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2 A foreword

The present thesis is a cumulative dissertation. It covers research done in three
rather distinct areas of mathematics and has at its core six published papers.
This thesis also includes some individual work done by the author, inspired by
the papers and usually quite close in topic to them. Due to the very niche and
rather minor nature of some of these individual results, the author has chosen
not to pursue separate journal publication for them.

Section 3 discusses results concerning Balian-Low subspace phenomena, Sec-
tion 4 deals with quantitative approximation with complex valued or curse of
dimensionality avoiding neural networks and Section 5 mainly explores some
applications of a novel construction technique for Riesz exponential bases devel-
oped in the mid 2010s by Kozma and Nitzan. Section 6 contains the full arXiv
text of the six papers. References within the thesis to specific results from the
6 papers are based on the published versions.

The ordering of Sections 3, 4, 5 and the papers discussed within is chrono-
logical from the perspective of the author’s involvement with them. Broadly
speaking, the structure of these sections is the same, with an introduction to
the topic and a discussion of the related state of the art, followed by an overview
of the results of our relevant papers and, lastly, any additional work done by
the author of the present thesis inspired by or closely related to the papers.

The main goal of the exposition style chosen for this thesis was to keep
the technical formalities already fully detailed in the papers to a minimum in
the main body of the thesis, as long as this did not hamper legibility and the
flow of ideas. The otherwise unpublished material, especially in the subsections
with additional work done by the author, is presented in full formality. The
emphasis in writing the parts paraphrasing content contained in the six papers
was to streamline the presentation of the intuitive flow of ideas and to illustrate
the author’s perception of the respective topics.
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3 Balian-Low phenomena for subspaces

This section is based on three papers:

� ’A Balian-Low theorem for subspaces’ (co-authored with D.G. Lee, G.
Pfander and F. Philipp), published in The Journal of Fourier Analysis
and Applications in 2019, henceforth referred to as Paper 1, [Car+19];

� ’A quantitative subspace Balian-Low theorem’ (co-authored with D.G.
Lee, F. Philipp and F. Voigtlaender), published in Applied and Compu-
tational Harmonic Analysis in 2021, henceforth referred to as Paper 2,
[Car+21];

� ’A Balian-Low type theorem for Gabor Riesz sequences of arbitrary den-
sity’ (co-authored with D.G. Lee, F. Philipp and F. Voigtlaender), pub-
lished in Mathematische Zeitschrift in 2023, henceforth referred to as Pa-
per 3, [Car+23].

The section is organized as follows. Subsection 1 briefly discusses some gen-
eral harmonic analysis concepts and how the Balian-Low theorem has impacted
Gabor analysis. Furthermore, we address the context that inspired our three
papers. Subsection 2 broadly discusses the main ideas of each paper, with a
focus on the development and contributions to each paper and the connections
between them. Finally, subsection 3 highlights some peripheral results and ideas
of the author that were meaningful in the development of the papers, but were
replaced with simpler or more general versions in the published manuscripts.

3.1 Harmonic analysis and the Balian-Low theorem

The bedrock tool of harmonic analysis is the Fourier transform, densely defined
on the space L2(R) of square integrable functions on the real line as

f̂(ξ) =

∫

R
e−2πiξxf(x)dx.

The Fourier transform viewed as an operator is an isometry

F : L2(R) → L2(R̂)

where one usually regards R as the time axis and R̂ as the frequency axis.
Conceptually, the Fourier transform establishes an equivalence between the time
and the frequency content of a signal.

Perhaps the most fundamental illustration of this correspondence is Plancherel’s
formula concerning the Fourier series of a function with compact support.

Theorem 1 (Plancherel’s formula). Let {cn}n∈Z be an arbitrary ℓ2(Z) sequence
(i.e.,

∑
n∈Z |cn|2 < ∞). Then there exists a unique signal f ∈ L2([0, 1]) sat-

isfying f̂(n) = cn for all n ∈ Z. f can be written as an L2 function as
f(x) =

∑
n∈Z cne

2πinx, with convergence in the L2 sense.
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Informally put, this implies that a signal supported on [0, 1] (in time) is
fully determined by the magnitude of its integer frequencies. From a differ-
ent perspective, Plancherel’s formula implies that the pure frequency signals
x 7→ e2πinx span (in fact form an orthonormal basis for) the set of of all square
integrable signals with time domain [0, 1]. This latter viewpoint motivates a
more detailed look at various notions of bases in a Hilbert space.

Definition 1. Let H be a Hilbert space with respect to the inner product ⟨·, ·⟩ :
H ×H → C. A collection of vectors {hn}n∈Z is called

� a Frame if there exist constants A,B > 0 such that for any element h ∈ H
the following double-sided inequality holds

A∥h∥2H ≤
∑

n∈Z
|⟨h, hn⟩|2 ≤ B∥h∥2H .

� a Riesz basis if the hn vectors span H and there exist constants A,B > 0
such that for any coefficient sequence {cn}n∈Z ∈ ℓ2 the following double-
sided inequality holds

A∥{cn}∥22 ≤ ∥
∑

n∈Z
cnhn∥2H ≤ B∥{cn}∥22.

Alternatively, a Riesz basis is a frame with no redundancy.

� an Orthonormal basis if it is a Riesz basis with the additional property
that

⟨hn, hm⟩ = δn,m.

Remark 1. There are other equivalent definitions for all of these notions. A
detailed discussion can be found in Chapter 5.1 of [Grö01]. One often extends
these definitions to frame (or Riesz or orthonormal) sequences if the conditions
are satisfied only for a proper subspace (namely the subspace spanned by the
elements of the frame or Riesz or orthonormal sequence) of the ambient Hilbert
space H.

The crucial aspect of these different notions of a basis for a Hilbert space is
that they give rise to reconstruction formulas (non-unique in the case of a frame
and unique for Riesz and orthonormal bases). Given a frame {hn}n, one can
define the frame operator

S : H → H, S(h) =
∑

n

⟨h, hn⟩hn,

which is a boundedly invertible self-adjoint operator on H (Chapter 5.1 in

[Grö01]). This allows the construction of the canonical dual frame {h̃n}n
given by h̃n := S−1hn. A direct computation using the linearity and self-
adjointness of S−1 gives the reconstruction formulas

h =
∑

n

⟨h, hn⟩h̃n =
∑

n

⟨h, h̃n⟩hn

5



which hold for all h ∈ H, implying that any signal in H can be encoded with-
out loss as a discrete linear combination of the frame signals with coefficients
determined by inner products with the dual frame (or vice-versa).

Returning to the classical Fourier context, settingH = L2([0, 1]) and fn(x) =

e2πinx for all n ∈ Z, the Fourier series can be rewritten as f̂(n) = ⟨f, f−n⟩ (the
minus arising from the conjugation in the second term of the complex inner
product) and then Plancherel’s formula becomes

f =
∑

n∈Z
⟨f, f−n⟩f−n =

∑

n∈Z
⟨f, fn⟩fn.

Viewing the Fourier series as a frame for L2([0, 1]) (it is in fact an ONB)

with frame operator being the identity, it is self-dual, meaning that f̃n = fn and
thus Plancherel’s formula is simply the generic frame reconstruction formula for
the Fourier transform.

Gabor analysis focuses on studying basis properties of discrete (or contin-
uous) collections of functions that are time and frequency translations of each
other.

Definition 2. Given constants u ∈ R and η ∈ R̂, the time shift or translation
and frequency shift or modulation operators are defined, respectively, as

� Tu : L2(R) → L2(R), Tuf(x) = f(x− u).

� Mη : L2(R) → L2(R), Mηf(x) = e2πiηxf(x).

Their composition π(u, η) = MηTu is called the time-frequency shift op-
erator.

Given a fixed L2 function g called a Gabor window and a discrete time-
frequency set Γ ⊂ R× R̂, the associated Gabor system is given by

(g,Γ) = {π(u, η)g : (u, η) ∈ Γ}.

The L2 closure of the linear span of the Gabor system is called the associated
Gabor space and is denoted by G(g,Γ).

The example of the Fourier ONB for L2([0, 1]) can be rephrased in this

language as follows. Setting g := 1[0,1] and Γ = {0} × Ẑ, we have that (g,Γ) is
an ONB for the Gabor space G(g,Γ) = L2([0, 1]) as the pure frequency signals
are just integer modulations of the characteristic function.

Definition 3. A subset Λ ⊂ R2 is called a (non-degenerate) lattice if there
exists some (invertible) matrix A such that Λ = AZ2. Its density is the quantity

1
detA .

Remark 2. � Starting from this point we shall omit writing R̂ (and Â for
subsets) for the frequency axis and we will instead write R (or A for sub-
sets) since the symmetry between time and frequency domains in Gabor
analysis makes the overburdened notation superfluous.
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� There are works discussing Gabor frames and bases in the general case of
arbitrary discrete sets Γ ⊂ R2 (e.g. [FS07]), but we restrict our work to
regular Gabor systems where the time-frequency set is a (non-degenerate)
lattice Λ ⊂ R2.

The prototypical (non-degenerate) example of a Gabor basis is the system
(1[0,1],Z2) which forms an ONB for L2(R). This can be seen as a consequence of
the fact that if f ∈ L2(R), then for any integer n ∈ Z, the restriction f ·1[n,n+1]

is an element of L2([n, n + 1]) which admits as an ONB the Gabor system
(1[0,1], {−n} × Z) = (1[n,n+1], {0} × Z).

The main practical issue with the basis (1[0,1],Z2) is the fact that the fre-
quency content of the characteristic function is not well-localized with respect
to the 2-norm:

1̂[0,1](ξ) =

∫

R
e−2πiξx

1[0,1](x)dx

=

∫ 1

0

e−2πiξxdx

=
1− e−2πiξ

2πiξ

=
eπiξ − e−πiξ

2πiξ
e−πiξ

= sinc(ξ)e−πiξ,

where the (normalized) sinc function is defined as sinc(x) = sinπx
πx .

Definition 4. A signal f ∈ L2(R) is said to be well-localized in the time-
frequency plane if its position and momentum are both square integrable ([Bat88]),
i.e., if ∫

R
|xf(x)|2dx ·

∫

R
|ξf̂(ξ)|2dξ < ∞.

Having in mind the fact that the momentum of the signal ξf̂(ξ) is the Fourier
transform of the derivative of f , we define the mixed Sobolev space

H1 := {f ∈ L2(R) : x 7→ x · f(x) ∈ L2(R) and ξ 7→ ξf̂(ξ) ∈ L2(R)}

as the set of well-localized square integrable signals.

With this definition, one can see that the characteristic function 1[0,1] is
well-localized in time, but not in frequency as x 7→ x · sinc(x) is not square
integrable. The system (1[0,1],Z2) forms a basis for L2(R) at the cost of the
localization of the Gabor window. The fact that this phenomenon is general,
i.e., that it occurs for all windows, is the Balian-Low theorem.

Theorem 2 (Classical Balian-Low,[Bal81; Fra85; Bat88; Dau90; BHW95]). Let
g ∈ H1. Then the Gabor system (g,Λ) cannot form a Riesz basis for L2(R).
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Remark 3. � The theorem was stated for ONBs by Balian and Low inde-
pendently, but their suggested proofs had some technical issues. The first
formal proof for the ONB setting that the author is aware of belongs to Bat-
tle and has a strong physics flavor ([Bat88]). Daubechies provided a ‘con-
temporary’ proof that extended the result to Riesz bases as well ([Dau90]).

� In order for any window to have the chance to form a Riesz basis with time-
frequency shifts from a lattice, the density of that lattice must necessarily
be 1 (Corollary 7.5.2 in [Grö01]). Restricting to Λ with density 1, the
system (g,Λ) cannot even be a frame if g is well-localized (due to Ron-
Shen duality, Theorem 7.4.3 in [Grö01], see for instance Corollary 8.4.3
in [Grö01]).

Fundamentally, the Balian-Low theorem states that ’too much regularity’ of
the window prevents the Gabor system from forming a basis for the space of
square integrable signals. There is a second well-established meaning of ’regu-
larity’ in this context in the literature.

Theorem 3 (Amalgam Balian-Low, [BHW95]). Let W (C0, ℓ
1) be the Wiener

amalgam space

W (C0, ℓ
1) := {f ∈ L2(R) : ∥f∥∞,1 =

∑

n∈Z
∥f · 1[n,n+1]∥∞ < ∞, f continuous}

If the Gabor system (g, aZ × bZ) forms a Riesz basis for L2(R), then g /∈
W (C0, ℓ

1) and ĝ /∈ W (C0, ℓ
1).

Remark 4. Due to the ubiquitous nature of the Feichtinger algebra S0 in har-
monic analysis ([Fei81], p.246 of [Grö01]),

S0 = {f ∈ L2(R) : Vff(u, η) = ⟨f, π(u, η)f⟩ ∈ L1(R2)},

the amalgam Balian-Low theorem is usually stated in the following, slightly
weaker way: if g ∈ S0, then (g,Λ) cannot be a Riesz basis for L2(R). Note that
the Feichtinger algebra is invariant under the Fourier transform, i.e., f ∈ S0 if
and only if f̂ ∈ S0. Additionally, S0 ⊂ W (C0, ℓ

1).

A crucial observation made by Cabrelli, Molter and Pfander was that amal-
gam regularity of the Gabor window not only prevents the Gabor system from
being a basis for L2(R), but also limits the ’size’ of the associated Gabor space
for which the system is basic. More precisely, the Gabor space cannot contain
any time-frequency shifts of the window that are not already in the lattice giving
rise to the Gabor system.

Theorem 4 ([CMP16]). Let Λ ⊂ R2 be a rational density lattice and let g ∈ S0.
If (g,Λ) forms a Riesz basis for the proper subspace G(g,Λ) ⊂ L2(R), then
π(u, η)g /∈ G(g,Λ) whenever (u, η) /∈ Λ.

This result raised two clear questions.
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Problem 1. Does classical regularity (i.e., g ∈ H1) also prevent the Gabor
space from containing additional time-frequency shifts of the window?

Problem 2. Once one looks at Gabor systems (g,Λ) forming Riesz sequences
(i.e., the associated Gabor spaces are proper closed subspaces of L2(R)), the
density of the lattice Λ can in principle take any value smaller than 1. The use
of a winding number argument on the Zak transform of the window in the proof
of Theorem 4 is contingent on the density of Λ being rational. Is this just a proof
artifact or does Theorem 4 fail if the density of Λ is allowed to be irrational?
Can one drop the rational density condition in the classical regularity setting?

These two questions are the motivation for the three papers presented in
this section.

3.2 A brief overview of the three papers

Broadly speaking, the main results contained in the three papers are as follows:

� Paper 1 solves Problem 1 in the affirmative.

� Paper 2 extends and uses the results in Paper 1 to show that if g ∈ H1

and (g,Λ) is a Riesz sequence, then the distance between π(u, η)g and
G(g,Λ) (measured in L2(R)) is proportional to the Euclidean distance
between the time-frequency pair (u, η) and the lattice Λ.

� Paper 3 settles the first part of Problem 2. We show that the rational
density condition on Λ is indeed superfluous if g ∈ S0.

Before discussing each paper in more detail, we provide some more general
remarks and context about the work done.

The author of the present thesis was first introduced to the topic and the
paper [CMP16] and the two arising questions by his advisor, G. Pfander, during
the author’s Master’s degree. The main result of the author’s Master thesis was
to show that a relaxation of the amalgam regularity condition (namely that
the Zak transform, formally introduced in Definition 5 below, of the window
is assumed to be continuous on almost every section) does not necessarily lead
to subspace Balian-Low phenomena. Explicitly, examples were constructed of
Gabor windows with almost every section continuous Zak transform that formed
Riesz sequences with lattices of the form Z × PZ, for some natural P , such
that the associated Gabor spaces contained additional time-frequency shifts. A
full characterization of the permissible time and frequency coordinates of the
additional shits was also included.

Therefore, the continuation of this project into the PhD period of the au-
thor’s studies was natural and constituted the main focus of the initial phase of
the PhD. The development of the last two papers was partially covered by the
author’s involvement in the DFG project PF 450/11-1. The team working on
the project grew organically by the author discussing the problem and partial
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solutions and ideas with the other members of his advisor’s workgroup. Vir-
tually all of the main ideas present in the final form of the three papers were
obtained during group discussions over the blackboard (a notable exception that
springs to mind is the use of the Walnut representation in Step 1 of the proof of
Theorem 8 in Paper 3, an idea that came from F. Voigtlaender and D.G. Lee;
another exception would be one of the equivalent conditions of Theorem 11 in
Paper 3 that was the idea of F. Philipp).

The three papers are presented in chronological order of their development.
Paper 1 and Paper 2 were relatively close chronologically speaking. Some
time elapsed between the formulation of Theorem 11 in Paper 3 and the final
version of that manuscript. The essential idea of looking at irrational rotation
algebras to make use of Theorem 11 was suggested to us by K. Gröchenig at
the SampTA conference in 2019.

3.2.1 Paper 1

As mentioned before, the key tool for the amalgam subspace Balian-Low theo-
rem in [CMP16] was the Zak transform.

Definition 5. Let f ∈ L1(R) ∩ L2(R). The Zak transform (Chapter 8.1 in
[Grö01]) is almost everywhere defined on R2 as

Zf(x, ω) =
∑

k∈Z
f(x+ k)e−2πikω,

with L2 convergence.

The definition extends to a unitary operator Z : L2(R) → L2([0, 1]2) due to
the quasi-periodicity of the Zak transform,

Zf(x+m,ω + n) = e2πimωZf(x, ω) for all (x, ω) ∈ R2 and all m,n ∈ Z.

The main properties of the Zak transform are collected in Lemma 2.2 (of
Paper 1) and an exploration of the symmetries of the Zak transform in the
context of a Gabor system can be found in Section 2.

On a rational density lattice, the condition of the Gabor space containing
a time-frequency shift of the Gabor window can be equivalently rewritten as
a functional equation involving the Zak transform and an additional bivariate
function h (see Step 3 in the proof of the main theorem of [CMP16] or the proof
of Proposition 4.1 in Paper 1). Crucially, due to the nature of this functional
equation, the helper function h inherits the regularity of the Zak transform.

In the case of the window g being in the Feichtinger algebra S0, the Zak
transform Zg is easily seen to be continuous. This implies that the helper
function h is also continuous and allowed the authors of [CMP16] to use a
winding number argument (Proposition 3 in [CMP16]) to derive divisibility
restrictions on the time-frequency parameters of any shift π(u, η)g contained in
the Gabor space G(g,Λ). These restrictions ruled out any time-frequency pairs
not already contained in the lattice Λ.
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In the classical Balian-Low setting of g ∈ H1, the major difficulty to overcome
was the fact that the Zak transform Zg is not necessarily continuous.

The key find to address this issue was the work of Gautam ([Gau08]). To
our knowledge, he was the first to realize that the correct regularity condition
on the Zak transform of a well-localized window g was local vanishing mean
oscillation, i.e., that g ∈ H1 implies Zg ∈ VMOloc(R2) (a detailed discussion of
VMO functions can be found in Section 3 of Paper 1). In fact Gautam proved
the following version of the Balian-Low theorem.

Theorem 5 ([Gau08]). Let g ∈ L2(R). If the Gabor system (g,Z2) forms a
Riesz basis for L2(R), then Zg /∈ VMOloc(R2). Moreover, Zg /∈ VMOloc(R2)
implies that for any p, q ∈ (1,∞) with 1

p + 1
q = 1 we have

∫

R
|x|p|g(x)|2dx ·

∫

R
|ξ|q|ĝ(ξ)|2dξ = ∞.

The main result of Paper 1 is a generalization of this and solves in slightly
more generality Problem 1.

Theorem 6 (Theorem 1.4 in Paper 1). Let g ∈ L2(R) and let Λ ⊂ R2 be a
rational density lattice. If the system (g,Λ) is a Riesz sequence and if π(u, η)g ∈
G(g,Λ) for some (u, η) /∈ Λ, then for any p, q ∈ (1,∞) with 1

p + 1
q = 1 we have

∫

R
|x|p|g(x)|2dx ·

∫

R
|ξ|q|ĝ(ξ)|2dξ = ∞.

Conceptually, the proof of Theorem 6 follows along the steps of the proof
of the main theorem of [CMP16], by first reducing to the case of Λ = 1

QZ ×
PZ with P,Q coprime integers using symplectic operators and then writing a
characterization of an additional time-frequency shift in the Gabor space as a
functional equation involving Zg and a helper function h. The winding number
argument for VMOloc(R2) functions (like h) is given in Proposition 3.6 and relies
on approximating both the Zak transform and h with continuous counterparts.

An interesting additional result obtained is the following.

Theorem 7 (Theorem 1.5 in Paper 1). Let g ∈ L2(R) and let Λ = AZ2 for
some A ∈ GL(2,Q). If (g,Λ) is a Riesz sequence and π(u, η)g ∈ G(g,Λ) for
some pair (u, η) /∈ Λ, then Zg /∈ VMOloc(R2).

Considering the fact that either g ∈ S0 or g ∈ H1 imply Zg ∈ VMOloc(R2),
this result provides a unified framework for Balian-Low subspace phenomena
(both classical and amalgam regularity assumptions) under the condition that
the lattice Λ not only has rational density, but consists only of rational vectors.
This additional restriction (concerning the lattice) stems from the fact that, as
far as we were able to prove, the space of vanishing oscillation functions is not
fully invariant under symplectic operators (a more detailed discussion of this
can be found in Proposition 3.11 of Paper 1).
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3.2.2 Paper 2

This work can be viewed as a quantitative extension of Paper 1 in the case of
classical regularity. The motivation is loosely based on an OFDM communica-
tion viewpoint.

Assume a signal f ∈ G(g,Λ) is transmitted through a linear channel modeled
by a simple time-frequency shift operator π(u, η). The task of the receiver is
to recover the original signal f from the distorted signal π(u, η)f using the
canonical dual frame reconstruction formula. Due to the Balian-Low theorem,
if g is well-localized in time and frequency (which is often desirable), it is possible
that the distorted signal π(u, η)f will fall outside the Gabor space G(g,Λ) and
therefore the receiver will only have access to PGπ(u, η)f (the projection of the
distorted signal onto the Gabor space) instead of the actual distorted signal.
The question in this toy model therefore is, assuming the original signal was
the window itself, can the off-band energy loss ∥(Id − PG)π(u, η)g∥L2(R) be
quantified?

This is answered in the affirmative by the main result of Paper 2.

Theorem 8 (Theorem 1.3 in Paper 2). Let g ∈ H1 and let Λ ⊂ R2 be a rational
density lattice such that the system (g,Λ) forms a Riesz sequence. Then there
exist constants C1, C2 > 0 such that for all (u, η) ∈ R2

C1 · dist((u, η),Λ) ≤ dist(π(u, η)g,G(g,Λ)) ≤ C2 · dist((u, η),Λ),

where the outer distances are Euclidean and the inner distance is measured by
the L2 norm.

The proof of this result relies on the observation that the time-frequency
map Sg : R2 → L2(R) given by Sg(u, η) = π(u, η)g is (Fréchet) differentiable if
g ∈ H1 with the derivative at (0, 0) given by (u, η) 7→ −ug′ +2πiηXg, where X
is the position operator mentioned before (Xf(x) = xf(x)). This is discussed
in Lemma 3.2 (of Paper 2).

Section 2 (of Paper 2) recasts the distances involved in Theorem 8 in terms
of matrix operators using the regularity of the Zak transform of the window and
Section 4 shows that the function −ug′+2πiηXg cannot lie in the Gabor space
when (u, η) ̸= (0, 0) under the given assumptions, based on Theorem 6.

This establishes the estimate of Theorem 8 in a small neighborhood of the
lattice Λ and then a compactness argument together with Theorem 6 is used to
extend this to the rest of the time-frequency plane.

3.2.3 Paper 3

As previously pointed out, the fundamental tool for the main results of both
[CMP16] and Paper 1 was rewriting the condition of π(u, η)g ∈ G(g,Λ) in terms
of a functional equation involving the Zak transform Zg and a helper function
h. Exploiting symmetries of the Zak transform and the lattice, one could cancel
out the Zak transform and be left with a functional equation involving just h.
Through this equation, the regularity of h was sufficient to derive constraints on
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the time-frequency parameters (u, η) that ruled out time-frequency shifts not
already contained in the lattice Λ.

Crucially, the step of canceling out the Zak transform relies on the lattice
Λ being symplectically equivalent to a lattice with rational vectors. Since sym-
plectic operators preserve the density of the lattice, it is clear that this technique
cannot be extended to general lattices Λ (i.e., lattices with irrational density).

Initially, we were only able to prove a different characterization of π(u, η)g ∈
G(g,Λ) independent of Zak transform methods, which is contained in Theorem
11 (of Paper 3). The main component of this characterization (condition (iv)
in Theorem 11) was a new biorthogonal relation involving the window, the dual
window and the adjoint lattice.

Interestingly, this was sufficient for proving that Problem 2 is true in the
special case of a Gaussian window.

The generalization to arbitrary g ∈ S0 (Theorem 1 of Paper 3) was made
possible by the suggestion of K. Gröchenig to look at the traces of projections
on the irrational rotation algebra generated by the translation and modulation
operators of a time-frequency shift contained in the Gabor space (a precise
statement is given in Theorem 14 and discussed in the Appendix of Paper 3).

3.3 Additional work done by the author

The author of this thesis would like to bring forth two results he worked on
that were rendered superfluous by the eventual technical development of the
papers discussed here. The author considers these results too minor to warrant
an independent publication.

The first result is a technical characterization of VMO functions that was
motivated by what can only be described as a case of ‘group miscomputation’.
During the early phases of the development of Paper 1, we struggled with
showing that the space of locally vanishing mean oscillation functions was closed
under multiplication and under taking arithmetic inverses (assuming the original
function is bounded away from 0). The characterization gave rise to a proof of
these facts, although in a unnecessarily technically involved way (as can be seen
from Lemma 3.3 and Corollary 3.4 of Paper 1).

The second result was the simplified toy-model case that inspired the general
interplay between the differential equations on the Zak transform and the dis-
tance bounds obtained in Paper 2. Due to the restricted nature of this simple
case, the proof is much more straightforward.

3.3.1 A characterization of VMO functions

As stated before, the inspiration for finding a technical characterization of VMO
functions was the need to prove that the function space VMOloc was closed
under multiplication and taking (arithmetic) inverses of functions bounded away
from 0. We include the relevant definitions here. Theorem 9 characterizes
vanishing mean oscillation functions in terms of the ‘non-separatness’ of their
ranges and Propositions 1 and 2 prove the desired closedness results.
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The much more natural Lemma 3.3 in Paper 1 ended up replacing Theo-
rem 9 as the simpler tool to establish closedness results. Corollary 3.4 in Paper
1 made the initial purpose of this side note obsolete (i.e. Propositions 1 and 2),
but Theorem 9 might still present some technical interest on its own.

Definition 6. An L1
loc (i.e., locally integrable) function f is said to have van-

ishing mean oscillation if

lim
a↓0

sup
|Q|<a

1
|Q|

∫

Q

|f(x)− fQ|dx = 0.

Here Q is allowed to be any finite length open interval and |Q| is the Lebesgue
measure of Q. Additionally, fQ is the average value of the function f over such
an interval Q, i.e.

fQ = 1
|Q|

∫

Q

f(x)dx.

Then the space VMO is defined as

VMO = {f ∈ L1
loc : f has vanishingmean oscillation}.

Definition 7. We say that an f ∈ L∞ has locally separable range if there
exist r, c > 0 and there exists a sequence of triplets of sets {(Qn, Un, Vn)}n∈N
satisfying Qn is an interval with |Qn| < 1

n and Un, Vn ⊂ Qn such that the
following two conditions hold simultaneously for all n:

1. infx∈Un,y∈Vn
|f(x)− f(y)| ≥ c,

2. min( |Un|
|Qn| ,

|Vn|
|Qn| ) ≥ r.

Remark 5. It is important to point out that the second condition makes this
definition not trivial i.e., not trivially satisfied by pretty much any function.
Indeed, without the second condition, one could simply take any r, c > 0 and any
sequence of intervals {Qn}n and simply set Un, Vn = ∅ for all n. Equivalently,
since we are dealing with equivalence classes of functions defined up to zero sets,
one could also take Un, Vn to be arbitrary null subsets of Qn.

Some typical examples of functions that have locally separable range would be
step functions or functions defined as the characteristic functions of fat Cantor
sets.

Theorem 9. Let f ∈ L∞. Then f /∈ VMO if and only if f has locally separable
range.

Proof. ⇐= Since f has locally separable range we know there exist r, c > 0
and a sequence {(Qn, Un, Vn)}n∈N as in the definition.

Pick Q := Qn arbitrarily from the family of intervals and let fQ be the
average of f on Q. For simplicity of notation we shall also set U := Un and
V := Vn. By triangle inequality it follows trivially that

max(dist(fQ, f(U)), dist(fQ, f(V ))) > c
3
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since otherwise we would have that dist(f(U), f(V )) < c. Without loss of
generality, let us assume that infx∈U |f(x)− fQ| = dist(fQ, f(U)) > c

3 .
Then we have that

1
|Q|

∫

Q

|f(x)− fQ|dx ≥ 1
|Q|

∫

U

|f(x)− fQ|dx

> 1
|Q|

∫

U

c
3dx

= c
3
|U |
|Q|

≥ cr
3 .

Since n ∈ N was chosen arbitrarily, it is obvious that f cannot have vanishing
mean oscillation.

=⇒ Let ∥f∥ := ∥f∥∞ < ∞ be the essential supremum of f and assume
that f does not have vanishing mean oscillation. Then there exists a constant
c > 0 and a sequence of intervals {Qn}n∈N such that, for any n, 1

|Qn|
∫
Qn

|f(x)−
fQn

|dx ≥ c and |Qn| < 1
n . This of course in particular implies that ∥f∥ > 0.

We partition each of the intervals Qn into Sn := {x ∈ Qn : |f(x)−fQn
| ≥ c

2}
and Tn := {x ∈ Qn : |f(x)− fQn

| < c
2}.

Therefore we have that

c ≤ 1
|Qn|

∫

Qn

|f(x)− fQn
|dx

= 1
|Qn|

∫

Sn

|f(x)− fQn
|dx+ 1

|Qn|

∫

Tn

|f(x)− fQn
|dx

≤ 1
|Qn|

∫

Sn

2∥f∥dx+ 1
|Qn|

∫

Tn

c
2dx

≤ 2∥f∥ |Sn|
|Qn| +

c
2 ,

and then that |Sn|
|Qn| >

c
4∥f∥ for all n.

Now letWn := {x ∈ Qn : |f(x)−fQn
| < c

4} and suppose that limn→∞
|Wn|
|Qn| ̸=

0. Then, by possibly passing to a subsequence of intervals, we can find a uniform

bound t > 0 such that |Wn|
|Qn| > t for all n. Now we can simply set Un =

Sn, Vn = Wn and the function f has locally separable range with constants
r = min( c

4∥f∥ , t) and
c
4 .

So we may assume without loss of generality that limn→∞
|Wn|
|Qn| = 0. Now

let An be the annulus in the complex plane centered at fQn with inner radius
c
4 and outer radius 2∥f∥. The previous limit being 0 implies that for n large

enough we have that |f−1(An)|
|Qn| ≥ 24

25 and that |Wn|
|Qn| ≤

1
25 .

Now let us partition the annulus An into 6 congruent slices of angular width
π
3 and consider the preimages under f of these slices. At least one of them,
which we shall denote by Un, satisfies, by the pigeonhole principle, the inequality

|Un|
|f−1(An)| ≥

1
6 and therefore |Un|

|Qn| ≥
4
25 . Without loss of generality we can rotate
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the coordinates to make sure that the image f(Un) corresponds to the slice of
the annulus spanning between the angles −π

6 and π
6 .

Let Vn be the preimage under f of the half of the annulus opposite to f(Un)
i.e., the left half spanning between the angles π

2 and 3π
2 or the half obtained by

removing f(Un) and its two immediately adjacent slices.
Let us denote by Q+

n the preimage of the right half plane centered at fQn

and by Q−
n that of the left half plane. Then in view of the fact that fQn is the

average of the function we have that
∫
Q+

n
f(x)−fQndx = −

∫
Q−

n
f(x)−fQndx and

therefore that |
∫
Q+

n
ℜ(f(x)− fQn

)dx| = |
∫
Q−

n
ℜ(f(x)− fQn

)dx|, where ℜ(z) is
the real part of the complex number z.

Now clearly |
∫
Q+

n
ℜ(f(x)− fQn

)dx| ≥ |
∫
Un

ℜ(f(x)− fQn
)dx| ≥ c

4 cos
π
6 |Un| =√

3c
8 |Un|.
On the other hand, we also have that

|
∫

Q−
n

ℜ(f(x)− fQn
)| ≤ |

∫

Vn

ℜ(f(x)− fQn
)dx|+ |

∫

Wn

ℜ(f(x)− fQn
)dx|

≤
∫

Vn

2∥f∥dx+

∫

Wn

c
4dx

= 2∥f∥|Vn|+ c
4 |Wn|.

Combining the two inequalities and dividing by |Qn| we obtain that

√
3c
50 ≤

√
3c
8

|Un|
|Qn|

≤ 2∥f∥ |Vn|
|Qn| +

c
4
|Wn|
|Qn|

≤ 2∥f∥ |Vn|
|Qn| +

c
100 ,

so |Vn|
|Qn| ≥

(2
√
3−1)c

200∥f∥ > c
100∥f∥ .

Moreover, it is easy to see that dist(f(Un), f(Vn)) ≥ c
4 and therefore we

have that f has locally separable range with constants r = min( 4
25 ,

c
100∥f∥ ) and

c
4 thus completing the proof.

Proposition 1. The space L∞ ∩ VMO is closed under multiplication.

Proof. Let f, g ∈ L∞ ∩ VMO and assume that fg /∈ VMO. Then fg must
have locally separable range so there exist constants r, c > 0 and a sequence
{(Qn, Un, Vn)} as in the definition. In particular, for any n we have that
|f(x)g(x)− f(y)g(y)| ≥ c for all x ∈ Un, y ∈ Vn.

From triangle inequality it follows that c ≤ |f(x)||g(x)−g(y)|+ |g(y)||f(x)−
f(y)| ≤ ∥f∥|g(x) − g(y)| + ∥g∥|f(x) − f(y)|. Therefore we must have that for
all x ∈ Un, y ∈ Vn either |f(x)− f(y)| ≥ c

2∥g∥ or that |g(x)− g(y)| ≥ c
2∥f∥ .

Let t := c
2max(∥f∥,∥g∥) > 0. Then for any x ∈ Un, y ∈ Vn we have that

t ≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ |f(x)− fQn

|+ |f(y)− fQn
|+ |g(x)− gQn

|+ |g(y)− gQn
|.
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Now we can integrate over Un and Vn (all functions are essentially bounded
and the domains of integration have finite measure) to get

t|Un||Vn| ≤
∫

Un

∫

Vn

(|f(x)− fQn |+ |f(y)− fQn |+ |g(x)− gQn |+ |g(y)− gQn |)dydx

= |Vn|
∫

Un

|f(x)− fQn
|dx+ |Un|

∫

Vn

|f(y)− fQn
|dy

+ |Vn|
∫

Un

|g(x)− gQn
|dx+ |Un|

∫

Vn

|g(y)− gQn
|dy

≤ max(|Un|, |Vn|)(
∫

Un∪Vn

|f(x)− fQn
|dx+

∫

Un∪Vn

|g(x)− gQn
|dx)

≤ max(|Un|, |Vn|)(
∫

Qn

|f(x)− fQn
|dx+

∫

Qn

|g(x)− gQn
|dx).

Therefore we must have that 1
|Qn|

∫
Qn

|f(x) − fQn |dx + 1
|Qn|

∫
Qn

|g(x) −
gQn

|dx ≥ tmin(|Un|,|Vn|)
|Qn| ≥ tr for any n. But this immediately implies that

f and g cannot simultaneously have vanishing mean oscillation, a contradic-
tion.

Proposition 2. Let f ∈ L∞∩VMO be essentially bounded away from 0. Then
also 1

f ∈ VMO.

Proof. Assume 1
f has locally separable range. Then we can find constants r, c >

0 and a sequence {(Qn, Un, Vn)}n∈N as in the definition.
Then for any n we will have that | 1

f(x) − 1
f(y) | ≥ c for any x ∈ Un, y ∈ Vn.

But this immediately implies that |f(x) − f(y)| ≥ c∥ 1
f ∥−2, so f has locally

separable range with constants r and c∥ 1
f ∥−2, a contradiction.

3.3.2 A toy-model case: the derivative of the time-frequency map
does not lie in the Gabor space

Proposition 3. Consider the lattice Λ = Z×2Z and let g ∈ H1 such that (g,Λ)
is a Riesz sequence. Then g′ /∈ G(g,Λ).
Sketch of proof. First, note that g′ = −(−1)g′+2πi0Xg is the derivative of the
time-frequency map evaluated at (−1, 0).

Step 1 The Riesz sequence condition implies that the inequality

2A ≤ |Zg(x, ω)|2 + |Zg(x+ 1
2 , ω)|2 ≤ 2B (1)

holds almost everywhere with A,B being the Riesz sequence constants (see for
example Lemma 2.3 of Paper 1 or the discussion on page 6 of [CMP16]).

Step 2 Assume that g′ ∈ G(g,Λ). Then there exists some locally square
integrable bivariate function h that is 1

2 periodic in the first coordinate and 1
periodic in the second coordinate such that

∂1Zg(x, ω) = h(x, ω)Zg(x, ω),
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where ∂1 is the derivative with respect to the time coordinate (see for example
Lemma 2.4 of Paper 2).

Step 3 Solving the elementary PDE leads to

Zg(x, ω) = Zg(0, ω)e
∫ x
0

h(s,ω)ds.

Plugging this solution into equation (1) gives that

0 < 2A ≤ |Zg(0, ω)|2
(
e2ℜ

∫ x
0

h(s,ω)ds + e2ℜ
∫ x+1/2
0 h(s,ω)ds

)
,

which implies that Zg(0, ω) ̸= 0 for a.e. x. Moreover, since the complex expo-
nential is never 0, this also gives us that Zg(x, ω) ̸= 0 for a.e. x.

With this in mind, we can compute the absolute value of |Zg(x + 1, ω)| in
two ways.

On the one hand, using the quasiperiodicity of the Zak transform with re-
spect to the time coordinate,

|Zg(x+ 1, ω)| = |e2πiωZg(x, ω)| = |Zg(x, ω)|. (2)

On the other hand, making use of the solution to the PDE and the 1
2 peri-

odicity of h with respect to the time coordinate,

|Zg(x+ 1, ω)| = |Zg(0, ω)e
∫ x+1
0

h(s,ω)ds| = |Zg(x, ω)| · |e
∫ 1/2
0 h(s,ω)ds|2. (3)

Combining equations (2) and(3), and since |Zg(x, ω)| ̸= 0 for a.e. x, gives

|e
∫ 1/2
0 h(s,ω)ds| = 1.

Now we can write, using the 1
2 time-periodicity of h once again,

|Zg(x+ 1
2 , ω)| = |Zg(0, ω)e

∫ x
0

h(s,ω)ds| · |e
∫ 1/2
0 h(s,ω)ds| = |Zg(x, ω)|, (4)

which holds almost everywhere.
Step 4 Plugging equation (4) into equation (1) implies that the Zak transform

is essentially bounded above and below, i.e., that A ≤ |Zg(x, ω)|2 ≤ B holds
almost everywhere.

But this implies that the Gabor system (g,Z× Z) is a frame for L2(R) (see
Corollary 8.3.2 in [Grö01]), which contradicts the classical Balian-Low theorem
as g ∈ H1.
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4 Neural network approximation

This section is based on the following two papers:

� ’Neural network approximation and estimation of classifiers with classi-
fication boundary in a Barron class’ (co-authored with P. Petersen and
F. Voigtlaender), recently accepted for publication in Annals of Applied
Probability, henceforth referred to as Paper 4, [CPV20];

� ’Quantitative Approximation Results for Complex-Valued Neural Net-
works’ (co-authored with D.G. Lee, J. Maly, G. Pfander and F. Voigt-
laender), published in SIAM Journal on Mathematics of Data Science in
2022, henceforth referred to as Paper 5, [Car+22].

The section is organized as follows. Subsection 1 shortly addresses the cur-
rent role of neural networks in the framework of machine learning and discusses
the state of the art and some of the open questions in the field. Subsections 2
and 3 frame Paper 4 and Paper 5 in the context of the main motivation behind
them, i.e., avoiding the curse of dimensionality and complex variable networks,
respectively, and provide a summary of the main results and techniques of the
two papers as well as details about the author’s contribution. Subsection 4 is a
brief note on some other neural network papers and collaborations the author
was involved in in a more minor capacity.

4.1 Machine learning and neural networks

On a fundamental level, statistical learning is the field concerned with con-
structing and fine-tuning mathematical models to fit given numerical data or
empirical observations and measurements with the goal of maximizing the pre-
dictive power of the obtained models. Classical examples range from empirical
derivations of physical laws and constants from experimental data via regression
or interpolation to classification via separating surfaces using support vector ma-
chines with non-linear kernel (feature) maps (see for example Chapters 5 and 6
of [MRT18]).

In this context, machine learning is the application of computation resources
to aid in the development and testing of the models of statistical learning. The
impact the development of computing technologies has had on statistical learn-
ing cannot be overstated. As a historical anecdote, it bears pointing out that
the orbital calculations performed by a small army of highly trained engineers
at NASA during the Apollo program less than 60 years ago can now be done
virtually instantaneously and with no errors on an inexpensive commercially
available laptop. However, the massive impact and adoption of machine learn-
ing in more and more areas of everyday life cannot be explained purely by the
speedup of processing data. The development of computation technology has
opened the door to modeling data that is intractable to human analysis, either
due to the sheer amount of data involved or due to the complexity of the models
needed to make predictions based on the data.
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The current machine learning revolution, while technically predicated on the
evolution of computing solutions, is inextricably correlated to the development
of the theory of neural networks (and in particular deep neural networks). The
widespread adoption of neural networks in concrete practical implementations
in a variety of areas, ranging from classification and pattern recognition to
numerically solving differential equations [EY18; HSN20; Pfa+20] is a complex
phenomenon with multiple likely reasons:

� Neural networks of different architectures offer a significant amount of
flexibility and adaptability to concrete modeling scenarios. Historically,
convolutional nets have been employed in image classification problems
with state of the art defining success [KSH17; He+15]. Recurrent networks
form the backbone of many language processing, speech recognition and
automated translation applications (e.g. [SVL14]). Graph neural networks
have recently been used to efficiently solve typical big data graph problems
in areas ranging from medicine and biology [Sto+20; Duv+15] to social
media [Mon+19].

� From a theoretical perspective, the simplest architecture of networks, feed
forward neural networks, has provided a rich research field with numer-
ous applications in classical function analytic scenarios, like approxima-
tion spaces [Gri+22; GV21] and finding numerical solutions for differential
equations [GH21; Elb+22].

� Hypothesis classes of fixed architecture neural networks usually exhibit
a large degree of expressivity. This is a classical field of study of neu-
ral networks with quite a few universality theorems showing that specific
architectures yield dense subspaces of common function spaces [Les+93;
Yar22; HS17]. This permits the approximation of complicated models
with comparatively simpler neural networks.

� Expressivity typically does not come at the cost of unquantifiable or ’bad’
information theoretic complexity of the chosen hypothesis class of neural
networks. There are numerous works bounding the complexity of neural
network hypothesis classes in terms of classic measurement tools like VC
dimension [KM97; Bar+19], Radamacher complexity (e.g. [GRS18]) or
entropy numbers (e.g. [GV21]). The existence of these bounds allows for
guaranteed loss bounds for typical learning algorithms (e.g. empirical loss
minimization).

Despite the many positives, the field of study of neural networks is still rela-
tively young and there are still numerous open questions and poorly understood
phenomena. To name a few:

� There still exists a large gap between the practical results of neural net-
works and most theoretical guarantees. Moreover, the extent to which
neural networks can be used is intuitively atypical, considering the fact
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that, historically, optimal algorithmic solutions to fundamentally differ-
ent problems usually implied very different hypothesis classes of models.
A more fundamental explanation of the ubiquity of neural networks as
optimal algorithmic solvers is one of the holy grails of the field.

� Function spaces of realizations of given network architectures tend to
exhibit exotic properties (e.g. ’very high’ non-convexity, [PRV21]) and
the weights responsible for achieving a specific realization are highly non-
unique, implying that a neural network realization viewed as a function
from the space of weights to its outputs is typically very badly conditioned.

� There is no clear overarching theory for the existence of adversarial exam-
ples in classification problems. It is well documented in practice [Bro+17;
Eyk+18; TVG19] that correctly classified images that are very slightly per-
turbed (even imperceptibly so to most observers) can lead to erroneous
classification (such perturbations are what are referred to as adversarial
examples [Sze+13; GSS14]). A major objective of practical implementa-
tions of neural networks where safety is a concern is the development of
training algorithms that guarantee robustness to adversarial examples.

� Commonly, in image classification problems, although a specific architec-
ture and training algorithm can be chosen to provide state of the art
generalization error bounds, the computational complexity of the model
explodes as the dimension of the input grows. This is known as the curse
of dimensionality. Obviously, for practical applications, hypothesis classes
that avoid the curse of dimensionality while still being expressive enough
to tackle a wide range of problems are in high demand. This topic will be
further discussed in the next subsection.

� The most common iterative training algorithm for neural networks is, by a
very large margin, (stochastic) gradient descent (see for instance [ALS19]).
Some non-intuitive phenomena related to the use of gradient descent in
network training are currently under investigation in the literature, e.g.
implicit bias ([Gun+17; LMZ18]), double descent fitness curves ([Bel+19;
MM22]).

In the next two subsections, we shall exclusively focus on feed forward neural
networks. We conclude this subsection with a formal definition of such networks
and some of the associated notions.

Definition 8. Let F be the field of real or complex numbers. Let L ∈ N and
din := d0, d1, . . . , dout := dL be natural numbers. Let ϕ : F → F be a non-linear
function. A feed forward neural network is a tuple of pairs

Φ :=
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)

such that each Aj is a matrix with dj−1 columns and dj rows with entries in F
and each bj is a vector in Fdj .
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din and dout are called the input and, respectively, output dimension. L is
called the number of layers of the network. If L = 2 (i.e., if the network just
has the input layer followed by a single internal or hidden layer), the network
is called shallow. If L > 2, the network is called deep.

w(Φ) := max(d0, d1, . . . , dL)

is called the width of the network and

N(Φ) := d0 + d1 + · · ·+ dL

is the number of neurons of the network. The entries of the matrices Aj and
vectors bj are called the weights of the network and

W (Φ) :=
L∑

j=1

(∥Aj∥0 + ∥bj∥0)

is the number of (non-zero) weights, where ∥X∥0 is the number of non-zero
entries of a matrix or vector X. Additionally,

∥Φ∥ := max(∥A1∥∞, . . . , ∥AL∥∞, ∥b1∥∞, . . . , ∥bL∥∞)

is called the norm of the network, i.e., its largest weight in absolute value.
The realization of the network is the function RϕΦ : Fdin → Fdout given by

the composition
RϕΦ = TL ◦ (ϕ ◦ TL−1) ◦ · · · ◦ (ϕ ◦ T1),

where Tj : Fdj−1 → Fdj is the affine operator given by Tjx = Ajx+bj. Crucially
the application of the activation function ϕ is component-wise,i.e., ϕ(x) :=
(ϕ(x1), ϕ(x2), . . . , ϕ(xm))T for any x := (x1, x2, . . . , xm)T ∈ Fm.

Finally, the architecture of the network Φ is the configuration of neurons
per layer, i.e., the tuple (d0, d1, . . . , dL) together with the positions of non-zero
weights on each layer.

4.2 The curse of dimensionality and Barron functions

As previously discussed, computational suitability of a given machine learning
model for a concrete task is sometimes not sufficient, in the sense that some
additional flexibility for related tasks is desired while keeping in check the com-
putational complexity.

As a toy example, consider a model that needs to determine the coordinates
of a particle in a unit sized box with precision no worse than 1

2 (for each coor-
dinate). Let x = (x1, . . . , xd) be the position of the particle and let I = [0, 1]d

be the unit box. In one spatial dimension, d = 1, it will suffice to do just two
measurements, namely |x − 1

4 | and |x − 3
4 | and compare the two and declare

the position to be either 1
4 or 3

4 (based on the smallest distance). In dimension
d = 2, we would need to do 4 measuremens, namely |xi − 1

4 | and |xi − 3
4 | for
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each i ∈ {1, 2}. More generally, in arbitrary dimension d, 2d measurements
would be necessary, so the computational complexity of the algorithm would be
exponential in the dimension. This phenomenon of exponential dependency on
the input dimension of the overall complexity of the model is referred to as the
curse of dimensionality.

