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Abstract

In this paper we analyze decompositions of reversible nearly un-
coupled Markov chains into rapidly mixing subchains. We state upper
bounds on the 2nd eigenvalue for restriction and stochastic complemen-
tation chains of reversible Markov chains, as well as a relation between
them. We illustrate the obtained bounds analytically for bunkbed
graphs, and furthermore apply them to restricted Markov chains that
arise when analyzing conformation dynamics of a small biomolecule.
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1 Introduction

Markov chains are a popular tool to model the behavior of complex systems
like computer networks or biomolecules, and form also the basis of Markov
chain Monte Carlo methods like the Metropolis-Hastings sampler.

In many applications so-called nearly uncoupled Markov chains arise that
are rapidly mixing within certain parts of the state space while transitions
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between these parts occur rarely. Such behavior is well-known in biomolecu-
lar simulations, which, in a broader context than Markov chains, is referred
to as metastable or conformation dynamics. The rare transitions between
conformations (or metastable sets) pose a big problem, since simulations
often get trapped within a conformation. Molecular simulations by Markov
chains are typically carried out in a continuous state space, yet by analyzing
the outcome, discretization inherits a nearly uncoupled structure to a finite
state space.

For finite state spaces a nearly uncoupled Markov chain is often said
to consist of weakly coupled subsets containing strongly coupled states. A
subset of strongly coupled states then corresponds to a metastable set in the
above description of metastable dynamics.

An analytical as well as an algorithmic approach to take advantage of the
nearly uncoupled structure is uncoupling, where one decomposes the state
space into metastable sets and then defines uncoupled Markov chains on each
of its metastable sets. These newly defined Markov chains resemble in many
aspects the original chain. For the continuous state space of a biomolecule,
uncoupling refers to the process of defining rapidly mixing Markov chains
on each conformation.

Uncoupling is often complemented by a coupling step. In an uncoupling-
coupling technique restricted (rapidly mixing) Markov chains are coupled to-
gether by a (k×k)-coupling matrix. A main characteristic of an uncoupling-
coupling technique is that subchains and coupling matrix together still con-
tain all the information to extract the stationary distribution of the original
Markov chain.

For general non-reversible Markov chains the concept of uncoupling-
coupling has been worked out by Meyer by means of stochastic comple-
mentation [3, 9, 14, 15]. Stochastic complements are a natural way to define
uncoupled Markov chains, which inherit most of the structure of the orig-
inal chain. Yet, for algorithmic purposes the main drawback of stochastic
complements is that they become computationally expensive for larger state
spaces.

For reversible Markov chains stochastic complements can be replaced by
restriction chains. Restriction chains, in contrast to stochastic complements,
do not necessarily inherit irreducibility. Nevertheless, restriction can be a
valuable theoretical tool and has been used, e.g., for studying convergence
rate analysis [11] or improving log-Sobolev inequalities [10].

What makes uncoupling by restriction so attractive, is that it can be
applied with ease to state spaces of any size, either discrete or continuous.
Moreover, if the nearly uncoupled Markov chain under consideration is asso-
ciated to a Metropolis-Hastings sampler, restriction gives rise to restricted
sampling. Build upon this observation and techniques from conformation
dynamics of biomolecules [18, 19, 17], an uncoupling-coupling technique has
been developed by one of the authors, which serves as a generalized Markov
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chain Monte Carlo method [6, 7].
The efficiency of applying an uncoupling-coupling technique to a nearly

uncoupled Markov chain essentially depends on the second eigenvalues of
the resulting subchains being bounded far away from 1. The main theorems
presented in this paper provide bounds on this spectral gap. The theorems
may help to better understand the structure and similarities of uncoupled
chains to the original Markov chain and thus shed some light on the use-
fulness and applicability of uncoupling-coupling techniques. In practice, the
eigenvalue bounds are almost sharp in some situations, but fail on others to
be close to the actual spectral gap. We discuss both cases in Sect. 4.

Overview. We start Sect. 2 with introducing some basic facts and nota-
tion concerning Markov chains in Sect. 2.1, and then focus on nearly uncou-
pled Markov chains in Sect. 2.2. Next we outline two different uncoupling-
coupling schemes, namely stochastic complementation in Sect. 2.3 and Mar-
kov chain restriction in Sect. 2.4. In Sect. 3 we present the main theorems
on eigenvalue bounds, which are then illustrated in Sect. 4 by examples from
graph theory and biomolecular conformation dynamics.

2 Uncoupling-Coupling Schemes

The underlying idea of uncoupling-coupling techniques is to decompose the
state space S of a given Markov chain P into disjoint subsets S1, S2, . . . , Sk,
and define Markov chains on them whose behavior is related to that of
the original Markov chain. The coupling step provides a way to extract
information about the global behavior of the original Markov chain, which
is achieved by means of a (k × k)-coupling matrix. The coupling matrix
together with the k subchains can be regarded as a reduced description of
P that still contains the full information about P’s stationary distribution.

