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In this article we propose a novel approach to reduce the computational complex-
ity of the dual method for pricing American options. We consider a sequence of
martingales that converges to a given target martingale and decompose the original
dual representation into a sum of representations that correspond to different levels
of approximation to the target martingale. By next replacing in each representation
true conditional expectations with their Monte Carlo estimates, we arrive at what
one may call a multilevel dual Monte Carlo algorithm. The analysis of this algorithm
reveals that the computational complexity of getting the corresponding target upper
bound, due to the target martingale, can be significantly reduced. In particular, it
turns out that using our new approach, we may construct a multilevel version of the
well-known nested Monte Carlo algorithm of Andersen and Broadie (2004) that is,
regarding complexity, virtually equivalent to a non-nested algorithm. The perfor-
mance of this multilevel algorithm is illustrated by a numerical example.
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1 Introduction

Efficient methods for pricing high-dimensional American options have been a challenge for
decades. While for a low or moderate dimensional underlying process, deterministic (PDE)
based methods may be applicable, for higher dimensions Monte Carlo simulation based meth-
ods are virtually the only way out. Besides the absence of curse of dimensionality, Monte Carlo
methods are quite popular because of their genericity. In the nineties a number of regression
methods for constructing “good” exercise policies, hence price lower bounds, were introduced
and studied in the literature (see Carriere (1996), Longstaff and Schwartz (2001), and Tsistsik-
lis and Van Roy (2001)). Among various other developments, we mention the stochastic mesh
method of Broadie and Glasserman (2004), the quantization method by Bally and Pages (2003),
and the policy iteration method by Kolodko and Schoenmakers (2006). The later method may
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be effectively combined with the Longstaff-Schwartz approach as presented in Bender et al.
(2008).

The aforementioned methods have in common that they provide an exercise policy for the
American product. Based on this policy one may simulate a lower bound for its price. This is
what is called the primal approach. A new direction in Monte Carlo simulation of American
options was the dual approach, developed by Rogers (2002) and independently by Haugh and
Kogan (2004), related to earlier ideas in Davis and Karatzas (1994). In this approach one looks
for a “good” martingale rather than a “good” stopping time. Based on this martingale the price
of an American derivative may be bounded from above. In fact, this price upper bound may be
represented by a “look-back” option due to the difference of the cash-flow and the martingale.
Meanwhile, several numerical algorithms for computing dual upper bounds have appeared in the
literature. Probably one of the most popular ones is the method of Andersen and Broadie (2004)
(see also Kolodko and Schoenmakers (2004) for an extension, and Chen and Glasserman (2007)
for a more detailed analysis of the dual estimator). A drawback of this method is its computa-
tional complexity due to the need of nested Monte Carlo simulation however. As a remedy to
this issue, Belomestny et al. (2009) proposed a dual simulation algorithm which does not require
nested simulation and uses regression to approximate the integrand in a martingale representa-
tion. Kohler et al. (2010) proposed a regression based variance reduction method for the nested
dual approach. Another non-nested regression based dual algorithm was proposed in Schoen-
makers and Huang (2011) in the context of a study of optimal dual martingales (approximated
by “low variance” martingales). Furthermore, in Belomestny (2011) an efficient dual algorithm
is constructed which is based on convex optimization and empirical variance penalization. For
another dual approach based on convex optimization see Desai, et al. (2010). The main goal of
this paper is to enhance the efficiency of dual algorithms by using a “multi-level” idea in the
spirit of Giles (2008). In Giles (2008) a multilevel Monte Carlo estimator is presented, which is
based on approximate solutions of a stochastic differential equation given a sequence of different
time discretisation steps. For instance, by this method the complexity of simulating a European
option can be significantly reduced. In this paper we apply the multilevel idea to a sequence of
martingales (rather than time discretisation steps). Based on this sequence of martingales we
will construct a new multilevel dual estimator for the American option. As a special case we so
obtain a multilevel version of the Andersen-Broadie algorithm. Under some assumptions we will
prove that the complexity of this algorithm is (almost) equivalent to a non-nested Monte Carlo
algorithm. As a byproduct of our complexity analysis we derive, to our knowledge for the first
time, convergence rates of the Andersen-Broadie algorithm. In particular, our analysis reveals
that, under some assumptions, the upper bias induced by inner simulations converges to zero
at rate O(1/k), with k being the number of inner simulations. The latter feature was observed
empirically in the early literature (see, e.g., Kolodko and Schoenmakers (2004)), but has not yet
got theoretical explanation.

