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Introduction

Computing eigenvalues and invariant subspaces of matrices with struc-
ture has been an active field of research during the last two decades.
In many instances it has been shown that the exploitation of matrix
structures may give rise to more accurate and more efficient numerical
methods. In this paper we will discuss this issue for two classes of matri-
ces, skew-Hamiltonian and Hamiltonian matrices. A skew-Hamiltonian
matrix has the form

W =

[

A G
Q AT

]

, G = −GT , Q = −QT , (1)

while a Hamiltonian matrix reads as

H =

[

A G
Q −AT

]

, G = GT , Q = QT , (2)

where A, G and Q are real n×n matrices. A number of applications from
control theory and related areas lead to eigenvalue problems involving
such matrices, with a stronger emphasis on Hamiltonian matrices, see
Section 4.

One of the first questions one should always ask when dealing with
structured eigenvalue problems is what kind of advantages can princi-
pally be expected from exploiting structures. With respect to accuracy
of computed eigenvalues and invariant subspaces this question leads to
the notion of structured condition numbers and their relationship to un-
structured ones. It is interesting to note that the two matrix structures
under consideration differ significantly in this aspect. While it is abso-
lutely necessary to use a structure-preserving algorithm for computing
invariant subspaces of skew-Hamiltonian matrices, the merits of struc-
ture preservation for Hamiltonian matrices are of a more subtle nature
and not always relevant in applications. If one is interested in efficiency
then there is not so much that can be expected. Both matrix classes de-
pend on 2n2+O(n) parameters compared to 4n2 parameters of a general
2n×2n matrix. Hence, a structure-preserving algorithm can be expected
to be at best a decent factor faster than a general-purpose method; for
the matrix classes considered here, this factor is usually in the range of
2–3, see [Benner et al., 2000; Benner and Kressner, 2004; Benner et al.,
1998].

Another important question is whether it is actually possible to de-
sign an algorithm capable to achieve the possible advantages mentioned
above. An ideal method tailored to the matrix structure would
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be strongly backward stable in the sense of Bunch described in [
Bunch, 1987], i.e., the computed solution is the exact solution
corresponding to a nearby matrix with the same structure;

be reliable, i.e., capable to solve all eigenvalue problems in the
considered matrix class; and

require O(n3) floating point operations (flops), preferably less than
a competitive general-purpose method.

While for skew-Hamiltonian matrices such a method is known [Van Loan,
1984b], it has been a long-standing open problem to develop an ideal
method for the Hamiltonian eigenvalue problem. So far there is no
method known that meets all three requirements satisfactorily.

The main purpose of this paper is to survey theory and algorithms for
(skew-)Hamiltonian eigenvalue problems. With respect to algorithms,
the account will necessarily be rather incomplete, simply because of the
vast number of algorithms that have been developed. Instead, our focus
will be on methods that are based on orthogonal transformations and
suitable for dense, small to medium-sized matrices. Nevertheless, they
will be related to other existing methods. Another goal in this work
is to describe applications of (skew-)Hamiltonian eigenvalue problems
and identify the extent to which a structure-preserving algorithm may
help to address these applications in a more accurate or more efficient
manner.

The structure of this survey is as follows. After having introduced
some notation and preliminary material in the first section we devote
the second section to the skew-Hamiltonian eigenvalue problem. We re-
view structured Hessenberg-like, Schur-like and block diagonal decom-
positions. This is followed by some recent and new results on struc-
tured condition numbers for the eigenvalues and invariant subspaces.
The section is concluded by a description of the ideal method for skew-
Hamiltonian matrices that was mentioned above. Section 3 contains
similar results for the Hamiltonian eigenvalue problem, with a more ex-
tensive treatment of structure-preserving algorithms. In particular, we
present an explicit version of the Hamiltonian QR algorithm, describe
an alternative derivation for the method given in [Benner et al., 1998]
via an embedding in skew-Hamiltonian matrices, and give an example of
an iterative refinement algorithm. Some applications related to systems
and control theory and how they may benefit from the use of structure-
preserving algorithms are the subject of Section 4.

This paper is accompanied by a Matlab software library for solving
skew-Hamiltonian and Hamiltonian eigenvalue problems. The library is
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based on recently developed Fortran 77 routines [Benner and Kressner,
2004] and described in [Kressner, 2003a], which also contains numerical
examples illustrating some of the aspects in this survey.

1. Preliminaries

An ubiquitous matrix in this work is the skew-symmetric matrix

J2n =

[

0 In

−In 0

]

, (3)

where In denotes the n×n identity matrix. In the following we will drop
the subscripts n and 2n whenever the dimension of the corresponding
matrix is clear from its context. By straightforward algebraic manipula-
tion one can show that a Hamiltonian matrix H is equivalently defined by
the property HJ = (HJ)T . Likewise, a matrix W is skew-Hamiltonian
if and only if WJ = −(WJ)T . Any matrix S ∈ R

2n×2n satisfying
ST JS = SJST = J is called symplectic, and since

(S−1HS)J = S−1HJS−T = S−1JT HT S−T = [(S−1HS)J ]T

we see that symplectic equivalence transformations preserve Hamiltonian
structures. There are cases, however, where both H and S−1HS are
Hamiltonian but S is not a symplectic matrix [Freiling et al., 2002]. In
a similar fashion the same can be shown for skew-Hamiltonian matrices.

From a numerical point of view it is desirable that a symplectic ma-
trix U ∈ R

2n×2n is also orthogonal. Such a matrix is called orthogonal
symplectic; the two relations UT JU = J and UT U = I imply JUJ = U
which effectively means that every orthogonal symplectic matrix U has
the block structure

U =

[

U1 U2

−U2 U1

]

, U1, U2 ∈ R
n×n.

Two types of elementary orthogonal matrices have this form. These are
2n× 2n Givens rotation matrices of the type

Gj(θ) =













Ij−1

cos θ sin θ
In−1

− sin θ cos θ
In−j













, 1 ≤ j ≤ n,

for some angle θ ∈ [−π/2, π/2) and the direct sum of two identical n×n
Householder matrices

(Hj ⊕Hj)(v, β) =

[

In − βvvT

In − βvvT

]

,
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where v is a vector of length n with its first j− 1 elements equal to zero
and β a scalar satisfying β(βvT v − 2) = 0. Here, ‘⊕’ denotes the direct
sum of matrices.

A simple combination of these transformations can be used to map
an arbitrary vector x ∈ R

2n into the linear space

Ej = span{e1, . . . , ej , en+1, . . . , en+j−1},
where ei is the ith unit vector of length 2n. Such mappings form the
backbone of virtually all structure-preserving algorithms based on or-
thogonal symplectic transformations. They can be constructed using the
following algorithm, where it should be noted that elements 1, . . . , j − 1
and n + 1, . . . , n + j − 1 of the vector x remain unaffected.

Algorithm 1
Input: A vector x ∈ R

2n and an index j ≤ n.
Output: Vectors v, w ∈ R

n and β, γ, θ ∈ R so that

[(Hj ⊕ Hj)(v, β) · Gj(θ) · (Hj ⊕ Hj)(w, γ)]T x ∈ Ej .

1 Determine v ∈ R
n and β ∈ R such that the last n− j elements of

x ← (Hj ⊕ Hj)(v, β)x are zero, see [Golub and Van Loan, 1996,
p.209].

2 Determine θ ∈ [−π/2, π/2) such that the (n + j)th element of
x← Gj(θ)x is zero, see [Golub and Van Loan, 1996, p.215].

3 Determine w ∈ R
n and γ ∈ R such that the (j + 1)th to the nth

elements of x← (Hj ⊕Hj)(w, γ)x are zero.

The three steps of this algorithm are illustrated in Figure 1. Orthogonal
symplectic matrices of the form

Ej(x) ≡ Ej(v, w, β, γ, θ) := (Hj⊕Hj)(v, β)·Gj(θ)·(Hj⊕Hj)(w, γ), (4)

as computed by Algorithm 1, will be called elementary.

2. The Skew-Hamiltonian Eigenvalue Problem

Imposing skew-Hamiltonian structure on a matrix W has a number
of consequences for the eigenvalues and eigenvectors of W ; one is that
every eigenvalue has even algebraic multiplicity and hence appears at
least twice. An easy way to access all these spectral properties is to ob-
serve that for any skew-Hamiltonian matrix W there exists a symplectic
matrix S so that

S−1WS =

[

W11 0
0 W T

11

]

. (5)

This decomposition – among others – will be described in the following
section.
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G2

G2

H2

H2

Figure 1. The three steps of Algorithm 1 for n = 4 and j = 2.