Uncoupling-coupling techniques are encountered in such diverse tasks as
improved convergence rate analysis [11], the construction of rapidly mixing
chains for extended Markov chain Monte Carlo methods [6, 7], or in an
approximate way in aggregation-disaggregation techniques [3].

2.1 Preliminaries

Throughout this paper we consider finite homogeneous Markov chains (for
a formal treatment of terms and well-known facts about Markov chains we
refer to [20]). Let P be a stochastic (n×n)-transition matrix associated with
a Markov chain over a finite set S = {s1, s2, . . . , sn} of states si. A Markov
chain is said to be regular if it is aperiodic and irreducible. The transition
matrix P associated with a regular Markov chain is called primitive. Another
characterization of primitivity is that P is primitive if and only if there exists
an m such that Pm > 0.
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The spectral structure of stochastic matrices is characterized in the
Perron-Frobenius theory. If P is stochastic, λ = 1 is an eigenvalue and
its spectrum is contained in the unit circle. If in addition P is primitive,
the Perron root λ = 1 is simple and dominant, i.e. |λ| < 1 for any other
eigenvalue λ 6= 1. A primitive P possesses a unique stationary distribu-
tion π = (π1, π2, . . . , πn), which is a strictly positive left-eigenvector of the
dominant eigenvalue 1, i.e. π satisfies

πP = π, π > 0, and πe = 1,

where e := (1, 1, . . . , 1)T is a vector of size n.
The pair (P,π) is said to be reversible, if the detailed balance condition

πipij = πjpji (1)

holds for all 1 ≤ i, j ≤ n. A probability vector π that satisfies (1) is always
a stationary distribution of P, whereas the reverse need not to be true. If in
addition P is primitive, π is its unique stationary distribution and P itself
as well as its associated Markov chain is called reversible.

A reversible stochastic matrix P is similar to a symmetric one. More
precisely, if (P,π) is reversible then

P(sym) := DPD−1, with D :=


√

π1 0
. . .

0
√

πn

 ,

is symmetric. Therefore, all eigenvalues of a reversible primitive stochastic
matrix are real, located in the interval ] − 1, 1], and λ = 1 is a simple and
dominant eigenvalue.

2.2 Nearly Uncoupled Markov Chains

An irreducible Markov chain P is said to be nearly uncoupled, if there exists
a decomposition of the state space S into k disjoint subsets S1, S2, . . . Sk,
such that the subsets are weakly coupled among each other, whereas the
states within each subset are strongly coupled. In other words, a realization
of P is slowly mixing on S, but rapidly mixing within each Si. The subsets
Si are then called metastable w.r.t. P. For a nearly uncoupled Markov
chain there exists a permutation of the states si such that the transition
matrix can be written in block form

P = P̃ + E =


P11 E12 · · · E1k

E21 P22
. . .

...
...

. . . . . . Ek−1,k

Ek1 · · · Ek,k−1 Pkk

 , (2)
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where entries in E are small, and each Pii possesses good mixing properties.
A suitable choice for our purpose to measure the smallness of E is the infinity
norm ‖E‖∞, which is equivalent to the maximal absolute row sum.

For ‖E‖∞ = 0 the Markov chain is uncoupled into k sets and thus be-
comes reducible. If we assume all diagonal blocks Pii being irreducible, P
possesses, according to Frobenius-Perron theory, a k-fold dominant eigen-
value λ = 1. Furthermore, with each Pii being rapidly mixing, all other
eigenvalues are bounded away from 1 resulting in a large spectral gap.

Now assume that ‖E‖∞ = ε is small and P is irreducible. Regarding
ε as a perturbation parameter, continuity of eigenvalues suggests that the
spectra of a regular nearly uncoupled Markov chain must have in addition
to the dominant eigenvalue λ = 1 further k − 1 eigenvalues close to 1. Vice
versa, such a cluster of k eigenvalues that is separated to the rest of the
spectrum by a spectral gap, indicates a nearly uncoupled Markov chain
with k metastable sets. A perturbation analysis of this behavior can be
found in [4, 9].

It is well known that the subdominant eigenvalue of a regular Markov
chain is an indicator of its mixing properties. Thus, a subdominant eigen-
value close to 1 in a nearly uncoupled Markov chain indicates slow mixing,
which, e.g., often leads for Metropolis-Hastings algorithms to poor conver-
gence for most expectation values. At this point, uncoupling according to
the partition in (2) becomes interesting, in the hope that the uncoupled
chains will posses rapid mixing properties.

In practice, the question of whether a given P is nearly uncoupled or
not and how to permute it into block-diagonal form may not been known
in advance. For this nontrivial algorithmic task, spectral approaches that
first identify a spectral gap (which is related to the number of metastable
sets) and then exploit the structure of dominant eigenvectors to identify a
suitable permutation has been worked out [4, 5, 22]. In the following we
assume a nearly uncoupled Markov chain to be in block-diagonal form as in
(2), whether this being the natural order or a permutation of states after
metastable sets has been identified.