Note that at the expense of this ‘bad’ dependency on the input dimension, all
the (binary) states of the particle in the box are differentiated. It is not difficult
to avoid the curse of dimensionality if compromises can be made in terms of the
expressivity of the hypothesis class of models. For example, if we only cared
about the (binary) position of the particle in the first log2 d coordinates, the
overall complexity would be linear in d, but we would not distinguish between
states that differ in the larger index coordinates.

A major goal of machine learning is to construct models with sufficient ex-
pressive power to cover most practical necessities but with a mild dependency
on input dimension (i.e., avoiding the curse of dimensionality and having at
most polynomial dependency of the complexity on the input dimension). This
allows successful models to be relatively cheaply adapted to a wider range of
concrete problems. Arguably the most common practical application of machine
learning where the dependency on input dimension is a crucial aspect is image
classification. This is because images are typically interpreted as binary or RGB
matrices which are vectorized and then fed as inputs. For even the most ba-
sic example, the hand drawn digit classification problem based on the MNIST
database (http://yann.lecun.com/exdb/mnist/), the pictures are 28×28 pix-
els large resulting in an input dimension of 784. Current image classification
problems have input dimension in the order of 105 or more (for instance, for
ImageNet [Den+09], it is quite standard to rescale all the images to 256 × 256
pixels).

Paper 4 is inspired by the work of A. Barron (in particular [Bar93]), who
constructed a class of Lipschitz continuous functions that can be approximated
by shallow networks with N neurons with accuracy N−1/2 independent of the
input dimension (therefore avoiding the curse of dimensionality). Crucially,
Barron also showed that these functions (commonly referred to as Barron class
functions in the literature) are sufficiently rich to cover a wide range of models (a
detailed discussion with examples of Barron functions can be found in Chapter
IX of [Bar93]).

The main goal of Paper 4 is to adapt the works of Barron to classification
problems. We are therefore interested in classifiers under the assumption that
the boundary between different classes is of Barron class. We consider ‘tube-
compatible’ measures µ (a fairly general class of measures that includes Lebesgue
measures and product measures, see Section 1.1, Definition 3.5 and Corollary
3.6 in Paper 4) and show that the characteristic function 1Ω, where Ω is a set
with Barron class boundary, can be approximated with respect to the measure
µ to arbitrary precision by networks without the curse of dimensionality.

Theorem 10 (Theorem 1.1 in Paper 4). Let µ be a tube-compatible measure
with parameter α ∈ (0, 1] and let Ω ⊂ Rd be a set with Barron class boundary.
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Then for any N ∈ N, there exists a ReLU network Φ with 3 hidden layers (i.e.,
L = 4) and O(d+N) neurons satisfying ∥Φ∥ = O(d+N1/2) such that

∥1Ω −RϱΦ∥Lp(µ) = O(d3/(2p)N−α/(2p)).

Remark 6. � Crucially, the approximation error depends polynomially (sub-
quadratically) on the input dimension.

� We are using the rectified linear unit (ReLU, ϱ(x) = max(0, x)) activa-
tion function, which is the most commonly used activation function in the
current literature. The adaptation of the classic Barron result for ReLU
networks (as opposed to the original setup with Heaviside activation in
[Bar93] is done in Proposition 2.2 in Paper 4).

The precise construction of the approximating networks is given in Theo-
rem 3.7 of Paper 4 where we show that once we choose a desired approximation
error, we can fix an architecture that will work for any set Ω (with Barron class
boundary). Moreover an upper bound on the total number of weights W (Φ) is
obtained and a quadratic dependence on the input dimension d for W is shown
to be sufficient.

The remainder of Paper 4 is structured as follows.
Section 4 uses entropy-type bounds to show that the approximation rate

obtained in Theorem 3.7 is asymptotically optimal. Theorem 4.3 shows that
networks with at most W weights cannot achieve approximation rates better
than O(W−1/2−1/(d−1)), whereas the result of Theorem 3.7 shows that a rate
of O(W−1/2) is achieved with our construction.

Section 5 provides error bounds for the performance of the use of empirical
risk minimization in determining the weights of Φ in Theorem 5.1. The remain-
der of this section is a first attempt at a discussion of the optimality of this rate,
however this has mostly been superseded by the more recent work [PV21].

Section 6 motivates the restriction of the main result to tube-compatible
measures by using a version of the no-free-lunch theorem to show that for sets
with infinite VC-dimension and general measures, no non-trivial minimax ap-
proximation results can be achieved. Then we show in Lemma 6.4 that the class
of sets with Barron class boundary does indeed have infinite VC-dimension.

Finally, Section 7 addresses the different versions of so-called Barron spaces
seen in the literature and appropriate embeddings between them are shown.

The main contribution of the author of the present thesis was in adapting
the ideas of the coauthors [PV18] for network approximation of classifiers with
smooth boundaries to the Barron boundary setting, the construction of the
precise architecture in Theorem 3.7 as well as the size bounds found therein and
the formalization of the suitable tube-compatible measure class. Most of the
results in the paper were obtained in group discussions. Section 7 was, however,
entirely done by F. Voigtlaender and P. Petersen.
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4.3 Quantitative universality of neural networks over the
complex numbers

Despite the overwhelming success of and research interest in neural networks,
the vast majority of formal literature on the topic is focused on real ReLU
neural networks, i.e., networks that have vectors of real numbers as inputs and
outputs and that use the ReLU activation function ϱ(x) = max(0, x). However,
recent applied works (for example, [WY18; VSL17]) have shown that in some
concrete instances (for example magnetic resonance imaging) where the problem
to be modeled is natively expressed with complex numbers, it is beneficial to
use complex valued neural networks. Empirically, it was shown in [VSL17] that
using complex networks instead of splitting the real and imaginary parts of the
inputs and feeding them through appropriately sized real networks has clear
advantages.

It is interesting to point out that complex valued networks share a non-trivial
relation to their real valued counterparts under the identification Cd ∼= R2d.
Namely, complex valued activation functions are structurally richer than real
valued ones, but the condition of linearity over Cd is more restrictive than the
equivalent notion over R2d. It is likely that the case-by-case advantages of one
class of networks over the other is dependent on the interplay between these two
phenomena in the context of the concrete problem at hand.

Motivated by a universal approximation theorem for complex networks ob-
tained in [Voi20], the main goal of Paper 5 is to provide a systematic quan-
titative approximation template for the study of complex valued networks and
to apply it to one of the most natural choices of a complex activation function,
the so-called modReLU activation function

σ(z) =

{
0 if |z| ≤ 1

z − z
|z| else.

We are interested in approximating functions g : Cd → C with Sobolev-type
smoothness in the sense of real variables, i.e., the space Fn,d, see Section 1.2 in
Paper 5 for details.

The main result is

Theorem 11 (Theorem 1 in Paper 5). For any smoothness parameter n ∈ N
and input dimension d ∈ N, there is a constant C = C(n, d) > 0 such that
for any ε ∈ (0, 1) there exists a fixed modReLU-network architecture with at
most C · ln(2/ε) layers, at most C · ε−2d/n · ln2(2/ε) weights, all bounded by
C · ε−44d such that for any g ∈ Fn,d there exists a network Φ with the prescribed
architecture satisfying

|g(z)−RσΦ(z)| ≤ ε

for all z in the unit cube of Cd.

Remark 7. It is important to point out that these rates are exactly what one
would expect via the identification Cd ∼= R2d (for instance, [Yar17]), so ap-
plications where the complex structure is relevant will incur no added cost to
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approximation rates. Additionally, we stress that the architecture only depends
on the approximation accuracy, smoothness parameter and ambient dimension.
Only the weights of Φ depend on the individual function g to be approximated.

The majority of Paper 5 is dedicated to the proof of Theorem 1.
Section 1.4 discusses the limited literature on complex valued networks with

an emphasis on the role of the complex activation function and the rather sur-
prising result in [Voi20] that, in the complex valued case, the class of universal
activation functions is different for shallow networks and for deep networks.
Also a short review of other complex activation functions is given.

Section 2 shows that one can construct shallow modReLU-networks to ap-
proximate the real and imaginary part of the input and an architecture is given
(Proposition 3).

Section 3 contains a proof that the square of the real (or imaginary) part
can be approximated and an architecture is given in Proposition 8. This is
heavily inspired by the idea of Yarotski [Yar17] to show that x 7→ x2 can be
approximated using ReLU networks.

Section 4 extends this to an approximation of the product of two complex
numbers via a simple polarization argument (Proposition 9 and Corollary 10).

Section 5 constructs a partition of unity based on the modReLU activation
function.

Section 6 combines the previous steps to give a proof of Theorem 1 by looking
at the Taylor approximation of g relative to the constructed partition of unity.

Finally, Section 7 uses entropy-type bounds to show that the approxima-
tion rate obtained in Theorem 1 is essentially optimal (modulo log factors).
Specifically, Theorem 12 shows that if one can achieve approximation rates of ε
via networks with at most O(ε−γ) weights bounded polynomially in ε−1, then
necessarily γ ≤ 2d/n.

The main contribution of the author of the present thesis regarding Paper 5
had to do with the specific architecture constructions and size bounds, especially
in Section 6. The vast majority of the results were achieved in group discussions,
with the notable exception of Section 7 that was written by F. Voigtlaender.

4.4 Additional work done by the author

The author of the present thesis has a relatively long-standing interest in the
work of F. Voigtlaender concerning neural networks and is often the first reader
for a lot of his recent papers. The author also took part in the design of F.
Voigtlaender’s grant proposals concerning machine learning and is currently
collaborating with him and T. Römer on the topic of adversarially robust net-
works.

The author has had minor contributions in terms of editing and technical
suggestions for the following papers:

� The universal approximation theorem for complex-valued neural networks,
F. Voigtlaender, https://arxiv.org/pdf/2012.03351, author appears
in acknowledgements.
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� Lp sampling numbers for the Fourier-analytic Barron space, F. Voigtlaen-
der, https://arxiv.org/pdf/2208.07605, author appears in acknowl-
edgements.

� Optimal learning of high-dimensional classification problems using deep
neural networks, P. Petersen and F. Voigtlaender, https://arxiv.org/
abs/2112.12555.
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5 Structured Exponential Riesz bases

This section is based on the paper ’A note on exponential Riesz bases’ (co-
authored with D.G. Lee), recently accepted for publication in Sampling The-
ory, Signal Processing, and Data Analysis, henceforth referred to as Paper 6,
[CL22].

The section is organized as follows. Subsection 1 discusses the background
of exponential bases. Subsection 2 introduces the specific structured exponen-
tial bases that Paper 6 discusses and the literature context and provides an
overview of the results in Paper 6. Finally, Subsection 3 contains some addi-
tional work done by the author of this thesis on the topic of exponential bases.

The work done in this section provides partial answers to WP1 from the
DFG project PF 450/11-1.

5.1 Exponential bases

As the pure frequencies {x 7→ e2πinx : n ∈ Z} form the Fourier basis (an
orthonormal basis) for the space L2([0, 1]) of square integrable function on the
unit interval, a natural question to ask is if there exists an similar Fourier
basis for the space of square integrable functions supported on some arbitrary
bounded measurable (with positive measure) set S.

Definition 9. Let S ⊂ Rd be a bounded set with positive measure and let
Λ ⊂ Rd be a uniformly discrete (in the sense that infλ1,λ2∈Λ |λ1 − λ2| > 0) set
of frequencies. Define the collection of functions

E(Λ) := {e2πi⟨λ,·⟩1S(·) : λ ∈ Λ}.

The set E(Λ) is said to be an orthogonal (Riesz) basis of exponentials
for L2(S) if the collection E(Λ) forms an orthogonal (or, respectively, Riesz) ba-
sis for L2(S). To simplify notation, we shall say that Λ is orthogonal (Riesz)
spectral for S.

Example 1. In this notation, Z is orthogonally spectral for [0, 1]. This is
just the restatement of the fact that Fourier basis is an orthonormal basis for
L2([0, 1]) using the fact that the Lebesgue measure of the unit interval is 1.

Remark 8. � There is essentially no distinction between discussing orthog-
onal and orthonormal exponential bases. Indeed, if Λ is orthogonally spec-
tral for S, then by definition ⟨e2πi⟨λ1,·⟩1(S)(·), e2πi⟨λ2,·⟩1(S)(·)⟩L2(S) = 0

whenever λ1 ̸= λ2. Moreover, ∥e2πiλ·1(S)(·)∥2L2(S) = µ(S) for all λ ∈ Λ.

So by rescaling all the pure frequencies by the same factor 1√
µ(S)

, we get a

orthonormal basis for L2(S). We will therefore stick to the not-normalized
orthogonal bases to simplify notation.

� The uniform discreteness of the frequency set is a necessary condition.
Indeed, if Λ is not uniformly discrete, then it cannot be Riesz spectral for
any bounded set S (see for example Remark 1 in [KN15]).
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� We will hereafter omit the multiplication by the characteristic function
of S in our notation for the set E(S). However, it is fundamental to
understand that if we say that Λ is spectral for a set S, then the pure
frequency functions defined by Λ are understood as functions defined on
S. This is crucial when discussing bases for unions of sets. As we will
see below from Lemma 1, Λ1 = 2Z is orthogonally spectral for [0, 1

2 ] and
Λ2 = 2Z + 1 is orthogonally spectral for [ 12 , 1]. Combining the frequency
sets we get Z = Λ1 ∪ Λ2 and this is orthogonally spectral for [0, 1] if we
extend the domain of both even and odd pure frequency functions to be the
entire unit interval. For example, 1[0,1] is not in the span of {e2πi2k·1[0, 12 ]

:

k ∈ Z} ∪ {e2πi(2k+1)·
1[ 12 ,1]

: k ∈ Z}.

Lemma 1. Let S = [a, b] be some non-degenerate bounded interval, i.e., −∞ <
a < b < ∞. Then for any c ∈ R, the set 1

b−aZ+ c is orthogonally spectral for S.

Sketch of proof. First of all, note that 1
b−aZ+ c is orthogonally spectral if and

only if 1
b−aZ is. This is because E( 1

b−aZ + c) = e2πic·1[a,b](·)E( 1
b−aZ) and

∥e2πic·1[a,b](·)∥22 = b− a.

Next note that 1
b−aZ is orthogonally spectral for [a, b] if and only if it is

orthogonally spectral for [0, b − a]. This follows from the fact that for any
n ∈ Z, the function x 7→ e2πi

n
b−ax is b − a periodic and so for any sequence

{cn}n ∈ ℓ2 we have that

∥
∑

n∈Z
cne

2πi n
b−a ·∥L2([0,b−a]) = ∥

∑

n∈Z
cne

2πi n
b−a ·∥L2([a,b]).

Finally, consider the dilation operator Db−a : L2([0, 1]) → L2([0, b − a])
given by Db−a(f)(x) = 1√

b−a
f((b − a)x). Since this is an isometry and since

the Fourier basis is orthonormal, it follows that 1
b−aZ is orthogonally spectral

for [0, b− a].

Lemma 1 can be seen as a definition for the Fourier basis on an arbitrary
bounded interval. As mentioned before, a natural question is whether any
bounded positive measure set admits a Fourier basis (in this context we mean
an orthogonally spectral set of frequencies).

The answer to this question is no, in general. Possibly the most natural
example of this is that the unit ball in any dimension d ≥ 2 admits no orthogonal
basis of exponentials [IKP99]. The most famous attempt of a characterization of
subsets of Rd that admit an orthogonal basis of exponentials is due to Fuglede.

Conjecture 1 (Fuglede’s conjecture, [Fug74]). A set S ⊂ Rd admits an or-
thogonal basis of exponentials if and only if S tiles Rd, i.e., if there exists some
discrete translation set Γ ⊂ Rd such that Rd = ∪γ∈Γ{S + γ} with the union
disjoint up to zero sets.

Fuglede proved the conjecture under the additional assumption that either
the candidate frequency set Λ or the tiling set Γ are restricted to be lattices in Rd

29



in [Fug74]. However, without one of these additional restrictions, the conjecture
is in general false. Tao showed that both directions of the conjecture can fail
in dimension d ≥ 5 ([Tao04]) and this was later extended to dimensions d = 3
and d = 4 (see for example [Mat05; KM06]). The validity of the conjecture in
dimensions d = 1 and d = 2 remains open to the author’s knowledge.

Since the orthogonality of the pure frequency functions seems to prevent
sets without particular geometric features from having orthogonal spectral sets
and since it is often sufficient for applications to consider Riesz bases instead of
orthonormal bases, the obvious question is whether all sets admit Riesz bases
of exponentials or if the sets that do not can be characterized.

Recently, it was shown in [KNO21] that even in dimension d = 1 there exist
sets with no Riesz bases of exponentials. The set proposed by Kozma, Nitzan
and Olevskii in [KNO21] is rather exotic (the construction of the set relying
on self-similarity). For ‘tamer’ sets S, specifically finite unions of intervals in
d = 1, there exist positive and partially constructive methods for obtaining
Riesz spectral sets. Additionally, under appropriate dilations, the frequencies
can all be chosen to be integers.

Theorem 12 (Avdonin [Avd91], Seip [Sei95]). Let S ⊂ [0, 1] be a non-degenerate
interval. Then there exists a frequency set Λ ⊂ Z that is Riesz spectral for S.

Theorem 13 (Combining Riesz bases for intervals,[KN15]). Let S ⊂ [0, 1] be
a finite union of non-degenerate intervals. Then there exists a frequency set
Λ ⊂ Z that is Riesz spectral for S.

The landmark paper [KN15], of which Theorem 13 is the main result, is
remarkable not only for proving the existence of Riesz spectral sets for finite
unions of intervals, but for introducing a novel ‘constructor method’ for gener-
ating Riesz spectral sets for general sets S under some conditions.

Prior to [KN15], to the author’s knowledge, there existed only three classical
tools of constructing Riesz spectral sets and they all referred specifically to sets
S that are intervals:

1. Lemma 1 that yields translations of lattices for the frequency set.

2. Kadec’s 1
4 -theorem ([Kad64] or [You01] for a modern reference): If

Λ = {λn : n ∈ Z} satisfies the condition supn |λn−n| < 1
4 , then Λ is Riesz

spectral for [0, 1].

3. Avdonin’s theorem ([Avd74] or [AI95] for a modern reference), a power-
ful generalization of Kadec’s theorem where the size of the perturbation of
the Fourier basis has to be smaller than 1

4 in the average: Let Λ = {λn}n∈Z
be a uniformly discrete sequence. If there exists a natural number N and
a constant 0 ≤ δ < 1

4 such that

∣∣
(m+1)N∑

n=mN+1

(λn − n)
∣∣ ≤ δN

for all m ∈ Z, then Λ is Riesz spectral for [0, 1].
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It bears pointing out that using Avdonin’s theorem alongside dilation and
translation techniques similar to those of Lemma 1, one can explicitly construct
an integer frequency Riesz spectral set for any interval S ⊂ [0, 1], recovering
Theorem 12.

Indeed, similar to Lemma 1, one can assume without loss of generality that
S = [0, α] for some 0 < α < 1. Then the scaled version of Avdonin’s lemma
implies that if Λ = {λn : n ∈ Z} satisfies

∣∣
(m+1)N∑

n=mN+1

(λn − n
α )

∣∣ ≤ δ
αN

for all integers m and for some fixed natural N and some fixed constant 0 ≤
δ < 1

4 , then Λ is Riesz spectral for S.
Now there are two cases. If α = p

q ∈ Q for some coprime naturals p < q,

then the reference lattice will be q
pZ. We can take Λ = {⌊ qn

p ⌋ : n ∈ Z}, N = p
and δ = 0 and the conditions of the scaled Avdonin theorem will be satisfied.

If α /∈ Q, then one can again take Λ = {⌊n
α⌋ : n ∈ Z}. For any δ > 0, the

existence of some large natural number N that satisfies the scaled Avdonin the-
orem is then guaranteed by Weyl’s equidistribution theorem (a stronger version
of which is Proposition 7 discussed in Paper 6).

The new method for constructing Riesz spectral sets which is the core of
[KN15] and the main tool behind the present section is the following technical
lemma.

Lemma 2 (Lemma 2 in [KN15] ). Let S ⊂ [0, 1] be an arbitrary set with positive
measure. Fix some natural number N and consider the ’folding’ sets

A≥n := {x ∈ [0, 1
N ] : x+

k

N
∈ S for at least n distinct integers k}.

If, for each 1 ≤ n ≤ N , there exists a frequency set Λn ⊂ NZ that is Riesz
spectral for A≥n, then the set Λ := ∪N

n=1

(
Λn + n

)
is Riesz spectral for S.

As a toy example of an application of Lemma 2 (although this can also be
proved more directly using the non-singularity of the corresponding minors of
the Fourier matrix, the key ingredient of the proof of Lemma 2), consider the
set S ⊂ [0, 1] to be a finite union of intervals with rational endpoints. Choose
N to be the smallest common multiple of all the denominators of the individual
interval endpoints. It is now easy to check that

A≥n =

{
[0, 1

N ] if n ≤ Nµ(S)

∅ if n > Nµ(S),

so, using Lemma 1, we can take

Λn =

{
NZ if n ≤ Nµ(S)

∅ if n > Nµ(S),

implying that ∪Nµ(S)
n=1

(
NZ+ n

)
is Riesz spectral for S.
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5.2 Complementability of the Fourier basis and hierarchi-
cal Riesz bases of exponentials

Paper 6 is motivated by two questions from WP 1 of the DFG project PF
450/11-1.

Problem 3 (Complementability of Riesz spectral sets). Let S ⊂ R be a bounded
set with positive measure and let C be a class of bounded sets each of which are
disjoint from S. Can one find some frequency set Λ that is Riesz spectral for S
such that for each S′ ∈ C there exists some Λ′ Riesz spectral for S′ satisfying
the additional condition that Λ∪Λ′ is Riesz spectral for S∪S′? If the answer is
yes, Λ is said to be complementable with respect to the class C. What conditions
on S and C are sufficient for complementability?

Problem 4 (Hierarchical Riesz exponential bases). Under what conditions on
the bounded measurable sets S1, S2, . . . , SL can we find frequency sets Λ1, . . . ,ΛL

such that for each index subset J ⊂ {1, 2, . . . , L}, the union ∪j∈JΛj is Riesz
spectral for ∪j∈JSj?

The first problem has its origins in discussions with Pfander and Walnut and
the investigation of the second is due to an attempt to generalize the following
consequence of the main result of Pfander, Walnut and Revay:

Theorem 14 (‘Consecutive hierarchy’[PRW21]). Let [0, 1] = ∪L
k=1[ak, bk) be a

partition of the unit interval into subintervals. Then one can find an explicit
partition of the integers Z = ∪L

k=1Λk such that for each consecutive index subset
J ⊂ {1, 2, . . . , L}, the frequency set ∪j∈JΛj is Riesz spectral for ∪j∈J [aj , bj).

The Avdonin based approach of Theorem 14 can be used to treat a few more
special cases when the index subset contains some specific gaps, but there seems
to be no clear way to obtain a fully hierarchical partition of the integers with
this technique.

The two main results of Paper 6 are based on Lemma 2 by contrast.

Theorem 15 (Theorem 2 in Paper 6). The Fourier basis of the unit interval
is complementable with respect to any finite union of bounded intervals. Given
real numbers 1 ≤ a1 < b1 < a2 < b2 < · · · < aL < bL ≤ N for some L,N ∈ N,
there exists some frequency set Λ′ ⊂

(
1
NZ

)
\Z such that Λ′ is Riesz spectral for

∪L
k=1[ak, bk) and Z ∪ Λ′ is Riesz spectral for [0, 1] ∪

(
∪L
k=1 [ak, bk)

)
.

Theorem 16 (Theorem 1 in Paper 6). Let 0 < a1 < b1 < a2 < b2 < · · · <
aL < bL < 1 with L ∈ N and consider the set S = ∪L

k=1[ak, bk]. If the numbers
1, a1, a2, . . . , aL, b1, b2, . . . , bL are linearly independent over Q, then S admits a
hierarchical Riesz basis of exponentials with integer frequencies.

We conjecture that the condition of the endpoints being rationally indepen-
dent in Theorem 16 can be lifted, but so far we have not been able to show
this.

As stated before, the main idea behind these results is Lemma 2. Specifically
for Theorem 16 two more main ingredients are used:
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� Chebotarëv’s theorem on roots of unity (see for example [SL96]) which
states that all minors of a prime sized Fourier matrix are invertible.

� A Kronecker-Weyl equidistribution along the primes result (Proposition 7
in Paper 6).

Paper 6 is structured as follows:

� The first section contains the statements of the two main results, Theorems
1 and 2.

� The second section contains the technical lemmas used including the gen-
eralization of Lemma 2 contained in Lemma 6.

� The third section contains a proof of the hierarchy result.

� The fourth section contains a proof of the complementability result.

� The appendix discusses the proof of Lemma 6.

In terms of the work contribution on Paper 6, both Dae Gwan Lee and
the author of the present thesis wrote down essentially identical (in terms of
the techniques used) manuscripts based on group discussions. The published
version is a synthesis of the two individual manuscripts.

We conclude this subsection with a short overview of the proofs of the two
main results.

A discussion of the proof of Theorem 15. Dilating by 1
N , we can set S = [0, 1

N ]

and S′ = ∪L
k=1[

ak

N , bk
N ] such that S ∪ S′ ⊂ [0, 1].

Denoting by {x} the fractional part of a real number x, we see that depending
on the ordering of the fractional parts {Na1}, . . . , {NaL}, {Nb1}, . . . , {NbL},
the non-empty sets A≥n will either be [0, 1

N ] or finite unions of intervals with

endpoints from the set {0, 1
N , {ak}

N , {bℓ}
N : 1 ≤ k, ℓ ≤ N}.

The conclusion now follows by applying Theorem 13 to each of the sets A≥n

and then Lemma 2. It is worth pointing out that this can be derived in a simpler
way in the case L = 1, by invoking Theorem 12 and possibly Proposition 3 from
Paper 6.

A discussion of the proof of Theorem 16. Conceptually, the main difficulty that
arises from attempting to prove the existence of a hierarchical basis as opposed to
just a basis for the full union using the techniques from [KN15] is the appearance
of non-consecutive shift factors for the Riesz exponential bases of the sets A≥n

(see Figures 1 and 2).
Lemma 2 relies on the fact that the frequency set ∪L

k=1

(
NZ + jk

)
is Riesz

spectral for the union of intervals ∪L
k=1[

ℓk
N , ℓk+1

N ] (with 0 ≤ ℓk ≤ N − 1) if the

minor of the Fourier matrix
[
e−2πijkℓk/N

]
1≤k≤L

corresponding to the rows jk
and columns ℓk is invertible. This condition is trivially satisfied if the shifting
coefficients jk are consecutive, since in that case the minor of the Fourier matrix
is a Vandermonde matrix and hence invertible.
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Chebotarëv’s theorem provides a solution to this problem at the cost of
restricting the choice of N to prime numbers (since then all minors of the Fourier
matrix are invertible). This allows us to generalize Lemma 2 (in the case of prime
N) to Lemma 6 in Paper 6.

The next issue is ensuring that excising any interval [ak, bk) from the set S
has a controllable effect on the folding sets A≥n. The solution we found was
to enforce a particular order of the endpoints of the intervals when folded onto
[0, 1

N ], explicitly that

0 < {Na1} < {Na2} < · · · < {NaL} < {NbL} < · · · < {Nb2} < {Nb1} < 1.

This ordering informally means that, apart from full copies of [0, 1
N ], the

contributions of the each interval [ak, bk) to the folding sequence A≥n(S) are
nested. More explicitly,

A≥n =





[0, 1
N ] for n ≤ m

[0, {Nbk}
N ) ∪ [{Nak}

N , 1
N ) for n = m+ k, 1 ≤ k ≤ L

∅ for n > m+ L,

where m is some natural number m < N .
Again, informally speaking, this means that dropping any interval (or sub-

union of intervals) from the full union S will translate to ’deleting’ the appro-
priate levels from the folding sets A≥n and permuting the remaining sets (with
no further interaction) (see Figure 2). The permutation introduced in this way
is taken into account by the use of Lemma 6 from Paper 6 instead of Lemma 2,
as discussed above.

In order to guarantee the existence of a prime N that satisfies the desired
ordering, we make use of a Kronecker-Weyl equidistribution result along the
primes (Proposition 7 in Paper 6), an idea that dates back (to our knowledge)
to Vinogradov.

Unfortunately, this approach imposes the seemingly artificial restriction of
the endpoints of the intervals needing to be rationally independent.
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NZ + 1 = Λ1 + 1

NZ + 2 = Λ2 + 2

NZ + 3 = Λ3 + 3

NZ + 4 = Λ4 + 4

NZ + 5 = Λ5 + 5

NZ + 6 = Λ6 + 6

NZ + 7 = Λ7 + 7

NZ + 8 = Λ8 + 8

NZ + 9 = Λ9 + 9

NZ + 10 = Λ10 + 10

⊂ NZ + 11 = Λ11 + 11

⊂ NZ + 12 = Λ12 + 12

⊂ NZ + 13 = Λ13 + 13

∅ + 14

∅ + 15

Figure 1: A toy example of S being a union of 3 intervals. N is chosen to ‘nest’
the contributions of each of the intervals in the sets A≥n. The shifts of the Riesz
spectral sets can be chosen to be consecutive.

Λ1 + 1

Λ2 + 2

Λ3 + 3

Λ4 + 4

Λ5 + 5

Λ8 + 8

Λ9 + 9

Λ10 + 10

Λ11 + 11

Λ13 + 13

∅ + 6

∅ + 7

∅ + 12

∅ + 14

∅ + 15

Figure 2: S′ is the partial union of 2 intervals. Due to the ‘nesting’ of contribu-
tions of the intervals in S, the ‘tower of folding sets’ A≥n(S

′) is obtained from
the ‘tower’ A≥n(S) just by eliminating the levels corresponding to the missing
interval and shifting. Note the non-consecutive nature of the shifts of the Riesz
spectral frequency sets which is circumvented by the use of Chebotarëv’s theo-
rem. Also note that the basis corresponding to the ‘red’ (or ‘blue’) interval have
not changed from Figure 1.

5.3 Additional work done by the author

This subsection describes some additional investigations of the author of the
present thesis concerning potential applications of Lemma 2 to the study of
structured exponential bases for unions of intervals and some restrictions related
to Kadec bases. Two threads of discussion are presented here, the first concerned
with attempts to lift the restriction on the endpoints of the intervals being
rationally independent in order to obtain a hierarchical basis, and the second
arguing that simple Kadec bases cannot have more than one intersection point
without compromising the spanning properties of their union.
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5.3.1 On the topic of hierarchical bases for arbitrary finite unions of
intervals

We recall that we are interested in finding hierarchical Riesz bases of expo-
nentials for L2(S), where S ⊂ [0, 1] is a finite union of intervals of the form
S = ∪L

k=1[ak, bk]. I.e., we want to find some frequency set of integers Λ ⊂ Z
that can be partitioned as Λ = ∪L

k=1Λk such that for any index subset J of
{1, 2, . . . , L} we have that ∪k∈JΛk is Riesz spectral for ∪k∈J [ak, bk].

Theorem 16 solves this question in the case when 1, a1, . . . , aL, b1, . . . , bL are
linearly independent over Q, however, as pointed out before, we believe that
this restriction is a proof artifact induced by our use of an equidistribution-type
result and we conjecture that the rational independence of the interval endpoints
condition can be dropped, although we have been unable to prove this up to
this point.

A natural path of investigation towards proving this more general result is
the following problem.

Problem 5. Let [0, 1] = ∪L
k=1[ak, bk] be a partition of the unit interval into a

finite union of intervals with rational endpoints, i.e., ak, bk ∈ Q. Then there
exists a partition of the integers Z = ∪L

k=1Λk that forms a hierarchical Riesz
basis for the unit interval.

Somewhat surprisingly, the ‘opposite’ scenario of having rational endpoints
presented in Problem 5 seems more difficult to tackle than the situation of
rationally independent points illustrated in Theorem 16. The author’s main
focus concerning this topic after the resolution of Theorem 16 has been towards
Problem 5.

Currently, the best approach to tackle Problem 5, based on discussions with
G. Pfander, D. Walnut and D.G. Lee, seems to be the following conjecture.

Conjecture 2. Let N be a natural number and let F := [e−2πikℓ/N ]1≤k,ℓ≤N

be the associated Fourier matrix. Then there exists some permutation σ :
{1, 2, . . . , N} → {1, 2, . . . , N} such that, for any subset K ⊂ {1, 2, . . . , N}, the
minor

FK = [e−2πikσ(ℓ)/N ]k,ℓ∈K

of the Fourier matrix is invertible.

Remark 9. � This conjecture can be seen as an extension of Chebotarëv’s
theorem to the case when N is not a prime. Indeed, when N is prime, the
conjecture is satisfied for σ being the identity permutation (or any other
permutation).

� Numerical testing has been done in MatLab to verify the validity of the
conjecture for small values of N . For N ≤ 20, an algorithm based on gen-
erating random permutations has always found σ that satisfy the conjecture
and for N ≤ 15 an exhaustive search based on the Steinhaus-Johnson-
Trotter algorithm for iteratively generating permutations without storing
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them has been implemented to find all σ that satisfy the conjecture. Un-
fortunately, no clear asymptotic conclusion concerning the frequency of
‘good’ permutations could be drawn from the runs.

This conjecture would indeed imply a positive answer to Problem 5.

Sketch of a positive solution to Problem 5 assuming Conjecture 2. LetN be the
least common multiple of the denominators of the endpoints of the intervals, i.e.,
of all the ak and bk. Clearly, in general, N will not be prime and therefore the
approach using equidistribution and Chebotarëv’s theorem from Theorem 16
will not work in this scenario.

Note that the length of each interval will, in this case, be a integer multiple
of N , let us say that bk − ak = ρk

N with ρk ∈ N for all k. The ρk will clearly

satisfy
∑L

k=1 ρk = N .
Let σ be a ‘good’ permutation prescribed by the assumption that Conjec-

ture 2 holds.
The folding set chain associated to the full interval [0, 1] will be A≥n = [0, 1

N ]
for all 1 ≤ n ≤ N and we can take the frequency set Γn = NZ+ σ(n) as Riesz
spectral for A≥n.

Furthermore, for each index 1 ≤ k ≤ L we can define a frequency set

Λk := ∪ρk

m=1Γm+
∑k−1

j=1 ρj
,

under the convention that
∑0

j=1 ρj = 0.
With this notation, given an arbitrary index subset J ⊂ {1, 2, . . . , L} and

setting SJ := ∪k∈J [ak, bk], we see that

A≥n(SJ) =

{
[0, 1

N ] if n ≤ ∑
k∈J ρk

∅ otherwise.

Explicitly writing the index set J = {k1, k2, . . . , kr}, where k1 < k2 < · · · <
kr, we can now take, for example, Γ

1+
∑k1−1

j=1 ρj
as Riesz spectral for A≥1(SJ),

Γ
2+

∑k1−1
j=1 ρj

as Riesz spectral for A≥2(SJ), Γ
1+

∑k2−1
j=1 ρj

as Riesz spectral for

A≥ρk1
+1(SJ) and so on.

With these choices, it follows that ∪k∈JΛk will be Riesz spectral for SJ as
desired.

As an informal note on the above sketch, firstly, the choice of N guaran-
tees that the folding sets A≥n are either full intervals or empty and thus the
contributions of each interval can be separated. In contrast, in the proof of The-
orem 16, this was achieved by making sure that these contributions were nested.
Secondly, the permutation σ from Conjecture 2 guarantees the invertibility of
the involved Fourier minors when one cannot ensure that they are Vandermonde
matrices or that N is prime.

A different approach to exploring Problem 5 undertaken by the author of
the present thesis was to examine the possibility of achieving a nested structure
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of contributions of the individual intervals to the folding sets A≥n without em-
ploying any equidistribution argument. This would clearly lift the restriction of
the endpoint of the intervals being rationally independent, a condition clearly
violated under the assumptions of Problem 5. This gives rise to the following
number theoretic question.

Problem 6. Let S = ∪L
k=1[ak, bk] ⊂ [0, 1] such that the endpoints ak, bk are all

rational. Can one reorder the endpoints ak and bk arbitrarily modulo 1
N for some

prime N? In other words, given an arbitrary bijective map σ : {c1, c2, . . . , c2L} →
{a1, . . . , aL} ∪ {b1, . . . , bL}, does there exist some prime N such that

{Nσ(c1)} < {Nσ(c2)} < · · · < {Nσ(c2L)}?

Remark 10. � As seen from the discussion of the proof of Theorem 16, the
orderings we are actually interested in are of the form {Na1} < {Na2} <
· · · < {NaL} < {NbL} < · · · < {Nb1}.

� If a positive solution for Problem 6 is found, especially with large enough
prime N , then Problem 5 can be immediately solved by following along
the steps in the proof of Theorem 16, by replacing the equidistribution
argument and invoking Chebotarëv’s theorem once again.

Perhaps not surprisingly, a positive solution to Problem 6 is not possible in
full generality. What is more interesting is that one can provide an explicit and
fairly general technical condition on the endpoints under which all reorderings
are possible for infinitely many primes.

To conclude this section, we will first discuss a simple counterexample to the
desired result of Problem 6 holding in general and secondly present a technical
number theory lemma for sufficient additional conditions for the result to hold.

A concrete counterexample
Consider the set S = [ 16 ,

1
4 ]∪[ 13 , 1

2 ]∪[ 34 , 5
6 ], i.e., we have the endpoints a1 = 1

6 ,
a2 = 1

3 , a3 = 3
4 , b1 = 1

4 , b2 = 1
2 and b3 = 5

6 .
We are interested in the existence of some permutation σ : {1, 2, 3} →

{1, 2, 3} such that given some relabeling of a, b as c, d (meaning that if c = a
then d = b or vice-versa), we can achieve a reordering of the form

{Ncσ(1)} ≤ {Ncσ(2)} ≤ {Ncσ(3)} ≤ {Ndσ(3)} ≤ {Ndσ(2)} ≤ {Ndσ(1)}, (5)

where N is a natural number (ideally a prime).
Since the least common multiple of the denominators of the endpoints is

clearly 12, we only need to investigate 1 ≤ N ≤ 11 in view of the Chinese
remainder theorem. We present the reordering in the following table, where the
numerators are listed modulo 12 (with the distinction that the class 0 will be
written as 0 if it comes from a left interval endpoint, i.e., an a, and as 12 if it
comes from a right interval endpoint, i.e., a b). We will also abuse notation and
write x ≤ y instead of {Nx} ≤ {Ny} to improve the readability of the table.
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N a1 b1 a2 b2 a3 b3 Order
1 2 3 4 6 9 10 a1 < b1 < a2 < b2 < a3 < b3
2 4 6 8 12 6 8 a1 < a3 = b1 < a2 = b3 < b2
3 6 9 0 6 3 6 a2 < a3 < a1 = b2 = b3 < b1
4 8 12 4 12 0 4 a3 < a2 = b3 < a1 < b1 = b2
5 10 3 8 6 9 2 b3 < b1 < b2 < a2 < a3 < a1
6 0 6 0 12 6 12 a1 = a2 < a3 = b1 < b2 = b3
7 2 9 4 6 3 10 a1 < a3 < a2 < b2 < b1 < b3
8 4 12 8 12 0 8 a3 < a1 < a2 = b3 < b1 = b2
9 6 3 0 6 9 6 a2 < b1 < a1 = b2 = b3 < a3
10 8 6 4 12 6 4 a2 = b3 < a3 = b1 < a1 < b2
11 10 9 8 6 3 2 b3 < a3 < b2 < a2 < b1 < a1

It is not difficult to see that for N /∈ {6, 10}, there is no way to start the
orderings with aj and end with bj or vice-versa. If we fix this issue for N = 6,
we are left with a1 < a3 = b1 < b3. Similarly, for N = 10, we are left with
b3 < a3 = b1 < a1. None of these configurations satisfy the desired ordering
prototype.

It is also interesting to point out that even if we consider shifts of S of the
form Sε = [ 16 + ε, 1

4 + ε] ∪ [ 13 + ε, 1
2 + ε] ∪ [ 34 + ε, 5

6 + ε] with small ε ≥ 0 (which
will have no impact of the existence of hierarchical Riesz bases, i.e., S admits a
hierarchical Riesz basis if and only if all the Sε do as long as Sε ⊂ [0, 1]), the
desired orderings still cannot be achieved.

Indeed, consider rational numbers 0 < p1

q < p2

q < · · · < pd

q < 1 and some
ε ≥ 0 and let N be an arbitrary natural number.

If ε = 0, as mentioned before, the Chinese remainder theorem implies that
the ordering of the numbers {N(

pj

q + ε)}, 1 ≤ j ≤ d, is uniquely determined by
the remainder of N modulo q.

If ε > 0, we can write N = kq + r where k is some non-negative integer and
0 ≤ r ≤ q − 1 and then we have that

{
N
(pj

q + ε
)}

=
{
(kq + r)

pj

q +Nε
}
=

{
r
pj

q +Nε
}
.

Crucially, the Nε quantity is independent of the index j, so if we fix a remain-
der of N modulo q, the tuple of numbers of the form {N(

pj

q +ε)} corresponds to

a cyclic shift of the tuple with numbers {N pj

q }. The size of {Nε} just dictates
the order of the cyclic shift. Therefore, if one chooses ε appropriately, the new
orderings achievable are just all the cyclic shifts of the ordering obtained when
ε = 0.

It is not difficult to see that if we also allow cyclic shifts of the ordering
in the table above, we still find no match with the desired ordering prototype
specified in (5).

A technical sufficient condition for Problem 6
Before stating the sufficient condition, we discuss the Chinese remainder

theorem and a simple number theoretic lemma.
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Given pairwise coprime numbers n1, . . . , nd, the Chinese remainder theorem
states that there exists a ring isomorphism

Z/(n1n2 . . . nd)Z ∼= (Z/n1Z)× (Z/n2Z)× · · · × (Z/ndZ),

or, equivalently, that for any integers c1, . . . , cd, the system of equations x ≡
ci mod ni, 1 ≤ i ≤ d, has a unique solution modulo n1n2 . . . nd.

We are interested in the case where the moduli ni are not necessarily coprime.
First of all note that if x simultaneously satisfies

x ≡ ci mod ni

x ≡ cj mod nj ,

then any common divisor of ni and nj must divide the difference ci − cj . This
implies that the condition ci ≡ cj mod gcd(ni, nj) is necessary for the existence
of x. It turns out that this is also sufficient.

Theorem 17 (gCRT). For arbitrary naturals n1, . . . , nd and c1, . . . , cd, the
system of congruences

x ≡ ci mod ni, 1 ≤ i ≤ d

has a unique solution modulo lcm(n1, . . . , nd) if and only if for all 1 ≤ i, j ≤ d
we have that ci ≡ cj mod gcd(ni, nj).

Proof. As discussed before, we only need to show sufficiency.
Note that the congruence x ≡ c mod mn is equivalent to x ≡ c mod m and

x ≡ c mod n if gcd(m,n) = 1. One direction is immediate. For the other
direction, there exist naturals k, ℓ such that x = km + c = ℓn + c implying
km = ℓn. Since m and n are coprime this means k = k′n and ℓ = ℓ′m.
Therefore, x = c+ k′mn so x ≡ c mod mn.

It follows that each congruence x ≡ ci mod ni can be replaced with the

system of congruences x ≡ ci mod π
ai
ℓ

ℓ for 1 ≤ ℓ ≤ ki where ni =
∏ki

ℓ=1 π
ai
ℓ

ℓ is
the prime factorization of ni.

Let lcm(n1, . . . , nd) =
∏k

ℓ=1 π
aℓ

ℓ be the prime factorization of the least com-
mon multiple of all the moduli.

The condition ci ≡ cj mod gcd(ni, nj) for all 1 ≤ i, j ≤ d along with the
observation that x ≡ c mod πaℓ

ℓ implies x ≡ c mod πa
ℓ for any a ≤ aℓ means

that the original system of congruences is equivalent to the system

x ≡ cϕ(ℓ) mod πaℓ

ℓ , 1 ≤ ℓ ≤ k,

where ϕ : {1, 2, . . . , k} → {1, 2, . . . , d} is a function that associates to each ℓ the
index of one of the ni’s that is divisible by πaℓ

ℓ .
The conclusion follows immediately by applying the classical CRT to this

new system of congruences.

Lemma 3. Let a, b, c be pairwise coprime numbers. Let x, z be the inverses of
a in Z/bZ and Z/(bc)Z respectively. Then there exists some integer d such that
z = db+ x.
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Proof. Let y be the inverse of a in Z/cZ. We know there exist some integers
k, ℓ such that ax = kb+ 1 and ay = ℓc+ 1. Set z := x+ (c− k)by. Then

az = ax+ a(c− k)by = kb+ 1 + abcy − kb(ay) =

= kb+ 1 + abcy − kb(ℓc+ 1) = kb+ 1 + abcy − kbℓc− kb =

= 1 + bc(ay − kℓ).

We see that z is indeed the inverse modulo bc, so we can take d := (c− k)y.

We are now ready to state the sufficient condition result.

Theorem 18. Let p1

q1
, . . . , pd

qd
be fractions inside (0, 1) in reduced form, i.e.,

gcd(pi, qi) = 1.
Let κ := ⌈maxi,j

qi
qj
⌉ and let P := {π1 < · · · < πm} be the set of primes that

appear in the factorization of lcm(q1, . . . , qd) =
∏m

j=1 π
αj

j . Then we can write

each qi =
∏m

j=1 π
αi

j

j for some sequence satisfying 0 ≤ αi
j ≤ αj for all 1 ≤ i ≤ m.

Assume there exists a cutoff index 1 ≤ m0 < m such that πm0
> κd

∏m0−1
j=1 π

αj

j

and such that for each j ≥ m0 there exists an index ij satisfying α
ij
j = αj and

αi
j = 0 for i ̸= ij. Finally assume that for each i,

∑m
j=m0

αi
j > 0.

Equivalently, we can write each qi = uivi, where ui =
∏m0−1

j=1 π
αi

j

j and vi =
∏m

j=m0
π
αi

j

j and let U := lcm(u1, . . . , ud). The assumption is equivalent to saying
that the vi are pairwise coprime, each is coprime with U , each is strictly bigger
than 1 and any prime divisor of any of the vi is bigger than κdU .

Then given an arbitrary permutation σ : {1, . . . , d} → {1, . . . , d} there exist

infinitely many primes N such that {Npσ(1)

qσ(d)
} < · · · < {Npσ(d)

qσ(d)
}.

Proof. First, note that Np
q = k + s

q for some positive k and s ∈ {1, . . . , q − 1}
if p and q are coprime. Therefore the required ordering boils down to finding a
sequence s = (s1, . . . , sd) such that s1

qσ(1)
< · · · < sd

qσ(d)
< 1.

First let us denote for 1 ≤ i ≤ d the reductions of pi modulo qi by p′i, i.e.,
let p′i ≡ pi mod qi such that p′i < ui (since pi and qi are coprime). Now we can

define the sequence s. Let s1 := p′σ(1) and si := p′σ(i)+U
∑i−1

j=1 κ
j for 2 ≤ i ≤ d.

Note that since the vi were pairwise coprime and each was bigger than 1 by
assumption, κ ≥ 2. Also note that

si = p′σ(i) + U
i−1∑

j=1

κj ≤ uσ(i) + U
d−1∑

j=1

κj ≤

≤ U
d−1∑

j=0

κj = U κd−1
κ−1 < Uκd ≤

≤ min
i

qi

since, by assumption, each qi is divisible by a prime bigger or equal to Uκd.

41



Let us now check that this choice of the sequence s satisfies the desired order,
i.e., that

pσ(1)

qσ(1)
<

pσ(2)+κU

qσ(2)
<

pσ(3)+(κ2+κ)U

qσ(3)
< · · · < pσ(d)+(κd−1+κd−2+···+1)U

qσ(d)
.

Using the definition of κ (and the fact that the vi are pairwise coprime) and

the fact that 0 ≤ p′i ≤ ui ≤ U , observe that si+1

si
≥ U

∑i−1
j=1 κj

U+U
∑i−2

j=1 κj
= κ >

qσ(i+1)

qσ(i)

for i ≥ 2 and trivially s2
si

≥ k >
qσ(2)

qσ(1)
. So the sequence s gives the needed order.

We now claim that we can find infinitely many primes N that satisfy the
congruence system

Npσ(i) ≡ si mod qσ(i) (6)

for 1 ≤ i ≤ d.
For 1 ≤ i ≤ d, let ri be the inverse of pi in Z/qiZ, which exists by assumption

that the fractions are in reduced form and let ti be the inverse of pi (and
therefore of p′i) in Z/uiZ. Applying Lemma 3, there exist integers ki such that
ri = ti + kiui.

