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We consider a class of generalized capital asset pricing models in continuous time with a
finite number of agents and tradable securities. The securities may not be sufficient to span
all sources of uncertainty. If the agents have exponential utility functions and the individ-
ual endowments are spanned by the securities, an equilibrium exists and the agents’ optimal
trading strategies are constant. Affine processes, and the theory of information-based asset
pricing are used to model the endogenous asset price dynamics and the terminal payoff. The
derived semi-explicit pricing formulae are applied to numerically analyze the impact of the
agents’ risk aversion on the implied volatility of simultaneously-traded European-style op-
tions.1
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Introduction

In this paper we propose an analytically-tractable equilibrium model in continuous time, within which
financial securities are priced in a generalized capital asset pricing model (CAPM).

It is well known that when markets are incomplete, competitive equilibria may fail to exist. Even if they
exist, they may not be Pareto optimal, nor supportable as equilibria of a suitable representative agent
economy. The equilibrium analysis of incomplete markets is therefore always confined to special cases,
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for instance to single agent models [16, 15], multiple agent models where markets are complete in equi-
librium [10, 18, 21], or models with particular classes of goods [20] or preferences [5].

Cheridito et al. [6] recently established existence and uniqueness of equilibrium results for incomplete
financial market models in discrete time when agents’ preferences are translation invariant2. In the sit-
uation where uncertainty is spanned by finitely many random walks, they showed that the equilibrium
dynamics can be described as the solution to a coupled system of forward-backward stochastic difference
equations. The system is usually high-dimensional because one obtains one equation per security and
market participant. This renders simulations and calibrations of the model cumbersome, if not impossi-
ble. Within the framework of generalized CAPMs, that is, if all agents share the same base preferences (as
in the case of exponential utility functions) and the endowments lie in the span of the tradable assets, the
system simplifies to a single equation representing the equilibrium utility of some representative agent.
Furthermore, the equilibrium price process depends only on the aggregated endowment, the market risk
aversion, and the flow of market information. It is in this sense that these three items fully characterize
equilibrium prices in generalized CAPMs.

In this paper we extend the generalized CAPM analyzed in [6] to continuous time. In particular, the ad-
vantage of the herewith presented continuous-time framework is that we obtain (semi-)explicit formulae
for equilibrium prices. If not explicitly computable, key equilibrium quantities can be computed using
numerical integration only. In particular, no Monte Carlo methods are needed. Specifically, we consider a
model with a finite number of agents, which are initially endowed with an attainable random payoff. They
trade a finite number of securities so as to maximize expected exponential utility from terminal wealth.
The financial securities are characterized by their terminal payoffs, which we assume to be functions of
finitely many market factors. The market factors may or may not be observable to the agents. Affine pro-
cesses, and the theory of information-based asset pricing are used to model the endogenous asset price
dynamics and the terminal payoff.

Within our first approach, the dynamics of the market factors follows an affine process that generates the
market filtration. Affine processes are widely used in mathematical finance (see for instance [11, 12, 22]
and references therein), as they lend themselves to a transparent mathematical analysis and to the appli-
cation of efficient numerical methods. We show that within an affine framework, equilibrium securities
prices are given by the quotient of two integrals. Both integrals are the product of an exponential function
evaluated at the current state of the factor process and the Fourier transform of a smooth function. Rep-
resenting equilibrium prices in terms of deterministic integrals allows for a fast and efficient numerical
analysis of other equilibrium quantities, such as option implied volatilities. We analyze implied volatil-
ities for two single-security benchmark models: (i) an additive Heston stochastic volatility model, and
(ii) a pure jump Ornstein-Uhlenbeck model. Both models reproduce the well-documented smile-effect of
implied volatilities and identify investor risk aversion as a key determinant of implied volatilities.

The second approach to continuous equilibrium presented in this paper is based on the theory of infor-
mation-based asset pricing; see Brody et al. [4] and Hoyle et al. [19]. Within this approach, the asset price
dynamics is explicitly generated by taking the conditional expectation of the future cash flows, which
are multiplied by the pricing rule, given the partial information about the market factors that is available
to the agents. The filtration is modeled by stochastic processes, which (i) carry information about the a
priori distribution of the market factors, and (ii) embody pure noise preventing market participants from
accessing full knowledge as to what is the “true” value of the asset at any time before the cash flows
occur. We use the information-based framework to show the dependence of the equilibrium prices of

2Exponential utility functions, for instance, are translation invariant after a logarithmic transformation.
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credit-risky securities on information about the financial standing of a company.

The paper is structured as follows. A general existence result along with a discussion on the information-
generating processes is given in Section 1. In Section 2 and 3, we present affine and information-based
equilibrium pricing models, respectively. Proofs to the theorems are collected in the appendix.

1. A Generalized Capital Asset Pricing Model

We consider an equilibrium model in continuous time with a finite set A of economic agents. Uncertainty
is modeled by a probability space (Ω,F , P ) carrying a filtration (Ft)t∈[0,T ]. The filtration captures the
flow of information that is available to the agents over the trading period [0, T ]. It is assumed to satisfy
the usual assumptions of completion and right-continuity. In what follows, all equalities and inequalities
are to be understood in the P -almost sure sense.

1.1. Existence of Equilibrium

The agents can lend to and borrow from the money market account at some exogenously given interest
rate, and they can trade K securities. The securities are in net supply n = (n1, · · · , nK) ∈ RK and
characterized by their terminal payoffs ST = (S1

T , ..., S
K
T ), which we assume to be FT -measurable

random variables. Securities are priced to match demand and supply. Each agent a ∈ A is initially
endowed with some FT -measurable random payoff Ha of the form

Ha = ca + ηa · ST ,

for constants ca ∈ R and ηa ∈ RK . Furthermore, at each time t ∈ [0, T ] the agent’s preferences can be
described by the utility functional

Uat (X) = − 1

γa
log
(
E
[
e−γ

aX | Ft
])

,

where γa > 0 is the risk aversion parameter. Thus at time t ∈ [0, T ], the agent faces the optimization
problem

sup
ϑ∈Θ

Uat

Ha +

T∫
t

ϑudSu

 ,

where the set of admissible trading strategies Θ is given by

Θ =
{
ϑ ∈ L(S) : G(ϑ) is a Q̃-supermartingale, for all Q̃ ∈ P

}
.

Here, L(S) and Gt(ϑ) :=
∫ t

0
ϑudSu denote the set of S-integrable predictable processes and the gains

process, respectively, whereas P denotes the set of all equivalent martingale measures (EMM) for S.3

The goal is now to establish existence of a (discounted) equilibrium price process (St)t∈[0,T ].4 Since all
agents share the same base preferences, and because all payoffs lie in the span of the tradable assets, our

3Note that in equilibrium, there is an EMM Q, that is, an equivalent probability measure Q under which the price process S will
be a true martingale. In particular, S will be a P -semimartingale. For related discussions on suitable sets of admissible strategies
see for instance [7], [8], or [2].

4For simplicity, we assume that the trading horizon T is short so that interest rate risk can be ignored.
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model can be viewed as a generalized CAPM. Just like in the classical CAPM, in our incomplete market
model existence of an equilibrium can be established using the standard representative agent approach
that underlies equilibrium models of complete markets. Furthermore, all agents share the market portfolio
according to their risk aversion in equilibrium. The equilibrium pricing kernel depends on the agents’
preferences and endowments, however only through the endowment- and supply-adjusted risk aversion

γ̃ := γ(η + n) ∈ RK . (1.1)

Here, η :=
∑
a η

a denotes the aggregate endowment and γ−1 :=
∑
a γ
−1
a can be viewed as the mar-

ket risk aversion. The following result can be proved using standard duality results for entropic utility
functions; see [6, Theorem 5.1] for a related result in discrete time.

