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Abstract

In this paper we consider the valuation of Bermudan callable derivatives with
multiple exercise rights. We present in this context a new primal-dual linear
Monte Carlo algorithm that allows for efficient simulation of lower and upper price
bounds without using nested simulations (hence the terminology). The algorithm
is essentially an extension of a primal–dual Monte Carlo algorithm for standard
Bermudan options proposed in Schoenmakers et al. (2011), to the case of multiple
exercise rights. In particular, the algorithm constructs upwardly a system of dual
martingales to be plugged into the dual representation of Schoenmakers (2010).
At each level the respective martingale is constructed via a backward regression
procedure starting at the last exercise date. The thus constructed martingales are
finally used to compute an upper price bound. At the same time, the algorithm
also provides approximate continuation functions which may be used to construct
a price lower bound. The algorithm is applied to the pricing of flexible caps
in a Hull and White (1990) model setup. The simple model choice allows for
comparison of the computed price bounds with the exact price which is obtained
by means of a trinomial tree implementation. As a result, we obtain tight price
bounds for the considered application. Moreover, the algorithm is generically
designed for multi-dimensional problems and is tractable to implement.
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1. Introduction

The goal of the paper is an efficient Monte Carlo algorithm for the pricing of Bermudan
callable derivatives with multiple exercise rights. Such derivatives give the right to exercise
a certain claim at a specific number of times within a given set of discrete exercise dates.
These products are nowadays quite popular and frequently occur in various financial sec-
tors, for example as flexible caps (also called chooser caps) in interest rate markets, or as
swing options in energy markets. Further they can be found in the context of life insur-
ance contracts, for instance as surrender and prepayment options embedded in mortgage
backed securities and insurance contracts. From a mathematical point of view, pricing of
a multiple exercise option comes down to solving a multiple stopping problem. Because
in general a multiple exercise option may be specified with respect to a multi-dimensional
underlying, we aim at developing an effective and generic Monte Carlo procedure, thus
avoiding the curse of dimensionality typically connected with deterministic PDE solutions.

Monte Carlo procedures for single exercise Bermudan options may be somehow cate-
gorized in two groups. On the one hand there are the so called “primal” algorithms which
aim at constructing a “good” stopping time leading to a lower biased price estimate. As
some of the most popular methods in this category may be considered the regression
based procedures in Carriere (1996), Longstaff and Schwartz (2001), and Tsitsiklis and
Van Roy (2001). On the other hand there is the category of “dual” methods relying on
the dual representation for the (standard) stopping problem developed by Rogers (2002)
and independently Haugh and Kogan (2004), which involves an infimum over a set of
martingales. In a dual method the goal is to find a “good” martingale which leads to
an upper biased price estimate. A generic and popular Monte Carlo solution for the
Bermudan pricing problem is proposed by Andersen and Broadie (2004). A drawback of
this method is that it requires usually time consuming nested Monte Carlo simulations.
In this respect Belomestny et al. (2009) propose a non-nested (linear) dual Monte Carlo
algorithm in a Wiener environment based on the construction of a dual martingale via
a regression estimate of a discretized Clark-Ocone derivative. Recently, as a particular
result, in Schoenmakers et al. (2011) a new non-nested dual regression based algorithm is
developed which is based on the idea of constructing “nearly optimal” or “low variance”
dual martingales. As an additional feature, by this method one also obtains lower price
bounds at the same time and one doesn’t need a certain given “input” approximation to
the Snell envelope.

The above mentioned primal regression based Monte Carlo procedures may be extended
in a rather straightforward way to the multiple exercise case, using the reduction principle
for multiple stopping. Further in Bender and Schoenmakers (2006) the iterative procedure
of Kolodko and Schoenmakers (2006) is extended to the multiple stopping problem and
analyzed regarding numerical stability. As a first extension of the dual representation for
single exercise options, Meinshausen and Hambly (2004) developed a dual representation
for multi exercise options in terms of an infimum over a family of martingales and a family
of stopping times. Later on, Schoenmakers (2010) found an alternative dual representa-
tion for the multiple stopping problem in terms of an infimum over martingales only. The
latter representation is recently generalized in Bender et al. (2011) to multiple stopping
problems with respect to far more general pay-off structures, which may include volume
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constraints and refraction periods for example.

The main achievement in this paper is a linear, or non-nested (hence potentially effi-
cient) Monte Carlo procedure for multiple exercise options that provides both price upper
bounds and price lower bounds at the same time. Our new algorithm can be considered
as a generalization of the particular regression based approach presented in Schoenmakers
et al. (2011) using essentially the pure martingale dual representation in Schoenmakers
(2010).

The proposed algorithm is implemented and tested for pricing flexible caps within a
Hull and White (1990) model setup. This simple model is chosen in order to compare the
price bounds computed by the new algorithm with the exact price obtained by means of
a trinomial tree implementation along the lines of Hull and White (2000). In addition, we
introduce the notion “ε−relevance of the algorithm for solving the stopping problem” in
order to assess whether a particular product under consideration involves a “real” stop-
ping problem in the sense that the option price differs in a way measured by ε with respect
to suitably specified lower and upper benchmark price bounds. To be more precise, the
lower benchmark bound is due to the optimal deterministic exercise policy and the upper
benchmark bound is due to the price in the view of a visionary. As a result, the proposed
dual linear Monte Carlo algorithm gives tight price bounds for various versions of the
flexible cap considered.

The outline of the paper is as follows. Section 2 states the pricing problem and gives
a brief review of known prerequisites. The new linear Monte Carlo algorithm is developed
in Section 3. In Section 4 we consider the payoff structure of flexible caps and introduce
the notion of ε−relevance of the algorithm, whereas in Section 5 we implement the new
Monte Carlo algorithm and compare the simulated upper and lower price bounds with
“exact” prices obtained from a trinomial tree implementation.