2.3 Stochastic Complementation

Uncoupling by means of stochastic complements can be applied to the
whole class of irreducible stochastic matrices, not necessarily restricted to
reversible ones. The following definition is proposed by Meyer in [14]:

Definition 2.1 Let P be an irreducible stochastic (n × n)-matrix with a
partition

P =


P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

 (3)
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in which all diagonal blocks are square. Denote by Pi′, 1 ≤ i ≤ k, the
principal block submatrix obtained by deleting the i-th block row and the i-th
block column in P. Furthermore let Pi∗ and P∗i be the i-th block row and
i-th block column, respectively, in which Pii is deleted, i.e.,

Pi∗ = (Pi1 Pi2 · · · Pi,i−1 Pi,i+1 · · ·Pik)

and

P∗i =



P1i
...

Pi−1,i

Pi+1,i
...

Pki


.

Then the inverse of (I−Pi′) does exist and the matrix

Sii = Pii + Pi∗(I−Pi′)−1P∗i (4)

is called the stochastic complement of Pii.

Stochastic complementation provides a neat interpretation: Let P be parti-
tioned according to a given partition of the state space S, say S = S1∪S2∪
· · ·∪Sk. Then it can be shown that stochastic complements of an irreducible
stochastic matrix are themselves stochastic and irreducible ([14], Theorem
2.3), and the matrix S defined by (4),

S =


S11 0 · · · 0

0 S22
. . .

...
...

. . . . . . 0
0 · · · 0 Skk

 ,

is a (reducible) stochastic (n×n)-matrix. If sij is an entry within a diagonal
block, say Sll, then sij is determined by the probabilities in P, namely it
is the sum of the one-step transition probability pij and the probability to
leave Sl from i and reenter it in j. Thus, transition probabilities in Sll can
be obtained by keeping track of a realization of the Markov chain associated
with P and masking out every step which is not in Sl.

The following theorem describes the coupling step (see again [14] for
more details):

Theorem 2.2 Let P be an irreducible stochastic matrix partitioned as in
Definition 2.1 with the (unique) stationary distribution π partitioned ac-
cordingly:

π = (π(1),π(2), . . . ,π(k)).
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If s(i) is the stationary distribution of the stochastic complement Sii, then

s(i) =
π(i)

π(i)e
,

which is equivalent to

π = (π(1),π(2), . . . ,π(k)) = (ξ1s(1), ξ2s(2), . . . , ξks(k)),

with ξi :=
∑

h π
(i)
h . The scalars ξi are called the coupling factors. The

coupling vector
ξ = (ξ1, ξ2, . . . , ξk)

is the (unique) stationary distribution of the irreducible and stochastic (k ×
k)-coupling matrix C = (cij), whose entries are defined by

cij = s(i)Pije. (5)

Moreover,
‖P− S‖∞ = 2max

i
‖Pi∗‖∞

holds.

If one is interested in computing the stationary distribution of P, Theo-
rem 2.2 says that it is sufficient to compute for each i = 1, . . . , k the restricted
stationary distribution s(i) from Sii together with its coupling factor ξi. Yet,
computing Sii includes inversion of (I−Pi′), which in practice often makes
such an approach expensive if not impossible for very large matrices (see [13]
for ways to reduce the computational cost). This problem is circumvented in
so-called inexact aggregation-disaggregation techniques [3, 21] by approxi-
mating stochastic complements for the price of computing an approximation
of π. From this point of view, the uncoupling-coupling structure of Theo-
rem 2.2 is considered as an exact aggregation-disaggregation technique.

2.4 Restriction

For reversible Markov chains stochastic complements can be replaced by
restriction chains, which are way easier to compute but still share much of
the characteristics of stochastic complements.

Definition 2.3 Let P be a stochastic matrix, not necessarily irreducible,
partitioned as in (3), and let S = S1∪S2∪· · ·∪Sk be the associated partition
of the state space. Then, for each i = 1, . . . , k,

Rii = Pii + diag (ei −Piiei)
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is called the restriction of P to the subset Si, where ei = (1, 1, . . . , 1) is a
vector of size |Si|, and

R =


R11 0 · · · 0

0 R22
. . .

...
...

. . . . . . 0
0 · · · 0 Rkk

 (6)

is called the restriction matrix.

In other words, R is obtained from P by setting all off-diagonal blocks in P
to zero and adding the sum of the deleted entries of the i-th row to pii.

The following theorem summarizes in analogy to Theorem 2.2 some facts
about R:

Theorem 2.4 Let P be an irreducible and reversible stochastic matrix par-
titioned as in Definition 2.1. Furthermore, let all Pii be irreducible (sub-
stochastic) matrices. Then,

(a) all Rii are irreducible,

(b) R is stochastic with a k-fold dominant eigenvalue 1,

(c) and for each i = 1, . . . , n the unique stationary distribution r(i) of the
restriction Rii is identical to s(i) of Sii from Theorem 2.2.