Theorem 1.1. Suppose that the following integrability conditions hold:

exp (−γ̃ · ST ) ∈ L1(P ) and ST ∈ L1(Q)K , (1.2)

where Q is an equivalent probability measure with density

dQ

dP
=

exp(−γ̃ · ST )

E [exp(−γ̃ · ST )]
. (1.3)

Then, the price process S defined by

St = EQ [ST | Ft] , t ∈ [0, T ] , (1.4)

together with the constant trading strategies

ϑ̂at ≡
γ

γa
(n+ η)− ηa, a ∈ A,

constitutes an equilibrium.

We notice that the equilibrium pricing kernel Q depends only on the terminal payoffs weighted by the
endowment- and supply-adjusted risk aversion. In particular, if the k-th security is in zero endowment-
adjusted supply, that is, if ηk + nk = 0, then its payoff does not affect the equilibrium pricing kernel.

Furthermore, the integrability assumption on S under the pricing measure Q guarantees that equilibrium
prices are Q-martingales. Hence they are, by (1.2) and (1.3), P -semimartingales and thus well defined as
an integrator in the sense of [24, Chapter II and IV].

1.2. The Market Filtration

The previous theorem established existence of a continuous equilibrium under no assumptions on the
underlying filtration (Ft). We emphasize that the construction of the filtration characterizes the dynamics
of the derived price processes. In order to obtain (semi-)explicit equilibrium price processes, we assume
that the terminal payoffs depend in a functional form on a vector X of market factors the distribution of
which is known to the agents. We define the following:

SkT = fk(X) .

We assume that the market filtration (Ft)t∈[0,T ], to which the equilibrium prices will be adapted, is gen-
erated by an observable stochastic process (ξt) such that, possibly up to a constant, ξT = X . Equilibrium
dynamics will then be studied within an affine and an information-based framework. The former assumes
that the dynamics of the (observable) market factors follows an affine process; in the latter the observables
generating the market filtration are modeled by Brownian random bridges with drift from zero to X .
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2. Affine Equilibrium Framework

In this section, we assume that the dynamics of the market factors ξ is observable and that it follows an
affine process Y , that is ξ = Y . After the formulation of the setup and a brief introduction into the theory
of affine processes, the results in Section 1 are used to derive equilibrium pricing formulae in Section 2.1.
This is followed by an analysis of equilibrium option prices in Section 2.2 and equilibrium asset prices
in a Heston stochastic volatility framework and an Ornstein-Uhlenbeck jump model in Sections 2.3 and
2.4, respectively.

2.1. Setup and Equilibrium Pricing Formulae

In this section, we consider the case where the payoff ST is a functional of an affine observable factor
process. To this end, we assume that the underlying probability space (Ω,F , P ) is rich enough to support
an affine Markov process Y taking values in the state space D := Rm+ × Rn.

We set d = m + n and write Y = (V,X). We interpret X ∈ Rn as the factor process that determines
the payoff and V ∈ Rm+ as a process driving it; a typical example would be a stochastic volatility model.
We assume that Y T , the Markov process stopped at time T , is conservative, meaning that there are no
explosions or absorbing states up to time T . The market filtration (Ft)t∈[0,T ] is then chosen to be the one
generated by Y :

Ft = σ(Ys , s ≤ t), t ∈ [0, T ].

Usually, one associates with Y a family of probability measures (P y)y∈D, which represents the law of
the process Y starting at y ∈ D. Since every affine process is a Feller process, the filtration (Ft) can be
completed with respect to the family (P y)y∈D, so that the filtration is automatically right-continuous [25,
Section III.2].

2.1.1. Affine processes

Before turning to the problem of equilibrium pricing, we recall some useful definitions and results on
affine processes, the details of which can be found in Duffie et al. [12] or in Keller-Ressel [22].

Definition 2.1. An affine process is a stochastically continuous5, time-homogeneous Markov process
(Y, P y) with state-spaceD, whose log-characteristic function is an affine function of the state vector. This
means that there exist functions φ : R+ × iRd → C and ψ : R+ × iRd → Cd such that

Ey [exp (u · Yt)] = exp [φ(t, u) + ψ(t, u) · y] , (2.1)

for all y ∈ D and (t, u) ∈ R+ × iRd. An affine process Y is called regular, if the derivatives

F (u) := ∂tφ(t, u)|t=0+ , R(u) := ∂tψ(t, u)|t=0+

exist for all u ∈ U := {u = (uv, ux) ∈ Cm × Cn : Re(uv) ≤ 0, Re(ux) = 0} and are continuous in
u = 0.6

5A stochastic process Y is stochastically continuous, if for any sequence (tm)→ t in R+, Ytm converges to Yt in probability.
6In the recent work [23], the authors actually showed that each affine process as defined above is regular, whereas in [12] and [22]

regularity was still an assumption on Y .
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The definition of an affine process Y implies that theFt-conditional characteristic function of YT (T ≥ t)
is an affine function of Yt:

E [exp (u · YT ) | Ft] = exp [φ(τ, u) + ψ(τ, u) · Yt] , (2.2)

for all (τ, u) ∈ R+ × iRd, where τ := T − t. The affine property will be used in this form throughout.
The admissible parameters associated with an affine process Y determine its generator and its functional
characteristics F and R. The functional characteristics completely determine a regular affine process,
since the functions φ and ψ satisfy generalized Riccati equations of the form ∂tφ(t, u) = F (ψ(t, u)) and
∂tψ(t, u) = R(ψ(t, u)); see Appendix B for further details.

Although the special form of the log-characteristic function of an affine process perfectly lends itself to
tractable computations, we need to consider a class of processes for which formulae (2.1) or (2.2) extend
to a broader subspace of Cd than iRd.7

Definition 2.2. For Y a regular affine process, and for each t ≥ 0, the following sets are considered:

Dt :=

{
z ∈ Rd : sup

0≤s≤t
Ey [exp(z · Ys)] <∞ , for all y ∈ D

}
,

Dt+ :=
⋃
s>t

Ds and D := (D0+)◦ ∪ {0}. (2.3)

D is called the real domain of Y , and Y is said to be analytic, if the interior D◦ of D is non-empty.

Remark 2.3. It was shown in [22, Chapter 3] that the functions φ and ψ characterizing the process Y have
unique extensions to analytic functions on the interior E◦C of the tube domain EC defined by

EC :=
{

(t, u) ∈ R+ × Cd : (t,Re(u)) ∈ E
}
, where E := {(t, v) ∈ R+ × Rd : v ∈ Dt+} .

The extensions still satisfy the aforementioned Riccati equations and (2.1) and (2.2) extend to EC.8 �

2.1.2. Equilibrium pricing formulae

We are now ready to state the main result of this section, that is a semi-explicit formula for the equilibrium
price processes in an affine framework. For simplicity, we restrict our analysis to processes Y = (V,X)

with state space D = R+ × R, and we assume that the agents can trade K securities S1, ..., SK with
terminal payoffs

SkT = fk(XT ) , (2.4)

for payoff functions fk : R → R. Under suitable integrability conditions our results carry over to more
general payoff functions of the form fk(YT ) and to affine processes on multi-dimensional state spaces.
However, the resulting pricing formulae would be quite cumbersome and the Riccati equations that de-
termine the processes’ functional characteristics would no longer be solvable in closed form (the semi-
explicit structure of the solution would be preserved, though). We define f(x) := (f1(x), ..., fK(x)).

