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Abstract We present a unified computational frame-
work for matching 3d geometric objects (points, lines,
surfaces, volumes) of highly varying shape. Our ap-
proach is based on the Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) method acting on m-
currents. After stating an optimization algorithm in the
function space of admissible morph generating velocity
fields, two innovative aspects in this framework are pre-
sented: First, we spatially discretize the velocity field
with conforming adaptive finite elements and discuss
advantages of this new approach. Secondly, we directly
compute the temporal evolution of discrete m-current
attributes. Several numerical experiments demonstrate
the effectiveness of this approach.
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1 Introduction

The Large Deformation Diffeomorphic Metric Mapping
(LDDMM) approach initiated in Dupuis et al (1998)
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and Trouvé (1995) has attracted considerable attention
over the last few years in medical imaging. It allows to
match highly deformed objects and as such is capable of
performing inter-individual registration. LDDMM con-
structs a space mapping by evolving a displacement
field along a velocity field, we call wind. Depending on
the regularity of the wind, either diffeomorphisms (Beg
et al 2005; Marsland and Twining 2004) or homeomor-
phisms (Younes 2010) of the embedded space can be
obtained. Thus, it provides a basis for many applica-
tions of anatomical shape analysis, where a one-to-one
correspondence between different geometric objects is
required.

The LDDMM technique is commonly applied for
matching currents (Durrleman 2010). Currents provide
a unified mathematical description of geometric objects
of dimension 0 (points), 1 (curves), 2 (surfaces) or 3
(volumes) (Federer 1996; Morgan 2009).

Embedded in R3 m-currents form linear spaces, are
equipped with an inner product and hence are a suitable
tool for statistical shape analysis (Durrleman 2010).
The induced norm provides a similarity measure for
matching of source and target objects.

The usual wind parametrization constructs travel-
ling radial basis functions coupled to the current dis-
cretisation. In Joshi and Miller (2000) it is proven, that
for matching pairs of finitely many landmarks attaching
a momentum vector at each vertex of the source shape
is the wind structure for the optimal solution. How-
ever, this structure is no longer optimal for the cases
of matching lines, surfaces or volumes. Therefore other
approaches to describe the wind field have been consid-
ered.

In Cotter (2008) a particle-mesh method has been
applied to 1-currents in 2D. Therein curves of same
topology represented by a parameterization were ap-
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Fig. 1 Usual discrete 2-current deformation (left) versus the
direct approach (right)

proximated by a finite point set without any tangential
information regardless of some geometric level of detail
for matching. Cotter proposes to use cubic B-splines on
a fixed grid for the wind discretization and hence de-
couples wind- and current-discretization. In an enclosed
efficiency discussion this sub-optimal parameterization
is still competitive due to the simpler wind structure.
However, the numerical scheme there relies on equidis-
tant cartesian grids with constant diffusity in order to
apply FFT techniques.

In contrast to Cotter (2008), we consider a 3D set-
ting and apply the Orthogonal Matching Pursuit (OMP)
proposed in Durrleman et al (2009) to obtain a sparse
representation for general m-currents at a given geo-
metric resolution (spectral length) in terms of a sum
of discrete Dirac delta m-currents. Currently, the LD-
DMM evolution of this representation is only done indi-
rectly via an approximative scheme (Durrleman 2010,
Rem. 4.13) as depicted in Fig. 1 (left) for m = 2, be-
cause it would otherwise require the computation of
the Jacobian of the diffeomorphism, which is a chal-
lenge when discretizing the wind using Gaussian kernels
(Glaunès et al 2008, 2004; Vaillant and Glaunès 2005).

In this paper, we study the direct evolution of Dirac
delta m-currents (right of Fig. 1). We show that the di-
rect approach allows to uniformly treat m-currents for
m = 0, . . . , 3 (Sec. 2), which to the best of our knowl-
edge has not been shown before. We show also how
to compute the Jacobian in this setting by using finite
elements (FE) to discretize the wind in the LDDMM
framework (Sec. 3). Since the compactly supported ba-
sis functions are fixed in space the computation is sig-
nificantly simplified. In contrast to Cotter (2008), we
also consider locally refined meshes and exploit the de-
coupling of the wind and current discretization for an
adaptive current representation, giving a significant re-
duction of degrees of freedom (Sec. 4).

2 Continuous matching problem

For given shapes S, T ⊂ R3 we aim at constructing a
sufficiently smooth bijection φ of R3 such that the dis-

tance between φ(S) and T is minimal. Here we give a
precise formulation of the resulting optimization prob-
lem.

2.1 Currents

Currents are mathematical tools suited for describing
geometric objects such as points, space curves, surfaces
and volumes embedded in R3. Their precise definition
from Federer (1996); Morgan (2009) requires notation
for differential forms taken from Morita (2001). Let for
m = 0, 1, 2, 3 the set Dm := C∞c (R3, ΛmR3) denote the
vector space of all C∞ differential m-forms on R3 with
compact support. An m-current is an element of Dm,
the dual space of Dm. The elementary Dirac delta m-
currents δu1∧...∧um

x ∈ Dm act on ω ∈ Dm as

δu1∧...∧um
x (ω) = ω(x)(u1 ∧ ... ∧ um),

where ∧ denotes a multilinear alternating wedge prod-
uct between 3-vectors. Following the discussion in (Dur-
rleman 2010, Sect. 1.5.1) it turns out that for the pur-
pose of matching currents the testspace of all C∞ differ-
ential m-forms is not suited due to a missing bound in
variation. Moreover the space D0 can be identified with
scalar C∞c functions on R3. For m = 1 and m = 2 the
space Dm is isomorphic to the space of vector-valued
C∞c functions from R3 to R3. An element of D3 can be
written as a scalar C∞c function times the determinant
form on R3.

Both aspects motivate the use of Reproducible Ker-
nel Hilbert Spaces (RKHS) Wm as testspaces.

Definition 1 Let dm = 1 for m ∈ {0, 3} and dm = 3
for m ∈ {1, 2}. For m = 0, 1, 2, 3 let Wm be the span
of dm-vectorfields still denoted by ω(x) = km(x, y)a,
where x, y ∈ R3, a ∈ Rdm and km(x, y) = exp(−‖x −
y‖2/σ2

m). The space Wm can be equipped with the in-
ner product

〈km(·, x)a, km(·, y)b〉Wm = a∗km(x, y)b .