We can rewrite the system of congruences that we need to solve as

N ≡ sirσ(i) mod qσ(i). (7)

Using the above notation, we have that

sirσ(i) = (p′σ(i) + U
i−1∑

j=1

κj)(tσ(i) + kσ(i)uσ(i)) = 1 + ℓiuσ(i)

for some integer ℓi, 1 ≤ i ≤ d.
Now, sirσ(i)− sjrσ(j) = ℓiuσ(i)− ℓjuσ(j), so it is divisible by gcd(uσ(i), uσ(j))

which is equal by construction to gcd(qσ(i), qσ(j)), 1 ≤ i, j ≤ d. Therefore, we
can apply gCRT to conclude that there exists some 1 ≤ N0 ≤ lcm(q1, . . . , qd)−1
such that for any k ≥ 0, the number N = N0 + k · lcm(q1, . . . , qd) satisfies the
system of congruences (7) and further on (6).

Next we claim that N0 is coprime with Q := lcm(q1, . . . , qd).
Recall that the list of prime divisors of Q was P = {π1 < · · · < πm}. So

assume there exists some index j ≤ m such that πj divides N0. Let 1 ≤ i ≤ d be
any index such that πj divides qσ(i) = uσ(i)vσ(i). Since N0 satisfies the system
of congruences (7), it follows that πj also divides sirσ(i).

Assume πj divides uσ(i). Since sirσ(i) ≡ 1 mod uσ(i), this implies πj divides
1, a contradiction. It follows that πj does not divide any ui, or, equivalently,
that the index j satisfies j ≥ m0. In particular, by construction, we have that
πj ≥ Uκd.

Now, since πj is a prime, it must divide either si or rσ(i). However, as we

have shown before, each si is strictly smaller than Uκd, which implies that there
exists some integer k such that kπj = rσ(i). This means that kπj is the inverse
of pσ(i) in Z/qσ(i)Z which is impossible since πj divides qσ(i).
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We have a contradiction, therefore N0 must be coprime with Q.
The proof is completed by applying Dirichlet’s theorem on arithmetic pro-

gressions (a ’folklore’ result, a proof of which can be found in [Ser73]), which
guarantees that any arithmetic progression a+kb contains infinitely many primes
whenever a and b are coprime.

Remark 11. The requirements of Theorem 18 are neither easy to state in a
non-convoluted but still precise way, nor are they too mild.

Informally speaking, what is required for the machinery of Theorem 18 to
work is that one can partition the list of prime divisors of the least common
multiple of the denominators q1, . . . , qd into two subsets of primes, U and V .
Any prime divisor common to multiple denominators must come from the set U
and each qj must have at least one divisor from the set V . Finally, the set V
must be sufficiently separated from the set U , meaning that the smallest prime
in V must be sufficiently large compared to any prime in U , and the notion of
‘sufficiently large’ depends on the largest ratio between denominators and how
many different rational numbers we are trying to reorder.

For instance, cases when at least two denominators are equal are not covered
by Theorem 18. However, in a scenario like

S = [ 7
2018 ,

45
2206 ] ∪ [ 49

1237 ,
101
2186 ] ∪ [ 200

1823 ,
200
1399 ] ∪ [ 10001669 ,

1500
1847 ],

Theorem 18 does apply and leads to the existence of a hierarchical Riesz expo-
nential basis for S.

5.3.2 A brief discussion on Kadec bases with non-trivial intersection

We begin this discussion with a definition of Kadec bases based on the Kadec
1
4 theorem.

Definition 10. Let a > 0 be a real number. In view of the Kadec 1
4 theorem, a

separated set Λ = {an+ α+ cn : n ∈ Z and α ∈ (−a
2 ,

a
2 ]} is called an a-Kadec

basis (for any interval of length 1
a) if there exists some 0 ≤ δ < 1

4 such that
|cn| ≤ aδ for all n ∈ Z.

In the particular case a = 1, we can uniquely specify a 1-Kadec basis through
a function f : Z → R, n 7→ n + β + cn for any choice of β ∈ (− 1

2 ,
1
2 ] and any

sequence ∥{cn}∥∞ < 1
4 .

Remark 12. The condition α ∈ (−a
2 ,

a
2 ] is not an actual restriction, since any

choice of a global shift factor α can be reduced modulo a at the cost of possibly
reindexing the sequence {cn}.

The motivation behind the present chapter is a surprising construction due
to D. G. Lee that shows that two 2-Kadec bases with non-trivial intersection
can have a union that is a 1-Kadec basis.

Before discussing this example, let us note for the sake of completion that
the typical or ‘non-pathologic’ situation is that the union of two 2-Kadec bases
‘should’ constitute a 1-Kadec basis only if they do not intersect.
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The prototypical example would be the 2-Kadec bases Λ1 = 2Z and Λ2 =
2Z+1, corresponding, respectively, to α = 0 and cn = 0, and α = 1 and cn = 0.
Clearly, their union corresponds to the standard Fourier basis frequencies.

An example of non-trivial intersection due to D. G. Lee
Fix an arbitrary 0 < ε < 1

4 and define the frequency sets

Λ1 = {. . . ,−4,−2, 0, 1 + ε, 3 + ε, . . . } = {2n− 1−ε
2 + cn : n ∈ Z}

and
Λ2 = −Λ1,

where

cn =

{
1−ε
2 if n ≤ 0

− 1−ε
2 if n > 0.

It follows that |cn| = | 1−ε
2 | < 1

2 , so Λ1 and therefore Λ2 are both 2-Kadec
bases. Additionally, Λ1 ∩ Λ2 = {0} and

Λ := Λ1 ∪ Λ2 = {. . . ,−4,−3− ε,−2,−1− ε, 0, 1 + ε, 2, 3 + ε, 4, . . . }.

Since ε < 1
4 , Λ is clearly a 1-Kadec basis.

It is clear that any a-Kadec basis will satisfy an appropriately dilated version
of Avdonin’s theorem and that perturbing finitely many point of the a-Kadec
basis will again result is a sequence that again satisfies Avdonin’s theorem (on a
possibly larger averaging window) as long as the perturbation does not ‘collapse’
different points to a single point.

Using this idea, we can shift the intersection point of the two bases arbitrar-
ily. For example, if we set Λ′

1 = {. . . ,−4,−2, ε, 2, 3+ ε, 5+ ε, . . . } and Λ′
2 = Λ2,

we would have that Λ′
1 ∪ Λ′

2 is still Riesz spectral for [0, 1], but Λ′
1 ∩ Λ′

2 = {2}.
However perturbations that interfere with the number of intersection points

will not preserve the basis property.
For example, taking Λ′

1 = {. . . ,−4,−2, ε, 1+ε, 3+ε, . . . } and Λ′
2 = Λ2 would

result in Λ′
1 ∩ Λ′

2 = ∅ and Λ′
1 ∪ Λ′

2 = Λ1 ∪ Λ2 ∪ {ε} which can therefore not be
a basis for [0, 1] as it will have redundancy.

Alternatively, taking Λ′
1 = {. . . ,−4,−2, 0, 2, 3 + ε, 5 + ε, . . . } and Λ′

2 = Λ2

will give Λ′
1 ∩Λ′

2 = {0, 2} and Λ′
1 ∪Λ′

2 =
(
Λ1 ∪Λ2

)
\ {1 + ε} which cannot be a

basis for [0, 1] due to the minimality of any basis.
A limitation on the size of the intersection of 2-Kadec bases
We will show that if two 2-Kadec bases Λ1 and Λ2 are such that their union

Λ := Λ1 ∪ Λ2 is a 1-Kadec basis, then Λ1 and Λ2 cannot have more than one
point in common. Throughout the remainder of this discussion, we shall assume
that Λ1 = {2n + α1 + c1,n : n ∈ Z} and Λ2 = {2n + α2 + c2,n : n ∈ Z} are
2-Kadec bases such that Λ1 ∪ Λ2 =: Λ = f(Z), where f(n) = n + β + cn is a
1-Kadec basis. Recall that this implies that α1, α2 ∈ (−1, 1], that β ∈ (− 1

2 ,
1
2 ],

that ∥{c1,n}∥∞, ∥{c2,n}∥∞ < 1
2 and that ∥{cn}∥∞ < 1

4 .
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Due to this assumption, it follows that for n ∈ Z we must have that either
f(n) ∈ Λ1 or that f(n) ∈ Λ2. As we pointed out in the examples before, the
most ‘natural’ setup that allows this is one where the elements of Λ1 interlace
those of Λ2, i.e., if f(n) ∈ Λ1 then f(n+ 1) ∈ Λ2 and vice-versa. We first show
that breaking this interlacing structure comes with specific restrictions.

Lemma 4. It is impossible for 3 consecutive integers to be represented by
the same 2-Kadec basis. In other words, there can exist no k ∈ Z such that
f(k), f(k+1), f(k+2) are elements, w.l.o.g., of Λ1. Additionally if f(k), f(k+1)
are both elements of, w.l.o.g., Λ1, then they are represented by elements with
consecutive indices.

Proof. Let’s assume this is possible. Then there exist integers n,m, p such
that for some α1, β, {c1,n}n, {cn}n as described before, the following system of
equations is satisfied:





2n+ α1 + c1,n = k + β + ck

2(n+m) + α1 + c1,n+m = k + 1 + β + ck+1

2(n+m+ p) + α1 + c1,n+m+p = k + 2 + β + ck+2.

Subtracting the first equation from the second and rearranging we get that

2m− 1 = (ck+1 − ck)− (c1,n+m − c1,n),

which implies that 2m−1 ∈ (− 3
2 ,

3
2 ) which is only possible if m = 1. This takes

care of the additional statement of the lemma. We can do the same with the
last two equations to see that p = 1. We can rewrite the system of equations as





2n+ α1 + c1,n = k + β + ck

2(n+ 1) + α1 + c1,n+1 = k + 1 + β + ck+1

2(n+ 2) + α1 + c1,n+2 = k + 2 + β + ck+2.

Subtracting the first equation from the third and rearranging we get

2 = (ck+2 − ck)− (c1,n+2 − c1,n),

which is impossible as 2 /∈ (− 3
2 ,

3
2 ).

Corollary 1. If f(k), f(k+1) ∈ Λ1, then necessarily f(k−1), f(k+2) ∈ Λ2 or
vice-versa (with respect to swapping Λ1 with Λ2). Therefore if f(k) ∈ Λ1 ∩ Λ2,
then necessarily f(k− 1) ∈ Λ1 and f(k+1) ∈ Λ2 or vice-versa. Put differently,
this means that f(k − 1), f(k) ∈ Λ1 and f(k), f(k + 1) ∈ Λ2 or vice-versa.
In other words, a point in the intersection Λ1 ∩ Λ2 induces the appearance of
consecutive elements from Λ in both Λ1 and Λ2.

Lemma 5. Assume that for some integers k, ℓ we have that f(k), f(k+1), f(k+
ℓ), f(k + ℓ+ 1) are elements, w.l.o.g., of Λ1. Then necessarily ℓ is even.
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Proof. Using Lemma 4, this implies that for some integers n,m, the following
system is satisfied





2n+ α1 + c1,n = k + β + ck

2(n+ 1) + α1 + c1,n+1 = k + 1 + β + ck+1

2(n+m) + α1 + c1,n+m = k + ℓ+ β + ck+ℓ

2(n+m+ 1) + α1 + c1,n+m+1 = k + ℓ+ 1 + β + ck+ℓ+1.

Subtracting the second equation from the third, the first from the third and
the first from the fourth, respectively, and rearranging we obtain





2m− ℓ− 1 = (ck+ℓ − ck+1)− (c1,n+m − c1,n+1)

2m− ℓ = (ck+ℓ − ck)− (c1,n+m − c1,n)

2m− ℓ+ 1 = (ck+ℓ+1 − ck)− (c1,n+m+1 − c1,n),

which implies that 2m − ℓ − 1, 2m − ℓ and 2m − ℓ + 1 are different integers
simultaneously contained in the interval (− 3

2 ,
3
2 ). This necessarily means that

2m− ℓ = 0, i.e., that ℓ = 2m, so ℓ is even.

Theorem 19. Let Λ1 and Λ2 be 2-Kadec bases such that Λ := Λ1 ∪ Λ2 is a
1-Kadec basis. Then |Λ1 ∩ Λ2| ≤ 1.

Proof. Let us define the ”defect” index set for Λ split between Λ1 and Λ2. Let
Ds := {k ∈ Z : f(k), f(k + 1) ∈ Λs} for s ∈ {1, 2}. With this notation, we can
summarize the conclusions of Lemmas 4 and 5 and of Corollary 1 as follows (for
s ∈ {1, 2}):

� if k ∈ Ds, then k + 1 /∈ Ds;

� if k, ℓ ∈ Ds, then k ≡ ℓ mod 2;

� |Ds| ≥ |Λ1 ∩ Λ2|. In fact for each k ∈ Λ1 ∩ Λ2, k ∈ D1 and k − 1 ∈ D2 or
vice-versa.

Now assume the contrary. This implies that D1 and D2 have each at least
2 elements. By relabeling if necessary (swapping between Λ1 and Λ2) we can
assume in view of these properties that D1 contains only even indices and D2

only odd indices. By assumption, there exists some k ∈ Z such that f(k) ∈
Λ1 ∩ Λ2 and for some k′ > k + 1 (note that as pointed out before we cannot
have f(k) and f(k + 1) simultaneously in the intersection) we also have that
f(k′) ∈ Λ1∩Λ2. W.l.o.g., we assume that k is even (the odd case can be treated
the same way). This will imply that k ∈ D1 (otherwise k ∈ D2).

By assumption, there exists a smallest integer ℓ ≥ 1 such that k, k+2ℓ ∈ D1

and {k + 1, . . . , k + 2ℓ− 1} ∩D1 = ∅. We now distinguish between two cases.
Case 1. Assume {k + 1, . . . , k + 2ℓ − 1} ∩ D2 = ∅. This implies that Λ1

and Λ2 interlace on the set {f(k + 1), f(k + 2), . . . , f(k + 2ℓ − 1)}. In other
words, f(k+1) ∈ Λ1, f(k+2) ∈ Λ2, f(k+3) ∈ Λ1 and so on. This implies that
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f(odd) ∈ Λ1 for all k < odd < k+2ℓ. In particular f(k+2ℓ−1) ∈ Λ1. But since
f(k + 2ℓ) ∈ Λ1 by assumption, this means that k + 2ℓ− 1 ∈ D1, contradiction.

Case 2. Assume {k + 1, . . . , k + 2ℓ − 1} ∩ D2 ̸= ∅ and let k + r be the
smallest element in the intersection. Note that this implies that r = 2s + 1
for some natural s, since r must be odd. Once again we must have that Λ1

and Λ2 interlace on the set {f(k + 1), f(k + 2), . . . , f(k + 2s+ 1)}. Once again
f(odd) ∈ Λ1 for all k < odd ≤ k+2s+1. In particular f(k+2s+1) ∈ Λ1 and since
k+2s+1 ∈ D2, it follows that f(k+2s+1) ∈ Λ2 as well. This implies that s > 0,
since otherwise we would have that both f(k) and f(k + 1) are simultaneously
in the intersection Λ1 ∩ Λ2, which would imply that either k − 1, k ∈ D1 or
k − 1, k ∈ D2, a contradiction. So we are left with f(k + 2s + 1) ∈ Λ1 ∩ Λ2,
which implies, taking parity into account, that k + 2s ∈ D1. However, since
s > 0, k + 2s ∈ {k + 1, k + 2, . . . , k + 2ℓ− 1} ∩D1, again a contradiction.
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ney Perchet, and Philippe Rigollet. Vol. 75. Proceedings of Machine
Learning Research. PMLR, June 2018, pp. 297–299. url: https:
//proceedings.mlr.press/v75/golowich18a.html.

[GSS14] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and har-
nessing adversarial examples”. In: arXiv preprint arXiv:1412.6572
(2014).

[Gun+17] S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur,
and N. Srebro. “Implicit regularization in matrix factorization”. In:
Advances in Neural Information Processing Systems 30 (2017).

[GV21] P. Grohs and F. Voigtlaender. “Proof of the theory-to-practice gap
in deep learning via sampling complexity bounds for neural net-
work approximation spaces”. In: arXiv preprint arXiv:2104.02746
(2021).

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into rectifiers:
Surpassing Human-Level Performance on ImageNet Classification”.
In: Proceedings of ICCV. 2015, pp. 1026–1034.

[HS17] B. Hanin and M. Sellke. “Approximating continuous functions by
relu nets of minimal width”. In: arXiv preprint arXiv:1710.11278
(2017).

[HSN20] J. Hermann, Z. Schätzle, and F. Noé. “Deep-neural-network solution
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A BALIAN-LOW THEOREM FOR SUBSPACES

ANDREI CARAGEA, DAE GWAN LEE, GÖTZ E. PFANDER, AND FRIEDRICH PHILIPP

Abstract. We extend the Balian-Low theorem to Gabor subspaces of L2(R) by in-
volving the concept of additional time-frequency shift invariance. We prove that if a
Gabor system on a lattice of rational density is a Riesz sequence generating a subspace
which is invariant under an additional time-frequency shift, then its generator cannot
decay fast simultaneously in time and frequency.

1. Introduction

The Balian-Low theorem is an uncertainty principle in time-frequency analysis which
in its original form states that a generator of a Gabor orthonormal basis of the space
of square integrable functions on the real line cannot be well-localized simultaneously in
time and frequency.

Theorem 1.1 ([2, 12]). If the functions e2πinxg(x − m), (m,n) ∈ Z × Z, form an
orthonormal basis of L2(R), then

(∫
|x− α|2|g(x)|2 dx

)
·
( ∫

|ω − β|2|ĝ(ω)|2 dω
)
= ∞, α, β ∈ R. (1.1)

The result generalizes from Z × Z to separable lattices of the form aZ × bZ, where
ab = 1; the latter being in fact necessary for e2πibnxg(x−am), (am, bn) ∈ aZ×bZ, to form
an orthonormal basis of L2(R). The results in this paper though achieve generalizations
in the case ab > 1 by involving an additional invariance by time-frequency shifts. Before
discussing the Balian Low theorem, its extensions, and our results in more depth, we
state our main result in its simplest form for illustration:

Theorem 1.2. If ab ≥ 1 is rational, the functions e2πibnxg(x−am), (am, bn) ∈ aZ×bZ,
form an orthonormal system and its closed linear span contains e2πiηxg(x− u) for some
(u, η) /∈ aZ× bZ, then

(∫
|x− α|2|g(x)|2 dx

)
·
( ∫

|ω − β|2|ĝ(ω)|2 dω
)
= ∞, α, β ∈ R.

In the last two decades, the Balian-Low theorem has inspired significant research
in time-frequency analysis and has itself been generalized in various ways (see, e.g.,
[1, 7, 10, 14]). Gautam [7] recognized that g having a finite uncertainty product (1.1)
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implies that its Zak transform Zg has locally vanishing mean oscillation and that the
latter actually prevents the system {e2πinxg(x −m) : m,n ∈ Z} to be a Riesz basis of
L2(R). We will introduce the reader in Sections 2 and 3 to both the Zak transform and
the concept of vanishing mean oscillation (VMO). In fact, Gautam proved the following
theorem.

Theorem 1.3 ([7]). If g ∈ L2(R) such that the Gabor system {e2πinxg(x−m) : m,n ∈ Z}
is a Riesz basis of L2(R), then Zg /∈ VMOloc(R2). Moreover, if Zg /∈ VMOloc(R2), then
for any p, q ∈ (1,∞) with 1

p + 1
q = 1 we have

( ∫
|x− α|q|g(x)|2 dx

)
·
( ∫

|ω − β|p|ĝ(ω)|2 dω
)
= ∞, α, β ∈ R. (1.2)

In particular, if {e2πinxg(x − m) : m,n ∈ Z} constitutes a Riesz basis of L2(R), then
(1.2) holds for any p and q as above.

In this paper, we generalize Theorem 1.3 in two ways. First, as the attentive reader
might have noticed, Theorem 1.3 is only proved and formulated for the most simple
lattice Z×Z. In our results we consider general rational lattices and lattices of rational
density. Secondly, we work with Gabor systems that constitute a Riesz basis of their
closed linear span instead of L2(R), as indicated in Theorem 1.2. Our first main result
reads as follows.

Theorem 1.4. Let g ∈ L2(R) and let Λ ⊂ R2 be a lattice of rational density such
that the Gabor system {e2πibxg(x − a) : (a, b) ∈ Λ} is a Riesz basis of its closed linear
span G(g,Λ). If e2πiηxg(x − u) ∈ G(g,Λ) for some (u, η) /∈ Λ, then (1.2) holds for all
p, q ∈ (1,∞) with 1

p +
1
q = 1.

The conclusion of Theorem 1.4 can be strengthened significantly if we restrict ourselves
to rational lattices, i.e., lattices that only consist of rational points. Recall that, given
a field F, by GL(n,F) one usually denotes the group of invertible matrices in Fn×n and
SL(n,F) stands for the subgroup of GL(n,F) consisting of the matrices with determinant
1.

Theorem 1.5. Let g ∈ L2(R) and let Λ = AZ2 with A ∈ GL(2,Q), such that the Gabor
system {e2πibxg(x − a) : (a, b) ∈ Λ} is a Riesz basis of its closed linear span G(g,Λ). If
e2πiηxg(x − u) ∈ G(g,Λ) for some (u, η) /∈ Λ, then Zg /∈ VMOloc(R2).

Note that neither of the above two theorems implies the other, since rational lattices
are of rational density but the condition Zg /∈ VMOloc(R2) is stronger than (1.2) as seen
in Theorem 1.3 (cf. Problem 4.3).

In [8], Gebardo and Han already generalized the Balian-Low theorem to Gabor frames
for subspaces of L2(R). One of their main results states that if ab > 1, g ∈ L2(R), and
{e2πibmxg(x − an) : m,n ∈ Z} forms an overcomplete frame for its closed linear span,
then (1.1) holds. As it is mentioned in [8], the word “overcomplete” cannot be dropped in
the statement, as is revealed by choosing the Gaussian for g for which {e2πibmxg(x−an) :
m,n ∈ Z} always is a Riesz sequence. Our theorems therefore complement the result
from [8] inasmuch as we replace the term “overcomplete frame for its closed linear span”
by “Riesz basis of its closed linear span which has an additional time-frequency shift
invariance”. In particular, we obtain the following corollary.



A BALIAN-LOW THEOREM FOR SUBSPACES 3

Corollary 1.6. Let g(x) = e−x2
and let Λ ⊂ R2 be a lattice of rational density < 1.

Then e2πiηxg(x − u) /∈ G(g,Λ) for all (u, η) ∈ R2\Λ.
An important variant of the Balian-Low theorem is the so-called amalgam version,

known as the Amalgam Balian-Low theorem, which replaces the condition (1.1) by
g /∈ S0(R), where S0(R) denotes the Feichtinger algebra, given by

S0(R) =
{
f ∈ L2(R) :

∫
f(x) e−(x−t)2 e2πixν dx ∈ L1(t, ν)

}
.

Recently [4], the Amalgam Balian-Low theorem has been generalized to Gabor subspaces
of L2(R) in a similar fashion as Theorem 1.2 generalizes the Balian-Low theorem. Specif-
ically, the main theorem in [4] reads as Theorem 1.4 with “(1.2) holds for ...” replaced
by “g /∈ S0(R)”. In fact, the question whether g /∈ S0(R) can be replaced by (1.1) was
posed as an open problem in [4]. Hence, Theorem 1.4 gives a positive answer to this
question and goes beyond.

As is well known, the techniques used in proving the Balian-Low theorem are much
more involved than those used in the proof of the Amalgam Balian-Low theorem. There-
fore, and as we want to point out, the problem of replacing g /∈ S0(R) by (1.1) or (1.2)
is by far not a matter of a straight-forward procedure.

The Balian-Low theorem and its amalgam version are not equivalent. In fact, as
pointed out in [3], none of these two classical theorems implies the other. Therefore, it
seems desirable to find a space V ⊂ L2(R) which contains both S0(R) and the set of
functions with a finite uncertainty product as in (1.1) such that the functions in V fail
to be generators of Gabor Riesz bases of L2(R). In fact, Theorem 1.3 provides such a
space, namely the space of functions whose Zak transform is locally VMO. Hence, the
following easy consequence of Theorem 1.5 is a unification of the two classical theorems
for rational lattices of the critical density 1.

Theorem 1.7. Let g ∈ L2(R) and let Λ = AZ2 with A ∈ GL(2,Q), detA = 1, such
that the Gabor system {e2πiaxg(x − b) : (a, b) ∈ Λ} is a Riesz basis of L2(R). Then
Zg /∈ VMOloc(R2).

The paper is organized as follows. In Section 2 we introduce the reader to the notions
and notations used throughout the paper. Section 3 introduces and discusses the func-
tions that are locally of vanishing mean oscillation (VMO). We prove several statements
on invariance properties of VMOloc(Rn) which we make use of in the proofs of our main
results Theorem 1.4 and Theorem 1.5 in Section 4, but which also seem to be new and
are interesting in their own right.

2. Preliminaries

In this section, we collect basic notions and tools in time-frequency analysis that are
necessary for formulating and proving our main results. Recall that a lattice in R2 is a
set of the form AZ2 with some A ∈ GL(2,R) and its density is given by |detA|−1. We
define the time-frequency shift operator by (u, η) ∈ R2 as

π(u, η) : L2(R) → L2(R), π(u, η)f(x) = e2πiηxf(x− u).
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Using this notation, the Gabor system generated by g ∈ L2(R) and a lattice Λ ⊂ R2 is
simply written as (g,Λ) := {π(u, η)g : (u, η) ∈ Λ}. By G(g,Λ) we denote its closed linear
span in L2(R), i.e., G(g,Λ) = span {π(u, η)g : (u, η) ∈ Λ}. For the convenience of the
reader, we state some easily verifiable properties of the time-frequency shift operator in
the following lemma.

Lemma 2.1. The following statements hold.

(a) For a, b, c, d ∈ R, we have

π(a, b)π(c, d) = e−2πiadπ(a+ c, b+ d) = e−2πi(ad−bc)π(c, d)π(a, b).

(b) For fixed f ∈ L2(R), the mapping (a, b) 7→ π(a, b)f is continuous from R2 to
L2(R).

The Fourier transform is defined on L1(R) ∩ L2(R) by

Ff(ω) = f̂(ω) :=

∫

R
f(x) e−2πixω dx, ω ∈ R.

It is well known that the operator F extends to a unitary operator from L2(R) onto
L2(R). It can be used to define the Sobolev space Hs(R), s > 0, as follows:

Hs(R) =
{
f ∈ L2(R) :

∫

R
(1 + |ω|2)s|f̂(ω)|2 dω < ∞

}
.

The Zak transform of f ∈ L1(R) ∩ L2(R) is defined (a.e.) by

Zf(x, ω) =
∑

k∈Z
f(x+ k) e−2πikω, (x, ω) ∈ R2.

As is easily seen, the function Zf is quasi-periodic, i.e., for m,n ∈ Z we have

Zf(x+m,ω + n) = e2πimω Zf(x, ω) for a.e. (x, ω) ∈ R2. (2.1)

The mapping f 7→ Zf |[0,1]2 extends continuously to a unitary map from L2(R) onto

L2([0, 1]2). Here, if f ∈ L2(R), by Zf we mean the quasi-periodic extension of Zf |[0,1]2
to R2, which is an element of L2

loc(R2). We summarize some useful properties of the Zak
transform in the following lemma.

Lemma 2.2. Let f ∈ L2(R). Then the following relations hold for a.e. (x, ω) ∈ R2.

(a) Zf(x+m,ω + n) = e2πimω Zf(x, ω) for all m,n ∈ Z.
(b) Zπ(u, η)f(x, ω) = e2πiηx Zf(x− u, ω − η) for all (u, η) ∈ R2.

(c) (Zπ(m,n)f)(x, ω) = e2πi(nx−mω) Zf(x, ω) for all m,n ∈ Z.
(d) Zf̂(x, ω) = e2πixω Zf(−ω, x).

(e) f(x) =
∫ 1
0 Zf(x, ω) dω.

The following technical lemma will be used to prove our main results. A similar
statement can be found in [8, Proposition 3.8] (see also [4, Lemma 5]). However, since
the present setting is slightly different as in [8] and [4], we give a full proof of the
statement.
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Lemma 2.3. Let P,Q ∈ N, g ∈ L2(R), and assume that the Gabor system (g, 1
QZ×PZ)

is a Riesz sequence in L2(R) with Riesz bounds A and B. Then the matrix function

A(x, ω) :=
(
Zg(x− k

P − ℓ
Q , ω)

)P−1,Q−1

k,ℓ=0
∈ CP×Q, (x, ω) ∈ R2.

is essentially bounded from above and from below. More precisely, for a.e. (x, ω) ∈ R2

we have that

PA‖ξ‖2 ≤ ‖A(x, ω)ξ‖2 ≤ PB‖ξ‖2 for all ξ ∈ CQ. (2.2)

In particular, Zg ∈ L∞(R2), which also implies g ∈ L∞(R).

Proof. Let F ∈ L∞(RP ,CQ) be arbitrary, where RP := (0, 1
P )× (0, 1). Then there exists

(cm,n)m,n∈Z ∈ ℓ2(Z2) such that Fℓ =
∑

s,n∈Z csQ+ℓ,ne
2πi(nPx−sω), ℓ = 0, . . . , Q− 1, where

Fℓ denotes the ℓ-th coordinate of F . Using the properties of the Zak transform, we have
(extending F to R2 periodically)
∥∥∥∥∥
∑

m,n∈Z
cm,nπ

(
m
Q , nP

)
g

∥∥∥∥∥

2

L2(R)

=

∥∥∥∥∥

Q−1∑

ℓ=0

∑

s,n∈Z
csQ+ℓ,ne

2πi(nPx−sω)(Zg)
(
x− ℓ

Q , ω
) ∥∥∥∥∥

2

L2([0,1]2)

=

∥∥∥∥∥

Q−1∑

ℓ=0

Fℓ(x, ω)(Zg)
(
x− ℓ

Q , ω
)∥∥∥∥∥

2

L2([0,1]2)

=

∫ 1
P

0

∫ 1

0

P−1∑

k=0

∣∣∣∣∣

Q−1∑

ℓ=0

(Zg)
(
x− k

P − ℓ
Q , ω

)
Fℓ(x, ω)

∣∣∣∣∣

2

dω dx

=

∫ 1
P

0

∫ 1

0
‖A(x, ω)F (x, ω)‖22 dω dx.

Hence, for every F ∈ L∞(RP ,CQ) we obtain

PA‖F‖2L2(RP ,CQ) ≤
∫ 1

P

0

∫ 1

0
‖A(x, ω)F (x, ω)‖22 dω dx ≤ PB‖F‖2L2(RP ,CQ).

Let D be a countable dense set in CQ (e.g., D = (Q+ iQ)Q). For ξ ∈ D let L(ξ) denote
the set consisting of all Lebesgue points in RP of the map (x, ω) 7→ ‖A(x, ω)ξ‖22 and put
L :=

⋂
ξ∈D L(ξ). Then RP \ L has zero measure. For (x0, ω0) ∈ L, ξ ∈ D, and ε > 0

define F = Fξ,ε,x0,ω0 :=
1√
πε
χBε(x0,ω0)ξ, where Bε(x0, ω0) denotes the euclidian ball with

center (x0, ω0) and radius ε. Then, for ε small enough, ‖F‖L2(RP ,CQ) = ‖ξ‖ and

∫ 1
P

0

∫ 1

0
‖A(x, ω)F (x, ω)‖22 dω dx = 1

πε2

∫

Bε(x0,ω0)
‖A(x, ω)ξ‖22 d(x, ω).

Letting ε → 0 yields

PA‖ξ‖2 ≤ ‖A(x0, ω0)ξ‖22 ≤ PB‖ξ‖2.
By a density argument this holds for all ξ ∈ CQ, which establishes (2.2) for all (x, ω) ∈ L
and thus (due to the quasi-periodicity of A) for a.e. (x, ω) ∈ R2. Now, choosing the first
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standard basis vector of CQ for ξ, we obtain that |Zg(x, ω)|2 ≤ PB for a.e. (x, ω) ∈ R2.
Hence, Zg ∈ L∞(R2). Also, Lemma 2.2(e) yields g ∈ L∞(R). �

3. Functions of Vanishing Mean Oscillation (VMO)

A cube in Rn of side length δ > 0 is a set of the form I1 × · · · × In where each Ii ⊂ R
is a closed interval of length δ. For a function F ∈ L1

loc(Rn) and a bounded measurable
set ∆ ⊂ Rn with |∆| > 0, we define

F∆ :=
1

|∆|

∫

∆
F dx and M∆(F ) := (|F − F∆|)∆.

Also, for a bounded open set U ⊂ Rn and ε > 0, let

Sε,U(F ) := sup {MQ(F ) : Q ⊂ U cube, |Q| < ε} .

Definition 3.1. Let U be a bounded open subset of Rn.

(a) A function F ∈ L1
loc(R

n) is said to be of bounded mean oscillation (BMO) on U if
supQMQ(F ) < ∞, where the supremum is taken over all bounded cubes Q contained in
U . The space of all such functions is denoted by BMO(U). We write F ∈ BMOloc(Rn)
if F ∈ BMO(U) for every bounded open set U ⊂ Rn.

(b) A function F ∈ L1
loc(R

n) is said to be of vanishing mean oscillation (VMO) on U if
F ∈ BMO(U) and limε→0 Sε,U(F ) = 0. The space of all such functions is denoted by
VMO(U). Likewise, we write F ∈ VMOloc(Rn) if F ∈ VMO(U) for every bounded open
set U ⊂ Rn.

Remark 3.2. (a) It is easily seen that for any F,G ∈ L1
loc(R

n) and a cube Q ⊂ U ,
(F +G)Q = FQ+GQ and MQ(F +G) ≤ MQ(F )+MQ(G), which leads to Sε,U(F +G) ≤
Sε,U(F ) + Sε,U(G). This shows that the sets BMO(U) and VMO(U) are linear spaces.
Also, ‖ · ‖BMO(U) := supQ⊂U MQ(F ) induces a semi-norm on BMO(U).

(b) It is straightforward that L∞(Rn) ⊂ BMO(Rn). Also, every bounded uniformly
continuous function on Rn belongs to VMO(Rn) [15].

In the sequel, we will use the notation

VMO∞
loc(Rn) := VMOloc(Rn) ∩ L∞(Rn).

The following lemma shows in particular that VMO∞
loc(Rn) is closed under multiplication

and is therefore an algebra.

Lemma 3.3. The following statements hold.

(i) If F,G ∈ L1
loc(R

n), then for any cube Q ⊂ Rn we have

|FQGQ − (FG)Q| ≤ 1
2 max{‖F‖∞, ‖G‖∞}(MQ(F ) +MQ(G)). (3.1)

Also, whenever U ⊂ Rn is a bounded open set and ε > 0, then

Sε,U(FG) ≤ 3
2 max{‖F‖∞, ‖G‖∞}

(
Sε,U(F ) + Sε,U(G)

)
. (3.2)

Consequently, F,G ∈ VMO∞
loc(Rn) implies FG ∈ VMO∞

loc(Rn).
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(ii) If F ∈ VMOloc(Rn) and ess inf |F | > 0, then for any bounded open set U ⊂ Rn

there exists ε = εU > 0 such that

|FQ| ≥ (ess inf |F |)/2 for all cubes Q ⊂ U with |Q| < ε, (3.3)

and

Sε,U(1/F ) ≤ 4

(ess inf |F |)2 Sε,U(F ). (3.4)

Consequently, F ∈ VMOloc(Rn) and ess inf |F | > 0 imply 1/F ∈ VMO∞
loc(Rn).

Proof. (i) Let F,G ∈ L1
loc(Rn) and let Q ⊂ U be a cube. Then

1

|Q|

∫

Q
|FG− (FG)Q| dx ≤ 1

|Q|

∫

Q
|FG− FQGQ| dx+ |FQGQ − (FG)Q|.

We estimate the first term on the right hand side as

1

|Q|

∫

Q
|FG− FQGQ| dx ≤ 1

|Q|

∫

Q
(|F ||G −GQ|+ |F − FQ||GQ|) dx

≤ max{‖F‖∞, ‖G‖∞}(MQ(F ) +MQ(G)).

For the second term, we observe that

|FQGQ − (FG)Q| =
1

|Q|

∣∣∣∣
∫

Q
F (GQ −G) dx

∣∣∣∣ ≤
1

|Q|

∫

Q
|F | |G−GQ| dx ≤ ‖F‖∞MQ(G)

and

|FQGQ − (FG)Q| =
1

|Q|

∣∣∣∣
∫

Q
(FQ − F )Gdx

∣∣∣∣ ≤
1

|Q|

∫

Q
|F − FQ| |G| dx ≤ ‖G‖∞MQ(F )

so that

|FQGQ − (FG)Q| ≤ 1
2 max{‖F‖∞, ‖G‖∞}(MQ(F ) +MQ(G)).

Therefore, MQ(FG) ≤ 3
2 max{‖F‖∞, ‖G‖∞}(MQ(F )+MQ(G)) from which (3.2) follows.

(ii) Assume that F ∈ VMOloc(Rn) and C := ess inf |F | > 0, and let U ⊂ Rn be an
open set. Since F ∈ VMOloc(Rn), we have Sε,U(F ) ≤ C/2 for some ε = εU > 0. Let
Q ⊂ U be any cube with |Q| < ε. Then |F (x) − FQ| + |FQ| ≥ |F (x)| ≥ C a.e. so
that MQ(F ) + |FQ| ≥ C. Using the fact that MQ(F ) ≤ Sε,U(F ) ≤ C/2, we obtain
|FQ| ≥ C/2. Now, observe that

MQ(1/F ) =
1

|Q|

∫

Q

∣∣∣∣∣
1

F
−
(
1

F

)

Q

∣∣∣∣∣ dx ≤ 1

|Q|

∫

Q

∣∣∣∣
1

F
− 1

FQ

∣∣∣∣ dx+

∣∣∣∣∣
1

FQ
−
(
1

F

)

Q

∣∣∣∣∣ .

The first term can be estimated by

1

|Q|

∫

Q

∣∣∣∣
1

F
− 1

FQ

∣∣∣∣ dx =
1

|Q|

∫

Q

|FQ − F |
|FQF | dx ≤ 2MQ(F )

C2

and the second term by
∣∣∣∣∣
1

FQ
−
(
1

F

)

Q

∣∣∣∣∣ ≤
2

C

∣∣∣∣∣1− FQ

(
1

F

)

Q

∣∣∣∣∣ =
2

C|Q|

∣∣∣∣
∫

Q

(
1− FQ

F

)
dx

∣∣∣∣
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≤ 2

C2|Q|

∫

Q
|F − FQ| dx =

2MQ(F )

C2
.

Thus, we have MQ(1/F ) ≤ 4MQ(F )/C2, which yields (3.4) . �
A successive application of (3.1) in Lemma 3.3(i) gives the following corollary.

Corollary 3.4. If F,F1, . . . , Fn ∈ VMO∞
loc(Rn), then

∏n
i=1 Fi ∈ VMO∞

loc(Rn). More-
over, there exists a constant C > 0 which only depends on ‖F1‖∞, . . . , ‖Fn‖∞ such that
for any bounded open set U ⊂ Rn, ε > 0 and a cube Q ⊂ U with |Q| < ε,∣∣∣∣∣∣

(
n∏

i=1

Fi

)

Q

−
n∏

i=1

(Fi)Q

∣∣∣∣∣∣
≤ C

n∑

i=1

Sε,U(Fi).

Corollary 3.5. Let B(x) = [Bj,k(x)]
N
j,k=1, N ∈ N, be such that each Bj,k : Rn → C

belongs to VMO∞
loc(Rn) and Bk,j(x) = Bj,k(x) for all j, k, i.e., B(x) = B(x)∗. If there

exist constants α, β > 0 such that αIN ≤ B(x) ≤ βIN a.e., then each entry of B(x)−1

belongs to VMO∞
loc(Rn).

Proof. Let C(x) = adjB(x) be the adjugate matrix of B(x). By Lemma 3.3(i), each
entry of C(x) is in VMO∞

loc(Rn) and so is detB(x). Since detB(x) ≥ αN a.e., it follows
from Lemma 3.3(ii) that (detB(x))−1 ∈ VMO∞

loc(Rn). Again by Lemma 3.3(i), we
conclude that each entry of B(x)−1 = (detB(x))−1C(x) belongs to VMO∞

loc(Rn). �
The next proposition will play a key role in the proofs of our main theorems. It was

proved for a continuous function H in [4, Proposition 3]. Here, we relax the condition
to H ∈ VMO∞

loc(R2) which is much weaker than H being continuous.

Proposition 3.6. Let P1, P2, N ∈ N, M1,M2 ∈ Z, and (u, η) ∈ Q2, (u, η) 6= (0, 0), such
that Nu,Nη ∈ Z. If H ∈ VMO∞

loc(R2) is 1
P1
-periodic in x, 1

P2
-periodic in ω and

N−1∏

n=0

H(x+ nu, ω + nη) = e2πi(M1x+M2ω) for a.e. (x, ω) ∈ R2, (3.5)

then NP1 divides M1 and NP2 divides M2.

Proof. First, we note that H ∈ VMO(R2) since H is periodic. For r > 0 and F ∈
L∞(R2), we define the mean function

F[r](x, ω) :=
1

|Qr(x, ω)|

∫

Qr(x,ω)
F (z) dz, (x, ω) ∈ R2,

which takes the average of F over the cube Qr(x, ω) of side length r centered at (x, ω),

Qr(x, ω) = [x− r
2 , x+ r

2 ]× [ω − r
2 , ω + r

2 ].

It is easily seen that F[r] is continuous (even Lipschitz continuous); moreover, if F is
periodic, then F[r] inherits the periodicity of F . Setting Hn(x, ω) := H(x+ nu, ω + nη)
for n = 0, . . . , N − 1, Corollary 3.4 implies that∣∣∣∣∣∣

N−1∏

n=0

(Hn)[r] −
(

N−1∏

n=0

Hn

)

[r]

∣∣∣∣∣∣
≤ C

N−1∑

n=0

Sr2,R2(Hn) = CNSr2,R2(H),
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where C > 0 is a constant which depends only on ‖H‖∞. Using
(

N−1∏

n=0

Hn

)

[r]

(x, ω) =
(
e2πi(M1x+M2ω)

)
[r]

= sinc(M1r) sinc(M2r) e
2πi(M1x+M2ω),

we obtain
∣∣∣∣∣
N−1∏

n=0

(Hn)[r](x, ω)− e2πi(M1x+M2ω)

∣∣∣∣∣ ≤ CNSr2,R2(H) + | sinc(M1r) sinc(M2r)− 1|

for all (x, ω) ∈ R2. Note that the right hand side does not depend on (x, ω) and tends

to zero as r → 0. Since
∏N−1

n=0 (Hn)[r](x, ω) and e2πi(M1x+M2ω) are continuous functions

in (x, ω), there exist continuous functions ρr : R2 → C, r > 0, such that

N−1∏

n=0

(Hn)[r](x, ω) = ρr(x, ω) e
2πi(M1x+M2ω).

It is easily seen that ρr(x, ω) converges uniformly to 1 on R2 as r → 0. Noting that
(Hn)[r](x, ω) = H[r](x + nu, ω + nη) for n = 0, . . . , N − 1, the equation above can be
written as

N−1∏

n=0

H[r](x+ nu, ω + nη) = ρr(x, ω) e
2πi(M1x+M2ω). (3.6)

Here, the mean function H[r] inherits the periodicity of H, and is therefore 1
P1
-periodic

in x and 1
P2
-periodic in ω. Note that the periodicity of H together with (3.5) yields

M1/P1,M2/P2 ∈ Z. This shows that e2πi(M1x+M2ω) is 1
P1
-periodic in x and 1

P2
-periodic

in ω, and therefore by (3.6), so is ρr(x, ω). On the other hand, by replacing x and ω
respectively with x + u and ω + η in (3.5), taking into account Nu,Nη ∈ Z, and using
the periodicity of H, we find that M1u + M2η ∈ Z. Applying the same trick to (3.6)
then gives

ρr(x+ u, ω + η) = ρr(x, ω)

for all r > 0 and (x, ω) ∈ R2. As ρr → 1 uniformly, there exists a branch of N
√ ·

such that N
√
ρr is continuous for r small enough, say, r ≤ r0, r0 > 0. Now, setting

Gr(x, ω) := H[r](x, ω)/
N
√

ρr(x, ω) for r ≤ r0 and combining all these facts yields

N−1∏

n=0

Gr(x+ nu, ω + nη) =

N−1∏

n=0

H[r](x+ nu, ω + nη)
N
√
ρr(x+ nu, ω + nη)

= e2πi(M1x+M2ω).

Note that Gr is continuous and 1
P1
-periodic in x, 1

P2
-periodic in ω. The fact that NP1

divides M1 and NP2 divides M2 now follows from [4, Proposition 3]. �

In the remainder of this section, we consider functions in VMOloc(Rn) that are not
necessarily in L∞(Rn).



10 A. CARAGEA, D.G. LEE, G.E. PFANDER, AND F. PHILIPP

Lemma 3.7. Let ∆1,∆2 ⊂ Rn be bounded measurable sets with ∆1 ⊂ ∆2 and |∆1| > 0.
Then for any F ∈ L1

loc(R
n) we have

M∆1(F ) ≤ 2
|∆2|
|∆1|

M∆2(F ).

Proof. Note that for any F ∈ L1
loc(Rn),

M∆2(F ) =
1

|∆2|

∫

∆2

|F − F∆2 | dx ≥ 1

|∆2|

∫

∆1

|(F − F∆1)− (F∆2 − F∆1)| dx

≥ |∆1|
|∆2|

(
M∆1(F )− |F∆2 − F∆1 |

)
,

which is equivalent to

M∆1(F ) ≤ |∆2|
|∆1|

M∆2(F ) + |F∆2 − F∆1 |.

Estimating the last term by

|F∆2 − F∆1 | =
∣∣∣∣

1

|∆1|

∫

∆1

(F − F∆2) dx

∣∣∣∣ ≤
1

|∆1|

∫

∆1

|F − F∆2 | dx ≤ |∆2|
|∆1|

M∆2(F ),

we obtain the desired inequality. �

Lemma 3.8. Let A ∈ GL(n,R) and b ∈ Rn and define an affine mapping Φ : Rn → Rn

by Φ(x) = Ax+ b. Then for any F ∈ L1
loc(R

n) and any cube Q ⊂ Rn with center c ∈ Rn

and side length δ > 0 we have

MQ(F ◦ Φ) ≤
2nn/2‖A‖nop
|detA| M

Q̃
(F ),

where Q̃ is the cube with center Φ(c) and side length
√
n‖A‖opδ. Consequently, if F ∈

VMOloc(Rn), then F ◦ Φ ∈ VMOloc(Rn).

Proof. Note that the set Φ(Q) is a parallelepiped in Rn with volume |AQ| = |detA||Q|.
For any G ∈ L1

loc(Rn), we have

(G ◦Φ)Q =
1

|detA||Q|

∫

Φ−1(Φ(Q))
G(Φ(x))|detA| dx =

1

|Φ(Q)|

∫

Φ(Q)
Gdx = GΦ(Q)

so that

MQ(F ◦Φ) = (|F ◦Φ−(F ◦Φ)Q|)Q = (|F −FΦ(Q)|◦Φ)Q = (|F−FΦ(Q)|)Φ(Q) = MΦ(Q)(F ).

It is easy to see that the cube Q̃ contains Φ(Q). Hence, Lemma 3.7 implies that

MQ(F ◦ A) ≤ 2
|Q̃|

|Φ(Q)|MQ̃
(F ) =

2nn/2‖A‖nop
|detA| M

Q̃
(F ).

This proves the lemma. �
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Proposition 3.9. For F ∈ Ln
loc(R

n), φ ∈ C1(Rn) and a cube Q ⊂ Rn of side length
δ > 0, we have

MQ(φF ) ≤ ‖φ‖L∞(Q)MQ(F ) + ‖φ′‖Q‖F‖Ln(Q),

where ‖φ′‖Q = supx∈Q ‖∇φ(x)‖ℓ1 . Consequently, if F ∈ VMOloc(Rn) ∩ Ln
loc(R

n) and

φ ∈ C1(Rn), then φF ∈ VMOloc(Rn).

Proof. Let F ∈ Ln
loc(Rn), φ ∈ C1(Rn) and Q ⊂ Rn a cube of side length δ > 0. Then for

any x, y ∈ Q,

|φ(x) − φ(y)| ≤ ‖φ′‖Q · ‖x− y‖∞ ≤ δ‖φ′‖Q
so that

MQ(φF ) ≤ 1

|Q|

∫

Q
|φ(F − FQ)| dx+

1

|Q|

∫

Q
|φFQ − (φF )Q| dx

≤ ‖φ‖L∞(Q)MQ(F ) +
1

|Q|

∫

Q

∣∣∣∣
1

|Q|

∫

Q
[φ(x)− φ(y)]F (y) dy

∣∣∣∣ dx

≤ ‖φ‖L∞(Q)MQ(F ) +
δ‖φ′‖Q
|Q|

∫

Q
|F (y)| dy

≤ ‖φ‖L∞(Q)MQ(F ) +
δ‖φ′‖Q
|Q| ‖F‖Ln(Q)|Q|1−1/n,

which gives the desired estimate. �

As for any f ∈ L2(R) the Zak transform Zf is locally square-integrable, we deduce
the following corollary.