2. Multiple stopping problem, recap of former results

2.1. The problem of multiple stopping. The key problem is given by the multiple
stopping problem which is implied a Bermudan Option with L exercise rights. A Bermu-
dan option gives the right to exercise an option a specified number of times within a
given discrete set of exercise dates 0 = t0 < t1 < · · · < tJ =: T, identified henceforth
with their respective indices i ∈ {0, 1, . . . ,J }. In the case that the option is exercised
at time i, the buyer of the Bermudan option instantaneously receives the payoff Zi. In
general, (Zi : i = 0, 1, . . . ,J ) denotes a non–negative stochastic process in discrete time.
Z is defined on a filtered probability space (Ω,F , P ) and is adapted to some filtration
F := (Fi : 0 ≤ i ≤ J ) and satisfies

J∑
i=1

E|Zi| <∞.

Throughout the following, we interpret Z as the discounted cash–flow, i.e. w.l.o.g. we
set the interest rate equal to zero. The pricing of a Bermudan option with L exercise
rights boils down to an optimal stopping problem w.r.t. Z. Let Si(L) denote the set
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of F–stopping vectors τ :=
(
τ (1), . . . , τ (L)

)
such that i ≤ τ (1) and, for all l, 1 < l ≤ L,

τ (l−1) + 1 ≤ τ (l). Then, the (discounted) price Y ∗Li of the Bermudan option at i is given
by

Y ∗Li = supτ∈SiEi

L∑
l=1

Zτ (l)

where Ei := EFi
denotes the conditional expectation with respect to the σ–algebra Fi

and Zi :≡ 0 and Fi :≡ FJ for i > J .

It is worth to emphasize that the multiple stopping problem can be reduced to L nested
stopping problems with one exercise right, cf. for example Bender and Schoenmakers
(2006). However, in the following, we derive a Monte Carlo simulation method which
requires only one degree of nesting. First, we review some well known results which are
needed to derive the regression based algorithm.

2.2. Review of former results. From Rogers (2002), Haugh and Kogan (2004) it is
well known that

Y ∗i := Y ∗1i = inf
M∈M

Ei max
i≤j≤J

(Zj +Mi −Mj) (1)

= max
i≤j≤J

(Zj +M∗
i −M∗

j ) a.s. (2)

where M is the set of all F–martingales, and where M∗ is the Doob martingale of the
Snell envelope Y ∗ for one exercise right, which satisfies

Y ∗i = Y ∗0 +M∗
i − A∗i ,

where A∗i is predictable and nondecreasing, and M∗
0 = A∗0 = 0. In particular, the price of

a single exercise Bermudan option at time i = 0 is given by the pathwise maximum of
the cash-flow minus the Doob martingale of the Snell envelope. Intuitively, a meaningful
upper bound should now be obtained by replacing the Doob martingale by a good ap-
proximation to it.

As one corner stone of the method developed in this paper we consider the recently de-
veloped regression based non-nested Monte Carlo algorithm for solving the dual problem
in the single exercise case (see Schoenmakers et al. (2011)). This algorithm is essentially
based on minimizing the expected conditional variances

E Variϑi(M), i = 0, ...,J (3)

of the path-wise functional

ϑi(M) := max
i≤j≤J

(Zj −Mj +Mi)

in a backward recursive way, by constructing a ’nearly optimal’ martingale backwardly
from i = J down to i = 0, cf. Theorem 12 in Schoenmakers et al. (2011). An ’optimal’
dual martingale in the sense of Schoenmakers et al. (2011) is a martingale M◦ for which

ϑi(M
◦) = max

i≤j≤J
(Zj −M◦

j +M◦
i ) ∈ Fi, i = 0, ...,J ,
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and due to Schoenmakers et al. (2011), Theorem 10, it then holds Y ∗i = ϑ
(M◦)
i , i = 0, ...,J .

By observing that for i < J ,

ϑi := ϑi(M) = max (Zi, Mi −Mi+1 + ϑi+1) ,

and that trivially Zi ∈ Fi, Schoenmakers et al. (2011) point out a particular backward
regression based approach to achieve minimization of (3) by (more strongly) minimizing

E Vari (Mi −Mi+1 + ϑi+1) (4)

over a class of martingale increments Mi+1 −Mi represented by linear combinations of a
suitable family of elementary martingales, assuming that the increments Mj −Mi+1 for
j ≥ i + 1, and thus ϑi+1, are already constructed. Further details will be clear from the
description of the multiple exercise version of the Schoenmakers et al. (2011) algorithm
later on. For developing the latter algorithm we will need a next corner stone, namely a re-
cently developed martingale representation for multiple stopping (Schoenmakers (2010)).
The dual martingale representation in the case of L exercise rights derived in Schoenmak-
ers (2010), cf. Theorem 2.5, states that for L = 1, 2, ...

Y ∗Li = inf
M(1),...,M(L)∈M

max
i≤j1<···<jL

L∑
k=1

(
Zjk +M

(k)
jk−1
−M (k)

jk

)
,

Y ∗Li = max
i≤j1<···<jL

L∑
k=1

(
Zjk +M∗L−k+1

jk−1
−M∗L−k+1

jk

)
, (5)

EiY
∗L
i+1 = max

i<j1<···<jL

L∑
k=1

(
Zjk +M∗L−k+1

jk−1
−M∗L−k+1

jk

)
(6)

almost surely with j0 := i, and where M∗k is the Doob martingale of the Snell envelope
Y ∗k for k exercise rights.