Here the symbol ∗ denotes the transpose operation.
An m-current in R3 is a continuous linear functional

on Wm. Wm denotes the vector space of all m-currents
in R3.

For x ∈ R3 and attribute a ∈ Rdm we define the
elementary Dirac delta m-currents δax ∈ Wm acting on
ω ∈Wm as δax(ω) = a∗ω(x).

The above inner product induces a norm on Wm, which
can be computed efficiently via Fast Gauss Transform
(FGT) even for a large number of linear combinations
of the above basis functions. The chosen Gaussian ker-
nel km can be considered as Green’s function for some
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differential operator LW (see Beg et al (2005); Durrle-
man et al (2009); Glaunès et al (2008)). With the above
objects at hand the Riesz representation theorem pro-
vides a unique operator Km

W : Wm → Wm reflecting
the canonical isometry between Wm and Wm defined
via

〈Km
W f, g〉Wm = 〈f, g〉Wm,Wm = f(g)

for all f ∈ Wm and g ∈ Wm. It provides for the m-
current Sm the Riesz representant Km

WSm as unique
dm-vectorfield on R3.

2.2 Homeomorphisms and diffeomorphisms

Let Ω be an open bounded subset of R3 and consider
functions vt : Ω̄ → R3 that vanish on ∂Ω. For given fi-
nal time T > 0 and time-dependent wind v = (vt)t∈[0,T ]

we consider the temporal evolution of the identity map

∂φvt
∂t

= vt(φvt ) with φv0(x) = x . (1)

In what follows it will be useful to define the trajectory
xt := φvt (x) for some fixed space point x ∈ R3 and the
map φvst := φvt ◦ (φvs)

−1, describing the movement of a
particle starting in x at time s towards φvst(x) at time t.
It is well known (see Thm. C.3 of Younes (2010)), that
(1) is uniquely solvable when for some x0 ∈ Ω the inte-
gral

∫ T
0
‖vt(x0)‖R3 +Lip(vt) dt is bounded. Furthermore

its solution φvt : R3 → R3 is a homeomorphism of Ω for
all times t ∈ [0, T ]. Under more restrictive assumptions
onto the spatial smoothness of the wind, i.e.

vt ∈ C1
0 (Ω,R3) ∀t ∈ [0, T ] and

∫ T

0

‖vt‖1,∞ dt <∞

the unique solution of (1) is even a diffeomorphism of Ω
for all times t ∈ [0, T ] (see Thm. 8.7 of Younes (2010)).
For convenience we look for the wind vt in some Hilbert
space V . Such spaces can be constructed by defining
inner products associated to differential operators. Let
therefore L : V → L2(R3) be a differential operator
and equip the Hilbert space V with the inner product
〈vt, g〉V = 〈Lvt, Lg〉L2 = 〈L∗Lvt, g〉V ∗,V . Here L∗ de-
notes the adjoint operator. For this work we use

S := L∗L = (−div(σ2
V∇) + I)k = (−σ2

V∆+ I)k (2)

and k = 1 or k = 2 giving the Sobolev spaces Hk (see
Glaunès et al (2008)). For given f ∈ V ∗ we consider so-
lutions vt ∈ V of Svt = f with homogeneous Dirichlet
boundary conditions for vt (and v′t if k = 2). Here the
real parameter σV > 0 balances between smoothing and
data fitting of the right hand side f . For other choices of

Table 1 Pushforwards of Dirac delta m-currents under φ

m = 0 d0 = 1 c ∈ R φ](δcx) = δcφ(x)

m = 1 d1 = 3 τ ∈ R3 φ](δτx) = δ
dxφ(τ)
φ(x)

m = 2 d2 = 3 n ∈ R3 φ](δnx ) = δ
|dxφ|dxφ−∗(n)
φ(x)

m = 3 d3 = 1 ρ ∈ R φ](δ
ρ
x) = δ

|dxφ|ρ
φ(x)

L∗L and boundary conditions see Marsland and Twin-
ing (2004). Dealing with natural boundary conditions is
also possible, but requires a sufficiently large domain to
keep all trajectories therein. Analogous to Km

W we in-
troduce the isometry operator KV : V ∗ → V . A math-
ematically equivalent approach of constructing V con-
sists in defining KV via the Green’s function kV (x, y) of
L∗L, see for instance Glaunès et al (2008, 2004); Vail-
lant and Glaunès (2005); Vaillant et al (2004).

2.3 Diffeomorphic deformation of currents

Definition 2 For m = 0, 1, 2, 3 let currents Sm ∈ Dm
be given. Let φ denote a diffeomorphism on R3 and dxφ
the Jacobian of φ at x. For a differential form ω ∈ Dm,
φ]ω ∈ Dm is called the pullback by φ (see e.g. Morita
(2001)) and is defined via

φ]ω(x)(u1∧ ...∧um) = ω(φ(x))(dxφ(u1)∧ ...∧dxφ(um))

for all x ∈ R3. The pushforward φ]Sm ∈ Dm of Sm
under φ is defined via

φ]Sm(ω) = Sm(φ]ω) for all ω ∈ Dm .

If Sm is associated to a sub-manifold in R3, its pushfor-
ward φ]Sm under φ corresponds to the deformed sub-
manifold φ(Sm). This important property justifies to
write also φ(Sm) ∈ Dm. The explicitly calculated push-
forwards for elementary Dirac delta m-currents taken
from Tab. 1.2 of Durrleman (2010) are given in Tab. 1.

Let some wind v be given and consider the family
(φvt )t of diffeomorphisms generated via (1). The follow-
ing theorem describes the direct evolution of m-current
attributes a ∈ Rdm under (φvt )t, where ′ denotes the
time derivative.

Theorem 1 The pushforwards of δc0x0
, δτ0x0

, δn0
x0

and δρ0x0

under φvs satisfying (1) are δc0xs , δ
τs
xs , δ

ns
xs and δρsxs . Their

components are given via the ODEs

x′t = vt(xt) with x(0) = x0

τ ′t = (dxtvt)τt with τ(0) = τ0

n′t = nttr(dxtvt)− (dxtvt)
∗nt with n(0) = n0

ρ′t = ρttr(dxtvt) with ρ(0) = ρ0 .



