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Abstract

Genome-scale metabolic networks are useful tools for achieving a system-level
understanding of metabolism. However, due to their large size, analysis of
such networks may be difficult and algorithms can be very slow. Therefore,
some authors have suggested to analyze subsystems instead of the original
genome-scale models. Flux coupling analysis (FCA) is a well-known method
for detecting functionally related reactions in metabolic networks. In this
paper, we study how flux coupling relations may change if we analyze a
subsystem instead of the original network. We show mathematically that a
pair of fully, partially or directionally coupled reactions may be detected as
uncoupled in certain subsystems. Interestingly, this behavior is the opposite
of the flux coupling changes that may occur due to missing reactions, or
equivalently, deletion of reactions. Computational experiments suggest that
the analysis of plastid (but not mitochondrial) subsystems may significantly
influence the results of FCA. Therefore, the results of FCA for subsystems,
especially plastid subsystems, should be interpreted with care.

Keywords:
FCA, Elementary modes, Boundary reactions, Uptake reactions, Exchange
fluxes, Subnetworks, Subsystems.

∗To whom correspondence should be addressed.
Email addresses: marashi@molgen.mpg.de (Sayed-Amir Marashi),

Laszlo.David@fu-berlin.de (Laszlo David), Alexander.Bockmayr@fu-berlin.de
(Alexander Bockmayr)

Preprint submitted to Elsevier January 24, 2012



1 2 3 6 7

4
5 8 9

Ex1 Ex2A

C

B

F

D E

Figure 1: A metabolic network with nine reactions and six internal metabolites. The
system boundary is shown as a solid black line. A subsystem of the original network can
be selected by including only three metabolites (A–C) and five reactions (1–5). The new
boundary is shown as dashed line. Note that reaction 3 is a boundary reaction in the
selected subsystem, while it is an internal reaction in the original network.

1. Background

Genome-scale metabolic networks are useful models for the analysis of
metabolism at the systems level (Oberhardt et al., 2009). However, due
to the existence of hundreds to thousands of reactions in a genome-scale
network model, it is not easy to analyze such networks. For this reason,
some authors suggest to study only some interesting “subsystems” within
these networks. A mathematical definition of a subsystem will be given
in the next section. Informally speaking, a subsystem can be chosen by
“cutting out” the uninteresting components, i.e., by redrawing the boundary
of the network to include only a subset of reactions and metabolites (see
Fig. 1). Metabolites within the system boundary will be called internal,
while metabolites outside the system boundary are called external (e.g., in
Fig. 1 the metabolites D,E, and F are internal in the original network,
while they become external in the subsystem). Reactions that convert only
internal metabolites to each other are called internal. By choosing a new
boundary, some of the internal reactions may become exchange reactions
of the subsystem (e.g., reaction 3 in Fig. 1). Other reactions may become
external (like reactions 6,7,8, and 9 in Fig. 1). External reactions convert
only external metabolites to each other.

Subsystems may appear naturally in biological networks. For example,
due to compartmentalization of eukaryotic cells, organelle networks can be
considered as subsystems within the whole-cell network. Many authors pre-
fer to study natural subnetworks, e.g., metabolic networks of eukaryotic or-
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ganelles in isolation (Poolman et al., 2003; Vo et al., 2004). Similarly, some
authors have studied other subsystems in isolation (e.g. see Teusink et al.,
2009). A related approach is to split a genome-scale metabolic network into
smaller subsystems and to study them in isolation (Schilling and Palsson,
2000; Schilling et al., 2002; Schuster et al., 2002; Schwarz et al., 2005; Ver-
woerd, 2010, 2011).

As mentioned, in the analysis of metabolic networks, time and memory
requirements are critical issues (Terzer and Stelling, 2008; David et al., 2011;
Jevremovic et al., 2011). Analysis of metabolic subsystems has the advan-
tage that considerable savings can be achieved in computation time and the
memory requirements. However, this “simplification” of the network may
sometimes result in wrong conclusions. For example, instead of the origi-
nal elementary modes of the network, one may obtain “pathway fragments”
in a subsystem (Imielinski and Belta, 2008), which may not be part of any
steady-state flux distribution in the original network (Kaleta et al., 2009).
Additionally, interdependencies between pairs of fluxes, which can be de-
termined by flux coupling analysis (FCA), can be missed when subsystems
are analyzed. It has been previously shown that FCA of subsystems results
in smaller sets of flux-coupled reactions compared to FCA of genome-scale
networks (Burgard et al., 2004).