The structure of the paper is as follows. In Section 2 we recap the primal and dual approaches
for optimal stopping in the context of American options. The main setup and prerequisites
including a key Theorem 5 are presented in Section 3. After a complexity analysis of the
standard dual approach in Section 4 we present and analyze the multi-level dual estimator in
Section 5. Section 6 concludes with a detailed numerical study of the multilevel version of the
Andersen-Broadie algorithm.
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2 Primal and Dual valuation of American options

Let (Zj)j≥0 be a nonnegative adapted process on a filtered probability space (Ω,F = (Fj)j≥0,P)
representing the discounted payoff of an American option, so that the holder of the option
receives Zj if the option is exercised at time j ∈ {0, ...,J } with J ∈ N+. The pricing of American
options can be formulated as a primal-dual problem. Let Yj denote the time j solution to this
problem. The primal representation corresponds to the following optimal stopping problems:

Y ∗j = max
τ∈T [j,...,J ]

EFj [Zτ ], j = 0, . . . ,J ,

where T [j, . . . ,J ] is the set of F-stopping times taking values in {j, . . . ,J }. During the nineties
the primal approach was the only method available. More recently a quite different “dual”
approach has been discovered by Rogers (2002) and Haugh and Kogan (2004). The next theorem
summarizes their results.

Theorem 1 Let M denote the space of adapted martingales, then we have the following dual
representation for the value process Y ∗j

Y ∗j = inf
M∈M

EFj

[
max

s∈{j,...,J}
(Zs −Ms +Mj)

]
= max

s∈{j,...,J}
(Zs −M∗s +M∗j ) a.s.,

where

(1) Y ∗j = Y ∗0 +M∗j −A∗j
is the (unique) Doob decomposition of the supermartingale Y ∗j . That is, M∗ is a martingale and
A∗ is an increasing process with M0 = A0 = 0 such that (1) holds.

Remark 2 In Schoenmakers and Huang (2011) it is shown that in general there are infinitely
many martingales M◦ such that

Y ∗j = max
s∈{j,...,J}

(Zs −M◦s +M◦j ) a.s.

Theorem 1 implies that, for an arbitrarily chosen martingale M with M0 = 0, the value

E

[
max

s∈{0,...,J}
(Zs −Ms)

]
defines an upper bound for the price of American option Y ∗0 , and the upper bound will be
tight if the chosen martingale M is close to the Doob martingale part M∗ of the discounted
true value process Y ∗j , which we shall refer to as the “optimal” martingale. Not surprisingly,
finding such an optimal martingale is no easier than solving the original stopping problem.
The so-called martingale duality approach aims at finding a martingale that approximates the
“optimal” martingale and then use this approximation to compute an upper bound for the price
of the American option by Monte Carlo. There are several methods known for approximating
the “optimal” martingale M∗. In Andersen and Broadie (2004) the Doob martingale part of a
given approximation to the Snell envelope is constructed by sub-simulations. In this way quite
tight lower and upper bounds for a number of test examples were obtained. However, as we will
see later on, the complexity of this method can be rather high, especially if a high precision of
calculation is required. Therefore the complexity reduction of the dual algorithms is of primal
importance and is one of the main aims of this paper.
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3 Main setup and prerequisites

Let (Mk)k∈N be a sequence of martingales starting at 0 (Mk
0 = 0) with respect to an enlarged

probability space (Ω,F ′ = (F ′j)j≥0, P ), where Fj ⊂ F ′j for each j. It is supposed that the

sequence (Mk)k∈N converges in some sense to a target martingale M which is F-adapted. We
assume that

(AC) the numerical complexity of obtaining a single realization of Mk
j is of order O(k) for each

j = 1, . . . ,J ,

(AA) there exists an F-adapted martingale M such that

max
j=0,...,J

∣∣∣EF [Mk
j −Mj

]∣∣∣ ≤ Ak−α, EF

[
max

j=0,...,J
(Mk

j −Mj)
2

]
≤ Bk−β,

almost surely for all k ∈ N, some α > 0, β > 0, A > 0 and B > 0.

Remark 3 If J is finite, then

EF

[
max

j=0,...,J
(Mk

j −Mj)
2

]
≤
J∑
j=1

EF

[
(Mk

j −Mj)
2
]
≤ J max

j=0,...,J
EF

[
(Mk

j −Mj)
2
]

and the second condition in (AA) can be formulated in terms of expectations EF

[
(Mk

j −Mj)
2
]
.