7By extension it is meant that the functions φ and ψ can be uniquely analytically extended to a suitable subspace of R+ × Cd.
8More precisely, [22, Lemma 3.12] states that this holds on the set {(t, u) ∈ EC :

∣∣E0 [exp(u · Ys)]
∣∣ 6= 0 , for all s ∈ [0, t)},

whereas [22, Lemma 3.19] then yields that both sets coincide.
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Theorem 2.4. Let Y = (V,X) be an analytic affine process on R+ × R, and suppose that the terminal
payoffs of the securities are of the form (2.4). Suppose furthermore that there exists a vector of damping
parameters (α1, . . . , αK , β) ∈ RK+1 such that the functions

gk(x) := exp
(
αkx

)
fk(x) exp (−γ̃ · f(x)) , (2.5)

h(x) := exp (βx) exp (−γ̃ · f(x)) (2.6)

as well as their respective Fourier transforms,

ĝk(s) =

∫
R

e−isygk(y)dy and ĥ(s) =

∫
R

e−isyh(y)dy ,

are integrable, and that(
T, (0,−αk)

)
∈ E , for all k, and (T, (0,−β)) ∈ E . (2.7)

Then the following holds:

• The equilibrium price of S at time t is a function of τ := T − t and the current state of the process
Y , and the price of the k-th security at time t ∈ [0, T ] is given by

Skt =

∫
R exp

[
φ
(
τ, (0,−αk + is)

)
+ ψ

(
τ, (0,−αk + is)

)
· Yt
]
ĝk(s) ds∫

R exp
[
φ
(
τ, (0,−β + is)

)
+ ψ

(
τ, (0,−β + is)

)
· Yt
]
ĥ(s) ds

. (2.8)

Here, φ and ψ denote the analytic extensions of the functions introduced in Definition 2.1.

• The equilibrium price process of S at time t can alternatively be computed by

Skt = − ∂

∂ζk
H(ζ)

/
H(γ̃)

∣∣∣∣
ζ=γ̃

. (2.9)

Here, the function H : RK → R is given by

H(ζ) =
1

2π

∫
R

exp
[
φ
(
τ, (0,−β(ζ) + is)

)
+ ψ

(
τ, (0,−β(ζ) + is)

)
· Yt
]
ĥ(ζ, s) ds ,

where we allowed for a functional dependence of β ≡ β(γ̃) on γ̃, and used the explicit dependence
of the function ĥ(s) ≡ ĥ(γ̃, s) on γ̃ through (2.6).

The benchmark case where only one security is in non-zero endowment-adjusted supply and its payoff
function is linear, and all other securities are in zero endowment-adjusted supply, does not require Fourier
transform methods, as shown by the following corollary.

Corollary 2.5. Let the process Y and the functions φ and ψ be as in Theorem 2.4. Let us further assume
that there is only one security, denoted by S1, in non-zero endowment-adjusted supply, that is

γ̃ =
(
γ(η1 + n1), 0, . . . , 0

)
.

If furthermore S1
T = XT and γ̃ satisfies

(
T, (0,−γ̃1)

)
∈ E , then the equilibrium price process of S1 is

given by
S1
t =

[
∂uxφ(τ, u) + ∂uxψ(τ, u) · Yt

] ∣∣
u=(0,−γ̃1)

, t ∈ [0, T ] , (2.10)
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where τ := T − t and ∂ux denotes the partial derivative with respect to the second argument of the vector
u = (uv, ux). Furthermore, whenever the remaining securities (S2, . . . , SK) satisfy the assumptions of
Theorem 2.4, their price processes equal

Skt =
1

2π

∫
R

exp
[
∆αk,γ̃1

τ (φ) + ∆αk,γ̃1

τ (ψ) · Yt
]
ĝk(s) ds , (2.11)

for k = 2, . . . ,K, and each t ∈ [0, T ]. The functional shift operator ∆w,z
t (ϕ) in (2.11) is defined by

∆w,z
t (ϕ) := ϕ

(
t, (0,−w + is)

)
− ϕ

(
t, (0,−z)

)
.

2.2. Pricing of Call Options

We are now going to establish semi-explicit pricing formulae for European call options. The main chal-
lenge will be to find suitable “damping” functions such that the Fourier methods of Theorem 2.4 can be
applied. Specifically, we consider a market model with a single stock with terminal payoff ST = XT

and N call options on the stock with payoffs CiT = (ST − Ki)
+, for i = 1, ..., N , and strike prices

K1 < ... < KN . The stock and the options are traded simultaneously and hence collectively influence
the equilibrium pricing kernel. The flattening functions for S and Ck are denoted α and αk, respectively;
the corresponding weighted payoff functions are denoted g and gk, respectively. We first state the pricing
formula for the most general case of multiple simultaneously traded options in non-zero endowment-
adjusted supply. The formulae are a direct application of Theorem 2.4. Subsequently, we consider the
particularly transparent cases where either a single option in non-zero endowment-adjusted supply or
multiple options in zero endowment-adjusted supply are traded.

2.2.1. Multiple, simultaneously traded options

Let us first consider the general case where N > 0 call options and one stock in non-zero endowment-
adjusted supply are traded. As an illustration, we assume that throughout Sections 2.2.1 and 2.2.2 all
supply-adjusted risk aversion parameters satisfy

γ̃1 = . . . = γ̃N+1 = γ .

The pricing measure is then given by

dQ

dP
=

exp
(
−γ
(
ST +

∑N
i=1(ST −Ki)

+
))

E
[
exp

(
−γ
(
ST +

∑N
i=1(ST −Ki)+

))] , (2.12)

and the following result is an immediate consequence of Theorem 2.4.

Theorem 2.6. Whenever α and β satisfy γ < α, β < (N + 1)γ and (2.7), the equilibrium price of the
underlying security S at time t ∈ [0, T ] is given by

St =

∫
R exp

[
φ
(
τ, (0,−α+ is)

)
+ ψ1

(
τ, (0,−α+ is)

)
Vt + ψ2

(
τ, (0,−α+ is)

)
Xt

]
ĝ(s)ds∫

R exp
[
φ
(
τ, (0,−β + is)

)
+ ψ1

(
τ, (0,−β + is)

)
Vt + ψ2

(
τ, (0,−β + is)

)
Xt

]
ĥ(s)ds

,

and the price of the k-th call option is given by

Ckt =

∫
R exp

[
φ
(
τ, (0, is)

)
+ ψ1

(
τ, (0, is)

)
Vt + ψ2

(
τ, (0, is)

)
Xt

]
ĝk(s)ds∫

R exp
[
φ
(
τ, (0,−β + is)

)
+ ψ1

(
τ, (0,−β + is)

)
Vt + ψ2

(
τ, (0,−β + is)

)
Xt

]
ĥ(s)ds

,
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for k = 1, . . . , N . Here the functions ĝ, ĝk and ĥ are given by

ĝ(s) =

N∑
j=1

exp

(
γ

j−1∑
k=1

Kk

)
exp [(−is+ α− jγ)Kj ]

[(
−Kjγ

(−is+ α− jγ)(−is+ α− (j + 1)γ)

)

+

(
1

(−is+ α− (j + 1)γ)2
− 1

(−is+ α− jγ)2

)]
,

ĥ(s) =

N∑
j=1

exp

(
γ

j−1∑
k=1

Kk

)
exp [(−is+ β − jγ)Kj ]

[
−γ

(−is+ β − jγ)(−is+ β − (j + 1)γ)

]
,

ĝk(s) = exp

(
γ

k−1∑
h=1

Kh

)
exp [(−is− kγ)Kk]

[
1

(−is− (k + 1)γ)2

]

+

N∑
j=k+1

exp

(
γ

j−1∑
h=1

Kh

)
exp [(−is− jγ)Kj ]

[(
−(Kj −Kk)γ

(−is− jγ)(−is− (j + 1)γ)

)

+

(
1

(−is− (j + 1)γ)2
− 1

(−is− jγ)2

)]
.