In the present study, we focus on subsystem-based vs. genome-scale flux
coupling analysis. We first formally introduce the concepts used in this study.
Then, we mathematically explore the effect of subsystem selection on FCA.

2. Formal Definitions

2.1. Mathematical preliminaries

We use [n] as an abbreviation for the set {1, . . . , n}. For an m×n matrix
M , P ⊆ [m] and Q ⊆ [n], we denote by MP ;Q the submatrix of M induced by
the rows in P and the columns in Q. The m× n zero matrix 0 is defined as
the matrix where all elements are equal to zero. The i-th unit vector ei ∈ Rn

is the column vector ei = (0, . . . , 0, 1, 0, . . . , 0)T , where only the i-th element
is 1. Here, ·T denotes transposition.

2.2. Concepts related to metabolic networks

In a metabolic network with n reactions and m internal metabolites,
the stoichiometric matrix S is an m × n matrix where element Sij is the
stoichiometric coefficient of metabolite i in reaction j. Reactions can be
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reversible or irreversible. In this paper, a metabolic network N = (S, Irr) is
characterized by its stoichiometric matrix S and and the set of irreversible
reactions Irr.

Reactions that produce and consume internal metabolites only are called
internal. Exchange or boundary reactions are reactions that produce (resp.
consume) internal metabolites, but consume (resp. produce) external metabo-
lites. They have only positive (resp. negative) entries in the stoichiometric
matrix S. An irreversible boundary reaction producing internal metabolites
is called an uptake reaction. Reactions that both produce and consume only
external metabolites are considered external to the metabolic network and
not included in the stoichiometric matrix.

We adopt the definition of subsystems suggested in Imielinski and Belta
(2008). Suppose that in a network N = (S, Irr) the set of metabolites is
equal to [m]. Without loss of generality, suppose that the stoichiometric
matrix S∗ of a network N∗ = (S∗, Irr) is obtained by deleting from S the
set of rows {r + 1, . . . ,m}, with 1 ≤ r < m. We refer to the second network
N∗ as the subsystem and to the first network N as the extension or the
extended network. By selecting a subsystem, it is possible to get a set of
zero columns, Z. For simplicity, we redefine the stoichiometric matrix of the
subsystem as S? = S[r];[n]\Z , which is an r × (n − |Z|) matrix in which only
the non-zero columns are kept. Irr? = Irr \Z is the subset of Irr including
the irreversible reactions in the subsystem.

If the concentrations of the internal metabolites do not change, we say
that the steady-state condition holds. A vector v satisfying the equation
S · v = 0 is called a (steady-state) flux distribution. The (steady-state) flux
cone of the network is defined as C = {v ∈ Rn | S · v = 0, vi ≥ 0 for all i ∈
Irr}. A flux vector e ∈ C is called an elementary mode (EM) (Schuster and
Hilgetag, 1994; Schuster et al., 2000) if there is no vector v ∈ C \ {0} such
that supp(v) ( supp(e). Here, supp(v) = {i ∈ [n] | vi 6= 0} denotes the
support of a vector v ∈ Rn, i.e., the set of indices of non-zero components.
Thus, each EM represents a minimal set of reactions that can work together
in steady-state.

In a metabolic network, some reactions may be unable to carry a non-
zero flux at steady-state. Such reactions are called blocked (Burgard et al.,
2004). For a pair of unblocked reactions, there may exist certain dependencies
between the fluxes through these reactions, known as flux coupling relations
Burgard et al. (2004):
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• If for all v ∈ C, vi 6= 0 implies vj 6= 0 then i is said to be directionally
coupled to j, or i −→ j.

• If for all v ∈ C, vi 6= 0 implies vj 6= 0 and vice versa, then i is said to
be partially coupled to j, or i←→ j.

• If for all v ∈ C, vi 6= 0 implies vj 6= 0 and vice versa, and additionally
vj/vi = λ is a constant value, then i is said to be fully coupled to j, or
i⇐⇒ j.

If two reactions i and j are not coupled, they are called uncoupled. There
are two types of uncoupling relations (Marashi and Bockmayr, 2011):

• if i and j are uncoupled and additionally there exists an EM e ∈ C
such that ei 6= 0 and ej 6= 0, then i and j will be called sometimes

coupled (i
S.C.←→ j).

• if i and j are uncoupled and additionally, for all EMs e ∈ C, ei = 0 or

ej = 0, then i and j will be called mutually exclusive (i
M.E.←→ j).