Our aim is to approximate the target upper bound

Y (M) := E

[
max

j=0,...,J
(Zj −Mj)

]
= E[Z(M)]

with
Z(M) = max

j=0,...,J
(Zj −Mj).

Note that any F-stopping time τ is also an F ′-stopping time, so by Doob’s sampling theorem
E
[
Mk
τ

]
= 0, and we have

Y ∗0 = sup
F-stopping times τ

E [Zτ ]

= sup
F-stopping times τ

E
[
Zτ −Mk

τ

]
≤ E

[
max

j=0,...,J
(Zj −Mk

j )

]
= Y (Mk),

i.e., Y (Mk) is an upper bound for any k ∈ N. Note that M̃k
j := EFj

[
Mk
j

]
, j = 0, . . . ,J , is an

F-martingale, and if Mk satisfies for each j,

M̃k
j = EF

[
Mk
j

]
,
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then Y (Mk) is upper biased with respect to Y (M̃k). Indeed, by Jensen’s inequality, we then
have

Y (Mk) ≥ E

[
max

j=0,...,J

(
Zj − EF

[
Mk
j

])]
= E

[
max

j=0,...,J

(
Zj − M̃k

j

)]
= Y (M̃k).

Introduce the random sets

Q = {j : Zj −Mj = Z(M)} , Qk =
{
j : Zj −Mk

j = Z(Mk)
}
, k ∈ N,

and define the F-measurable random variable

Λ := min
j /∈Q

(Z(M)− Zj +Mj) ,

with Λ := +∞ if Q = {0, ...,J }. Let us introduce the following two conditions.

(AL) Λ satisfies E[Λ−1] <∞,

(AQ) #Q = 1 a.s.

Remark 4 If M = M∗, then

Λ = min
j /∈Q

(Y ∗0 − Zj +Mj)

= min
j /∈Q

(
Y ∗j − Zj +Aj

)
≥ min

j /∈Q

(
Y ∗j − Zj

)
≥ min
{j:Y ∗j >Zj}

(
Y ∗j − Zj

)
.

Hence, the condition (AL) is fulfilled if

P(Y ∗j − Zj < δ|Y ∗j > Zj) . δq+1, δ → 0(2)

for all j = 1, . . . ,J and some q > 0. The condition (2) bounds the probability of staying in the
δ-vicinity of the exercise boundary {Y ∗j ≤ Zj} in the case of continuation and is similar to the
so-called margin condition in Belomestny (2011). As we will see, (2) leads to faster convergence
rates of the standard Andersen-Broadie dual algorithm. It is easy to construct examples showing
that the assumption (AL) is not always fulfilled. Take J = 1, Z0 = 0, Z1 = ζ for some random
variable ζ with absolutely continuous density, and M0 = M1 = 0. Then, obviously, Λ = |ζ| and
#Q = 1 a.s., hence (AQ) holds. Now, if ζ has a density not vanishing at 0, then (AL) does not
hold. If, on the contrary, the density of ζ behaves like O(|z|q) for some q > 0 as |z| → 0, then
(AL) holds (cf. (2)).

Theorem 5 Under assumption (AA) it holds

|E[Z(Mk)−Z(M)]| ≤ Ck−γ , E
(
Z(Mk)−Z(M)

)2
≤ Bk−β(3)

with γ = β/2 and some C > 0. If additionally the assumptions (AL) and (AQ) are satisfied,
then (3) holds true with γ = min{α, β}.
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Proof. On the one hand, it holds for each k ∈ N, and jmax
k := minQk

Z(Mk)−Z(M) = max
j=0,...,J

(Zj −Mk
j )− max

j=0,...,J
(Zj −Mj)

≤Mjmax
k
−Mk

jmax
k

, a.s.,(4)

and on the other hand, we get for each k ∈ N and Q =: {jmax},

(5) Z(Mk)−Z(M) ≥Mjmax −Mk
jmax .

By (4) and (5) we thus have

E

[(
Z(Mk)−Z(M)

)2]
≤ E EF

[
max

j=1,...,J

(
Mj −Mk

j

)2]
≤ Bk−β.