Corollary 3.10. If f ∈ L2(R) satisfies Zf ∈ VMOloc(R2), then for any φ ∈ C1(R2) we
have that φZf ∈ VMOloc(R2).

Proposition 3.11. For α, β ∈ R\{0}, define the operators

Dα : L2(R) → L2(R), Dαf(x) =
√

|α|f(αx) (dilation by α)

Cβ : L2(R) → L2(R), Cβf(x) = e2πiβx
2
f(x) (multiplication by a chirp e2πiβx

2
).

If g ∈ L2(R) satisfies Zg ∈ VMOloc(R2), then Zĝ, Z(Dαg), Z(Cβg) ∈ VMOloc(R2) for
all α, β ∈ Q\{0}.
Proof. By Lemma 2.2, we have

Zĝ(x, ω) = e2πixωZg(−ω, x) = e2πixωZg
((

0 −1
1 0

)
(x, ω)T

)
.

Then Lemma 3.8 and Corollary 3.10 immediately yield that Zĝ ∈ VMOloc(R2). Next,
let us write α = p/q ∈ Q\{0}, where p, q ∈ Z \ {0} are coprime, and A = diag(α,α−1).
It is known [11] that

Z(Dαg)(x, ω) =
1√
pq

q−1∑

ℓ=0

p−1∑

r=0

e2πiℓωZg
(
A(x, ω)T + (αℓ, r/p)T

)
if α > 0
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and

Z(Dαg)(x, ω) =
1√−pq

q−1∑

ℓ=0

p−1∑

r=0

e−2πiℓωZg
(
A(x, ω)T − (αℓ, r/p)T

)
if α < 0.

Likewise, Lemma 3.8 and Corollary 3.10 imply that Z(Dαg) ∈ VMOloc(R2). Finally,
observe that

Cβ = Dγ−1Cβγ2Dγ (3.7)

for any β, γ ∈ R\{0}. If β ∈ Q\{0}, then there exists γ ∈ N such that βγ2 ∈ Z.
Therefore, it suffices to show that Z(Cmg) ∈ VMOloc(R2) for m ∈ Z. For this, note that

Z(Cmg)(x, ω) =
∑

k∈Z
e2πim(x+k)2g(x+ k)e−2πikω = e2πimx2

∑

k∈Z
g(x+ k)e−2πik(ω−2mx)

= e2πimx2
Zg(x, ω − 2mx) = e2πimx2

Zg
((

1 0
−2m 1

)
(x, ω)T

)
.

Again, the claim now follows from Lemma 3.8 and Corollary 3.10. �

Remark 3.12. In [7], it is claimed, referring to the quasi-periodicity of Zak transform,
that Zf ∈ VMO∞

loc(R2) implies Zf ∈ VMO(R2). However, this is not true in general. For
example, the function f(x) = 1[0,1)(x) sin(πx) satisfies Zf ∈ VMO∞

loc(R2)\VMO(R2).

To see this, given any δ ∈ (0, 1) let k ∈ N be such that | sinc(kδ)| ≤ 1
2 and

Q = [k + 1−δ
2 , k + 1+δ

2 ]× [− δ
2 ,

δ
2 ].

Then

(Zf)Q =

(
1

δ

∫ k+(1+δ)/2

k+(1−δ)/2
sin(π(x− k)) dx

)(
1

δ

∫ δ/2

−δ/2
e2πikω dω

)
= sinc(δ/2) sinc(kδ)

and thus

MQ(Zf) =
1

δ2

∫

Q

∣∣∣sin(π(x− k))e2πikω − sinc(δ/2) sinc(kδ)
∣∣∣ d(x, ω)

≥ 1

δ2

∫

Q

[
sin(π(x− k))− sinc(δ/2)| sinc(kδ)|

]
d(x, ω)

= sinc(δ/2)(1 − | sinc(kδ)|) ≥ sinc(1/2)(1 − | sinc(kδ)|) ≥ 1

π
,

which shows that Zf /∈ VMO(R2).

4. Proof of Theorems 1.4 and 1.5

The core of the proof of both theorems is the following proposition, which is simply
Theorem 1.5 for lattices of the form 1

QZ×PZ. In the proofs of the two theorems below

we shall extend Proposition 4.1 to more general lattices by means of so-called metaplectic
operators.
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Proposition 4.1. Let g ∈ L2(R) and let Λ = 1
QZ×PZ with P,Q ∈ N coprime, such that

the Gabor system {e2πibxg(x − a) : (a, b) ∈ Λ} is a Riesz basis of its closed linear span
G(g,Λ). If e2πiηxg(x− u) ∈ G(g,Λ) for some (u, η) ∈ R2\Λ, then Zg /∈ VMOloc(R2).

Before we prove Proposition 4.1, we state a lemma that allows us to replace (u, η) ∈
R2\Λ with a rational pair (u, η) ∈ Q2\Λ.
Lemma 4.2. For g ∈ L2(R) and Λ = 1

QZ× PZ with P,Q ∈ N, define the set

M =
{
(α, β) ∈ R2 : π(α, β)g ∈ G(g,Λ)

}
(⊃ Λ).

If M\Λ 6= ∅, then there exists (u, η) ∈ (M ∩Q2)\Λ.
Proof. Note that, by Lemma 2.1, M is a closed set containing the lattice Λ = 1

QZ×PZ.
Assume that (u, η) ∈ M\Λ and define the set

Λ1 :=
{
(mQ , nP ) + k(u, η) : m,n, k ∈ Z

}
⊂ M.

Assume that u /∈ Q, η ∈ Q, η = c
d , c, d ∈ Z, d 6= 0, and put v := dPu /∈ Q. Let x := 1

2Q .

Since {m
Q +ℓv : m, ℓ ∈ Z} is dense in R, we can choose m, ℓ ∈ Z such that x′ := u+m

Q +ℓv

is arbitrary close to x. Then

(x′, η) =
(
m
Q ,−ℓcP

)
+ (1 + ℓdP )(u, η) ∈ Λ1.

Hence, ( 1
2Q , η) ∈ Λ1\Λ ⊂ M\Λ.

Assume now that η /∈ Q. Since {nP + kη : n, k ∈ Z} is dense in R, there exist
sequences (nj)j∈N and (kj)j∈N in Z such that njP + kjη → 1

2 as j → ∞. For each j ∈ N
pick mj ∈ Z such that

mj

Q + kju ∈ [0, 1
Q ]. Then this sequence is bounded and thus has a

convergent subsequence. By x denote its limit. Then (x, 12) ∈ M\Λ. If x ∈ Q, we have
reached our aim. Otherwise the above reasoning applies again. �
Proof of Proposition 4.1. In the sequel we aim to deduce a contradiction from the three
following assumptions (where Λ = 1

QZ× PZ with P,Q ∈ N):
(i) Zg ∈ VMOloc(R2).
(ii) The Gabor system (g,Λ) is a Riesz basis of G(g,Λ).
(iii) π(u, η)g ∈ G(g,Λ) for some (u, η) ∈ R2\Λ.

Due to Lemma 4.2 we may assume in (iii) that (u, η) ∈ Q2\Λ. Our strategy is as follows:
First, from (ii) and (iii) we obtain an equation of the form

A(x, ω) = e−2πiη(x+u)D−1
P A(x+ u, ω + η)M(x + u, ω + η),

which holds for a.e. (x, ω) ∈ R2. Here, A is the matrix function from Lemma 2.3,
DP is a constant diagonal scaling matrix and M is a matrix function satisfying certain
periodicity properties. We then iterate this equation by successively replacing (x, ω) by
(x+ u, ω + η). As A is quasi-periodic and u, η ∈ Q, this process ends at a certain point
with A(x, ω) on both sides and we end up with an equation

N∏

n=1

M(x+ nu, ω + nη) = e2πi(M1x+M2ω)IQ.
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By applying the determinant on both sides, we are in the situation of Proposition 3.6,
which finally implies that (u, η) ∈ Λ.

So, let us assume that (i)–(iii) are satisfied. Since the system (g,Λ) = {π(mQ , nP )g :

m,n ∈ Z} is a Riesz basis of G(g,Λ) by (ii) and π(u, η)g ∈ G(g,Λ), there exists
(cm,n)m,n∈Z ∈ ℓ2(Z2) such that

π(u, η)g =
∑

m,n∈Z
cm,nπ(

m
Q , nP )g =

Q−1∑

ℓ=0

∑

s,n∈Z
csQ+ℓ,n π(s+

ℓ
Q , nP )g,

which converges in L2(R). Denoting G := Zg, an application of the Zak transform gives
(see Lemma 2.2)

e2πiηx G(x− u, ω − η) =

Q−1∑

ℓ=0

∑

s,n∈Z
csQ+ℓ,ne

2πi(nPx−sω)G(x− ℓ
Q , ω)

=

Q−1∑

ℓ=0

Fℓ(x, ω)G(x − ℓ
Q , ω) for a.e. (x, ω) ∈ R2, (4.1)

where Fℓ(x, ω) :=
∑

s,n∈Z csQ+ℓ,ne
2πi(nPx−sω). By definition, each Fℓ is 1-periodic in ω

(i.e., Fℓ(x, ω + 1) = Fℓ(x, ω) for a.e. (x, ω) ∈ R2) and 1
P -periodic in x. Replacing x by

x− k
P in (4.1), k = 0, . . . , P − 1, yields

e2πiη(x−
k
P )G(x− u− k

P , ω − η) = (A(x, ω)F (x, ω))k ,

where A is the matrix function from Lemma 2.3 and F := (F0, . . . , FQ−1)
T . Thus, we

have

A(x, ω)F (x, ω) = e2πiηxDPA(x− u, ω − η)e0 for a.e. (x, ω) ∈ R2, (4.2)

where DP = diag(exp(−2πiη k
P ))

P−1
k=0 and ej is the (j + 1)-th standard basis vector of

CQ, j = 0, . . . , Q − 1. Note that each entry of A is a function in VMO∞
loc(R2) by (i),

Lemma 3.8, and Lemma 2.3. The identity in (4.2) implies (cf. Lemma 2.3)

F (x, ω) = e2πiηx (A(x, ω)∗A(x, ω))−1A(x, ω)∗DPA(x− u, ω − η)e0.

Hence, from the periodicity of Fℓ and Corollary 3.5 we infer that Fℓ ∈ VMO(R2)∩L∞(R2)
for ℓ = 0, . . . , Q− 1. From (4.2) we also obtain

A(x− u, ω − η)e0 = e−2πiηxD−1
P A(x, ω)F (x, ω).

Note that A(x, ω)eℓ = A(x− ℓ
Q , ω)e0 and A(x− ℓ

Q , ω) = A(x, ω)R(ω)ℓ, where R(ω) ∈
CQ×Q is the matrix 



0 ew

1
. . .
. . .

. . .

1 0


 ,
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with eω := e−2πiω. Therefore,

A(x− u, ω − η)eℓ = e−2πiη(x− ℓ
Q
)D−1

P A(x− ℓ
Q , ω)F (x− ℓ

Q , ω)

= e−2πiη(x− ℓ
Q
)D−1

P A(x, ω)R(ω)ℓF (x− ℓ
Q , ω).

Hence, if M(x, ω) ∈ CQ×Q denotes the matrix with columns e
2πiη ℓ

QR(ω)ℓF (x − ℓ
Q , ω),

ℓ = 0, . . . , Q− 1, we obtain

A(x− u, ω − η) = e−2πiηxD−1
P A(x, ω)M(x, ω). (4.3)

Note that M has the same periodicity in x and ω as F . Moreover, an easy calculation
leads to

M(x− 1
Q , ω) = e−

2πi
Q R(ω)−1M(x, ω)R(ω). (4.4)

Now, let us iterate the relation (4.3):

A(x, ω) = e−2πiη(x+u)D−1
P A(x+ u, ω + η)M(x + u, ω + η)

= e−2πiη(2x+3u)D−2
P A(x+ 2u, ω + 2η)M(x+ 2u, ω + 2η)M(x + u, ω + η)

= . . .

= e
2πiη

(
Nx+N(N−1)

2
u
)
D−N

P A(x+Nu,ω +Nη)
N∏

n=1

M(x+ nu, ω + nη),

where the matrix product is to be read in terms of left multiplication. As (u, η) ∈ Q2,
we may choose N such that M1 := −Nη ∈ Z, M2 := −Nu ∈ Z, Nuη ∈ 2Z, and
M1/P = −Nη/P ∈ Z. Then D−N

P = IP and Lemma 2.2 yields A(x + Nu,ω + Nη) =

A(x−M2, ω −M1) = e−2πiM2ωA(x, ω), hence

A(x, ω) = e2πi(−M1x−M2ω)A(x, ω)
N∏

n=1

M(x+ nu, ω + nη).

Since A(x, ω) has a left inverse for a.e. (x, ω) ∈ R2 by Lemma 2.3, we get

N∏

n=1

M(x+ nu, ω + nη) = e2πi(M1x+M2ω)IQ for a.e. (x, ω) ∈ R2.

Finally, we define the function H := detM. Since each entry of M is contained in
VMO∞

loc(R2), we have H ∈ VMO∞
loc(R2). In addition, H is 1

P -periodic in x and 1-periodic

in ω. But by (4.4), H is also 1
Q -periodic in x. Since it satisfies

N−1∏

n=0

H(x+ nu, ω + nη) = e2πi(QM1x+QM2ω) for a.e. (x, ω) ∈ R2,

Proposition 3.6 implies that both NP and NQ divide QM1 = −NQη, and N divides
QM2 = −QNu. The last relation gives u ∈ 1

QZ. From the first two relations it follows

that P divides Qη and that η ∈ Z. But as P and Q are coprime, P divides η, i.e.,
η ∈ PZ. This is the desired contradiction. �
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In order to extend Proposition 4.1 to arbitrary rational lattices and lattices of rational
density we make use of the so-called metaplectic operators. To describe this class of
operators we first mention that any matrix in SL(2,R) can be expressed as a finite
product of matrices of the form

(
0 1
−1 0

)
,

(
α 0
0 α−1

)
,

(
1 0
β 1

)
, α, β ∈ R\{0}. (4.5)

Indeed, if S =

(
a b
c d

)
with ad− bc = 1, then

S =

(
1 0

ca−1 1

)(
0 1
−1 0

)(
1 0

−ab 1

)(
0 1
−1 0

)(
−a 0
0 −a−1

)
if a 6= 0

and

S =

(
1 0

−cd 1

)(
0 1
−1 0

)(
b−1 0
0 b

)
if a = 0.

This in particular shows that if S ∈ SL(2,Q), then the parameters α, β can be chosen
to be rational.

It is known [9] that to each matrix S ∈ SL(2,R) there corresponds a (so-called meta-
plectic) unitary operator US : L2(R) → L2(R) such that

USπ(x, ω)U
∗
S = π(S(x, ω)T ) for all (x, ω) ∈ R2.

The operator US is unique up to scalar multiplication with unimodular constants. If
S, T ∈ SL(2,R), the operator USUT is obviously a metaplectic operator corresponding
to ST . That is, we have UST = USUT . As is easily seen, the three types of matrices
in (4.5), which generate SL(2,R), correspond to the metaplectic operators F (Fourier
transform), Dα, and Cβ (defined in Proposition 3.11), respectively.

Proof of Theorem 1.5. As in the proof of Proposition 4.1, in addition to the assumptions
of Theorem 1.5, we shall assume that Zg ∈ VMOloc(R2) and derive a contradiction. We
have Λ = AZ2, where A ∈ GL(2,Q). We may write detA = P

Q , where P,Q ∈ Z \ {0}
are coprime numbers. Then B := diag( 1

Q , P )A−1 ∈ SL(2,Q) can be expressed as a finite

product of matrices (4.5) with α, β ∈ Q\{0}. Hence, the metaplectic operator UB can
be written as a finite product of operators of the type F , Dα, and Cβ. Now, set

(u1, η1)
T := B(u, η)T , g1 := UBg ∈ L2(R), and Λ1 = BΛ = 1

QZ×PZ. (4.6)

Proposition 3.11 implies that Zg1 ∈ VMOloc(R2). Also, π(Bλ)g1 = UBπ(λ)U
−1
B g1 =

UBπ(λ)g for every λ ∈ Λ, which implies that (g1,Λ1) is a Riesz basis for its closed linear
span G(g1,Λ1) = UBG(g,Λ). Moreover, the condition π(u, η)g ∈ G(g,Λ) immediately
translates to

π(u1, η1)g1 = π(B(u, η)T )UBg = UBπ(u, η)g ∈ UBG(g,Λ) = G(g1,Λ1).

But as (u1, η1) /∈ Λ1 this is not possible by Proposition 4.1. �
Proof of Theorem 1.4. Let us first discuss the condition (1.2). Since g ∈ L2(R), the
condition holds for some α, β ∈ R if and only if it holds for all α, β ∈ R. At the same
time, (1.2) exactly means that g /∈ Hp/2(R) or g /∈ Hq/2(R). Towards a contradiction,
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in addition to the assumptions of Theorem 1.4, we assume that there exist some p, q ∈
(1,∞) with 1

p + 1
q = 1 such that the product on the left hand side of (1.2) (with, e.g.,

α = β = 0) is finite. In other words, we assume that g ∈ Hp/2(R) and ĝ ∈ Hq/2(R).
Let Λ be an arbitrary lattice in R2 with rational density P/Q, where P and Q are

coprime integers, and let g ∈ L2(R) be as in Theorem 1.4. Also, let (u, η) ∈ R2\Λ such
that π(u, η)g ∈ G(g,Λ). As in the proof of Theorem 1.5, we choose a matrix B ∈ SL(2,R)
(here, B is allowed to have irrational entries) such that BΛ = Λ1 := 1

QZ × PZ. Define

(u1, η1), g1, and Λ1 as in (4.6). Then g1 ∈ L2(R), (g1,Λ1) is a Riesz basis for its closed
linear span, and π(u1, η1)g1 ∈ G(g1,Λ1). Hence, by Proposition 4.1 it suffices to show
that Zg1 ∈ VMOloc(R2).

To simplify notations, for p ∈ (1,∞) let Hp(R) be the space of functions f ∈ Hp/2(R)
whose Fourier transform f̂ is contained in Hq/2(R), where 1

p + 1
q = 1. Also, let H :=⋃

p∈(1,∞)Hp(R). In what follows, we prove that UH ⊂ H for any metaplectic operator

U . It then follows that g1 = UBg ∈ H. And since, by [7], we have ZH ⊂ VMOloc(R2),
we obtain Zg1 ∈ VMOloc(R2), which was our aim.

Since every metaplectic operator is a finite product of the Fourier transform F , di-
lations, and chirp muliplication, we only have to prove that FH ⊂ H, DαH ⊂ H for
each α ∈ R \ {0}, and C1H ⊂ H (cf. (3.7)). Using the representation Hs(R) = {f ∈
L2(R) : ω2sf̂ 2 ∈ L1(R)}, the first two claims are almost immediate. We will now prove

that C1Hp(R) ⊂ Hp(R) for p ∈ (1,∞). So, let g ∈ Hp(R). Then ĝ ∈ Hq/2(R) implies

xqg2 ∈ L1(R) and hence Ĉ1g ∈ Hq/2(R). In order to show that C1g ∈ Hp/2(R), we make
use of the following representation of fractional Sobolev spaces (see, e.g., [13]):

Hs(R) =



f ∈ L2(R) :

f(x)− f(y)

(x− y)
1
2+s

∈ L2(R2)





for s ∈ (0, 1) and

Hs(R) =
{
f ∈ Hm(R) : f (m) ∈ Hσ(R)

}

for s = m + σ with m ∈ N and σ ∈ [0, 1). Let c(x) := e2πix
2
, x ∈ R. Then C1g(x) =

c(x)g(x) and it is clear that C1g ∈ Hp/2(R) if p/2 ∈ N. We only prove the claim here
for 1 < p < 2. The rest is then straightforward. We have (setting s = p/2)

C1g(x) −C1g(y)

(x− y)
p+1
2

= c(x)
g(x) − g(y)

(x− y)
p+1
2

+
c(x)− c(y)

(x− y)
p+1
2

g(y).

Hence, as g ∈ Hp/2(R), it is left to show that the second summand is in L2(R2). To this
end, fix y ∈ R and observe that

∫

|x−y|>1

|c(x) − c(y)|2
|x− y|p+1

dx ≤ c1

and ∫

|x−y|≤1

|c(x) − c(y)|2
|x− y|p+1

dx ≤ c2(1 + y2),
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where c1, c2 > 0 only depend on p. Hence,
∫

R

|c(x)− c(y)|2
|x− y|p+1

dx ≤ c(1 + y2)

for each y ∈ R. Now, as ĝ ∈ Hq/2(R), we have (1 + y2)q/2|g(y)|2 ∈ L1(R), and p < 2
implies q/2 > 1. Thus, also (1 + y2)|g(y)|2 ∈ L1(R), and the proof is complete. �

Problem 4.3. As already mentioned, we have restricted ourselves to rational lattices in
Theorem 1.5 while Theorem 1.4 considers a broader class of lattices, namely the lattices
of rational density. The main reason for this is that we could not prove whether the
set {g ∈ L2(R) : Zg ∈ VMOloc(R2)} is invariant under irrational dilations. If this were
true, Theorem 1.5 would hold not only for rational lattices but for arbitrary lattices of
rational density. We leave the following as open problems:

(1) Is it true that Zg ∈ VMOloc(R2) for g ∈ L2(R) implies Z(Dαg) ∈ VMOloc(R2)
for every α ∈ R\Q?

(2) Is there a good description of the space consisting of the functions g ∈ L2(R)
that satisfy Zg ∈ VMOloc(R2)?
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A QUANTITATIVE SUBSPACE BALIAN-LOW THEOREM

ANDREI CARAGEA, DAE GWAN LEE, FRIEDRICH PHILIPP, AND FELIX VOIGTLAENDER

Abstract. Let G ⊂ L2(R) be the subspace spanned by a Gabor Riesz sequence (g,Λ)
with g ∈ L2(R) and a lattice Λ ⊂ R2 of rational density. It was shown recently that
if g is well-localized both in time and frequency, then G cannot contain any time-
frequency shift π(z)g of g with z ∈ R2 \Λ. In this paper, we improve the result to the
quantitative statement that the L2-distance of π(z)g to the space G is equivalent to
the Euclidean distance of z to the lattice Λ, in the sense that the ratio between those
two distances is uniformly bounded above and below by positive constants. On the
way, we prove several results of independent interest, one of them being closely related
to the so-called weak Balian-Low theorem for subspaces.

1. Introduction

The Balian-Low theorem is a well known and fundamental result in time-frequency
analysis, which asserts that a Gabor system cannot be a Riesz basis for L2(R) if its
generating window is well localized both in time and frequency. More precisely, it states
the following:

Theorem 1.1 (Balian-Low Theorem). Let g ∈ L2(R) and let Λ ⊂ R2 be a lattice such
that the Gabor system {e2πibxg(x − a) : (a, b) ∈ Λ} is a Riesz basis for L2(R) (and
therefore Λ is of density 1). Then

(
ˆ

x2 |g(x)|2 dx
)(

ˆ

ω2 |ĝ(ω)|2 dω
)

= ∞. (1.1)

Recently, the following generalization of the Balian-Low theorem was proved in [4]
(see also [6] for a similar generalization of the amalgam Balian-Low theorem).

Theorem 1.2 ([4]). Let g ∈ L2(R) and let Λ ⊂ R2 be a lattice of rational density such
that the Gabor system {e2πibxg(x − a) : (a, b) ∈ Λ} is a Riesz basis for its closed linear
span G(g,Λ). If there exists a time-frequency shift e2πiηxg(x − u), (u, η) ∈ R2\Λ, of g
which is contained in G(g,Λ), then (1.1) holds.

Note that condition (1.1) is equivalent to having g /∈ H1(R) or ĝ /∈ H1(R), where
H1(R) denotes the usual Sobolev space in L2(R) of regularity order 1. Therefore, The-
orem 1.2 can be rephrased as follows: if g, ĝ ∈ H1(R), then the time-frequency shift
e2πiηxg(x−u) has a positive L2-distance to the space G(g,Λ) whenever (u, η) ∈ R2 has a
positive Euclidean distance to the lattice Λ. As our main result, we are going to prove the
following quantitative version of Theorem 1.2 which relates the two mentioned distances.
In the sequel, we denote by H1(R) the set of all g ∈ H1(R) satisfying ĝ ∈ H1(R).

2010 Mathematics Subject Classification. Primary: 42C15. Secondary: 42C30, 42C40.
Key words and phrases. Balian-Low Theorem; Weak subspace Balian-Low Theorem; Gabor systems;

Time frequency shift invariance; Zak transform.
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Theorem 1.3. Let g ∈ H1(R) and let Λ ⊂ R2 be a lattice of rational density such that
{e2πibxg(x−a) : (a, b) ∈ Λ} is a Riesz basis for its closed linear span G(g,Λ). Then there
exist constants C1, C2 > 0 such that for all (u, η) ∈ R2 we have

C1 · dist
(
(u, η),Λ

)
≤ dist

(
e2πiηxg(x− u),G(g,Λ)

)
≤ C2 · dist

(
(u, η),Λ

)
. (1.2)

The upper bound in (1.2) in fact holds for any g ∈ H1(R) and any lattice Λ ⊂ R2,
regardless of {e2πibxg(x− a) : (a, b) ∈ Λ} being a Riesz sequence or the lattice Λ having
rational density; besides, an explicit constant C2 can be found easily; see Proposition 4.1
below. On the other hand, finding an explicit constant C1 is more elusive. Even in the
case where (g,Λ) forms an orthonormal system, we were only able to derive a constant
C1 such that (1.2) holds for (u, η) close to the lattice Λ; see Theorem 5.4. We expect
such a constant to depend on the Riesz bounds of {e2πibxg(x − a) : (a, b) ∈ Λ} and on
the norms ‖g‖L2 , ‖g‖H1 , and ‖ĝ‖H1 .

Quantitative Balian-Low estimates for general elements in the Gabor space. Writing
π(u, η)f(x) = e2πiηxf(x− u), one might wonder whether the estimate

dist
(
π(u, η)f,G(g,Λ)

)
≍ dist

(
(u, η),Λ

)
· ‖f‖L2

holds for general f ∈ G(g,Λ) and not just for f = g. In general this is not the
case. Indeed, if g is a Gaussian, then (g, 2Z× 2

3Z) is a Riesz basis for its closed lin-

ear span G(g, 2Z× 2
3Z), but there exists a function 0 6= f ∈ G(g, 2Z× 2

3Z) satisfying

f(· − 1) ∈ G(g, 2Z× 2
3Z) (see Example A.17 for details). Therefore, we see that the dis-

tance dist
(
π(1, 0)f,G(g, 2Z× 2

3Z)
)
vanishes, even though dist((1, 0), 2Z× 2

3Z) · ‖f‖L2 6= 0.

Implications regarding the OFDM communication scheme. One motivation for an-
alyzing the distance of the time-frequency shift π(u, η)g to the Gabor space G(g,Λ)
stems from the communication scheme called orthogonal frequency division multiplexing
(OFDM). In OFDM, the sender wants to transmit the coefficients c = (ck,ℓ)k,ℓ∈Z ∈ ℓ2(Z2)
to the receiver. This is done by selecting a fixed Gabor Riesz sequence

(
π(kα, ℓβ)g

)
k,ℓ∈Z

to form the transmission signal Fc =
∑

k,ℓ∈Z ck,ℓ π(kα, ℓβ)g, which is then sent to the
receiver through a communication channel. Mathematically, the effect of the channel is
modeled as a linear operator T : L2(R) → L2(R); that is, the signal that arrives at the
receiver is TFc instead of Fc.

The first step of the reconstruction procedure in OFDM is to apply the reconstruction
operator R given by Rf =

(
〈f, π(kα, ℓβ)g◦〉

)
k,ℓ∈Z to the signal TFc, thereby obtain-

ing the sequence c̃ = RTFc ∈ ℓ2(Z2). Here, g◦ is the dual window for the Riesz
sequence

(
π(kα, ℓβ)g

)
k,ℓ∈Z; i.e., g

◦ ∈ G := G(g, αZ×βZ) satisfies the biorthogonal prop-

erty 〈π(kα, ℓβ)g, π(k′α, ℓ′β)g◦〉 = δk,k′δℓ,ℓ′ for k, k
′, ℓ, ℓ′ ∈ Z. At least for the ideal com-

munication channel T = IdL2(R), this guarantees perfect reconstruction, meaning that
c̃ = c. For more general channels, this is not the case, but one might hope to reconstruct
c by applying a suitable (linear) post-processing operator P to c̃.

In fact, there exists such a bounded post-processing operator P satisfying PRTFc = c
for all c ∈ ℓ2(Z2) if and only if the operator RT is bounded below on the Gabor space G,
meaning that ‖RTf‖ℓ2 & ‖f‖L2 for all f ∈ G. It is not hard to see that ‖Rh‖ℓ2 ≍ ‖Ph‖L2

for h ∈ L2(R), where we denote by P the orthogonal projection onto the Gabor space
G. For the important special case that T is a pure time-frequency shift π(u, η), recon-
struction is thus possible if and only if ‖Pπ(u, η)f‖L2 & ‖f‖L2 for all f ∈ G, which is
equivalent to the existence of a constant c < 1 satisfying

dist
(
π(u, η)f,G

)
=

∥∥(I − P)π(u, η)f
∥∥
L2 ≤ c ‖f‖L2 , ∀ f ∈ G. (1.3)
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The term dist(π(u, η)f,G) measures the off-band energy loss caused by the time-frequen-
cy shift π(u, η), that is, the proportion of the signal energy that gets “pushed out of the
Gabor space” by applying the time-frequency shift π(u, η). Even in the case where the
off-band energy loss is small enough so that (1.3) holds, it is interesting to know more
precise upper and lower bounds for this quantity, since it influences the stability of the
reconstruction. Theorem 1.3 shows that in the case f = g, the off-band energy loss is of
the order dist((u, η), αZ×βZ).

Structure of the proof. The outline of the proof of Theorem 1.3 is as follows. First of
all, we note that it suffices to establish the inequality (1.2) for (u, η) in a neighborhood
of the origin (0, 0); the inequality then holds for all (u, η) ∈ R2 (with possibly different
constants C1 and C2) by Theorem 1.2 and a compactness argument. In order to analyze
the behavior of the quantity dist(π(u, η)g,G(g,Λ)) for (u, η) close to the origin, we
first show that the time-frequency map Sg : (a, b) 7→ π(a, b)g is differentiable at (0, 0)
with (Fréchet) derivative (a, b) 7→ −ag′ + 2πibXg, where X is the position operator
defined formally by Xf(x) = xf(x); see Lemma 3.2. We then prove in Proposition 4.4
that −ag′ + 2πibXg is not contained in G(g,Λ) unless a = b = 0. Denoting by P the
orthogonal projection from L2(R) onto G(g,Λ), this implies that there exists a constant
γ > 0 with ‖(I − P)(−ag′ + 2πibXg)‖L2 ≥ γ ‖(a, b)‖2 for all (a, b) ∈ R2. The claim
then follows immediately because (a, b) 7→ (I − P)(−ag′ + 2πibXg) linearizes the map
(a, b) 7→ (I − P)(e2πibxg(x− a)) in a neighborhood of (0, 0).

The main ingredients of the proof are thus the differentiability of the time-frequency
map (see Section 3) and the fact that none of its directional derivatives −ag′ + 2πibXg
with (a, b) ∈ R2\{(0, 0)} are contained in G(g,Λ) (see Proposition 4.4). While the former
is probably folklore (although we could not find a reference), the latter seems to be a new
result and should be interesting in its own right. We also point out a close relationship
between Proposition 4.4 and the weak Balian-Low theorem for subspaces from [13]; see
Remark 4.5 for a detailed discussion.

As mentioned above, we were unable to derive a closed-form formula for the constant
C1 in Equation (1.2). However, if we assume the Gabor system {e2πibxg(x−a) : (a, b)∈Λ}
to be orthonormal, then we can find an explicit constant C1 > 0 such that (1.2) holds
for all (u, η) in a neighborhood of the lattice Λ; see Theorem 5.4. This result then leads
to a statement similar to Theorem 1.2 but without assuming the rational density of Λ;
see Corollary 5.5.

The paper is organized as follows: In Section 2, we show how the main properties that
we are interested in (the regularity of g, the property of (g,Λ) being a Riesz sequence,
and the distance dist(π(µ),G(g,Λ))) can be described via the Zak transform and cer-
tain associated matrix multiplication operators. Section 3 contains the aforementioned
differentiability result for the time-frequency map of H1(R) functions. The proof of The-
orem 1.3 is given in Section 4. Finally, in Section 5 we provide an explicit local lower
bound C1 in the case where the Gabor system is orthonormal.

Several results that are technical or only tangentially related to the core arguments are
deferred to A. Although most of them should be well-known or be considered folklore,
we either give detailed references or include their proofs for the sake of completeness.
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2. Preparations

Notation. Let us begin with collecting some notation which will be used throughout
the paper. We set N := {1, 2, . . .} and N0 := N∪{0}. The closure of a subset M ⊂ X of
a metric space X will be denoted by X. The Lebesgue measure of a Borel set E ⊂ Rn is
denoted by λ(E). If g : R → C is measurable, we write Xg for the function x 7→ x g(x),
that is, (Xg)(x) = x g(x), x ∈ R.

Let H be a Hilbert space, and Φ = (ϕi)i∈I be a family of vectors in H. This family
is called a frame for H if A ‖f‖2H ≤ ∑

i∈I |〈f, ϕi〉|2 ≤ B ‖f‖2H for all f ∈ H and certain
constants A,B ∈ (0,∞). If Φ is a frame for its closed linear span span{ϕi : i ∈ I},
then we say that Φ is a frame sequence. We say that Φ is a Riesz sequence if there
are A,B ∈ (0,∞) such that A ‖c‖ℓ2 ≤

∥∥∑
i∈I ci ϕi

∥∥ ≤ B ‖c‖ℓ2 for all finitely supported

sequences c = (ci)i∈I ∈ ℓ2(I). If Φ is a Riesz sequence and span
{
ϕi : i ∈ I

}
is dense in

H, we say that Φ is a Riesz basis for H. Each Riesz basis is a frame.
Let T : H → H be a bounded linear operator on a (complex) Hilbert space H. The

spectrum of T will be denoted by σ(T ); that is,

σ(T ) =
{
λ ∈ C : T − λI is not boundedly invertible

}
.

We denote by ̺(T ) the complement set of σ(T ) in C which is called the resolvent set of
T . For a bounded linear operator A : H → K between two Hilbert spaces H and K, we
define

σ0(A) :=
√

minσ(A∗A)∈ [0,∞) and σ1(A) :=
√

inf[σ(A∗A)\{0}]∈ [0,∞]. (2.1)

Note that σ(A∗A) = {0} if and only if A = 0, in which case we have σ1(A) = ∞; on the
other hand, we have σ1(A) < ∞ for A 6= 0. If A is a matrix, then σ0(A) is the smallest
singular value of A, while σ1(A) is the smallest positive singular value of A.

We occasionally consider the vector-valued L2 space L2(Ω;Ck), which we equip with
the inner product 〈f, g〉 =

´

〈f(ω), g(ω)〉Ckdµ(ω), where 〈·, ·〉Ck denotes the standard

inner product on Ck.
The Fourier transform ĝ of g ∈ L2(R) is defined by

ĝ(ω) := lim
R→∞

ˆ R

−R
g(x) e−2πixω dx ,

where the limit is taken in L2(R). For a, b ∈ R we also define the time-frequency shift
operator

[π(a, b)g](x) := e2πibxg(x− a), x ∈ R ,

which can be expressed as π(a, b) = MbTa where Ta and Mb denote the operators of
translation by a ∈ R and modulation by b ∈ R, respectively. For k ∈ N, we set

Hk(R) := {f ∈ Hk(R) : f̂ ∈ Hk(R)}, with the usual (complex-valued) L2-Sobolev space
Hk(R) =W k,2(R).

A lattice in R2 is a set Λ = AZ2 with A ∈ GL(2,R). Its density is defined as |detA |−1.
If Λ is a lattice in R2 and g ∈ L2(R), we denote by (g,Λ) the Gabor system generated
by g and Λ, that is,

(g,Λ) := {π(λ)g : λ ∈ Λ}.
The Gabor space generated by g and Λ is defined as G(g,Λ) := span (g,Λ), with the
closure taken in L2(R).
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The Zak transform of g ∈ L2(R) is defined as

Zg(x, ω) = lim
N→∞

N∑

k=−N

e2πikωg(x− k), (x, ω) ∈ (0, 1)2, (2.2)

where the limit is taken in L2((0, 1)2). The Zak transform g 7→ Zg is a unitary operator
from L2(R) to L2((0, 1)2). In the following, we will consider the Zak transform Zg of
g ∈ L2(R) as an (a.e. defined) function on R2, by using Equation (2.2) on all of R2,
where the limit is taken in L2

loc(R
2). This extended Zak transform has the following

properties (all of which hold for a.e. (x, ω) ∈ R2):

(a) Zg(x+m,ω + n) = e2πimω Zg(x, ω) for all m,n ∈ Z.
(b) Z[π(u, η)g](x, ω) = e2πiηx Zg(x− u, ω − η) for all (u, η) ∈ R2.

(c) (Z[π(m,n)g])(x, ω) = e2πi(nx−mω) Zg(x, ω) for all m,n ∈ Z.
(d) Zĝ(x, ω) = e2πixω Zg(−ω, x).
(e) g(x) =

´ 1
0 Zg(x, ω) dω and ĝ(ω) =

´ 1
0 e

−2πixωZg(x, ω) dx.

For all these properties, we refer to [12, Chapter 8]. The property (a) of Zg is called
quasi-periodicity.

2.1. Reduction to matrix multiplication operators

In this subsection, we show that the properties and quantities that we are interested
in—the distance dist(π(µ)g,G(g,Λ)) and whether (g,Λ) is a Riesz sequence—can be
conveniently reformulated using certain matrix multiplication operators

MA : L2(Ω;Ck) → L2(Ω;Cℓ), f 7→ A(·)f(·).
Here, the matrix function A : Ω → Cℓ×k will be defined using the Zak transform. More
details regarding these matrix multiplication operators can be found in A.1.

We start by considering the Gabor system (g,Λ) associated to the lattice Λ = 1
QZ×PZ

(where P,Q ∈ N) and connect the spectral properties of the frame operator

S : L2(R) → L2(R), f 7→
∑

λ∈Λ
〈f, π(λ)g〉π(λ)g

and the Gram operator G : ℓ2(Z2) → ℓ2(Z2) defined by

G(cn,k)n,k∈Z =
(〈 ∑

n,k∈Z
cn,kπ(Q

−1n, Pk)g, π(Q−1m,Pℓ)g
〉)

m,ℓ∈Z

to matrix multiplication operators on the domain RP := (0, 1
P )×(0, 1). This relies on

using the unitary operators V : L2((0, 1)2) → L2(RP ,CP ) and U : ℓ2(Z2) → L2(RP ,CQ),
defined by

(Vf)(x, ω) :=
(
f(x+ k

P , ω)
)P−1

k=0
and Uc =

( ∑

s,n∈Z
csQ+ℓ,n es,n

)Q−1

ℓ=0

, (2.3)

where f ∈ L2((0, 1)2) and c = (cn,m)n,m∈Z ∈ ℓ2(Z2), and where we use the function

es,n(x, ω) := P 1/2 · e2πi(nPx−sω) defined for (x, ω) ∈ RP . Furthermore, we denote by
Sn ∈ Cn×n the cyclic shift operator satisfying Snei = ei−1 for i ∈ {1, . . . , n − 1} and
Sne0 = en−1 for the standard basis {e0, . . . , en−1} of Cn. Finally, for ω ∈ R we define
the matrices

Lω := SP diag(e2πiω , 1, . . . , 1) ∈ CP×P
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and

Rω = diag(e−2πiω, 1, . . . , 1)S−1
Q ∈ CQ×Q .

Lemma 2.1. For P,Q ∈ N and g ∈ L2(R), g 6= 0, let us define the matrix function
Ag : R2 → CP×Q by

Ag(x, ω) :=
1√
P

(
Zg(x+ k

P − ℓ
Q , ω)

)P−1,Q−1

k,ℓ=0
.

Then for a.e. (x, ω) ∈ R2 we have

Ag(x+ 1
P , ω) = LωAg(x, ω) and Ag(x− 1

Q , ω) = Ag(x, ω)Rω . (2.4)

In particular, A∗
gAg is ( 1

P , 1)-periodic and AgA
∗
g is ( 1

Q , 1)-periodic.

If Λ = 1
QZ×PZ, then (g,Λ) is a Bessel sequence if and only if Zg ∈ L∞(R2). In this

case, the synthesis operator

T : ℓ2(Z2) → L2(R), (cn,m)n,m∈Z 7→
∑

n,m∈Z
cn,m π(Q

−1n, Pm)g,

the frame operator S, and the Gram operator G of (g,Λ) satisfy

T = (VZ)∗MAgU , S = (VZ)∗MAgA∗
g
(VZ), and G = U∗MA∗

gAgU , (2.5)

respectively, where MAgA∗
g
(respectively MA∗

gAg or MAg) is the matrix multiplication

operator (cf. A.1) with respect to AgA
∗
g (resp. A∗

gAg or Ag) acting on L2(RP ;CP )

(resp. L2(RP ;CQ)).
If Zg ∈ L∞(R2), the following statements hold:

(a) (g,Λ) is a Riesz sequence if and only if essinfz∈R2 σ0(Ag(z)) > 0.

(b) (g,Λ) is a frame sequence if and only if essinfz∈R2 σ1(Ag(z)) > 0.

(c) (g,Λ) is a frame for L2(R) if and only if essinfz∈R2 σ0(Ag(z)
∗) > 0.

Proof. Let A := Ag. We have A(x + 1
P , ω) = P− 1

2 ·
(
Zg(x + k+1

P − ℓ
Q , ω)

)P−1,Q−1

k,ℓ=0
,

where—due to the quasi-periodicity of Zg—we see that

Zg
(
x+ k+1

P − ℓ
Q , ω

)

=

{√
P ·

(
A(x, ω)

)
k+1,ℓ

if k < P − 1 ,

e2πiωZg(x− ℓ
Q , ω) =

√
P · e2πiω ·

(
A(x, ω)

)
0,ℓ

if k = P − 1 .

In matrix notation, this means precisely that A satisfies the first relation in (2.4), and the
( 1
P , 1)-periodicity of A∗A follows from L∗

ωLω = IdCP and from A(x, ω+1) = A(x, ω). The

second relation in (2.4) can be proved similarly and shows that AA∗ is ( 1
Q , 1)-periodic.

Let T0 denote the pre-synthesis operator of (g,Λ), that is,

T0 : ℓ0(Z2) → L2(R), T0(cm,n)m,n∈Z :=
∑

m,n∈Z
cm,n π(

m
Q , nP )g ,

where ℓ0(Z2) is the space of all elements of ℓ2(Z2) with only finitely many non-zero
entries. For c ∈ ℓ0(Z2), the properties of the Zak transform listed after Equation (2.2)
show that

(Z T0 c)(x, ω) =
∑

m,n∈Z
cm,n Z[π(

m
Q , nP ) g](x, ω)
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= P−1/2 ·
Q−1∑

ℓ=0

hℓ(x, ω)Zg(x − ℓ
Q , ω) = 〈A(x, ω)h(x, ω), e0〉CP ,

where hℓ(x, ω) := P 1/2
∑

s,n∈Z csQ+ℓ,n e
2πi(nPx−sω) and h := (hℓ)

Q−1
ℓ=0 = Uc with U de-

fined in Equation (2.3). Since h is ( 1
P , 1)-periodic, we obtain for k ∈ {0, . . . , P − 1}

that

(Z T0 c)(x+ k
P , ω) = 〈A(x+ k

P , ω)h(x, ω), e0〉CP = 〈A(x, ω)h(x, ω), ek〉CP .

Here, we used the identity A(x+ 1
P , ω) = LωA(x, ω) from the beginning of the proof to

get

〈A(x+ k
P , ω)h(x, ω), e0〉 = 〈Lk

ωA(x, ω)h(x, ω), e0〉 = 〈A(x, ω)h(x, ω), (L∗
ω)

ke0〉 ,

where a straightforward induction shows (L∗
ω)

ke0 =
(
diag(e−2πiω, 1, . . . , 1)S∗

P

)k
e0 = ek

for k = 0, . . . , P −1. With the operator V defined in Equation (2.3), we have thus shown

(VZT0 c)(x, ω) = A(x, ω)h(x, ω); that is, VZT0 =MA U|ℓ0(Z2) .

Since the operators V, Z,U are unitary, this shows that T0 is bounded if and only if MA

is bounded, that is, if and only if each entry of A is essentially bounded (on RP ), which—
by quasi-periodicity—exactly means that Zg ∈ L∞(R2). In particular, this shows that
(g,Λ) is a Bessel sequence if and only if T0 is bounded, if and only if Zg ∈ L∞(R2).

Let us assume for the rest of this proof that Zg ∈ L∞(R2). Then VZT =MAU , where
T = T0 = (VZ)∗MAU is the synthesis operator of (g,Λ). Clearly, M∗

A =MA∗ is the
(bounded) multiplication operator with A∗; thus M∗

AMA =MA∗A and MAM
∗
A =MAA∗ .

Since S = TT∗ and G = T∗T, this proves (2.5).

By definition, (g,Λ) is a Riesz sequence if and only if the synthesis operator T is
bounded below. Lemma A.3 shows that this holds if and only if G = T∗T is boundedly
invertible, that is, if and only if 0 ∈ ̺(G). Similarly, (g,Λ) is a frame for L2(R) if and
only if 0 ∈ ̺(S). Likewise, (g,Λ) is a frame sequence if and only if (0, ε0] ⊂ ̺(G) for
some ε0 > 0 (see Lemmas A.2 and A.4). Hence, (g,Λ) is a Riesz sequence if and only if
0 ∈ ̺(MA∗A), a frame sequence if and only if (0, ε0] ⊂ ̺(MA∗A) for some ε0 > 0, and a
frame for L2(R) if and only if 0 ∈ ̺(MAA∗).

The statements (a)–(c) now follow from Lemma A.1 (ii) and (iii). Here, it is used for
properties (a) and (b) that σi(Ag(z)) only depends on A∗

g(z)Ag(z), which is (P−1, 1)-
periodic, so that essinfz∈R2 σi(Ag(z)) = essinfz∈Rp σi(Ag(z)) for i ∈ {1, 2}. Finally, for

property (c), it is used that if (g,Λ) is a frame for L2(R), then P/Q ≤ 1 (see [12, Corol-
lary 7.5.1]), so that RQ ⊂ RP . This implies essinfz∈R2 σ0(A

∗
g(z)) = essinfz∈RP

σ0(A
∗
g(z)),

since z 7→ Ag(z)A
∗
g(z) is (Q

−1, 1)-periodic. Conversely, if essinfz∈R2 σ0(A
∗
g(z)) > 0, then

we also have essinfz∈RP
σ0(A

∗
g(z)) > 0, so that 0 ∈ ̺(MAA∗) by Lemma A.1. �

In the next lemma, we derive a formula for the matrix function Ag̃ associated to
the dual window g̃ of the Riesz sequence (g,Λ). This means that—considered on the
Gabor space G(g,Λ)—the Gabor system (g̃,Λ) is the canonical dual frame to (g,Λ).
In the proof of the lemma, we will use that g̃ = S†g satisfies this property, where S†

is the pseudo-inverse (see A.2) of the (pre)-frame operator S of (g,Λ), which is given
by Sf =

∑
λ∈Λ〈f, π(λ)g〉π(λ)g. For completeness, we sketch a proof of this fact. Let

S0 := S|G(g,Λ) : G(g,Λ) → G(g,Λ) denote the restriction of S to G(g,Λ). Note that S0 is

invertible since (g,Λ) is a frame for G(g,Λ), and that G(g,Λ) = ranS = (kerS)⊥ since S
is self-adjoint. Therefore, the pseudo-inverse of S is given by S† = S−1

0 P, where P denotes
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the orthogonal projection from L2(R) onto G(g,Λ). Hence, g0 := S†g = S−1
0 g. Finally, a

straightforward but tedious computation shows that π(λ)S = Sπ(λ) for all λ ∈ Λ, which
also implies that π(λ)G(g,Λ) = G(g,Λ). Therefore, S0[π(λ)g0] = π(λ)S0g0 = π(λ)g,
showing that

(
π(λ)g0

)
λ∈Λ =

(
S−1
0 (π(λ)g)

)
λ∈Λ is indeed the canonical dual frame of

(g,Λ).
With this preparation, we can now prove the announced lemma.