3. Results and Discussion

In this section, we first observe how selecting a subsystem (or equiva-
lently, redrawing network boundaries) can affect the results of flux coupling
analysis. We then mathematically study the impact of subsystem selection
on flux coupling relations. Afterwards, we briefly compare the effect of delet-
ing reactions (cf. Marashi and Bockmayr, 2011) with subsystem selection.
Finally, we study the relevance of our results for the analysis of real metabolic
networks.

3.1. Impact of redrawing the network boundaries on FCA

Fig. 2A shows a metabolic network. In Supplementary file 1, the cor-
responding METATOOL input file is presented. Using the METATOOL
software (Pfeiffer et al., 1999; von Kamp and Schuster, 2006), only one EM
(which includes all reactions) is found in this network. Therefore, reactions
i and j (like other reactions) are fully coupled.

In Fig. 2B-E and Supplementary file 1, a number of scenarios are shown,
where different subsystems are selected. When the subsystem in Fig. 2B is
chosen, metabolites A and B are assumed as external. In this subsystem,
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Figure 2: Flux coupling between reactions i and j depends on subsystem selection. (A) In
the original network, the network boundary is shown as solid line. In this network, i⇐⇒ j.
However, depending on the selected subsystem boundaries (dashed lines), different flux

coupling relations are observed: (B) i ←→ j; (C) j −→ i; (D) i
S.C.←→ j; (E) i

M.E.←→ j. See
the text and Supplementary file 1 for more details.

two EMs are found, and reactions i and j are partially coupled to each other.
Choosing the subsystem in Fig. 2C results in a system with three EMs,
where j is directionally coupled to i. If the network boundaries are redrawn
to include the subsystem in Fig. 2D, i and j become uncoupled, or more
precisely, sometimes coupled. Finally, keeping only metabolites C and H in
the subsystem will result in Fig. 2E, where i and j are mutually exclusive.

Fig. 3A shows another small example network. In this network no re-
action consumes metabolite D. As a result, reactions 3 and 4 are blocked
under steady-state conditions and reactions i and j are mutually exclusive.
However, if we select the subsystem shown in Fig. 3B, metabolite D is con-
sidered as an external metabolite. In this case, reactions 3 and 4 are not

blocked. Therefore, i
S.C.←→ j in this subsystem. In Supplementary file 2, the

METATOOL input files of the two networks are presented.
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Figure 3: (A): A metabolic network with six reactions and four internal metabolites. The

system boundary is shown as a solid black line. In this network, we have i
M.E.←→ j; (B): A

subsystem of the network is selected. The new boundary is shown as dashed line. In this

subsystem, we have i
S.C.←→ j. See the text and Supplementary file 2 for more details. This

figure can be seen also as a schematic representation for understanding Theorem 2: N∗ is
the network in (B); Λ = {4}; supp(d) = {i, j, 3, 4}; supp(f) = {i, 1}; supp(g) = {j, 2}; and
the extension N , is shown in (A).

3.2. Mathematical analysis of flux coupling relations in subsystems

In the previous section, we observed that it is possible to have certain
changes in flux coupling relation of two reactions, depending on the selection
of the subsystem. The following theorems summarize these changes1.

Theorem 1. For any two different unblocked uptake reactions i and j in a
metabolic network N∗, the following holds:

1. There exists an extension N in which i⇐⇒ j.

2. If i and j are not fully coupled in N∗, there exists an extension N in
which i←→ j and not i⇐⇒ j.

3. If i and j are uncoupled in N∗, there exists an extension N in which
j −→ i (or i −→ j) holds.

4. If i and j are mutually exclusive in N∗, there exists an extension N in
which i and j are sometimes coupled.

Theorem 2. Let i and j be two different unblocked uptake reactions with

i
S.C.←→ j in a metabolic network N∗. Suppose there exists a subset Λ of

boundary reactions that satisfies the following three conditions: (a) for each
elementary mode d, with di, dj 6= 0, there exists r ∈ Λ such that dr 6= 0; (b)

1Formal proofs are given in Appendix A.
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Figure 4: Possible changes in flux coupling relations due to subsystem selection. An arrow
from relation A to relation B indicates that while relation A holds in the extended network,
relation B may be observed in the subsystem. Gray and white boxes indicate uncoupling
and coupling relations, respectively.

there exists an EM f in N∗ with fi 6= 0, fj = 0 such that fr = 0 for all r ∈ Λ;
and (c) there exists an EM g in N∗ with gi = 0, gj 6= 0, such that gr = 0 for

all r ∈ Λ. Then, there exists an extension N in which i
M.E.←→ j.