The assumption γ < α, β < (N +1)γ imposed on the damping factors ensures that the functions g, gk, h
of (2.5) and (2.6) allow for an integrable Fourier transform. In what follows, all model parameters have
to be chosen such that (2.7) is satisfied and hence (2.2) applies. Further details will be discussed below.

2.2.2. A single option model

The pricing kernel (2.12) and the Fourier transforms from Theorem 2.6 simplify considerably when only
one option with strike K > 0 is traded. In this case the price processes (St) and (Ct) can be computed
analogously to Theorem 2.6 by

ĝ(s) = exp [(α− γ − is)K]

[
−Kγ

(−is− γ + α)(−is− 2γ + α)

+

(
1

(α− 2γ − is)2
− 1

(α− γ − is)2

)]
.

ĥ(s) = exp [(β − γ − is)K]

(
−γ

(β − γ − is)(β − 2γ − is)

)
.

ĝ1(s) = exp [−(is+ γ)K]
1

(−is− 2γ)2
.

2.2.3. Options in zero-endowment-adjusted supply

Let us finally consider the simplest case, where all options are in zero endowment-adjusted supply. In
this case, the equilibrium prices are independent of option payoffs and one only needs to find a suitable
α corresponding to the weighted payoff function (2.5) in Theorem 2.4. The simple choice α = 0 already
guarantees that the Fourier-transform

ĝ1(s) =
1

(is+ γ̃1)2
exp

[
−K(is+ γ̃1)

]
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of the function g1(x) := e−γ̃
1x(x −K)+ is integrable. In view of Corollary 2.5, the price process S is

then given by (2.10), and we obtain that the price of the call option at time t ∈ [0, T ] is given by

Ct =
1

2π

∫
R

exp
[
∆0,γ̃1

τ (φ) + ∆0,γ̃1

τ (ψ1)Vt + ∆0,γ̃1

τ (ψ2)Xt

]
ĝ1(s)ds ,

with τ := T − t and ∆0,γ̃1

τ defined in Corollary 2.5.

2.3. Equilibrium Dynamics in a Heston Stochastic Volatility Model

By Choosing the dynamics of Y according to the well-known Heston stochastic volatility model [17], it
is possible to derive explicit equilibrium stock price formulae. Specifically, suppose that Y = (V,X)

evolves according to

dVt = (κ− λVt)dt+ σ
√
VtdW

1
t V0 = v0 ,

dXt = µdt+
√
VtdW

2
t X0 = x0 , (2.13)

where (Ω,F , P ) is assumed to be rich enough to support the two-dimensional Brownian motion W =

(W 1,W 2).9 The market filtration is the augmentation of the filtration generated by Y . The parameters
µ, κ, λ, σ > 0 will be chosen appropriately later on. We initially assume that the agents are trading a
single security S in unit endowment-adjusted supply with payoff ST = XT . Since the additive Heston
model is analytic affine and allows for explicit solutions of the functions φ and ψ, we apply the results
obtained in Sections 1 and 2 to compute the equilibrium price St at time t ∈ [0, T ] in closed form as a
function of Yt.

Theorem 2.7. Let θ(γ) be defined by

θ(γ) =

{ √
λ2 − σ2 γ2 if γ < λ

σ

i
√
σ2 γ2 − λ2 if γ > λ

σ

.

We suppose that γ is such that T satisfies

T <

{
+∞ γ < λ

σ
2
|θ(γ)|

(
arctan |θ(γ)|

−λ + π
)

γ > λ
σ

. (2.14)

Then we have that, with τ := T − t, θ := θ(γ) and θ′ := ∂
∂γ θ(γ), the equilibrium price process S is

given by
St = T (τ, γ)− γΓ (τ, γ)Vt +Xt , (2.15)

for t ∈ [0, T ], and where

T (τ, γ) =
2κ

σ2θ

[
θ(eθτ + 1) + λ(eθτ − 1)

]−1 [(
θ(eθτ + 1) + λ(eθτ − 1)

)(
θ′ − 1

2
σ2γτ

)
− θ
(
θ′(eθτ + 1) + τeθτ (λθ′ − γσ2)

)]
,

9The more general case of correlated Brownian motions could be included in (2.13) by consideringW 3 := ρW 1+
√

1− ρ2W 2

instead of W 2, and goes through analogously. We choose zero correlation in order to keep the notation tractable.
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Γ (τ, γ) =

[
θ
(
eθτ + 1

)
+ λ

(
eθτ − 1

) ]−1[(
2
(
eθτ − 1

)
− γτθ′eθτ

)
+ γ

(
eθτ − 1

) (
θ′
(
eθτ + 1

)
+ τeθτ

(
λθ′ + γσ2

) )(
θ
(
eθτ + 1

)
+ λ

(
eθτ − 1

) )−1
]
.

Note that (2.14) ensures that (2.7) in Theorem 2.4 is satisfied, which, in combination with the discussion
in Section 2.2, allows us to study the impact of the model parameters in a framework comprising European
options. More specifically, we illustrate within the Heston framework the effect of the parameters γ and σ
on implied volatilities using the formulae obtained in Theorem 2.6. To this end, we consider a setting with
one underlying asset and fifteen simultaneously traded call options written on it, all affecting the pricing
density. In Figure 1, four different implied volatility curves are shown, corresponding to four different
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Figure 1: Implied volatility curves with varying risk aversion

values of the risk aversion γ. We see that, especially for in-the-money options, higher risk aversion yields
a higher level of implied volatility. The more risk averse the representative agent is, the more in-the-
money options are appreciated as good hedges against possibly low values of the underlying. The implied
volatility curves for two different choices of the vol-of-vol parameter σ in (2.13) are shown in Figure 2.
We observe a significant increase in implied volatility when changing from the low value (blue curve) to
the higher one (red curve). That is due to the fact that a high value of σ increases the probability of ST
taking on extreme tail values and hence rendering even out-of-the-money options attractive instruments.10

2.4. Equilibrium Dynamics in a Pure Jump Ornstein-Uhlenbeck Setting

We consider now a single stock with terminal payoff ST = XT where X is an Ornstein-Uhlenbeck
process with a pure jump component as Lévy part11:

dXt = −λ(Xt − µ)dt+ dJt , X0 = x0 .

10 For the Figures 1 and 2, the following parameters were used for the numerical computations: µ = 0.1, κ = 0.006, λ = 0.2,
T = 0.5, t = 0, (x0, v0) = (1, 0.03). In Figure 1, we set σ = 0.3, whereas in Figure 2, γ = 0.2 was used.

11This is a specific subclass of basic affine processes, compare [11, Section A.2].
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Figure 2: Implied volatility curves with varying vol-of-vol

Here, J is an adapted compound Poisson process with intensity κ > 0 and jump distribution ν(dx) =
1
2θ exp(−θ |x|)dx.12 The parameters µ and λ describe the long term mean and the mean reversion rate,
respectively. In this one-dimensional setting the equations for the functional characteristics F and R are
given by

F (u) = λµu+
κu2

θ2 − u2
and R(u) = −λu , (2.16)

see (B.1) and (B.2). Combining (2.16) with (B.4) and (B.5), we deduce that the functions φ and ψ satisfy
the following system of Riccati equations

∂tφ(t, u) = λµψ(t, u) +
κψ2(t, u)

θ2 − ψ2(t, u)
, φ(0, u) = 0

∂tψ(t, u) = −λψ(t, u) , ψ(0, u) = u ,

which allows for the explicit solutions

φ(t, u) =
κ

2λ
log

(
θ2 − u2e−2λt

θ2 − u2

)
+ µu(1− e−λt) and ψ(t, u) = ue−λt.