4 Andreas Günther et al.

Proof Abbreviating Jt = dx0φ
v
t and At = dxtvt there

holds (see Beg et al (2005)) J ′t = AtJt with J(0) =
I3. Observing the evolution of the Wronskian (Mattheij
and Molenaar 2002, Thm. 2.14) or via Jacobi’s formula
one obtains

|Jt|′ = |Jt|tr
(
J−1
t J ′t

)
= |Jt|tr

(
J−1
t AtJt

)
= |Jt|tr(At),

where tr(A) denotes the trace of a matrix A and A−∗ =
(A−1)∗. Now from Tab. 1 we read out

xt = φvt (x0)

τt = Jtτ0

nt = |Jt|J−∗t n0

ρt = |Jt|ρ0 .

Differentiation of the above equations with respect to t
yields

x′t = φvt (x0)′ = vt(φvt (x0)) = vt(xt)

τ ′t = J ′tτ0 = AtJtτ0 = Atτt

n′t = |Jt|′J−∗t n0 + |Jt|(J−∗t )′n0

= |Jt|tr(At)J−∗t n0 − |Jt|A∗tJ−∗t n0

= nttr(At)−A∗tnt
ρ′t = |Jt|′ρ0 = |Jt|tr(At)ρ0 = ρttr(At),

which proves the assertion. ut

Remark 1 The authors emphasize the striking advan-
tage that Theorem 1 enables to find the final position
and attribute of a Dirac delta m-current without com-
puting the Jacobian of the deformation. The appearing
ODEs only involve the Jacobian of the velocity fields,
which will be given in a closed form in any case.

Independently of the LDDMM approach but similar
to the pushforward of 3-currents, Burger et al (2011)
consider mass-preserving hyperelastic image registra-
tion, where the determinant of the deformations’ Ja-
cobian is explicitly monitored.

Let us visualize the actual situation of Theorem 1 in
Fig. 2. A Dirac delta 0-current δcx is displayed as a c-
colored ball with midpoint x. The scalar c is considered
as a parameter in a colormap. A Dirac delta 1-current
δτx is displayed as vector τ starting from x − τ/2. A
Dirac delta 2-current δnx is displayed as disc with mid-
point x, area |n| and surface normal n. The 3-current
δρx is drawn as a ball of volume ρ and midpoint x. The
first row of Fig. 2 is devoted to the case a′t = 0, i.e. the
wind vectorfield vt generates a local translation such
that the attribute does not change. On the other hand
we consider wind vectorfields vt such that the point
x remains fixed, i.e. x′t = 0. Here we distinguish be-
tween the scalar valued case m = 3, where basically

local spatial explosions (or implosions) have impact on
the sphere volume ρ and the vector valued case m = 1
or m = 2, where additionally a rotational component of
the wind influences vectors. In general, a superposition
of all such effects may appear. It is clear, that in order
to control current position x and attribute a the space
of wind vectorfields needs to be sufficiently large.

2.4 Optimization problem in function space

Let source Sm ∈ Wm and target current T m ∈ Wm be
given for m = 0, . . . , 3. For given wind v we define the
deformed current Smt := φvt (Sm) at time t. Matching
means the minimization of the distance of the deformed
source current at final time SmT to its target current T m,
i.e. minimizing the dual norm ‖φvT (Sm) − T m‖Wm

=
‖SmT − T m‖Wm in the space of m-currents.

Given a regularization parameter γ > 0 and match-
ing weights λm ≥ 0 we consider for v ∈ L2([0, T ], V )
the following optimization problem:

J(v) := γ

∫ T

0

‖vt‖2V dt+
3∑

m=0

λm‖φvT (Sm)− T m‖2Wm

→ min . (3)

Here the first summand involves the kinetic energy of
the wind. The existence of a solution for (3) is proven in
Glaunès (2005), however it is generally not unique (Cao
et al 2005). Following Glaunès et al (2004), the gradient
of J in L2([0, T ], V ) at fixed v is given by (∇J)t =
2γvt + 2KV (ft), where ft ∈ V ∗ is defined by

ft(u) =
3∑

m=0

λm〈Smt ,∇(Km
W (SmT −T m)◦φvtT )∗u〉Wm,Wm

for all u ∈ V . For further discussion concerning the
choice of the gradients metric we refer the reader to Beg
et al (2005). With the above quantities at hand one is
able to state a steepest descent optimization algorithm
in the function space of velocity fields v.

Remark 2 In order to keep the presentation as simple
as possible we consider until Sec. 4 only one RKHS
Wm with one spectral width σm > 0. However, all in-
vestigations carry over for a family of spaces Wm,i =
Wm(σm,i) with σm,i ∈ Σm ⊂ R+. The extended opti-
mization problem then reads:

γ

∫ T

0

‖vt‖2V dt+
3∑

m=0

λm
∑

σm,i∈Σm

‖φvT (Sm)− T m‖2Wm,i

→ min . (4)
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m 0 1 2 3

a′t = 0

x′t = 0

Fig. 2 Temporal evolution of some source Dirac delta m-current δa0
x0 (green) under φvt towards its target Dirac delta m-current

(red) with intermediate timesteps from light green over yellow to light red together with trajectory xt and wind vectorfield
v0(·)

From a practical point of view a simultaneous match of
m-currents in a finite range of spectral widths prevents
the optimizer to get stuck in some local minimum. The
only numerical overhead is the evaluation of the simi-
larity measure at the final time T for all involved scales.

3 Discrete matching problem

3.1 Discretization of the wind by finite elements

In the field of optimal current matching mainly wind
discretizations of the form

vt(x) =
∑

j
kV (xj,t, x)αj,t (5)

have been considered. Here αj,t ∈ R3 are the time-
dependent momentum vectors and kV denotes a Gaus-
sian kernel with some global kernel parameter σV > 0,
describing the coherent movement of neighboring par-
ticles. In order to apply FGT for efficient evaluation,

σV is necessarily a constant. The vectors αj,t will also
be denoted as the degrees of freedom (DOF).

It was shown in Joshi and Miller (2000), that the
optimal wind which matches a finite set of landmarks
to each other is indeed of the form (5). But in practice
the global optimum is often not attained. Furthermore
the orginal problem in function space (3) could happen
to consider infinitly many points. Moreover there is no
analogue assertion for the cases m > 0. To see this,
it suffices to consider the match of the 3-currents δ10
with δ20 as depicted at the bottom of column m = 3 of
Fig. 2. Clearly, a required local spatial explosion with
just one DOF-vector αt ∈ R3 in vt(x) = kV (0, x)αt is
insufficient.