Proof. Irreducibility is inherited from Pii to Rii, so (a) holds, and since
R is uncoupled into k blocks, (b) follows. For (c), note that the detailed
balance condition for P still holds for R.

Since r(i) ≡ s(i), this means that the coupling procedure described in
Theorem 2.2 also applies to restriction chains. Given the coupling vector
ξ = (ξ1, ξ2, . . . , ξk) (e.g., by means of the coupling matrix C defined in (5))
we can write the stationary distribution of P as

π = (π(1),π(2), . . . ,π(k)) = (ξ1r(1), ξ2r(2), . . . , ξkr(k)).

Hereby, the straightforward setup of Rii provides a convenient way to com-
pute the restricted stationary distribution r(i). Off-diagonal blocks of P are
only needed to compute entries of the coupling matrix C.

Restriction chains arise naturally in the Metropolis-Hastings sampler
when the underlying reversible Markov chain is restricted to some region of
the state space. For a realization of the underlying Markov chain restriction
means to reject all proposal steps that exit from the subset Si in which the
process was started. This small modification directly implements a sampler
for the restriction Rii.
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This becomes of special interest, if the Rii’s are restrictions of a nearly
uncoupled Markov chain to its metastable (or strongly coupled) subsets.
Then, the idea is that each Rii is rapidly mixing, i.e., sampling from the
Rii’s may be orders of magnitude faster than for P.

Restricted sampling alone does not directly provide the necessary cou-
pling vector ξ = (ξ1, . . . , ξk) and also raises the question of how to decompose
the state space. Yet, it is possible to overcome these problems by embedding
a Metropolis-Hastings sampler into a hierarchical annealing structure. For
a detailed presentation of this approach we refer to the Uncoupling-coupling
Monte Carlo method presented in [6, 7]. In Sect. 4, we analyze for a small
biomolecule a nearly uncoupled Monte Carlo Markov chain and illustrate
hereby the initial step of Uncoupling-coupling Monte Carlo.

3 Bounds on Subdominant Eigenvalues

Uncoupling, either by stochastic complementation or restriction, is of special
interest for a nearly uncoupled Markov chain. From now on we restrict our
considerations to reversible matrices, which also allows us to order the real
eigenvalues of a reversible stochastic (n× n)-matrix by

1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1.

If necessary for clarification, we also use the notation λi(P) to denote the
i-th eigenvalue of P.

The main goal for uncoupling a nearly uncoupled Markov chain P is
to obtain rapidly mixing subchains Rii or Sii, for i = 1, . . . , k. Hereby, a
reasonable criterion for rapid mixing is that the spectral gap between 1 and
λ2 of each subchain is large. For R and S this means that the spectral gap
1− λk+1(R) and 1− λk+1(S) has to be large, respectively.

For P being irreducible and nearly uncoupled with k loosely coupled
components, λk(P)− λk+1(P) has a large spectral gap. By uncoupling, the
eigenvalues become λi = 1 for i = 1, . . . , k, and λk+1 may also increase
towards 1. Yet, for good metastable decompositions λk+1 should still be
bounded away from 1.

Theorem 2.2 already states that ‖P−S‖∞ = 2maxi ‖Pi∗‖∞ holds. Ob-
viously, the same equality holds for the restricted matrix R, so that, if P is
given in the form stated in (2), we have

‖P− S‖∞ = ‖P−R‖∞ = 2‖E‖∞.

This gives rise to the assumption that eigenvalues of P, R, and S are indeed
close to each other for ‖E‖∞ being small. We will specify this relationship
in the following, especially the impact of uncoupling on the subdominant
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eigenvalue λk+1.

Similarity between reversible and symmetric matrices enables us to use
Weyls’ inequalities ([1], III.2, S.62f) to relate subdominant eigenvalues of R
and S to P.

Theorem 3.1 (Weyls’ inequalities) Let A and B be symmetric
(n×n)-matrices with ordered eigenvalues λ1(A) ≥ · · · ≥ λn(A) and λ1(B) ≥
· · · ≥ λn(B), respectively. Then, for j = 1, . . . , n,

λj(A + B) ≤ λi(A) + λj−i+1(B) for i ≤ j,

λj(A + B) ≥ λi(A) + λj−i+n(B) for i ≥ j.

If we put i = j in the above inequalities, we immediately obtain

Corollary 3.2 For each j = 1, 2, . . . , n,

λj(A) + λn(B) ≤ λj(A + B) ≤ λj(A) + λ1(B)

holds.

This corollary enables us to state bounds on the eigenvalues of R.

Theorem 3.3 Let P be a reversible stochastic matrix partitioned according
to (2) and R the restricted matrix, as defined in (6). Then

λj(R) ≤ λj(P) + 2‖E‖∞ (7)

holds for each j = 1, . . . , n.

Proof. Denote by E(diag) the diagonal matrix containing the i-th row sum
of E in the i-th diagonal entry, so that

R = P + E(diag) −E.