2.1 Structured Decompositions

As a first application of elementary matrices we obtain Algorithm 2
below which constructs the following structured Hessenberg-like form:
given a skew-Hamiltonian matrix W ∈ R

2n×2n there is always an orthog-
onal symplectic matrix U so that UT WU has Paige/Van Loan (PVL)
form, i.e.,

UT WU =

[

W11 W12

0 W T
11

]

=





@@

@@



 , (6)

where W11 ∈ R
n×n is an upper Hessenberg matrix [Van Loan, 1984b].

Algorithm 2 (PVL decomposition [Van Loan, 1984b])
Input: A skew-Hamiltonian matrix W ∈ R

2n×2n.
Output: An orthogonal symplectic matrix U ∈ R

2n×2n; W is overwritten
with UT WU having the form (6).

U ← I2n.
for j ← 1, 2, . . . , n− 1

Set x←Wej .
Apply Algorithm 1 to compute Ej+1(x).
Update W ← Ej+1(x)T WEj+1(x), U ← UEj+1(x).

end for

A proper implementation of this algorithm requires 40
3 n3 +O(n2) flops

for reducing W and additionally 16
3 n3 + O(n2) flops for computing U .

Figure 2 illustrates Algorithm 2 for n = 4.
An immediate consequence of the PVL form (6) is that each eigenvalue

of W has even algebraic multiplicity. The same is true for the geometric
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E2

E2

E2 E2

E3

E3

E3 E3

Figure 2. Illustration of two loops of Algorithm 2 for n = 4.

multiplicities. To see this we need to eliminate the skew-symmetric
off-diagonal block W12, for which we can use solutions of the following
singular Sylvester equation.

Proposition 3 The matrix equation

W11R−RW T
11 = −W12 (7)

is solvable for all skew-symmetric matrices W12 ∈ R
n×n if and only if

W11 ∈ R
n×n is nonderogatory, i.e., each eigenvalue of W11 has geo-

metric multiplicity one. In this case, any solution R of (7) is real and
symmetric.

Proof. This result can be found in [Gantmacher, 1960; Faßbender
et al., 1999]. Actually, the second part is not explicitely stated there but
follows easily from the proof of Proposition 5 in [Faßbender et al., 1999].

We now use this proposition to block-diagonalize a skew-Hamiltonian
matrix in PVL form (6) assuming that W11 is nonderogatory. For this
purpose let R be a solution of (7), then the symmetry of R implies that
[

I
0

R
I

]

is symplectic. Applying the corresponding symplectic equivalence

transformation yields the transformed matrix

[

I R
0 I

]−1 [
W11 W12

0 W T
11

] [

I R
0 I

]

=

[

W11 0
0 W T

11

]

. (8)

Note that there is a lot of freedom in the choice of R as equation (7)
admits infinitely many solutions. From a numerical point of view the
matrix R should be chosen so that its norm is as small as possible. The
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same question arises in the context of structured condition numbers and
will be discussed in the next section.

It should be stressed that assuming W11 to be nonderogatory is not
necessary and thus, the even geometric multiplicity of eigenvalues also
holds in the general case. In fact, in [Faßbender et al., 1999] it is shown
that any skew-Hamiltonian matrix can be reduced to block diagonal
form (8) using symplectic equivalence transformations. The proof, how-
ever, is much more involved than the simple derivation given above.

Another way to go from a skew-Hamiltonian matrix W in PVL form (6)
is to reduce W11 further to real Schur form. This can be achieved by
constructing an orthogonal matrix Q1 so that T = QT

1 W11Q1 is in real
Schur form [Golub and Van Loan, 1996, Thm.7.4.1]:

T =











T11 T12 · · · T1m

0 T22
. . .

...
...

. . .
. . . Tm−1,m

0 · · · 0 Tmm











, (9)

where all diagonal blocks Tjj of T are of order one or two. Each scalar
diagonal block contains a real eigenvalue and each two-by-two diagonal
block contains a pair of conjugate complex eigenvalues of W11. Setting
Ũ = U(Q1⊕Q1), we obtain a skew-Hamiltonian Schur decomposition of
W :

ŨT WŨ =

[

T G̃
0 T T

]

, (10)

where G̃ = QT
1 W12Q1 is skew-symmetric.

2.2 Structured Condition Numbers

In this section we investigate the change of eigenvalues and certain
invariant subspaces of a skew-Hamiltonian matrix W under a sufficiently
small, skew-Hamiltonian perturbation E. Requiring the perturbation to
be structured as well may have a strong positive impact on the sensitivity
of the skew-Hamiltonian eigenvalue problem; this is demonstrated by the
following example.

Example 4 Consider the parameter-dependent matrix

W (ε1, ε2) =









1 0 0 0
0 2 0 0
ε1 ε2 1 0
−ε2 0 0 2









.
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The vector e1 = [1, 0, 0, 0]T is an eigenvector of W (0, 0) associated with
the eigenvalue λ = 1. No matter how small ε1 > 0 is, any eigen-
vector of W (ε1, 0) associated with λ has the completely different form
[0, 0, α, 0]T for some α 6= 0. On the other hand, the skew-Hamiltonian
matrix W (0, ε2) has an eigenvector [1, 0, 0, ε2]

T rather close to e1.

Before we deal with structured perturbations, we briefly review stan-
dard perturbation results that apply to general matrices and perturba-
tions, for further details, see e.g. [Stewart and Sun, 1990; Sun, 1998]. Let
A ∈ R

n×n and let X ⊂ R
n be a k-dimensional (right) invariant subspace

of A, i.e., AX ⊆ X . If the columns of X and X⊥ span orthonormal bases
for X and X⊥, respectively, then we obtain a block Schur decomposition

[

X X⊥

]T
A
[

X X⊥

]

=

[

A11 A12

0 A22

]

, (11)

where A11 ∈ R
k×k and A22 ∈ R

(n−k)×(n−k). The block A11 satisfies the
relation AX = XA11, which implies that A11 is the representation of A
with respect to X. An important operator associated with the decom-
position (11) is the linear matrix operator T : R

(n−k)×k 7→ R
(n−k)×k

with
T : R 7→ A22R−RA11. (12)

One can show that this Sylvester operator T is invertible if and only if
A11 and A22 have no eigenvalue in common [Golub and Van Loan, 1996,
pp.366–369]. If this condition holds then X is called a simple invari-
ant subspace. We are now ready to formulate a perturbation expansion
theorem for invariant subspaces and their representations as it can be
found, e.g., in [Sun, 1998, Sec.2.1.2].

In the following we denote by ‖ · ‖2 the Euclidean norm and the asso-
ciated spectral norm for matrices, and by ‖ · ‖F the Frobenius norm.

Theorem 5 Let A ∈ R
n×n have a block Schur decomposition of the

form (11) and assume that the invariant subspace X spanned by the
columns of X is simple. Let E ∈ C

n×n be a perturbation of sufficiently
small norm. Then, there is an invariant subspace X̂ = span X̂ of A + E
with representation Â11 satisfying the expansions

Â11 = A11 + (Y HX)−1Y HEX +O(‖E‖22), (13)

X̂ = X −X⊥T−1XH
⊥ EX +O(‖E‖22), (14)

where T is as in (12), the columns of Y form an orthonormal basis
for the left invariant subspace belonging to the eigenvalues of A11 and
XH(X̂ −X) = 0.



16

Bounding the effects of E in the expansions (13) and (14) can be used
to derive condition numbers for eigenvalues and invariant subspace. For
example, let λ be a simple eigenvalue of A with right and left eigenvectors
x and y, respectively. Then Theorem 5 with A11 = [λ] and Â11 = [λ̂]
yields

|λ̂− λ| ≤ ‖x‖2 · ‖y‖2|yHx| ‖E‖2 +O(‖E‖22).

This inequality is attained up to first order by E = εxyH for any ε > 0,
which shows that the absolute condition number of a simple eigenvalue
λ can be written as

c(λ) := lim
ε→0

sup
‖E‖2≤ε

|λ̂− λ|
ε

=
‖x‖2 · ‖y‖2
|yHx| . (15)

Note that c(λ) is independent of the choice of x and y.
For a simple invariant subspace X spanned by the columns of X we

obtain
‖X̂ −X‖F ≤ ‖T−1‖ · ‖E‖F +O(‖E‖2F ), (16)

where ‖T−1‖ is the norm induced by the Frobenius norm:

‖T−1‖ := sup
S 6=0

‖T−1(S)‖F
‖S‖F

=

(

inf
R 6=0

‖A11R−RA22‖F
‖R‖F

)−1

.