The spatial movement of non-compactly supported
basis functions along trajectories xj,t may cause nu-
merical difficulties. Too small distances between them
cause a redundant or badly conditioned description of
the velocity field while the absence of trajectories in a
part of the domain produces almost no wind there for
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small kernel sizes. The trajectory density varies during
optimization and hence is difficult to control. Because
the trajectories’ starting points are the spatial compo-
nents of the Dirac delta source currents, the number of
trajectories is fixed. Hence, a notion of adaptivity for
the velocity field can hardly be introduced. Finally, as
mentioned in Sect. 2.2, C∞ smoothness is not required
to solve the evolution equation.

In Risser et al (2010) and Sommer et al (2011), some
of the above mentioned drawbacks are overcome by in-
corporating multiple kernel shapes at different scales
σV .

Similar to the particle-mesh method proposed in
Cotter (2008), we follow a different approach fully de-
coupling the discretization of the space of m-currents
Wm from the spatial velocity space V . Keeping in mind
that fast point evaluation of the wind is essential for
performance, we consider adaptive hexahedral grids for
Ω with hanging nodes saved as an octree. Let us men-
tion that apart from the LDDMM approach the authors
Haber et al (2008) have also considered adaptive, multi-
level octree grids for image registration with an elastic
potential as regularizer. Therein, optimization on dif-
ference schemes notably reduce computational time in
two and three dimensions. In contrast to Haber et al
(2008) we construct either C1 conforming Hermite fi-
nite elements of third order or simpler C0 conforming
Lagrange finite elements of first order over such hexa-
hedral grids. The wind for fixed time t ∈ [0, T ] in the
FE basis {ϕj}j takes the form

vt(x) =
∑n

j=1
ϕj(x)αj,t . (6)

In contrast to radial basis function discretizations, lo-
cally constant functions are contained in the ansatz
space and allow to represent local or even global trans-
lations with few DOF. Due to the compactly supported
basis functions there is no need for an approximate eval-
uation like FGT with further unknown tolerance pa-
rameters. Since the basis functions are fixed in space,
the underlying mesh provides a natural clustering which
can be exploited via a smart parallel octree search algo-
rithm for point evaluation. Furthermore, this approach
provides a multilevel wind hierarchy with a fraction of
DOF on the coarsest mesh level completely decoupled
from the m-current discretization. These advantages
also appear in the particle-mesh method with tensor-
products of cubic B-splines for instance. But since we do
not apply FFT for wind evaluation, we are more flexible
with adaptive meshes and do not require a box domain.
Moreover non-constant anisotropic diffusity σV (x) ∈
R3×3 may be incorporated in future.

A difficulty arises in the computation of L2([0, T ], V )
gradients. It involves the solution of a second (k = 1) or

fourth (k = 2) order elliptic PDE in every time-step and
every iteration. It is clear that one should employ suited
preconditioners and / or multigrid solvers. Using exist-
ing FE libraries limits the implementation overhead.
We choose libMesh (Kirk et al 2006), which provides
conforming C1 finite elements on adaptive hexahedral
meshes.

All appearing ODEs are numerically integrated us-
ing the explicit method of Heun on an equidistant de-
composition of the time interval [0, T ].

3.2 Current compression and direct evolution

For approximating an m-current Sm ∈ Wm as Ŝm =∑sm
i=1 δ

ai
xi ∈ Wm we use the Orthogonal Matching Pur-

suit (OMP) proposed in Durrleman et al (2009). This
method iteratively selects the most important points xi
and computes corresponding attributes ai (i.e. ci, τi, ni,
ρi) of a general m-current via a greedy algorithm. It has
the advantage of compressing the current information
for a characteristic spectral length σm > 0 towards a
fraction. This enables the design of highly efficient nu-
merical solution algorithms. The approximation error
in OMP is controlled by a threshold parameter and the
grid size of a uniform testgrid.

The seeming drawback of loosing the connectivity
between vertices (for m ≥ 1) can be compensated by
applying the obtained optimal diffeomorphism to all
connected vertices whenever needed. This only requires
one additional forward flow computation at the end.

In Sec. 3.2 of Vaillant and Glaunès (2005) two meth-
ods to deform a 2-current Ŝ2 under a family of diffeo-
morphisms (φvt )t are described. In contrast to all previ-
ous work, we will pursue the direct approach motivated
by Theorem 1. For 2-currents, only one instead of three
trajectories is needed to evolve the normal n0 (Fig. 1).
In general, the direct approach requires only one tra-
jectory per attribute, hence decreasing the number of
variables in the computation, whereas in the indirect
case an artificial m-simplex with m + 1 vertices is at-
tached.

Remark 3 To quote Rem. 4.13 in Durrleman (2010),
the direct evolution of current attributes is closer to the
analytical concept of currents and is particularly suited
for OMP, where no connectivity between the points is
provided. But Durrleman (2010) indicates the need of
Jacobi matrices (as they arise in Theorem 1) as a dis-
advantage for numerical implementation. At least for
the gradient computation in the next section we ben-
efit from the simpler structure of vt in (6), which in
Lemma 2 enables easy evaluations of

dxtvt =
∑n
j=1 αj,t∇ϕj(xt)∗
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and hence tr(dxtvt), (dxtvt)w and (dxtvt)
∗w for a vector

w ∈ R3. Note that all sums over j are local sums due
to the compact support of the basis functions ϕj .

3.3 Discrete optimization problem and its gradient

Let a(·, ·) denote the bilinear form corresponding to
the elliptic differential operator S from (2). We de-
fine the sparse symmetric, positive definite matrix S :=
[a(ϕi, ϕj)]ni;j=1 using the FE basis {ϕj}j from Sect. 3.1.
Moreover, we introduce block vectors αt := [αi,t]ni=1,
xt := xmt := [xi,t]smi=1 and at := amt := [ai,t]smi=1. This
notation allows to write the matching terms as

Em = Em(xT ,aT ) = ‖φvT (Ŝm)− T̂ m‖2Wm

= ‖
∑sm
i=1 δ

ai,T
xi,T −

∑tm
j=1 δ

bj
yj‖2Wm

.

Finally the discrete form of the current matching prob-
lem (3) is

Ĵ(αt) := γ

T∫
0

‖vt(αt)‖2V dt+
3∑

m=0

λm‖φvT (Ŝm)−T̂ m‖2Wm

→ min

or even shorter via (6) and the relation ‖vt(αt)‖2V =
a(vt(αt), vt(αt)) = α∗tSαt

Ĵ(αt) = γ

∫ T

0

α∗tSαt dt+
3∑

m=0

λmE
m(xT ,aT )→ min .