Remark 2.1. For formal reasons (in order to avoid maxima over empty domains in case
the number of remaining exercise possibilities at time i is larger than J − i+ 1) we allow
exercising beyond J yielding zero cash. Thus, since trivially Y ∗kj = 0 for j > J , we have

M∗k
j+1 −M∗k

j = Y ∗kj+1 − EjY ∗kj+1 = 0 for j ≥ J , i.e. M∗k
j = M∗k

J for j ≥ J .

At a first glance (5) requires the evaluation of a maximum that involves about 2J argu-
ments in the case where L ≈ J /2. However, as we will show later on (Remark 3.1), due
to the very structure of the object to be maximized, it can be computed in a recursive
way at a costs of O(LJ ), so O(J 2) in the worse case.

3. Primal-dual linear MC algorithm for multiple stopping

We are now ready for constructing a multiple exercise version of the regression based
primal-dual algorithm for one exercise right proposed in Schoenmakers et al. (2011).

3.1. Backward procedure for multiple stopping. Let us fix L and consider 1 ≤ l <
L. As a well known fact, the Snell envelope Y ∗l+1

i due to l+1 exercise rights may be equiv-
alently considered as the Snell envelope under one exercise right due to the generalized
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cash-flow

Z∗l+1
j := Zj + EjY

∗l
j+1. (7)

From (5) and (6) we observe that with j̃0 := i+ 1,

EiY
∗l
i+1 = max

i<j1<···<jL

l∑
k=1

(
Zjk +M∗l−k+1

jk−1
−M∗l−k+1

jk

)
= M∗l

i −M∗l
i+1 + max

i+1≤j̃1<···<j̃L

l∑
k=1

(
Zjk +M∗l−k+1

j̃k−1
−M∗l−k+1

j̃k

)
= M∗l

i −M∗l
i+1 + Y ∗li+1, (8)

hence (7) may be written as

Z∗l+1
j := Zj +M∗l

i −M∗l
i+1 + Y ∗li+1. (9)

Now consider a given set of martingales M (k) satisfying M
(k)
j = M

(k)
J , j ≥ J , k = 1, ...,L

(cf. Remark 2.1) and define for l < L in view of (5),

Y ∗l+1
i ≈ ϑ

(l+1)
i := max

i≤j1<···<jl+1

l+1∑
k=1

(
Zjk +M

(l+1−k+1)
jk−1

−M (l+1−k+1)
jk

)
(10)

with j0 := i. It then holds with j̃0 := ĵ0 := i+ 1,

ϑ
(l+1)
i = max

(
Zi + max

i<j2···<jl+1

l+1∑
k=2

(
Zjk +M

(l+1−k+1)
jk−1

−M (l+1−k+1)
jk

)
, max
i<j1<···<jl+1

l+1∑
k=1

(
Zjk +M

(l+1−k+1)
jk−1

−M (l+1−k+1)
jk

))

= max

(
Zi +M

(l)
i −M

(l)
i+1 + max

i<j̃1···<j̃l

l∑
k=1

(
Zj̃k +M

(l−k+1)

j̃k−1
−M (l−k+1)

j̃k

)
,

M
(l+1)
i −M (l+1)

i+1 + max
i<ĵ1<···<ĵl+1

l+1∑
k=1

(
Zjk +M

(l+1−k+1)

ĵk−1
−M (l+1−k+1)

ĵk

))
= max

(
Zi +M

(l)
i −M

(l)
i+1 + ϑ

(l)
i+1, M

(l+1)
i −M (l+1)

i+1 + ϑ
(l+1)
i+1

)
=: max

(
Z

(l+1)
i , M

(l+1)
i −M (l+1)

i+1 + ϑ
(l+1)
i+1

)
(11)

in view of (9). Hence Z
(l+1)
i may be considered an approximation to virtual cash-flow

Z∗l+1
i in (7). We are now going to apply for l = 0, 1, 2 upwardly the regression method in

Schoenmakers et al. (2011) to the approximation Z
(l+1)
i of the virtual cash-flow process

Z∗l+1 in (7). Formally, in this upward construction it is assumed that at each step 1 ≤ l <
L, a martingale M (l), being an approximation to M∗l, and an approximation ϑ(l) to Y ∗l is
constructed. Following Schoenmakers et al. (2011) we then construct a martingale M (l+1)

and a process ϑ(l+1) as approximations to M∗l+1 and Y ∗l+1, respectively, as explained in
the next section. The upward construction may be naturally initialized with M (0) :=
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ϑ(0) := 0, and after L upward steps we end up with a set of martingales M (1), ...,M (L)

and approximations ϑ(1), ..., ϑ(L) to the respective Snell envelopes Y ∗1, ..., Y ∗L.

Remark 3.1. (Complexity of the maximization problem (5)) Let us suppose that a family
of martingales

(
M (k)

)
as above is available and that we are faced with the maximization

problem (10) for i = 0 and l+ 1 = L. We may initialize M (0) := ϑ(0) := 0 and then obtain

ϑ(l+1) from ϑ(l), M (l), hence Z
(l+1)
i , and M (l+1), via (11) by backward induction. Indeed,

after initializing ϑ
(l+1)
J = ZJ we can obtain for j < J inductively ϑ

(l+1)
j from ϑ

(l+1)
j+1 by

(11) and thus ϑ
(l+1)
0 in J steps. We thus arrive at ϑ

(L)
0 after LJ operations (rather than

J !/ (L! (J − L)!) ).