Lemma 2.2. Let g ∈ L2(R), P,Q ∈ N, Λ = 1
QZ×PZ, and assume that (g,Λ) is a Riesz

sequence. Let g̃ be the dual window of (g,Λ) and G := Zg, G̃ := Zg̃, A := Ag, and

Ã := Ag̃, with Ag and Ag̃ as in Lemma 2.1. Then

Ã = A(A∗A)−1 almost everywhere on R2. (2.6)

Moreover, for arbitrary µ = (u, η) ∈ R2 we have

dist2
(
π(µ)g,G(g,Λ)

)
= ‖g‖2L2 −

ˆ 1

0

ˆ 1/P

0
‖Hµ(x, ω) e0‖2CP dx dω ,

where e0 = (1, 0, . . . , 0)T ∈ CQ,

Hµ(z) = P 1/2 · A(z) ·
(
A(z)∗A(z)

)−1 · A(z)∗ · e2πiηDP · A(z − µ) ∈ CP×Q ,

and DP = diag(k/P )P−1
k=0 , with the notation e2πiηDP := diag

(
(e2πiηk/P )P−1

k=0

)
.

Proof. In this proof we shall make use of the notion of the pseudo-inverse T † of an
operator T with closed range. For the definition of this notion and a review of some of
its properties, we refer to A.2.

Let S be the frame operator of (g,Λ). Then the range of S is ranS = G(g,Λ), which is
closed in L2(R). Hence, by Lemma A.6 we have S† = ϕ(S), where ϕ : R → R is defined
by ϕ(0) = 0 and ϕ(t) = 1/t for t 6= 0. As seen before the statement of the lemma,
g̃ = S†g = ϕ(S)g. Furthermore, Lemma A.6 shows ϕ(A(z)A(z)∗) = (A(z)A(z)∗)† for
every z ∈ RP . Hence, an application of Equation (2.5) and of Lemma A.1 (iv) shows
that

G̃ = Zg̃ = Z[ϕ(S)g] = Z(VZ)∗ϕ(MAA∗)(VZ)g = V∗Mϕ(AA∗)VG,
with V as defined in Equation (2.3). Therefore,

VG̃ = (AA∗)†(VG) a.e. on RP . (2.7)

In order to extend this relation to R2, define (Ṽf)(x, ω) :=
(
f(x + k

P , ω)
)P−1

k=0
for

f : R2 → C and (x, ω) ∈ R2. Let z = (x, ω) ∈ RP be arbitrary, and set zn,k = (x+n+k
P , ω)

for k ∈ {0, . . . , P − 1} and n ∈ Z. Using Equation (2.4), we see that

G̃(zn,k) = (Z g̃ )
(
x+ n+k

P , ω
)
=

√
P ·

(
Ag̃

(
x+ n

P , ω
))

k,0

=
√
P ·

(
Ln
ω Ag̃(x, ω)

)
k,0

=
(
Ln
ω

(
G̃(z0,ℓ)

)P−1

ℓ=0

)
k
.

Similarly, Equation (2.4) shows that
(
G(zn,k)

)P−1

k=0
= Ln

ω

(
G(z0,k)

)P−1

k=0
. Thus, we get for

(x, ω) ∈ RP and n ∈ Z that

(ṼG̃)(x+ n
P , ω) =

(
G̃(zn,k)

)P−1

k=0
= Ln

ω

[ (
G̃(z0,k)

)P−1

k=0

]
= Ln

ω

(
[VG̃](x, ω)

)

(Eq. (2.7)) = Ln
ω

[
A(x, ω)A(x, ω)∗

]†(
G(z0,k)

)P−1

k=0

(Eq. (2.4)) = Ln
ω

[
L−n
ω A(x+ n

P , ω)A(x+ n
P , ω)

∗Ln
ω

]†
L−n
ω

(
G(zn,k)

)P−1

k=0
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(Corollary A.7) =
[
A(x+ n

P , ω)A(x+ n
P , ω)

∗]†(G(zn,k)
)P−1

k=0

=
[
A(x+ n

P , ω)A(x+ n
P , ω)

∗]†(ṼG)(x+ n
P , ω) .

In combination with the 1-periodicity in the second variable of all involved functions,
this implies

ṼG̃ = (AA∗)†(ṼG) a.e. on R2.

Since (ṼG)(x− ℓ
Q , ω) is the ℓ-th column of the matrix

√
P ·A(x, ω), since (ṼG̃)(x− ℓ

Q , ω)

is the ℓ-th column of
√
P Ã(x, ω), and because AA∗ is ( 1

Q , 1)-periodic, we obtain the

identity Ã = (AA∗)†A = A(A∗A)† = A(A∗A)−1, see Lemma A.5 (iv). Here, we used
that A∗A is invertible almost everywhere by Lemma 2.1 (a). We have thus proved
Equation (2.6).

Now, denote the orthogonal projection from L2(R) onto G(g,Λ) = ranS by P. Then,
for any µ = (u, η) ∈ R2 we have

dist2
(
π(µ)g,G(g,Λ)

)
= ‖(I − P)π(µ)g‖2L2 = ‖g‖2L2 − ‖Pπ(µ)g‖2L2 .

Next, Lemmas A.6 and A.1 show M †
AgA∗

g
= ϕ(MAgA∗

g
) =Mϕ(AgA∗

g)
=M(AgA∗

g)
† , which

implies S† = (VZ)∗M †
AgA∗

g
VZ = (VZ)∗M(AgA∗

g)
†VZ thanks to Equation (2.5) and Corol-

lary A.7. Now, Lemma A.5 shows P = SS†. Hence, Equations (2.5) and (A.3) show

P=(VZ)∗MAA∗M(AA∗)†(VZ) = (VZ)∗M(AA∗)(AA∗)†(VZ) = (VZ)∗MPranA
(VZ)

and PranA = Pran(AA∗) = (AA∗) (AA∗)† = A(A∗A)†A∗ = A(A∗A)−1A∗. For arbitrary

f ∈ L2(R), we thus see that

‖Pf‖2L2 = ‖MPranA
VZf‖2L2(RP ,CP ) =

ˆ 1

0

ˆ 1/P

0
‖A(A∗A)−1A∗VZf‖2CP dx dω .

Finally, since Z[π(µ)g](x, ω) = e2πiηxZg(x− u, ω − η) for µ = (u, η), we see

(VZ[π(µ)g])(x, ω) =
(
e2πiη(x+

k
P
)Zg(x+ k

P − u, ω − η)
)P−1

k=0

= e2πiηxe2πiηDP
(
Zg(x+ k

P − u, ω − η)
)P−1

k=0

= e2πiηx P 1/2 e2πiηDPA(x− u, ω − η) e0 .

Now, the claim follows from |e2πiηx| = 1. �
In proving the next result, we crucially use that if λ = (α, β) ∈ R2 and µ = (a, b) ∈ R2,

then π(λ)π(µ)f = e−2πiαbπ(λ + µ)f , as can be verified by a direct calculation. In
particular, this implies ‖Tπ(λ)π(µ)f‖L2 = ‖Tπ(λ + µ)f‖L2 for any linear operator
T : L2(R) → L2(R).

Lemma 2.3. Let g ∈ L2(R) and let Λ ⊂ R2 be a lattice. If P denote the orthogonal
projection from L2(R) onto G(g,Λ). Then P commutes with the operators π(λ), λ ∈ Λ.
In particular

dist
(
π(µ + λ)f,G(g,Λ)

)
= dist

(
π(µ)f,G(g,Λ)

)
∀µ ∈ R2, f ∈ L2()R, λ ∈ Λ.

Proof. Let G := G(g,Λ). Lemma A.16 shows π(−λ)G ⊂ G for all λ ∈ Λ. This im-
plies π(λ)G⊥ ⊂ G⊥: Indeed, 〈π(λ)f, h〉 = e2πiλ1λ2〈f, π(−λ)h〉 = 0 for f ∈ G⊥ and
h ∈ G. Now, if f ∈ L2(R), then we can write f = f1 + f2 with f1 ∈ G and f2 ∈ G⊥;
hence, π(λ)f = π(λ)f1 + π(λ)f2 with π(λ)f1 ∈ G and π(λ)f2 ∈ G⊥, which implies
P[π(λ)f ] = π(λ)f1 = π(λ)[Pf ].
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As to the “in particular”-part, we observe for µ ∈ R2 and λ ∈ Λ that

‖(I − P)π(µ+ λ)f‖L2 = ‖(I − P)π(λ)π(µ)f‖L2

= ‖π(λ)(I − P)π(µ)f‖L2 = ‖(I − P)π(µ)f‖L2 .

The claim now follows by noting dist(f,G) = ‖(I − P)f‖L2 for f ∈ L2(R). �

2.2. Describing the regularity of g via the Zak transform

The following lemma is probably folklore. However, since we could not find any
reference for it (one direction is proved in [8, Proof of Thm. 2.3]), we give a full proof

here. Recall that H1(R) = {f ∈ H1(R) : f̂ ∈ H1(R)}.
Lemma 2.4. Let g ∈ L2(R). Then g ∈ H1(R) if and only if Zg ∈ H1

loc(R2). In this
case, the weak derivatives of Zg are given by

∂1Zg = Z(g′) and ∂2Zg(x, ω) = −2πi
(
[Z(Xg)](x, ω) − x · Zg(x, ω)

)
. (2.8)

Proof. “⇒:” Assume that g ∈ H1(R) and let V ⊂ R2 be nonempty, open, and bounded.
Let us first assume that g ∈ C∞

c (R) (such a function of course is in H1(R)). Recalling
the definition (2.2) of the Zak transform, we see that on V , Zg is defined by a finite sum
(hence Zg ∈ C∞(V )), and the first relation in (2.8) is easily verified. For the second
relation, we note

∂2[Zg(x, ω)] =
∞∑

k=−∞
∂ω[e

2πikω g(x− k)] =
∞∑

k=−∞
2πik e2πikω g(x− k)

=
∞∑

k=−∞
e2πikω[2πix g(x − k)− 2πi(Xg)(x − k)]

= 2πi ·
[
x · Zg(x, ω)− Z[Xg](x, ω)

]
,

as claimed in (2.8).
Now, let g ∈ H1(R) be arbitrary. Since C∞

c (R) is dense in H1(R) (see for instance
[2, Section E10.8]), we find a sequence (ϕn)n∈N ⊂ C∞

c (R) which converges to g in
H1(R), that is, ϕn → g and ϕ′

n → g′ in L2(R). For φ ∈ C∞
c (V ) we then have (with

〈·, ·〉 := 〈·, ·〉L2(V ))

|〈Zg, ∂1φ〉 +
〈
Zg′, φ

〉∣∣
≤ |〈Z(g − ϕn), ∂1φ〉|+

∣∣〈Zϕn, ∂1φ〉+
〈
Zϕ′

n, φ
〉∣∣+

∣∣〈Z(g′ − ϕ′
n), φ

〉∣∣ .
The middle term vanishes by partial integration and since ∂1(Zϕn) = Z(ϕ′

n); the other
two terms tend to zero as n→ ∞. Hence, 〈Zg, ∂1φ〉 = −〈Zg′, φ〉.

The relation 〈Zg, ∂2φ〉 = 2πi〈Z(Xg) − XZg, φ〉 is proven similarly, by noting that
since (1 + |X|) g ∈ L2(R), one can find1 a sequence (ϕn)n∈N ⊂ C∞

c (R) satisfying
‖(1 + |X|) (g − ϕn)‖L2 → 0, whence ϕn → g in L2 and Xϕn → Xg in L2, and therefore
Z(Xϕn) → Z(Xg) and X Zϕn → X Zg with convergence in L2

loc(R2).
Because of Zg′ ∈ L2(V ) and Z(Xg) − XZg ∈ L2(V ), this proves that Zg ∈ H1(V )

and that (2.8) holds on V . Since V ⊂ R2 was an arbitrary non-empty, open, bounded
set, we have proved one implication.

1Indeed, given ε > 0, there is a compactly supported h such that ‖(1 + |X|) (g − h)‖L2 < ε, say
supph ⊂ [−N,N ]. Pick ϕ ∈ C∞

c (R) satisfying ‖ϕ−h‖L2 < ε/(1+2N) and suppϕ ⊂ [−2N, 2N ], whence
‖(1 + |X|) (ϕ− h)‖L2 ≤ (1 + 2N) ‖ϕ− h‖L2 < ε, so that finally ‖(1 + |X|) (g − ϕ)‖L2 < 2ε.
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“⇐:” Assume that G := Zg ∈ H1
loc(R2). Lemma A.14 shows that, after changing

G on a null-set, we can assume that G(x, ·) is locally absolutely continuous on R with
derivative (∂2G)(x, ·) ∈ L2

loc(R) for almost every x ∈ R and simultaneously that G(·, ω)
is locally absolutely continuous on R with derivative (∂1G)(·, ω) ∈ L2

loc(R) for almost
every ω ∈ R.

According to the properties of the Zak transform, g(x) =
´ 1
0 G(x, ω) dω for almost all

x ∈ R; see the list of properties below Equation (2.2). Let us fix one x0 ∈ R for which
this is true. Hence, for almost all x ∈ R we have

g(x) =

ˆ 1

0
G(x, ω) dω =

ˆ 1

0

(
G(x0, ω) +

ˆ x

x0

∂1G(t, ω) dt

)
dω

= g(x0) +

ˆ x

x0

(
ˆ 1

0
∂1G(t, ω) dω

)
dt = g(x0) +

ˆ x

x0

φ(t) dt ,

where φ(t) :=
´ 1
0 ∂1G(t, ω) dω. Note that φ ∈ L1

loc(R) since ∂1G ∈ L2
loc(R2). Hence,

possibly after redefining g on a set of measure zero, g is locally absolutely continuous on
R. To see that actually φ ∈ L2(R) (and hence g ∈ H1(R)), recall from the properties of
the Zak transform that G(t+ n, ω) = e2πinωG(t, ω) for almost all (t, ω) ∈ R2. Hence,

‖φ‖2L2 =
∑

n∈Z

ˆ 1

0

∣∣∣∣
ˆ 1

0
∂1G(t+ n, ω) dω

∣∣∣∣
2

dt =

ˆ 1

0

∑

n∈Z

∣∣∣∣
ˆ 1

0
e2πinω∂1G(t, ω) dω

∣∣∣∣
2

dt.

Now, set gt(ω) := ∂1G(t, ω) (which is in L2((0, 1)) for a.e. t ∈ R). Then
ˆ

R
|φ(t)|2 dt =

ˆ 1

0

∑

n∈Z
|ĝt(n)|2 dt =

ˆ 1

0

ˆ 1

0
|gt(ω)|2 dω dt = ‖∂1G‖2L2([0,1]2).

Hence, g ∈ H1(R) with g′(x) =
´ 1
0 ∂1G(x, ω) dω.

To see that also ĝ ∈ H1(R), define F : R2 → C, (x, ω) 7→ e−2πixωG(x, ω). Since
Gx := G(x, ·) is locally absolutely continuous for almost all x ∈ R, the product rule
for Sobolev functions (see for instance [2, Section 4.25]) shows that also Fx := F (x, ·)
satisfies this property. Moreover, the product rule also shows for almost all x ∈ R that
we have

F ′
x(ω) = e−2πixω(−2πixGx(ω) +G′

x(ω))

= e−2πixω
(
− 2πixG(x, ω) + (∂2G)(x, ω)

)
=: H(x, ω)

for almost all ω ∈ R. Note that H ∈ L2
loc(R2), since G ∈ H1

loc(R2). This easily implies

that the function ψ : R → C, ω 7→
´ 1
0 H(x, ω) dx, is almost everywhere well-defined and

satisfies ψ ∈ L1
loc(R).

Next, recall the inversion formula of the Zak transform (see the list of properties

below Equation (2.2)), stating ĝ(ω) =
´ 1
0 e

−2πixωG(x, ω) dx =
´ 1
0 F (x, ω) dx for almost

all ω ∈ R. Fix some ω0 ∈ R for which this holds, and note for almost all ω ∈ R that

ĝ(ω) =

ˆ 1

0
Fx(ω) dx =

ˆ 1

0

(
Fx(ω0) +

ˆ ω

ω0

F ′
x(γ) dγ

)
dx = ĝ(ω0) +

ˆ ω

ω0

ψ(γ) dγ .

Hence—possibly after changing ĝ on a null-set—we see that ĝ is locally absolutely con-
tinuous, with ĝ′(ω) = ψ(ω), so that it remains to show ψ ∈ L2(R).

To see this, note for arbitrary n ∈ Z that Gx(ω+n)=Zg(x, ω+n)=Zg(x, ω)=Gx(ω),
and hence also G′

x(ω + n) = G′
x(ω), which finally implies for almost all x ∈ R that
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H(x, ω+n) = e−2πinxH(x, ω) for almost all ω ∈ R. Therefore, we see for any n ∈ Z that

ψ(ω + n) =
´ 1
0 e

−2πinxH(x, ω) dx = Ĥω(n), where Hω is defined by Hω(x) := H(x, ω)

for x ∈ [0, 1], so that Hω ∈ L2([0, 1]) for almost all ω ∈ R. Thus, we finally arrive at
ˆ

R
|ψ(ω)|2 dω =

∑

n∈Z

ˆ 1

0
|ψ(ω + n)|2 dω =

ˆ 1

0

∑

n∈Z
|Ĥω(n)|2 dω

=

ˆ 1

0
‖Hω‖2L2 dω =

ˆ 1

0

ˆ 1

0
|H(x, ω)|2 dx dω <∞ . �

2.3. Symplectic operators and the regularity of the dual window

In this subsection, we show that if (g,Λ) is a Riesz sequence with g ∈ H1(R), then
the canonical dual window g̃ belongs to H1(R) as well.

For proving this—and also several other results—we shall make use of so-called sym-
plectic operators to generalize statements involving lattices of the form Q−1Z×PZ,
P,Q ∈ N, to general lattices of rational density. To explain this, let Λ ⊂ R2 be such a
general lattice of rational density. Then there exists a matrix B ∈ R2×2 with detB = 1
such that BΛ = Q−1Z×PZ with P,Q ∈ N co-prime. Indeed, we have Λ = AZ2 for some
A ∈ R2×2 with detA ∈ Q\{0}, that is, |detA| = P/Q for some co-prime P,Q ∈ N.
Now define B0 := |detA|1/2 · A−1 if detA > 0, and if instead detA < 0, then let

B0 := |detA|1/2 · diag(−1, 1) · A−1. It is not hard to check that detB0 = 1, and

that B0Λ = |detA|1/2 Z2. Thus, the matrix B := diag
(
(PQ)−1/2, (PQ)1/2

)
B0 satisfies

detB = 1 and BΛ = Q−1Z×PZ.
Next, since detB = 1, we see from [12, Lemma 9.4.1 and Equation (9.39)] that there

is a unitary operator UB : L2(R) → L2(R) satisfying

UB ρ(z) = ρ(Bz)UB for all z ∈ R2 , (2.9)

where
ρ(a, b)f := e−πiabπ(a, b)f, for f ∈ L2(R) and a, b ∈ R. (2.10)

Such an operator UB is called symplectic. As a consequence of Schur’s Lemma (see
[12, Lemma 9.3.2]), the operator UB is unique up to multiplication with unimodular
constants; thus, we see for B,B1, B2 ∈ SL(2,R) that

UB1B2 = cB1,B2 UB1UB2 and U∗
B = cB · UB−1 (2.11)

for certain constants cB1,B2 , cB ∈ C with |cB1,B2 | = 1 = |cB |.
For us, an important property of symplectic operators is that they leave H1(R) in-

variant. To see this, recall from [4, discussion around Equation (4.5)] that each matrix
B ∈ SL(2,R) can be written as a product of matrices of the form

B0 :=

(
0 1
−1 0

)
, B(1)

α :=

(
α−1 0
0 α

)
, and B

(2)
β :=

(
1 0
β 1

)

with α, β ∈ R\{0}. Furthermore, if we define operators Dα : L2(R) → L2(R) and

Cβ : L2(R) → L2(R) by Dαf(x) := |α|1/2 · f(αx) and Cβf(x) = eπiβx
2 · f(x), then a

direct computation shows that the choices U
B

(1)
α

:= Dα and U
B

(2)
β

:= Cβ make (2.9)

valid. Likewise, if we let UB0 := F be the Fourier transform, then (2.9) is satisfied as
well.

Thus, in view of (2.11), it suffices to show that H1(R) is invariant under the operators
F , Dα, and Cβ. For F and Dα, this is trivial. Finally, for Cβ recall that f ∈ L2(R)
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is in H1(R) if and only if Xf ∈ L2(R) and if f is locally absolutely continuous with
f ′ ∈ L2(R). As a consequence of the product rule for Sobolev functions (see for instance
[2, Section 4.25]), it follows that if g ∈ H1(R), then Cβg is locally absolutely continuous,
with

(Cβ g)
′(x) = 2πiβx · eπiβx2 · g(x) + eπiβx

2 · g′(x) ∈ L2(R) .
Since XCβ g ∈ L2(R) holds trivially, we have Cβ g ∈ H1(R), as desired.

To see an application of symplectic operators, note that if Λ is a lattice of rational
density with BΛ = Q−1Z×PZ for some B ∈ SL(2,R), and if g ∈ L2(R) is such that
(g,Λ) is a Riesz sequence, one may define

g1 := UB g and Λ1 := BΛ = 1
QZ×PZ .

Then (2.9) implies π(Bλ)g1 = cλUB π(λ)g, λ ∈ Λ, where cλ = cλ(B) is a unimodular
constant. Hence, (g1,Λ1) is a Riesz basis for its closed linear span G(g1,Λ1) = UB G(g,Λ).
This reduction to the separable lattice Λ1 will be crucial in the proof of the following
proposition.

Proposition 2.5. Let g ∈ L2(R) and let Λ ⊂ R2 be a lattice of rational density such
that (g,Λ) is a Riesz sequence. Let g̃ be the dual window of (g,Λ). Then g ∈ H1(R) if
and only if g̃ ∈ H1(R).

Proof. Let us first prove the claim for Λ = Q−1Z×PZ, where P,Q ∈ N. Assume that
g ∈ H1(R). By Lemma 2.4, Zg ∈ H1

loc(R
2). Let us denote by Ag and Ag̃ the matrix

functions introduced in Lemma 2.1. Using that lemma, we conclude that each entry of
Ag is contained in L∞(R2) and that there exists c > 0 such that σ0(Ag(z)) ≥ c for a.e.
z ∈ R2. Therefore, a combination of Equation (2.6) and Lemmas A.5 and A.10 shows

that each entry of Ag̃ = Ag(A
∗
gAg)

−1 = (A†
g)∗ is contained in H1

loc(R
2) ∩ L∞(R2). In

view of the definition of Ag̃, this shows that Zg̃ ∈ H1
loc(R2), whence Lemma 2.4 implies

g̃ ∈ H1(R). Since (g̃,Λ) is also a Riesz basis for G(g,Λ) = G(g̃,Λ) with (g,Λ) being the
dual Riesz basis, interchanging the roles of g and g̃ in the above arguments shows that
g̃ ∈ H1(R) implies g ∈ H1(R).

Now, let Λ ⊂ R2 be an arbitrary lattice of rational density. As seen before Equa-
tion (2.9), there is a matrix B ∈ SL(2,R) such that Λ1 := BΛ = Q−1Z×PZ for certain
P,Q ∈ N. Let g1 := UB g. Then (g1,Λ1) is a Riesz basis for G(g1,Λ1) = UB G(g,Λ).
Furthermore, since π(Bλ)g1 = cλUBπ(λ)g for λ ∈ Λ, where |cλ| = 1, it is not hard to

see that the frame operator S̃ for (g1,Λ1) is given by S̃ = UBSU
∗
B , where S is the frame

operator of (g,Λ). Hence, as discussed before Lemma 2.2, the dual window of (g1,Λ1)

is given by via the pseudo-inverse as g̃1 = S̃†g1 = UBS
†U∗

BUBg = UB g̃, where used that

S̃† = UBS
†U∗

B due to Corollary A.7.
Now, suppose that g ∈ H1(R). As seen in the discussion before this proposition,

symplectic operators leave H1(R) invariant; thus, g1 = UB g ∈ H1(R). Hence, by what we
showed above, we see that g̃1 ∈ H1(R), which implies g̃ = U∗

B g̃1 = cB UB−1 g̃1 ∈ H1(R).
Finally, by interchanging the roles of g and g̃ we see that g̃ ∈ H1(R) implies g ∈ H1(R).

�

3. Differentiability of the Time-Frequency Map

In this section, we show that for g ∈ H1(R) the map (a, b) 7→ e2πibxg(x − a) is
differentiable at the origin, with the derivative given by (a, b) 7→ −ag′ + 2πibXg. In the
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proof, we will make use of the following simple estimate. Recall that the sinc function

is defined by sinc(x) := sin(πx)
πx for x ∈ R\{0} and sinc(0) := 1.

Lemma 3.1. We have
∣∣ sin(x)

x − e−ix
∣∣ ≤ |x| for all x ∈ R\{0}. Consequently,

| sinc(x)− e−iπx| ≤ min{2, π|x|} for all x ∈ R . (3.1)

Proof. The first inequality is equivalent to | sin(x)− xe−ix| ≤ x2 and thus to

f(x) := (sin(x)− x cos(x))2 + x2 sin2(x)− x4 ≤ 0 .

Since f is even, it suffices to prove f(x) ≤ 0 for x > 0. We have

f ′(x) = 2x sin(x)
(
sin(x)− x cos(x)

)
+ 2x sin2(x) + 2x2 sin(x) cos(x)− 4x3

= 4x sin2(x)− 4x3 = 4x(sin(x)− x)(sin(x) + x) .

As sin(x) < x and sin(x) + x > 0 for x > 0, we have that f ′(x) < 0 for x > 0. Since
f(0) = 0, this proves the claim. Equation (3.1) is a direct consequence of the first
estimate combined with | sinc(x)| ≤ 1 and |e−iπx| ≤ 1. �

For g ∈ L2(R) define the map Sg : R2 → L2(R) by

Sg(a, b) := π(a, b)g = e2πib (·)g( · − a), a, b ∈ R.
It is well known (see e.g. [7, Lemma 2.9.2]) that Sg is continuous for every g ∈ L2(R).
Here, we will show that Sg is differentiable if g ∈ H1(R). We will first prove the differen-
tiability of Sg at the origin and then use it to prove the differentiability of Sg at arbitrary
points (u, η) ∈ R2. For the convenience of the reader, we recall the notion of (Fréchet)-
differentiability: The map Sg : R2 → L2(R) is (Fréchet)-differentiable at (u, η) ∈ R2 if

there is a bounded linear map T : R2→L2(R) satisfying |Sg(u+a,η+b)−Sg(u,η)−T( ab )|
|(a,b)| → 0

as (a, b) → 0. Such a map T is referred to as the derivative of Sg at (u, η), denoted by
S′
g(u, η); see e.g. [17, Chapter XIII, §2] for more details.

Lemma 3.2. For any g ∈ H1(R), the map Sg is (Fréchet)-differentiable at (0, 0) with

S′
g(0, 0) (

a
b ) = −ag′ + 2πibXg,

where X is the position operator defined formally by Xf(x) = xf(x).
If g ∈ H2(R) (that is, g ∈ H2(R) and ĝ ∈ H2(R)), then

‖Sg(a, b) − g − (−ag′ + 2πibXg)‖L2 ≤ Cg · ‖(a, b)‖22 ∀ (a, b) ∈ R2 , (3.2)

where
Cg := 3π2 max

{
‖X2g‖L2 , ‖ω2ĝ‖L2 , ‖Xg′‖L2

}
. (3.3)

Remark. As shown in Lemma A.11, we indeed have Xg′ ∈ L2(R) if g ∈ H2(R).

Proof. Let Ψg : R2 → L2(R) be defined by Ψg (
a
b ) := −ag′ + 2πibXg; in particular, Ψg

is linear. We have to prove that

lim
(a,b)→(0,0)

‖Sg(a, b)− g −Ψg (
a
b ) ‖L2√

a2 + b2
= 0. (3.4)

To see this, we write

[Sg(a, b)− g −Ψg (
a
b )](x)

= e2πibxg(x − a)− g(x) + ag′(x)− 2πibxg(x)

= e2πibx
(
g(x−a)− g(x)

)
+ (e2πibx−1−2πibx)g(x) + ag′(x)
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= e2πibx
(
Tag−g+ag′

)
(x) +

[
e2πibx−1−2πibx

]
g(x) + a

[
1−e2πibx

]
g′(x) . (3.5)

To estimate the middle term in (3.5), recall that sinc(x) = sin(πx)
πx = eπix−e−πix

2πix and hence

e2πibx − 1− 2πibx = 2πibxeπibx
[
sinc(bx)− e−πibx

]
. (3.6)

Therefore,
ˆ ∣∣e2πibx−1−2πibx

∣∣2|g(x)|2dx = 4π2b2
ˆ

x2
∣∣∣sinc(bx)−e−πibx

∣∣∣
2
|g(x)|2dx. (3.7)

Using the estimate (3.1), we find that this expression is not larger than

4π4|b|3
ˆ

|x|<1/
√

|b|
x2|g(x)|2 dx + 16π2b2

ˆ

|x|≥1/
√

|b|
x2|g(x)|2 dx .

Hence, we obtain
(‖(e2πibx − 1− 2πibx) · g‖L2√

a2 + b2

)2

≤ 1

b2

ˆ ∣∣∣e2πibx − 1− 2πibx
∣∣∣
2
|g(x)|2 dx

≤ 4π4|b| ‖Xg‖2L2 + 16π2
ˆ

|x|≥|b|−1/2

x2 |g(x)|2 dx ,

(3.8)

which tends to zero as b→ 0 as a consequence ofXg ∈ L2 and the dominated convergence
theorem.

For the first term in (3.5), observe that Plancherel’s theorem yields

‖Tag − g + ag′‖2L2 =

ˆ

|e2πi(−a)ω − 1− 2πi(−a)ω|2 · |ĝ(ω)|2 dω . (3.9)

Thus, using that
(
ω 7→ ω · ĝ(ω)

)
∈ L2, we can conclude from our calculations in (3.8)

that

0 ≤
(‖Tag − g + a g′‖L2√

a2 + b2

)2

≤ ‖Tag − g + ag′‖2L2

a2
−−−→
a→0

0 .

Finally, using the estimates |e2πibx − 1| ≤ 2π|bx| and |e2πibx − 1| ≤ 2, we can treat the
last summand in (3.5) as follows:

∥∥a · [1− e2πibx] · g′(x)
∥∥2
L2 ≤ 4π2a2|b|

ˆ

|x|≤|b|−1
2

|g′(x)|2 dx+ 4a2
ˆ

|x|≥|b|−1
2

|g′(x)|2 dx.

Hence,
(‖a · g′(x) · (1− e2πibx)‖L2√

a2 + b2

)2

≤ 4π2|b| · ‖g′‖2L2 + 4

ˆ

|x|≥1/
√

|b|
|g′(x)|2 dx ,

which tends to zero as (a, b) → (0, 0), again as a consequence of the dominated conver-
gence theorem and g′ ∈ L2. By recalling (3.5), we thus see that (3.4) holds.

Assume now that g ∈ H2(R). In order to prove (3.2), we recall Equations (3.7) and
(3.1) to see that

ˆ ∣∣∣e2πibx − 1− 2πibx
∣∣∣
2
|g(x)|2 dx = 4π2b2

ˆ

x2
∣∣∣sinc(bx)− e−πibx

∣∣∣
2
|g(x)|2 dx

≤ 4π4b4
ˆ

x4|g(x)|2 dx = 4π4b4‖X2g‖2L2 .
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Likewise, we use Equations (3.9), (3.1), and (3.6) to obtain

‖Tag − g + ag′‖2L2 ≤ 4π4a4
ˆ

ω4 |ĝ(ω)|2 dω = 4π4a4‖ω2ĝ(ω)‖2L2 .

Furthermore,

a2
ˆ ∣∣∣e2πibx − 1

∣∣∣
2
|g′(x)|2 dx ≤ 4π2a2b2

ˆ

x2|g′(x)|2 dx = 4π2a2b2‖Xg′‖2L2 .

Thus, Equation (3.5), combined with the elementary estimate |ab| ≤ 1
2(a

2 + b2), shows
that

‖Sg(a, b)− g − (−ag′ + 2πibXg)‖L2 ≤ 2
3 Cg · (a2 + b2 + |a||b|) ≤ Cg · ‖(a, b)‖22 ,

and the lemma is proved. �

Corollary 3.3. For any g ∈ H1(R), the map Sg is continuously (Fréchet)-differentiable
with

S′
g(µ) (

a
b ) = −aπ(µ)g′ + 2πibXπ(µ)g, µ ∈ R2.

Proof. Let µ, λ ∈ R2, µ = (u, η), λ = (a, b). Then

π(µ+ λ)g − π(µ)g =Mη+bTu+a g −MηTu g =Mη (π(a, b)− I)Tu g .

Now, since Tu g ∈ H1(R) with (Tu g)
′ = Tu g

′, Lemma 3.2 shows that

(π(a, b) − I)Tu g = −aTu g′ + 2πibXTu g + ε(a, b) ,

where ε(a, b) = εu(a, b) ∈ L2(R) satisfies lim(a,b)→(0,0)
‖ε(a,b)‖L2

‖(a,b)‖2 = 0. Thus,

π(µ + λ)g − π(µ)g = −aMηTug
′ + 2πibMη(XTu g) +Mη ε(a, b)

= −aπ(µ)g′ + 2πibXπ(µ)g + ε̃(a, b) ,

where ε̃ :=Mη ε. As ‖ε̃(a, b)‖L2 = ‖ε(a, b)‖L2 , the claim is proved. �

4. Proof of Theorem 1.3

As mentioned in the introduction, an upper bound in (1.2) is not difficult to achieve.
It even holds without the additional assumptions of Λ having rational density or (g,Λ)
forming a Riesz sequence.

Proposition 4.1. Let g ∈ H1(R) and let Λ be a lattice in R2. Then

dist
(
π(µ)g,G(g,Λ)

)
≤

√
‖g′‖2

L2 + ‖2πiXg‖2
L2 · dist(µ,Λ) for all µ ∈ R2.

Proof. Let λ ∈ Λ be a closest point (in Euclidean distance) in Λ to µ. Then (0, 0) is a
closest point in Λ to z := µ− λ, and thus dist(µ,Λ) = dist(z,Λ) = ‖z‖2. By Lemma 2.3
we have

dist
(
π(µ)g,G(g,Λ)

)
= dist

(
π(z)g,G(g,Λ)

)
≤ ‖π(z)g − g‖L2 .

Now, if z = (u, η), then Plancherel’s theorem shows that

‖π(z)g − g‖L2 ≤ ‖(π(u, η) − π(0, η))g‖L2 + ‖π(0, η)g − g‖L2

= ‖Mη(Tu − I)g‖L2 + ‖(Mη − I)g‖L2

= ‖(M−u − I)ĝ‖L2 + ‖(Mη − I)g‖L2 .
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Next, recall that |e2ix − 1| = |eix − e−ix| = 2| sin(x)| ≤ 2|x| for x ∈ R. Using this

estimate, we observe for f ∈ L2(R) with f̂ ∈ H1(R) and α ∈ R that

‖(Mα − I)f‖2L2 =

ˆ ∣∣∣e2πiαx − 1
∣∣∣
2
|f(x)|2 dx ≤ 4π2α2

ˆ

x2 |f(x)|2 dx ,

that is, ‖(Mα − I)f‖L2 ≤ 2π|α| · ‖Xf‖L2 = |α| · ‖2πiXf‖L2 . Hence, if we define

Ωf̂(ω) := ω f̂(ω) for ω ∈ R and f ∈ H1(R), we find that

dist
(
π(µ)g,G(g,Λ)

)
≤ |u| · ‖2πiΩ ĝ‖L2 + |η| · ‖2πiXg‖L2 .

Since 2πiΩ ĝ = F [g′], Plancherel’s theorem and the Cauchy-Schwarz inequality yield the
claim. �

Remark 4.2. If Λ = AZ2 with A ∈ GL(2,R), then the maximal distance of a point
µ ∈ R2 to the lattice Λ is bounded above by 2−1/2‖A‖op. Therefore, for each time-
frequency shift π(µ)g of g we have that

dist
(
π(µ)g,G(g,Λ)

)
≤

√
‖g′‖2

L2 + ‖2πiXg‖2
L2

2
‖A‖op .

In other words, the better g is localized in both time and frequency, the closer the time-
frequency shifts of g scatter around G(g,Λ). However, due to the uncertainty principle
(see e.g., [12, Theorem 2.2.1]), the constant in the above inequality is easily seen to

satisfy

√
‖g′‖2

L2+‖2πiXg‖2
L2

2 ≥ √
π.

In the proof of the next proposition we consider matrix-valued ordinary differential
equations (ODEs) of the form

X ′(t) = X(t)M(t), (4.1)

where X : R → Cm×n and where M : R → Cn×n has locally integrable entries. A
solution of this ODE is a matrix function X : R → Cm×n with (locally) absolutely
continuous entries for which X ′(t) = X(t)M(t) holds for a.e. t ∈ R.

Lemma 4.3. If X1 and X2 are two solutions to the ODE (4.1) such that X1(0) = X2(0),
then X1(t) = X2(t) for all t ∈ R.

Proof. Since the classical ODE theory deals with continuously differentiable solutions
to equations with coefficient functions fulfilling a Lipschitz condition, we cannot quite
apply that theory. As we will see, however, the same proof idea still works.

Indeed, since X := X1 − X2 is a solution to the ODE X ′ = X ·M with X(0) = 0,
it suffices to show that any such function satisfies X ≡ 0. Since X is continuous, the
set Γ := {t ∈ R : X(t) = 0} is closed. Since R is connected and since 0 ∈ Γ 6= ∅, it is
therefore enough to show that Γ is also open.

Thus, let x0 ∈ Γ be fixed but arbitrary. Since M is locally integrable, there is some
ε > 0 such that

´ x0+ε
x0−ε ‖M(t)‖op dt ≤ 1

2 . Now, set I := [x0 − ε, x0 + ε], and denote by

X := C(I;Cm×n) the space of all continuous functions f : I → Cm×n, equipped with
the norm ‖f‖X := supt∈I ‖f(t)‖op. It is not hard to see that X is a Banach space.
Furthermore, define the linear operator

T : X → X, f 7→ Tf where (Tf)(t) :=

ˆ t

x0

f(s)M(s) ds for t ∈ I .
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Note that indeed Tf ∈ X if f ∈ X, since M is locally integrable, so that f · M is
integrable on I. Next, observe

‖Tf(t)‖op ≤
∣∣∣
ˆ t

x0

‖f(s)‖op · ‖M(s)‖op ds
∣∣∣ ≤ ‖f‖X ·

ˆ

I
‖M(s)‖op ds ≤

1

2
‖f‖X ,

and hence ‖T‖X→X ≤ 1
2 < 1. From this, it follows using a Neumann series argument

that id− T : X → X is invertible.
Finally, since X(x0) = 0 and X ′(t) = X(t)M(t), we have

X(t) = X(t)−X(x0) =

ˆ t

x0

X ′(s) ds =
ˆ t

x0

X(s)M(s) ds =
(
T [X|I ]

)
(t)

for all t ∈ I, which means that f := X|I satisfies (id − T )f = 0. Hence f = 0, which
means that X ≡ 0 on (x0 − ε, x0 + ε). Thus, (x0 − ε, x0 + ε) ⊂ Γ, so that Γ is open. �

The following proposition can be seen as a weak Balian-Low-type theorem for sub-
spaces. For a comparison with related results, see Remark 4.5 below.

Proposition 4.4. Let g ∈ H1(R) and let Λ ⊂ R2 be a lattice of rational density such
that (g,Λ) is a Riesz basis for its closed linear span G(g,Λ). Then

−ag′ + 2πibXg /∈ G(g,Λ) for all (a, b) ∈ R2\{(0, 0)}.
Proof. Let us assume towards a contradiction that γ := −ag′ + 2πibXg ∈ G(g,Λ) for
some (a, b) ∈ R2\{(0, 0)}. We divide the proof into five steps.

Step 1: In the first four steps of the proof, we only consider separable lattices of the
form Λ = 1

QZ×PZ for certain P,Q ∈ N.
Let G := Zg ∈ L2

loc(R
2) denote the Zak transform of g, and recall from Lemma 2.1

the definition of the function Ag ∈ L2
loc(R

2;CP×Q) given by

Ag(x, ω) = P−1/2 ·
(
G(x+ k

P − ℓ
Q , ω)

)P−1,Q−1

k,ℓ=0
.

Since g ∈ H1(R), Lemma 2.4 shows that G ∈ H1
loc(R

2), so that all component functions
of Ag are in H1

loc(R2) as well. In this step, we show that Ag satisfies a certain differential
equation; see Equation (4.2) below.

Since γ ∈ G(g,Λ) and Λ = 1
QZ×PZ, Lemma A.16 shows π(LQ , 0)γ ∈ G(g,Λ) for each

L ∈ {0, . . . , Q − 1}. This means that for each L ∈ {0, . . . , Q − 1} there is a sequence

(c
(L)
m,n)m,n∈Z ∈ ℓ2(Z2) such that

π(LQ , 0)γ =
∑

m,n∈Z
c(L)m,n π(

n
Q , Pm)g =

Q−1∑

ℓ=0

∑

m,s∈Z
c
(L)
m,sQ+ℓ π(s +

ℓ
Q , Pm)g .

By using the properties (a)–(c) of the Zak transform listed below Equation (2.2), this
implies for each L ∈ {0, . . . , Q− 1} that

(Zγ)
(
x− L

Q , ω
)
=Z

[
π(LQ , 0)γ

]
(x, ω)=

Q−1∑

ℓ=0

∑

m,s∈Z
c
(L)
m,sQ+ℓ Z

[
π(s+ ℓ

Q , Pm)g
]
(x, ω)

=−
Q−1∑

ℓ=0

f
(L)
ℓ (x, ω) ·G

(
x− ℓ

Q , ω
)
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where f
(L)
ℓ (x, ω) := −∑

m,s∈Z c
(L)
m,sQ+ℓe

2πi(Pmx−sω). Note that each f
(L)
ℓ is locally square-

integrable on R2 and ( 1
P , 1)-periodic.

Now, recall from Lemma 2.4 that (∂2G)(x, ω) = 2πi
(
xG(x, ω) − Z(Xg)(x, ω)

)
and

∂1G = Zg′. Therefore,

(Zγ)(x, ω) = Z[−ag′ + 2πibXg](x, ω)

= −a · ∂1G(x, ω) + 2πib · xG(x, ω) − b · ∂2G(x, ω).
Thus, we arrive at

a ∂1G(x− L
Q , ω) + b ∂2G(x− L

Q , ω)

= 2πib
(
x− L

Q

)
G(x− L

Q , ω) +

Q−1∑

ℓ=0

f
(L)
ℓ (x, ω)G(x − ℓ

Q , ω).

Denoting by e0, . . . , eQ−1 the standard basis vectors of CQ, plugging x + k
P instead of

x into the preceding displayed equation, and recalling that f
(L)
ℓ is ( 1

P , 1)-periodic, we
obtain for each L ∈ {0, . . . , Q− 1} that

a ∂1Ag(x, ω) eL + b ∂2Ag(x, ω) eL

= 2πib
[(
x− L

Q

)
Ag(x, ω)eL +DPAg(x, ω) eL

]
+Ag(x, ω) f

(L)(x, ω) ,

where f (L) := (f
(L)
ℓ )Q−1

ℓ=0 and DP := diag(k/P )P−1
k=0 . This leads to

a ∂1Ag(x, ω) + b ∂2Ag(x, ω) = 2πib[(xAg(x, ω) +DPAg(x, ω)]

+Ag(x, ω)(F (x, ω) − 2πibDQ) ,

where DQ := diag(L/Q)Q−1
L=0 and F := [f (0) | . . . | f (Q−1)] ∈ L2

loc(R2;CQ×Q). As a conse-
quence of Fubini’s theorem (and since (a, b) 6= (0, 0)), there is a null-set N0 ⊂ R2 such
that (t 7→ F (x+ ta, ω + tb)) ∈ L2

loc(R;CQ×Q) for all (x, ω) ∈ R2\N0.
Note that the preceding displayed equation holds for almost all (x, ω) ∈ R2. Therefore,

if we let vt := v+t (a, b) for v ∈ R2 and t ∈ R, then Lemma A.15 yields a null-set N1 ⊂ R2

such that if v = (x, ω) ∈ R2\N1, then

a (∂1Ag)(vt) + b (∂2Ag)(vt)

= 2πib
[
(x+ ta)Ag(vt) +DPAg(vt)

]
+Ag(vt) ·

(
F (vt)− 2πibDQ

)

= 2πibDPAg(vt) +Ag(vt)[2πib(x + ta) + F (vt)− 2πibDQ]

= 2πibDPAg(vt) +Ag(vt)Wv(t)

(4.2)

for almost all t ∈ R. In the last step we introduced the matrix

Wv(t) := 2πib(x + ta)IQ + F (vt)− 2πibDQ ∈ CQ×Q, t ∈ R,

where IQ denotes the Q-dimensional identity matrix. Note Wv ∈ L2
loc(R;C

Q×Q) for all
v ∈ R2\N0.

Step 2: In this step, we construct a particularly nice representative of G = Zg.
Recall from Step 1 that G ∈ H1

loc(R). Next, define ̺ := (a, b) ∈ R2\{0}, and choose
θ ∈ R2 with ‖θ‖2 = 1 and θ ⊥ ̺. Define T : R2 → R2, (t, s) 7→ t̺+ sθ, and note that T
is linear and bijective, so that the same holds also for T−1. In particular, T and T−1

are Lipschitz continuous, and thus map null-sets to null-sets. Furthermore, since T and
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T−1 are Lipschitz continuous, the change-of-variables formula for Sobolev functions (see

for instance [21, Theorem 2.2.2]) shows that G̃ := G ◦ T ∈ H1
loc(R

2), and that

DG̃(t, s) = DG(T (t, s)) ·DT (t, s) =
(
[∂1G](t̺+ sθ), [∂2G](t̺ + sθ)

)
·
(
a θ1
b θ2

)

=
(
a [∂1G](t̺+ sθ) + b [∂2G](t̺+ sθ), ∗

)
(4.3)

for almost all (t, s) ∈ R2. By Lemma A.12, there is a null-set N2 ⊂ R such that for all
s ∈ R\N2, Equation (4.3) holds for almost all t ∈ R.

Lemma A.14 yields a null-set N3 ⊂ R, and a (pointwise defined) Borel function

G̃0 : R2 → C such that G̃0 = G̃ almost everywhere, and such that for all s ∈ R\N3, the

function t 7→ G̃0(t, s) is continuous and in H1
loc(R) with

d
dtG̃0(t, s) = (∂1G̃)(t, s) almost

everywhere. In view of Equation (4.3), we thus see for all s ∈ R\(N2 ∪N3) that

d

dt
G̃0(t, s) = a [∂1G](t̺+ sθ) + b [∂2G](t̺+ sθ) for almost all t ∈ R.

Note that since G̃0 = G̃ = G◦T almost everywhere and since T and T−1 map null-sets

to null-sets, we have G = G̃0 ◦ T−1 =: G0 almost everywhere. By Lemma A.15, there is
thus a null-set N4 ⊂ R2 such that

∀ (x, ω) ∈ R2\N4 : G0(x+ ta, ω + tb) = G(x+ ta, ω + tb) for a.e. t ∈ R . (4.4)

Since T is Lipschitz continuous, the set N5 := T (R×(N2 ∪ N3)) ⊂ R2 is a null-
set. For any (x, ω) ∈ R2\N5, we have (x, ω) = T (t0, s0) = t0̺ + s0θ for certain
(t0, s0) ∈ R×(R\(N2 ∪N3)). By the properties from above, this means that the map

R → C, t 7→ G0(x+ ta, ω + tb) = G0

(
(x, ω) + t̺

)

= G0

(
(t+ t0)̺+ s0θ

)
= G̃0(t+ t0, s0)

is continuous and in H1
loc(R) with derivative

d

dt
G0(x+ ta, ω + tb) =

d

dt
G̃0(t+ t0, s0)

= a [∂1G]
(
(t+ t0)̺+ s0θ

)
+ b [∂2G]

(
(t+ t0)̺+ s0θ

)

= a [∂1G](x+ ta, ω + tb) + b [∂2G](x+ ta, ω + tb) (4.5)

for almost all t ∈ R, for each fixed (x, ω) ∈ R2\N5.
Finally, let N6 :=

⋃
k,ℓ∈Z

(
(N4 ∪ N5) + ( ℓ

Q − k
P , 0)

)
⊂ R2, which is a null-set. If

(x, ω) ∈ R2\N6, then
(
x+ k

P − ℓ
Q , ω

)
∈ R2\(N4 ∪N5) for all k, ℓ ∈ Z.