We refer to Fig. 3 for an illustrative example.
The possible changes in flux coupling relations due to subsystems selection

(Theorems 1 and 2) are summarized in Fig. 4.
Theorems 1 and 2 discuss the flux coupling relation changes only for a pair

of boundary reactions i and j. However, these subsystem-induced changes
are the only possible ones, independently of whether the reactions i and j
are boundary or internal reactions. This is shown in Theorem 3.

Theorem 3. Consider a metabolic subsystem N∗ with an extension N . All
possible changes in flux coupling relations that may occur for two unblocked
reactions i, j are the following:

1. i⇐⇒ j in N vs. any other flux (un)coupling relation in N∗,
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2. i←→ j in N vs. i −→ j, i
S.C.←→ j, or i

M.E.←→ j in N∗,

3. i −→ j in N vs. i
S.C.←→ j or i

M.E.←→ j in N∗,

4. i
S.C.←→ j in N vs. i

M.E.←→ j in N∗,

5. i
M.E.←→ j in N vs. i

S.C.←→ j in N∗.

3.3. Subsystem selection vs. reaction deletion

In a previous study, we showed that flux coupling relations can also change
if reactions are deleted (or missing) from the network (Marashi and Bock-
mayr, 2011). Deleting a reaction (or equivalently, absence of a reaction from
a metabolic model) is equivalent to deletion/absence of a column from the
stoichiometric matrix (Marashi and Bockmayr, 2011). It was shown that
pairs of uncoupled reactions in the original network may become coupled in
the resulting incomplete network (but not vice versa). Additionally, deletion
of reactions results in a decrease in the number of EMs.

In the present paper, we show that restriction to metabolic subsystems
has very different consequences. Choosing a subsystem is equivalent to dele-
tion of a subset of rows from the stoichiometric matrix. In a subsystem,
coupled reaction pairs in the original network may become uncoupled in the
resulting subsystem (but not vice versa). Moreover, the number of EMs in
a subsystem can be greater than the number of EMs in the original network
(Schuster et al., 2002).

It is important to notice that subsystem selection and reaction deletion
are very different concepts. When a reaction is not included in the selected
subsystem, this is not equivalent to “deleting” the reaction from the net-
work. Fig. 5 shows an example. One can see that deleting reaction 3 from
the network in Fig. 5A blocks all other reactions in steady-state (Fig. 5B),
while considering a subsystem excluding metabolite B and reaction 3 does not
have the same effect (Fig. 5C). This is due to the fact that by deleting a reac-
tion, the corresponding internal metabolites are not deleted, and therefore,
they can become unbalanced (Dandekar et al., 2003). Consequently, such
metabolites will become “dead-ends”, and the associated reactions will be
blocked. Note that considering the above subsystem (by excluding metabo-
lite B and reaction 3) is also different from deleting all reactions that are
involved with metabolite B (Fig. 5D).
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Figure 5: Reaction deletion vs. subsystem selection. (A) A small metabolic network
with three reactions and two internal metabolites; (B) the same metabolic network, when
reaction 3 is deleted (or missing); (C) the same metabolic network, when metabolite B (and
reaction 3) are assumed to be external; (D) the same metabolic network, when reaction 2
and 3 (which produce and consume metabolite B) are deleted.

4. Biological implications

It is believed that some organelles like mitochondria and plastids origi-
nated from free-living bacteria which became endosymbionts of the ancestral
eukaryotic cells (Sagan, 1967; Gross and Bhattacharya, 2009). These or-
ganelles are enclosed by two membranes, which strictly control the inflow
and outflow of metabolites and proteins. Therefore, one may expect the
metabolic subsystems of plastids and mitochondria to be almost indepen-
dent from the rest of the network. As mentioned in Section 1, some authors
have studied these subsystems in isolation (e.g. Poolman et al., 2003; Vo
et al., 2004; Urbanczik, 2007).

In contrast, one may argue that only a limited number of the proteins
in mitochondria and plastids are encoded in their genomes. In fact, most
of these proteins are encoded in the nuclear genome, synthesized in cytosol,
and then transported to these organelles. There is a possibility that during
evolution, some of these enzymatic functions are replaced by their cytosolic
counterparts. As a result, the metabolism in these organelles might be highly
interconnected to the cytosolic enzymatic activities. Therefore, the question
arises: can we study the organelle subsystems in isolation, without (much)
influencing the dependencies and couplings among the fluxes?

