 does not intersect or touch v2, then necessarily either

v1(x) < max
x∈S1
{v2(x)}

or vice versa. This contradicts equation (29). The curves therefore have to touch
or intersect at least once.

We now distinguish two cases:

(i) Assume c1 = c2. In this case the two curves have at least one point in the
phase plane in common and solve the same equation. Hence they are the
same. This violates v1 6= v2

(ii) Assume c1 6= c2. We investigate the vector field of (25) for c = c2 on the
curve defined by v1. Due to the fact that (25) is a rotated vector field with
respect to c we obtain, that the vector field has to either point strictly to
the outside or strictly to the inside of the area encircled by v1. Assume
the vector field points inwards, then the area encircled by v1 is positive
invariant. See panel c) for illustration.
Therefore v1 enters at the intersection point but cannot intersect twice due
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to the positive invariance of the area encircled by v1 – and thus cannot be
closed. This contradicts that v1 is a periodic orbit.

If the vector field points to the outside, the same argument holds (just
reverse the ”time direction” x).

This proves c).

For b) we observe that the number of zeros is necessarily even. The fact that
(0, 0) lies in the area encircled by the periodic orbit excludes the no-zero case. The
fact that the periodic orbit cannot intersect itself excludes the case of more than
two zeros (see panel b) in Figure 2). This proves b).

For a) we observe that the nesting property of the periodic orbits in c) excludes
holes in Cp. Hence ∂Cp must consists of nested closed curves. Due to the bounded-
ness of Cp and the fact that (0, 0) ∈ Cp, there must be a minimum of three curves.
See Panel a) for such a situation.

According to 3.4 (iv) these curves must consist of saddles, homoclinic and hete-
roclinic connections. Hence all curves that form the boundary ∂Cp must start and
end in the two saddles (u−, 0) or (u+, 0). Due to the rotated vector field property
there is at most one homoclinic orbit at each saddle and at most one heteroclinic
orbit connecting (u−, 0) and (u+, 0) and one connecting (u+, 0) with (u−, 0). Due to
the persistence of the slow manifold q = 0 outside a neighborhood of (0, 0) neither
(u−, 0) can ly inside the homoclinic loop of (u+, 0) nor vice versa. This completes
a). �

The next Lemma gives a first-order description of all rotating waves.

Lemma 3.6. Let T > 0 be given. Then there exists ε0 > 0 such that for all
0 < ε < ε0 there exists a rotating wave w with minimal period T .

Through a shift we can assume that w(0) = 0 and wx(0) > 0, then w(x) can be
written in the following way:

w(x) = φ(x) +O(ε) for x ∈ [0, x2 − ε log ε] ∪ [x2 + ε log ε, T ](30)

w(x) = ψ(
x− x2
ε

, x2) +O(ε) for x ∈ [x2 − ε log ε, x2 + ε log ε](31)

where x2 is the second zero of w.
φ(·) is a solution of

(32) φx =
g(φ)

f ′(φ)
φ(0) = 0

and ψ(·, x2) is a solution of

(33) ψ x
ε

= f
(
ψ(
x

ε
)
)
− φ(x2) ψ(0) = 0

Proof. For existence we observe that the centre in the origin (0, 0) undergoes a
Hopf bifurcation. A straight forward calculation shows that the imaginary parts of
the hopf eigenvalues are given by

ν := Im(λ1/2) = ±
√
g′(0)√
ε

.
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Thus, the limiting period of the at the Hopf bifurcation emerging limiting cycle is
given by

THopf =
2π

ν
=

2π
√
ε√

g(0)
.

This yields existence of rotating waves for T → 0. For T → ∞ existence follows
from Lemma 3.4 (iv). Continuity of T yields existence by virtue of the intermediate
value theorem for all T if we choose ε0 such that

ε < ε0 := T 2 g
′(0)

4π2

holds.
It remains to prove equations (30),(31). From Lemma 3.5 c) we know that the

periodic orbits can be parametrized by their maxima, moreover, Lemma 3.5 b)
proves that wε has exactly two zeros. Without loss of generality we shift the zero
with positive slope to x1 = 0. We denote the other zero with x2 and note that
w′(x)|x=x2

< 0 necessarily. We assume that the wave-speed c(ε) = 0 and prove
equations (30,31). Then we will argue that the correct wave-speed is in fact small
and hence does not destroy the approximation.

We start computing the trajectory of (w(x), wx(x)) in x = x2 and assume that

(34) |wx(x)|x=x2
| >> ε0.

This is always possible because we are free in the choice of ε0. We use phase plane
coordinates.

Due to equation (34) we can use the fast vector field to describe the solution up
to the first order. In forward time direction the solution will converge exponentially
to a ε-neighborhood of the unstable manifold of (u−, 0). In backward time direction
the solution will converge exponentially to a ε-neighborhood of the stable manifold
of (u+, 0). This part can be described due to Fenichel [Fen79] by the fast equations
given by (33). This proves equation in (31).