Further, by the Cauchy-Schwarz inequality we have similarly,

|E[Z(Mk)−Z(M)]| ≤ E

[{
EF

[
max

j=1,...,J

(
Mj −Mk

j

)2]}1/2
]
≤
√
B · k−β/2.

Let us now turn to the case where assumptions (AL) and (AQ) are fulfilled. From (4) we obtain
for k ∈ N,

EF [Z(Mk)−Z(M)] ≤ EF

[
Mjmax

k
−Mk

jmax
k

]
= EF

[(
Mjmax

k
−Mk

jmax
k

)
1jmax
k 6=jmax

]
+ EF

[
Mjmax −Mk

jmax

]
=: (I) + (II).

Note that Zjmax
k
−Mk

jmax
k
≥ Zjmax −Mk

jmax and hence

{jmax
k 6= jmax} ⊂

{
max

j=1,...,J
(Mj −Mk

j +Mk
jmax −Mjmax) ≥ Λ

}
.

We thus have

PF (jmax
k 6= jmax) ≤ PF

(
max

j=1,...,J
(Mj −Mk

j +Mk
jmax −Mjmax) ≥ Λ

)
≤ PF

(
max

j=1,...,J
(Mj −Mk

j ) ≥ Λ/2

)
+ PF

(
Mk
jmax −Mjmax ≥ Λ/2

)
≤ PF

(
max

j=1,...,J
(Mj −Mk

j ) ≥ Λ/2

)
+ PF

(
max

j=1,...,J
(Mk

j −Mj) ≥ Λ/2

)
By (AA) and the conditional Markov inequality it follows that

PF

(
max

j=1,...,J
(Mj −Mk

j ) ≥ Λ/2

)
≤ 4B

Λ2
k−β, PF

(
max

j=1,...,J
(Mk

j −Mj) ≥ Λ/2

)
≤ 4B

Λ2
k−β.

Hence

PF (jmax
k 6= jmax) ≤ 8B

Λ2
k−β
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for all k. Furthermore, we have by (AA) and the Cauchy-Schwarz inequality

(I) = EF

[(
Mjmax

k
−Mk

jmax
k

)
1jmax
k 6=jmax

]
≤
√

PF (jmax
k 6= jmax)

√
EF

[
max

j=1,...,J

(
Mj −Mk

j

)2]
≤ 2
√

2B

Λ
k−β.

Combining (4) with (5) and using assumption (AA) again for the term (II), we arrive at the
inequality

−Ak−α ≤ E[Z(Mk)−Z(M)] ≤ 2
√

2B E[Λ−1]k−β +Ak−α ≤ Ck−γ

with γ = min{α, β} and some C > 0.

Remark 6 For the Andersen-Broadie algorithm, where the sequence of martingales (Mk) is
constructed using subsimulations, it is not difficult to show that assumption (AA) is fulfilled
with α = ∞ and β = 1. Hence, under the additional assumptions (AL) and (AQ) we have by
Theorem 5 that the bias of the Andersen-Broadie estimator is of order O(1/k). This rate was
experimentally found in Kolodko and Schoenmakers (2004), but not proved by now to the best of
our knowledge.

4 Standard dual approach

Fix some natural numbers N and K, and consider the estimator

Y N,K =
1

N

N∑
n=1

max
j=0,...,J

(Z
(n)
j −MK,(n)

j )

=:
1

N

N∑
n=1

Z(n)(MK)

based on a set of trajectories{
(Z

(n)
j ,M

K,(n)
j ), n = 1, ..., N, j = 0, . . . ,J

}
of the vector process (Z,MK).

Complexity analysis

By Theorem 5, for some C > 0 it holds

E
[
Y N,K − Y (M)

]2 ≤ N−1 Var(Z(MK)) + CK−2γ

=: N−1vK + CK−2γ , K →∞.

In order to get

√
E [Y N,K − Y (M)]2 ≤ ε, we may take

K =
(2C)1/2γ

ε1/γ
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and then

N =
2vK
ε2

.

Assuming that vK is non-increasing, the required computation time for reaching accuracy ε,
hence the complexity, is then given, up to a constant, by

CN,K(ε) := NK =
2vK
ε2

(2C)1/2γ

ε1/γ

.

v⌊
(2C)1/2γ

ε1/γ

⌋
ε2+1/γ

.

with bxc denoting the largest integer which is smaller than or equal to x.
In the usual case, where M is the Doob martingale of some approximation Y to the Snell

envelope Y ∗, we have that Var(Z(M)) > 0 and vK → v∞ 6= 0 leading to CN,K(ε) of order
O(1/ε2+1/γ).