3.2. Primal-dual linear MC algorithm. For the algorithm spelled out below we as-
sume as in Schoenmakers et al. (2011) an underlying D-dimensional Markovian structure
X with respect to a filtration generated by an m-dimensional Brownian motion W. More-
over, we assume that for 0 ≤ j ≤ J and 0 ≤ l ≤ L the martingales M (l) are of the
form

M
(l)
j =

K∑
q=1

ξl,qEq,j,

for certain suitably chosen “elementary” martingales Eq,·, q = 1, ..., K. For example,

Eq,j =

∫ tj

0

ϕT
q (u,Xu)dWu (12)

for a set of basis functions (ϕq(t, x))1≤q≤Kwith ϕq acting from R × RD → Rm, or, Eq,j,
q = 1, ..., K, may represent any set of discounted tradables at time j (hence tj) available
in a particular situation.

Let us initialize M (0) = ϑ(0) = 0. Then, inductively, we are going to construct M (l+1)

and ϑ(l+1), assuming that M (l) and ϑ(l) are constructed for l, 0 ≤ l < L. The construction

will be carried out on a sample of trajectories X
(n)
J , n = 1, ..., N.

At i = J we trivially set ϑ
(l+1,n)
J = ZJ (X

(n)
J ), n = 1, ..., N . Suppose we have constructed

for fixed i < J the martingale increments
(
M

(l+1)
j −M (l+1)

i+1

)
i+1≤j≤J

(for i = J − 1 this

is trivially zero), and ϑ
(l+1,n)
i+1 , n = 1, ..., N (as approximations to Y ∗l+1), respectively, on

each trajectory. We will then determine β1, ..., βK such that for

M
(l+1)
i+1 −M

(l+1)
i =

K∑
q=1

βq (Eq,i+1 − Eq,i)

the sample estimate of the expected conditional variance

E Vari(M
(l+1)
i −M (l+1)

i+1 + ϑl+1
i+1)

(cf. (4)) is minimized. This will be carried out by a regression procedure. As a candidate
predictor for the Fi-measurable conditional expectation

Ei(M
(l+1)
i −M (l+1)

i+1 + ϑl+1
i+1)
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we will take an Fi-measurable random variable of the form

K∑
q=1

γqψq(i,Xi),

where, for instance, (ψq(t, x))1≤q≤K , with ψq acting from RD → R, is a second set of basis
functions, or any other set of explanatory Fi-measurable random variables suggested by
the problem under consideration. We next consider the regression problem

(β
(l+1)
i , γ

(l+1)
i ) := arg min

β,γ
E

[
K∑
q=1

βq (Eq,i − Eq,i+1) + ϑ
(l+1)
i+1 −

K∑
q=1

γqψq(i,Xi)

]2
which comes down to the following regression procedure on the Monte Carlo trajectories

(X
(n)
j , 0 ≤ j ≤ J , n = 1, ..., N),

(β
(l+1)
i , γ

(l+1)
i ) := arg min

β,γ∈RK

N∑
n=1

[
βq

(
E (n)q,i − E

(n)
q,i+1

)
+ ϑ

(l+1,n)
i+1

−
K∑
q=1

γqψq(i,X
(n)
i )

]2
. (13)

Next, we set

M
(l+1)
i+1 −M

(l+1)
i =

K∑
q=1

β
(l+1)
i,q (Eq,i+1 − Eq,i) , (14)

and then in view of (11) we proceed by setting

ϑ
(l+1,n)
i = max

(
Z

(n)
i +M

(l,n)
i −M (l,n)

i+1 + ϑ
(l,n)
i+1 ,M

(l+1,n)
i −M (l+1,n)

i+1 + ϑ
(l+1,n)
i+1

)
= max

(
Z

(n)
i +M

(l,n)
i −M (l,n)

i+1 + ϑ
(l,n)
i+1 ,

K∑
q=1

β
(l+1)
i,q

(
E (n)q,i − E

(n)
q,i+1

)
+ ϑ

(l+1,n)
i+1

)
,

where we note that the quantities indexed with level l are already determined at the pre-
vious level. For elementary martingales of the form (12), the respective Wiener integrals
in (13) may be approximated as usual by∫ ti+1

ti

ϕT
q (u,X(n)

u )dW (n)
u ≈

L−1∑
l=0

ϕT
q (ti + lδ), X

(n)
ti+lδ

)
(
W

(n)
ti+(l+1)δ −W

(n)
ti+lδ

)
, (15)

with δ := (ti+1 − ti)/L for a large enough integer L. By working backward from i = J
down to i = 0, the above regression procedure yields a martingale

M
(l+1)
j =

j−1∑
p=0

K∑
q=1

β(l+1)
p,q (Eq,p+1 − Eq,p)
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and, as a by-product, an additional system of approximations to the continuation value
functions, [

EiY
∗l+1
i+1

]
(x) = C(l+1)

i (x) ≈
K∑
q=1

γ
(l+1)
i,q ψq(i, x), i = 0, ...,J − 1. (16)

Finally, the martingales M (1), ...,M (L) may be used to compute a dual upper bound at

i = 0, by starting a new simulation of trajectories X̃
(ñ)
i , ñ = 1, ..., Ñ , and computing

Y up,L
0 ≈ 1

Ñ

Ñ∑
ñ=1

max
0≤j1<···<jL≤T

L∑
k=1

(
Zjk(X̃

(ñ)
jk

) (17)

+

jk−1∑
p=jk−1

K∑
q=1

β(L−k+1)
p,q

(
Ẽ (ñ)q,p − Ẽ

(ñ)
q,p+1

))
.

Notice that the upper bound is “true” in the sense that it is always an upper biased
estimate, regardless the quality of the martingales M (l). Further note that the maximum
in (17) may be computed efficiently along the lines explained in Remark 3.1.