The matrices P,R and E are reversible, hence similar to symmetric matrices.
If we refer to them by the superscript (sym), we have

R(sym) = P(sym) + E(diag) −E(sym).

Remind the fact that the spectral radius of a matrix is bounded by every
induced matrix norm (like ‖ · ‖∞ is) and use Corollary 3.2 to get

λ1(E(diag) −E(sym)) ≤ λ1(E(diag)) + λ1(−E(sym))

= λ1(E(diag)) + λ1(−E)

≤ ‖E(diag)‖∞ + ‖ −E‖∞ = 2‖E‖∞.
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Therefore we have

λj(R) = λj(R(sym))

≤ λj(P(sym)) + λ1(E(diag) −E(sym))

= λj(P) + λ1(E(diag) −E(sym)) ≤ λj(P) + 2‖E‖∞.

We have shown that the subdominant eigenvalue of any diagonal block in
R will be smaller than the k-th eigenvalue of P plus twice the infinity norm
of E. Instead of proving an analogous result for the eigenvalues of S, which
would be straightforward, we show a relationship between the eigenvalues
of S and R and deduce the inequality from there. As a tool we need the
well known Geršgorins Theorem ([1], VIII.6.3, S. 244):

Theorem 3.4 (Geršgorins Theorem) Let A be an (n × n)-matrix with
entries aij ∈ C and define the Geršgorin discs by

Gi = {z ∈ C : |z − aii| ≤
n∑

j=1
j 6=i

|aij |} , for 1 ≤ i ≤ n.

Then all eigenvalues of A are contained in
⋃
Gi, the union of the Geršgorin

discs.

Proposition 3.5 Let P = P̃+E be an irreducible, stochastic and reversible
(n× n)-matrix partitioned as in (2). If S is the matrix of the corresponding
stochastic complements and R the restriction matrix, then

λj(S) ≤ λj(R) ≤ λj(S) + 2‖E‖∞

holds for all j = 1, . . . , n.

Proof. For the proof assume that S will inherit reversibility from P. We
will show this fact afterwards. Set U := S − P̃ and V := R − S, then the
entries in V are

vij =

{
−uij ≤ 0 , for i 6= j,

ei − uii , for i = j,

where ei is the i−th row sum of E and uij an entry in U. The row sums of
U and E are equal because both can be converted into a stochastic matrix
by adding P̃. It follows that

∑n
j=1 vij = 0 and therefore

0 ≤ vii =
n∑

j=1
j 6=i

|vij |,
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for all 1 ≤ i ≤ n. Applying Geršgorins Theorem shows that an eigenvalue
of V can not be negative. Further we have

‖V‖∞ = 2max
i

vii = 2max
i

n∑
j=1
j 6=i

uij ≤ 2‖U‖∞ = 2‖E‖∞.

Under the assumption that S is reversible it follows from Theorem 3.1 that

λk(R) = λk(S + V) ≥ λk(S) + λn(V) ≥ λk(S)

and
λk(R) = λk(S + V) ≤ λk(S) + λ1(V) ≤ λk(S) + 2‖E‖∞.

Combining Theorem 3.3 and Proposition 3.5

λj(S) ≤ λj(P) + 2‖E‖∞ (8)

follows immediately. Thus the same inequality holds for stochastic com-
plements and restrictions, but stochastic complementation will always be
better or equal in lowering the subdominant eigenvalue. On the other hand,
if ‖E‖∞ is small the difference between the spectra of S and R will be small
too.

In order to complete the proof of Theorem 3.3, we still have to show that
S inherits reversibility from P. This is done by the following proposition,
where we also prove reversibility of the coupling matrix.

Proposition 3.6 Let P be an irreducible and reversible stochastic matrix
which is partitioned like in Definition 2.1, then the following holds:

(a) Each stochastic complement Sii, 1 ≤ i ≤ k, is reversible.

(b) The coupling matrix C defined in Theorem 2.2 is reversible.

Proof. (a) As P is reversible,

P(sym) := DPD−1, with D := diag(
√

π),

is a symmetric matrix. If π = (π(1),π(2), . . . ,π(k)) is partitioned according
to P and Dl := diag(

√
π(l)) then

P(sym) =


D1P11D−1

1 D1P12D−1
2 · · · D1P1kD−1

k
D2P21D−1

1 D2P22D−1
2 · · · D2P2kD−1

k
...

...
. . .

...
DkPk1D−1

1 DkPk2D−1
2 · · · DkPkkD−1

k

 . (9)
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Let Sll be an arbitrary stochastic complement of size (r × r) with station-
ary distribution s(l). Reversibility of Sll is defined via the detailed balance
condition (1), which we verify by showing that

D̃lSllD̃−1
l , with D̃l = diag(

√
s(l)),

is a symmetric matrix.

Theorem 2.2 states that s(l) = ξ−1
l π(l) with a scalar coupling factor ξl,

so we have D̃l = ξ
− 1

2
l Dl and therefore

D̃lSllD̃−1
l = DlSllD−1

l = DlPllD−1
l + DlPl∗(I−Pl′)−1P∗lD−1

l .