Remark 7 If Var(Z(M)) = 0 (e.g., the target martingale M is the Doob martingale of Y ∗) we
have (under the assumptions of Theorem 5),

vK = Var(Z(MK)) ≤ E(Z(MK)−Z(M))2 ≤ BK−β,

and as a result

CN,K(ε) .
B

(2C)β/2γ
1

ε2+(1−β)/γ .

That is, if β ≥ 1 the complexity is even less than or equal to the complexity of the plain Monte
Carlo algorithm !

5 Multilevel dual algorithm

Fix some natural number L > 0. Let k = (k0, . . . , kL) be a sequence of natural numbers satisfying
1 ≤ k0 < k1 < . . . < kL. Write

Y (MkL) = Y (Mk0) +

L∑
l=1

[Y (Mkl)− Y (Mkl−1)](6)

= E[Z(Mk0)] +
L∑
l=1

E[Z(Mkl)−Z(Mkl−1)].

For a given sequence n = (n0, . . . , nL) with 1 ≤ n0 < . . . < nL, we first simulate the initial set
of trajectories {(

Z
(i)
j ,M

k0,(i)
j

)
, i = 1, ..., n0, j = 0, . . . ,J

}
of the vector process (Z,Mk0), and then for each level l = 1, . . . , L independently a set of
trajectories {(

Z
(i)
j ,M

kl−1,(i)
j ,M

kl,(i)
j

)
, i = 1, ..., nl, j = 0, . . . ,J

}
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of the vector process (Z,Mkl−1 ,Mkl). Based on these simulations we consider the following
approximation of (6)

Y n,k :=
1

n0

n0∑
i=1

Z(i)(M k0) +
L∑
l=1

1

nl

nl∑
i=1

[
Z(i)(Mkl)−Z(i)(Mkl−1)

]
with Z(i)(Mk) := maxj=0,...,J

(
Z

(i)
j −M

k,(i)
j

)
, i = 1, . . . , nl, k ∈ N, where Mk,(i) denotes the

i-th simulated trajectory of the martingale Mk.

Complexity analysis

For the bias of the multilevel estimator we obtain by Theorem 5

(7)
∣∣∣E [Y n,k

]
− Y (M)

∣∣∣ =
∣∣∣E [Z(MkL)

]
− E [Z(M)]

∣∣∣ ≤ Ck−γL
and for the variance we have

(8) Var
[
Y n,k

]
= n−10 Var[Z(Mk0)] +

L∑
l=1

1

nl
Var

[
Z(Mkl)−Z(Mkl−1)

]
.

Note that for any l > 0,

Var
[
Z(Mkl)−Z(Mkl−1)

]
≤ E

[(
Z(Mkl)−Z(Mkl−1)

)2]
≤ 2 E

[(
Z(Mkl)−Z(M)

)2]
+ 2 E

[(
Z(Mkl−1)−Z(M)

)2]
≤ 2(Bk−βl +Bk−βl−1) ≤ 4Bk−βl ≤ B̃k−βl ,

by Theorem 5. For notational convenience we assume that B̃ is such that Var[Z(Mk0)] ≤ B̃k−β0 .

The following complexity theorem is in some sense similar to the complexity theorem in Giles
(2008), although its context is entirely different (duality bias due to number of inner simulations
versus European option bias due to SDE discretisation).

Theorem 8 (complexity theorem) Suppose that kl = k0κ
l for some integer k0, κ > 1, and

l = 0, . . . , L. Assume (AA) and suppose that γ = min(α, β/2) ≥ 1/2. Fix some 0 < ε < 1 and
set

(9) L =


− ln

kγ0 ε

C
√
2

γ lnκ

 .
With dxe denoting the first integer which is larger than or equal to x, let

nl =


⌈
2ε−2B̃k−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2

⌉
, β < 1,⌈

2ε−2B̃(L+ 1)k−10 κ−l
⌉
, β = 1,⌈

2ε−2B̃k−β0 (1− κ−(β−1)/2)−1κ−l(1+β)/2
⌉
, β > 1.
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Then

(10)
√

E[Y n,k − Y (M)]2 ≤ ε,

while the computational complexity of the estimator Y n,k is, up to a constant, given by

Cn,k(ε) :=
L∑
l=0

klnl =


O(ε−2−(1−β)/γ), β < 1,

O(ε−2 ln2 ε), β = 1,

O(ε−2), β > 1.