(7)

The analytical computation of the gradient at given
αt becomes manageable though the simpler wind rep-
resentation (6). Numerically, the computation is more
involved due to presence of Hessians of basis functions.
But these are easily provided via the already mentioned
libMesh library.

Theorem 2 The gradient of Ĵ in the L2-metric is

(∇Ĵ)t = 2γSαt+
3∑

m=0

λm((ϕmt )∗ηmt +(∂αgmt )∗ζmt ), (8)

with ϕmt = [ϕj(xi,t)Idm ]i=1...sm;j=1...n

ζmt = ∇aTE
m +

∫ T

t

(∂agms )∗ζms ds

ηmt = ∇xTE
m +

∫ T

t

(∂xgms )∗ζms ds .

The proof is postponed to the appendix. The remain-
ing quantities ∇xTE

m,∇aTE
m, ∂αgmt , ∂xgmt and ∂agmt

from Theorem 2 for each m are specified in the next
two lemmas.

Lemma 1 Let

fm(x) =
∑sm
i=1 km(xi,T , x)ai,T −

∑tm
j=1 km(yj , x)bj .

There hold

∇xTE
m = [2(dxi,T fm(xi,T ))∗ai,T ]smi=1 and

∇aTE
m = [2fm(xi,T )]smi=1 .

Proof

(∂xTE
m)η = 2

[(
∂xT

∑sm
i=1 δ

ai,T
xi,T

)
η
]

(fm)

= 2a∗T (dxT fm(xT )) η

∇xTEm = 2(dxT fm(xT ))∗aT

= 2
(∑sm

i=1(∇2km(xi,T , xT ))a∗i,T

−
∑tm
j=1(∇2km(yj , xT ))b∗j

)
aT

(∂aTE
m)η = 2

[(
∂aT

∑sm
i=1 δ

ai,T
xi,T

)
η
]

(fm)

= 2η∗fm(xT ) .

ut

Lemma 2 For gmt in (12) their sparse Jacobians are
given via

g0
t = 0

∂αg1
t =

[
(τ∗i,t∇ϕj(xi,t))I3

]
i=1...s1;j=1...n

∂αg2
t =

[
ni,t∇ϕj(xi,t)∗ −∇ϕj(xi,t)n∗i,t

]
i=1...s2;j=1...n

∂αg3
t = [ρi,t∇ϕj(xi,t)∗]i=1...s3;j=1...n

∂xg1
t = diag

[∑n
j=1 αj,tτ

∗
i,tHϕj (xi,t)

]s1
i=1

∂xg2
t = diag

[∑n
j=1 ni,t(α

∗
j,tHϕj (xi,t))− (α∗j,tni,t)Hϕj (xi,t)

]s2
i=1

∂xg3
t = diag

[∑n
j=1 ρi,tα

∗
j,tHϕj (xi,t)

]s3
i=1

∂τ g1
t = diag

[∑n
j=1 αj,t∇ϕj(xi,t)∗

]s1
i=1

∂ng2
t = diag

[∑n
j=1(α∗j,t∇ϕj(xi,t))I3 −∇ϕj(xi,t)α∗j,t

]s2
i=1

∂ρg3
t = diag

[∑n
j=1 α

∗
j,t∇ϕj(xi,t)

]s3
i=1

,

where Hϕj (xi,t) denote the Hessian of ϕj at xi,t.

Proof The proof for all cases of m can easily be adapted
from the case m = 2. For this choice the derivatives of
g2
t follow from direct calculations starting with

g2
t = g2(αt,xt,nt)

= diag
[
tr(dxi,tvt)I3 − (dxi,tvt)

∗]s2
i=1

nt

= diag
[∑n

j=1(α∗j,t∇ϕj(xi,t))I3 −∇ϕj(xi,t)α∗j,t
]s2
i=1

nt

=
[∑n

j=1 ni,t(α
∗
j,t∇ϕj(xi,t))−∇ϕj(xi,t)(α∗j,tni,t)

]s2
i=1

,

where diag[v] = [δijvi]si;j=1 for v ∈ Rs and δij denotes
the Kronecker delta. ut
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Table 2 Summary of involved parameters for all four nu-
merical experiments

Ex. 1 2 3 4

data pelvis mandible
m 0 1 0, 1, 3 0, 1, 2
dΩ 541 495 534 220

σcomp 8 3 5 2
sm 1746 1084 33,652, 7390 19,497,4385
tm 2141 1286 33,772,10000 19,455,4236

λ̃m 1 1 4, 2, 0.02 3, 1, 1
Σ 8 3,10,17,24 5, 13, 21, 29 10, 20, 30, 40
σV C0: 100, C1: 15 10

Corollary 1 If λm = 0 for m > 0 Theorem 2 simply
provides

(∇Ĵ)t = 2γSαt + λ0(ϕ0
t )
∗∇xTE

0 .

Remark 4 The L2([0, T ], V )-gradient of Ĵ is immedi-
ately obtained by applying S−1 from the left in equa-
tion (8).

4 Numerical experiments

As a first example we are going to solve the discrete op-
timization problem (7) in order to compare our results
with the software ExoShape 1 where C∞ wind of the
form (5) is implemented. Next, we consider three exam-
ples of the discrete analogon to the extended problem
(4) with multiple spectral widths in the similarity mea-
sure.

The first three examples look at various correspon-
dence problems in terms of different m cases between
two pelvic bones, while the last one considers two man-
dible bones together with their alveolar nerves. 2

An overview about the actual m-cases and the as-
sociated parameters can be gained from Tab. 2. To get
an insight onto the absolute scale of each problem, we
report dΩ = diam(Ω) in terms of millimeter units. The
row σcomp lists the spectral width of the Gaussian ker-
nel, at which the OMP to the involved lines, surfaces
and volumes is applied. The resulting discrete currents
Ŝm and T̂ m are sums of sm and tm Dirac m-currents
respectively. When matching different m-cases simul-
taneously the user has to provide suitable weights λm
in the objective Ĵ . But due to different scaling of each

1 http://www-sop.inria.fr/asclepios/projects/

Health-e-Child/ShapeAnalysis/
2 Pelvic bone data by courtesy of Markus Heller, Julius

Wolff Institute and Center for Musculoskeletal Surgery
Charité-Universitätsmedizin Berlin, Germany. Mandible data
by courtesy of Max Zinser, Universitätsklinikum Köln, Ger-
many.