The unstable manifold of (u−, 0) is transversely stable in forward time direction.
So is the stable manifold of (u+, 0) in negative time direction. Hence for T > x >
x2 + Cε log ε the periodic solution w(x) converges exponentially to the unstable
manifold of (u−, 0), the same is true for 0 < x < x2 − Cε log ε and the stable
manifold of (u+, 0). Because w(x) is periodic we have w(T ) = w(0) or in other
words in the phase plane the trajectories given by γ(x) := (w(x), v(x)) for x → T
and for x→ 0 intersect.

Now we quote a result by Haerterich stating that the wave-speed c∗ for which
the unstable manifold of (u−, 0) and the stable manifold of (u+, 0) are connected
(i.e. the heteroclinic connection between the two equilibria persists) obeys

|c∗(ε)| < σε,

see Lemma 4.3 in [Haer03]. By virtue of the same argument that essentially makes
use of the fact that our system is a rotated vector field we obtain the same bound
must hold in our case for the wave speed of our periodic solution w. Because the
wave speed enters the equation for c = 0 as a regular perturbation our approxima-
tion stays valid for |c| ≤ σε. �

The next Lemma uses the above descriptions to prove monotonicity of T (w, q).
This result forms the basis of a relation between the zeros of a solution and the
number of its unstable eigenvalues.
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Lemma 3.7. Let T be arbitrary but fixed. Then there exists a ε0 > 0 such that for
all 0 < ε < ε0 the minimal period T (w, q) grows monotone with the maxima of the
periodic orbits.

Proof. We use the formula of the periodic orbit w(x) obtained in equation (30).
Let us assume we have two periodic orbits w1 and w2 with period T1 and T2 and
the property that

max
x∈[0,T1]

w1 =: α1 < α1 + δ1 := α2 := max
x∈[0,T2]

w2

for some δ1 > 0. It is sufficient to prove T1 < T2 − δ2 for sufficiently small ε and
some δ2 > 0.

Due to the fact that the periodic orbits are nested (Lemma 3.5 c)) α1 < α2

implies immediately

0 > min
x∈[0.T1]

w1 =: β1 > β2 := min
x∈[0,T2]

w2.

The solution φ(x) is strict monotonically growing because

φx =
g(φ)

f ′(φ)
> 0

due to the convexity of f and the fact that the zero of f ′ and the zero of g at u = 0
are simple. This implies invertibility of φ and monotonicity of φ−1

We now have

T1 =φ−1(α1)− φ−1(β1) +O(ε log ε)(35)

T2 =φ−1(α2)− φ−1(β2) +O(ε log ε)(36)

The monotonicity of φ implies

φ−1(α2) = φ−1(α1 + δ1) = φ−1(α1) + (φ−1)′(α1)δ1 +O(δ1) > φ−1(α1) + δ2

for some δ2 > 0 and
−φ−1(β1) < −φ−1(β2).

For sufficiently small 0 < ε0 we obtain the desired inequality for some δ2 for all
0 ≤ ε ≤ ε0. �

Corollary 3.8. Let T ∈ R+ be given. Then there is a unique periodic orbit with
minimal period T , and it is hyperbolic as a rotating wave of (P).

Proof. The uniqueness is a direct consequence of the monotonicity of the T -
map. The hyperbolicity is also a direct consequence of the monotonicity of the
T -map. A periodic orbit is non-hyperbolic if, and only if, the time T map has a
vanishing derivative. See for example Lemma 4.4 in [FRW04]. This would contra-
dict monotonicity. �

We are now set to construct rotating waves of the PDE (P) by using the periodic
orbits constructed earlier in this section.

Proof of Theorem 2.9. Let n ∈ 2N be fixed.
Every rotating wave with n zeros corresponds to a periodic solution of the rotating
wave equation (9) with period Tn = 2π

n .
Corollary 3.8 provides for the unique existence of a periodic orbit of the rotating

wave equation with period

Tn =
2π

n
,
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which we denote by vεn. This settles the existence part.
Now assume there is a ũε ∈ Fε ∪ Rε which z(ũ) = n. Then there must be a

solution ṽεn of equation (9) with z(ṽεn) = n and ũε(x, t) = ṽεn(x − ct + θ). This
settles the first part of the Theorem.

(i) is a direct consequence of Lemma 5.3 in [FRW04] which states:

Lemma 3.9. Let

Ṫ = ∂αT

be the derivative of the minimal period with respect to the maximum of the periodic
orbits just as in Lemma 3.7. Then the Morse index of a rotating or frozen wave u
is given by the following relations:

i(u) = z(u)− 1⇐⇒ Ṫ > 0(37)

i(u) = z(u)⇐⇒ Ṫ < 0.(38)

Lemma 3.7 states monotonicity of the function T hence we have Ṫ = ∂αT > 0
for all possible α which yields

i(uεn) = z(uεn)− 1 = n− 1

for all uε ∈ Fε∪Rε. For uε ≡ u± we use the fact that in Sturm-Liouville eigenvalue
problems the eigenfunction to the leading eigenvalue λ0 (eigenvalue with largest
real part) has a sign, i.e. has no zeros. This can be found in [CL55] in Chapter 8,
Theorem 3.1.
A small calculation shows that λ0 = g′(u±) < 0 with constant eigenfunction. Hence
i(u±) = 0.