The first term on the right hand side is symmetric, because it is a diagonal
block of P(sym). Thus it remains to show the symmetry of the rightmost
addend.
Denote with Dl′ the principal submatrix of D that is produced by deleting
the rows and columns belonging to π(l), i.e.,

Dl′ = diag(D1, . . . ,Dl−1,Dl+1, . . . ,Dk).

Further define P(sym)
l∗ , P(sym)

∗l , and P(sym)
l′ from P(sym) the same way we

defined Pl∗, P∗l, and Pl′ from P in Def. 2.1. Note that they are submatrices
of a symmetric matrix but not symmetric themselves (P(sym)

l∗ and P(sym)
∗l are

not even square). Then we have

DlPl∗(I−Pl′)−1P∗lD−1
l = DlPl∗D−1

l′ Dl′(I−Pl′)−1D−1
l′ Dl′P∗lD−1

l

= P(sym)
l∗ Dl′(I−Pl′)−1D−1

l′ P(sym)
∗l

= P(sym)
l∗ (I−P(sym)

l′ )−1P(sym)
∗l =: U.

Clearly, as the inverse of a symmetric matrix, V := (I −P(sym)
l )−1 is sym-

metric.
Let denote the entries of the matrices U = (uij), V = (vij), and P(sym) =

(p(sym)
ij ). What remains to show is that uij = uji holds for i, j = 1, . . . , n.

To that end, let I be the sorted set containing all row indices of P(sym),
except the ones belonging to the l-th block row. There will be n− r indices
in I = {k1, k2, . . . , kn−r} and

uij =
n−r∑
s=1

p
(sym)
kiks

n−r∑
t=1

vstp
(sym)
ktkj

=
n−r∑
t=1

p
(sym)
ktkj

n−r∑
s=1

vstp
(sym)
kiks

=
n−r∑
t=1

p
(sym)
kjkt

n−r∑
s=1

vtsp
(sym)
kski

= uji.
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With U being symmetric, we have actually shown that D̃lSllD̃−1
l , as sum

of two symmetric matrices, is also symmetric. As already stated, this is
equivalent to the reversibility of Sll w.r.t. π(l).

(b) If P is reversible then D2P is symmetric. For an entry cij of the
coupling matrix C we have

ξicij = ξis(i)Pije = π(i)Pije

= π(i)D−2
i D2

i Pije

= eTD2
i Pije.

D2
i Pij = D2

jPji follows from the symmetry of D2P, so that

ξicij = eTD2
jPjie

= π(j)Pjie = ξjcji,

which is the detailed balance condition of C w.r.t. ξ.

We have shown bounds on subdominant eigenvalues of Markov chains
produced by uncoupling. These bounds will provide reasonable information
about the spectra of the uncoupled chains, if applied to a nearly uncoupled
Markov chain in the sense of section 2.2, that is , if ‖E‖∞ is small. In that
case, uncoupled chains are indeed rapidly mixing. This thread is reversible.
Jerrum et al. [10] have shown that using the structure of nearly uncoupled
Markov chains allows to state upper bounds on the subdominant eigenvalue
of a Markov chain, when upper bounds are known for the subdominant
eigenvalues of the restriction chains and the coupling matrix. By this means,
uncoupling can be used to prove mixing properties for complicated Markov
chains, via decomposing it into simpler ones [11, 12].

4 Examples

4.1 Random Walk on Bunkbed Graphs

We first consider an analytically tractable example from graph theory, the
class of so-called bunkbed graphs (see, e.g., [8]). Given any graph G =
(V,E), its associated bunkbed graph G2 = (V2, E2) is defined by

V2 = V × {0, 1}

and

E2 = {〈(u, i), (v, i)〉 : 〈(u, v)〉 ∈ E, i ∈ {0, 1}} ∪ {〈(u, 0), (u, 1)〉 : u ∈ V }.

14



In other words, G2 is the Cartesian product of the complete graph K2 and
G, which is obtained by placing a copy of G above G and connecting each
edge in G with its corresponding edge in the copy. Let G = (gij) and P
be the adjacency matrices of G and G2, respectively. Assuming that G is
connected, we can then define a weakly coupled random walk on its bunkbed
graph by setting weights on the edges of G by

gij =


1−ε
d∗+1 if i is adjacent to j,
0 if i is not adjacent to j,
(1− ε)(1− di

d∗+1) if i = j,

(10)

where ε ∈ (0, 1), di is the degree of the vertex i in G and d∗ is the maximum
degree over the vertices in G; and additionally applying the weight ε to
all vertices connecting the base graph with its copy. In other words, we
construct the adjacency matrix P on the bunkbed graph by

P =
(
G εI
εI G

)
, (11)

which by definition is symmetric, stochastic, and irreducible. Now, if we
uncouple P into its two identical blocks in (11), the special structure of P
allows to give analytic expressions for the eigenvalues of P, S, and R in
terms of the eigenvalues of G.