RKHS-norm and in order to obtainO(1) numbers in the
objective it is reasonable to define the relative weights

λ̃m = λm · ‖Ŝm − T̂ m‖2Wm(σm,0)
,

where σm,0 denotes the smallest spectral width in Σm.
We consider only one finite set Σ of kernel sizes inde-
pendently from m.

All problems are solved six times for different wind
discretizations: For Lagrange FE C0 wind (k = 1) and
for Hermite FE C1 wind (k = 2) either on a coarse uni-
form or an adaptive, or a fine uniform hexahedral mesh.
We simply mark cells for refinement, whenever a point
xi from the compressed m-currents Ŝm or T̂ m is con-
tained therein. Let us comment on the last row of Tab. 2
documenting the values σV from (2). These manually
adjusted numbers have impact on the spatial smooth-
ness of C0 and C1 wind and scale with the bounding
box of the domain. Although we choose γ = 0 for all ex-
periments, the discrete operator S is still present when
optimizing with the L2([0, T ], V )-gradient as remarked
in the last section.

In the tables Tab. 3-6 the column DOF denotes the
number of freely choosable vectors αj,t for fixed t. On
adaptive meshes, vectors αj,t on hanging nodes are not
freely choosable. They have to satisfy a global C0 or C1

condition. For k = 1 there is one FE basis function per
node, while for k = 2 we have eight. In the last column
we document the objective Ĵ . In the remaining columns
we additionally report distance measures which allow
a direct geometric interpretation in millimeters. These
are the mean, standard deviation, root mean square
and the maximum of the one sided distance function
from the deformed source (in the first rows) and from
the undeformed source (in the last row) towards the
target.

In the following figures Fig. 3-19 the color green
encodes sources Sm or Ŝm (at time t = 0), while the
color red is for targets T m or T̂ m (at time t = T ).
Intermediate colors from light green over yellow to light
red correspond to intermediate times from 0 to T . In
general, black or gray colors stand for deformed sources
SmT or ŜmT (at time t = T ).

4.1 Example 1: Pelvic bone (m = 0)

We consider the case m = 0. The surfaces S2 and T 2 of
two pelvic bones are depicted in Fig. 3. To both surface
densities we apply the OMP towards Ŝ0 and T̂ 0 which
are sketched as set of spheres of diameter 8 in Fig. 4.

Starting from a uniform hexahedral grid with 6 · 4 ·
5 = 120 nodes we refine cells containing the points xi
from Ŝ0 and T̂ 0. The resulting hexahedral adaptive grid
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Fig. 3 Pelvic bone surfaces S2 (green), T 2 (red) for Ex. 1

Fig. 4 Compressed 0-currents Ŝ0 and T̂ 0 for spectral width
σ0 = 8 depicted as s0 = 1746 green and t0 = 2141 red spheres
of diameter 8 together with the adaptive grid consisting of 523
nodes (164 of them are hanging nodes) for Ex. 1

with 523 nodes (164 of them are hanging nodes) is also
depicted in Fig. 4.

The deformed pelvic bone surfaces S2
T are displayed

for adaptive C0 wind in Fig. 5 and for adaptive C1 wind
in Fig. 6. Finally in Fig. 7 we compare our results with
the software ExoShape, generating C∞ wind via ansatz
(5) with σV = 30. The grayscale visualizes the term
distx∈S2

T
(x, T 2). One should keep in mind, that with

γ = 0 the deformation norm vanishes in the example,
but different differential operators are still present for
velocity field evaluation. Although a proper compari-
son between all methods should use the same deforma-
tion norm ‖ · ‖V , Exoshape does not easily support its
change. Additionally in the lower left corner distance
histograms over the surface are displayed.

A quantitative comparison between all different dis-
cretizations for the wind field is given in Tab. 3. All
methods provide acceptable matches with respect to
the fixed level of detail σ0 = 8. Especially the surface
S2
T corresponding to adaptive C1 wind is also visually

Fig. 5 Deformed S2
T under adaptive C0 wind for Ex. 1

Fig. 6 Deformed S2
T under adaptive C1 wind for Ex. 1

Fig. 7 Deformed S2
T under C∞ wind for Ex. 1

Table 3 One-sided surface distances between deformed
pelvic bone S2

T and target bone T 2 for Ex. 1

vt DOF mean stddev rms max Ĵ

C0 uniform 120 1.52 1.53 2.16 14.99 0.23
C0 adaptive 359 1.06 1.06 1.50 10.94 0.17
C0 uniform 693 1.04 1.05 1.48 10.40 0.16
C1 uniform 960 1.00 0.94 1.37 9.41 0.15
C1 adaptive 2872 0.81 0.73 1.09 7.29 0.12
C1 uniform 5544 0.81 0.73 1.09 7.32 0.11
C∞ 1746 0.97 0.93 1.34 9.70 0.11

distx∈S2(x, T 2) 5.08 3.87 6.39 21.05 1.00
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Fig. 8 Compressed 1-currents Ŝ1 and T̂ 1 for spectral width
σ1 = 3 depicted as s1 = 1084 green and t1 = 1286 red arrows
in their pelvic bone context together with the adaptive grid
consisting of 554 nodes (147 of them are hanging nodes) for
Ex. 2

closest to T 2. Generally, we observe higher matching
accuracy for increasing numbers of DOF. The uniform
C1 wind with 960 DOF is competetive to ExoShape
with 1746 DOF. Adaptive C1 is even better, but also
has more DOF. Remarkable is the fact that there is
almost no difference between adaptive Ck−1 and glob-
ally refined Ck−1 wind although we have used a quite
simple and heuristic refinement strategy.

4.2 Example 2: Pelvic bone (m = 1)

By looking at anatomic feature lines (e.g. of salient cur-
vature) on the the surface of pelvic bones we consider
the case m = 1. These directed lines S1 and T 1 are
sketched as green and red arrows in Fig. 8 after apply-
ing the OMP.

We solve the extended discrete matching problem
of (4). The solution for C1 wind (k = 2) on the adap-
tive grid is shown in Fig. 9. This computation shows
the practicability of our method for a non-trivial case
m > 0, where also the attributes τi evolve under the
time-dependent wind field. On most areas the matching
accuracy is sufficient with respect to the initially chosen
geometric level of detail in the compression. It is clear
that in areas of nonsatisfying match a local grid refine-
ment and hence more local DOF for the wind should
follow. On the other hand, a-priori refinement in areas
of initially satisfying local fit is not required.

