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Abstract. We compare the discrete asynchronous logical modeling for-
malism for gene regulatory networks due to R. Thomas with piecewise-
affine differential equation models. We show that although the two ap-
proaches are based on equivalent information, the resulting qualitative
dynamics are different.
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1 Introduction

Gene regulation is the result of the complex interplay of molecular components
forming large interaction networks. Mathematical modeling of gene regulatory
networks gives insights into the underlying structure and dynamics of various
biological systems. If information on kinetic parameters is lacking, qualitative
formalisms offer a well-established alternative to the more traditionally used
differential equation models. Using only qualitative information on the network
structure and the interactions between the components, these approaches allow
obtaining an abstract description of the system’s dynamics.

The discrete formalism of R. Thomas [1] is a qualitative method describing
a gene regulatory network by a discrete function. Each network component is
represented by a variable that takes integer values representing the different lev-
els of gene activity. The information on how the behavior of one component is
governed by the values of the other components is captured in a discrete func-
tion. The component functions then constitute the coordinate functions of the
update function of the network. To derive the dynamics of the system, Thomas
introduced the asynchronous update method where only one variable changes
per discrete time step, and only by a unit value. Since the state space is finite,
the dynamics can be represented by a directed graph, the so-called asynchronous
state transition graph (STG).

The particularities of the asynchronous update method result in a close cor-
respondence of the discrete model to certain differential equation systems [2].



Differential equation models using step functions have a continuous time evolu-
tion, yet can be seen as qualitative due to the close relation of step and discrete
functions. Such piecewise affine differential equation (PADE) models approxi-
mate certain ordinary differential equation models [3,4]. De Jong et al. [5] have
shown that they can essentially be captured by a discrete representation which
abstracts the continuous solution trajectories of the differential equations into
transitions between different regions of the phase space. Again, the resulting dy-
namics can be represented by a digraph, the qualitative transition graph (QTG).

In this paper, we aim at clarifying the relation between Thomas and PADE
models by comparing the respective graphs capturing the dynamical behavior.
Several results in this direction already exist. For example, attractors, including
steady states and certain limit cycles, are related [2, 3, 6–8]. Our goal here is to
present a comprehensive comparison between the STG and the QTG.

The paper is organized as follows. Sect. 2 presents a discrete modeling ap-
proach based on the Thomas formalism. PADE systems and the qualitative
analysis developed by de Jong et al. [5] are introduced in Sect. 3. In Sect. 4,
we show that the two approaches use equivalent information. Sect. 5 contains
our main result characterizing transitions in the QTG using edges originating in
corresponding vertices in the STG. We illustrate the application of this result
with examples of relations between paths and attractors in the two graphs. The
conclusion and perspectives for future work are given in Sect. 6.

This paper is an extended abstract intended to illustrate more formal results.

2 Discrete formalism

Consider a gene network with n regulatory components. In the discrete modeling
approach, the activity level of a component i is modeled by a discrete variable
qi, which takes its values in a finite set of natural numbers Qi = {0, . . . , pi}.
The state space of the discrete model is Q = Q1 × · · · ×Qn, and the regulatory
interactions are captured by a discrete update function f = (f1, . . . , fn) : Q→ Q.
The function f uniquely determines the state transition graph STG(f) = (Q,E),
a directed graph with node set Q and edge set E ⊂ Q×Q. For any j ∈ {1, . . . , n},
q ∈ Q with fj(q) 6= qj , there is an edge (q, q′) ∈ E, where q′j = qj+sgn(fj(q)−qj)
and q′i = qi, for all i ∈ {1, . . . , n} \ {j}. Here, sgn : R → {−1, 0, 1} denotes the
sign function. If f(q) = q, then (q, q) ∈ E and q is called a fixpoint.

Example 1. For Q = {0, 1} × {0, 1, 2} and the update function f : Q→ Q

q 00 01 02 10 11 12
f(q) 12 12 11 00 10 11

the state transition graph STG(f) is displayed on the left of Fig. 1(a).

3 Piecewise affine differential equations

Next we discuss piecewise affine differential equations (PADE) and the qualita-
tive modeling approach introduced by de Jong et al. [5].



Consider an n-dimensional phase space Ω = Ω1 × · · · × Ωn ⊂ Rn≥0, where
Ωi = {xi ∈ R | 0 ≤ xi ≤ maxi}, and maxi ∈ R>0. For every continuous variable
xi ∈ Ωi we assume pi ∈ N thresholds θ1i , · · · , θ

pi
i satisfying the ordering

0 < θ1i < · · · < θpii < maxi, for all i ∈ {1, . . . , n}. (1)

In the comparison with the discrete formalism in Sect. 2, the value pi chosen here
corresponds to the maximal value pi of the component range Qi of a discrete
model. We consider a set of PADEs in Ω of the form

ẋi = Fi(x)−Gi(x)xi, i ∈ {1, . . . , n}, (2)

where the functions Gi : Ω → R>0 and Fi : Ω → R≥0 are linear combinations

of products of step functions S+(xl, θ
k
l ) =

{
0 if xl < θkl ,
1 if xl > θkl ,

and S−(xl, θ
k
l ) =

1− S+(xl, θ
k
l ) for l ∈ {1, . . . , n}.