On the other side, based on the approximate continuation functions (16), we may de-

fine an exercise policy (τ p,L0 : 1 ≤ p ≤ L) as follows. Define τ 0,L0 := −1 and for 0 < p ≤ L

τ p,L0 := inf{j : τ p−1,L0 < j ≤ J , Zj(Xj) + C(L−p)j (Xj) ≥ C(L−p+1)
j (Xj)},

and simulate a lower biased price estimate,

Y low,L
0 ≈ 1

Ñ

Ñ∑
ñ=1

L∑
p=1

Z
τp,L,ñ0

(X̃
(ñ)

τp,L,ñ0

). (18)

4. Application to Flexible Caps

Throughout the following, D(t, T ) denotes the t– price of a zero coupon bond with ma-
turity T . In addition, r denotes the simple compounded spot rate and L is the market
LIBOR rate (EURIBOR rate, respectively), i.e.

L(t, T ) =
1

τ(t, T )

(
1

D(t, T )
− 1

)
, (19)

where τ(t, T ) = T−t is the time difference expressed in years.1 For notational convenience,
we consider an equidistant set of tenor dates

T = {T0 = 0 < T1 < · · · < TJ < TJ+1},
where Ti = Ti−1 + δ for i = 1, ...,J + 1 and T0 = 0. In addition, we set

Li(Ti) :=
1

δ

(
1

D(Ti, Ti+1)
− 1

)
.

Definition 4.1 (Payoff structure of caplets, caps, and flexible caps).

1Actual/360 day-count convention, respectively.
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(i) The payoff of a caplet with settlement date Ti (i ∈ {1, . . .J + 1}) is given by the
positive difference between the reference rate L (LIBOR rate) prevailing at Ti−1
and the level κ, i.e.

δ[Li−1(Ti−1)− κ]+. (20)

(ii) The payoff structure of a cap with tenor structure T is given by the payoff of a
portfolio of caplets with settlement dates T1, . . . , TJ+1.

(iii) A flexible cap with L exercise rights implies the right to exercise at most L ≤ J +1
of the caplets with payoffs at T1, . . . , TJ+1.

Obviously, the value of the flexible cap is increasing in the number of exercise rights L. In
particular, for L ≤ J + 1, a trivial upper bound for the flexible cap is given by the value
of a flexible cap with L = J + 1, i.e. the value of the cap over the whole tenor structure.

For option pricing we consider a risk-neutral valuation framework with numeraire

Bt := e
∫ t
0 rsds

and corresponding pricing measure P , i.e. for any T > 0, the discounted zero coupon
bonds D(t, T )/Bt, 0 ≤ t ≤ T, are P -martingales.

Thus, a caplet with settlement date Ti+1, and expiry Ti has at time t, t ≤ Ti the value

Ci(t) := BtEt
[
δ (Li(Ti)− κ)+ /BTi+1

]
.

The price of a cap starting at Tp and ranging over [Tp, Tq+1] is for t < Tp,

Capp,q(t) :=

q∑
i=p

Ci(t).

In order to specify the (discounted) cash flow which is relevant for the multiple stopping
problem posed by a flexible cap, we observe that

Ci(Ti) = BTiETi
[
δ (Li(Ti)− κ)+ /BTi+1

]
= δ (Li(Ti)− κ)+D(Ti, Ti+1). (21)

In particular, Equation (21) specifies the cashflow at Ti which is equivalent to a caplet
with settlement date Ti+1. Thus, the multiple stopping problem corresponding to the
flexible cap will be considered with respect to the discounted cash flow

Zi :=
Ci(Ti)

BTi

= δ (Li(Ti)− κ)+D(Ti, Ti+1)/BTi =
1

BTi

(1 + δκ)

[
1

1 + δκ
−D(Ti, Ti+1)

]+
,

at the exercise dates T0 . . . , TJ . Notice that Zi can also be interpreted the (discounted)
payoff of 1 + δκ put options with maturity Ti and strike 1

1+δκ
which are written on a zero

coupon bond with maturity Ti+1.
Recall that Si(L) denotes the set of F–stopping vectors τ :=

(
τ (1), . . . , τ (L)

)
such that

Ti ≤ τ (1) and, for all l, 1 < l ≤ L, τ (l−1) + δ ≤ τ (l). Then, the price of the flexible cap
with L exercise rights with exercise dates T0, ..., TJ (corresponding to indices 0, ...,J ) is
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given by

FlCap(L)(T0) = supτ∈S0E
L∑
l=1

Zτ (l)

= (1 + δκ) supτ∈S0 E
L∑
l=1

1

Bτ (l)

(
1

1 + δκ
−D(τ (l), τ (l) + δ)

)+

(22)

where Zj := 0 for j > J . The Snell envelope due to L exercise rights is given by

Y ∗Li = supτ∈SiEi

L∑
l=1

Zτ (l) .

We now consider the question if the determination of the optimal stopping strategy has
a substantial impact on the price of a Bermudan option. More precisely, we compare the
(exact) price of the product based on an optimal stopping strategy with trivial benchmark
price bounds which can be inferred from deterministic optimization procedures specified
below. For a lower trivial benchmark price bound, we consider the following deterministic
optimization problem. Let Ti(L) denote the set of vectors t :=

(
t(1), . . . , t(L)

)
such that

Ti ≤ t(1) and, for all l, 1 < l ≤ L, t(l−1) + δ ≤ t(l). Then, the trivial lower Tj–price bound

Y triv, low, L
j of a flexible cap with L exercise rights is given by

Y triv, low, L
j = supt∈Tj Ej

L∑
l=1

Zt(l) (23)

For an upper trivial benchmark price bound, we rely on a visionary, i.e. we consider the
tj−upper bound Y triv, up, L

j of the flexible cap with L remaining exercise rights, which is
given by is

Y triv, up, L
j = Ej supt∈Tj

L∑
l=1

Zt(l) . (24)