Tab. 4 lists the one-sided line distances between de-
formed lineset S1

T and target T 1 for all six wind sce-
narios. Our observations are similar as for the m = 0
case: the more wind DOF, the better the match. In
terms of accuracy adaptive refinement is competitive to

Fig. 9 Green source S1, red target T 1 and black deformed
source lineset S1

T for adaptive C1 wind together with trajec-
tories xi,t and intermediate light green to light red tangents
τi,t for Ex. 2

Table 4 One-sided line distances between deformed lineset
S1
T and target lineset T 1 for Ex. 2

vt DOF mean stddev rms max Ĵ

C0 uniform 120 2.61 2.45 3.58 20.31 2.13
C0 adaptive 407 1.69 1.67 2.37 14.21 1.45
C0 uniform 693 1.71 1.75 2.45 15.84 1.49
C1 uniform 960 1.38 1.31 1.90 9.19 1.35
C1 adaptive 3256 1.11 1.22 1.65 9.96 1.10
C1 uniform 5544 1.11 1.22 1.65 9.99 1.10

distx∈S1(x, T 1) 10.41 6.31 12.17 30.18 6.75

Fig. 10 Zoom at sacrum area for adaptive C1 wind with
trajectories xi,t and intermediate light green to light red tan-
gents τi,t for Ex. 2

global uniform refinement. However the match near the
sacrum shown in Fig. 10 is not acceptable with respect
to the considered geometric level of detail. This fact is
also reflected in Tab. 4, where the maximal one-sided
distance between deformed line S1

T and T 1 is about 10.
At tips like in the sacrum-area, back and forth tangents
almost cancel out at large scales, while on small scales
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Fig. 11 Compressed 3-currents Ŝ3 and T̂ 3 for spectral width
σ = 5 depicted as s3 = 7390 green and t3 = 10000 red balls
of volume ρi together with the adaptive grid consisting of 523
nodes (164 of them are hanging nodes) for Ex. 3

source and target sacrum line do not correlate in the
similarity measure due to their large distance. There-
fore we also match undirected scalar information in the
following

4.3 Example 3: Pelvic bone (m = 0, 1, 3)

Let us consider the case m = 0, m = 1 and m = 3
simultaneously. We manually mark 33 points on both
source and target pelvic bones, set all their attributes
ci = 1 and consider them as 0-currents. In particu-
lar, the tip of each sacrum is selected. Additionally we
consider the pelvic bones as filled volumetric bodies,
i.e. as 3-currents. Their compression delivers discrete
3-currents Ŝ3 and T̂ 3 visualized in Fig. 11 as green and
red balls of volume ρi together with the adaptive grid
with 523 nodes. Since we have manually selected points
in the m = 0 case, we enforce a rather good match,
which is reflected in the large relative weight λ̃0 = 4.

We exemplarily depict the solution in terms of the
gray deformed pelvic bone S2

T for adaptive C1 wind in
Fig. 12 and set it into the context with source (green),
deformed (black) and target (red) points and lines. In
Fig. 13 the pushforward of the source 3-current Ŝ3 un-
der the map φvt for multiple times starting from t = 0
in green to t = T in light red is shown.

The one-sided distances to the target pelvic bone
for all six optimal solutions are collected in Tab. 5. We
notice that the maximum of the distance function is - as
intended - not realized at the sacrum area anymore. A
comparison between the Figs. 10 and 14 shows indeed
the improvement due to the manually selected points
and the higher weight λ̃0. Both cases in k reveal, that

Fig. 12 Green source points S0 and lineset S1, red target
points T 0 and lineset T 1 and black deformed points S0

T and
lineset S1

T for adaptive C1 wind together with gray deformed
pelvic bone S2

T for Ex. 3

Fig. 13 Green source 3-current Ŝ3 towards light red de-
formed 3-current Ŝ3

T for adaptive C1 wind together with tra-
jectories xi,t and intermediate light green over yellow balls of
volumes ρi,t for Ex. 3

Table 5 One-sided surface distances between deformed
pelvic bone S2

T and target bone T 2 for Ex. 3

vt DOF mean stddev rms max Ĵ

C0 uniform 120 2.46 2.31 3.38 20.04 7.00
C0 adaptive 359 2.33 2.06 3.11 17.92 3.89
C0 uniform 693 2.30 2.08 3.11 17.59 3.71
C1 uniform 960 2.11 1.92 2.85 17.91 3.16
C1 adaptive 2872 2.24 2.12 3.08 17.39 2.34
C1 uniform 5544 2.24 2.12 3.09 17.49 2.32

distx∈S2(x, T 2) 5.08 3.87 6.39 21.05 19.98

adaptivity pays off: We obtain almost the same match-
ing accuracy with substantially less DOF compared to
the global refined case. It is clear that for improving the
match, further local mesh refinement is required. This
leads to a local enrichment of the FE space for the wind
field.

Fig. 14 also displays a zoom into the temporal evo-
lution of the family of discrete 3-currents (

∑
δ
ρi,t
xi,t)t in

terms of spheres at xi,t of volume ρi,t. Again the color
encodes the time from green (t = 0) to light red (t = T ).
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Fig. 14 Zoom at sacrum area for adaptive C1 wind with tra-
jectories xi,t and intermediate light green to light red balls of
volumes ρi,t together with the linesets S1 (green), S1

T (black)
and T 1 (red) for Ex. 3

Fig. 15 Green source mandible bone S2 with charactertic
lines and nerves S1 and s0 = 19 points considered as 0-
current Ŝ0 together with its red target counterparts for Ex. 4

4.4 Example 4: Mandible bone (m = 0, 1, 2)

It remains to demonstrate an example for evolving m =
2-currents. We consider two mandible bones without
the teeth area as surfaces together with their alveolar
nerves and other feature lines (m = 1) of salient curva-
ture. Additionally we manually mark 19 points on the
surfaces and lines, attach colors ci = 1 to them and con-
sider these Ŝ0, T̂ 0 as 0-currents. The exact geometric
situation is depicted in Fig. 15.

The result after the OMP with σcomp = 2 is shown
in Fig. 16 together with the adaptive grid.