Again, inequality (16) can be attained up to first order by choosing
E = εX⊥V XH with ε > 0, and a matrix V ∈ R

(n−k)×k with ‖V ‖F = 1
satisfying ‖T−1(V )‖F = ‖T−1‖. Turning (16) into a condition number

for an invariant subspace further requires relating ‖X̂−X‖F to quantities

that are independent of the choice of bases for X and X̂ . The matrix

Θ(X , X̂ ) = diag(θ1(X , X̂ ), θ2(X , X̂ ), . . . , θk(X , X̂ )),

where θi(X , X̂ ) are the canonical angles between X and X̂ [Stewart and

Sun, 1990, p.43], is such a quantity. One can show that XH(X̂−X) = 0
implies

‖Θ(X , X̂ )‖F = ‖X̂ −X‖F +O(‖X̂ −X‖3F ).

Hence, we obtain the following condition number for an invariant sub-
space X :

c(X ) := lim
ε→0

sup
‖E‖F≤ε

‖Θ(X , X̂ )‖F
ε

= ‖T−1‖.

Note that ‖T−1‖ is invariant under an orthonormal change of basis for
X . A direct (albeit expensive) way to compute this quantity is to express
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T in terms of Kronecker products:

vec(T(R)) = KT · vec(R), KT = Ik ⊗A11 −AT
22 ⊗ In−k,

with the Kronecker product ‘⊗’ of two matrices [Golub and Van Loan,
1996, Sec. 4.5.5] and the operator vec which stacks the columns of a
matrix into one long vector in their natural order. Then ‖T−1‖−1 is
the minimal singular value of the k(n − k) × k(n − k) matrix KT. In
practice, one estimates T−1 by solving a few Sylvester equations with
particularly chosen right hand sides, see e.g. [Higham, 1996].

Structured condition numbers for eigenvalues We now turn to
the perturbation theory for an eigenvalue λ of a matrix W under a
perturbation E, where both W and E are skew-Hamiltonian. As λ
is necessarily a multiple eigenvalue we cannot apply Theorem 5 to λ
alone but must consider the eigenvalue cluster containing all copies of λ.
Assuming that λ has algebraic multiplicity two, there are two linearly
independent eigenvectors x1 and x2 corresponding to λ. Let [x1, x2] =
XR be a QR decomposition with X ∈ C

2n×2 and R ∈ C
2×2, then

WX = W [x1, x2]R
−1 = [x1, x2]A11R

−1 = [x1, x2]R
−1A11 = XA11,

where A11 = diag(λ, λ). An analogous relation holds for the two eigen-

vectors x̂1, x̂2 belonging to the eigenvalue λ̂ of the perturbed matrix
W +E. As the spectral norm of Â11−A11 is given by |λ̂−λ|, Theorem 5
implies that

|λ̂− λ| = ‖(X̄HJX)−1X̄HJEX‖2 +O(‖E‖22)
≤ ‖(X̄HJX)−1‖2 +O(‖E‖22),

(17)

where we also used the fact that the columns of JX̄ span the two-
dimensional left invariant subspace belonging to λ. Note that X̄ denotes
the complex conjugate of X. For real λ we may assume X ∈ R

2n×2 and
use the skew-Hamiltonian matrix E = εJT

2nXJ2X
T to show that inequal-

ity (17) can be attained up to first order by a skew-Hamiltonian pertur-
bation. This implies that the structured eigenvalue condition number for
an eigenvalue λ ∈ R of a skew-Hamiltonian matrix satisfies

cW (λ) := lim
ε→0

sup
‖E‖2≤ε

E skew-Hamiltonian

|λ̂− λ|
ε

= ‖(XHJX)−1‖2.

Likewise for complex λ, we can use perturbations of the form E =
εJT

2nX̄J2X
H . Note that E satisfies (EJ)H = −(EJ), i.e., E is a com-

plex skew-Hamiltonian matrix. It is an open problem whether one
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can construct a real skew-Hamiltonian perturbation to show cW (λ) =
‖(XHJX)−1‖2 for complex eigenvalues.

By straightforward computation one can obtain a simple expression
for cW (or an upper bound thereof if λ ∈ C) in terms of the eigenvectors
x1, x2 belonging to λ:

‖(XHJX)−1‖2 =
1

|x̄H
1 Jx2|

√

‖x1‖22 · ‖x2‖22 − |xH
1 x2|2.

Note that this happens to be the unstructured condition number of the
mean of the eigenvalue cluster containing both copies of λ [Chu, 1990;
Bai et al., 1993].

Structured condition numbers for invariant subspaces The in-
variant subspaces of a skew-Hamiltonian matrix W that are usually of
interest in applications are those which are isotropic.

Definition 6 A subspace X ⊆ R
2n is called isotropic if X ⊥ J2nX . A

maximal isotropic subspace is called Lagrangian.

Obviously, any eigenvector of W spans an isotropic invariant subspace
but also the first k ≤ n columns of the matrix Ũ in a skew-Hamiltonian
Schur decomposition (10) share this property. Roughly speaking, an
invariant subspace X of W is isotropic if X corresponds to at most one
copy of each eigenvalue of W . Necessarily, X is not simple, which makes
the application of Theorem 5 impossible.

Instead, it was shown in [Kressner, 2003c] how one can adapt a tech-
nique developed by Stewart in [Stewart, 1971; Stewart, 1973] in order
to obtain perturbation bounds for X . Here, we describe this approach
only for the important special case when X has maximal dimension n,
i.e., X is Lagrangian. Let the columns of X form an orthonormal basis
for X . Then [X, JX] is orthogonal and we have the skew-Hamiltonian
block Schur decomposition

[

X JX
]T

W
[

X JX
]

=

[

W11 W12

0 W T
11

]

. (18)

If W is perturbed by a skew-Hamiltonian matrix E then

[

X JX
]T

(W + E)
[

X JX
]

=

[

W̃11 W̃12

W̃21 W̃ T
11

]

(19)

where W̃12, W̃21 are skew-symmetric and ‖W̃21‖F ≤ ‖E‖F . Any matrix

X̂ ∈ R
2n×n with orthonormal columns and X̂T X 6= 0 can be written as

X̂ = (X + JXR)(I + RT R)−1/2 (20)
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for some matrix R ∈ R
k×k [Stewart, 1973]. The columns of X̂ span

an invariant subspace X̂ of W + E if and only if R satisfies the matrix
equation

TW̃ (R) + Φ(R) = W̃21 (21)

with the Sylvester operator TW̃ : R 7→ RW̃11− W̃ T
11R and the quadratic

matrix operator Φ : R 7→ RW̃12R. Moreover, X is isotropic if and
only if R is symmetric. The solution of (21) is complicated by the fact
that the dominating linear operator TW̃ is singular. However, if W̃11

is nonderogatory, then Proposition 3 shows that the restricted operator
TW̃ : symm(n) 7→ skew(n), where symm(n) {skew(n)} denotes the set
of {skew-}symmetric n×n matrices, is onto. This allows us to define an
operator T+

W̃
: skew(n) 7→ sym(n), which maps a skew-symmetric matrix

Q ∈ R
n×n to the minimal Frobenius-norm solution of RW̃11−W̃ T

11R = Q,
which must be symmetric according to Proposition 3. The norm of T+

W̃
induced by the Frobenius-norm is given by

‖T+
W̃
‖ := sup

Q6=0
Q∈skew(n)

‖T+
W̃

Q‖F
‖Q‖F

. (22)

This can be used to estimate the norm of a solution of the nonlinear
equation (21).

Theorem 7 Let the matrices W̃ij be defined by (19) and assume that

W̃11 is nonderogatory. If 4‖T+
W̃
‖2 · ‖W̃12‖F · ‖W̃21‖F < 1 with ‖T+

W̃
‖ as

in (22), then there is a symmetric solution R of (21) satisfying

‖R‖F ≤ 2‖T+
W̃
‖ · ‖W̃12‖F .

Proof. This result can be proven along the lines of the proof of The-
orem 2.11 in [Stewart and Sun, 1990] by constructing a sequence

R0 = 0, Ri+1 = T+
W̃

(W̃21 − Φ(Ri))

and applying the contraction mapping theorem [Ortega and Rheinboldt,
1970] to this sequence.

Using the fact that the tangents of the canonical angles between X
and X̂ are the singular values of R [Stewart and Sun, 1990, p.232], The-
orem 7 implies the following perturbation bound for isotropic invariant
subspaces.