Thus, (2.2) holds, as long as u ∈ R\{−θ, θ} and T < t∗(u), with

t∗(u) =

{
+∞ |u| < θ

− 1
2λ log( θ

2

u2 ) |u| > θ
. (2.17)

This, together with Corollary 2.5, allows us to formulate the following:

Proposition 2.8. If |γ̃| 6= θ and T < t∗(−γ̃), where t∗ is as in (2.17), then, with τ := T − t, the
equilibrium price process S is given by

St =

[
κθ2γ̃

(
e−2λτ − 1

)
λ(θ2 − γ̃2) (θ2 − u2e−2λτ )

+ µ(1− e−λτ )

]
+ e−λτXt , t ∈ [0, T ] .

12
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Figure 3: Implied volatility curves with varying jump mean and intensity

Figure 3 illustrates the dependence of option implied volatilities on the jump parameters. The red curve
corresponds to smaller jumps arriving at a high frequency ((κ, 1

θ ) = (30, 1
30 )), whereas the blue one was

obtained considering higher jumps at a lower frequency ((κ, 1
θ ) = (20, 1

20 )).13 Increasing the mean jump
height distinctly lifts the level of implied volatility, since the probability of ST taking extreme values is
higher that way. We further note that in general an affine model including jumps seems more suitable to
reproduce the right-hand side smile observed in real market data.

Remark 2.9. Due to the linear payoff structure of the underlying asset ST = XT in Sections 2.3 and 2.4,
negative equilibrium prices can not be excluded a priori. However, this can be avoided by either consider-
ing only short trading horizons T as in the present work, or modeling the log-payoff of the underlying by
f(X), that is ST = exp(f(XT )). Within the second approach, a verification of the integrability assump-
tions in Theorem 2.4 turns out to be extremely cumbersome due to the "double-exponential" structure,
but once this is achieved, all our results can be adapted to that case. �

3. Information-Based Equilibrium Pricing

In this section, we propose another method to model the market filtration based on the information-based
asset pricing approach of Brody et al. [4] and Hoyle et al. [19]. They developed an asset pricing approach
based on the modeling of cash flows and the explicit construction of market filtrations, which can be
naturally embedded in the equilibrium pricing model considered in the present paper. The key idea is
that, instead of assuming from the outset some abstract filtration representing the information available
to the market, processes carrying market-relevant information are explicitly constructed, and a distinction
between "genuine" information and market noise is made. The equilibrium dynamics is then computed by
using the special form of the pricing measure obtained in Section 1, by assuming an a priori distribution
of the market factor determining the terminal payoff, and by updating a posteriori distributions about the
assets’ payoffs obtained by a version of Bayes formula.

12More precisely, Jt =
∑Nt
i=0 biDi, whereNt is a Poisson process with intensity κ,Di are exponentially distributed i.i.d. random

variables with jumps of mean 1
θ
> 0, and bi are i.i.d. Bernoulli random variables with P [b1 = 1] = P [b1 = −1] = 0.5.

13The remaining parameters were chosen as (µ, λ, γ, T, t, x0) = (1, 2, 0.2, 0.1, 0, 1). As before, we considered 15 simultane-
ously traded call options.
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3.1. Setup and Equilibrium Pricing Formula

We assume that the probability space (Ω,F , P ) supports a N -dimensional Brownian motion B to-
gether with N independent random market factors (Xi)

N
i=1, all independent of B such that SkT =

fk(X1, . . . , XN ). The agents know the a priori distributions νi of all the factors Xi. With each market
factor Xi we associate an observable process (ξt)t∈[0,T ], the so-called information process. The informa-
tion processes are defined by

ξit = σiXit+ βit , t ∈ [0, T ] , (3.1)

where the independent standard Brownian bridges βi on [0, T ] are defined in terms of B as solutions to
the SDEs

dβit =
−βit
T − t

dt+ dBit , βi0 = 0 , (3.2)

for t ∈ [0, T ), and βiT = 0. Looking at the different components of the processes (3.1), we can distin-
guish between the part σiXit containing real information about the realization of a market factor revealed
over time, and the bridge part representing market noise. The speed at which the true outcome ofXi is re-
vealed, is governed by the information rate σi. The information processes capture the flow of information
available to the market agents, and thus generate the market filtration:

Ft = σ
(
ξ1
s , . . . , ξ

N
s , s ≤ t

)
, t ∈ [0, T ] .

By construction, ST is FT -measurable, and at each time t ∈ [0, T ], the equilibrium price St will be
determined using the results of Section 1.

Theorem 3.1. Assume that all a priori distributions νi allow for a density with respect to the Lebesgue-
measure denoted by vi(x), respectively. If in addition the functions (fk)Kk=1 and the a priori densities
(vi)Ni=1 are such that (1.2) is satisfied, then, for t < T , the equilibrium price process of the k-th security
is given by

Skt =

∫
RN z(x1, . . . , xN )fk(x1, . . . , xN )π1

t (x1) · · ·πNt (xN )dx1 . . . dxN∫
RN z(x1, . . . , xN )π1

t (x1) · · ·πNt (xN )dx1 . . . dxN
, (3.3)

where the function z is defined by

z(·) = exp

[
−

K∑
l=1

γ̃lf l(·)

]
. (3.4)

The regular conditional density function πit associated with the i-th market factor is given by

πit(x) =
vi(x) exp

[
T
T−t

(
σixξ

i
t − 1

2 (σix)2t
)]

∫
R v

i(y) exp
[
T
T−t

(
σiyξit − 1

2 (σiy)2t
)]
dy

. (3.5)

3.2. Innovation Processes and Equilibrium Market Price of Risk

Let us consider in the following the case K = N = 1, and in particular the case ST = X with corre-
sponding information process given by ξt = σXt + βt, for t ∈ [0, T ]. We assume that the market factor
X is such that the conditions of Theorem 3.1 are satisfied. Formula (3.3) now reduces to

St =
E [ST exp (−γ̃ST ) | Ft]
E [exp (−γ̃ST ) | Ft]

=

∫
x exp (−γ̃x)πt(x)dx∫
exp (−γ̃x)πt(x)dx

. (3.6)
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Results from general filtering theory guarantee the existence of a P -Brownian motion W on [0, T ),
adapted to the market filtration generated by ξ. Observe to this end that rearranging (3.2) leads to the
following SDE satisfied by ξ on [0, T )

dξt =

[
1

T − t
(σTX − ξt)

]
dt+ dBt , ξ0 = 0 .

Hence, W is the innovations process associated with the information ξ given by

Wt = ξt −
t∫

0

[
1

T − s
(σTE [X | Fs]− ξs)

]
ds , t < T . (3.7)

Thus, instead of having to assume the existence of Brownian motions as drivers for the prices, they
rather emerge naturally from within the information-driven structure. By the Fujisaki-Kallianpur-Kunita
Theorem, see [1, Proposition 2.31], both expressions appearing in (3.6) allow for a representation with
respect to the innovations Brownian motion. Furthermore, we know the structure of the integrands in the
above representations. For every function ϕ : R→ R such that ϕ(X) ∈ L2(P ) and for t < T , we obtain
that

dE [ϕ(X) | Ft] =
σT

T − t
V ϕt dWt ,

where
V ϕt = E [ϕ(X)X | Ft]− E [ϕ(X) | Ft]E [X | Ft] (3.8)

is the conditional covariance of the market factor with the function ϕ. As long as square integrability is
satisfied, we can apply the above to (3.6) with g(x) = xe−γ̃x and h(x) = e−γ̃x and use the Itô product
rule to obtain

dSt = σh
[
σh
(
St(V

h
t )2 − V gt V ht

)
dt+

(
V gt − StV ht

)
dWt

]
,

where
σh =

σT

(T − t)E [h(X) | Ft]
.