Fig. 16 The discrete counterpart to Fig. 15 after the OMP
together with the adaptive grid having 332 nodes for Ex. 4

Fig. 17 Green source points S0 and lineset S1, red target
points T 0 and lineset T 1 and black deformed points Ŝ0

T and

1-current Ŝ1
T for adaptive C1 wind together with gray de-

formed mandible bone S2
T for Ex. 4

Besides the deformed mandible bone S2
T in gray

Fig. 17 displays also the deformed 1-current Ŝ1
T in black.

Especially the correspondence of the points but also be-
tween the nerves are found up to an acceptable accu-
racy.

Displaying the direct temporal evolution of discrete
2-currents is part of Fig. 18 and Fig. 19. The meaning
of the colors is analogous to the Figs. 13 and 14 from
Ex. 3.

For completeness we show the numbers for all six
spatial wind discretizations in Tab. 6. We observe the
same trends as in the previous examples.
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Fig. 18 Green source 2-current Ŝ2 towards light red de-
formed 2-current Ŝ2

T for adaptive C1 wind together with tra-
jectories xi,t and intermediate light green over yellow circles
of area |ni,t| for Ex. 4

Fig. 19 Zoom at mandibular joint for adaptive C1 wind with
trajectories xi,t and intermediate light green to light red cir-
cles of area |ni,t| together with the light red normals ni,T for
Ex. 4

Table 6 One-sided surface distances between deformed
mandible bone S2

T and target bone T 2 for Ex. 4

vt DOF mean stddev rms max Ĵ

C0 uniform 80 0.78 0.73 1.07 5.91 2.49
C0 adaptive 234 0.72 0.62 0.95 4.47 2.55
C0 uniform 441 0.66 0.54 0.85 4.10 1.89
C1 uniform 640 0.61 0.50 0.79 4.13 1.18
C1 adaptive 1872 0.52 0.43 0.68 2.96 0.96
C1 uniform 3528 0.51 0.42 0.66 2.93 0.95

distx∈S2(x, T 2) 1.33 1.10 1.72 5.75 8.91

Conclusion

We present a unified treatment of matching m-currents
(m = 0, 1, 2, 3) in the framework of LDDMM. Two new
key aspects are developed:

On the one hand we consistently apply C1 con-
forming AFEM for generating diffeomorphisms of the
embedded space. In practice, it turned out that also
C0 conforming Lagrangian AFEM are suited. They are
still able to compute locally smooth one-to-one cor-
respondences, but are easier to implement and gener-
ate smaller discrete systems to solve. The main advan-
tage of using AFEM lies in the fixed spatial clustering
and spatial flexibility. The non-moving compactly sup-
ported basis functions further simplify analytical and
numerical gradient computations.

On the other hand we directly morph the discrete
current attributes obtained from the Orthogonal Match-
ing Pursuit algorithm. This approach is closer to the
context of currents and requires less trajectories and
hence less memory during the optimization process. Its
seeming drawback of loosing connectivity information
can be compensated by applying the found optimal de-
formation map to the original connected set.

In future we focus on reliable a-posteriori error esti-
mators in time and space steering the adaptive refine-
ment process for the velocity field. Moreover we hope to
benefit from some multilevel, hierarchic wind structure,
which is natural to consider over nested grids. Further-
more, it is now possible to consider non-constant spatial
diffusity 0 < σV (x) ∈ L∞(Ω)3×3 in the operator L∗L
providing more local flexibility whenever required for
matching.
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de mesures et de courants pour la comparaison de formes
et l’anatomie numérique. PhD thesis, Université Paris 13
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Appendix

In the following we prove Theorem 2.

Proof First we consider the variation of the kinetic energy,
i.e. λm = 0 for all m. One directly calculates

(∇Ĵ)t = 2γSαt . (9)

Let us now consider the contrary case, i.e. γ = 0. We aim
to compute ∇αEm for some fixed m. Variation of E = Em

w.r.t. αt in direction α̃t gives

Ẽm = (∂xTE)x̃T + (∂aTE)ãT . (10)

There holds

x̃t =

Z t
0
ṽs(xs) ds =

Z t
0
ϕsα̃s ds . (11)

From Theorem 1 the evolution of m-current attributes can
be written as

a′t = g(αt,xt,at) = gt with a(0) = a0 . (12)

Its variation in direction α̃t satisfies

ã′t = (∂αgt)α̃t + (∂xgt)x̃t + (∂agt)ãt with ã(0) = 0 .

It remains to express ãt. We therefore introduce the flow
dFst
dt

= (∂agt)Fst with Ftt = I and get

ãt =

Z t
0
Fut((∂αgu)α̃u + (∂xgu)x̃u) du

=

Z t
0
Fut(∂αgu)α̃u du+

Z t
0

Z u
0
Fut(∂xgu)ϕsα̃s ds du

=

Z t
0

„
Fut(∂αgu) +

Z t
u
Fst(∂xgs) dsϕu

«
α̃u du .

In particular there holds

ãT =

Z T
0

„
FtT (∂αgt) +

Z T
t
FsT (∂xgs) dsϕt

«
α̃t dt . (13)
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Combining (10), (11) and (13) we have

Ẽm =

Z T
0

(∂xTE)ϕtα̃t

+ (∂aTE)

„
FtT (∂αgt) +

Z T
t
FsT (∂xgs) dsϕt

«
α̃t dt

=

Z T
0

 »
(∂xTE) +

Z T
t

(∂aTE)FsT (∂xgs) ds

–
| {z }

=:η∗
t

ϕt

+ (∂aTE)FtT| {z }
=:ζ∗

t

(∂αgt)

!
α̃t dt

=

Z T
0

`
η∗tϕt + ζ∗t (∂αgt)

´
α̃t dt . (14)

Since FstFts = I and
dF ∗

st

ds
= −(∂ags)∗F∗st we have in par-

ticular the integral form F∗ts = I +
R s
t (∂agu)∗F∗us du. This

helps to simplify

ζt = F∗tT (∇aTE) =
“
I +

Z T
t

(∂ags)
∗F∗sT ds

”
(∇aTE)

= ∇aTE +

Z T
t

(∂ags)
∗F∗sT (∇aTE) ds

= ∇aTE +

Z T
t

(∂ags)
∗ζs ds (15)

ηt = ∇xTE +

Z T
t

(∂xgs)
∗F∗sT (∇aTE) ds

= ∇xTE +

Z T
t

(∂xgs)
∗ζs ds . (16)

Collecting (9), (14), (15) and (16) yields the assertion. ut