Corollary 8 Let W, E ∈ R
2n×2n be skew-Hamiltonian matrices, and let

the columns of X ∈ R
2n×n form an orthonormal basis for an isotropic
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invariant subspace X of W . Assume that W̃11 = XT (W + E)X is non-
derogatory and that 4‖T+

W̃
‖2 · ‖W +E‖F · ‖E‖F < 1, with ‖T+

W̃
‖ defined

as in (22). Then there is an isotropic invariant subspace X̂ of W + E
satisfying

‖ tan[Θ(X , X̂ )]‖F ≤ α‖T+
W̃
‖ · ‖E‖F , (23)

where α ≤ 2.

It should be remarked that the factor α in (23) can be made arbitrar-
ily close to one if we let ‖E‖F → 0. Furthermore, (23) still holds in
an approximate sense if the operator TW̃ is replaced by TW : R 7→
RW11 − W T

11R corresponding to the unperturbed block Schur decom-
position (18). This shows that the structured condition number for an
isotropic invariant subspace of a skew-Hamiltonian matrix satisfies

cW (X ) := lim
ε→0

sup
‖E‖F ≤ε

E skew-Hamiltonian

‖Θ(X , X̂ )‖F
ε

≤ ‖T+
W ‖.

It can be shown that actually cW (X ) = ‖T+
W ‖ holds [Kressner, 2003c].

An extension of this condition number to lower-dimensional isotropic
invariant subspaces and a discussion on the computation of ‖T+

W ‖ can
also be found in [Kressner, 2003c].

Example 9 For the matrix W (0, 0) from Example 4, the structured con-
dition number of the Langrangian invariant subspace X spanned by the
columns of [I2, 0]

T is small, since

cW (X ) = ‖(I2 ⊗ diag(1, 2)− diag(1, 2)⊗ I2)
+‖2 = 1.

This implies that a strongly backward stable method is guaranteed to
compute an excellent approximation of X . On the other hand, the un-
structured condition number c(X ) must be considered as infinite due to
the fact that X is not simple. Hence, a method which is not strongly
backward stable may return arbitrarily bad results.

Similar remarks apply to the eigenvectors of W .

2.3 Algorithms

In Section 2.1 we used a constructive approach to prove the skew-
Hamiltonian Schur decomposition

UT WU =

[

T G̃
0 T T

]

, (24)

where U is orthogonal symplectic and T has real Schur form. The fol-
lowing algorithm summarizes this construction.
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Algorithm 10 (Skew-Hamiltonian Schur decomposition)
Input: A skew-Hamiltonian matrix W ∈ R

2n×2n.
Output: An orthogonal symplectic matrix U ∈ R

2n×2n; W is overwritten
with UT WU having skew-Hamiltonian Schur form (24).

Apply Algorithm 2 to compute an orthogonal symplectic matrix
U so that W ← UT WU has PVL form (6).

Apply the QR algorithm to the (1, 1) block W11 of W to compute
an orthogonal matrix Q so that QT W11Q has real Schur form.

Update W ← (Q⊕Q)T W (Q⊕Q), U ← U(Q⊕Q).

This algorithm requires around 20n3 flops if only the eigenvalues are
desired, and 44n3 flops if the skew-Hamiltonian Schur form and the
orthogonal symplectic factor U are computed, where we used the flop
estimates for the QR algorithm listed in [Golub and Van Loan, 1996,
p.359]. This compares favorably with the QR algorithm applied to the
whole matrix W , which takes 80n3 and 200n3 flops, respectively. The
finite precision properties of this algorithm are as follows. Similarly as
for the QR algorithm [Wilkinson, 1965] one can show that there is an
orthogonal symplectic matrix V which transforms the computed skew-

Hamiltonian Schur form Ŵ =
[

T̂
0

Ĝ
T̂ T

]

to a skew-Hamiltonian matrix

near to W , i.e., V ŴV T = W +E, where E is skew-Hamiltonian, ‖E‖2 =
O(u)‖W‖2 and u denotes the unit roundoff. Moreover, the computed

factor Û is almost orthogonal in the sense that ‖ÛT Û − I‖2 = O(u),

and it has the block representation Û =
[

Û1

−Û2

Û2

Û1

]

. This implies that

Û is close to an orthogonal symplectic matrix, see e.g. [Kressner, 2002,
Lemma 5.2].

Once a skew-Hamiltonian Schur decomposition has been computed,
the eigenvalues can be easily obtained from the diagonal blocks of T .
Furthermore, if the (k +1, k) entry of T is zero, then the first k columns
of U span an isotropic invariant subspace of W . Other isotropic invariant
subspaces can be obtained by swapping the diagonal blocks of T as
described, e.g., in [Bai and Demmel, 1993; Bai et al., 1993].

Symplectic QR decomposition The following algorithm is only in-
directly related to the skew-Hamiltonian eigenvalue problem. It can be
used, for example, to compute orthonormal bases for isotropic subspaces.
Let A ∈ R

2m×n with m ≥ n, then there exists an orthogonal symplectic
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matrix Q ∈ R
2m×2m so that A = QR and

R =

[

R11

R21

]

, R11 =

[

@
0

]

, R21 =

[

...


@

0

]

, (25)

that is, the matrix R11 ∈ R
m×n is upper triangular and R21 ∈ R

m×n is
strictly upper triangular. A decomposition of this form is called sym-
plectic QR decomposition [Bunse-Gerstner, 1986] and can be computed
by the following algorithm.

Algorithm 11 (Symplectic QR decomposition)
Input: A general matrix A ∈ R

2m×n with m ≥ n.
Output: An orthogonal symplectic matrix Q ∈ R

2m×2m; A is overwritten
with R = QT A having the form (25).

Q← I2m.
for j ← 1, . . . , n

Set x← Aej .
Apply Algorithm 1 to compute Ej(x).
Update A← Ej(x)T A, Q← QEj(x).

end for

If properly implemented this algorithm requires 8(mn2− n3/3) +O(n2)
flops for computing the matrix R, and additionally 16

3 n3 + 16m2n −
16mn2+O(n2) flops for accumulating the orthogonal factor Q in reversed
order.

Other algorithms Similarly as the Hessenberg form of a general ma-
trix can be computed by Gauss transformations [Golub and Van Loan,
1996, Sec. 7.4.7] it is shown in [Stefanovski and Trenčevski, 1998] how
non-orthogonal symplectic transformations can be used to compute the
PVL form of a skew-Hamiltonian matrix. A modification of the Arnoldi
method, suitable for computing eigenvalues and isotropic invariant sub-
spaces of large and sparse skew-Hamiltonian matrices, has been proposed
by [Mehrmann and Watkins, 2000].

Balancing a matrix by a simple and accurate similarity transformation
may have a positive impact on the performance of numerical methods
for computing eigenvalues. A structure-preserving balancing procedure
based on symplectic similarity transformations is presented in [Benner,
2000].

The LAPACK [Anderson et al., 1999] subroutines for computing stan-
dard orthogonal decompositions, such as the QR or Hessenberg decom-
position, attain high efficiency by (implicitly) employing WY representa-
tions of the involved orthogonal transformations [Bischof and Van Loan,
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1987; Dongarra et al., 1989; Schreiber and Van Loan, 1989]. A variant
of this representation can be used to derive efficient block algorithms for
computing orthogonal symplectic decompositions, such as the symplectic
QR and URV decompositions [Kressner, 2002].

3. The Hamiltonian Eigenvalue Problem

One of the most remarkable properties of a Hamiltonian matrix H =
[

A
Q

G
−AT

]

∈ R
2n×2n is that its eigenvalues always occur in pairs {λ,−λ},

if λ ∈ R, λ ∈ ıR, or in quadruples {λ,−λ, λ̄,−λ̄}, if λ ∈ C\(R ∪ ıR).
The preservation of these pairings in finite precision arithmetic is a ma-
jor benefit of using a structure-preserving algorithm for computing the
eigenvalues of H.

Generally, we will only briefly touch the difficulties that arise when
H has eigenvalues on the imaginary axis. Although this case is well-
analyzed with respect to structured decompositions, see [Lin and Ho,
1990; Lin et al., 1999; Freiling et al., 2002] and the references given
therein, it is still an open research problem to define appropriate struc-
tured condition numbers and design satisfactory algorithms for this case.

3.1 Structured Decompositions

A major difficulty in developing computational methods for the Hamil-
tonian eigenvalue problem is that there is so far no O(n3) method for
computing a useful structured Hessenberg-like form known. Although a
slight modification of Algorithm 2 can be used to construct an orthogo-
nal symplectic matrix U so that

UT HU =

[

W11 W12

W21 W T
11

]

=





@@

@ @@



 ,

i.e., W11 has upper Hessenberg form and W21 is a diagonal matrix, this
form is of limited use. The Hamiltonian QR algorithm, see Section 3.3
below, only preserves this form if the (2, 1) block can be written as W21 =
γeneT

n for some γ ∈ R. In this case, UT HU is called a Hamiltonian
Hessenberg form. Byers derived in [Byers, 1983] a simple method for
reducing H to such a form under the assumption that one of the off-
diagonal blocks G or Q in H has tiny rank, i.e., rank 1, 2 or at most
3.