To obtain a discrete representation of the PADE system, the state space is
partitioned into a set of domains.

Definition 1. Consider a set of PADEs of the form (2) with phase space Ω
and thresholds θji . The (n − 1)-dimensional hyperplanes corresponding to the

equations xi = θji , j ∈ {1, . . . , pi}, divide Ω into hyper-rectangular regions called
domains. A domain D ⊂ Ω is defined by D = D1 × · · · ×Dn where every Di is
given by one of the following equations

Di = {xi | 0 ≤ xi < θ1i },
Di = {xi | θki < xi < θk+1

i } for k ∈ {1, . . . , pi − 1},
Di = {xi | θpii < xi ≤ maxi},
Di = {xi |xi = θki } for k ∈ {1, . . . , pi}.

By D we denote the set of all domains in Ω. A domain D ∈ D is called a
singular domain, if there exists i ∈ {1, . . . , n} such that Di = {xi |xi = θki } for
some k ∈ {1, . . . , pi}. The variable xi is then called singular variable. The order
of a singular domain is the number of its singular variables. A domain D ∈ D
is called a regular domain, if it is not a singular domain. The set of regular and
singular domains are denoted by Dr and Ds respectively.

It follows immediately that for any regular domain D ∈ Dr, the functions Fi(x)
and Gi(x) are constant on D. Thus (2) can be written as a linear system ẋ =
FD −GDx, for all x ∈ D, where GD = diag(GD1 , . . . , G

D
n ) is a diagonal matrix

with strictly positive entries and FD = (FD1 , . . . , F
D
n ) a positive vector. It is easy

to see that solutions of (2) starting in a regular domainD converge monotonically
towards the so-called focal point φ(D) := (GD)−1FD.

In agreement with [5], we assume that all focal points lie in a regular do-
main. By definition of the regular domains, we can then encode the position of
each focal point by strict inequalities using the threshold values, and thus ob-
tain a parameter constraint of the form (1) consisting of threshold values and
components of the focal point. We call these constraints ordering constraints.



To define a suitable dynamics of (2) on singular domains, the differential
equations are extended to differential inclusions, and methods presented in [5,
9, 10], give us so-called Fillipov solutions of the differential inclusions. However,
our focus here is on the qualitative dynamics, which does not depend on the
particularities of the Fillipov extension.

It is shown in [5] that we can calculate the qualitative dynamics of a PADE
system (2) using only the respective ordering constraints. This dynamics is rep-
resented by a directed graph, the qualitative transition graph QTG(A) = (D, T ).
Here, the node set D consists of all regular and singular domains, and the arcs
indicate the existence of suitable solution trajectories of (2) between adjacent
domains. As shown in [5], all systems in the class of PADE systems satisfying the
same ordering constraints have the same qualitative dynamics, i.e., isomorphic
QTGs.

Example 2. Consider the system of PADEs

ẋ1 = α1 + β1S
+(x1, θ

1
1)S−(x2, θ

1
2)− λ1x1,

ẋ2 = α2 + β2S
+(x1, θ

1
1)S−(x2, θ

2
2) + γ2S

−(x1, θ
1
1)S−(x2, θ

2
2)− λ2x2.

The system has six regular domains with corresponding focal points, e.g., the
focal point of D = [0, θ11) × [0, θ12) being (α1

λ1
, α2+γ2

λ2
). We impose the ordering

constraints 0 < α1+β1

λ1
< θ11 <

α1

λ1
< max1 and 0 < α2+β2

λ2
< θ12 <

α2

λ2
< θ22 <

α2+γ2
λ2

< max2. The resulting QTG is given on the right of Fig. 1(a).

4 Relating the discrete and the PADE formalism

Now we show that the PADE and the discrete formalism contain the same infor-
mation in the sense that we can transform a PADE system with given ordering
constraints into a discrete update function and vice versa.

To obtain a discrete update function from a PADE system we can use a
straightforward method originally proposed by Snoussi [2]. First, we discretize
the continuous phase space of the PADE system according to its threshold values.