Proof. Due to (7) and (9), we have in any case

(11)
∣∣∣E [Y n,k

]
− Y (M)

∣∣∣ ≤ Ck−γ0 κ−Lγ = ε/
√

2.

i) Case β < 1 : We have by (8),

Var
[
Y n,k

]
≤ B̃

L∑
l=0

B̃−12−1ε2kβ0κ
−L(1−β)/2(1− κ−(1−β)/2)κl(1+β)/2k−β0 κ−βl

= 2−1
L∑
l=0

ε2κ−L(1−β)/2(1− κ−(1−β)/2)κ
(L+1)(1−β)/2 − 1

κ(1−β)/2 − 1

κ−(1−β)/2

κ−(1−β)/2

= 2−1
L∑
l=0

ε2κ−L(1−β)/2
(
κ(L+1)(1−β)/2 − 1

)
κ−(1−β)/2

= 2−1ε2
(

1− κ−(L+1)(1−β)/2
)
≤ ε2/2,

and (10) straightforwardly follows from (11). The order of Cn,k(ε) follows from the estimate

L∑
l=0

klnl ≤
L∑
l=0

k0κ
l
(

2ε−2B̃k−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2 + 1
)

=

L∑
l=0

κl
(

2ε−2B̃k1−β0 κL(1−β)/2(1− κ−(1−β)/2)−1κ−l(1+β)/2 + k0

)
= k1−β0

(
2ε−2B̃κL(1−β)/2

(
κL(1−β)/2 − κ−(1−β)/2

)
+ k0

κL+1 − 1

κ− 1

)
≤ 2ε−2B̃k1−β0 κL(1−β) + k0κ

L+1

≤ 2ε−2B̃k1−β0 κ

− ln
k
γ
0 ε

C
√
2

γ lnκ
+1

(1−β)

+ k0κ
− ln

k
γ
0 ε

C
√
2

γ lnκ
+2

= 2B̃

(
C
√

2
)(1−β)/γ

ε2+(1−β)/γ κ(1−β) +

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2−(1−β)/γ), ε→ 0

(note that γ ≥ 1/2).
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ii) Case β = 1 : By a straightforward calculation, we obtain again

Var
[
Y n,k

]
≤ ε2/2,

as well as (10) via (11). For Cn,k(ε) we now have

Cn,k(ε) ≤
L∑
l=0

k0κ
l
(

2ε−2B̃(L+ 1)k−10 κ−l + 1
)

=

L∑
l=0

(
2ε−2B̃(L+ 1) + k0κ

l
)

= 2ε−2B̃(L+ 1)2 + k0
κL+1 − 1

κ− 1

≤ 2ε−2B̃(L+ 1)2 + k0κ
L+1

≤ 2ε−2B̃

− ln
kγ0 ε

C
√
2

γ lnκ
+ 2

2

+

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2 ln2 ε), ε→ 0

since γ ≥ 1/2.
iii) Case β > 1 : For the variance we have

Var
[
Y n,k

]
≤ B̃

L∑
l=0

2−1ε2B̃−1kβ0 (1− κ−(β−1)/2)κl(1−β)/2k−β0

= 2−1ε2(1− κ−(β−1)/2)1− κ(L+1)(1−β)/2

1− κ(1−β)/2

= 2−1ε2
(

1− κ(L+1)(1−β)/2
)
≤ ε2/2

and (10) holds in view of (11). Finally, we derive

Cn,k(ε) ≤
L∑
l=0

k0κ
l
(

2ε−2B̃k−β0 (1− κ−(β−1)/2)−1κ−l(1+β)/2 + 1
)

≤ 2ε−2B̃k1−β0

L∑
l=0

(1− κ−(β−1)/2)−1κl(1−β)/2 + k0κ
L+1

= 2ε−2B̃k1−β0

(
1− κ(L+1)(1−β)/2

)
+ k0κ

L+1

≤ 2ε−2B̃k1−β0 +

(
C
√

2
)1/γ

ε1/γ
κ2

= O(ε−2 ln2 ε), ε→ 0,

since γ ≥ 1/2.