The general case, however, remains elusive. That it might be diffi-
cult to find a simple method is indicated by a result in [Ammar and
Mehrmann, 1991], which shows that the first column x of an orthogonal
symplectic matrix U that reduces H to Hamiltonian Hessenberg form
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has to satisfy the nonlinear equations

xT JH2i−1x = 0, i = 1, . . . , n.

This result can even be extended to non-orthogonal symplectic transfor-
mations [Raines and Watkins, 1994].

A Schur-like form for Hamiltonian matrices is given by the following
theorem [Paige and Van Loan, 1981; Lin et al., 1999].

Theorem 12 Let H be a Hamiltonian matrix and assume that all eigen-
values of H that are on the imaginary axis have even algebraic multiplic-
ity. Then, there is an orthogonal symplectic matrix U so that U T HU is
in Hamiltonian Schur form, i.e.,

UT HU =

[

T G̃
0 −T T

]

, (26)

where T ∈ R
n×n has real Schur form (9).

If H has no eigenvalues on the imaginary axis, then the invariant
subspace X belonging to the n (counting multiplicities) eigenvalues in
the open left half plane is called the stable invariant subspace of H. By a
suitable reordering of the Hamiltonian Schur form, see also Section 3.3,
one can see that X is isotropic. If the columns of X form an orthonormal
basis for X, then [X, JX] is orthogonal and we have the Hamiltonian
block-Schur decomposition

[

X JX
]T

H
[

X JX
]

=

[

A11 G11

0 −AT
11

]

.

3.2 Structured Condition Numbers

An extensive perturbation analysis of (block) Hamiltonian Schur forms
for the case that H has no purely imaginary eigenvalues has been pre-
sented in [Konstantinov et al., 2001]. The analysis used therein is based
on the technique of splitting operators and Lyapunov majorants. The
approach used in this section is somewhat simpler; it is based on the
perturbation expansions given in Theorem 5.

Structured condition numbers for eigenvalues Let λ be a simple
eigenvalue of a Hamiltonian matrix H with right and left eigenvectors x
and y, respectively. The perturbation expansion (13) implies that for a

sufficiently small perturbation E, there is an eigenvalue λ̂ of W + E so
that

|λ̂− λ| = |y
HEx|
|yHx| +O(‖E‖22) ≤

‖x‖2 · ‖y‖2
|yHx| ‖E‖2 +O(‖E‖22). (27)
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If λ is real then we may assume that x and y are real and normalized so
that ‖x‖2 = ‖y‖2 = 1. For the Hamiltonian perturbation E = ε[y, Jx] ·
[x, JT y]H we have |yHEx| = ε(1 + |yHJx|2) and

‖E‖2 = ε‖[x, Jy]‖22 = ε(1 + |yHJx|).
The minimum of (1+|yHJx|2)/(1+|yHJx|) is β = 2

√
2−2. This implies

that for ε→ 0 both sides in (27) differ at most by a factor 1/β. Hence,
the structured eigenvalue condition number for a simple eigenvalue of a
Hamiltonian matrix,

cH(λ) := lim
ε→0

sup
‖E‖2≤ε

E is Hamiltonian

|λ̂− λ|
ε

,

satisfies the inequalities

(2
√

2− 2)c(λ) ≤ cH(λ) ≤ c(λ),

if λ ∈ R. This inequality still holds for complex λ if one allows complex
Hamiltonian perturbations E, i.e., (EJ)H = EJ . A tight lower bound
for the structured condition number of a complex eigenvalue under real
perturbations is an open problem.

Structured backward errors and condition numbers for eigenvalues
of Hamiltonian matrices with additional structures can be found in [
Tisseur, 2003].

Structured condition numbers for invariant subspaces Let the
columns of X ∈ R

2n×k span a simple, isotropic invariant subspace X
of H. By the symplectic QR decomposition there is always a matrix
Y ∈ R

2n×k so that U = [X, Y, JX, JY ] is an orthogonal symplectic
matrix. Moreover, we have the block Hamiltonian Schur form

UT HU =









A11 A12 G11 G12

0 A22 GT
12 G22

0 0 −AT
11 0

0 Q22 −AT
12 −AT

22









.

Assuming that the perturbation E is sufficiently small, the perturbation
expansion (14) implies that there is a matrix X̂ so that X̂ = span X̂ is
an invariant subspace of H + E satisfying

X̂ = X −X⊥T−1
H XT

⊥EX +O(‖E‖2F ),

and X̂T (X̂ −X) = 0. The involved Sylvester operator TH is given by

TH : (R1, R2, R3) 7→





A22 GT
12 G22

0 −AT
11 0

Q22 −AT
12 −AT

22









R1

R2

R3



−





R1

R2

R3



A11.
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If the perturbation E is Hamiltonian, then XT
⊥EX takes the form S =

[AT
21, Q

T
11, Q

T
21]

T , where Q11 ∈ symm(k) and A21, Q21 are general (n −
k)× k matrices. Hence, if we let

‖T−1
H ‖ := sup

S 6=0

{

‖T−1
H (S)‖F
‖S‖F

| S ∈ R
(n−k)×k × symm(k)× R

(n−k)×k

}

,

then the structured condition number for an isotropic invariant subspace
of a Hamiltonian matrix satisfies

cH(X ) = lim
ε→0

sup
‖E‖F ≤ε

E Hamiltonian

‖Θ(X , X̂ )‖F
ε

= ‖T−1
H ‖.

Obviously, this quantity coincides with the unstructured condition num-
ber if X is one-dimensional, i.e., X is spanned by a real eigenvector. A
less trivial observation is that the same holds if X is the stable invariant
subspace, i.e., the n-dimensional subspace belonging to all eigenvalues
in the left half plane. To show this, first note that in this case

‖T−1
H ‖ = sup

S 6=0
S∈symm(n)

‖T−1
H (S)‖F
‖S‖F

= inf
S 6=0

S∈symm(n)

‖A11S + SAT
11‖F

‖S‖F
.

Using a result in [Byers and Nash, 1987], we have

inf
S 6=0

S∈symm(n)

‖A11S + SAT
11‖F

‖S‖F
= inf

S 6=0

‖A11S + SAT
11‖F

‖S‖F
,

which indeed shows that the structured and unstructured condition num-
bers for the maximal stable invariant subspace coincide.

However, there is a severe loss if we do not require E to be Hamil-
tonian; the subspace X̂ might not be isotropic. To obtain a nearby
isotropic subspace one can apply the symplectic QR decomposition to
an orthonormal basis X̂ of X̂ . This yields the orthonormal basis Z of
an isotropic subspace Z = span Z so that

‖Z −X‖F ≤ 2‖X̂ −X‖F ≤ 2cH(X )‖E‖F +O(‖E‖2F ).

Note that for the original subspace X̂ we have the desirable property
‖X̂T

⊥HX̂‖F = ‖E‖F , where the columns of X̂⊥ form an orthonormal

basis for X̂⊥. For the isotropic subspace Z, however, we can only guar-
antee

‖(JZ)T HZ‖F ≤ 4cH(X ) · ‖H‖F · ‖E‖F +O(‖E‖2F ),
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which signals a severe loss of backward stability. The following numerical
example demonstrates the undesirable appearance of the factor cH(X )
in ‖(JZ)T HZ‖F .

Example 13 Let

H =









−10−5 −1 1 0
1 0 0 1
0 0 10−5 −1
0 0 1 0









,

and consider the stable invariant subspace spanned by the columns of
X = [I2, 0]

T , which has condition number 105. If we add a random (non-
Hamiltonian) perturbation E with ‖E‖F = 10−10 to H, and compute

(using Matlab) an orthonormal basis X̂ for the invariant subspace X̂
of H + E belonging to the eigenvalues in the open left half plane, we
observe that

‖X̂T
⊥HX̂‖F ≈ 4.0× 10−11.

By computing a symplectic QR decomposition of X̂ we constructed an
orthonormal basis Z satisfying ZT (JZ) = 0 and observed

‖(JZ̃)T HZ̃‖F ≈ 4.7× 10−6.

3.3 Algorithms

An explicit Hamiltonian QR algorithm The Hamiltonian QR al-
gorithm [Byers, 1983] is a strongly backward stable method for com-
puting the Hamiltonian Schur form of a Hamiltonian matrix H with no
purely imaginary eigenvalues. Its only obstacle is that there is no im-
plementation of complexity less than O(n4) known, except for the case
when a Hamiltonian Hessenberg form exists [Byers, 1983; Byers, 1986].