In order to answer this question, we studied ten organelles (see Sec-
tion 6.1). Plastid subsystems were selected from the genome-scale metabolic
networks of Hordeum vulgare (barley), Arabidopsis thaliana, Chlamydomonas
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Figure 6: Observed changes in flux (un)coupling relations due to subsystem selection for
the subsystems: AP: plastid of A. thaliana; AM: mitochondrion of A. thaliana; BP: plastid
of barley; BM: mitochondrion of barley; CP: plastid of C. reinhardtii ; CM: mitochondrion
of C. reinhardtii ; MP: plastid of maize; MM: mitochondrion of maize; HM: mitochondrion
of human; and SM: mitochondrion of S. cerevisiae. An arrow from relation A to relation B
indicates that while relation A holds in the extended network, relation B may be observed
in the subsystem. Gray and white boxes indicate uncoupling and coupling relations,
respectively.

reinhardtii, and Zea mays (maize). Moreover, six mitochondrial subsys-
tems were selected from the genome-scale metabolic network of barley, A.
thaliana, C. reinhardtii, maize, human (Homo sapiens) and baker’s yeast
(Saccharomyces cerevisiae). We considered all pairs of unblocked reactions
in each subsystem, and computed pairwise flux coupling relations: (i) when
the genome-scale network is analyzed; and (ii) when the isolated subsystem
is analyzed. The results of cases (i) and (ii) are compared in Fig. 6.

Table 1 shows the frequencies of changes in flux coupling relations due
to analysis of organelle subsystems instead of the complete network. The
ratio of the changed flux coupling relations to the total coupling relations is
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Model name Organelle subsystem Total number of Number of Change
subsystem size coupling relations changes ratio

Barley plastid 139 9 591 2 173 22.7%
A. thaliana plastid 112 6 216 695 11.2%
C. reinhardtii plastid 512 131 328 10 133 7.7%
Maize plastid 52 1 326 55 4.1%
Barley mitochondrion 45 990 46 4.6%
A. thaliana mitochondrion 51 2 250 39 1.5%
C. reinhardtii mitochondrion 274 37 675 148 0.39%
Maize mitochondrion 26 325 0 0%
Human mitochondrion 484 116 886 132 0.11%
Yeast mitochondrion 161 12 880 22 0.17%

Table 1: Frequencies of changes in flux coupling relations due to analysis of organelle
subsystems instead of the complete network. Subsystem size is the number of reactions of
a subsystem which are unblocked in the complete genome-scale network.

shown in this table. This ratio can be seen as a “measure” of the dependence
of the metabolic subsystem on the network: very small ratio means that
most of the flux coupling relations are not changed, and therefore, isolation
of the subsystem does not much change the functional dependencies of the
metabolic fluxes. On the other hand, an increased ratio means that a higher
number of functional dependencies of the metabolic fluxes are changed due to
analysis of the subsystem in isolation, and therefore, the subsystem is more
dependent on the fluxes outside the subsystem.

From this table, one can see that the mitochondrial subsystems are rela-
tively independent of the rest of the metabolic networks, with change ratios
ranging between 0% to 4.6%. In the plastids, however, the change ratios are
generally higher, 4.1%− 22.7%.

In order to show the statistical significance of the results, we studied the
change ratio for random subsystems (see the Methods section). Briefly, in
case of each plastid or mitochondrion subsystem, we randomly selected 1000
subsystems of similar size in the corresponding genome-scale metabolic net-
work. Then, the actual plastid or mitochondrion change ratio was compared
to the change ratio distribution of random subsystems. With this analysis,
we found out that the change ratio for every plastid subsystem was highly
significantly greater than the change ratios of random subsystems. However,
with two exceptions (human and A. thaliana), the change ratio for every
mitochondrial subsystem was highly significantly less than the change ratios
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of random subsystems (see Supplementary file 3). This observation suggests
that mitochondrial metabolic functions do not depend much on the “extra-
organelle” metabolic fluxes. Thus, these subsystems can generally be studied
in isolation without losing much information about the functional dependen-
cies. On the other hand, the analysis of plastid subsystems in isolation may
result in the loss of functional dependencies between metabolic fluxes.

The discrepancy between the level of independence in the plastids and
mitochondria subsystems might be simply an artefact of metabolic network
reconstruction. If this is not the case, one possible explanation for the differ-
ence between the plastids and mitochondria could be that during evolution,
some pathways might have evolved in plants which increase the dependencies
between the internal and external fluxes of the plastids. Suggesting a well-
supported hypothesis is only possible when more comprehensive genome-scale
metabolic networks of eukaryotes become available.

5. Conclusion and further research

In this paper, we show that the analysis of a subsystem instead of the
complete network can cause the flux coupling relations to undergo certain
changes. In particular, a pair of (fully, partially or directionally) coupled
reactions may be detected as uncoupled in the chosen subsystem, but not
vice versa. Interestingly, this behavior is the opposite of the flux coupling
changes that may happen due to missing reactions, or equivalently, deletion
of reactions.