Loosely speaking we will asses the optimal stopping problem as relevant if there is a sub-
stantial difference of the exact price and the benchmark price bounds. In this respect
we will exclude pricing scenarios where the exact price is equal (or close) to one of the
above stated trivial price bounds. The motivation stems from the observation that, in
both extreme cases, the exact price can be calculated without using a backward regres-
sion procedure, i.e. either by means of a Monte Carlo simulation of the look back price
achieved by a visionary or by means of a simple optimization stemming from an optimal
deterministic set of stopping times. Therefore we formulate a notion that expresses the
relevance of the proposed dual linear Monte Carlo algorithm:

Definition 4.2 (ε–relevance of the algorithm for the stopping problem). The algorithm
is called ε–relevant for the stopping problem iff

min

{
Y triv, up, L
j

Y ∗Lj
,

Y ∗Lj

Y triv, low, L
j

}
≥ 1 + ε.
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3M-EURIBOR-forward rates

Figure 1. The initial term structure of interest rates along the lines of the
Euro area yield curve from January 31, 2011. The 3M-EURIBOR-forward
rates are obtained along the lines of Svensson (1994).

In particular, notice that the algorithm is, for example, not relevant (zero–relevant) in the
case that the number of exercise rights coincides with the number of caplets, i.e. L = J .
Obviously, we also have zero–relevance if the interest rate dynamics is deterministic.

5. Performance Test–Price Comparison (Hull White Model)

Throughout the following, we illustrate the prices and price bounds of flexible caps with
a notional of 10, 000 EUR and where the reference rate is the 3–month–EURIBOR. If not
mentioned otherwise, the caps range over 15 years, i.e. J = 60, and the cap level is equal
to κ = 2%.2 We consider exercise rights which vary from one to fifty, i.e. L ∈ {1, . . . , 50}.
The initial term structure of interest rates is given by the Euro area yield curve from
January 31, 2011.3 The corresponding 3–month-forward rates are illustrated in Figure 5.

5.1. Hull White Model – Basics. The benchmark price values are obtained by as-
suming a Hull and White (1990) interest rate model which is calibrated to the initial
term structure from January 31, 2011. For an alternative treatment of flexible caps in
the context of related interest rate models see Pelsser (2000) and the references within.
For the sake of completeness, we review the Hull-White interest rate dynamics, and some
well known results which are needed in further. However, the proofs are omitted. These
can, for example, be found in the textbook of Brigo and Mercurio (2006). The Hull and
White (1990) short rate dynamics are given by

d rt = (θ(t)− a rt) dt+ σ dWt, (25)

where a denotes the speed of mean reversion, θ(t)
a

is the mean reversion level, and σ is the
spot rate volatility. The time dependent variable θ allows to calibrate the model to the

2It is worth mentioning that all results can also be computed for other cap levels. In particular, one
can apply the same basis functions as the ones which are used in the following.

3C.f. http://www.ecb.int/stats/money/yc/html/index.en.html.
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initial interest rate curve which is observed at the market.
The model implies closed–form solutions for the zero coupon bond and option prices. The
t–price of a zero coupon bond with maturity T is given by

D(t, T ) = exp{A(t, T )− B(t, T )rt} (26)

where

B(t, T ) =
1

a
(1− exp{−a(T − t)})

and A(t, T ) = ln
D(0, T )

D(0, t)

(
B(t, T )f(0, t)− σ2

4a
(1− exp{−2at})B(t, T )2

)
. (27)

Let f(0, t) = −∂ lnD(0,t)
∂t

be the initial instantaneous forward rate prevailing at time t.
Then for arbitrary parameters a and σ the model is calibrated to this initial forward rate
curve by choosing

θ(t) = −∂f(0,t)
∂t

+ af(0, t) +
σ2

2a
(1− e−2at). (28)

Throughout the following, we set a = 0.1 for the the speed of mean reversion and σ = 0.02
for the volatility. This can be viewed as consistent with swaption data.

Further, we recall the closed–form solution for the time t–price of a European put option
with maturity T and strike κ on a zero coupon bond with maturity S (S ≥ T ) which is
given by

Put(t, T, S, κ) = κD(t, T )N

(
−

ln D(t,S)
κD(t,T )

+ 1
2
v2

v
+ v

)
−D(t, S)N

(
−

ln D(t,S)
κD(t,T )

+ 1
2
v2

v

)
,

(29)

where v = σ

√
1− exp{−2a(T − t)}

2a
B(T, S).

For Monte Carlo simulations later on, it is convenient to use the joined distribution of the
spot rate and the interest rate integral. Let

ν(t) = fM(0, t) +
σ2

2a
(1− e−at)2

V (t, T ) =
σ2

a2

[
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]
.

Then, the joined distribution of rt and
∫ t
s
rudu conditioned on the information at time s

is given by [
rt rs∫ t
s
ru du

∫ s
0
ru du

]
∼ N

(
µ1

µ2

∣∣∣∣( c11 c12
c21 c22

))
, (30)
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where

µ1 = rse
−a(t−s) + ν(t)− ν(s)e−a(t−s)

µ2 = B(s, t)(rs − ν(s)) + ln
DM(0, s)

DM(0, t)
+

1

2
(V (0, t)− V (0, s))

c11 =
σ2

2a

(
1− e−2a(t−s)

)
c12 = c21 =

σ2

a2
(
1− e−a(t−s)

)
− σ2

2a2
(
1− e−2a(t−s)

)
c22 = V (s, t).