One iteration of the Hamiltonian QR algorithm computes the sym-
plectic QR decomposition of the first n columns of the symplectic matrix

M = [(H − σ1I)(H − σ2I)][(H + σ1I)(H + σ2I)]−1, (28)

where {σ1, σ2} is a pair of real or complex conjugate shifts. This yields
an orthogonal symplectic matrix U so that

UT M =





@

@



 . (29)
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The next iterate is obtained by updating H ← UT HU . Let us partition
H as follows

H =









A11 A12 G11 G12

A21 A22 GT
12 G22

Q11 Q12 −AT
11 −AT

21

QT
12 Q22 −AT

12 −AT
22









, (30)

with A11 ∈ R
2×2 and A22 ∈ R

n−2×n−2. Under rather mild assumptions
and a fortunate choice of shifts, it can be shown that the submatrices
A21, Q11 and Q12 converge to zero, i.e., H converges to a Hamiltonian
block-Schur form [Watkins and Elsner, 1991]. Choosing the shifts s1, s2

as those eigenvalues of the submatrix
[

A11

Q11

G11

−AT
11

]

that have positive

real part results in quadratic convergence. If this submatrix has two
imaginary eigenvalues, then we suggest to choose the one eigenvalue
with positive real part twice, and if there are four purely imaginary
eigenvalues, then our suggestion is to choose random shifts.

If the norms of the blocks A21, Q11 and Q12 become less than u ·
‖H‖F , then we may safely regard them as zero and apply the iteration

to the submatrix
[

A22

Q22

G22

−AT
22

]

. This will finally yield a Hamiltonian Schur

form of H. Note that the Hamiltonian QR algorithm will generally not
converge if H has eigenvalues on the imaginary axis. In our numerical
experiments, however, we often observed convergence to a Hamiltonian

block-Schur form, where the unreduced block
[

A22

Q22

G22

−AT
22

]

contains all

eigenvalues on the imaginary axis.

Remark 14 One can avoid the explicit computation of the potentially
ill-conditioned matrix M in (28) by the following product QR decompo-
sition approach. First, an orthogonal matrix Qr is computed so that
(H + σ1I)(H + σ2I)QT

r has the block triangular structure displayed
in (29). This can be achieved by a minor modification of the standard
RQ decomposition [Benner et al., 1998]. Secondly, the orthogonal sym-
plectic matrix U is computed from the symplectic QR decomposition of
the first n columns of (H − σ1I)(H − σ2I)QT

r .

Reordering a Hamiltonian Schur decomposition If the Hamil-
tonian QR algorithm has successfully computed a Hamiltonian Schur
decomposition,

UT HU =

[

T G̃
0 −T T

]

(31)

then the first n columns of the orthogonal symplectic matrix U span an
isotropic subspace belonging to the eigenvalues of T . Many applications
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require the stable invariant subspace, for this purpose the Schur decom-
position (31) must be reordered so that T contains all eigenvalues with
negative real part.

One way to achieve this is as follows. If there is a block in T which
contains a real eigenvalue or a pair of complex conjugate eigenvalues
with positive real part, then this block is swapped to the bottom right
diagonal block T22 of T using the algorithms described in [Bai and Dem-
mel, 1993; Bai et al., 1993]. Now, let G22 denote the corresponding block
in G̃; it remains to find an orthogonal symplectic matrix U22 so that

UT
22

[

T22 G22

0 −T T
22

]

U22 =

[

T̃22 G̃22

0 −T̃ T
22

]

(32)

and the eigenvalues of T̃22 have negative real part. If X is the solution
of the Lyapunov equation T22X − XT T

22 = G22, then X is symmetric
and the columns of [−X, I]T span an isotropic subspace. Thus, there is
a symplectic QR decomposition

[

−X
I

]

= U22

[

R
0

]

By direct computation, it can be shown that U22 is an orthogonal sym-
plectic matrix which produces a reordering of the form (32). Bai and
Demmel, 1993, show that in some pathological cases, the norm of the
(2, 1) block in the reordered matrix may be larger than O(u)‖H‖F . In
this case, which may only happen if the eigenvalues of T22 are close to
the imaginary axis, the swap must be rejected in order to guarantee the
strong backward stability of the algorithm. A different kind of reorder-
ing algorithm, which is based on Hamiltonian QR iterations with perfect
shifts, can be found in [Byers, 1983].

Conclusively, we have a method for computing eigenvalues and se-
lected invariant subspaces of Hamiltonian matrices. This method is
strongly backward stable and reliable, as long as there are no eigen-
values on the imaginary axis. However, as mentioned in the beginning,
in general it requires O(n4) flops, making it unattractive for decently
large problems.

Algorithms based on H
2 One of the firstO(n3) structure-preserving

methods for the Hamiltonian eigenvalue problem was developed by Van
Loan, 1984b. It is based on the fact that H2 is a skew-Hamiltonian
matrix, because

(H2J)T = (HJ)T HT = HJHT = −H(HJ)T = −H2J.
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Thus, one can apply Algorithm 10 to H2 and take the positive and neg-
ative square roots of the computed eigenvalues, which gives the eigen-
values of H. An implicit version of this algorithm has been implemented
in [Benner et al., 2000]. The main advantage of this approach is that
the eigenvalue symmetries of H are fully recovered in finite precision
arithmetic. Also, the computational cost is low when compared to the
QR algorithm. The disadvantage of Van Loan’s method is that a loss
of accuracy up to half the number of significant digits of the computed
eigenvalues of H is possible. An error analysis in [Van Loan, 1984b]

shows that for an eigenvalue λ of H the computed λ̂ satisfies

|λ̂− λ| / c(λ) ·min{u‖H‖22/|λ|,
√

u‖H‖2}.

This indicates that particularly eigenvalues with |λ| ¿ ‖H‖2 are affected
by the

√
u-effect. Note that a similar effect occurs when one attempts to

compute the singular values of a general matrix A from the eigenvalues
of AT A, see e.g. [Stewart, 2001, Sec. 3.3.2].

An algorithm that is based on the same idea but achieves numeri-
cal backward stability by completely avoiding the squaring of H was
developed in [Benner et al., 1998]. In the following, we show how this
algorithm can be directly derived from Algorithm 10. In lieu of H2 we
make use of the skew-Hamiltonian matrix

W =









0 A 0 G
−A 0 −G 0
0 Q 0 −AT

−Q 0 AT 0









∈ R
4n×4n, (33)

for given H =
[

A
Q

G
−AT

]

. As W is permutationally equivalent to
[

0
−H

H
0

]

,

we see that ±λ is an eigenvalue of H if and only if ±
√
−λ2 is an eigen-

value of W . Note that the matrix W has a lot of extra structure besides
being skew-Hamiltonian, which is not exploited if we apply Algorithm 10
directly to W .

Instead, we consider the shuffled matrix W̃ = (P ⊕ P )T W (P ⊕ P ),
where

P =
[

e1 e3 · · · e2n−1 e2 e4 · · · e2n

]

.

This matrix has the form

W̃ =

[

W̃A W̃G

W̃Q −W̃ T
A

]

,
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where each of the matrices W̃A, W̃G and W̃Q is a block matrix composed
of two-by-two blocks having the form

W̃X =

([

0 xij

−xij 0

])n

i,j=1

.

If an orthogonal symplectic matrix Q̃ has the form

Q̃ = (P ⊕ P )T









U1 0 U2 0
0 V1 0 V2

−U2 0 U1 0
0 −V2 0 V1









(P ⊕ P ), (34)

then Q̃T W̃ Q̃ is skew-Hamiltonian and has the same zero pattern as W̃ .

Lemma 15 The orthogonal symplectic factor of the PVL decomposition
computed by Algorithm 2 has the form (34).

Proof. Assume that after (j − 1) loops of Algorithm 2 the matrix W̃
has been overwritten by a matrix with the same zero pattern as W̃ . Let
x̃ denote the jth column of W̃ . If j is odd then x̃ can be written as
x̃ = x ⊗ e2 and if j is even then x̃ = x ⊗ e1, where x is a vector of
length 2n and e1, e2 are unit vectors of length two. This implies that
Algorithm 1 produces an elementary orthogonal matrix Ej(x) having

the same zero pattern as the matrix Q̃ in (34), see [Kressner, 2003b].
This shows that the j-th loop of Algorithm 2 preserves the zero pattern
of W̃ . The proof is concluded by using the fact that the set of matrices
having the form (34) is closed under multiplication.