Interdependencies of fluxes in subsystems are not always different from
those in the original metabolic networks. For example, in Fig. 1, all the flux
coupling relations in the selected subnetwork (between reaction pairs from
{1, 2, . . . , 5}) are the same as the corresponding flux coupling relations in the
original network. In such a subnetwork, the set of EMs is equal to the set
of EMs of the original network when projected to the subspace of reactions
in the selected subnetwork (Wiback and Palsson, 2002). It is interesting to
investigate the properties of such subnetworks.

With the analysis of real-world metabolic models, we observed that a
non-negligible number of reaction pairs in plastids may have altered flux
coupling relations when the plastids are studied in isolation. However, in the
case of (most) mitochondrial subsystems, a relatively small fraction of the
reaction pairs will have different flux coupling relations if these subsystems
are studied in isolation. The reason for this behavior is yet to be discovered.
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6. Methods

6.1. Datasets: Genome-scale network models and organelle subsystems

Six genome-scale metabolic network models are used in this study: the
network of Hordeum vulgare (barley) (Grafahrend-Belau et al., 2009); AraGEM,
the network of Arabidopsis thaliana, (de Oliveira Dal’Molin et al., 2010);
iRC1080, the network of Chlamydomonas reinhardtii (Chang et al., 2011);
iRS1563, the network of Zea mays (maize) (Saha et al., 2011); Recon 1, the
network of Homo sapiens (human) (Duarte et al., 2007); and iND750, the
network of Saccharomyces cerevisiae (baker’s yeast) (Duarte et al., 2004).

Ten organelle subsystems were considered: plastid subsystems from bar-
ley (140 reactions including 139 unblocked ones), A. thaliana (123 reactions
including 112 unblocked ones), C. reinhardtii (657 reactions including 512
unblocked ones); and maize (114 reactions including 52 unblocked ones);
and mitochondrial subsystems from barley (45 reactions, all unblocked),
A. thaliana (58 reactions including 51 unblocked ones), C. reinhardtii (339
reactions including 274 unblocked ones), maize (53 reactions including 26
unblocked ones), human (600 reactions including 484 unblocked ones) and
baker’s yeast (263 reactions including 161 unblocked ones). To select each
organelle subsystem from the stoichiometric matrix of the genome-scale net-
work, we considered a submatrix which includes all the rows corresponding
to the metabolites in the organelle subsystem.

6.2. Flux coupling analysis

Flux coupling analysis was performed by the FFCA software (David et al.,
2011). We considered all pairs of unblocked reactions in each subsystem, and
computed pairwise flux coupling relations: (i) when the genome-scale network
is analyzed; and (ii) when the isolated subsystem is analyzed.

We also studied the change ratio of randomly selected subsystems. The
procedure was as follows. Consider an organelle subsystem with n reactions.
In the beginning, a metabolite and its associated reactions were randomly
selected and included in the subsystem. Then, in each step, a neighboring
metabolite was added to the subsystem together with its associated reactions.
This step is repeated until the number of reactions in the subsystem becomes
equal to n± 5.

In case of each organelle, the change ratio of the organelle was compared
to the distribution of the change ratios of 1000 random subsystems. We used
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one-sided Wilcoxon signed rank test to determine the statistical significance
of the change ratio of the organelle.

Acknowledgements

We would like to thank Jason Papin (University of Virginia) for his helpful
discussion on different versions of C. reinhardtii metabolic network.

Burgard, A. P., Nikolaev, E. V., Schilling, C. H., Maranas, C. D., 2004.
Flux coupling analysis of genome-scale metabolic network reconstructions.
Genome Research 14, 301–312.

Chang, R. L., Ghamsari, L., Manichaikul, A., Hom, E. F. Y., Balaji, S., Fu,
W., Shen, Y., Hao, T., Palsson, B. O., Salehi-Ashtiani, K., Papin, J. A.,
2011. Metabolic network reconstruction of Chlamydomonas offers insight
into light-driven algal metabolism. Molecular Systems Biology 7, 518.

Dandekar, T., Moldenhauer, F., Bulik, S., Bertram, H., Schuster, S., 2003. A
method for classifying metabolites in topological pathway analyses based
on minimization of pathway number. BioSystems 70, 255–270.