5.2. Exact pricing and relevance of the algorithm for the stopping problems.
We approximate the exact price of the flexible caps by means of a trinomial tree. The
trinomial interest rate tree is implemented along the lines of Hull and White (2000). In
particular, equidistant time steps with length 1

52
are used, cf. for example Hull White

(1996) or Brigo and Mercurio (2006). As such the tree is sufficiently high refined to
consider the resulting prices as the “exact” ones. Recall (cf. Equation (22)) that the
T0–price of a flexible cap with L exercise rights is given by

FlCap(L)(T0) = supτ∈S0E
L∑
l=1

Zτ (l)

= (1 + δκ) supτ∈S0 E
L∑
l=1

1

Bτ (l)

(
1

1 + δκ
−D(τ (l), τ (l) + δ)

)+

.

We will compute “exact” prices of flexible caps on the tree by means of the Bellman
principle. Notice in this respect that the discounted cash–flows

Zi = (1 + δκ)
1

BTi

(
1

1 + δκ
−D(Ti, Ti+1)

)+

are path–dependent in fact. However, this issue is easily avoided by considering the Bell-
man principle in terms of the un-discounted objects Z̃i := BTiZi and Ỹi := YiBTi , which
reads as follows.

Set Ỹ ∗,0i = 0 for i = 1, . . . ,J . At time J , we have

Ỹ ∗,lJ = Z̃J for all l ≥ 1,

and at J − i (i = 1, . . . ,J ), we then have backwardly

Ỹ ∗,lJ−i = max

{
Z̃J−i + EJ−i e

−
∫ TJ−i+1
TJ−i

ru du Ỹ ∗,l−1J−i+1, EJ−i e
−

∫ J−i+1
TJ−i

ru du
Ỹ ∗lJ−i+1

}
.

In view of Definition 4.2, we can now asses the relevance of the algorithm for the multiple
stopping problems. We compare the trivial upper and lower bounds of Equation (24)
and (23) with the trinomial tree prices obtained by the Bellmann principle applied to
the trinomial tree setup. Notice that the trivial lower bound (linked to the optimal
deterministic exercise policy) can be calculated according to the closed–form put–pricing
formula, cf. Equation (29). The trivial upper price bound is obtained by means of a
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Relevance of the algorithm for the multiple stopping problems

trivial price bounds exact price percentage mispricing
ex. rights lower upper tri. tree triv. lower triv. upper

L Y triv,low,L
0 Y triv,up,L

0 Y ∗L0

(
Y ∗L0

Y triv,low,L
0

− 1
)
· 100

(
Y triv,up,L
0

Y ∗L0
− 1
)
· 100

1 61.9212 124.897 93.582 33.8321 33.4624
2 123.842 241.967 185.871 33.3720 30.1799
3 185.674 353.302 276.780 32.9165 27.6472
4 247.498 459.925 366.253 32.4242 25.5757
5 309.159 562.499 454.258 31.9420 23.8281
6 370.782 661.425 540.764 31.4337 22.3131
7 432.198 756.929 625.758 30.9322 20.9619
8 493.505 849.280 709.201 30.4139 19.7516
9 554.608 938.611 791.078 29.8921 18.6496
10 615.478 1025.15 871.409 29.3697 17.6423

Table 1. The table summarizes the trivial upper Y triv,up,L
0 and lower

bounds Y triv,low,L
0 given by Equation (24) and (23), the exact price Y ∗L0

derived by means of the trinomial tree, and the percentage differences be-
tween the trivial price bounds and the trinomial prices

Monte Carlo simulation with 10,000 paths. Observe that, for L ∈ {1, . . . 10}, the exact
price is at least 29.36% (L = 10) above the trivial lower price bound derived by the
optimal deterministic exercise policy. The maximal deviation is 33.83% for L = 1. With
respect to the upper price bound implied by a visionary, the highest (lowest) percentage
value of the upper price bound and the exact prices is 33.46% for L = 1 (17.64 for L = 10).
Thus, we conclude that, in view of Definition 4.2, the relevance of the algorithm for the
stopping problems is at least ε = 17% .

5.3. Upper and lower pricing by the dual MC algorithm. Due to the stochastic
interest rates, we need to consider pathwise discounted cash flow values Zi. Recall that
the zero coupon prices only depend on the spot rate r, cf. Equation (26). In particular,
we have

Zi = Zi(rTi , BTi) =
1

BTi

(1 + δκ)

[
1

1 + δκ
−D(Ti, Ti+1)

]+
.

For each Ti (i ∈ {0, . . . ,J }), we simulate the short rate rTi and the accumulated short rate

lnBTi =
∫ Ti
0
rsds according to the joined (conditional) distribution as given in Equation

(30). The equidistant time grid is congruent to the exercise dates, i.e. δ = Ti+1 − Ti = 1
4
.

In particular, the problem setup implies a two–dimensional Markovian structure Xu =
(ru, Bu) with respect to the one–dimensional Brownian motion W . In view of the closed–
form solutions for the zero bond and put option prices, cf. Equation (26) and (29), we
use the martingale property of the discounted price processes of traded assets. We denote
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Products used for the Monte carlo algorithm

q Product q maturity/settlement date T level κ
1 Zerobond 15 years
2 3M–caplet 15 years 2%
3 3M–caplet 7.5 years 2%
4 3M–caplet 3.75 years 2%
5 3M–caplet 1 year 2%

Table 2. The table summarizes the products which are used for the Monte
Carlo algorithm, i.e. in terms of their discounted price processes.

the discounted price of the traded assets q by Eq and set

M
(l+1)
i+1 −M

(l+1)
i =

K∑
q=1

β
(l+1)
i,q

(
Eq(Ti+1, rTi+1

, BTi+1
)− Eq(Ti, rTi , BTi)

)
.