The expressions V gt , V
h
t and E [h(X) | Ft] can be worked out semi-explicitly by means of (3.8), the

integral formula (3.6), and the regular conditional density π(x) defined in (3.5). Each of them is a
function of t and ξt due to the Markov property of the information process.

3.3. Pricing Credit-Risky Securities

In this section, we illustrate the impact of the “noisyness” of information on the equilibrium prices of
a credit-sensitive security within a simple benchmark model, see [3], where the a-priori distribution of
ST = X is discrete: ST ∈ {0, 1}. We denote by p0 := P [X = 0] the probability of default. Due
to the discrete payoff structure, formula (3.3) simplifies, and allows us to examine the impact of model
parameters such as the information flow rate, or the risk aversion and supply on the equilibrium price of
S. The price of the security threatened by default can be obtained in closed form analogously to (3.3) and
is given by

St =
p1x1 exp (−γ̃x1) exp

[
T
T−t

(
σx1ξt − 1

2 (σx1)2t
)]

∑
i=0,1 pi exp (−γ̃xi) exp

[
T
T−t

(
σxiξt − 1

2 (σxi)2t
)] , t < T . (3.9)
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Applying Itô’s product rule to (3.9) together with (3.7) yields the following dynamics14 for S

dSt =
σT

T − t
VarQ,t(X)

[
σT

T − t
(E [X | Ft]− St) dt+ dWt

]
, t < T .

Due to the Markov property of the information process, the termsE [X | Ft] and VarQ,t(X) are functions
of the pair (t, ξt) and triplet (t, ξt, γ̃), respectively. Figure 4 shows the impact of σ on the price of a
defaultable bond, where the probability of default was chosen to be p0 = 0.2. On the left-hand side
the bond does not default, whereas on the right-hand side we considered the situation of a default. In
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Figure 4: Defaultable Bond Prices

both cases, a low information flow rate (green curve, σ = 0.1) leads to a rather late adjustment of the
equilibrium price process towards the prevailing terminal value, while the red curve (σ = 1) reacts earlier
to the information about the outcome of X .15

3.4. One-Dimensional, Exponentially-Distributed Terminal Cash Flow

We illustrate how, for particular choices of v and f , the formulae (3.5) and (3.6) can be worked out explic-
itly. We assume f(x) = x, corresponding to the assets payoff itself being the market factor. Furthermore,
the a priori distribution of ST , the dividend at time T , is assumed to be exponential.

Corollary 3.2. Assume that the a-priori distribution of ST = X is of the exponential form, that is,
v(x) = (1{x≥0}/κ) exp (−x/κ) for some κ > 0. If γ̃ > κ− 1, then the equilibrium price at time t < T

is given by

St =

[
exp

(
− 1

2B
2
t /At

)
√

2πAtN (Bt/At)
+
Bt
At

]
, (3.10)

where
At = σ2tT/(T − t) and Bt = σTξt/(T − t)−

γ̃κ+ 1

κ
. (3.11)

14The expression VarQ,t(X) denotes the conditional variance of X under Q, given Ft.
15The following parameters were used for the simulations: x1 = 1, P [X = x1] = 0.8, T = 5, γ̃ = 0.6. The price process is

shown for t ∈ [0, 4.9].
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Since the pricing measure depends only on the terminal cash-flow as a consequence of the attainable
endowments, changing from P to Q could be interpreted as a different view ṽ of the representative agent
on the a-priori-distribution of ST . More precisely, under Q the cash-flow ST is exponentially distributed
with new parameter (γ̃κ+ 1)/κ, also appearing in (3.11), which can be seen by working out the adjusted
density

ṽ(x) =
exp(−γ̃x)v(x)∫
exp(−γ̃y)v(y)dy

. (3.12)

A. Proofs

Proof of Theorem 1.1
Due to the time-consistency and strict monotonicity of the entropic preferences, it suffices to show that
the strategies ϑ̂a are optimal for the utility maximization in t = 0. Note first that (1.2) ensures that (1.3)
and (1.4) are well-defined. In particular, the price process S is a Q-martingale, and thus Q ∈ P . Further-
more, the constant strategies ϑ̂a lie in Θ, since for any Q̃ ∈ P , the process Gt(ϑ̂a) = ϑ̂a · (St−S0) is by
assumption a Q̃-martingale, and hence in particular a Q̃-supermartingale.

We now show that the quantity γ introduced in (1.1) can be seen as the risk aversion of some repre-
sentative agent whose optimal utility is attained at the constant strategy ϑ∗ ≡ n. Indeed, since S is a
Q-martingale, and n · ST ∈ L1(Q), the utility maximization of the representative agent can be formu-
lated as follows16:

sup
ϑ∈Θ,EQ[GT (ϑ)]≤EQ[n·ST ]

{Uγ0 (η · ST +GT (ϑ))}

= sup
ϑ∈Θ

{
Uγ0
(
η · ST +GT (ϑ)− EQ [GT (ϑ)] + EQ [n · ST ]

)}
= sup

ϑ∈Θ

{
Uγ0
(
GT (ϑ)

)
− EQ [GT (ϑ)]

}
+ EQ [(n+ η) · ST ]

≤ 1

γ
H(Q|P ) + EQ [(n+ η) · ST ] . (A.1)

The last equality is derived from the dual representation of Uγ0 , where the relative entropy is given by
H(Q |P ) = E[dQdP log(dQdP )]. But GT (ϑ∗) with ϑ∗ ≡ n plugged into the representative agent’s utility
Uγ0 (η · ST + ·) yields

Uγ0
(
(n+ η) · ST

)
=

1

γ
H(Q|P ) + EQ [(n+ η) · ST ] .

Comparing this with (A.1) shows that ϑ∗ ≡ n is indeed optimal for the representative agent when the
price process S is given by (1.4). Individual optimality of ϑ̂a for the single agents now follows by a
scaling argument and the specific form of the aggregated endowment. Note that, for all a ∈ A,

ϑ∗ + η = arg max
ϑ∈Θ

{Uγ0 (GT (ϑ))}

is equivalent to
γ

γa
(ϑ∗ + η) = arg max

ϑ∈Θ
{Ua0 (GT (ϑ))} ,

16Note that the first expression in (A.1) is equivalent to the representative agent’s utility maximization of terminal wealth against
both, the aggregated initial endowments η and aggregated net supply n, over all admissible strategies.
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which in turn is equivalent to

γ

γa
(ϑ∗ − η)− ηa = arg max

ϑ∈Θ
{Ua0 (Ha +GT (ϑ))} .

This shows that ϑ̂a is the optimal strategy for agent a ∈ A. Since the strategies (ϑ̂a)a∈A add up to n, the
market clears at any time, and hence ((St)t∈[0,T ], (ϑ̂

a)a∈A) forms an equilibrium. �

Proof of Theorem 2.4
Part 1: Pricing Formula (2.8). By assumption, the process Y = (V,X) is analytic affine and hence we
know from Section 2 that its conditional characteristic function allows for the representation

E [exp (u · YT ) | Ft] = exp [φ(τ, u) + ψ(τ, u) · Yt] , (A.2)

for all u = (uv, ux) ∈ C2 such that (T, u) ∈ EC . This holds, since the fact that Dt ⊇ DT , whenever
t ≤ T , and (T, u) ∈ EC imply that formula (2.1) holds for t, whenever it holds for T , and hence (2.2) as
well.