Proposition 4.1 Let P be an irreducible stochastic matrix as given in (11),
with ε > 0 and an irreducible submatrix G. If λ is an k-fold eigenvalue of
G, then:

(a) λ + ε, λ− ε are k-fold eigenvalues of P,

(b) λ + ε is a 2k-fold eigenvalue of R,

(c) and λ + ε2(1− λ)−1 is a 2k-fold eigenvalue of S.

Proof. Statement (b) is obvious, because Rii = G + εI, i ∈ {1, 2}, which
shifts the eigenvalues of G by ε.

Use (b) to prove (a) by choosing an eigenvector v1 6= 0 for R11 to the
eigenvalue λ+ ε, so that R11v1 = (λ+ ε)v1. From R11 = R22 it follows that
(v1, v1)T and (v1, −v1)T are eigenvectors of R to λ + ε.
Observe that

R = P−
(

0 εI
εI 0

)
+

(
εI 0
0 εI

)
.

Multiplying this equations with (v1, v1)T and (v1, −v1)T from the right
gives

P
(
v1

v1

)
= (λ + ε)

(
v1

v1

)
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P =



a a a 0 ε 0 0 0
a a 0 a 0 ε 0 0
a 0 a a 0 0 ε 0
0 a a a 0 0 0 ε
ε 0 0 0 a a a 0
0 ε 0 0 a a 0 a
0 0 ε 0 a 0 a a
0 0 0 ε 0 a a a


Figure 1: Left: G2 is a bunkbed construction of the 2-dimensional hypercube H2. Right:
if the weights on G2 are chosen according to (10) the resulting stochastic matrix is P with
a = (1− ε)/3.

and

P
(

v1

−v1

)
= (λ− ε)

(
v1

−v1

)
,

respectively, which is statement (a). Finally

Sii = G + εI(I−G)−1εI = G + ε2(I−G)−1,

for i ∈ {1, 2}, so if v is an eigenvector to G and λ we obtain

Siiv =
(

λ +
ε2

1− λ

)
v. (12)

As an example take G = Hd, the d-dimensional hypercube, G = Hd the
weighted adjacency matrix as proposed in (10), and P the weighted adja-
cency matrix on the bunkbed graph G2, as given by (11), see Fig. 1. It is
well-known that the eigenvalues of Hd are (1− ε)(1− 2(k−1)

d+1 ) with multiplic-
ity

(
d

k−1

)
for 1 ≤ k ≤ d + 1 (e.g. [16]). Therefore, due to Proposition 4.1, we

have

λ1(P) = (1− ε) + ε = 1,

λ2(P) = (1− ε)− ε = 1− 2ε,

λ3(P) = (1− ε)
(

1− 2
d + 1

)
− 2ε = 1− 2

1− ε

d + 1
,

as long as ε < 1
d+2 (otherwise λ3(P) overtakes λ2(P)). Uncoupling of P

shifts λ2 to 1 while λ3 keeps bounded away from 1 with

λ3(S) ≤ λ3(R) ≤ λ3(P) + 2ε

16
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Figure 2: Left: The trialanine molecule shown in ball-and-stick representation. The
overall structure of trialanine is primarily determined by the two torsion angles Φ and Ψ.
Right: Plotting Φ versus Ψ results in a so-called Ramachandran plot. The discretization
boxes are plotted with different edge lines indicating the different metastable sets they
were allocated to.

by Eqs. (7) and (8). Proposition 4.1 allows to calculate these eigenvalues
explicitly, leading to

λ3(R) = λ3(P),

λ3(S) = λ3(P)− ε

(
1− ε(d + 1)

2(1− ε) + ε(d + 1)

)
.

Thus, the given approximation deviates from the exact results by 2ε and
2ε + ε(1− ε(d+1)

2(1−ε)+ε(d+1)).
The analysis can be taken further by showing that λ2(P) > λ3(R) + 2ε

is equivalent to d < 1
2ε −

3
2 , which is a straightforward calculation. For ex-

ample, take ε = 0.01, then the approximation indicates better subdominant
eigenvalues in the diagonal blocks of R and S as long as d < 48.

4.2 Metastable Sets of Trialanine

Restricted Markov chains can be a useful tool for biomolecular simulations.
As an example we consider trialanine, a small peptide composed of three
alanine amino acid residues. The structural and dynamical properties of
trialanine are primarily determined by the two torsion angles Φ and Ψ as
shown in Fig. 2. Exploration of the high-dimensional continuous state space
can be done by means of Uncoupling-coupling Monte Carlo [6, 7], which hi-
erarchically decomposes the state space into metastable sets. We herein only
illustrate the initial uncoupling step, which starts with a high-temperature
Markov chain Monte Carlo simulation. More precisely, we used the Hybrid
Monte Carlo method [2], a popular method in this field that combines the
benefits of molecular dynamics with the statistical accuracy of Markov chain
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Figure 3: Left: The permuted transition matrix P clearly has a block dominant structure.
Right: In the resulting restricted matrix R all off-diagonal entries are set to zero. The
intensity of the boxes is chosen due to the logarithmic scale on the far right.