Definition 2. Let A be a set of PADEs as in (2), where each variable xi has
pi ordered threshold values. Let Q := Q1 × · · · ×Qn, where Qi := {0, 1, . . . , pi},
i ∈ {1, . . . , n}. Define the bijective mapping dA : Dr → Q, where

dAi (D) :=


0 if Di = {x ∈ R | 0 ≤ x < θ1i },
q if Di = {x ∈ R | θqi < x < θq+1

i },
pi if Di = {x ∈ R | θpii < x ≤ maxi}.

Second, we exploit the localization of the focal points in the regular domains in
order to construct an update function fA : Q→ Q on the discretized state space
Q that shares the dynamical properties of the PADE system A (see [2] for de-
tails). The function fA is uniquely determined by the ordering constraints for A.
Consequently, the set of PADE systems A satisfying given ordering constraints
can be associated with a single discrete update function fA.



Conversely, a discrete update function can easily be transformed into a PADE
system that shares the qualitative dynamical properties.

Definition 3. Let f : Q → Q be an update function. Define the discretization
function d corresponding to the thresholds θkj = k − 1

2 for j ∈ {1, . . . , n}, k ∈
{1, . . . , pj}, according to Def. 2. We denote by PADE(f) the system of PADEs
on Ω :=

∏n
i=1[0,maxi], maxi ∈ R>pi for all i ∈ {1, . . . , n}, of the form

ẋ = F (x)− xi, where F (x) =
∑
q∈Q

f(q)

n∏
j=1

S(x, q)

and S is composed componentwise of products of step functions yielding S(x, q) =
1 if x ∈ d−1(q), and S(x, q) = 0 otherwise.

The choice of threshold values is generic, ensuring an obvious correspondence
between the values 0, 1, . . . , pi in Qi, i ∈ {1, . . . , n}, and the intervals [0, θ1i ),
(θki , θ

k+1
i ) for k ∈ {1, . . . , pi − 1}, and (θpii ,maxi]. If we calculate the regular

domains according to the threshold values and their focal points, we have φ(D) =
F (x) = f(d(D)) for all x ∈ D, where d := dPADE(f) and D ∈ Dr. Equivalently, it
holds that φ(d−1(q)) ∈ d−1(f(q)) for q ∈ Q, which immediately implies that the
focal points of PADE(f) satisfy the set of corresponding ordering constraints.

Using these two transformations, we can associate a class of PADE systems
characterized by their ordering constraints with a unique discrete update func-
tion, and vice versa. The information necessary for constructing the STG resp.
QTG is inherent in both representations. In that sense, we can identify every
STG with a QTG and vice versa. In fact, it can easily be shown that this iden-
tification can be achieved solely on the level of the graphs representing the re-
spective dynamics, although the graphs may hold less specific information than
the corresponding discrete functions resp. PADE systems. That is, already the
information inherent in the STG is enough to construct the corresponding QTG
and vice versa.

Example 3. The function f from Ex. 1 generates PADE(f) whose parameter
values satisfy the ordering constraints of the PADE system A from Ex. 2. Thus
PADE(f) belongs to the PADE class represented byA. Similarly, if we discretize
A using Snoussi’s method, we obtain the update function f from Ex. 1.

5 Comparing the dynamics

Although the STG and QTG can be obtained from each other, the qualitative
dynamics represented by the two graphs is not the same. Next we analyze dif-
ferences and similarities of STG(f) and QTG(A) for a discrete update function
f : Q→ Q and the corresponding PADE system A := PADE(f).

Initially, we compare the node sets. The discretization in Sect. 4 implies that
the vertices of STG(f) correspond to the regular domain vertices of QTG(A).
However, there is no representation of the singular domains in the purely discrete



setting. To overcome this problem we associate with every singular domain D
the set H(D) ⊂ Q corresponding to the discretization of those regular domains
D′ that have D in their boundary ∂D′ (cf. [5]). We thus introduce the mapping

H(D) :=

{
{d(D)}, if D ∈ Dr,
{d(D′) ∈ Q |D ⊂ ∂D′, D′ ∈ Dr} if D ∈ Ds.

Now we are able to state our main result on the correspondences between edges
in QTG(A) = (D, T ) and STG(f) = (Q,E).

Theorem 1. Let D ∈ D and D′ ⊂ ∂D. Denote by I the index set of singular
variables in D and I ′ the index set of singular variables in D′. Then

1. (D,D′) ∈ T if and only if

(a) for all i ∈ I there exist q1, q2 ∈ H(D), q1 6= q2, such that p1i ≤ q1i , q
2
i ≤

p2i for all p1, p2 ∈ Q with (q1, p1), (q2, p2) ∈ E, and

∃ l ∈ {1, 2}, p ∈ H(D) : (ql, p) ∈ E ∧ pi 6= qli, if q1i = q2i ,

∃ p1, p2 ∈ H(D) : (q1, p1), (q2, p2) ∈ E ∧ p1i < p2i , if q1i > q2i ,

(b) for all i ∈ I ′ \ I there exists q ∈ H(D) and q′ ∈ H(D′) \ H(D) with
qi 6= q′i and (q, q′) ∈ E,

2. (D′, D) ∈ T if and only if

(a) condition 1.(a) holds, and

(b) for all i ∈ I ′ \ I there exists q ∈ H(D) and q′ ∈ H(D′) \H(D) such that
qi 6= q′i, q

′
j = qj for all j 6= i and (q, q′) /∈ E.