Let us assume for the moment that (1.2) holds. This will be verified later. We then know from (1.3) that
the equilibrium pricing measure Q is given by its Radon-Nikodym-density

dQ

dP
=

exp (−γ̃ · ST )

E [exp (−γ̃ · ST )]
=

exp (−γ̃ · f(XT ))

E [exp (−γ̃ · f(XT ))]
.

Hence, by applying Bayes formula and following (1.4), we obtain

Skt = EQ
[
SkT | Ft

]
=
E
[
fk(XT ) exp (−γ̃ · f(XT )) | Ft

]
E [exp (−γ̃ · f(XT )) | Ft]

(A.3)

for the equilibrium price of the k-th security. The Fourier transforms ĝk and ĥ defined in (2.5) and (2.6),
respectively, exist and are integrable by assumption. Hence we apply the Fourier inversion formula17 to
obtain

gk(x) =
1

2π

∫
R

eisxĝk(s)ds and h(x) =
1

2π

∫
R

eisxĥ(s)ds ,

dx-almost surely. With this at hand, (A.3) transforms to

Skt =
E
[
exp

(
−αkXT

)
gk(XT ) | Ft

]
E [exp (−βXT )h(XT ) | Ft]

=
E
[∫

R exp
[
(−αk + is)XT

]
ĝk(s)ds | Ft

]
E
[∫

R exp [(−β + is)XT ] ĥ(s)ds | Ft
] . (A.4)

Now we observe that

E

 ∣∣∣∣ ∫
R

exp
[
(−αk + is)XT

]
ĝk(s)ds

∣∣∣∣ | Ft

< E

exp
(
−αkXT

) ∫
R

∣∣ĝk(s)
∣∣ ds | Ft

 <∞ , (A.5)

17See [9, Theorem 9.5.4].
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since
(
T, (0,−αk)

)
∈ E ⊆ EC and ĝk is integrable. The same holds analogously for the denominator in

(A.4). In particular, we have

0 < E [exp (−γ̃ · F (XT )) | Ft] <∞ , for all t ∈ [0, T ] , (A.6)

since we required Y T to be conservative and (T, (0,−β)) to lie in E . Thus, (A.5) and (A.6), in combina-
tion with (A.3), yield that (1.2) is indeed satisfied. We may now apply Fubini‘s Theorem to exchange the
order of integration, and we get that

E

∫
R

exp
[
(−αk + is)XT

]
ĝk(s)ds | Ft

 =

∫
R

E
[
exp

[
(−αk + is)XT

]
| Ft
]
ĝk(s)ds

=

∫
R

exp
[
φ
(
τ, (0,−αk + is)

)
+ ψ

(
τ, (0,−αk + is)

)
· Yt
]
ĝk(s)ds . (A.7)

The affine transformation formula (A.2) holds, since
(
T, (0,−αk)

)
∈ E . Applying the same arguments

to the denominator in (A.4) combined with (A.7) yields the desired form of Skt in (2.8).

Part 2: Pricing Formula (2.9). We outline the details for K = 1, the rest follows by repeating the
arguments for the partial derivative with respect to each ζk. So we assume we only have one security S
with corresponding γ̃ ∈ R affecting the density of the pricing measure Q. It follows that

dQ

dP
=

exp(−γ̃ST )

E [exp(−γ̃ST )]
=

exp(−γ̃f(XT ))

E [exp(−γ̃f(XT ))]

and the equilibrium price of S at time t can be obtained again by computing

St =
E [f(XT ) exp(−γ̃f(XT )) | Ft]

E [exp(−γ̃f(XT )) | Ft]
. (A.8)

Recall from Part 1 that

exp (−γ̃f(XT )) ∈ L1(P ) and f(XT ) exp (−γ̃f(XT )) ∈ L1(P ) , (A.9)

due to the assumption of (T, (0,−α)) and (T, (0,−β)) lying in E . Since the set EC is open, compare [22,
Lemmata 3.12 and 3.19], the first integrability in (A.9) even holds in some neighbourhood of γ̃, allowing
us to differentiate the function ζ 7→ E[exp(−ζf(XT ))|Ft] at ζ = γ̃.18 Indeed, by the smoothness of the
mapping ζ 7→ exp(−ζf(XT )) and the integrability of the second term in (A.9), we obtain

E [f(XT ) exp (−γ̃f(XT )) | Ft] = − ∂

∂ζ
E [exp (−ζf(XT )) | Ft]

∣∣∣∣
ζ=γ̃

, (A.10)

as an application of the triangular inequality and dominated convergence. On the other hand we know
from an analogue of (A.4) and (A.7) that the denominator in (A.8) can be computed by

E [exp (−γ̃f(XT )) | Ft]

=
1

2π

∫
R

exp
[
φ
(
τ, (0,−β(γ̃) + is)

)
+ ψ

(
τ, (0,−β(γ̃) + is)

)
· Yt
]
ĥ(γ̃, s) ds , (A.11)

18Here, we may assume without loss of generality that the model dependent "damping factor" β is chosen according to a mapping
γ̃ 7→ β(γ̃) that is continuous in sufficiently small neighbourhood of γ̃.
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where we need the dependence of β = β(γ̃) and ĥ(s) = ĥ(γ̃, s) on γ̃. Combining (A.10) and (A.11)
yields

E [f(XT ) exp (−γ̃f(XT )) | Ft] = − ∂

∂ζ

 1

2π

∫
R

exp
[
φ
(
τ, (0,−β(ζ) + is)

)
+ψ
(
τ, (0,−β(ζ) + is)

)
· Yt
]
ĥ(ζ, s) ds

)∣∣∣∣∣
ζ=γ̃

. �

Proof of Corollary 2.5
Expression (2.10) is an immediate consequence of (2.9) in Theorem 2.4 with f(x) = x, and the fact that
there is no need of Fourier methods to compute the denominator H(γ̃) in the analogue to (A.8)

S1
t =

E
[
XT exp(−γ̃1XT ) | Ft

]
E [exp(−γ̃1XT ) | Ft]

, (A.12)

since the affine transformation formula directly applies to the denominator in (A.12). We recall that(
T, (0,−γ̃1)

)
∈ E . Now we only need to compute ∂

∂ζE
[
e−ζXT | Ft

]
, the actual derivative in formula

(2.9). However, from (2.2) it follows that

− ∂

∂ζ
E [exp (−ζXT ) | Ft] = exp

[
φ
(
τ, u
)

+ ψ
(
τ, u
)
· Yt
] [
∂ux

φ(τ, u) + ∂ux
ψ(τ, u) · Yt

]∣∣
u=(0,−ζ) .

Combining the above with (A.12) yields

S1
t =

[
∂uxφ(τ, u) + ∂uxψ(τ, u) · Yt

]∣∣
u=(0,−γ̃1)

.

As to the remaining securities S2, . . . , SK , their price processes given in (2.11) directly follow from for-
mula (2.8) in Theorem 2.4 and the discussion above. �

Proof of Theorem 2.6
An application of Theorem 2.4 with αk = 0, for all k = 1, . . . , N , in addition to the observation that
the Fourier transforms are all integrable functions yields the desired result. As to the second claim of
integrability, straightforward calculations show that there exist constants M̂, ẑ > 0, just depending on the
model parameters, which give

max
f∈{ĝ,ĥ,(ĝk)Nk=1}

∫
R

|f(s)|ds < M̂

∫
R

1

s2 + ẑ
ds <∞ . �

Proof of Theorem 2.7
The process Y = (V,X) belongs to a subclass of affine processes, namely to the R2-valued affine
diffusions.19 That is, Y is a solution to the stochastic differential equation dYt = µ(Yt)dt + ρ(Yt)dWt,
with Y0 = y0, for a continuous function b : D → R2 and a measurable function ρ : D → R2×2 such that
y 7→ ρ(y)ρ(y)T is continuous. In particular, Y is analytic, since the set D from (2.3) is non-empty. See

19We emphasize that we would not have needed the complete theory on general affine processes including various possible behavior
of jumps, had we only considered pure diffusion processes, since it was shown in [13, Theorem 10.1] that every diffusion Markov
process with continuous diffusion matrix is affine, if and only if the functions b and ρρT are affine in the state variable and the
solutions φ and ψ of the Riccati equations satisfy Re(φ(t, u) + ψ(t, u) · y) ≤ 0, for all y ∈ D and (t, u) ∈ R+ × iRd. Our
equilibrium approach can cover more sophisticated models than pure diffusions though.