11



6 Numerical example: Bermudan max-call

This is a benchmark example studied in Glasserman (2003), Haugh and Kogan (2004) and Rogers
(2002) among others. Specifically, a model withD identical distributed assets is considered where
each underlying has dividend yield δ. The risk-neutral dynamics of the assets are given by

(12) dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , d = 1, ..., D,

where W d
t , d = 1, ..., D, are independent one dimensional Brownian motions and r, δ, σ are

constants. As in the mentioned literature we take r = 0.05, δ = 0.1, and σ = 0.2. At any time
t ∈ {T0, ..., TJ } the holder of the option may exercise it and receive the payoff

Zj = h(XTj ) = (max(X1
Tj , ..., X

D
Tj )− κ)+.

We consider an example when Tj = jT/J , j = 0, ...,J , with T = 3 and J = 9. In our
implementation study we first construct a family of stopping rules τj : Ω → {j, . . . ,J } by
the Longstaff-Schwartz algorithm. This basically boils down to choosing a basis (φk(t, x), k =
1, . . . ,K) and estimating vectors of regression coefficients (αl ∈ RK , l = 0, . . . ,J ). Once the
coefficients {αl} are estimated, we can define

τj := min{j ≤ l ≤ J : α>l φ(Tl, XTl) ≤ Zl}

and
Yj := EFj [Zτj ], j = 1, . . . ,J .

In our example with D = 2 the following K = 4 basis functions are used:

ψ1(t, x) = 1, ψ2(t, x) = x1, ψ3(t, x) = x2, ψ4(t, x) = h(x).

We stress that stopping rules {τj} are estimated only once and remain fixed thereafter. The
target martingale M is thus defined by M0 = 0,

(13) Mj = Mj−1 + EFj [Zτj ]− EFj−1 [Zτi ], j = 1, . . . ,J ,

hence, following the description of the Andersen and Broadie (2004) algorithm in Glasserman
(2003), we have

Mj =

j∑
p=1

(
EFp [Zτp ]− EFp−1 [Zτp ]

)
=

j∑
p=1

{
1τp=p

(
Zp − EFp−1 [Zτp ]

)
+ 1τp>p1p<J

(
EFp [Zτp+1 ]− EFp−1 [Zτp ]

)}
.(14)

In order to approximate the target martingale M corresponding to (an outer) trajectory X we
construct a sequence of martingales Mk, where each Mk is a martingale constructed via (14)
by replacing the one-step conditional expectations EFp−1 [Zτp ], p = 1, . . . ,J , with their Monte
Carlo approximations based on k (inner) trajectories. Fix some k0, n0, L ∈ N, set κ = 2, and
define

nl = n0 · κ−l,
kl = k0 · κl

12



for any l ∈ N. Then the numerical complexity of the multi-level estimate Y n,k is given, up to a
constant, by

CML = n0k0 +

L∑
l=1

nl(kl + kl−1) = n0k0
(
1 + L(1 + κ−1)

)
.

Let us compute now the variance of Y n,k. We have

Var[Y n,k] = n−10 Var[Z(Mk0)] + n−1l

L∑
l=1

Var(Z(Mkl)−Z(Mkl−1))

= n−10 σ2(k0) + n−10 k−10

L∑
l=1

Vl,

where σ2(k) := Var[Z(Mk)], k ∈ N and Vl := kl ·Var(Z(Mkl)−Z(Mkl−1)), l = 1, . . . , L. Based
on 100000 paths of the process Z(Mkl) − Z(Mkl−1), l = 1, . . . , L, for different values k0, we
found Vl to be bounded by V∞ = 1000 for all l = 1, . . . , L, where V∞ does not depend on k0,
but only on κ. Hence

Var[Y n,k] ≤ n−10 σ2(k0) + n−10 k−10 LV∞.

Fix some n > 0, then the computational costs of the Andersen-Broadie algorithm based on n
outer simulations and k inner simulations are proportional to

CAB = nk.

The variance of the estimate Y n,k is given by

Var(Y n,k) = n−1 Var(Z(Mk)) = n−1σ2(k).

We have estimated σ2(k) using 106 replications of the r.v. Z(Mk) for k = 1, . . . , 100. As one
can see from Figure 1 (right), σ(k)→ σ∞ ≈ 5.2 as k →∞. The bias of Y n,k, can be written as

B(k) := Y∞,k − Y∞,∞, k ∈ N.