It also shows that the PVL form returned by Algorithm 2 must take
the form

Q̃T W̃ Q̃ = (P ⊕ P )T









0 R11 0 R12

−R22 0 −RT
12 0

0 0 0 −RT
22

0 0 RT
11 0









(P ⊕ P ), (35)

where R11 is an upper triangular matrix and R22 is an upper Hessenberg
matrix. Rewriting (35) in terms of the block entries of W̃ and Q̃ yields

UT HV =

[

R11 R12

0 −RT
21

]

=





@

@@



 (36)

with the orthogonal symplectic matrices U =
[

U1

−U2

U2

U1

]

and V =
[

V1

−V2

V2

V1

]

.

This is a so called symplectic URV decomposition [Benner et al., 1998].
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As Algorithm 2 exclusively operates on the nonzero entries of W̃ it
should be possible to reformulate it purely in terms of these entries. This
amounts to the following algorithm [Benner et al., 1998, Alg. 4.4].

Algorithm 16 (Symplectic URV decomposition)
Input: A matrix H ∈ R

2n×2n.
Output: Orthogonal symplectic matrices U, V ∈ R

2n×2n; H is overwritten
with UT HV having the form (36).

U ← I2n, V ← I2n.
for j ← 1, 2, . . . , n

Set x← Hej .
Apply Algorithm 1 to compute Ej(x).
Update H ← Ej(x)T H, U ← UEj(x).
if j < n then

Set y ← HT en+j .
Apply Algorithm 1 to compute En+j+1(y).
Update H ← HEn+j+1(y), V ← V En+j+1(y).

end if
end for

If properly implemented, Algorithm 16 requires 80
3 n3 + O(n2) floating

point operations (flops) to reduce H and additionally 16
3 n3 +O(n2) flops

to compute each of the orthogonal symplectic factors U and V . Note
that Algorithm 16 does not require H to be a Hamiltonian matrix, but
even if H is Hamiltonian, this structure will be destroyed.

In the second step of Algorithm 10 the QR algorithm is applied to the
upper left 2n × 2n of the PVL form (35). In [Kressner, 2003b] it was
shown that this is equivalent to applying the periodic QR algorithm [
Bojanczyk et al., 1992; Hench and Laub, 1994; Van Loan, 1975] to the
matrix product −R22 · R11, which constructs orthogonal matrices Q1

and Q2 so that QT
1 R22Q2 is reduced to real Schur form while QT

2 R11Q1

stays upper triangular. The periodic QR algorithm is a backward stable
method for computing the eigenvalues of R22 · R11. The positive and
negative square roots of these eigenvalues are the eigenvalues of H.

The procedure, as described above, is a numerically backward stable
method for computing the eigenvalues of a Hamiltonian matrix H. It
preserves the eigenvalue symmetries of H in finite precision arithmetic
and its complexity is O(n3). As the periodic QR algorithm inherits the
reliability of the standard QR algorithm, this method can be regarded as
highly reliable. Its only drawback is that it does not take full advantage
of the structure of H. It is not clear whether the method is strongly
backward stable or not.
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E7 E7
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Figure 3. Illustration of two loops of Algorithm 16 for n = 4.

Computation of invariant subspaces based on H
2 Having com-

puted an invariant subspace for the skew-Hamiltonian matrix H2 it
is possible to extract invariant subspaces for H from it [Xu and Lu,
1995; Hwang et al., 2003]. However, we have already observed that the
explicit computation of H2 can lead to numerical instabilities and should
be avoided. The above idea of embedding H in a skew-Hamiltonian ma-
trix W of double dimension can be extended for computing invariant
subspaces, see [Benner et al., 1997]. However, it should be noted that
this approach might encounter numerical difficulties if H has eigenvalues
on or close to the imaginary axis.

Refinement of stable invariant subspaces With all the difficulties
in deriving a strongly backward stable method it might be preferable to
use some kind of iterative refinement algorithms to improve the quanti-
ties computed by a less stable method. This idea is used, for example,
in the multishift algorithm [Ammar et al., 1993] and hybrid methods for
solving algebraic Riccati equations [Benner and Faßbender, 2001].
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In the following we describe a method for improving an isotropic sub-
space X̂ that approximates the stable invariant subspace X of a Hamil-
tonian matrix H. Let the columns of X̂ span an orthonormal basis for
X̂ and consider

[

X̂ JX̂
]T

H
[

X̂ JX̂
]

=

[

Ã G̃

Q̃ −ÃT

]

.

If X̂ has been computed by a strongly backward stable method then
‖Q̃‖ is of order u · ‖H‖ and it is not possible to refine X̂ much further.
However, as we have seen before, if a less stable method has been used
then ‖Q̃‖ might be much larger. In this case we can apply the following

algorithm to improve the accuracy of X̂.

Algorithm 17
Input: A Hamiltonian matrix H ∈ R

2n×2n, a matrix X̂ ∈ R
2n×n so

that [X̂, JX̂] is orthogonal, and a tolerance tol > 0.

Output: The matrix X̂ is updated until ‖(JX̂)T HX̂‖F ≤ tol · ‖H‖F .

while ‖(JX̂)T HX̂‖F > tol · ‖H‖F
Set Ã← X̂T HX̂ and Q̃← (JX̂)T HX̂.
Solve the Lyapunov equation RÃ + ÃT R = −Q̃.
Compute Y ∈ R

2n×n so that [Y, JY ] is orthogonal and

span Y = span
([

I
−R

])

using a symplectic QR decomposition.

Update [X̂, JX̂]← [X̂, JX̂] · [Y, JY ].
end while

As this algorithm is a special instance of a Newton method for refining
invariant subspaces [Stewart, 1973; Chatelin, 1984; Demmel, 1987] or a
block Jacobi-like algorithm [Hüper and Van Dooren, 2003] it converges
locally quadratic. On the other hand, Algorithm 17 can be seen as a par-
ticular implementation of a Newton method for solving algebraic Riccati
equation [Kleinman, 1968; Lancaster and Rodman, 1995; Mehrmann,
1991]. By a more general result in [Guo and Lancaster, 1998], this im-
plies under some mild conditions global convergence if H has no eigen-
values on the imaginary axis and if the iteration is initialized with a
matrix X̂ so that all eigenvalues of Ã = X̂T HX̂ are in the open left half
plane C

−.
In finite precision arithmetic, the minimal attainable tolerance is tol ≈

n2 · u under the assumption that a forward stable method such as the
Bartels-Stewart method [Bartels and Stewart, 1972] is used to solve the
Lyapunov equations RÃ + ÃT R = −Q̃ [Higham, 1996; Tisseur, 2001].
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Other Algorithms As mentioned in the introduction there is a vast
number of algorithms for the Hamiltonian eigenvalue problem avail-
able. Other algorithms based on orthogonal transformations are the
Hamiltonian Jacobi algorithm [Byers, 1990; Bunse-Gerstner and Faßben-
der, 1997], its variants for Hamiltonian matrices that have additional
structure [Faßbender et al., 2001] and the multishift algorithm [Ammar
et al., 1993]. Algorithms based on symplectic but non-orthogonal trans-
formations include the SR algorithm [Bunse-Gerstner and Mehrmann,
1986; Bunse-Gerstner, 1986; Mehrmann, 1991] and related methods [
Bunse-Gerstner et al., 1989; Raines and Watkins, 1994]. A completely
different class of algorithms is based on the matrix sign function, see,
e.g., [Benner, 1999; Mehrmann, 1991; Sima, 1996] and the references
therein. Other Newton-like methods directed towards the computation
of invariant subspaces for Hamiltonian matrices can be found in [Absil
and Van Dooren, 2002; Guo and Lancaster, 1998].

A structure-preserving Arnoldi method based on the H2 approach was
developed in [Mehrmann and Watkins, 2000]. There are also a number
of symplectic Lanczos methods available, see [Benner and Faßbender,
1997; Ferng et al., 1997; Watkins, 2002].

The remarks on balancing and block algorithms at the end of Sec-
tion 2.3, carry over to Hamiltonian matrices. We only note that in [
Benner and Kressner, 2003], a balancing algorithm is described which is
particularly suited for large and sparse Hamiltonian matrices.