20



for instance the discussion on explosion times of the Heston model in [14]. Furthermore, the process Y is
conservative and, hence, so is the stopped process Y T . Combining (B.3) with the fact that the generator
of (V,X) is determined by its diffusion matrix ρρT and its drift vector b, we identify the admissible
parameters in (B.1), (B.2) and (B.3), where the parts connected with jumps do not play a role here. Hence
we conclude that the conditional characteristic function of Y allows a representation as follows

E [exp (u · YT ) | Ft] = exp [φ(τ, u) + ψ(τ, u) · Yt] , (A.13)

whenever (T, u) = (T, (uv, ux)) ∈ EC, so in particular for (T, (uv, ux)) ∈ E . The functions φ and ψ
satisfy the following system of Riccati equations

∂tφ(t, u) = κψ1(t, u) + µψ2(t, u) , φ(0, u) = 0

∂tψ1(t, u) =
1

2
σ2ψ1(t, u)

2 − λψ1(t, u) +
1

2
ψ2(t, u)

2
, ψ1(0, u) = uv

∂tψ2(t, u) = 0 , ψ2(0, u) = ux . (R)

A solution to the above system (R), evaluated at the vector u = (0, ux), is given by20

φ
(
t, (0, ux)

)
=

2κ

σ2
log

 2θ(ux) exp
(
θ(ux)+λ

2 t
)

θ(ux)(eθ(ux)t + 1) + λ(eθ(ux)t − 1)

+ µuxt ,

ψ1

(
t, (0, ux)

)
=

u2
x(eθ(ux)t − 1)

θ(ux)(eθ(ux)t + 1) + λ(eθ(ux)t − 1)
,

ψ2

(
t, (0, ux)

)
= ux .

where

θ(ux) =

{ √
λ2 − σ2 u2

x if |ux| < λ
σ

i
√
σ2 u2

x − λ2 if |ux| > λ
σ

.

Following Friz and Keller-Ressel [14] and recalling that λ > 0, we distinguish two different cases

t+(ux) =

{
+∞ |ux| < λ

σ
2

|θ(ux)|

(
arctan |θ(ux)|

−λ + π
)
|ux| > λ

σ

such that (T, (0, ux)) ∈ E ⊆ EC, for all T ≤ t+(ux).21 Hence, as long as T < t+(ux), formula (A.13)
holds for all u = (0, ux), where ux ∈ R. It now follows from (2.10) in Corollary 2.5 that

St =
[
∂uxφ(τ, u) + ∂uxψ1(τ, u)Vt + ∂uxψ2(τ, u)Xt

]∣∣
u=(0,−γ)

, for all t ∈ [0, T ] . (A.14)

Next we need to compute the derivatives of φ(t, u) and ψ(t, u) with respect to ux. Of course we have
∂ux

ψ2(τ, u) ≡ 1 and a straightforward calculation yields, with θ := θ(−γ) and θ′ := [∂ux
θ](−γ),

∂uxφ(τ, (0,−γ)) = T (τ, γ) and ∂uxψ1(τ, (0− γ)) = −γΓ (τ, γ) .

This, together with (A.14), is (2.15), the proof is complete. �

20Compare [13, Lemma 10.12]. For ux = λ/σ we set ψ1(t, (0,
λ
σ
)) = t/(2 + λt), resembling the limit and still satisfying

ψ1(0, (0, λ/σ)) = 0.
21Basically, this is exactly the time interval on which the solutions of the Riccati equations do not explode.
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Proof of Theorem 3.1
By assumption, the conditions of Theorem 1.1 are satisfied. Recall that the equilibrium price is obtained
by the change of measure from P to Q, that is:

Skt = EQ
[
SkT | Ft

]
= EQ

[
fk(X1, . . . , XN ) | Ft

]
= E

[
dQ

dP
fk(X1, . . . , XN ) | Ft

]
E

[
dQ

dP
| Ft
]−1

.

By (1.3), we know that dQdP is a function of ST and hence of X1, . . . , XN , which is given in (3.4). Then
we compute the regular conditional distribution of (X1, . . . , XN ) given (ξ1

t , . . . , ξ
N
t ). Using the inde-

pendence of the market factors, the Markov property of ξ, the Bayes formula, and observing that, given
(X1, . . . , XN ) = (x1, . . . , xN ), ξit is Gaussian with mean σixit and variance tT

T−t , yields (3.5). �

Proof of Corollary 3.2
The relation γ̃ > κ−1 ensures that the assumptions of Theorem 1.1 are met. It remains to apply Theorem
3.1 and explicitly work out the integrals, which is done by combining [4, Section VII] and (3.12), resulting
in formulae (3.10) and (3.11). �

B. Addendum to Section 2: Regular Affine Processes

This proposition concerning the characterization of a regular affine process by its admissible parameters
is stated without proof and we refer to [12, Theorem 2.7] or [22, Theorem 2.6 and Equations (2.2a),(2.2b)]
for two different approaches to prove it.

Proposition B.1. Let Y be a regular affine process with state space D. Let F and R be as in Definition
2.1. Then there exists a set of admissible parameters (A,Ai, b, bi, c, ci,m, µi)i∈{1,...,d} such that F and
R are of the Lévy-Khintchine form.

F (u) =
1

2
〈u,Au〉+ 〈b, u〉 − c+

∫
Rd\{0}

(
e〈ξ,u〉 − 1− 〈h(ξ), u〉

)
m(dξ) (B.1)

Ri(u) =
1

2
〈u,Aiu〉+ 〈bi, u〉 − ci +

∫
Rd\{0}

(
e〈ξ,u〉 − 1− 〈χi(ξ), u〉

)
µi(dξ) , (B.2)

where A,A1, . . . , Ad are positive semi-definite real d × d-matrices; b, b1, . . . , bd are Rd-valued vec-
tors; c, c1, . . . , cd are positive non-negative numbers; m,µ1, . . . , µd are Lévy measures on Rd and
h, χ1, . . . , χd are suitably chosen truncation functions for the respective Lévy measures. Furthermore,
the generator A of Y is given by

Aϕ(x) =
1

2

d∑
k,l=1

(
Akl +

∑
i∈I

Aiklxi

)
∂2ϕ(x)

∂xk∂xl
+ 〈b+

d∑
i=1

bixi,∇ϕ(x)〉 −

(
c+

∑
i∈I

cixi

)
ϕ(x)

+

∫
D\{0}

(ϕ(c+ ξ)− ϕ(x)− 〈h(ξ),∇ϕ(x)〉)m(dξ)

+
∑
i∈I

∫
D\{0}

(ϕ(c+ ξ)− ϕ(x)− 〈χi(ξ),∇ϕ(x)〉)xiµi(dξ) , (B.3)
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and φ, ψ satisfy the following system of ODEs

∂tφ(t, u) = F (ψ(t, u)) , φ(0, u) = 0 (B.4)

∂tψ(t, u) = R(ψ(t, u)) , ψ(0, u) = u . (B.5)
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