Step 3: In this step, we use the “nice” representative G0 of G to construct for
almost all v = (x, ω) ∈ R2 two locally absolutely continuous functions Rv : R → CP×Q

and Lv : R → CP×Q which satisfy the differential equations R′
v(t) = Rv(t)Wv(t) and

L′
v(t) = Lv(t)Wv(t) for almost all t ∈ R, for the matrix function Wv ∈ L2

loc(R;C
Q×Q)

defined in Step 1. We then use this differential equation to deduce Rv = Lv. In Step 4
we will finally employ this identity to complete the proof for the case Λ = 1

QZ×PZ.
First, define

A : R2 → CP×Q, (x, ω) 7→ P−1/2 ·
(
G0(x+ k

P − ℓ
Q , ω)

)P−1,Q−1

k,ℓ=0
,

noting A =Ag almost everywhere. Next, note for v = (x, ω) ∈ R2\(N0∪N1∪N6) that

(x + k
P − ℓ

Q , ω) ∈ R2\(N4 ∪ N5) for all k, ℓ ∈ Z, so that Equations (4.5), (4.2), and
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(4.4) show that the function Ev : R → CP×Q, t 7→ A(vt) = A(x+ ta, ω + tb) is locally
absolutely continuous and satisfies

E′
v(t) = P−1/2

(
a (∂1G)

(
x+ k

P − ℓ
Q + ta, ω + tb

)

+ b (∂2G)
(
x+ k

P − ℓ
Q + ta, ω + tb

))P−1,Q−1

k,ℓ=0

= a (∂1Ag)(x+ ta, ω + tb) + b (∂2Ag)(x+ ta, ω + tb)

= a [∂1Ag](vt) + b [∂2Ag](vt)

= 2πibDPAg(vt) +Ag(vt)Wv(t)

= 2πibDPA(vt) +A(vt)Wv(t) = 2πibDP Ev(t) + Ev(t)Wv(t) (4.6)

for almost all t ∈ R.
Next, Lemma 2.1 shows that essinfz∈R2 σ0(Ag(z)) > 0, since (g,Λ) is a Riesz sequence.

Hence, we also have essinfz∈R2 σ0(A(z)) > 0, which means that (A∗A)(x, ω) is invertible
for almost all (x, ω) ∈ R2, say for all (x, ω) ∈ R2\N7.

For v = (x, ω) ∈ R2\(N0∪N1∪N6∪N7), set Cv := A(v)
(
A∗(v)A(v)

)−1
A∗(v) (so that

Cv ∈ CP×P ) and furthermore

Rv : R → CP×Q, t 7→ e−2πitbDP A(x+ ta, ω + tb) = e−2πitbDP Ev(t),

Lv : R → CP×Q, t 7→ Cv · e−2πitbDP ·A(x+ ta, ω + tb) = Cv ·Rv(t),

where as before DP = diag(k/P )k=0,...,P−1 ∈ RP×P .
Since v = (x, ω) ∈ R2\(N0 ∪ N1 ∪ N6), we see as a consequence of the product rule

for Sobolev functions (see for instance [2, Section 4.25]) and of Equation (4.6) that Rv

is locally absolutely continuous, with

R′
v(t) = −2πibDPRv(t) + e−2πitbDPE′

v(t) = Rv(t)Wv(t) for almost all t ∈ R.

where the last equality follows from Equation (4.6) combined with the elementary iden-
tity e−2πitbDPDP = DP e

−2πitbDP . This easily implies that Lv is locally absolutely con-
tinuous as well, with L′

v(t) = Cv R
′
v(t) = Cv Rv(t)Wv(t) = Lv(t)Wv(t) for almost all

t ∈ R. Finally, note that

Lv(0) = Cv ·Ev(0) = A(v)
(
A∗(v)A(v)

)−1
A∗(v)A(v) = A(v) = Rv(0) .

Therefore, Lemma 4.3 shows Lv(t) = Rv(t) for all v ∈ R2\(N0 ∪N1 ∪N6 ∪N7) and all
t ∈ R.

Step 4: We complete the proof for the case Λ = Q−1Z×PZ. To this end, let t ∈ R
be arbitrary, and note that the matrix function H(−ta,−tb) defined in Lemma 2.2 satisfies

for almost all v = (x, ω) ∈ R2 that

H(−ta,−tb)(x, ω)

= P 1/2 ·Ag(v) ·
(
A∗

g(v)Ag(v)
)−1

A∗
g(v) · e−2πitbDP ·Ag(x+ ta, ω + tb)

= P 1/2 · Cv · e−2πitbDP ·A(x+ ta, ω + tb)

= P 1/2 · Lv(t) = P 1/2 ·Rv(t).

Hence,

‖H(−ta,−tb)(x, ω)e0‖2CP = P ‖Rv(t)e0‖2CP = P ‖A(vt)e0‖2CP = P ‖Ag(vt)e0‖2CP
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=

P−1∑

k=0

∣∣G
(
x+ ta+ k

P , ω + tb
)∣∣2 for a.e. (x, ω) ∈ R2.

By Lemma 2.2 and by the quasi-periodicity of G = Zg (which implies that |G| is (1, 1)-
periodic), this implies that

dist2
(
π(−ta,−tb)g,G(g,Λ)

)
= ‖g‖2L2−

ˆ 1

0

ˆ 1
P

0

P−1∑

k=0

∣∣G
(
x+ta+ k

P , ω+tb
)∣∣2 dx dω

= ‖g‖2L2 −
ˆ 1

0

ˆ 1

0
|G(x + ta, ω + tb)|2 dx dω

= ‖g‖2L2 −
ˆ 1

0

ˆ 1

0
|G(x, ω)|2 dx dω = 0 .

That is, π(−ta,−tb)g ∈ G(g,Λ) for each t ∈ R. By Theorem 1.2, this means that
(−ta,−tb) ∈ Λ for every t ∈ R. Because of (a, b) 6= (0, 0) and since Λ ⊂ R2 is discrete,
this yields the desired contradiction.

Step 5: Let Λ ⊂ R2 be an arbitrary lattice of rational density, and assume again that
−ag′ + 2πibXg ∈ G(g,Λ) for some a, b ∈ R. Then there exists a matrix B ∈ GL(2,R)
with detB = 1 and certain P,Q ∈ N such that Λ1 := BΛ = Q−1Z×PZ. With the
symplectic operator UB (see (2.9)), set g1 := UB g. Then (g1,Λ1) is a Riesz basis for
G(g1,Λ1) = UB G(g,Λ) and, as H1(R) is invariant under symplectic operators (see the
discussion after Equation (2.11)), we have g1 ∈ H1(R). For f ∈ H1(R), let us set
Tf (x, ω) := ρ(x, ω)f , x, ω ∈ R, cf. (2.10). Using Corollary 3.3 we find that

T ′
f (x, ω) (

a
b )

= e−πixω [(−πiωSf (x, ω) + ∂1Sf (x, ω)) a+ (−πixSf (x, ω) + ∂2Sf (x, ω)) b]

= e−πixω
[
−πi(aω + bx)Sf (x, ω) − aπ(x, ω)f ′ + 2πibXπ(x, ω)f

]
.

In particular,

T ′
f (0, 0) (

a
b ) = −af ′ + 2πibXf. (4.7)

We have (see (2.9))

UB Tg(x, ω) = ρ(B ( x
ω ))g1 = Tg1(B ( x

ω )) .

Differentiating this with respect to (x, ω) gives UB T
′
g(x, ω) = T ′

g1(B ( x
ω )) ◦B. Hence, by

Equation (4.7), we see that

UB (−ag′ + 2πibXg) = UB T
′
g(0, 0) (

a
b ) = T ′

g1(0, 0)
(
B ( ab )

)
= −αg′1 + 2πiβXg1 ,

where ( αβ ) = B ( ab ). That is, −αg′1 + 2πiβXg1 ∈ UBG(g,Λ) = G(g1,Λ1), which, by the
first part of this proof, implies that α = β = 0 and thus a = b = 0. �

Remark 4.5. Proposition 4.4 is closely related to the so-called weak subspace Balian-
Low Theorem (cf. [13, Thm. 8]) which states that if g ∈ L2(R) and Λ ⊂ R2 is a lattice
such that (g,Λ) is a Riesz basis for its closed linear span G, then at least one of the
distributions g′,Xg, g̃′,Xg̃ is not contained in G, where g̃ denotes the dual window of
(g,Λ). More precisely, Proposition 4.4 implies that if g′,Xg ∈ L2(R) and Λ ⊂ R2

is a lattice of rational density such that (g,Λ) is a Riesz sequence (and hence also
g̃′,Xg̃ ∈ L2(R) by Proposition 2.5), then none of g′,Xg, g̃′,Xg̃ is contained in G. In
fact, it even asserts that none of the real linear combinations of ig′ and Xg except 0 can
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belong to G. Similarly, none of the real linear combinations of ig̃′ and Xg̃ except 0 can
belong to G.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let us denote by P the orthogonal projection from L2(R) onto
G := G(g,Λ). Proposition 4.4 implies that the R-linear mapping

R2 → L2(R), (a, b) 7→ (Id−P)(−ag′ + 2πibXg) ,

with L2(R) considered as an R-linear space, is injective. Since R2 is finite-dimensional,
this implies ‖(Id−P)(−ag′+2πibXg)‖L2 ≥ 2γ‖(a, b)‖2 for some γ > 0 and all (a, b) ∈ R2.
On the other hand, Lemma 3.2 gives a family of functions {ε(a, b)}(a,b)∈R2 ⊂ L2(R) such
that

π(a, b)g − g = −ag′ + 2πibXg + ε(a, b) and lim
(a,b)→(0,0)

‖ε(a, b)‖L2

‖(a, b)‖2
= 0 .

In particular, there exists some δ > 0 such that ‖ε(a, b)‖L2 ≤ γ‖(a, b)‖2 for ‖(a, b)‖2 < δ.
Combining these observations and the fact that (Id−P)g = 0, we see for ‖(a, b)‖2 < δ
that

2γ‖(a, b)‖2 ≤ ‖(Id−P)(−ag′ + 2πibXg)‖L2 =
∥∥( Id−P

)(
π(a, b)g − ε(a, b)

)∥∥
L2

≤ ‖(Id−P)π(a, b)g‖L2 +‖ε(a, b)‖L2 ≤ dist(π(a, b)g,G) + γ ‖(a, b)‖2 ,
that is, dist(π(a, b)g,G) ≥ γ‖(a, b)‖2 for ‖(a, b)‖2 < δ.

Now, consider the compact set R := {µ ∈ R2 : ‖µ‖2 = dist(µ,Λ)} and denote by
B = Bδ(0, 0) ⊂ R2 the open ball of radius δ > 0 centered at (0, 0). By possibly
shrinking δ, we may assume that B ⊂ R; in fact, since Λ is discrete, there is some δ0 > 0
such that ‖λ‖2 ≥ 2δ0 for all λ ∈ Λ\{0}. We then have B ⊂ R as soon as 0 < δ ≤ δ0.

We will show that ‖(Id−P)π(a, b)g‖L2 ≥ γ′‖(a, b)‖2 for a suitable γ′ > 0 and all
(a, b) ∈ R\B. Towards a contradiction, suppose that there is no such γ′ > 0. Then there
exists a sequence (µn)n∈N ⊂ R\B such that (Id−P)π(µn)g → 0 as n → ∞. As R\B is
compact, we may assume that µn → µ0 as n → ∞ for some µ0 ∈ R\B. But then, since
µ 7→ π(µ)g is continuous, it follows that (Id−P)π(µ0)g = 0, that is, π(µ0)g ∈ G, which
by Theorem 1.2 is only possible if µ0 ∈ Λ; but this implies ‖µ0‖2 = dist(µ0,Λ) = 0, in
contradiction to µ0 ∈ R\B.

Hence, dist(π(a, b)g,G) = ‖(Id−P)π(a, b)g‖L2 ≥ γ′‖(a, b)‖2 for some γ′ > 0 and all
(a, b) ∈ R\B. As a consequence, we have with C1 := min{γ, γ′} > 0,

dist(π(µ)g,G) ≥ C1 · ‖µ‖2 = C1 · dist(µ,Λ) for all µ ∈ R.

Finally, we note that for each µ ∈ R2 there exist λ ∈ Λ and ν ∈ R with µ = λ + ν;
indeed, there exists λ ∈ Λ with ‖µ − λ‖2 = dist(µ,Λ), and then ν := µ − λ satisfies
‖ν‖2 = dist(µ,Λ) = dist(ν,Λ). Thus, we obtain (see Lemma 2.3)

dist(π(µ)g,G) = dist(π(ν)g,G) ≥ C1 · dist(ν,Λ) = C1 · dist(µ,Λ).
In view of Proposition 4.1, this completes the proof. �

5. An Explicit Local Bound

As mentioned in the introduction, we were unable to derive an explicit constant C1

for (1.2). Nevertheless, we can find a constant C1 that is valid for (u, η) close to the
lattice Λ. For this, however, we have to assume that (g,Λ) is an orthonormal sequence.
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The following result makes a first step towards finding such a constant C1; it improves
Proposition 4.4 under the additional assumption of orthonormality.

Proposition 5.1. Let g ∈ H1(R) and let Λ ⊂ R2 be a lattice such that (g,Λ) is an
orthonormal basis of its closed linear span G(g,Λ). Then for any (a, b) ∈ R2,

dist
(
−ag′ + 2πibXg, G(g,Λ)

)
≥ π√

‖g′‖2
L2 + ‖2πiXg‖2

L2

‖(a, b)‖2 .

Remark 5.2. The classical uncertainty principle (see e.g., [12, Theorem 2.2.1]), com-
bined with elementary computations, implies because of ‖g‖L2 = 1 that the lower bound
appearing in Proposition 5.1 is bounded by

π√
‖g′‖2

L2 + ‖2πiXg‖2
L2

≤
√
π/2.

The proof of Proposition 5.1 hinges crucially on the following lemma which describes
a general property of Hilbert spaces.

Lemma 5.3. Let H be a Hilbert space, and let f, g ∈ H with f 6= 0 or g 6= 0. Then

‖af + bg‖2 ≥ ‖f‖2 · ‖g‖2 − (Re〈f, g〉)2
‖f‖2 + ‖g‖2 · ‖(a, b)‖22 ≥ (Im〈f, g〉)2

‖f‖2 + ‖g‖2 · ‖(a, b)‖22

for all a, b ∈ R.

Proof. Let α := ‖f‖2H, γ := ‖g‖2H, and β := Re〈f, g〉. Moreover, set A := α+ γ and
B := αγ − β2. Because of f 6= 0 or g 6= 0, we have A > 0. Besides, the Cauchy-Schwarz
inequality shows β ≤ |β| ≤ √

αγ, and thus B ≥ 0. Finally, a direct computation shows

A2 − 4B = (α+ γ)2 − 4(αγ − β2) = (α− γ)2 + 4β2 ≥ 0.
Given these notations, another direct computation shows for a, b ∈ R that

‖af + bg‖2H = 〈af + bg, af + bg〉H =
〈
( ab ) , M ( ab )

〉
R2 where M :=

(
α β
β γ

)
. (5.1)

Note that the matrix M is real-symmetric, with characteristic polynomial

χM (λ) = det

(
λ− α −β
−β λ− γ

)
= λ2 −Aλ+B ,

which has the roots

λ1/2 =
A

2
±
√
A2

4
−B =

A±
√
A2 − 4B

2
.

Therefore, and because of
√
A2 − 4B ≤

√
A2 = A, the smallest eigenvalue of M satisfies

λmin =
A−

√
A2 − 4B

2
=

1

2

A2 − (A2 − 4B)

A+
√
A2 − 4B

=
2B

A+
√
A2 − 4B

≥ B

A
≥ 0 .

Since M is real symmetric, this implies 〈x,Mx〉R2 ≥ B
A‖x‖22 for all x ∈ R2.

Now, Equation (5.1) shows that ‖af + bg‖2H = 〈( ab ) ,M ( ab )〉R2 ≥ B
A · ‖(a, b)‖22 for all

a, b ∈ R, which establishes the first part of the claim. For the second part, note that the
Cauchy-Schwarz inequality implies

B = αγ − β2 = ‖f‖2H ‖g‖2H − (Re〈f, g〉H)2

≥ |〈f, g〉H|2 − (Re〈f, g〉H)2 = (Im〈f, g〉H)2 . �
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Proof of Proposition 5.1. Denote by P the orthogonal projection from L2(R) onto G(g,Λ)
in L2(R). Since (g,Λ) is an orthonormal sequence,

Pf =
∑

λ∈Λ
〈f, π(λ)g〉π(λ)g , whence 〈Pg′, iXg〉 =

∑

λ∈Λ
〈g′, π(λ)g〉〈π(λ)g, iXg〉 .

Let a, b ∈ R. By integration by parts and translation, and by using the elementary
identity (π(a, b))∗ = e−2πiabπ(−a,−b), we see that

〈g′, π(a, b)g〉 = −
〈
g,

d

dx

(
e2πibx g(x− a)

)〉

= −
〈
g, 2πib · π(a, b)g

〉
−

〈
g, π(a, b)g′

〉

= 2πib ·
〈
g, π(a, b)g

〉
− e−2πiab ·

〈
π(−a,−b)g, g′

〉
,

(5.2)

as well as

〈π(a, b)g, iXg〉 =
〈
g, e−2πiab π(−a,−b)[iXg]

〉

= e2πiab ·
〈
g, M−b

[
i ((·) + a) g(·+ a)

]〉

= e2πiab
(
− ia

〈
g, M−b[g(·+ a)]

〉
+

〈
− iXg, M−b[g(·+ a)]

〉)

= e2πiab
(
− ia

〈
g, π(−a,−b)g

〉
−

〈
iXg, π(−a,−b)g

〉)
. (5.3)

From Equations (5.2) and (5.3), we see by orthonormality of (g,Λ) for arbitrary (a, b) ∈ Λ
that

〈g′, π(a, b)g〉 =
{
−〈g, g′〉 , if (a, b) = 0 ,

−e−2πiab 〈π(−a,−b)g, g′〉 , otherwise

= −e−2πiab 〈π(−a,−b)g, g′〉
and

〈π(a, b)g, iXg〉 =
{
−〈iXg, g〉 , if (a, b) = 0 ,

−e2πiab 〈iXg, π(−a,−b)g〉 , otherwise

= −e2πiab 〈iXg, π(−a,−b)g〉 .
Combining these identities, we arrive at

〈g′, π(a, b)g〉〈π(a, b)g, iXg〉 = 〈π(−a,−b)g, g′〉〈iXg, π(−a,−b)g〉 ,
for all (a, b) ∈ Λ. Therefore, with µ = −λ, we see that

〈Pg′, iXg〉 =
∑

λ∈Λ
〈g′, π(λ)g〉〈π(λ)g, iXg〉

=
∑

µ∈Λ
〈π(µ)g, g′〉〈iXg, π(µ)g〉 = 〈iXg,Pg′〉 ,

which shows that Im〈Pg′, iXg〉 = 0.

We now intend to use partial integration to get 〈g′,Xg〉 = −‖g‖2L2 − 〈Xg, g′〉; how-
ever, since Xg /∈ H1(R), we cannot directly apply such a partial integration. Instead,
pick ϕ ∈ C∞

c (R) with 0 ≤ ϕ ≤ 1, suppϕ ⊂ (−2, 2), and ϕ ≡ 1 on (−1, 1), and set
ϕn : R → [0, 1], x 7→ ϕ(x/n). We then have ϕn → 1 pointwise, so that the dominated
convergence theorem implies 〈f, ϕn · h〉 → 〈f, h〉 for all f, h ∈ L2(R). Likewise, we have
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ϕ′
n(x) = n−1 · ϕ′(x/n) and hence ϕ′

n → 0 uniformly, which implies 〈f, ϕ′
n · h〉 → 0 for

f, h ∈ L2(R). Overall, since ϕnXg ∈ H1(R), we thus see

〈g′,Xg〉 = lim
n→∞

〈g′, ϕnXg〉 = lim
n→∞

−〈g, (ϕnXg)
′〉

= − lim
n→∞

[
〈g, ϕ′

n ·Xg〉 + 〈g, ϕng〉+ 〈g, ϕnXg
′〉
]
= −‖g‖2L2 − 〈Xg, g′〉 .

Here, we used in the last step that 〈g, ϕnXg
′〉 = 〈Xg,ϕng

′〉 with Xg, g′ ∈ L2(R).
In view of the last displayed equation, we get 2Re〈g′,Xg〉 = −‖g‖2L2 = −1, and hence

Im〈g′, 2πiXg〉 = −2πRe〈g′,Xg〉 = π. Therefore,

Im〈(I − P)g′, 2πiXg〉 = Im〈g′, 2πiXg〉 − 2π Im〈Pg′, iXg〉 = π.

Setting f := (I − P)[−g′] and h := (I − P)[2πiXg], we have shown up to now that
Im〈f, h〉 = −π 6= 0, which in particular implies that f 6= 0 and h 6= 0. Thus, an
application of Lemma 5.3 shows for arbitrary (a, b) ∈ R2 that

dist2
(
− ag′ + 2πibXg, G(g,Λ)

)

= ‖(I − P)(−ag′ + 2πibXg)‖2L2 = ‖a · f + b · h‖2L2

≥ (Im〈f, h〉)2
‖f‖2

L2 + ‖h‖2
L2

· ‖(a, b)‖22 ≥ π2 · ‖(a, b)‖22
‖g′‖2

L2 + ‖2πiXg‖2
L2

.

This concludes the proof of the proposition. �
Theorem 5.4. Let g ∈ H1(R) and let Λ ⊂ R2 be a lattice such that (g,Λ) is an or-
thonormal basis of its closed linear span G(g,Λ). Then there exists ε > 0 such that

dist
(
π(µ)g, G(g,Λ)

)
≥ π/2√

‖g′‖2
L2 + ‖2πiXg‖2

L2

dist(µ,Λ) ∀µ ∈ Λ+Bε(0).

If g ∈ H2(R), then ε can be chosen as ε := π
/(

2Cg

√
‖g′‖2

L2 + ‖2πiXg‖2
L2

)
with Cg as

in Equation (3.3).

Proof. For (a, b) ∈ R2 let γ(a, b) := π(a, b)g − g − (−ag′ + 2πibXg). Denote by P the
orthogonal projection from L2(R) onto G(g,Λ). Due to Proposition 5.1 we have

π√
‖g′‖2

L2 + ‖2πiXg‖2
L2

‖(a, b)‖2 ≤ ‖(I − P)(−ag′ + 2πibXg)‖L2

=
∥∥(I − P)

(
π(a, b)g − g − γ(a, b)

)∥∥
L2

≤ ‖(I − P)π(a, b)g‖L2 + ‖γ(a, b)‖L2 .

In the last inequality we used that (I − P)g = 0 and ‖I − P‖ = 1. By Lemma 3.2 there
exists ε > 0 such that

‖γ(a, b)‖L2 ≤ π/2√
‖g′‖2

L2 + ‖2πiXg‖2
L2

‖(a, b)‖2 for ‖(a, b)‖2 < ε .

Moreover, this is satisfied in the case g ∈ H2(R) if ε is as given in the theorem (see
Lemma 3.2). Hence, if (α, β) ∈ Λ + Bε(0), say (α, β) = λ + (a, b) with λ ∈ Λ and
(a, b) ∈ Bε(0), then (see Lemma 2.3)

‖(I−P)π(α, β)g‖L2 = ‖(I−P)π(a, b)g‖L2 ≥ π/2√
‖g′‖2

L2 + ‖2πiXg‖2
L2

· ‖(a, b)‖2 .

This proves the theorem. �
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Remark. In the case g ∈ H1(R), the value of ε in Theorem 5.4 depends on the conver-
gence to zero of the following quantities (see the proof of Lemma 3.2):

ˆ

|x|>b
x2|g(x)|2 dx,

ˆ

|x|>b
|g′(x)|2 dx and

ˆ

|ω|>b
ω2|ĝ(ω)|2 dω as b→ ∞.

Note that the lattice Λ in Theorem 5.4 is not necessarily of rational density. The
following corollary suggests that the rational density condition of Λ in Theorems 1.2 and
1.3 might be redundant.

Corollary 5.5. Let g ∈ H1(R) and let Λ ⊂ R2 be a lattice such that (g,Λ) is an
orthonormal basis of its closed linear span G(g,Λ). Then there exists an N ∈ N such
that π(µ)g /∈ G(g,Λ) for all µ ∈ R2\ 1

NΛ; that is, G(g,Λ) is invariant only under time-

frequency shifts with parameters in a subset of 1
NΛ.

Proof. This follows by combining Theorem 5.4 with [5, Lemma 3.1]. �

A. Auxiliary results

A.1. Matrix multiplication operators

Let (Ω,Σ, µ) be a measure space. To avoid trivialities, we assume that there exists
S ∈ Σ with 0 < µ(S) < ∞. Now, let B : Ω → Cn×m be a measurable matrix-valued
function. Then the multiplication operator

MB : dom(MB) ⊂ L2(Ω,Cm) → L2(Ω,Cn)

is defined by

(MBf)(ω) := B(ω)f(ω), ω ∈ Ω, f ∈ dom(MB),

where

dom(MB) :=

{
f ∈ L2(Ω;Cm) :

ˆ

‖B(ω)f(ω)‖2Cn dµ(ω) <∞
}
.

It is easy to see that the operator MB is bounded if and only if each entry of B(·) is
essentially bounded as a function on Ω, if and only if dom(MB) = L2(Ω;Cm).

Let A : H → H be a bounded self-adjoint operator in a Hilbert space H. Then for
any continuous, real-valued function ϕ ∈ C(σ(A);R), the operator ϕ(A) is defined by
ϕ(A) := limn→∞ pn(A), where (pn)n∈N is a sequence of real-valued polynomials converg-
ing uniformly to ϕ on σ(A) ⊂ R and the limit is taken with respect to the operator
norm. Since ‖p(A)‖ = ‖p‖C(σ(A)) for polynomials p, this definition is meaningful. One
then has ‖ϕ(A)‖ = ‖ϕ‖C(σ(A)) and σ(ϕ(A)) = {ϕ(λ) : λ ∈ σ(A)}. Furthermore, ϕ(A) is
self-adjoint for all ϕ ∈ C(σ(A);R), since this is easily seen to hold for all polynomials
pn. For more details on this continuous functional calculus, see [20, Section VII.1].

For the case n = m, the next lemma connects the spectral properties of the multipli-
cation operator MB to those of the matrices B(ω), ω ∈ Ω.

Lemma A.1. Let B : Ω → Cn×n be a measurable, essentially bounded matrix-valued
function satisfying B(ω) = B(ω)∗ for a.e. ω ∈ Ω. Then the following statements hold:

(i) The operator MB is bounded and self-adjoint.
(ii) For a.e. ω ∈ Ω we have

σ(B(ω)) ⊂ σ(MB).
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(iii) For every set N ⊂ Ω of zero measure,

σ(MB) ⊂
⋃

ω∈Ω\N
σ(B(ω)) .

(iv) For every function ϕ ∈ C(σ(MB);R) we have

ϕ(MB) =Mϕ(B),

where (ϕ(B))(ω) := ϕ(B(ω)) is well-defined for almost all ω ∈ Ω.

Proof. Part (i) follows easily from 〈B(ω)f(ω), g(ω)〉Cn = 〈f(ω), B(ω)g(ω)〉Cn , which
holds for almost all ω ∈ Ω.

For the proofs of both (ii) and (iii), we will use [16, Proposition 1], which shows for
any λ ∈ C that

λ ∈ ̺(MB) ⇐⇒ ∃ ε > 0 : µ({ω ∈ Ω: σ(B(ω)) ∩Bε(λ) 6= ∅}) = 0 . (A.1)

To prove (ii), let us assume towards a contradiction that the claim is false; that is, the
set

Ω0 :=
{
ω ∈ Ω: σ(B(ω)) ∩ ̺(MB) 6= ∅

}

is not a null-set. Since ̺(MB) is an open set, we have ̺(MB) =
⋃

k∈N Ik for certain
compact sets Ik ⊂ ̺(MB) ⊂ C. Setting Ωk := {ω ∈ Ω: σ(B(ω)) ∩ Ik 6= ∅}, we then
have Ω0 =

⋃
k∈NΩk, so that there is some k ∈ N for which Ωk is not a null-set. Let us

choose a dense subset {λn : n ∈ N} of Ik, and define

Ωm,n :=
{
ω ∈ Ω: σ(B(ω)) ∩B1/m(λn) 6= ∅

}
for m,n ∈ N .

By density, we have Ik ⊂ ⋃
n∈NB1/m(λn) for every m ∈ N, and hence Ωk ⊂ ⋃

n∈NΩm,n.
Thus, for each m ∈ N, there is some nm ∈ N such that Ωm,nm is not a null-set.

Since (λnm)m∈N is a sequence in the compact set Ik, there is a subsequence (λnmℓ
)ℓ∈N

such that λnmℓ
→ λ ∈ Ik ⊂ ̺(MB) as ℓ → ∞. By (A.1), there is some ε > 0 such that

Θ := {ω ∈ Ω: σ(B(ω)) ∩Bε(λ) 6= ∅} is a null-set. But for ℓ ∈ N large enough, we have
1
mℓ

+ |λnmℓ
− λ| < ε, and hence B1/mℓ

(λnmℓ
) ⊂ Bε(λ), which shows that Ωmℓ,nmℓ

⊂ Θ is

a null-set. This is the desired contradiction.

To prove (iii) let λ ∈ σ(MB) and let N ⊂ Ω be of zero measure. If k ∈ N is arbitrary,
then by (A.1), the set {ω ∈ Ω : σ(B(ω)) ∩ B1/k(λ) 6= ∅} does not have measure zero,
and thus has non-empty intersection with Ω\N . Hence, we can pick ωk ∈ Ω\N and
λk ∈ σ(B(ωk)) such that |λk − λ| < 1/k. This proves the inclusion in (iii).

Part (iv) is obvious for polynomials ϕ. Given general ϕ ∈ C(σ(MB);R), we can
approximate ϕ uniformly on σ(MB) ⊂ R by polynomials pn. Then ϕ(MB)− pn(MB)
converges to zero in operator norm, and pn(MB) = Mpn(B). Hence, we see for every

f ∈ L2(Ω;Cn) that ϕ(MB)f = limn→∞Mpn(B)f . But by (ii), we have σ(B(ω)) ⊂ σ(MB)
for almost every ω ∈ Ω. For each such ω ∈ Ω,

‖pn(B(ω))− ϕ(B(ω))‖ = ‖pn − ϕ‖C(σ(B(ω))) ≤ ‖pn − ϕ‖C(σ(MB )) .

Thus, we see [Mpn(B)f ](ω) = pn(B(ω))f(ω) → ϕ(B(ω))f(ω) = [Mϕ(B)f ](ω) for almost

every ω, for every f ∈ L2(Ω;Cn). Since also have Mpn(B)f → ϕ(MB)f with convergence

in L2(Ω,Cn), this implies ϕ(MB)f =Mϕ(B)f , as claimed. �
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A.2. Operators with closed range and their pseudo-inverse

In this subsection, we review the notion of the pseudo-inverse of an operator with
closed range and some of its elementary properties. All of these properties are well-
known in general; yet, as some readers might not be familiar with them we decided to
include the essentials. Throughout this subsection H, K, and L denote Hilbert spaces.

Lemma A.2. Let A : H → K be a bounded linear operator. Then

(kerA)⊥ = ranA∗ . (A.2)

Moreover, the following statements are equivalent:

(a) ranA is closed in K.
(b) ran(AA∗) is closed in K.
(c) ran(A∗A) is closed in H.
(d) ranA∗ is closed in H.
(e) σ1(A) > 0.
(f) σ1(A

∗) > 0.

In one of these properties holds, then the following identities hold:

ran(AA∗) = ranA, ran(A∗A) = ranA∗, and σ1(A) = σ1(A
∗). (A.3)

Proof. The identity (A.2) is a simple exercise (see [14, Theorem 58.2]).
For the equivalence of (a)–(f), we refer to [19, Theorem 2].
Next, if (a)–(f) hold, then Equation (A.2) shows (kerA)⊥ = ran(A∗). This implies

ranA = ran(A|(kerA)⊥) = ran(A|ranA∗) = ran(AA∗), which proves the first part of

Equation (A.3). The second part follows by applying the first part to A∗ instead of A.
The last identity in (A.3) follows directly from the definition of σ1 and the well-known

Jacobson lemma which states that for arbitrary bounded linear operators S : H → K
and T : K → H we have σ(ST )\{0} = σ(TS)\{0}. It can indeed be easily seen that
λ ∈ ̺(TS)\{0} implies λ ∈ ̺(ST ), by virtue of the identity

(ST − λIK)−1 =
1

λ

[
S(TS − λIH)−1T − IK

]
.

By symmetry, this implies ̺(TS)\{0} = ̺(ST )\{0}. �
Lemma A.3. A bounded operator A : K → H is bounded below (meaning that there is
c > 0 with ‖Ax‖H ≥ c ‖x‖K for all x ∈ K) if and only if A∗A : K → K is bounded below.

Furthermore, a bounded self-adjoint operator T : H → H is bounded below if and
only if T is boundedly invertible.

Proof. Using the bounded inverse theorem, it is easy to see that a bounded operator T
between two Hilbert spaces is bounded below if and only if kerT = {0} and if ranT is
closed. Lemma A.2 shows that ranA is closed if and only if ran(A∗A) is closed. Since
furthermore kerA = ker(A∗A), we obtain the first claim.

For the second part of the claim, let T : H → H be bounded, self-adjoint, and bounded
below. As seen above, this implies that ranT is closed and that kerT = {0}. Therefore,
Equation (A.2) shows H = (ker T )⊥ = ranT ∗ = ranT . Hence, T : H → H is bijective,
so that the bounded inverse theorem shows that T is boundedly invertible. It is clear
that if T is boundedly invertible, then T is bounded below. �

The next lemma follows directly from [7, Cor. 5.5.2 and Cor. 5.5.3].

Lemma A.4. A Bessel sequence (ϕi)i∈I in a Hilbert space H is a frame sequence if and
only if its analysis operator A : H → ℓ2(I), f 7→

(
〈f, ϕi〉

)
i∈I has closed range.
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Let A : H → K be a bounded linear operator with closed range. Then the operator

A0 : (kerA)
⊥ → ranA, x 7→ Ax, (A.4)

is boundedly invertible by the bounded inverse theorem. Hence, the pseudo-inverse

A† := ι(kerA)⊥ ◦A−1
0 ◦ PranA

of A defines a bounded linear operator from K to H. Here, ι(kerA)⊥ is the inclusion map

(kerA)⊥ → H, x 7→ x.
In the following lemma we list some of the properties of the pseudo-inverse.

Lemma A.5. Let A : H → K be a bounded linear operator with closed range. Then
the following hold:

(i) A†A = P(kerA)⊥ .

(ii) AA† = PranA.
(iii) (A†)∗ = (A∗)†.
(iv) (A∗A)†A∗ = A† = A∗(AA∗)†.

Proof. Properties (i)–(iii) can be found in [7, Lemma 2.5.2].
For the first identity in (iv), we refer to [9, Theorem 1]. The remaining identity follows

from the first one and (iii) by applying the first part of (iv) on the right-hand side of
the identity A† =

(
(A∗)†

)∗
. �

Lemma A.6. Let A : H → H be a self-adjoint operator with closed range and set
c := σ1(A). Then σ(A) ⊂ {0} ∪ (R\(−c, c)) and A† = ϕ(A), where ϕ : R → R is defined
by ϕ(t) = 1

t for t 6= 0 and ϕ(0) = 0.

Remark. Since 0 is an isolated point of σ(A) ⊂ {0}∪
(
R\(−c, c)

)
, ϕ|σ(A) is continuous.

Proof. Lemma A.2 shows c = σ1(A) > 0. By definition of σ1(A) (see Equation (2.1)),
we thus see that A2 = A∗A satisfies σ(A2) ⊂ {0} ∪ [c2,∞). As σ(A2) = {λ2 : λ ∈ σ(A)}
and since σ(A) ⊂ R because of A∗ = A, it follows that σ(A) ⊂ {0} ∪ (R\(−c, c)). In
particular, this entails that ϕ|σ(A) is continuous.

To prove A† = ϕ(A), define ψ := 1{0} and note ψ ∈ C(σ(A);R) since 0 is an iso-

lated point of σ(A) (or even 0 /∈ σ(A)). Since ψ2 = ψ, we see that P := ψ(A)
satisfies P 2 = P = P ∗, so that P = PV is the orthogonal projection onto a closed
subspace V ⊂ H. For x ∈ kerA we have Ax = 0x, so that [20, Theorem VII.1(d)] shows
Px = ψ(A)x = ψ(0)x = x; hence, kerA ⊂ V . Conversely, we have idσ(A) · ψ ≡ 0 and
hence 0 = (idσ(A) · ψ)(A) = AP , which shows V = ranP ⊂ kerA and hence V = kerA.

Next, observe that ϕ · idσ(A) = 1−ψ, whence ϕ(A)A = idH − P = PV ⊥ = A†A, where
the last step used Lemma A.5(a). Hence, ϕ(A) = A† on ranA. Finally, we have
ϕ(A)PV = (ϕ · ψ)(A) = 0, meaning ϕ(A) = 0 = A† on V = kerA = (ranA)⊥. Overall,
this shows ϕ(A) = A†, as claimed. �
Corollary A.7. Let A : H → H be a bounded, self-adjoint operator with closed range,
and let U : K → H be unitary. Then U∗AU : K → K is also bounded and self-adjoint
with closed range, and we have (U∗AU)† = U∗A†U .

Proof. It is clear that U∗AU is bounded and self-adjoint with closed range. Furthermore,
a direct calculation shows p(U∗AU) = U∗p(A)U for every polynomial p ∈ R[x]. By
definition of the continuous spectral calculus, we thus get ϕ(U∗AU) = U∗ϕ(A)U for
all ϕ ∈ C(σ(A);R), where we note σ(A) = σ(U∗AU). Now, the claim follows from
Lemma A.6. �
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A.3. Some properties of Sobolev functions

A.3.1. Essentially bounded (matrix-valued) Sobolev functions

Our main objective in this subsection is to prove that the space of matrix-valued
functions with all entries in H1(Ω) ∩ L∞(Ω) is stable under matrix multiplication and
inversion. For this, the following lemma will be crucial.

Lemma A.8 ([3, Cor. 2.7]). Let Ω ⊂ Rn be open and let γ : C → C be a Lipschitz
continuous map. In case of λ(Ω) = ∞, assume additionally that γ(0) = 0. If f ∈ H1(Ω),
then γ ◦ f ∈ H1(Ω).

Lemma A.9. Let Ω ⊂ Rn be open and let f, g ∈ H1(Ω) ∩ L∞(Ω). Then:

(a) f · g ∈ H1(Ω) ∩ L∞(Ω).
(b) If essinf |f | > 0, then also 1/f ∈ H1(Ω) ∩ L∞(Ω).

Proof. (a) Clearly, fg ∈ L2(Ω) ∩ L∞(Ω). Further, [2, Section 4.25] shows that the weak
derivatives of fg exist and satisfy

∂j(fg) = (∂jf) · g + f · (∂jg) for j ∈ {1, . . . , n}.
As ∂jf, ∂jg ∈ L2(Ω) and f, g ∈ L∞(Ω) it follows that ∂j(fg) ∈ L2(Ω).

(b) Let r := essinf |f | > 0. We trivially have 1/f ∈ L∞(Ω). Note that λ(Ω) <∞ since
f ∈ H1(Ω) ⊂ L2(Ω) and |f(x)| ≥ r > 0 almost everywhere. Let B := {z ∈ C : |z| < r}
and define γ0 : C \ B → C, z 7→ z−1. Then γ0 is well-defined and Lipschitz continuous,
since |z−1 − w−1| =

∣∣w−z
zw

∣∣ ≤ r−2|w − z| for z, w ∈ C \ B. Now, [10, Theorem 1 in
Section 3.1.1] shows that there exists a Lipschitz continuous extension γ : C → C of γ0.
Since |f(x)| ≥ r almost everywhere, we have γ ◦ f = γ0 ◦ f = 1/f almost everywhere,
and Lemma A.8 shows 1/f = γ ◦ f ∈ H1(Ω). �

In the following we denote by H1(Ω;Ck×ℓ) the space of all matrix-valued functions
A : Ω → Ck×ℓ for which each component function is in H1(Ω). We similarly define
Lp(Ω;Ck×ℓ) for p ∈ [1,∞].

Lemma A.10. Let Ω ⊂ Rn be open and let A ∈ H1(Ω;Ck×ℓ) ∩ L∞(Ω;Ck×ℓ) and
B ∈ H1(Ω;Cℓ×m) ∩ L∞(Ω;Cℓ×m). Then the following statements hold:

(a) AB ∈ H1(Ω;Ck×m) ∩ L∞(Ω;Ck×m).

(b) If k = ℓ and essinf
x∈Ω

σ0(A(x)) > 0, then A−1 ∈ H1(Ω;Ck×k) ∩ L∞(Ω;Ck×k).

(c) If essinf
x∈Ω

σ0(B(x)) > 0, then B† ∈ H1(Ω;Cm×ℓ) ∩ L∞(Ω;Cm×ℓ).

Proof. Statement (a) follows from Lemma A.9 (a), since (AB)j,n =
∑

tAj,tBt,n. For (b)
we first observe that Leibniz’s formula

detA(x) =
∑

σ∈Sk

[
sign(σ)

k∏

j=1

Aσ(j),j(x)
]

and Lemma A.9 (a) yield detA ∈ H1(Ω) ∩ L∞(Ω). Now, the condition on A implies
that A(x) is invertible for a.e. x ∈ Ω so that A(x)−1 indeed exists for a.e. x ∈ Ω.
Moreover, for a.e. x ∈ Ω, for the smallest eigenvalue λ(x) of A(x)∗A(x) we have that
λ(x) ≥ c := essinf(σ0(A))

2 > 0. Therefore, we conclude that

|detA(x)|2 = det(A(x)∗A(x)) ≥ λ(x)k ≥ ck
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for a.e. x ∈ Ω. Hence, Lemma A.9 (b) shows that (detA)−1 ∈ H1(Ω) ∩ L∞(Ω). Also,

‖A(x)−1‖2 = ‖[A(x)∗A(x)]−1‖ ≤ 1

c

for a.e. x ∈ Ω implies that A−1 ∈ L∞(Ω;Ck×k). Finally, A−1 ∈ H1(Ω;Ck×k) follows
from Lemma A.9 (a), combined with the so-called cofactor formula for the inverse of a
matrix (see for instance [15, Equations (5-22) and (5-23)]). It states for A ∈ Ck×k with
k > 1 and detA 6= 0 that

A−1 =
adjA

detA
with (adjA)i,j = (−1)i+j · detA(j,i) ,

where A(j,i) is obtained from A by deleting its j-th row and its i-th column. In the
remaining case k = 1, we have A−1 = (detA)−1 ∈ H1(Ω) ∩ L∞(Ω) as well.

The condition on B in (c) implies that B(x)∗B(x) is invertible for a.e. x ∈ Ω with
essinfx∈Ω σ0(B(x)∗B(x)) = essinfx∈Ω σ0(B(x))2 > 0. The claim now follows from (a),
(b), and the identity B(x)† = (B(x)∗B(x))−1B(x)∗ (see Part (iv) of Lemma A.5). �

A.3.2. A certain property of the space H2(R)
Lemma A.11. If g ∈ H2(R), then Xg′ ∈ L2(R) with the estimate

‖X g′‖L2 ≤ 45 ·
(
‖g′′‖2L2 + ‖X2 g‖2L2 + ‖g′‖2L2

)1/2

≤ 45 ·
(
(1 + 4π2) ‖g′′‖2L2 + ‖X2 g‖2L2 + 4π2 ‖g‖2L2

)1/2
.

Proof. It follows from [1, Lemma 5.4] that for any η > 0 and f ∈ C2([0, η]),

|f ′(0)|2 ≤ C

η
·
(
η2 ·

ˆ η

0
|f ′′(t)|2 dt+ η−2 ·

ˆ η

0
|f(t)|2 dt

)
,

where C := 2 · 92. One can see that this remains true for f ∈ H2
(
(0, η)

)
, by a density

argument since H2
(
(0, η)

)
→֒ C1([0, η]) (see for instance [1, Thm. 4.12, Part II]).

Given g ∈ H2(R) and x ∈ [1,∞), we can apply the above estimate to the function
t 7→ g(x + t) to obtain

|g′(x)|2 ≤ C ·
 η

0

(
η2 · |g′′(x+ t)|2 + η−2 · |g(x+ t)|2

)
dt ,

where we denote by
ffl

Ω f(x) dx = 1
λ(Ω)

´

Ω f(x) dx the average of f over Ω, with λ(Ω)

denoting the Lebesgue measure of Ω.
Now, fix n ∈ N0 for the moment, and let x ∈ [2n, 2n+1). If we set η = 2−n, then

2n

η = 22n ≤ x2 ≤ (x+ t)2 for all t ∈ [0, η]. Therefore,

|x · g′(x)|2 ≤ 4 · 22n · |g′(x)|2 ≤ 4C

 2−n

0

(
|g′′(x+ t)|2 + |(x+ t)2 · g(x+ t)|2

)
dt . (A.5)

For brevity, set F (y) := |g′′(y)|2 + |y2 · g(y)|2. Then, for any t ∈ [0, 2−n] ⊂ [0, 1], we

have 2n+1 + t ≤ 2n+2 and hence
´ 2n+1

2n F (x + t) dx ≤
´ 2n+2

2n F (y) dy. By combining
this observation with the trivial estimate

ffl

ΩG(t) dt ≤ ‖G‖L∞(Ω), and by integrating

Equation (A.5) over x ∈ [2n, 2n+1), we arrive at
ˆ 2n+1

2n
|x · g′(x)|2 dx ≤ 4C ·

 2−n

0

ˆ 2n+1

2n
F (x+ t) dx dt ≤ 4C ·

ˆ 2n+2

2n
F (y) dy .
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Summing over n ∈ N0, we conclude that
ˆ ∞

1
|x · g′(x)|2 dx =

∞∑

n=0

ˆ 2n+1

2n
|x · g′(x)|2 dx

≤ 4C ·
ˆ ∞

1
F (y) ·

∞∑

n=0

1(2n,2n+2)(y) dy

≤ 12C ·
(
‖g′′‖2L2((1,∞)) + ‖X2 g‖2L2((1,∞))

)
.

(A.6)

Here the last step used that
∑∞

n=0 1(2n,2n+2)(y) ≤ 3; indeed, if 2n < y < 2n+2, then

each k ∈ Z for which also 2k < y < 2k+2 satisfies 2n < 2k+2 and 2k < 2n+2, so that
k ∈ {n− 1, n, n+ 1}.

By applying estimate (A.6) to h : R → C, x 7→ g(−x) instead of g, we easily get
´ −1
−∞ |x · g′(x)|2 dx ≤ 12C ·

(
‖g′′‖2L2((−∞,−1)) + ‖X2 g‖2L2((−∞,−1))

)
. Adding this to (A.6)

and using the trivial estimate
´ 1
−1 |x · g′(x)|2 dx ≤ ‖g′‖2L2 , we finally arrive at

ˆ

R
|x · g′(x)|2 dx ≤ ‖g′‖2L2 + 12C ·

(
‖g′′‖2L2 + ‖X2 g‖2L2

)
.

This easily implies the first part of the stated estimate.
For the last part, recall that F [g′](ξ) = 2πiξ ĝ(ξ) and F [g′′](ξ)=(2πiξ)2 ĝ(ξ). Thanks

to Plancherel’s theorem and the elementary estimate |ξ|2 ≤ 1 + |ξ|4, we thus see

‖g′‖2L2 =

ˆ

R
|2πξ · ĝ(ξ)|2 dξ ≤ (2π)2 ·

ˆ

R
|ĝ(ξ)|2 + |(2πiξ)2 ĝ(ξ)|2 dξ

= (2π)2 ·
(
‖g‖2L2 + ‖g′′‖2L2

)
.

Together with the first part of the lemma, this implies the second part. �

A.3.3. Sobolev functions on slices and the AC-property

Let A ⊂ Rn be Borel measurable, where n > 1. For i ∈ {1, . . . , n} and x ∈ Rn−1 we
define the following Borel measurable subset of R:

Ai,x = {t ∈ R : (x1, . . . , xi−1, t, xi, . . . , xn−1) ∈ A} .
Note that Ai,x is open if A is so. The following lemma is an easy consequence of Fubini’s
theorem.