David, L., Marashi, S.-A., Larhlimi, A., Mieth, B., Bockmayr, A., 2011.
FFCA: a feasibility-based method for flux coupling analysis of metabolic
networks. BMC Bioinformatics 12, 236.

de Oliveira Dal’Molin, C. G., Quek, L.-E., Palfreyman, R. W., Brumbley,
S. M., Nielsen, L. K., 2010. AraGEM, a genome-scale reconstruction of the
primary metabolic network in Arabidopsis. Plant Physiology 152, 579–589.

Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo,
T. D., Srivas, R., Palsson, B. O., 2007. Global reconstruction of the human
metabolic network based on genomic and bibliomic data. Proceedings of
the National Academy of Sciences of the United States of America 104,
1777–1782.

Duarte, N. C., Herrg̊ard, M. J., Palsson, B. O., 2004. Reconstruction and
validation of Saccharomyces cerevisiae iND750, a fully compartmentalized
genome-scale metabolic model. Genome Research 14, 1298–1309.

15



Grafahrend-Belau, E., Schreiber, F., Koschützki, D., Junker, B. H., 2009.
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Appendix A. Theorems and Proofs
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Figure A.7: (A-D): Schematic representations for understanding parts 1-4 of Theorem 1.
The dashed line represents the boundary of the subsystem, while the solid line represents
the boundary of the extension. In each case, i and j are uptake reactions in the subsystem,
while they become internal reactions in the extension network.
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Proof of Theorem 1

Let C∗ denote the flux cone of N∗. We extend the network by adding
two distinct external metabolites m+ 1 and m+ 2 consumed by reactions i
and j, respectively.

1. Since i and j are unblocked in N∗, there exists ũ, ṽ ∈ C∗ such that
ũi > 0 and ṽj > 0. Let w̃ = ũ + ṽ. Since i and j are irreversible, we
get w̃i, w̃j > 0. We construct an extension N by adding an irreversible
reaction n+1 that produces m+1 and m+2 (see Fig. A.7A). The flux
cone of N is defined as

C = {v ∈ Rn+1 | S · v = 0, vi ≥ 0, for all i ∈ Irr} (A.1)

where Irr = Irr∗ ∪ {n+ 1}, and

S =

 S∗ 0
−eT

i w̃i

−eT
j w̃j

 .

Note that

(
w̃
1

)
∈ C. Hence, i, j and n+1 are unblocked reactions in N .

Additionally, Sv = 0 implies that −vi+w̃ivn+1 = 0 and −vj +w̃jvn+1 =
0. Thus, for all v ∈ C, vj > 0 implies vi > 0 (and vn+1 > 0) and vice

versa, with vi/vj = (w̃ivn+1)/(w̃jvn+1)
def
= λ a constant. Therefore,

i⇐⇒ j.

2. If i and j are unblocked and not fully coupled in N∗, there exist flux
vectors w̃, ũ ∈ C∗ with w̃i, w̃j, ũi, ũj > 0 such that w̃i/w̃j 6= ũi/ũj. We
construct an extension N by adding two irreversible reactions n + 1
and n + 2 which both produce m + 1 and m + 2, but with different
stoichiometric coefficients (see Fig. A.7B). The flux cone of N is defined
as:

C = {v ∈ Rn+2 | S · v = 0, vi ≥ 0, for all i ∈ Irr} (A.2)

where Irr = Irr∗ ∪ {n+ 1, n+ 2}, and

S =

 S∗ 0 0
−eT

i w̃i ũi
−eT

j w̃j ũj

 .
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First, note that

w̃1
0

 ,

ũ0
1

 ∈ C. Thus i, j, n + 1 and n + 2 are

unblocked in N . Additionally, since w̃i/w̃j 6= ũi/ũj, i and j are not
fully coupled in N . Now we prove that for all v ∈ C, vi = 0 implies
vj = 0. Since Sv = 0, we have −vi + vn+1w̃i + vn+2ũi = 0 and −vj +
vn+1w̃j + vn+2ũj = 0. If vi = 0, we have vn+1w̃i + vn+2ũi = 0. However,
w̃i, ũi > 0 and vn+1, vn+2 ≥ 0, which implies vn+1 = vn+2 = 0. Hence,
vj = 0. Similarly, for all v ∈ C, vj = 0 implies vi = 0. Therefore,
i←→ j.

3. If i and j are unblocked and uncoupled, there exist w̃, ũ ∈ C∗ such that
w̃i > 0, w̃j = 0 and ũi = 0, ũj > 0. We construct an extension N by
adding two irreversible reactions n + 1 and n + 2. The first reaction
only produces m + 1, while the second reaction produces both m + 1
and m+ 2 (see Fig. A.7C). The flux cone of N is defined as:

C = {v ∈ Rn+2 | S · v = 0, vi ≥ 0, for all i ∈ Irr} (A.3)

where Irr = Irr∗ ∪ {n+ 1, n+ 2}, and

S =

 S∗ 0 0
−eT

i w̃i w̃i

−eT
j 0 ũj



Note, that

w̃ + ũ
0
1

 ∈ C. Therefore, i, j and n + 2 are unblocked.