(ii) is a direct consequence of the nested property of the rotating waves in Lemma
3.5 c). �

We now turn to the proof of Theorem 2.10 which relies on the concept of k−(P)-
adjacency developed and used in [FR96] and later in [Wol02a] and [Wol02b] for the
Neumann case. Fiedler, Rocha and Wolfrum presented in [FRW04] a version for
the S1 case which we will use:

Definition 3.10 (k− (P)-adjacency). Let uεa, u
ε
b ∈ Eε ∪Fε ∪Rε. Then uεa and uεb

are called k − (P)-adjacent if the following holds:

z(uεa − uεb) = k

for some k ∈ N and there does not exist a solution aεc ∈ Eε ∪ Fε ∪ Rε with the
property

z(uεa − uεc) = z(uεb − uεc) = k and(39)

max
x∈S1

uεc(x) is strictly between max
x∈S1

uεa(x) and max
x∈S1

uεb(x).(40)

Theorem 1.3 in [FRW04] now states that two solutions uεa, u
ε
b ∈ Eε ∪ Fε ∪ Rε

are connected by a heteroclinic if and only if uεa and uεb are k − (P)-adjacent. The
authors call a violation of k − (P)-adjacency the blocking principle because in this
case there is another rotating wave uεc that blocks the connection.

Proof of Theorem 2.10. The “only if” has already been proven by Matano
and Nakamura in [MN97]. The statement can be found in Theorem C on page 5.
It is a direct consequence of the fact that due to the Sturm property of the problem
the zero-number can only drop along trajectories and so does the Morse index.
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For the “if” part we have to prove k − (P)-adjacency of uεa and uεb. The key
observation lies in the fact that the number of zeros of the difference of two rotating
waves is given by the minimum of the zero-numbers individually. In other words,
we have for ũ, û ∈ Fε ∪Rε the following relation:

(41) z(ũ− û) = min{z(ũ), z(û)}.

This is not true in general, but a direct consequence of the fact that in our situation
all periodic orbits of the rotating wave equation are nested (Lemma 3.5 c)).

Let uεa, u
ε
b ∈ Fε ∪ Rε for some a, b ∈ N. Now assume there exists aεc ∈ Fε ∪ Rε

with the property

z(uεa − uεc) = z(uεb − uεc) = k and(42)

max
x∈S1

uεc(x) is strictly between max
x∈S1

uεa(x) and max
x∈S1

uεb(x)(43)

exists.
Due to Theorem 2.9 there is a unique rotating wave to each zero-number k ∈ 2N0

for fixed and sufficiently small ε > 0. From this we conclude that

a 6= k 6= b

otherwise uεc = uεa or uεc = uεb.
In case k > b equation (42) is violated due to (41). Hence, we have necessarily

k < b. Due to the nested property of rotating waves this implies maxuεc > maxuεa,b,

which violates (43). Thus uεa and uεb are k-(P)-adjacent and therefor connected.
In case uεa ∈ Eε or uεb ∈ Eε the same argument works, the zero properties are

obvious because in this case ua or ub is constant. �

4. Conclusions

In this work we have investigated a key aspect of the question of convergence of
attractors for viscous and inviscid balance laws on the circle: persistence of hete-
roclinic connections when viscosity vanishes. The Connection Lemma 2.8 provides
a necessary condition for the persistence of heteroclinic connections between given
rotating or frozen waves namely that connections can only persist if the zero num-
bers of target and source are multiples of each other. It shows together with the
results of the section on the parabolic attractor that heteroclinic connections do not
persist generally. In fact persistence or non-persistence of a heteroclinic connection
exclusively depends on the structural relation between source and target of the
connection. The non persistence has strong implications on the question whether
the global attractor of the inviscid balance law (H) can be obtained as a limit of
the global attractors of the parabolic equation (P) when viscosity vanishes. The
result presented in this paper excludes a orbit equivalence relation even when we
restrict the analysis to reasonable subsets of the full attractors A0 and Aε. However
the corrected result of Fan and Hale [FH95] still yields a point wise convergence of
global solutions for ε → 0 which suggests a convergence of attractors in terms of
sets, for example with respect to a Hausdorff norm on L1, at least for appropriately
chosen subsets of the attractors. Unfortunately it remains rather unclear how to
rigorously proof such a result. Related to this question is whether the purely al-
gebraic condition (19) in the connection Lemma 2.8 is only necessary or whether
it is sufficient. Results on the structure of certain sub-attractors of the hyperbolic
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equation in [Ehrt2010/2] suggest that the condition is sufficient, however there is
no rigorous proof in sight at the moment.
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