Lemma A.12. A Borel set N ⊂ Rn has measure zero if and only if for some (and then
all) i ∈ {1, . . . , n} and a.e. x ∈ Rn−1 the set Ni,x has measure zero in R.

We say that a function h : U → C, where U ⊂ R is open, is locally absolutely
continuous (LAC) on U if it is LAC on each connected component of U ; this is equivalent
to h being LAC on each open subinterval of U . Here, a function f : I → C with an open
interval I ⊂ R is called locally absolutely continuous if there is a function g ∈ L1

loc(I)
such that f(x) − f(y) =

´ x
y g(t) dt for all x, y ∈ I. In particular, each LAC function is

continuous.

Definition A.13. Let Ω ⊂ Rn be an open set. A (pointwise defined) function f : Ω → C
is said to have the AC-property (on Ω), if for each i ∈ {1, . . . , n} and almost all x ∈ Rn−1

the function
fi,x : Ωi,x → C, t 7→ f(x1, . . . , xi−1, t, xi, . . . , xn−1)

is LAC on Ωi,x.
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Note that the classical partial derivatives ∂if of a function f : Ω → C having the
AC-property exist a.e. on Ω by [11, Theorem 3.35] and Lemma A.12.

Lemma A.14. Let Ω ⊂ Rn be open and let f ∈W 1,1
loc (Ω). Then there is a representative

g : Ω → C of f which has the AC-property on Ω. In particular, we have ∂ig = Dif a.e.
on Ω, i = 1, . . . , n. Here, Dif denotes the weak derivative of f .

Proof. Let Ω(0) := ∅ and Ω(k) := {x ∈ Ω : dist(x,Ωc) > 1/k} ∩ (−k, k)n, k ∈ N. Then

each Ω(k) is open in Rn, Ω(k) ⊂ Ω is compact, Ω(k) ⊂ Ω(k+1), and
⋃

k Ω
(k) = Ω. By

[18, Thm. 1.41], for each k ∈ N there exists a representative f (k) of f which has the
AC-property on Ω(k). It is clear that the function g : Ω → C,

g :=
∞∑

k=1

1Ω(k)\Ω(k−1) · f (k)

is a representative of f . Let us show that it has the AC-property on Ω.

First of all, for each k ∈ N and i ∈ {1, . . . , n} there exists a set L
(k)
i ⊂ Rn−1 of measure

zero such that f
(k)
i,x is LAC on Ω

(k)
i,x for every x ∈ Rn−1\L(k)

i . Let L :=
⋃

i,k L
(k)
i .

Fix k ∈ N. Then f (k+1) = f (k) a.e. on Ω(k). In particular, by Lemma A.12, for

each i ∈ {1, . . . , n} there exists a set M
(k)
i ⊂ Rn−1 of measure zero such that for all

x ∈ Rn−1\M (k)
i we have that f

(k+1)
i,x = f

(k)
i,x a.e. on Ω

(k)
i,x . Let M :=

⋃
i,kM

(k)
i .

Let N := L ∪M ⊂ Rn−1. Then N is a null-set, and for each i ∈ {1, . . . , n}, each
k ∈ N, and each x ∈ Rn−1\N we have that f

(k)
i,x is LAC on Ω

(k)
i,x and f

(k+1)
i,x = f

(k)
i,x on

Ω
(k)
i,x ; indeed, since f

(k+1)
i,x = f

(k)
i,x almost everywhere on Ω

(k)
i,x , and since both functions are

continuous on the open set Ω
(k)
i,x , they agree everywhere on Ω

(k)
i,x . Now, if i ∈ {1, . . . , n},

x ∈ Rn−1\N , and if K ⊂ Ωi,x is compact, then
⋃

k Ω
(k)
i,x is an open cover of K. Thus,

there is some k = k(i, x,K) ∈ N such that K ⊂ Ω
(k)
i,x and gi,x = f

(k)
i,x on K. Therefore,

gi,x is LAC on Ωi,x.

For the “in particular”-part, it suffices to prove that ∂ig = Dif almost everywhere
on every open rectangular cell R =

∏n
j=1(aj , bj) satisfying R ⊂ Ω. To see this, set

Ri :=
∏

j 6=i(aj , bj) ⊂ Rn−1, and observe that for any ϕ ∈ C∞
c (R) we have

ˆ

R
(∂ig) · ϕdy +

ˆ

R
g · (∂iϕ) dx

=

ˆ

Ri

ˆ bi

ai

g′i,x(t)ϕi,x(t) dt dx+

ˆ

Ri

ˆ bi

ai

gi,x(t)ϕ
′
i,x(t) dt dx = 0 .

Hence,
´

R(∂ig −Dif)ϕdx =
´

R(f − g)∂iϕdx = 0 for every ϕ ∈ C∞
c (R). The claim thus

follows from the fundamental lemma of the calculus of variations (see for instance [2,
Section 4.22]). �

We close with this subsection with a result that generalizes Lemma A.12 in the case
n = 2 to sections of R2 that are not necessarily parallel to the coordinate axes.

Lemma A.15. Let N ⊂ R2 be a null-set, and let (a, b) ∈ R2\{0}. Then there is a
null-set N0 ⊂ R2 such that for all (x, ω) ∈ R2\N0, we have

(x+ ta, ω + tb) ∈ R2\N for almost all t ∈ R.

Remark. The set of t ∈ R for which (x+ ta, ω + tb) ∈ R2\N depends on (x, ω).
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Proof. Set θ := (a, b) ∈ R2\{0}, and choose ̺ ∈ R2\{0} with ̺ ⊥ θ. Let us define
T : R2 → R2, (t, s) 7→ tθ+ s̺. Note that T is linear and bijective, so that the same holds
of T−1. In particular, T and T−1 are Lipschitz continuous, and thus map null-sets to
null-sets.

Let Ñ := T−1N ⊂ R2. By Lemma A.12, there is a null-set Ñ1 ⊂ R such that for all

s ∈ R\Ñ1, the set Ñ1,s = {t ∈ R : (t, s) ∈ Ñ} is a null-set. Let N0 := T (R×Ñ1), and
note that N0 ⊂ R2 is indeed a null-set.

We claim that if (x, ω) ∈ R2\N0, then (x + ta, ω + tb) ∈ R2\N for almost all
t ∈ R. To see this, let (x, ω) ∈ R2\N0. This implies (x, ω) = T (t0, s0) for certain

(t0, s0) ∈ R×(R\Ñ1), so that Ñ1,s0 is a null-set. Finally, if t ∈ R\(Ñ1,s0 − t0) (which

holds for almost all t ∈ R), then t+t0 /∈ Ñ1,s0 , which means that (t+ t0, s0) /∈ Ñ = T−1N ,
and hence (x+ ta, ω + tb) = T (t+ t0, s0) ∈ R2\N , as claimed. �

A.4. Invariance properties of Gabor spaces

Lemma A.16. Let g ∈ L2(R) and let Λ ⊂ R2 be a lattice. Define G := G(g,Λ) Then
π(λ)G ⊂ G for all λ ∈ Λ.

Proof. For λ, λ′ ∈ Λ, there exists a unimodular constant c = c(λ, λ′) ∈ C satisfying
π(λ)π(λ′) = c π(λ + λ′). Hence, π(λ)[π(λ′)g] ∈ G. Since G is spanned by the elements
π(λ′)g, λ′ ∈ Λ, this shows π(λ) ⊂ G for all λ ∈ Λ. �

A.5. Failure of the main result for general elements of G(g,Λ)
We close this paper with an example showing that the relation

dist
(
π(u, η)f,G(g,Λ)

)
≍ dist((u, η),Λ) · ‖f‖L2 , (A.7)

which holds for f = g, does not extend to general f ∈ G(g,Λ). The example is con-
structed based on a footnote in [6].

Example A.17. Let ϕ : R → R, x 7→ e−πx2
denote the Gaussian. We will repeatedly

make use of the following two facts: First, [12, Theorem 7.5.3] shows that if α, β > 0,
then (ϕ,αZ×βZ) is a frame for L2(R) if and only if αβ < 1. By Ron-Shen duality (see
[12, Theorem 7.4.3]), this implies that (ϕ,αZ×βZ) is a Riesz sequence (a Riesz basis for
its closed linear span) if and only if αβ > 1.

Set Λ := 2Z×2
3Z and Λ0 := Λ ∪ ((1, 0) + Λ) = Z×2

3Z. Then (ϕ,Λ0) is a frame for

L2(R) but not a Riesz sequence. Thus, the synthesis operator

T : ℓ2(Z2) → L2(R), (ck,ℓ)k,ℓ∈Z 7→
∑

k,ℓ∈Z
ck,ℓ π(k,

2
3ℓ)ϕ

is surjective, but not injective, since otherwise the bounded inverse theorem would imply
that T is boundedly invertible, meaning that (ϕ,Λ0) is a Riesz basis for L2(R). In other
words, there exist ℓ2 sequences c = (cm,n)m,n∈Z and d = (dm,n)m,n∈Z with (c, d) 6= 0 and

∑

m,n∈Z
cm,n π(2m,

2
3n)ϕ =

∑

m,n∈Z
dm,n π(2m+ 1, 23n)ϕ

= π(1, 0)

[ ∑

m,n∈Z
d̃m,n π(2m,

2
3n)ϕ

]
,
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where d̃m,n := e
4
3
πindm,n for m,n ∈ Z. Then f :=

∑
m,n∈Z d̃m,n π(2m,

2
3n)ϕ satisfies

f ∈ G(ϕ,Λ) and π(1, 0)f ∈ G(ϕ,Λ). Now, once we show that f 6= 0, we will have
disproved (A.7).

To see that f 6= 0, we note that (ϕ,Λ) is a Riesz sequence. If f = 0, we would have

d̃ = 0 and therefore d = 0. In turn, the above identity gives 0 =
∑

m,n∈Z cm,nπ(2m,
2
3n)ϕ,

whence c = 0, again since (ϕ,Λ) is a Riesz sequence. Therefore, f = 0 implies (c, d) = 0
which is a contradiction.
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A BALIAN–LOW TYPE THEOREM

FOR GABOR RIESZ SEQUENCES OF ARBITRARY DENSITY

ANDREI CARAGEA, DAE GWAN LEE, FRIEDRICH PHILIPP, AND FELIX VOIGTLAENDER

Abstract. We consider Gabor Riesz sequences generated by a lattice Λ ⊂ R2 and a
window function g ∈ L2(R) which is well localized in both time and frequency. When g
belongs to the Feichtinger algebra, we prove that only those time-frequency shifts with
parameters from the lattice Λ leave the corresponding Gabor space invariant. This
improves on earlier results where only lattices of rational density were considered. A
slightly weaker result is proved—again for lattices of general density—under the regu-
larity assumptions of the classical Balian-Low theorem, where both g and its Fourier
transform belong to the Sobolev space H1(R). The proof relies on a combination of
methods from time-frequency analysis and the theory of C∗-algebras, specifically the
so-called irrational rotation algebra.

1. Introduction

When working with Gabor frames, the window function g should have a good time-
frequency localization, so that the frame coefficients faithfully reflect the time-frequency
behavior of the analyzed function. The Feichtinger algebra S0(Rd) [12, 19] is a par-
ticularly popular window class. Among other advantages, choosing a window from S0

ensures that the canonical dual window also belongs to the Feichtinger algebra [15], so
that for example the membership of a function f ∈ L2(Rd) in the modulation space
Mp,q(Rd) can be characterized in terms of the decay properties of its frame coefficients.
One crucial obstruction, however, is that a Gabor system with window belonging to
S0(Rd) can not form an orthonormal basis—in fact not even a Riesz basis—for L2(Rd).
We call this phenomenon the S0 Balian-Low theorem; it is a consequence of the Amal-
gam Balian-Low theorem [2, Theorem 3.2]. The same no-go type result holds for the
case where g belongs to the space H1(Rd) consisting of functions in the L2-Sobolev
space H1(Rd) whose Fourier transform also belongs to H1(Rd). This is the classical
Balian-Low theorem; see [14, Theorem 8.4.5] for the case of orthonormal bases, and [10,
Theorem 2.3] for the general case.

Yet, even though a Gabor system with g ∈ S0(Rd) cannot form a Riesz basis for all of
L2(Rd), it might still be a Riesz sequence, that is, a Riesz basis for its closed linear span
G(g,Λ), at least if G(g,Λ) is a proper subspace of L2(Rd). In this case, one might wonder
about further properties—in addition to being a proper subspace of L2(Rd)—that the
Gabor space G(g,Λ) has to have. One important property in time-frequency analysis is
the invariance of G(g,Λ) under time-frequency shifts TaMb. For lattices Λ of rational
density and for dimension d = 1, it was observed in [4] that if (g,Λ) is a Riesz sequence
and if g ∈ S0(R), then the set of parameters (a, b) ∈ R2 such that G(g,Λ) is invariant
under the time-frequency shift TaMb is exactly equal to Λ. A multi-dimensional variant
of this was derived in [5].

2010 Mathematics Subject Classification. Primary: 42C15. Secondary: 42C30, 42C40.
Key words and phrases. Gabor systems; Riesz sequences; Time-frequency shifts; Balian-Low theorem;

Ron-Shen duality; Completeness of Gabor systems; Feichtinger algebra; Irrational rotation algebra.
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These results generalize the S0 Balian-Low theorem to subspaces of L2(R). Indeed,
to derive the S0 Balian-Low theorem from the above result, note that if G(g,Λ) = L2(R)
then G(g,Λ) is invariant under all time-frequency shifts, even under those with (a, b) /∈ Λ;
hence, g cannot belong to S0. A corresponding generalization of the classical Balian-Low
theorem was proved in [6]; a quantitative version can be found in [7].

We emphasize that in all articles [4, 5, 6, 7] it is assumed that the generating lattice
Λ has rational density. This restriction is needed in order to utilize the Zak transform
which is used extensively in [4, 5, 6, 7]. It is thus natural to ask whether the results in
[4] and [6] still hold for lattices with irrational density.

In a sense, this question has analogies with the research concerning the regularity of
the canonical dual window of a Gabor frame. In 1997 it was shown (see [13, Theorem 3.4])
that if g ∈ S0(Rd) generates a Gabor frame for L2(Rd) over a lattice of rational density,
then the canonical dual window also belongs to S0(Rd). It was conjectured in the same
article that this property continues to hold for general lattices. Six years later, this
conjecture was confirmed by Gröchenig and Leinert [15] by using C∗-algebra methods.

Here, we likewise extend the result in [4] to arbitrary lattices:

Theorem 1.1. If g ∈ S0(R) and Λ ⊂ R2 is a lattice such that the Gabor system (g,Λ)
is a Riesz basis for its closed linear span G(g,Λ), then the time-frequency shifts TaMb

that leave G(g,Λ) invariant satisfy (a, b) ∈ Λ.

As indicated above, the Zak transform is a powerful tool for analyzing Gabor systems
generated by lattices with rational density; yet, it is not of much use in the case of
irrational density lattices. Consequently, the methods used in the present paper differ
substantially from those in [4, 5, 6, 7]: Instead of applying the Zak transform and thus
dealing with functions on R2, we work directly with the given objects and exploit the
rich theory of time-frequency analysis. Along the way, we obtain several new statements
related to time-frequency shift invariance that are interesting in their own right.

The proof of Theorem 1.1 consists of several steps. First, for g ∈ S0(R) and only
assuming that (g,Λ) is a frame sequence—that is, a frame for its closed linear span—we
prove the following dichotomy:

Either (g,Λ) spans all of L2(R), or the set of (a, b) ∈ R2 for which
TaMb leaves G(g,Λ) invariant is a lattice containing Λ as a sublattice;

(D)

see Theorem 3.4. This result significantly reduces the range of parameters (a, b) that we
need to consider. Next, we give a characterization for the invariance of G(g,Λ) under a
time-frequency shift TaMb with (a, b) /∈ Λ in terms of the adjoint system of (g,Λ); see
Theorem 4.2. This characterization holds for general g ∈ L2(R), not only for g ∈ S0(R).
Combining this characterization with a deep existing result about traces of projections
in the so-called irrational rotation algebra (see [24, 25]), we arrive at the conclusion of
Theorem 1.1.

With Theorem 1.1 established for g in the Feichtinger algebra, it is natural to ask
whether the same statement holds in the setting of the classical Balian-Low theorem,
that is, when g has finite uncertainty product

(∫
x2|g(x)|2 dx

)
·
(∫

ω2|ĝ(ω)|2 dω
)
< ∞, a

condition which we simply write as g ∈ H1. Unfortunately, we were not able to prove a
full-fledged version of Theorem 1.1 for g ∈ H1; the best we could do is to show that the
dichotomy (D) described above for g ∈ S0 still holds for g ∈ H1.

The outline of the paper is as follows: After recalling the necessary background on
Janssen’s representation, time-frequency shift invariance, symplectic operators, and the



3

two spaces S0(R) and H1 in Section 2, the paper proper starts in Section 3, where we
prove the dichotomy (D) described above, for g ∈ S0(R)+H1. Next, in Section 4 we show
that one can reduce to the case of a separable lattice Λ = αZ × βZ, with an additional
time-frequency shift of the form Tα/ν for some ν ∈ N≥2. For this setting, we then
derive a characterization in terms of the adjoint Gabor system. Throughout Section 4,
the generating function g is only assumed to be in L2(R). The paper culminates in
Section 5, where we prove Theorem 1.1. Finally, Appendix A contains a short treatise
on the irrational rotation algebra and a corresponding result that is crucial for our proof
of Theorem 1.1.

2. Preliminaries

For a, b ∈ R and f ∈ L2(R) we define the operators of translation by a and modulation
by b as

Taf(x) := f(x− a) and Mbf(x) := e2πibxf(x),

respectively. Both Ta and Mb are unitary operators on L2(R) and hence so is the time-
frequency shift

π(a, b) := TaMb = e−2πiab MbTa.

A lattice Λ ⊂ R2 is any set of the form Λ = AZ2 with an invertible matrix A ∈ R2×2.
The density of Λ is defined by d(Λ) = |detA|−1. Note that AZ2 = Z2 if and only if
A ∈ Z2×2 and detA = ±1. This will be used heavily in the proof of Proposition 3.1
below.

A lattice Λ is called separable if A can be chosen to be diagonal, i.e., Λ = αZ×βZ with
α, β > 0. The next lemma shows that every lattice can be transformed into a separable
one by means of a symplectic matrix; this will be used frequently.

Lemma 2.1. Let A ∈ R2×2 be a non-singular matrix. Then there exists C ∈ R2×2 with
detC = 1 such that CA is diagonal, i.e., CAZ2 is separable.

Proof. Write A =
(
a b
c d

)
and note ∆ := ad−bc 6= 0. If a 6= 0, choose C =

(
1+bc/∆ −ab/∆
−c/a 1

)
.

Then a simple calculation yields detC = 1 and CA = diag(a,∆/a). In the case a = 0

we have b 6= 0 6= c as A is non-singular. Then C :=
(

−d/b 1
−1 0

)
satisfies detC = 1 and

CA = diag(c,−b). �

For a subset M ⊂ L2(R), we denote its closure by M . Then, for g ∈ L2(R) and a
lattice Λ ⊂ R2 we set

(g,Λ) :=
{
π(λ)g : λ ∈ Λ

}
and G(g,Λ) := span (g,Λ) ⊂ L2(R).

For the Fourier transform, we use the normalization Ff(ξ) = f̂(ξ) =
∫
R f(x) e−2πixξ dx

for f ∈ L1(R). It is well-known that F extends to a unitary map F : L2(R) → L2(R).

2.1. Bessel vectors and Janssen’s representation

Let Λ = αZ × βZ be a separable lattice with α, β > 0. The adjoint lattice of Λ is
defined as Λ◦ = 1

βZ× 1
αZ. We say that g ∈ L2(R) is a Bessel vector for Λ if the system

(g,Λ) is a Bessel system in L2(R), meaning that the analysis operator CΛ,g corresponding
to (g,Λ) is bounded as an operator from L2(R) to ℓ2(Z2). It is defined by

CΛ,gf =
(
〈f, TmαMnβg〉

)
m,n∈Z, f ∈ L2(R).
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We denote the set of Bessel vectors for Λ by BΛ. This is a linear subspace of L2(R)
which is dense because it contains the Schwartz space S(R); see [14, Corollary 6.2.3]. It
is well known that BΛ = BΛ◦ (see [26, Theorem 2.2(a)]) and that

∑

m,n∈Z
〈f, TmαMnβg〉

〈
TmαMnβh, u

〉
=

1

αβ

∑

k,ℓ∈Z

〈
h, T k

β
M ℓ

α
g
〉〈
T k

β
M ℓ

α
f, u

〉
(2.1)

whenever at least three of f, g, h, u ∈ L2(R) are Bessel vectors for Λ; this follows from
[20, Proposition 2.4]. Formula (2.1) yields a useful representation (the so-called Janssen
representation) of the cross frame operator SΛ,g,h : L2(R) → L2(R) associated to Bessel
vectors g, h ∈ BΛ. This operator is defined by

SΛ,g,hf :=
∑

m,n∈Z
〈f, TmαMnβg〉 · TmαMnβh, f ∈ L2(R). (2.2)

Equation (2.1) implies that

SΛ,g,hf =
1

αβ

∑

k,ℓ∈Z

〈
h, T k

β
M ℓ

α
g
〉
· T k

β
M ℓ

α
f if f, g, h ∈ BΛ. (2.3)

The series in Equations (2.2) and (2.3) both converge unconditionally in L2(R).

2.2. Time-frequency shift invariance

For a closed linear subspace G ⊂ L2(R), we denote by I(G) the set of all pairs
(a, b) ∈ R2 such that G is invariant under the time-frequency shift π(a, b); that is,

I(G) :=
{
z ∈ R2 : π(z)G ⊂ G

}
.

If G = G(g,Λ) for some g ∈ L2(R) and a lattice Λ ⊂ R2, then clearly Λ ⊂ I(G). Any time-
frequency shift π(z) with z ∈ I(G)\Λ will be called an additional time-frequency shift
for G(g,Λ). For Gabor spaces G = G(g,Λ), the set I(G) has some additional structure:

Lemma 2.2 ([3, Proposition A.1]). Let g ∈ L2(R), let Λ ⊂ R2 be a lattice, and define
G := G(g,Λ). If z ∈ R2, then z ∈ I(G) if and only if π(z)g ∈ G. Moreover, I(G) is a
closed additive subgroup of R2.

Lemma 2.2 shows that z ∈ I(G) implies −z ∈ I(G), i.e., π(z)G ⊂ G and π(z)−1G ⊂ G.
Hence, we have π(z)G = G whenever z ∈ I(G).

The next lemma characterizes the case when G is invariant under all time-frequency
shifts.

Lemma 2.3. For a closed linear subspace G ⊂ L2(R), G 6= {0}, we have I(G) = R2 if
and only if G = L2(R).

Proof. Clearly, if G = L2(R), then I(G) = R2. Conversely, assume that I(G) = R2 and
let f ∈ G⊥ and g ∈ G\{0}. Then 〈f, π(z)g〉 = 0 for all z ∈ R2, so that the short-time
Fourier transform Vgf of f with window g satisfies Vgf ≡ 0. By [14, Corollary 3.2.2]

and since g 6= 0, this implies f = 0. We have thus shown G⊥ = {0}, whence G = L2(R),
since G is a closed subspace of L2(R). �
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2.3. Symplectic operators

It is often useful to reduce a statement involving a non-separable lattice to one that
involves a separable lattice, since separable lattices are usually easier to handle. For this
reduction, we will use so-called symplectic operators (see [14, Section 9.4]). Since we are
working in dimension d = 1, a matrix B ∈ R2×2 is symplectic if and only if detB = 1;
see [14, Lemma 9.4.1]. For any such matrix B, it is shown in [14, Equation (9.39)] that
there exists a unitary operator UB : L2(R) → L2(R) such that

UBρ(z) = ρ(Bz)UB , z ∈ R2, (2.4)

where (as in [14, Page 185 and Equation (9.25)])

ρ(a, b) := eπiab · π(a, b).
In the sequel, we fix for each B ∈ R2×2 with detB = 1 one choice of the operator UB,
and for functions g ∈ L2(R), closed subspaces G ⊂ L2(R), and sets Λ ⊂ R2 we write

gB := UB g, GB := UB G, and ΛB := BΛ.

As shown in [14, Page 197], given B,C ∈ R2×2 with detB = detC = 1, we have
UBUC = θB,C UBC for some θB,C ∈ C with |θB,C | = 1.

Note that (2.4) implies

π(z)g ∈ G ⇐⇒ π(Bz)gB ∈ GB , z ∈ R2. (2.5)

Therefore, (g,Λ) is a frame (Riesz basis, resp.) for its closed linear span G if and only
if (gB ,ΛB) is a frame (Riesz basis, resp.) for its closed linear span GB. Thanks to
Lemma 2.2, the equivalence (2.5) also implies that

I(GB) = B I(G). (2.6)

2.4. The Feichtinger algebra

We denote by S0(R) the Feichtinger algebra, which is the space of functions f ∈ L2(R)
such that 〈f, π(·)ϕ〉 ∈ L1(R2) for some (and hence every; see [14, Proposition 12.1.2])
Schwartz function ϕ 6= 0.

Recall that S0(R) is invariant under each operator UB (cf. [14, Proposition 12.1.3]),
so that g ∈ S0(R) always implies gB ∈ S0(R) for B ∈ R2×2 with detB = 1. Also, each
g ∈ S0(R) is a Bessel vector for any (separable) lattice (see e.g. [14, Propositions 6.2.2
and 12.1.4]). Since for g, h ∈ S0(R) and any α, β > 0 the sequence

(
〈h, TmαMnβg〉

)
m,n∈Z

belongs to ℓ1(Z2) (see [14, Corollary 12.1.12]), it follows from (2.3) and from the density
of BΛ in L2(R) that

SΛ,g,h =
1

αβ

∑

k,ℓ∈Z

〈
h, T k

β
M ℓ

α
g
〉
· T k

β
M ℓ

α
with Λ = αZ× βZ, (2.7)

where the series converges absolutely in operator norm.

2.5. The space H1

Let H1(R) denote the space of all functions f in L2(R) for which the weak derivative f ′

exists and belongs to L2(R). In other words, H1(R) = W 1,2(R) is an L2-Sobolev-space.
It is well known (see [21, Theorem 7.16]) that each f ∈ H1(R) has a representative that
is absolutely continuous on R and whose classical derivative exists and coincides with
the weak derivative f ′ almost everywhere.
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By H1 we denote the space of all functions f ∈ H1(R) whose Fourier transform f̂
also belongs to H1(R). Equivalently, a function f ∈ L2(R) is in H1 if and only if
f ′,Xf ∈ L2(R), where Xf represents the function R → C, x 7→ xf(x). The space H1

also coincides with the modulation spaceM2
m(R) with the weightm(x, ω) = 1+

√
x2 + ω2;

see [16, Corollary 2.3].

As shown in [6, Proof of Theorem 1.4], the space H1 is invariant under symplectic
operators, meaning that UBg ∈ H1 if g ∈ H1 and B ∈ R2×2 with detB = 1.

3. Time-frequency shift invariance: A closer look

In this section, we first establish a certain trichotomy concerning the set of invariant
time-frequency shifts. We then show that one of the three cases of the trichotomy is
excluded if the generator function g is “sufficiently nice”.

The next theorem establishes the trichotomy: the invariance set I(G) either fills the
whole space R2, or it consists of equispaced lines that are aligned with the lattice, or it
is a refinement of Λ (and in particular a lattice itself). Note that this holds regardless of
the regularity of the generator g or the (frame) properties of the Gabor system (g,Λ).

Proposition 3.1. Let H be a closed additive subgroup of R2 and suppose that H ⊃ Λ for
a non-degenerate lattice Λ ⊂ R2. Then there exist λ1, λ2 ∈ Λ satisfying Λ = Z ·λ1+Z ·λ2

and m,n ∈ N≥1 such that exactly one of the following conditions holds:

(1) H = R2.

(2) H = R · λ1 + Z · λ2
n .

(3) H = Z · λ1
m + Z · λ2

n .

In particular, if Λ ⊂ R2 is a lattice and g ∈ L2(R), then one of the above cases holds for
H = I(G(g,Λ)).

Proof. By [17, Theorem 9.11], there are α, β ∈ N0 and linearly independent vectors
x1, . . . , xα, y1, . . . , yβ ∈ R2 (hence, α+ β ≤ 2) such that

H = Rx1 + · · ·+ Rxα + Z y1 + · · ·+ Z yβ.

Since H contains the non-degenerate lattice Λ (and thus two linearly independent vec-
tors), we must have α+ β = 2. Hence, there are three cases:

(i) (α, β) = (2, 0) and hence H = R2,
(ii) (α, β) = (1, 1), so that H = Rv + Zw with linearly independent v,w ∈ R2,
(iii) (α, β) = (0, 2), so that H is a (non-degenerate) lattice.

Clearly, in Case (i), Condition (1) of the statement of the theorem holds. Let us discuss
the case (ii): H = R · v + Z · w. Let Λ = Z · µ + Z · λ be an arbitrary representation of
Λ. Since Λ ⊂ H, there exist m,n ∈ Z and s, t ∈ R such that

[µ, λ] = [sv +mw, tv + nw] = [v,w]

[
s t
m n

]
.

Note that µ, λ are linearly independent, and hence sn− tm 6= 0, so that d = (sn− tm)−1

is well-defined. Furthermore, we see

[v,w] = d · [µ, λ]
[

n −t
−m s

]
,
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which shows that v = d(nµ−mλ) and thus R ·v = R ·λ1 with some λ1 ∈ Λ. By rescaling
λ1, we can ensure that 1

kλ1 /∈ Λ for each k ∈ Z\{−1, 0, 1}. Note because of R · v = R ·λ1

that H = R · λ1 + Z · w.
Now, there exists λ2 ∈ Λ such that Λ = Z · λ1 + Z · λ2. Indeed, writing Λ = AZ2

with A = [a1, a2] ∈ R2×2 invertible, there exist i, j ∈ Z such that λ1 = ia1 + ja2. The
numbers i, j are necessarily coprime, since 1

kλ1 /∈ Λ for k ∈ Z\{−1, 0, 1}. Hence, by
Bézout’s lemma there exist k, ℓ ∈ Z such that iℓ − jk = 1. Set λ2 = ka1 + ℓa2. Then
[λ1, λ2]Z2 = A

[
i k
j ℓ

]
Z2 = AZ2 = Λ. Since λ2 ∈ Λ ⊂ H, there exist σ ∈ R and ν ∈ Z

such that λ2 = σλ1+νw. Then ν 6= 0 and so H = R ·λ1+Z · (λ2
ν − σ

ν λ1) = R ·λ1+Z · λ2
|ν| .

Hence, Condition (2) of the statement of the theorem holds.

Assume now that Case (iii) holds: H is a lattice, i.e., H = Z · v + Z · w with linearly
independent vectors v,w ∈ R2. Write Λ = Z·µ+Z·λ with linearly independent λ, µ ∈ R2.
Then, because of Λ ⊂ H, there exist a, b, c, d ∈ Z such that

[µ, λ] = [av + cw, bv + dw] = [v,w]

[
a b
c d

]
=: [v,w] ·A, (3.1)

with A ∈ Z2×2. Let A = MDN−1 be the Smith canonical form of A (see, for instance
[22, Theorem 26.2] or [18, Theorem 3.8]), whereM,N,D ∈ Z2×2 with detM = detN = 1
and D is a diagonal matrix. Note that A (and hence D) is invertible; this follows from
(3.1) since µ and λ are linearly independent. Moreover, note that [µ, λ]ND−1 = [v,w]M .

Define λ1, λ2 ∈ Λ via [λ1, λ2] := [µ, λ]N . Then

Λ = [µ, λ]Z2 = [µ, λ]NZ2 = [λ1, λ2]Z2 = Z · λ1 + Z · λ2.

Further, writing D = diag(m,n) with m,n ∈ Z\{0}, we see

H = [v,w]Z2 = [v,w]MZ2 = [µ, λ]ND−1Z2 = [λ1, λ2]D
−1Z2 = Z · λ1

|m| + Z · λ2
|n| .

This completes the proof of the theorem, since the conditions (1)–(3) are clearly mutually
exclusive. �

The example below shows that Case (2) in Proposition 3.1 can occur forH=I(G(g,Λ))
for every lattice Λ with density smaller than one—even if (g,Λ) is a Riesz sequence.

Example 3.2. Due to Equation (2.6) and Lemma 2.1 it suffices to construct an example
for a separable lattice Λ = αZ × βZ with α, β > 0, αβ > 1. For m ∈ Z, define
Em := mα+ [0, 1

β ], and let g :=
√
β · 1E0 . Then

MnβTmαg(x) =
√

β · e2πinβx · 1[0, 1
β
](x−mα) =

√
β · e2πinβx · 1Em(x).

Hence, for any m ∈ Z the system (TmαMnβg)n∈Z is an orthonormal basis for the subspace

L2(Em) of L2(R). Note that, since 1
β < α, we have [0, 1

β ] ( [0, α]. The system (g,Λ)

is thus an orthonormal basis for G := L2(E) ⊂ L2(R), where E =
⋃

m∈Z Em. Note

that R\E has positive (even infinite) measure, so that G ( L2(R). Moreover, for any
ω ∈ R we have Mωg =

√
β · e2πiω· · 1E0 ∈ L2(E0) ⊂ G. Therefore, Lemma 2.2 shows

{0} × R ⊂ I(G), which can only occur in Case (2) of Proposition 3.1, since we would
have G = L2(R) in Case (1), see Lemma 2.3.

Note that the function g in Example 3.2 is not well localized in frequency. In the
remainder of this section, we show that Case (2) in Proposition 3.1 cannot occur if
(g,Λ) is a frame sequence with a sufficiently nice window g. In this case, the trichotomy
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from Proposition 3.1 becomes a dichotomy. By g being “sufficiently nice” we mean that
g ∈ W(C, ℓ2), where

W(C, ℓ2) :=
{
f ∈ L2(R) : UBf ∈ W (C, ℓ2) for all B ∈ R2×2 with detB = 1

}
.

Here, W (C, ℓ2) is the so-called Wiener Amalgam space consisting of all continuous func-
tions f : R → C satisfying

‖f‖W (C,ℓ2) :=

(∑

k∈Z
sup

x∈[k−1,k+1]
|f(x)|2

)1/2

< ∞.

Recall from Section 2.3 that if g ∈ W(C, ℓ2) and if B,C ∈ R2×2 satisfy detB = detC = 1,
then there is θB,C ∈ C satisfying UCUBg = θB,C UCBg ∈ W (C, ℓ2). This shows that
UBg ∈ W(C, ℓ2) whenever g ∈ W(C, ℓ2) and detB = 1.

Before we prove the announced theorem let us show that the function classes consid-
ered in this paper (namely, S0(R) and H1) are contained in W(C, ℓ2).

Lemma 3.3. We have S0(R) ⊂ W(C, ℓ2) and H1 ⊂ W(C, ℓ2).

Proof. If g ∈ S0(R), then [14, Proposition 12.1.3] shows that UBg ∈ S0(R) for each
B ∈ R2×2 with detB = 1. Similarly, if g ∈ H1, then [6, Proof of Theorem 1.4] shows
that UBg ∈ H1 for each B ∈ R2×2 with detB = 1. Therefore, it suffices to show that
S0(R) ⊂ W (C, ℓ2) and H1 ⊂ W (C, ℓ2).

First, if f ∈ S0(R), then [14, Proposition 12.1.4] shows that f̂ ∈ L1(R). By Fourier in-
version, this implies that f has a continuous representative. Furthermore, by [14, Propo-
sition 12.1.4] we have f ∈ W (L∞, ℓ1). Combined with the embedding ℓ1(Z) →֒ ℓ2(Z),
this easily implies f ∈ W (L∞, ℓ2) and thus f ∈ W (C, ℓ2).

Next, if f ∈ H1 ⊂ H1 = W 1,2(R), then [21, Theorem 7.16] shows (after changing
f on a null-set) that f is absolutely continuous, and hence continuous, and satisfies
f(x) − f(y) =

∫ x
y f ′(t) dt for all y < x, where f ′ ∈ L2(R) is the weak derivative of f .

Now, note that if n ∈ Z and x, y ∈ [n− 1, n + 1], then

|f(x)| ≤ |f(y)|+
∫ max{x,y}

min{x,y}
|f ′(t)| dt ≤ |f(y)|+

∫ n+1

n−1
|f ′(t)| dt

≤ |f(y)|+
√
2

(∫ n+1

n−1
|f ′(t)|2 dt

)1/2

,

and hence |f(x)|2 ≤ 2|f(y)|2 + 4
∫ n+1
n−1 |f ′(t)|2 dt. Integrating this over y ∈ [n − 1, n + 1]

gives

2|f(x)|2 ≤ 2

∫ n+1

n−1
|f(y)|2 dy + 8

∫ n+1

n−1
|f ′(t)|2 dt,

for all x ∈ [n− 1, n+ 1], which finally implies

‖f‖2W (C,ℓ2) ≤
∑

n∈Z

(∫ n+1

n−1
|f(y)|2 dy + 4

∫ n+1

n−1
|f ′(t)|2 dt

)
. ‖f‖2L2 + ‖f ′‖2L2 < ∞,

and hence f ∈ W (C, ℓ2). �

Our next result shows that Case (2) in Proposition 3.1 cannot occur if (g,Λ) is a frame
sequence with generator g ∈ W(C, ℓ2)\{0}.
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Theorem 3.4. Let g ∈ W(C, ℓ2)\{0} and let Λ ⊂ R2 be a lattice such that (g,Λ) is a
frame for G = G(g,Λ). Then either I(G) = R2 or there exist λ1, λ2 ∈ Λ and m,n ∈ N≥1

such that

Λ = Z · λ1 + Z · λ2 and I(G) = Z · λ1
m + Z · λ2

n . (3.2)

Proof. Let us assume I(G) ( R2. Writing H = I(G), the two possibilities in (3.2)
represent the cases (1) and (3) from the trichotomy in Proposition 3.1. It is thus enough
to show that Case (2) from that theorem cannot occur. Therefore, we assume towards
a contradiction that Case (2) holds, i.e., there are λ1, λ2 ∈ Λ and n ∈ N≥1 such that

Λ = Z · λ1 + Z · λ2 and I(G) = Z · λ1
n + R · λ2.

Step 1. We first derive a contradiction for the case λ1 = (α, 0)⊤ and λ2 = (0, β)⊤

with some α, β > 0. Then Λ = αZ × βZ, and {0} × R ⊂ I(G). For f ∈ G we thus have
Mωf ∈ G for all ω ∈ R. By [27, Theorem 9.17] (applied to the translation invariant
space F−1G, with F denoting the Fourier transform), there exists a Borel measurable
set E ⊂ R such that G = L2(E), where we consider L2(E) as a closed subspace of L2(R),
in the sense that L2(E) = {f ∈ L2(R) : f = 0 a.e. on R\E}.

Our goal is to show that E = R, up to null-sets. This will imply G = L2(E) = L2(R)
and hence I(G) = R2, providing the desired contradiction. Towards proving E = R, let
us consider for given f ∈ L2(R) the continuous function Γf : R → R defined by

Γf (ω) := 〈SMωf,Mωf〉, ω ∈ R,

where S : L2(R) → G denotes the frame operator of (g,Λ). By [14, Proposition 7.1.1],
the operator S has the Walnut representation

〈Sf, h〉 = β−1
∑

n∈Z
〈Gn · Tn

β
f, h〉 ∀ f, h ∈ L∞(R) with compact support,

where only finitely many terms of the sum do not vanish, and where

Gn(x) :=
∑

m∈Z
g(x−mα) · g(x− n

β −mα), x ∈ R, n ∈ Z.

The fact that g ∈ W (C, ℓ2) easily implies that the series defining Gn converges locally
uniformly, and that the Gn are continuous functions. Since Gn is also α-periodic, this
means that each Gn is bounded.

Now, since multiplication with Gn commutes with the modulation Mω, using the

identity Tn/βMω = e−2πin
β
ωMωTn/β, we get

Γf (ω) = β−1
∑

n∈Z
e−2πin

β
ω〈Gn · Tn

β
f, f〉 ∀ f ∈ L∞(R) with compact support, (3.3)

where there are only finitely many n ∈ Z (depending only on f , but not on the choice
of ω) for which 〈Gn · T n

β
f, f〉 6= 0.

As (g,Λ) is a frame for G and Mωf ∈ G for all ω ∈ R and f ∈ G, there exists A > 0
such that Γf (ω) = 〈SMωf,Mωf〉 ≥ A‖f‖2L2 for all f ∈ G. Let us write L∞

c (E) for the
set of all compactly supported f ∈ L∞(R) which satisfy f = 0 on R\E, and note that
L∞
c (E) ⊂ L2(E) = G. For f ∈ L∞

c (E), integrate the estimate Γf (ω) ≥ A‖f‖2L2 over
[0, β] and apply Equation (3.3) to see

β A ‖f‖2L2 ≤ β−1
∑

n∈Z
〈Gn · Tn

β
f, f〉

∫ β

0
e
−2πin

β
ω
dω = 〈G0f, f〉 = 〈hf, f〉,
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where h := G0 =
∑

m∈Z |Tmαg|2. We have thus shown
∫

E

(
h(x)− βA

)
· |f(x)|2 dx ≥ 0 ∀ f ∈ L∞

c (E).

Using standard arguments, this implies that h(x) ≥ βA for almost all x ∈ E.

Since Tmα g ∈ G = L2(E) and thus Tmα g(x) = 0 for almost all x ∈ R\E and arbitrary
m ∈ Z, it follows that h(x) = 0 for almost all x ∈ R\E. Recall from above that
h(x) ≥ βA for almost all x ∈ E; thus, h(x) ∈ {0} ∪ [βA,∞) almost everywhere. Also
recall from above that h = G0 is continuous. Hence, the open set h−1((0, βA)) has
measure zero and is thus empty; that is, h(x) ∈ {0} ∪ [βA,∞) for all x ∈ R. By the
intermediate value theorem, this implies that h(x) ≥ βA for all x ∈ R (since h ≥ |g|2
and g 6≡ 0) and thus, indeed, E = R (up to null-sets), since h(x) = 0 a.e. on R\E.

Step 2. Let Λ be a general lattice. Recall that Λ = Zλ1+Zλ2 and I(G) = Zλ1
n + Rλ2.

By Lemma 2.1 there exists B ∈ R2×2 with detB = 1 such that B[λ1, λ2] = diag(α, β)
for certain α, β ∈ R\{0}. We thus obtain ΛB = BΛ = B[λ1, λ2]Z2 = |α|Z × |β|Z and

I(GB) = BI(G) = B[λ1, λ2] diag(
1
n , 1)(Z × R) = diag( |α|n , |β|)(Z × R) = |α|

n Z× R;

see (2.6). In particular, {0} × R ⊂ I(GB). Hence, since gB = UBg ∈ W(C, ℓ2) and
(gB ,ΛB) is a frame for GB = UBG ( L2(R) (cf. Subsection 2.3), we are in the situation
of Step 1, which we proved to be impossible. �

By combining Theorem 3.4 and Lemma 3.3, we obtain the following corollary.

Corollary 3.5. Let g ∈ S0(R)\{0} or g ∈ H1\{0} and let Λ ⊂ R2 be a lattice such that
(g,Λ) is a Riesz basis for G := G(g,Λ). Then I(G) is a refinement of Λ as in (3.2).

Proof. By the Balian-Low theorem [10, Theorem 2.3] and the Amalgam Balian-Low
theorem [2, Theorem 3.2], it is not possible that G = L2(R). Therefore, Lemma 2.3
implies I(G) 6= R2. The rest follows from Lemma 3.3 and Theorem 3.4. �

4. Time-frequency shift invariance: Duality

Let us consider a Gabor Riesz sequence (g,Λ) with g ∈ W(C, ℓ2) as in the previous
section, and assume that G := G(g,Λ) ( L2(R), but that there exists an additional
time-frequency shift, meaning I(G) 6= Λ. In view of Theorem 1.1 it is our goal to show
that this is impossible, at least if g ∈ S0. To make the situation more accessible, we
first reduce to the case where Λ = αZ× βZ is separable, and where the additional time-
frequency shift is of the form (αν , 0)

⊤ for some ν ∈ N≥2, meaning that Tα/ν g ∈ G. After
that, we provide a characterization of this simplified condition in terms of the adjoint
Gabor system. It is this characterization that we will use to prove our main result,
Theorem 1.1, in the next section.

Lemma 4.1. Let g ∈ W(C, ℓ2)\{0} and let Λ ⊂ R2 be a lattice such that (g,Λ) is a
frame for G := G(g,Λ). If G 6= L2(R) and I(G) 6= Λ, there exist a matrix B ∈ R2×2 with
detB = 1 and α, β > 0 such that ΛB = αZ × βZ and (αν , 0)

⊤ ∈ I(GB) for some ν ∈ N,
ν ≥ 2 (i.e., Tα

ν
gB ∈ GB).

Proof. Due to Theorem 3.4 and Lemma 2.3, we have Λ=[λ1, λ2]Z2 and I(G)=[λ1
m , λ2

n ]Z2

for suitable vectors λ1, λ2 ∈ R2 and m,n ∈ N\{0}. We may safely assume that m 6= 1.
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Indeed, since I(G) 6= Λ, we have (m,n) 6= (1, 1). If m = 1, then with J =
[

0 1
−1 0

]
also

Λ = [λ1, λ2]JZ2 = [−λ2, λ1]Z2 and I(G) = [−λ2
n , λ1

m ]Z2.

Now, by Lemma 2.1 there exists a matrix B ∈ R2×2 with detB = 1 such that
B[λ1, λ2] = diag(α, β), where α, β ∈ R\{0}. Hence, ΛB = BΛ = |α|Z× |β|Z and

I(GB) = BI(G) = B[λ1, λ2] diag(
1
m , 1

n)Z
2 = |α|

m Z× |β|
n Z;

see (2.6). In particular, ( |α|m , 0)⊤ ∈ I(GB) and m ≥ 2. �

In what follows, fix g ∈ L2(R), α, β > 0, Λ = αZ×βZ, and ν ∈ N≥2, and assume that
(g,Λ) is a frame for G = G(g,Λ). The adjoint system F := {Tk/βMℓ/α g : k, ℓ ∈ Z} is

then a frame for its closed linear span K by [26, Theorem 2.2 (c)]. Note that K = L2(R)
if and only if (g,Λ) is a Riesz sequence (cf. [26, Thm. 2.2 (e)] or [14, Theorem 7.4.3]).

It is a natural question to ask what the existence of an additional time-frequency shift
of the form Tα

ν
g ∈ G means for the adjoint system F . To describe this, we set

Fs :=
{
T k

β
M ℓν

α
M s

α
g : k, ℓ ∈ Z

}
, s = 0, . . . , ν − 1.

Again by [26, Theorem 2.2 (c)], F0 is a frame sequence if and only if the system
(g, ανZ× βZ) is a frame sequence. In this case, each Fs is a frame sequence because
Ms/αF0 is, and multiplying the vectors of a frame sequence by unimodular constants

results in a frame sequence. We set Ls := spanFs for s ∈ {0, . . . , ν − 1}. Note that

K = L0 + · · ·+ Lν−1.

Indeed, the inclusion “⊃” is trivial. Conversely, since F is a frame sequence, each f ∈ K
satisfies f =

∑
k,ℓ∈Z ck,ℓ Tk/βMℓ/α g with a suitable sequence c = (ck,ℓ)k,ℓ∈Z∈ℓ2(Z2).

Since F is a Bessel sequence, fs :=
∑

k,ℓ∈Z ck,ℓν+sT k
β
M ℓν+s

α
g ∈ Ls is well-defined for

s ∈ {0, . . . , ν − 1}, and f = f0 + · · · + fν−1 ∈ L0 + · · · + Lν−1. Finally, it is clear
that Ls = M s

α
L0.

In the sequel, the symbol ⊞ denotes the direct (not necessarily orthogonal) sum of
subspaces, whereas ⊕ is used to denote an orthogonal sum. The next theorem charac-
terizes the existence of an additional time-frequency shift for G in terms of properties of
the adjoint system F .

Theorem 4.2. Let g ∈ L2(R) and α, β > 0, and assume that (g, αZ × βZ) is a frame
sequence with canonical dual window γ ∈ G, where G = G(g, αZ × βZ). Let ν ∈ N≥2,
and define the systems Fs and the spaces K,Ls as above, and set Sγ,g := S 1

β
Z× ν

α
Z,γ,g,

with notation as in Equation (2.2). Then the following statements are equivalent:

(i) Tα
ν
g ∈ G.

(ii) (αβ)−1Sγ,gM s
α
g = δs,0 · g for s = 0, . . . , ν − 1.

(iii) K = L0 ⊞ · · ·⊞ Lν−1.

(iv)
〈
T k

β
M ℓ

α
γ, g

〉
= 0 for all k ∈ Z and all ℓ ∈ Z\νZ.