This result provides the basis for elucidating the correspondences between
more complex structures, such as paths or attractors. On the one hand, it can
be used for proofs building on local considerations concerning the edges involved
and thus confirming some previous findings [7,10]. On the other hand, it provides
ideas for the construction of counterexamples, some of which we present here to
illustrate that the relation between the two dynamics is not clear-cut.

We start by considering reachability properties. In simple cases, we can find
conditions ensuring the existence of corresponding paths. However, reachability
properties are not conserved in general, as can be seen from Fig. 1 (a). There,
state (0,2) is reachable from (1,0) in the STG via the path indicated in gray. In
the QTG, all paths starting in the regular domain corresponding to (1,0) and all
adjacent singular domains do not cross the first threshold plane of the second
component. In Fig. 1 (b), we see by considering paths from (0,0) to (1,1) that
reachability properties of the QTG are also not conserved in the STG.

Similarly, we are able to find correspondences of attractors (terminal strongly
connected components of the directed graphs) including certain steady states,
i.e., singleton attractors, and limit cycles, in accordance with [2,3,6–8]. However,
the situation becomes less clear if we consider more general attractors.

First, we consider the number of attractors. In Fig. 1 (a) both systems have
one attractor, but the STG in Fig. 1 (b) has two (a fixed point and a cyclic
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Fig. 1. Corresponding STGs and QTGs. The partitioned phase space of a correspond-
ing PADE underlying a QTG is shown in fine gray lines (dashed for threshold planes)
underneath the QTG and allows identification of nodes representing singular resp. reg-
ular domains. In (a), STG of Ex. 1 and QTG of Ex. 2. In (b), the STG of a two
component Boolean network with the corresponding QTG below. Heavier gray edges
illustrate reachability properties discussed in the text.

attractor) while the QTG has only one (a steady state in the upper right node).
In Fig. 2 (a), the STG has fewer attractors than the corresponding QTG.

In addition, the relation between the attractor structure is not clear-cut.
While the cyclic attractor of the STG in Fig. 1 (a) comprises all nodes and
contains nodes with multiple outgoing edges, the cyclic attractor in the QTG is
a simple cycle consisting only of two nodes joined by the heavier gray double
edge in the lower part of the graph. In Fig. 1 (b) the cyclic attractor in the STG
vanishes in the corresponding QTG. The same happens in Fig. 2 (b), but here
an additional steady state can be observed in a singular node.

These examples illustrate that, in general, neither the number nor the char-
acter of the attractors is preserved. It can be shown that hyper-rectangular trap
sets, i.e., node sets that no path can leave, correspond in the two graphs. This
may be helpful in further elucidating the correspondences of attractors.

6 Discussion and perspectives

In summary, the information inherent in the STG of the discrete update function
is sufficient to derive the QTG of the corresponding PADE system and vice versa.
Despite this fact, many characteristics of the two graphs are not preserved. This
implies that, contrary to what might be expected, the QTG of the PADE system
is not a straightforward refinement of the STG of the Thomas model.

Motivated by these findings, there are several directions for future work. First,
we would like to better understand and characterize the network properties that
lead to substantial differences, e.g., in the number of attractors in the dynamics
of the Thomas and the PADE model. Second, we plan to extend the analysis
to closely related formalisms like the refined qualitative representation of PADE



(a) (b)

Fig. 2. Two examples for networks with two components and three activity levels for
each component. In each case, the STG is depicted on the left, the corresponding
QTG on the right. Depiction of the graphs corresponds to that in Fig. 1, only the
explicit labeling of the STG nodes is omitted. In (a), the STG consists of a single cyclic
attractor, while the QTG has an additional steady state at the lower right singular node
depicted by a fat dot. In (b), both STG and QTG have a steady state in the upper left
node. The STG has an additional cyclic attractor. The QTG has no cyclic attractor,
but a singular steady state at the upper right singular node depicted by a fat dot.

systems [11] as well as piecewise multi-affine models [12]. Also, there exist ap-
proaches that allow the integration of threshold values directly into the Thomas
formalism [13,14]. Clarifying the relation between the different approaches may
allow one to transfer available results and analysis methods from one formalism
to the other. Also, progress in this direction may be helpful when deciding on
the most suitable and efficient modeling framework in a concrete application.
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