In particular, we use K = 5 and refer to the discounted prices of a zerobond with maturity
in 15 years and 3M-caplets with settlement dates in 1, 3.75, 7.5, and 15 years such that

Eq(Ti, rTi , BTi) :=
D(Ti, T )

BTi

for q = 1

Eq(Ti, rTi , BTi) :=
1 + δκ

BTi

Put(Ti, T, T + δ,
1

1 + δκ
) for q = 2, 3, 4, 5.,

where Put(·) is given by Equation (29). The maturities (settlement dates, respectively)
and cap levels are summarized in Table 2. In addition, we also use the prices of these
products for the approximation of the continuation value, i.e. ψq = Eq. The optimal
weights γq and βq (q = 1, . . . , 5) are estimated by the backward regression along the lines
of Equation (13). Since we work in a Markovian environment we can approximate the
conditional expectations (continuation values with l exercise rights left) by

C(l+1)
i =

K∑
q=1

γ
(l+1)
i,q Eq(Ti, rTi , BTi).

The martingales, i.e. the weights γq and βq (q = 1, . . . , 5), are determined using a a
relatively small number of 1,000 paths. By an additional larger simulation of 9,000 paths
the upper and lower price bounds according to (17) and (18) are computed.

For L ∈ {1, . . . , 10}, the resulting upper and lower prices obtained by the primal–dual
Monte Carlo algorithm are summarized in Table 3. It is worth to emphasize that the
maximal percentage difference of the upper price bound derived by our algorithm to the
exact (trinomial tree) price is 0.56%.4 In particular, the percentage differences vary only
between 0.2% and 0.56%. The lower price bounds, which are actually obtained as by
products, are also pretty good. Here, the percentage price differences to the exact price
vary between 1.15% and 1.92%. The performance of the dual MC algorithm with regard
to the price bounds is also illustrated in Figure 5.3, where the number of exercise rights

4For the exact prices, we refer to Table 1.
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Prices from primal-dual Monte Carlo algorithm

ex. rights upper MC bound perc. diff.

L Y upL
0 confidence interval

(
Y up,L
0

Y ∗L0
− 1
)
· 100

1 94.104 [93.767,94.440] 0.557
2 186.669 [186.027,187.311] 0.429
3 277.751 [276.820,278.682] 0.351
4 367.366 [366.194,368.539] 0.304
5 455.491 [454.108,456.874] 0.271
6 542.120 [540.553,543.687] 0.251
7 627.215 [625.492,628.938] 0.233
8 710.766 [708.921,712.612] 0.221
9 792.753 [790.829,794.677] 0.212
10 873.142 [871.185,875.100] 0.199

ex. rights lower MC bound perc. diff.

L Y downL
0 confidence interval

(
Y ∗L0

Y low,L
0

− 1
)
· 100

1 91.781 [90.690,92.872] 1.925
2 183.105 [181.029,185.181] 1.488
3 272.737 [269.689,275.784] 1.461
4 361.102 [357.099,365.105] 1.406
5 448.308 [443.361,453.255] 1.310
6 533.872 [528.000,539.744] 1.275
7 618.189 [611.405,624.973] 1.210
8 701.070 [693.390,708.751] 1.146
9 782.091 [773.527,790.655] 1.136
10 861.428 [851.994,870.862] 1.145

Table 3. The upper table summarizes the upper bound Y upL
0 for L = 1

up to L = 10 exercise rights and gives margin
Y up,L
0

Y ∗L0
− 100 compared to the

exact price Y ∗L0 (computed by a trinomial tree procedure). The lower table
gives the analogous results for the lower price bound Y lowL

0 of the Monte
Carlo algorithm.

varies from L = 1 to L = 50. In addition, the prices are plotted in relation to the number

of exercise rights, i.e. we plot
Y ∗L0

L
(
Y up,L
0

L and
Y down,L
0

L , respectively). Obviously, we have
for any L ≥ 1, Y ∗L+1 − Y ∗L ≤ Y ∗L − Y ∗L−1 (with Y ∗0 = 0). From this we have imme-

diately Y ∗L ≤ LY ∗1, and we may prove by induction that Y ∗L+1

L+1
≤ Y ∗L

L . Notice that the

latter inequality is also true for the upper price bound Y up,L
0 which is implied by the dual

Monte Carlo algorithm. However, this feature may be violated in the case of a non–dual
price approximation, in particular an approximation which relies on some reasonable but
suboptimal exercise policy.
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Prices and price bounds of flexible caps

Figure 2. The figures illustrate the trivial price bounds (outer lines) and
the price bounds given by the dual Monte Carlo algorithm (inner lines) for
L = 1 up to L = 50 exercise rights. While the right figure gives a plot of
the nominal prices, the right figure relates the price bounds to the number
of exercise rights L.

6. Conclusion

We propose a primal–dual Monte Carlo algorithm which gives an upper as well as a lower
price bound. We implement the algorithm for the pricing of flexible caps. In order to
compare the prices provided by our Monte Carlo algorithm with exact prices, we use a
simple Hull and White model setup. We calibrate the model to market data and calculate
the exact prices by means of a trinomial tree. In addition, we asses that the algorithm
is relevant for solving the stopping problems under consideration. The relevance of the
algorithm is captured by the differences of exact prices and some (trivial) price bounds
which can be computed by a simple optimization (a simple Monte–Carlo simulation,
respectively). The lower price bound is obtained by the optimal deterministic exercise
policy, the upper price bound is linked to a visionary. Finally, we consider a set of multiple
stopping problems (flexible cap products) where the mispricing caused by the trivial price
bounds is at least 17% such that a sophisticated algorithm is essential. We illustrate that
the proposed primal–dual linear Monte Carlo algorithm is not only tractable to implement
but also gives tight price bounds. In particular, it turns out that for 15 year flexible caps,
the upper MC price bound is less than 0.56% above the exact price. Finally, last but
not least, we underline that the algorithm presented is designed for generic application to
any, possibly high dimensional multiple stopping problem.
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