Moreover, for all v ∈ C, we have −vi + w̃i(vn+1 + vn+2) = 0 and
−vj + ũjvn+2 = 0. From these two equations, it can be seen that vj > 0

implies vi > 0. Therefore, j −→ i. However, since

w̃1
0

 ∈ C, i −→ j

cannot hold.

4. If i and j are unblocked and uncoupled in N∗, there exist w̃, ũ ∈ C∗

such that w̃i > 0, w̃j = 0 and ũi = 0, ũj > 0.
We extend the network by adding three new reactions n+ 1, n+ 2 and
n+ 3 to N∗, as shown in Fig. A.7D. The extended network, N , has the
following flux cone:
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C = {v ∈ Rn+3 | S · v = 0, vi ≥ 0, for all i ∈ Irr} (A.4)

where Irr = Irr∗ ∪ {n+ 1, n+ 2, n+ 3}, and

S =

 S∗ 0 0 0
−eT

i w̃i w̃i 0
−eT

j ũj 0 ũj

 (A.5)

Note that,


w̃ + ũ

1
0
0

 ∈ C. As a result, reactions i, j and n + 1 are

unblocked. It can be easily seen that for all v ∈ C, we have −vi +
w̃i(vn+1 + vn+2) = 0 and −vj + ũj(vn+1 + vn+3) = 0. Therefore, for all
v ∈ C, vn+1 > 0 implies that vi, vj > 0. Thus, there exists an EM, f ,

with fi, fj > 0. Additionally,


w̃
0
1
0

 ,


ũ
0
0
1

 ∈ C. Therefore, there exists

two EMs, say g, h, with gi > 0, gj = 0 and hi = 0, hj > 0. We conclude
that i and j are sometimes coupled.

Proof of Theorem 2

We denote by C∗ the flux cone of N∗. We extend the network by adding
a new metabolite for each reaction in Λ = {r1, · · · , r|Λ|}. The extended
network, N , has the flux cone

C = {v ∈ Rn | S · v = 0, vi ≥ 0, for all i ∈ Irr∗}, (A.6)

where

S =


S∗

−eT
r1

· · ·
−eT

r|Λ|

 .

Therefore, C = C∗ ∩ {v ∈ Rn | vr = 0 for all r ∈ Λ}. Since f, g ∈ C, i
and j are uncoupled in N . Suppose there exists an elementary mode d in N
with di, dj 6= 0. One easily checks that d is also an elementary mode in N∗.
By assumption (a), there exists r ∈ Λ such that dr 6= 0. This implies d /∈ C,

which is a contradiction. We conclude i
M.E.←→ j.
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Proof of Theorem 3

The flux cone of the subsystem can be defined as

C∗ = {v ∈ Rn | S∗ · v = 0, vi ≥ 0, for all i ∈ Irr∗} (A.7)

Let N be an extension of N∗ obtained by adding q metabolites (and
possibly, r reactions). Then, N has the following flux cone:

C = {v ∈ Rn+r | S · v = 0, vi ≥ 0, for all i ∈ Irr} (A.8)

where

S =

(
S∗ 0
M P

)
with M ∈ Rq×n and P ∈ Rq×r. Clearly, for all u ∈ Rn and v ∈ Rr,

(
u
v

)
∈ C

implies u ∈ C∗. Now, we show that the only possible changes in the flux
coupling relations are the ones mentioned in the theorem:

i) If i and j are uncoupled in N , then there exists

(
u
v

)
∈ C such that

ui = 0 and uj 6= 0. Also, there exists

(
u′

v′

)
∈ C such that u′i 6= 0 and

u′j = 0. Therefore, i and j cannot be directionally, partially, or fully
coupled in N∗.

ii) If i −→ j (and not i ←→ j) in N , then there exists

(
u
v

)
∈ C such

that ui = 0 and uj 6= 0. Therefore, i and j cannot be partially, or fully
coupled in N∗.

iii) If i ←→ j (and not i ⇐⇒ j) in N , then there exists

(
u
v

)
,

(
u′

v′

)
∈ C

such that ui, uj, u
′
i, u
′
j 6= 0 and ui/uj 6= u′i/u

′
j. Therefore, i and j cannot

be fully coupled in N∗.
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