In Figure 1(left) the values lnB(k) are plotted on the log-scale, where in order to estimate the
limit values Y∞,k and Y∞,∞ ≈ 8.3231, we use 106 outer paths and 1000 inner paths. By fitting
a straight line to the data (ln(k), ln(B(k))), we obtain

0 < B(k) < µ∞k
−1, k > 10,

with µ∞ = exp(2.5). Note that the multi-level estimate Y n,k has, by construction, the same
bias as Y nL,kL . Now we choose L, n0, k0 and n, k in such a way that the overall accuracy of
both AB and ML dual estimates measured by

√
Var[Y n,k] + B2(k) and

√
Var[Y n,k] + B2(kL),

respectively, is bounded by ε. In the case of the AB dual estimate, it is enough to require(µ∞
k

)2
= n−1σ2(k) =

ε2

2

which leads to

n =
2σ2∞
ε2

, k =

√
2µ∞
ε

13
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Figure 1: The functions lnB(k) and σ(k).

for k large enough. For the ML algorithm we assume that

n−10 σ2(k0) = n−10 k−10 LV∞ =
ε2

4
,(15)

µ∞
kL

=
ε√
2
.(16)

From (15) we have
n0 = 4ε−2σ2(k0), k0 = LV∞σ

−2(k0)

and, due to (16), the parameter L is to be defined as (approximate) solution of the equation

L = ln

(√
2µ∞
εk0

)
ln−1 κ = ln

(√
2µ∞σ

2(k0)

εLV∞

)
ln−1 κ.

Hence we solve

(17) L = ln

(√
2θ

εL

)
ln−1 κ

with θ = µ∞σ
2
∞/V∞, provided k0 is large enough. We thus have asymptotically,

L = L(ε) � ln−1 κ ln

(√
2θ

ε

)
, ε→ 0.

Let us finally compare the complexities of AB and ML algorithms for n0, k0, n, k, large enough.
It holds

R(ε) =
CAB(ε)

CML(ε)
=

nk

n0k0 (1 + L(1 + κ−1))

=
θ/
√

2

L (1 + L(1 + κ−1)) ε
,

14



where L solves (17). As can be seen from the above formulas, the quantity θ has a big impact on
R. In our example we have θ ≈ 0.3. The resulting functions L and R are reported in Figure 2.
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Figure 2: The values L and R as functions of the precision ε.

By examining Figure 2 we conclude that (for this example) the use of the ML algorithm with
L > 0 is advantageous as soon as ε < 5 ∗ 10−3, i.e., in situations where relatively high precision
is needed. The efficiency of ML dual approach can be further enhanced by using the same set

of kl inner trajectories to construct both M
kl−1,(i)
j and M

kl,(i)
j . This modification leads to much

smaller values of V∞ ( V∞ = 350 and consequently θ = 0.87 in our example). The resulting
functions L(ε) and R(ε) are depicted in Figure 3.
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Figure 3: The values L and R as functions of the precision ε.

Hence the modified version of the ML algorithm can be recommended already if ε < 0.015.
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Remark 9 The max-call example studied above is somehow advantageous for the standard
nested dual algorithm because of the inequality B(k) ≤ µ∞k

−1. In a more general situation
where the assumptions (AL) and/or (AQ) do not hold, we have at least B(k) ≤ µ∞k−1/2 leading
to

R(ε) =
θ

L (1 + L(1 + κ−1)) ε2

with θ = µ2∞σ
2
∞/V∞ and L solving

L = ln

(
2θ

ε2L

)
ln−1(κ).

As a result, the multilevel dual approach may become superior to the standard dual approach for
the values of ε much larger than 0.015. For example, if θ = 0.87 as before, we get that R(ε) > 1
for all ε ≤ 0.18.

Concluding remarks

We have presented a multilevel version of the dual approach for valuation of American deriva-
tives. Unlike the multilevel method by Giles (2008) who considers, in the context of pricing
European options, different levels of time discretisation for the numerical SDE solution of the
underlying process, we consider different levels of approximation to a target martingale in the
context of dual pricing of American options. In this respect we underline that, in this paper, the
trajectories of the underlying process are assumed to be simulated exactly. This assumption is
made partially to keep the presentation and the message of the paper as clear as possible. From
a practical point of view, by taking the time discretisation step small enough, the additional
error due to an approximate solution of the underlying SDE, can be kept much smaller than
the typically required Monte Carlo accuracy. Anyway, incorporation and analysis of the time
discretisation error in the multilevel approach to dual pricing of American options will be an
interesting subject for a subsequent paper.
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