4. Applications

Most applications of skew-Hamiltonian and Hamiltonian eigenvalue
problems are in the area of systems and control theory. In the following,
we consider a linear continuous-time system with constant coefficients,
which can be described by a set of matrix differential and algebraic
equations

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,
y(t) = Cx(t) + Du(t),

(37)

where x(t) ∈ R
n is the vector of states, u(t) ∈ R

m the vector of inputs
(or controls) and y(t) ∈ R

r the vector of outputs at time t ∈ [0,∞). The
system is described by the state matrix A ∈ R

n×n, the input (control)
matrix B ∈ R

n×m, the output matrix C ∈ R
r×n and the feedthrough

matrix D ∈ R
r×m. It is much beyond the scope of this work to give

an introduction to such systems; for this purpose the reading might
be complemented with any modern, state-space oriented monograph in
this area, see e.g. [Green and Limebeer, 1995; Petkov et al., 1991; Van
Dooren, 2003; Zhou et al., 1996].
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4.1 Stability Radius Computation

The system (37) is called (asymptotically) stable if all eigenvalues
λ(A) of the state matrix A lie in C

−. It is often important to know how
near the system is to an unstable one, i.e., what is the smallest norm
perturbation E ∈ C

n×n so that λ(A + E) 6⊂ C
−. This corresponds to

the computation of the stability radius of A, which is defined as

γ(A) := min{‖E‖2 : λ(A + E) ∩ ıR 6= ∅}.

A bisection method for measuring γ(A) can be based on the following
observation [Byers, 1988]: if α ≥ 0, then the Hamiltonian matrix

H(α) =

[

A −αIn

αIn −AT

]

has an eigenvalue on the imaginary axis if and only if α ≥ γ(A). This
suggests a simple bisection algorithm. Start with a lower bound β ≥ 0
and an upper bound δ > γ(A) (an easy-to-compute upper bound is
‖A + AT ‖F /2 [Van Loan, 1984a]). Then in each step, set α := (β + δ)/2
and compute λ(H(α)). If there is an eigenvalue on the imaginary axis,
choose δ = α, otherwise, set β = α.

The correct decision whether H(α) has eigenvalues on the imaginary
axis is crucial for the success of the bisection method. [Byers, 1988] shows
that if the eigenvalues of H(α) are computed by a strongly backward
stable method, then the computed γ(A) will be within an O(u) · ‖A‖2-
distance of the exact stability radius.

4.2 H∞ Norm Computation

A similar problem is the computation of the H∞ norm of a stable
system. Consider the transfer function G(s) of a stable system of the
form (37),

G(s) = C(sI −A)−1B + D,

then
‖G‖H∞ = esssup{‖G(ıω)‖2 : ω ∈ R}.

is the H∞ norm of G, see e.g. [Green and Limebeer, 1995; Zhou et al.,
1996].

Let σmax(D) denote the largest singular value of D and let α ∈ R

be such that α > σmax(D). Then consider the parameter-dependent
Hamiltonian matrix

H(α) =

[

H11(α) H12(α)
H21(α) −H11(α)T

]

,
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where for R(α) = α2I −DT D,

H11(α) = A + BR(α)−1DT C,

H12(α) =
1

α2
BR(α)−1BT ,

H21(α) = −CT (I + DR(α)−1DT )C.

The following result can be used to approximate ‖G‖H∞ , see e.g. [Zhou
et al., 1996]:

‖G‖H∞ < α ⇔ σmax(D) < α and λ(H(α)) ∩ ıR = ∅.

Using this fact, a bisection algorithm analogous to the stability radius
computation can be formulated, starting with lower bound β = σmax(D)
and upper bound δ > ‖G‖H∞ , see [Boyd et al., 1989] for details. Again,
the bisection algorithm benefits if the decisions are based on eigenvalues
computed by a method preserving the eigenvalue symmetries of H(α).

Faster convergent versions of this algorithm, which also involve the
eigenvectors of H(α), can be found in [Genin et al., 1998].

4.3 Algebraic Riccati Equations

Given a Hamiltonian matrix H as in (2), there is always a correspond-
ing algebraic Riccati equation (ARE)

0 = Q + AT X + XA−XGX. (38)

AREs have played a fundamental role in systems and control theory
since the early 1960’s as they are the major tool to compute feedback
controllers using LQR/LQG (H2) or H∞ approaches. The correspon-
dence between feedback controllers and AREs can be found in liter-
ally any modern textbook on control, see, e.g., [Anderson and Moore,
1990; Green and Limebeer, 1995; Zhou et al., 1996] and many others. In
these applications, usually a particular solution of (38) is required which
is stabilizing in the sense that λ(A−GX) is contained in the open left
half plane. This solution is unique if it exists and is related to the Hami-
iltonian eigenproblem as follows. Suppose X is a symmetric solution of
(38), then it is easy to see that

H

[

In 0
−X In

]

=

[

In 0
−X In

] [

A−GX G
0 −(A−GX)T

]

.

Hence, the columns of [In, X]T span an H-invariant subspace corre-
sponding to λ(H)∩λ(A−GX). This implies that we can solve AREs by
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computing H-invariant subspaces. In particular, if we want the stabiliz-
ing solution, we need the maximal stable H-invariant subspace. Suppose
that a basis of this subspace is given by the columns of [XT

1 , XT
2 ]T with

X1, X2 ∈ R
n×n then, under mild assumptions, X1 is invertible and X =

−X2X
−1
1 is the stabilizing solution of (38). Therefore, any algorithm to

compute invariant subspaces of Hamiltonian matrices may be used to
solve AREs. For discussions of this topic see [Benner, 1999; Mehrmann,
1991; Sima, 1996]. It should be noted, though, that often the ARE is
a detour. In feedback control, the solution of the ARE can usually be
avoided by working only with the H-invariant subspaces, see [Benner
et al., 2003; Mehrmann, 1991].

A correspondence between the skew-Hamiltonian eigenproblem (1)
and the anti-symmetric ARE

0 = Q−AT X + XA−XGX, Q = −QT , G = −GT ,

is discussed in [Stefanovski and Trenčevski, 1998].

4.4 Quadratic Eigenvalue Problems

The quadratic eigenvalue problem (QEP) is to find scalars λ and
nonzero vectors x satisfying

(λ2M + λG + K)x = 0, (39)

where M, G, K ∈ R
n×n. It arises, for example, from linear systems

that are governed by second order differential equations, see [Tisseur
and Meerbergen, 2001]. Gyroscopic systems yield QEPs with symmetric
positive definite M , skew-symmetric G and symmetric K. In this case,
the eigenvalues of (39) have the same symmetries as in the Hamiltonian
eigenvalue problem, i.e., if λ is an eigenvalue then −λ, λ̄ and −λ̄ are also
eigenvalues.

By [Mehrmann and Watkins, 2000], a linearization of (39) reflect-
ing this property is the skew-Hamiltonian/Hamiltonian matrix pencil
λWLWR −H, where

WL =

[

I 1
2G

0 M

]

, WR =

[

M 1
2G

0 I

]

, H =

[

0 −K
M 0

]

.

From this, it is easy to see that W−1
L HW−1

R is Hamiltonian and has the
same eigenvalues as (39). Hence, a structure-preserving algorithm ap-
plied to W−1

L HW−1
R will preserve the eigenvalue pairings of (39). This

is particularly important for testing the stability of the underlying gy-
roscopic system, which amounts to checking whether all eigenvalues
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of (39) are on the imaginary axis, see e.g. [Tisseur and Meerbergen,
2001, Sec.5.3].

However, it should be noted that such an approach is only advis-
able as long as the matrix M is sufficiently well conditioned. Other-
wise, structure-preserving algorithms that work directly on the pencil
λWLWR − H should be preferred [Benner et al., 1998; Benner et al.,
2002].

Linearizations that lead to skew-Hamiltonian eigenvalue problems are
described in [Mehrmann and Watkins, 2000], and have been used for
computing corner singularities in anisotropic elastic structures [Apel
et al., 2002].

4.5 Other Applications

Other applications for Hamiltonian eigenvalue problems include pas-
sivity preserving model reduction [Antoulas and Sorensen, 2001; Sorensen,
2002], the computation of pseudospectra [Burke et al., 2003b] and the
distance to uncontrollability [Gu, 2000; Burke et al., 2003a].

5. Concluding Remarks

We have presented structured decompositions, condition numbers, al-
gorithms and applications for skew-Hamiltonian and Hamiltonian eigen-
value problems. It is our hope that the reader is now convinced that the
exploitation of such structures is an interesting area of research, not only
from a theoretical point of view but also with respect to applications.
Many problems remain open. In particular, Hamiltonian matrices with
eigenvalues on the imaginary axis require further investigation.

Most of the presented material is already available in the cited liter-
ature. In this survey, the novel pieces of the (skew-)Hamiltonian puzzle
are:

explicit formulas/bounds for the structured eigenvalue condition
numbers;

a relation between the structured and unstructured condition num-
bers for stable invariant subspaces of Hamiltonian matrices;

a new reordering algorithm for the Hamiltonian Schur form based
on symplectic QR decompositions; and

the derivation of the symplectic URV decomposition from the PVL
decomposition.
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