Monte Carlo. We sampled 105 steps at a temperature of 650K and stored
the torsion angles for each simulation step. Discretization of each torsion
angle domain D =]− 180 ◦, 180 ◦] into 7 equidistant intervals resulted in 26
non-empty boxes in D2, see Fig. 2. On these boxes we set up a transi-
tion matrix P = pij , receiving the transition probabilities by counting the
number of transitions between them during simulation. Reversibility can be
inherited to P by counting each transition between box i and j as a tran-
sition between box j and i too. This approach is justified, because we can
think of P as of a discretization of a reversible continuous Markov operator
governing the dynamics of the molecule [19, 18]. Therefore, if Bij denotes
the number of transitions between box i and box j, and Bi the number of
data points in box i, the transition probability between box i and box j is
given by

pij =
Bij + Bji

Bi
.

The first eigenvalues of the resulting (26× 26) transition matrix are

j 1 2 3 4 5
λj(P) 1 0.9952 0.9941 0.5692 0.1425

· · · ,

indicating a slow mixing Markov chain with three metastable sets. As al-
ready pointed out at the end of Sect. 2.2, identification of metastable sets
for given P is not a trivial task. As dynamical cluster algorithm we used
a spectral approach, which analyzes the structure of dominant eigenvec-
tors [4, 22, 5]. Identified metastable sets are indicated by different line styles
in Fig. 2. A corresponding permutation of the transition matrix confirms
the computation in that it reveals an obvious block dominant structure, see
Fig. 3. The maximum row sum over entries outside these blocks is 0.0417, so
that we can bound the effect of uncoupling on the subdominant eigenvalue
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Figure 4: Left: A refined discretization produces boxes with large transition probabilities
to other metastable sets. Here each torsion angle is discretized in 15 intervals. Boxes with
a transition probability to another metastable set of 0.25 and larger are marked dark.
Right: A close up illustrates the cause of this effect. The arrows connect subsequent
sample points in the realization of the Markov chain.

by
λ4(R) ≤ λ4(P) + 2 · 0.0417 = 0.6526.

This means, that restriction to the three metastable sets will result in three
Markov chains whose subdominant eigenvalues are significantly bounded
away from 1. Calculating the subdominant eigenvalues of the restrictions
Rii for i = 1, . . . , 3 shows that λ4(R) ≤ 0.6526 is indeed a useful bound:

λ2(R11) λ2(R22) λ2(R33)
0.1376 0.1482 0.5855

.

Figure 4 illustrates an interesting effect that takes place if we choose a
finer discretization of the torsions angles. This might create boxes which
cover only a few data points. A transition from one of these boxes to an-
other metastable set induces a large transition probability from the box into
the subset. In the permuted transition matrix this leads to large entries
outside the diagonal blocks, while the metastable structure is still preserved
and uncoupling still lowers the subdominant eigenvalue, although we cannot
predict this by Theorem 3.3.

For a closer consideration of this effect, we construct a (3×3) stochastic
matrix. Let ε > 0 and

P =


1

1+ε
ε

1+ε 0
1
2 0 1

2

0 ε
1+ε

1
1+ε

 , (13)

which is a reversible stochastic matrix with state space S = {s1, s2, s3} and
stationary distribution

π =
1

2 + 4ε
(1 + ε, 2ε, 1 + ε). (14)
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The eigenvalues of P are given by

λ1(P) = 1, λ2(P) =
1

1 + ε
, and λ3(P) = − ε

1 + ε
.

As ε tends to zero, λ2(P) tends to 1, thus indicating a slow mixing Mar-
kov chain. There is no possible partition that avoids the entry 0.5 outside
the diagonal blocks, so that our eigenvalue bounds will provide no further
information. Yet, if we restrict along the partition indicated in (13) we get

R =


1

1+ε
ε

1+ε 0
1
2

1
2 0

0 0 1

 ,

with eigenvalues

λ1(R) = 1, λ2(R) = 1, and λ3(R) =
1− ε

2(1 + ε)
.

For ε close to zero, λ3(R) is close to 0.5, which shows that the two uncoupled
chains are fast mixing. We can understand this effect by examining the
underlying dynamics of the given Markov chain. Since the state s2 makes
transitions between s1 and s3 likely if its reached, we call s2 a transition
state. But if ε is close to zero, the probability to be in the transition state
is close to zero too, as we can see from the stationary distribution (14). So
metastability is preserved, because the transition state is rarely reached in
a realization of the Markov chain.
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[17] C. Schütte. Conformational Dynamics: Modelling, Theory, Algorithm, and
Application to Biomolecules. Habilitation Thesis, Fachbereich Mathematik
und Informatik, Freie Universität Berlin, 1998.
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