If one of (i)–(iv) holds, then for each s = 0, . . . , ν − 1 the system Fs is a frame for Ls

and the operator Ps := (αβ)−1Ms/αSγ,gM−s/α is the (possibly non-orthogonal) projection

onto Ls with respect to the decomposition L2(R) = (L0 ⊞ · · · ⊞ Lν−1)⊕K⊥.
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Proof. First, note by Ron-Shen duality (see [26, Theorem 2.2(c)]) that F is a frame
sequence. We will frequently use the following fact (see [26, Theorem 2.3]):

(αβ)−1γ is the canonical dual window of F =
{
T k

β
M ℓ

α
g : k, ℓ ∈ Z

}
; (4.1)

in particular, γ ∈ spanF = K.

For the rest of the proof we set P := (αβ)−1Sγ,g = (αβ)−1S 1
β
Z× ν

α
Z,γ,g. It is well known

(see for instance [14, Equation (5.25)]) that

PT k
β
M ℓν

α
= T k

β
M ℓν

α
P for all k, ℓ ∈ Z. (4.2)

Moreover, Equation (2.3) applied to the lattice 1
βZ× ν

αZ shows for f ∈ B 1
β
Z× ν

α
Z that

Pf =
∑

m,n∈Z
cm,n · Tmα

ν
Mnβf with cm,n = 1

ν 〈g, Tmα
ν
Mnβγ〉. (4.3)

Let us denote the orthogonal projection onto the subspace K = spanF by PK. Note
that Equation (4.1) implies S 1

β
Z× 1

α
Z,(αβ)−1γ,g|K = idK and S 1

β
Z× 1

α
Z,(αβ)−1γ,g|K⊥ ≡ 0,

so that PK = S 1
β
Z× 1

α
Z,(αβ)−1γ,g. Similarly, the orthogonal projection PG onto G satisfies

PG = SαZ×βZ,γ,g. Next, using (4.3) and the elementary identity
∑ν−1

s=0 e
2πims

ν = ν ·1νZ(m),
we obtain

ν−1∑

s=0

M s
α
PM− s

α
f =

ν−1∑

s=0

∑

m,n∈Z
cm,n ·M s

α
Tmα

ν
MnβM− s

α
f

=
∑

m,n∈Z
cm,n

( ν−1∑

s=0

e2πi
ms
ν

)
Tmα

ν
Mnβf

= ν
∑

m,n∈Z
cνm,nTmαMnβf =

∑

m,n∈Z
〈g, TmαMnβγ〉 · TmαMnβf

(Equation (2.3)) = (αβ)−1S 1
β
Z× 1

α
Z,γ,gf = S 1

β
Z× 1

α
Z,(αβ)−1γ,gf = PKf,

(4.4)

for all f ∈ B 1
β
Z× 1

α
Z and hence for all f ∈ L2(R) by density. Here, we used that if

f ∈ B 1
β
Z× 1

α
Z, then M− s

α
f ∈ B 1

β
Z× 1

α
Z ⊂ B 1

β
Z× ν

α
Z. Next, for s = 0, . . . , ν − 1, we see by

another application of Equation (4.3) that

M− s
α
PM s

α
g =

1

ν

∑

m,n∈Z
〈g, Tmα

ν
Mnβγ〉 ·M− s

α
Tmα

ν
MnβM s

α
g

=
1

ν

∑

m,n∈Z

ν−1∑

r=0

〈
g, T νm−r

ν
αMnβγ

〉
·M− s

α
T νm−r

ν
αMnβM s

α
g

=
1

ν

ν−1∑

r=0

e2πi
sr
ν · T− rα

ν

∑

m,n∈Z

〈
T rα

ν
g, TmαMnβγ

〉
· TmαMnβ g

=
1

ν

ν−1∑

r=0

e2πi
sr
ν · T− rα

ν
PGT rα

ν
g,

(4.5)

where PG is the orthogonal projection onto G. Equation (4.5) shows that the vectors

v =
(
M− s

α
PM s

α
g
)ν−1

s=0
and u =

(
T− rα

ν
PGT rα

ν
g
)ν−1

r=0
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in
(
L2(R)

)ν
satisfy Fωu =

√
ν · v, where Fω is the DFT-matrix Fω = ν−1/2

(
ωsr

)ν−1

s,r=0

with ω = e2πi/ν .

With this preparation, we now prove the equivalence of the statements (i)–(iv).

(i)⇔(ii): If Tα
ν
g ∈ G, then Lemma 2.2 shows that T rα

ν
g ∈ G for all r ∈ Z, so that

T− rα
ν
PGT rα

ν
g = g for all r ∈ Z. Since 1

ν

∑ν−1
r=0 e

2πi sr
ν = δs,0 for s ∈ {0, . . . , ν − 1},

Property (ii) then follows from (4.5). Conversely, if (ii) holds, then v = (g, 0, . . . , 0)⊤,
which implies that u =

√
ν · F ∗

ωv = (g, g, . . . , g)⊤. In particular, T−α/νPGTα/νg = g, i.e.,
Tα/ν g ∈ G.

(ii)⇒(iii): Since Pg = g, it is a consequence of (4.2) that P |L0 = I|L0 . Furthermore,
for s ∈ {1, . . . , ν − 1} and k, ℓ ∈ Z, Equation (4.2) implies

PT k
β
M ℓν

α
M s

α
g = T k

β
M ℓν

α
PM s

α
g = 0,

which shows P |Ls = 0. By using these observations and by noting Lr = Mr/αL0, we
see for r, s ∈ {0, . . . , ν − 1} that Pr|Lr = Mr/αPM−r/α|Lr = I|Lr and furthermore
Pr|Ls = Mr/αPM−r/α|Ls = 0 for s 6= r. Hence, the sum K = L0 ⊞ · · · ⊞ Lν−1 is direct,
and Ps|K = Ms/αPM−s/α|K is the projection onto Ls with respect to this decomposition.
Finally, since γ ∈ K and since K is invariant under Tk/βMℓ/α, it follows by definition

of Ps = (αβ)−1Ms/α S 1
β
Z× ν

α
Z,γ,g M−s/α that Ps|K⊥ = 0. Therefore, Ps is the projection

onto Ls with respect to the decomposition L2(R) = (L0 ⊞ · · ·⊞ Lν−1)⊕K⊥.
Finally, we show that Fs is a frame for Ls, where it clearly suffices to show this for

s = 0. Since F0 is a Bessel sequence, [8, Corollary 5.5.2] shows that we only need to
prove that the synthesis operator

D : ℓ2(Z2) → L2(R), (ck,ℓ)k,ℓ∈Z 7→
∑

k,ℓ∈Z
ck,ℓ T k

β
M ℓν

α
g

has closed range ranD = L0. By definition of L0 = spanF0, we see ranD ⊂ L0.
Conversely, if f ∈ L0, then f = Pf = (αβ)−1Sγ,gf = (αβ)−1Dc ∈ ranD for the
sequence c = (ck,ℓ)k,ℓ∈Z ∈ ℓ2(Z2) given by ck,ℓ = 〈f, Tk/βMℓν/αγ〉.

(iii)⇒(ii): Since P = (αβ)−1Sγ,g, we see by definition of Sγ,g that ranP ⊂ L0.
Hence, Pg − g ∈ L0. On the other hand, again as a consequence of ranP ⊂ L0 we see
that Ms/αPM−s/α g ∈ Ls, so that Equation (4.4) implies

L0 ∋ P g − g = P g − PK g = −
ν−1∑

s=1

Ms/α P M−s/α g ∈ L1 + · · ·+ Lν−1, (4.6)

and thus Pg = g since the sum L0+· · ·+Lν−1 is direct. Similarly, for any s∈{1, . . . , ν−1}
we get because of ranP ⊂ L0 that Ms/αPM−s/α g ∈ Ls; but this implies as in Equa-
tion (4.6) that

Ls ∋ M s
α
PM− s

α
g = PKg−

∑

r 6=s

M r
α
PM− r

α
g ∈ L0+span{Lr : r 6= s} = span{Lr : r 6= s}.

Again, since L0+· · ·+Lν−1 is a direct sum, this implies PM− s
α
g = 0 for s = 1, . . . , ν − 1.

Since P commutes with M±ν/α (see (4.2)), we have PM(ν−s)/α g = 0 and therefore
PMs/α g = 0 for s = 1, . . . , ν − 1.

(i)⇒(iv): Note that (γ, αZ × βZ) is a frame sequence and that G = G(γ, αZ × βZ).
Further, Lemma 2.2 shows that Tα/νg ∈ G if and only if G is invariant under Tα/ν , if and
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only if Tα/νγ ∈ G. Let us consider the setting above with g and γ interchanged: Define

F∗
s :=

{
T k

β
M ℓν

α
M s

α
γ : k, ℓ ∈ Z

}
, s = 0, . . . , ν − 1.

Then, by using the implication “(i)⇒(iii)” in this setting, we get K∗ = L∗
0 ⊞ · · ·⊞L∗

ν−1,

where L∗
s := spanF∗

s and K∗ = spanF∗ with F∗ :=
{
Tk/βMℓ/αγ : k, ℓ ∈ Z

}
. Note that

K = K∗ by Equation (4.1).

We have Sg,γ = S∗
γ,g. Hence, Ms/αP

∗M−s/α is the projection onto L∗
s with respect

to the decomposition L2(R) = (L∗
0 ⊞ · · ·⊞ L∗

ν−1)⊕K⊥. In particular, using the general

formula (ker T )⊥ = ranT ∗ for a bounded operator T : H → H (see [9, Remarks after
Theorem II.2.19]) and the elementary identity (A + B)⊥ = A⊥ ∩ B⊥ for subspaces
A,B ⊂ H, we get

L∗
0 = ranP ∗ = (kerP )⊥ =

(
L1 ⊞ · · ·⊞ Lν−1

)⊥ ∩ K.

For k, ℓ ∈ Z and s ∈ {1, . . . , ν−1} this implies
〈
T k

β
M ℓν

α
γ,M s

α
g
〉
= 0, which is equivalent

to (iv).

(iv)⇒(ii): For s ∈ {1, . . . , ν − 1}, we have

PM s
α
g =

1

αβ

∑

k,ℓ∈Z

〈
M s

α
g, T k

β
M ℓν

α
γ
〉
T k

β
M ℓν

α
g = 0.

Thanks to Equation (4.4), this implies g = PKg = Pg. Overall, we have thus shown
PMs/α g = δs,0 g for all s ∈ {0, . . . , ν − 1}. �

Note that with P := (αβ)−1Sγ,g, the condition Pf = f for f ∈ L0 means that (αβ)−1γ
is a dual window for the frame sequence F0 =

(
g, 1

βZ× ν
αZ

)
. However, it is possible that

γ /∈ L0 = spanF0.

5. Proof of the main theorem

In this section, we prove our main result, Theorem 1.1, which we state here once more
for the convenience of the reader.

Theorem 1.1. If g ∈ S0(R) and Λ ⊂ R2 is a lattice such that the Gabor system (g,Λ)
is a Riesz basis for its closed linear span G(g,Λ), then the time-frequency shifts TaMb

that leave G(g,Λ) invariant satisfy (a, b) ∈ Λ.

Proof. The claim is true if Λ has rational density; see [4, Theorem 1]. Thus, assume
that Λ has irrational density d(Λ) ∈ R\Q. Write Λ = AZ2 with an invertible matrix
A ∈ R2×2.

Due to the Amalgam Balian-Low theorem [2, Theorem 3.2], it is not possible that
G := G(g,Λ) = L2(R). Hence, G 6= L2(R). Suppose towards a contradiction that
I(G) ) Λ. According to Lemma 4.1 there exist B ∈ R2×2 with detB = 1 and α, β > 0
such that ΛB = αZ × βZ and Tα

ν
gB ∈ GB for some ν ∈ N≥2. Set h := gB and

Gh := GB = G(h, αZ × βZ). Then h ∈ S0(R) by [14, Proposition 12.1.3] and Tα
ν
h ∈ Gh.

Furthermore, note that with (g,Λ), also (h, αZ×βZ) = (gB ,ΛB) is a Riesz sequence (cf.
Subsection 2.3).

Let γ be the canonical dual window for (h, αZ × βZ). By Ron-Shen duality (see
[14, Theorem 7.4.3]), the adjoint system (h, 1

βZ× 1
αZ) is a frame for L2(R). Let γ♮ denote
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the canonical dual window of (h, 1
βZ× 1

αZ), and note by Wexler-Raz orthogonality (see

[14, Theorem 7.3.1]) that 〈h, γ♮〉 = (αβ)−1. Next, note that [26, Theorem 2.3] shows
γ♮ = (αβ)−1γ and hence 〈h, γ〉 = αβ · 〈h, γ♮〉 = 1, which will be used below.

Since Tα/νh ∈ Gh, Theorem 4.2 implies that P0 := (αβ)−1S 1
β
Z× ν

α
Z,γ,h is an idempotent

(i.e., P 2
0 = P0). We now wish to apply Theorem A.1 to derive a contradiction. To this

end, first note that αβ =
(
d(ΛB)

)−1
= |detBA| = |detA| =

(
d(Λ)

)−1 ∈ R\Q. Next, set
U := Mβ and V := Tα

ν
. A direct calculation shows that

UV = e2πiθV U, where θ := αβ
ν ∈ R\Q.

Note that also γ ∈ S0(R); see [1, Theorem 7]. Hence, we may use Equation (2.7) and
obtain

P0 =
1

ν

∑

m,n∈Z

〈
h, Tmα

ν
Mnβγ

〉
Tmα

ν
Mnβ =

∑

m,n∈Z

1

ν

〈
h, V mUnγ

〉
V mUn, (5.1)

with coefficient sequence a = (am,n)m,n∈Z :=
(
1
ν 〈h, V mUnγ〉

)
m,n∈Z ∈ ℓ1(Z2). Therefore,

Theorem A.1 shows that 1
ν = a0,0 ∈ Z + θZ, say 1

ν = m + nθ for some m,n ∈ Z.
We must have n 6= 0, since otherwise 1

ν = m ∈ Z, in contradiction to ν ≥ 2. Thus,

θ = 1
nν − m

n ∈ Q, which is the desired contradiction, since θ = αβ
ν is irrational. �

Remark 5.1. On a first look, it might appear as if the proof of Theorem 1.1 would
also apply in case of g ∈ H1: First, the classical Balian-Low theorem implies that
G := G(g,Λ) ( L2(R), so that Lemma 4.1 allows the reduction to a Gabor Riesz se-
quence (h,Λ) with h ∈ H1, a separable lattice Λ = αZ × βZ, and an additional time-
frequency shift of the form Tα/ν h ∈ G. One can then apply Theorem 4.2 to see that that

L2(R) = L0 ⊞ · · · ⊞ Lν−1. In the S0-case, we then employed Janssen’s representation
(5.1) for the projection P0 = (αβ)−1S 1

β
Z× ν

α
Z,γ,h, which then led to success in the proof

of Theorem 1.1, thanks to existing results concerning the structure of the irrational ro-
tation algebra. However, in the case h ∈ H1 the series in (5.1) might not converge in
operator norm, so that one does not know whether P0 belongs to the irrational rotation
algebra. Thus, the proof breaks down at this point.
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of considering the trace on the irrational rotation algebra. In fact, we had established
the characterization in Theorem 4.2, but were unable to prove that a projection as in
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A. Appendix

In this section, we make use of a deep result concerning the structure of the irrational
rotation algebra Aθ (see [11, 24, 25]) to prove the following auxiliary statement, which is
a crucial ingredient for the proof of our main result, Theorem 1.1. As usual, we denote
the set of all bounded linear operators from a Hilbert space H into itself by B(H).

Theorem A.1. Let H 6= {0} be a Hilbert space and let U, V ∈ B(H) be unitary and
such that UV = e2πiθV U , for some θ ∈ R\Q. If a = (ak,ℓ)k,ℓ∈Z ∈ ℓ1(Z2) is such that the

operator Pa :=
∑

k,ℓ∈Z ak,ℓV
kU ℓ satisfies P 2

a = Pa, then a0,0 ∈ Z+ θZ.

The proof will make use of some parts of the theory of C∗-algebras, which we recall
here for the convenience of the reader, based on [23]. Readers familiar with C∗-algebras
will probably want to skip this part—except possibly Lemma A.2.

A C∗-algebra is a (complex) Banach algebra (A, ‖ · ‖), additionally equipped with a
map A → A, x 7→ x∗ (called the involution on A), satisfying the following properties:

• (x+y)∗ = x∗+y∗, (λx)∗ = λx∗, and (x y)∗ = y∗ x∗ and (x∗)∗ = x for all x, y ∈ A
and λ ∈ C;

• ‖x∗‖ = ‖x‖ and ‖x∗x‖ = ‖x‖2 for all x ∈ A.

An element p ∈ A is called an idempotent if p2 = p. An idempotent p is called a
projection if additionally p = p∗ holds. A C∗-algebra A is called unital if it contains a
(necessarily unique) element 1 ∈ A satisfying 1 6= 0 and x 1 = 1x = x for all x ∈ A.
In a unital C∗-algebra A, an element x ∈ A is called unitary if x∗x = 1 = xx∗. If A
is a unital C∗-algebra and a ∈ A, then σ(a∗a) ⊂ [0,∞); see [23, Theorem 2.2.4]. Here,
σ(b) = {λ ∈ C : b− λ1 not invertible in A}.
Lemma A.2. Any idempotent e in a unital C∗-algebra A is similar to a projection
p ∈ A. That is, there exist a projection p ∈ A and an invertible element a ∈ A such that
e = a−1pa.

Proof. We set b := e∗−e and z := 1+b∗b. Note that z is invertible since σ(b∗b) ⊂ [0,∞).
We have

ez = e+ (e− ee∗)(e∗ − e) = ee∗e = e+ (e− e∗)(e∗e− e) = ze.

Consequently, ez−1 = z−1e and, as z = z∗, also e∗z−1 = z−1e∗. Now, define the element
p := ez−1e∗. We have p∗ = p. Furthermore, since we just saw that z−1 commutes with e
and e∗ and that ee∗e = ze, we also see that p2 = z−2(ee∗e)e∗ = z−1ee∗ = p. Hence, p is
a projection. We further observe that ep = p and pe = ez−1e∗e = z−1ee∗e = z−1ze = e.
Set a := 1− p+ e. Then we see because of

(1∓ p± e)(1± p∓ e) = 1± p∓ e∓ p− p+ e± e+ p− e = 1

that a is invertible with a−1 = 1 + p− e. Hence, from ae = e− pe+ e = e we obtain

aea−1 = e(1 + p− e) = e+ ep− e = ep = p,

which proves the lemma. �

A closed subspace B of a C∗-algebra A is called a C∗-subalgebra of A if it is closed
under both multiplication and involution. It is clear that B is then itself a C∗-algebra.
As usual, given a subset S ⊂ A, there is a smallest (with respect to inclusion) C∗-
subalgebra of A containing S. We call it the C∗-algebra generated by S, and denote it
by C∗(S).
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A map ϕ : A → B between two C∗-algebras A and B is called a ∗-homomorphism if
it is linear and satisfies ϕ(x y) = ϕ(x)ϕ(y) as well as ϕ(x∗) = [ϕ(x)]∗ for all x, y ∈ A. A
bijective ∗-homomorphism is called a ∗-isomorphism. Any ∗-homomorphism ϕ : A → B
necessarily satisfies ‖ϕ(x)‖B ≤ ‖x‖A for all x ∈ A, and is hence continuous; see
[23, Theorem 2.1.7].

Proof of Theorem A.1. We will make use of the so-called irrational rotation algebra Aθ,
as introduced for instance in [11, Chapter VI]. The actual definition of this algebra is
not relevant for us; we will only need to know that it satisfies the following properties:

• Aθ is a unital C∗-algebra;

• The algebra Aθ is universal among all unital C∗-algebras generated by unitary
elements U, V satisfying UV = e2πiθV U . Thus, defining A := C∗(U, V ) as a
C∗-subalgebra of B(H) with U, V as in the statement of Theorem A.1, there is a
∗-isomorphism ϕ : A → Aθ; this follows from [11, Theorem VI.1.4].

• As shown in [11, Corollary VI.1.2 and Proposition VI.1.3], there is a unique
(unital ) trace τ : Aθ → C. By definition of a trace, this means in particular
that τ is linear and continuous, satisfying τ(1) = 1 and τ(xy) = τ(yx) for all
x, y ∈ Aθ.

• For any projection p ∈ Aθ, we have τ(p) ∈ Z + θZ; see [25, Theorem 1.2]. We
remark that this result was originally proven in [24].

Let us define τ ♮ := τ ◦ ϕ, and note that τ ♮ : A → C is continuous. It is easy to see
that τ ♮ is linear with τ ♮(idH) = 1 and τ ♮(AB) = τ ♮(BA) for all A,B ∈ A; this is called
the cyclicity of the trace. Next, from the relation UV = e2πiθV U , we immediately get
for k, ℓ ∈ Z that

V kU ℓ = e−2πiℓθV k−1U ℓV = e−2πikθUV kU ℓ−1.

Thus, noting that V kU ℓ ∈ A, we obtain τ ♮(V kU ℓ) = e−2πiℓθτ ♮(V kU ℓ) = e−2πikθτ ♮(V kU ℓ)
by cyclicity. As θ is irrational, this implies τ ♮(V kU ℓ) = δℓ,0δk,0. Next, since we have

‖V kU ℓ‖ = 1 for all k, ℓ ∈ Z and since a ∈ ℓ1(Z2), we see that Pa =
∑

k,ℓ∈Z ak,ℓV
kU ℓ ∈ A,

with unconditional convergence of the defining series. Hence,

τ ♮(Pa) =
∑

k,ℓ∈Z
ak,ℓ · τ ♮(V kU ℓ) = a0,0.

Since P 2
a = Pa and since ϕ : A → Aθ is a ∗-homomorphism, we see that e := ϕ(Pa) ∈ Aθ

is an idempotent. By Lemma A.2 there exist b, p ∈ Aθ such that b is invertible, p is
a projection, and e = b−1pb. Thanks to the cyclicity of the trace, we thus see that
a0,0 = τ ♮(Pa) = τ(e) = τ(b−1pb) = τ(p) ∈ Z+ θZ, as claimed. �
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[14] K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser, Boston, Basel, Berlin, 2001.
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Neural network approximation and estimation of classifiers
with classification boundary in a Barron class
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Abstract

We prove bounds for the approximation and estimation of certain binary classification
functions using ReLU neural networks. Our estimation bounds provide a priori perfor-
mance guarantees for empirical risk minimization using networks of a suitable size, de-
pending on the number of training samples available. The obtained approximation and
estimation rates are independent of the dimension of the input, showing that the curse of
dimensionality can be overcome in this setting; in fact, the input dimension only enters
in the form of a polynomial factor. Regarding the regularity of the target classification
function, we assume the interfaces between the different classes to be locally of Barron-
type. We complement our results by studying the relations between various Barron-type
spaces that have been proposed in the literature. These spaces differ substantially more
from each other than the current literature suggests.

1 Introduction
This article concerns the approximation and statistical estimation of high-dimensional, dis-
continuous functions by neural networks. More precisely, we study a certain class of target
functions for classification problems, such as those encountered when automatically labeling
images. For such problems, deep learning methods—based on the training of deep neural
networks with gradient-based methods—achieve state of the art performance [35, 33]. The
underlying functional relationship of such an (image) classification task is typically extremely
high-dimensional. For example, the most widely used image data-bases used to benchmark
classification algorithms are MNIST [36] with 28×28 pixels per image, CIFAR-10/CIFAR-100
[32] with 32×32 pixels per image and ImageNet [15, 33] which contains high-resolution images
that are typically down-sampled to 256×256 pixels. Compared to practical applications, these
benchmark datasets are relatively low-dimensional. Yet, already for MNIST, the simplest of
those databases, the input dimension for the classification function is d = 784.
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It is well known in classical approximation theory that high-dimensional approximation
problems typically suffer from the so-called curse of dimensionality [11, 43]. This term de-
scribes the fact that the problems of approximation or estimation typically become exponen-
tially more complex for increasing input dimension. Yet, given the overwhelming success of
deep learning methods in practice, high-dimensional input does not seem to be a prohibitive
factor.

One of the first theoretical results in neural network approximation offering a partial ex-
planation for this ostensible clash of theory and practical observations was found in [4]. There
it was demonstrated that for a certain class of functions with variation bounded in a suit-
able sense (these functions are, in particular, Lipschitz continuous), neural networks with one
hidden layer of N neurons achieve an approximation accuracy of the order of N−1/2 in the
L2(µ)-norm for a probability measure µ on a d-dimensional ball. Notably, this approximation
rate is independent of the ambient dimension d. Neural networks can thus overcome the curse
of dimensionality for this class of functions. This is particularly significant, since the consid-
ered class of functions (nowadays so-called a Barron class) is so large that every linear method
of approximation for it is subject to the curse of dimensionality; see [4, Theorem 6]. The result
of [4] has since been extended and generalized in various ways; we refer to Subsection 1.2 for
an overview.

In contrast to the (Lipschitz) continuous functions considered in [4], our interest lies in
the approximation of discontinuous classification functions. Such functions are of the form∑K

k=1 qk1Ωk , where the sets Ωk ⊂ Rd are disjoint and describe K + 1 ∈ N classes (we also
consider (

⋃K
k=1 Ωk)

c as a class). Here 1Ωk denotes the indicator function of Ωk; that is,
1Ωk(x) = 1 if x ∈ Ωk and 0 otherwise. Moreover, (qk)

K
k=1 correspond to the labels of the classes

and could for example be unit vectors, as in qk = ek ∈ RK for k = 1, . . .K, in the case of
one-hot-encoding or (qk)

K
k=1 ⊂ N for integer labels. These functions were discussed previously

in [45] and [28, 29], where it was shown that the regularity of the boundary determines the
approximation rate. However, the results of [45, 28, 29] are based on classical notions of
smoothness regarding the boundary and suffer from the curse of dimensionality. In this article,
we assume the class interfaces to be locally of bounded variation in the sense used in [4]. The
following subsection gives an overview of our results and the employed proof methods.

1.1 Our results
We present upper and lower bounds for the approximation and estimation of classification
functions using deep neural networks with the ReLU activation function as hypothesis space.
The classification functions that we consider are of the form

∑K
k=1 qk1Ωk , where each Ωk ⊂ Rd

is an open set such that ∂Ωk is locally a d − 1-dimensional Barron function. In the sequel,
we only consider the case of two complementary classes, that is, K = 1; the generalization to
more summands is straightforward.

Measure of approximation accuracy: In contrast to ReLU neural networks, the indicator
functions 1Ω are discontinuous. Uniformly approximating 1Ω using ReLU neural networks is
thus impossible. Therefore, we measure the approximation error in terms of the measure of
the set on which the true function and the approximation differ; since both functions are
bounded in absolute value by 1, this easily implies corresponding error estimates in Lp(µ) for
arbitrary exponents p ∈ [1,∞). Here, we consider those measures µ that are tube compatible
with an exponent α ∈ (0, 1], meaning that the measure around any ε tube of the graph of
a function decays like εα as ε ↓ 0. This notion is broad enough to include a large class of
product measures on Rd, as well as all measures of the form dµ = fdν, where f is a bounded
density and ν a tube compatible measure. We also show in Section 6 that for general (not

2



tube compatible) measures, no nontrivial approximation rates can be derived.

Regularity assumptions on the class interfaces: Similar to the notion of Ck-domains or
Lipschitz domains, we assume the boundary ∂Ω ⊂ Rd to be locally parametrized by Barron-
regular functions. Here, inspired by [4], we say that a function f : U ⊂ Rk → R is of
Barron-type, if it can be represented as

f(x) = c+

∫

Rk

(
ei〈x,ξ〉 − 1

)
F (ξ) dξ for x ∈ U, where

∫

Rk
|ξ| · |F (ξ)| dξ <∞. (1.1)

For more formal discussion of our assumptions, we refer to Definitions 2.1 and 3.3. We also re-
mark that recently other notions of Barron-type functions have been proposed in the literature;
these are discussed briefly below and in full detail in Section 7.

Upper bounds on the approximation rate: A simplified but honest version of our main
approximation result reads as follows:

Theorem 1.1. Let µ be a finite measure, tube compatible with exponent α ∈ (0, 1]. Let Ω ⊂ Rd
be such that ∂Ω can locally be parametrized by functions of Barron-type. Then, for every N ∈ N
the function 1Ω can be approximated using ReLU neural networks with three hidden layers and
a total of O(d+N) neurons to accuracy O

(
d3/(2p)N−α/(2p)

)
in the Lp(µ) norm. Moreover, the

magnitude of the weights in the approximating neural networks can be chosen to be O(d+N1/2).

For example, if µ is the Lebesgue measure, then α = 1. We note that the accuracy of our
approximation does depend on the dimension, but the dimension enters only as a multiplicative
factor which is polynomial in d.

The proof of Theorem 1.1 is structured as follows:

1. We use a classical result of Barron [3] that yields uniform approximation of functions
with a bounded Fourier moment. Because of a minor inaccuracy in the original result,
we reprove this theorem in Proposition 2.2.

2. Approximation of horizon functions. We show that we can efficiently approximate hori-
zon functions, meaning functions of the form 1x1≤f(x2,...,xd) where f is a d−1 dimensional
function of Barron-type. For the proof, we use a) that ReLU neural networks efficiently
approximate the Heaviside function, b) the compositional structure of NNs, and c) the
approximation result from Step 1.

3. The classification function 1Ω is only locally represented by horizon functions as in
Step 2. Using a ReLU-based partition of unity, we show that the result from Step 2 can
be improved to an approximation of the full classification function 1Ω.

The details of the above argument are presented in the proof of Theorem 3.7.

Lower bounds on the approximation rate: We show that the established upper bounds
on the approximation rates can, in general, not be significantly improved. More precisely,
for the Lebesgue measure dµ = 1[−1,1]ddλ, we show that for the set of classification func-
tions considered above, approximation with L1(µ) error decaying asymptotically faster than
N−1/2−1/(d−1) for N →∞ is not possible. For large input dimensions d, this almost matches
the upper bound N−1/2 from Theorem 1.1.

We prove two forms of this result. First, in Theorem 4.3, we consider neural networks
for which the individual weights are suitably quantized and grow at most polynomially with
the total number W ∈ N of neural network parameters. We show that no sequence of such
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neural networks achieves an asymptotic approximation rate faster than W−1/2−1/(d−1). This
result follows by showing that efficient approximation of horizon functions implies efficient
approximation of the associated interface functions, a technique previously applied in [45].
Then, known entropy bounds for certain Besov spaces contained in the classical Barron spaces
can be used; this is inspired by ideas from [4].

For “quantized” networks, we can allow arbitrary network architectures. As our second
result, we show in Theorem 4.4 that the assumption of weight quantization can be dropped,
provided that the depths of the approximating neural networks are assumed to be uniformly
bounded. It is still required, however, that the magnitude of the individual weights only
grows polynomially with the total network size. The proof of this second result is based on a
previously established “quantization lemma”; see [13, Lemma 3.7] and [21, Lemma VI.8].

Upper bounds on learning: Based on our approximation results, we study the problem of
estimating classifier functions of the form described above from a given set of training samples.
Precisely, we analyze the performance of the standard empirical risk minimization procedure,
where we use the 0-1 loss as the loss function and a suitable class of ReLU neural networks as
the hypothesis space.

To describe the result in more detail, let us denote by ΦS the empirical risk minimizer based
on a training sample S =

(
(X1, Y1), . . . , (Xm, Ym)

)
with (X1, . . . , Xm)

i.i.d.∼ P and Yi = 1Ω(Xi).
Assuming that the boundary ∂Ω is locally parametrized by functions of Barron class and that
P is tube compatible with exponent α ∈ (0, 1], we derive bounds on the risk of ΦS , that is, on
P
(
ΦS(X) 6= 1Ω(X)

)
where X ∼ P.

In Theorem 5.1, we show that, if the hypothesis class is a certain set of ReLU neural net-
works with three hidden layers and N ∼ (dm/ ln(dm))1/(1+α) neurons, then—with probability
at least 1 − δ with respect to the choice of the training sample S—the risk of any empirical
risk minimizer ΦS is at most

O
(
d3/2 ·

( ln(dm)

dm

)α/(2+2α)
+
( ln(1/δ)

m

)1/2
)
.

In particular, if α = 1, which is the case for the uniform probability measure, then the risk
is at most O

(
d3/4 ln(dm) ·m−1/4 +

√
ln(1/δ)/m

)
. This is similar to the estimation bounds

established in [5] for Barron regular functions.

Different notions of Barron spaces: In this article we mainly use the Fourier-analytic
notion of Barron-type functions as introduced in [4]; see Equation (1.1). We will refer to this
space as the classical Barron space, or the Fourier-analytic Barron space. In recent years,
other types of function spaces have been studied under the name “Barron-type spaces” as well;
see for instance [16, 17, 38, 55]. In contrast to the Fourier-analytic definition of [4], these
more recent articles consider Barron spaces that essentially consist of all “infinitely wide”
neural networks with a certain control over the network parameters. More formally, given an
activation function φ (which is either the ReLU or a Heaviside function), the elements of the
associated Barron space are all functions that can be written as

f(x) =

∫

R×Rd×R
a · φ

(
〈w, x〉+ c

)
dµ(a,w, c)

for a probability measure µ satisfying
∫

R×Rd×R
|a| · φ(|w|+ |c|) dµ(a,w, c) <∞ .
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We will refer to these spaces as the infinite-width Barron spaces. We emphasize that in contrast
to the Fourier-analytic Barron spaces, these infinite-width Barron spaces do depend on the
choice of the activation function φ; they thus do not contain all conceivable “infinite-width”
networks.

The relationship between the infinite-width and Fourier-analytic Barron spaces is not im-
mediately obvious. Already in [3] it was shown that the Fourier-analytic Barron space is
contained in the infinite-width Barron space associated to the Heaviside function. It is not
clear, however, whether this also holds for the ReLU activation function. In Section 7, we will
review approaches in the literature that address this embedding problem and prove that the
classical Barron space is not contained in the infinite-width Barron space associated to the
ReLU. In fact, we show in Proposition 7.4 the stronger result that if we consider a generalized
Fourier-analytic Barron space that consists of all functions f : Rd → R such that their Fourier
transform f̂ exists and satisfies

∥∥ξ 7→ (1 + |ξ|)αf̂(ξ)
∥∥
L1(Rd)

<∞, then this space is contained
in the infinite-width Barron space for the ReLU function only if α ≥ 2.

1.2 Previous work
In this section, we discuss previous research concerning the performance of neural networks for
approximating and estimating classification functions, as well as existing results concerning
dimension-independence in approximation and estimation problems. We distinguish between
results of Barron-type, i.e., approaches following the ideas of [4], and other approaches. We
first discuss extensions of [4] for shallow neural networks (i.e., networks with one hidden layer).
Here, we in particular discuss the article [17], which is the only other work that we are aware
of that studies classification problems (as opposed to regression problems) in the context of
Barron-type functions. Secondly, we discuss extensions to deep neural networks and then
review other related approaches not involving Barron-type spaces. Finally, we explain how
our work complements the existing literature.

1.2.1 Previous work considering shallow neural networks

In [4], it was shown that shallow neural networks can break the curse of dimensionality for
approximating functions f that have one finite Fourier moment; more precisely, one can achieve
‖f − ΦN‖L2(µ) . N−1/2, where ΦN is a shallow neural network with N neurons and µ is a
probability measure on a ball in Rd. The main insight in [4] is that functions with one finite
Fourier moment belong to the closed convex hull of the set of half planes; that is, they admit
an integral representation

f(x) =

∫

Rd×R
α(w, c)H(c+ wTx) dν(w, c) (1.2)

where ν is a probability measure satisfying
∫
Rd×R |α(w, c)| dν(w, c) <∞ and H = 1[0,∞) is the

Heaviside function. The approximation rate of N−1/2 is then a consequence of an approximate
and probabilistic version of Caratheodory’s theorem; see for instance [54, Theorem 0.0.2]. The
paper [3] generalized these results from approximation in L2(µ) to uniform approximation.
Furthermore, in [5] these results are extended to obtain estimation bounds for the class of
functions with one bounded Fourier moment. Essentially, using n ∼ N2 i.i.d. samples, a
neural network with N neurons can be found that approximates f up to an L2-error of the
order of N−1/2 ∼ n−1/4.

Recently, several extensions of these original results by Barron to different spaces have
been proposed. The Barron-type spaces introduced in [38, 18, 16, 55], are motivated by the
integral representation (1.2). Specifically, given an activation function φ : R → R and an
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exponent p ∈ [1,∞], the p-infinite-width Barron space consists of all functions of the form

f(x) =

∫

Sd−1×[−1,1]
a(w, b)φ(b+ 〈x,w〉) dπ(w, b), (1.3)

for x ∈ Rd, where π is a probability measure on Sd−1× [−1, 1] and a ∈ Lp(π). It is shown that
for certain values of p, the functions in the p-infinite-width Barron space can be efficiently esti-
mated and approximated by neural networks with activation function φ, without dependency
on the dimension. Let us add here that it was shown in [44] that functions of the form (1.3)
arise naturally as the solutions of appropriately regularized learning problems.

We also mention the result [39], in which a slightly improved approximation rate is obtained
for networks with the Heaviside function, albeit under a slightly stronger assumption on the
functions to be approximated. Essentially, it is assumed in [39] that Equation (1.2) holds
with a bounded function a instead of an integrable one. A further related result has been
obtained in [51], where the above results were extended to more general activation functions
and to approximation with respect to L2-Sobolev norms. In addition, lower bounds on the
approximation of Barron functions by shallow neural networks have recently been studied in
[52].

The work in the present paper complements these results by clarifying the relation between
the spaces of functions that can be represented as in Equations (1.2) and (1.3) and those that
have one finite Fourier moment, as considered in the original papers by Barron; see Section 7
for more details.

1.2.2 Shallow neural networks for classification problems

The article [17] studies the problem of learning a classification function associated to two
disjoint classes C+, C−. Instead of describing the accuracy of approximation and estimation
with respect to the typical square loss, the paper focuses on the hinge loss and certain cross-
entropy type losses. In this framework, a classification problem is considered solvable with
respect to a hypothesis class if there exist elements in that hypothesis class that assume
different signs on the two classes. It is shown in [17] that for general C+, C− such a problem is
solvable by Barron regular functions if and only if the sets C+, C− have positive distance. Since
for these functions the approximation and estimation behavior using shallow neural networks
is well studied, as reviewed in the previous subsection, this observation yields approximation
and estimation bounds by shallow neural networks for the classification problem.

In contrast to the setting considered in [17], in the present paper we analyze classification
problems for which the different classes are not required to have a positive distance. Instead,
we impose a regularity condition on the class boundaries and assume that the underlying
probability measure is tube-compatible, meaning that it should not be too strongly concentrated
at the class boundary.

1.2.3 Deep neural networks and the curse of dimensionality

It is natural to wonder whether deeper networks can improve on shallow neural networks
regarding approximation and estimation problems. The fundamental property enabling “di-
mension-free” approximation by shallow neural networks is that the function to be approxi-
mated should belong to the closed convex hull of the set of simple neurons. The corresponding
property for deep networks has been identified to be a certain summability property of the
weights of approximating neural networks. In [6, Equation 1], this summability property is
called the variation of the neural network. To avoid ambiguities with the (total) variation of
a measure or function, we will refer to this notion as the weight variation. More precisely,
the weight variation is the `1 norm of the entries of the product of the weight matrices of the
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neural networks1. In [6, Theorem 1] it is shown that if arbitrarily large neural networks are
of bounded weight variation, then these neural networks can be well approximated by smaller
neural networks. Here the size of the neural networks is measured via the encoding complexity
of the weights. Moreover, the reduction in size is independent of the dimension. The weight
variation also serves as a motivation for the so-called path norm that is fundamental to the
definition of generalized Barron spaces associated to compositional function representation in
[55]. This path norm can be understood as the continuous counterpart of the weight variation.
Correspondingly, the elements of the generalized Barron spaces in [55] are those functions
that can be obtained as limits of deep neural networks with bounded variation, for increasing
width. We also mention [37], which studies approximation of functions that are compositions
of n classical Barron functions and shows that these can then be efficiently approximated by
neural networks with n+ 1 layers.

In a somewhat similar vein, we show that if one is interested not in approximating Barron-
regular functions themselves, but rather classification functions for which the class boundaries
are Barron-regular, then this can be done efficiently with (somewhat) deep ReLU neural net-
works, namely using networks with 3 hidden layers; see Theorem 3.7.

1.2.4 Non-Barron-type results on curse of dimensionality

Functions of Barron-type are not the only functions that can be approximated by deep neural
networks without the curse of dimensionality. Other function classes that allow for approxi-
mation with only minor (in particular sub-exponential) dependencies on the dimension include
the following: functions that have a graph-like structure and are compositions of low dimen-
sional functions, [46], [45, Section 5], [49, 14, 42]; bandlimited functions [41]; and also solutions
of some classes of high-dimensional PDEs [25, 27, 30, 9, 12, 34, 24, 20, 48] and SDEs [10, 47],
under the assumption that the right-hand side of the equation is itself well-approximated (i.e.,
without suffering from the curse of dimensionality) by neural networks.

In the present paper, we show that the classification functions with Barron regular decision
boundaries also belong to this list of well-approximable functions.

1.2.5 Deep neural networks for classification problems

The approximation and estimation of classification functions of the form
∑K

k=1 fk1Ωk , where
each Ωk ⊂ Rd is an open set such that ∂Ωk is piecewise smooth and fk : Rd → R are smooth,
is studied in [28, 29, 45]. In these works, it is shown that the achievable approximation
and estimation rates are primarily determined by the smoothness of the boundaries ∂Ωk, in
the sense that, given sufficient regularity of the fk, smoother class boundaries yield better
approximation and estimation rates. The general strategy of the approximation theoretical
aspects of these works is closely related to the approach taken in this article. Indeed, the
approximation of classification functions is reduced to that of horizon functions 1x1≤f(x2,...,xd)

where f is a d − 1-dimensional smooth function. In addition, the articles [28, 29] establish
estimation bounds by invoking classical bounds on the covering numbers of the involved neural
network spaces to bound the generalization error of empirical risk minimization.

1.2.6 Delineation of our work

In the present article, we discuss a concrete set of practically relevant functions, namely those
arising in classification tasks where the interfaces between classes are sufficiently regular, which
formally means that they are locally described by Barron-type functions. As indicated earlier,
these results are based on a combination of two ideas: First, a classical result of Barron

1Here, it should be noted that all weights are assumed to be non-negative in [6], which is accomplished
there without loss of generality by a slight modification of the activation function.
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showing uniform and dimension-independent approximation of Barron-type functions [3] and,
second, a strategy to emulate functions with regular jump curves by neural networks, originally
introduced in [45].

The results are neither a direct consequence of the study of (generalized) Barron spaces
nor can they be derived directly from the results of [45]. Indeed, the functions that we discuss
(classification functions with Barron-regular boundary) do not have a representation by neural
networks with bounded weights or bounded variation of the weights. In fact, it can be shown
(see [55, Theorem 2.7]) that functions in the (generalized) Barron spaces are always Lipschitz
continuous, which is not satisfied for the classification functions that we consider. The key
difference between our approach and alternative studies of Barron spaces is that in those
works the boundedness of the (sum of the) network weights or a related property such as a
bounded weight variation plays a central role. In contrast, we allow a moderate weight growth
that is essentially inversely proportional to the approximation error. Besides, in contrast
to [17] we study classification problems for which the different classes do not have positive
distance to each other. Furthermore, the required regularity of the class boundaries for our
results is explicitly stated, e.g. in terms of a finite Fourier moment; this is in contrast to the
more implicit integral representation property required for the infinite-width Barron spaces
considered in [17].

Finally, in contrast to [28, 29, 45], the results in the present paper do not suffer from the
curse of dimensionality.

1.3 Structure of the paper
After introducing general and neural network related notation in Subsections 1.4 and 1.5, we
start in Section 2 by formally defining the Fourier-analytic Barron class, and proving that such
functions can be uniformly approximated with error O(N−1/2) using shallow ReLU networks
with O(N) neurons and controlled weights. We reprove this result since the argument in [3]
for handling general sigmoidal activation functions contains a technical inaccuracy.

In Section 3, we give the precise definition of sets with boundary in the Barron class,
and we show that indicator functions of such sets can be well approximated by ReLU neural
networks. The complementing lower bounds and estimation bounds are derived in Sections 4
and 5. For the approximation and estimation results, we always assume that the measure
under consideration is tube compatible; Section 6 shows that this is unavoidable. Finally, in
Section 7, we discuss the relation between the Fourier-analytic Barron space that we consider
and the alternative Barron spaces considered in the literature.

Several mainly technical results are deferred to the appendices.

1.4 General notation
We will use the following notation: For n ∈ N0 = {0, 1, 2, 3, . . . }, we write n := {1, 2, . . . , n};
in particular, 0 = ∅. For an arbitrary set M , we write |M | = #M ∈ N0∪{∞} for the number
of elements of M .

Given a ∈ Rd, we denote the entries of a by a1, . . . , ad ∈ R. For a, b ∈ Rd we write
a ≤ b if and only if ai ≤ bi for all i ∈ d. In this case, we define [a, b] :=

∏d
i=1[ai, bi]. For

x = (x1, . . . , xd) ∈ Rd with d > 1 and i ∈ d, we set x(i) := (x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1.
The standard scalar product of x, y ∈ Rd will be denoted by 〈x, y〉 =

∑d
i=1 xi yi, and the

Euclidean norm of x is written as |x| :=
√
〈x, x〉. For a continuous function f defined on a

set Q ⊂ Rd, we define ‖f‖sup := supx∈Q |f(x)|. For a set X and two functions f, g : X → R+,
we write f(x) . g(x) if f(x) ≤ Cg(x) for a constant C > 0 and all x ∈ X. This constant is
referred to as the implicit constant of the estimate.

Finally, given a class F of {0, 1}-valued (or {±1}-valued) functions, we denote the VC-
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dimension of F by VC(F) ∈ N0 ∪ {∞}. We refer to [50, Chapter 6] for the definition of the
VC dimension.

1.5 Neural network notation
In this subsection, we briefly introduce our notation regarding neural networks. To avoid
ambiguities, we define neural networks in a way that allows a precise counting of the number
of neurons and layers. This is done by differentiating between a neural network as a set of
weights and the associated realization which represents the function that is described through
these weights.

Definition 1.2. Let d, L ∈ N. A neural network (NN) Φ with input dimension d and L layers
is a sequence of matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where, for N0 = d and certain N1, . . . , NL ∈ N, each A` is an N`×N`−1 matrix, and b` ∈ RN` .
For a NN Φ and an activation function φ : R→ R, we define the associated realization of

the NN Φ as
RφΦ : Rd → RNL , x 7→ xL = RφΦ(x),

where the output xL ∈ RNL results from the scheme

x0 := x ∈ Rd = RN0 ,

x` := φ (A` x`−1 + b`) ∈ RN` for ` = 1, . . . , L− 1,

xL := AL xL−1 + bL ∈ RNL .

Here φ is understood to act component-wise. We call N(Φ) := d +
∑L

j=1Nj the number of
neurons of the NN Φ, L = L(Φ) the number of layers, and W (Φ) :=

∑L
j=1(‖Aj‖0 + ‖bj‖0) is

called the number of weights of Φ. Here, ‖A‖0 and ‖b‖0 denote the number of non-zero entries
of the matrix A or the vector b. Moreover, we refer to NL as the output dimension of Φ. The
activation function % : R→ R, x 7→ max{0, x} is called the ReLU. We call R%Φ a ReLU neural
network. Finally, the vector (d,N1, N2, . . . , NL) ∈ NL+1 is called the architecture of Φ.

Remark 1.3. With notation as above, the number of hidden layers of Φ is L − 1. A special
type of neural networks are those with one hidden layer, i.e., L = 2; these are called shallow
neural networks. Realizations of such networks have the form

Rd 3 x 7→ e+
N∑

i=1

ai φ(〈ci, x〉+ bi),

where N ∈ N, ai, bi, e ∈ R and ci ∈ Rd for i = 1, . . . , N .

One important property of neural networks is that one can construct complicated neural
networks by combining simpler ones. The following remark collects several standard operations
that were analyzed in [45].

Remark 1.4. Let Φ1,Φ2 be two neural networks with input dimensions d1, d2 ∈ N, L1, L2

layers and architectures (d1, N1, N2, . . . , NL1) ∈ NL1+1 and (d2,M1,M2, . . . ,ML2) ∈ NL2+1,
respectively. Furthermore, let φ : R→ R.
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• If d2 = NL1 , then there exists a neural network Φ3 such that RφΦ3 = RφΦ2 ◦ RφΦ1.
Moreover, Φ3 can be chosen to have architecture

(d1, N1, N2, . . . , NL1−1, M1, M2, . . . , ML2) ∈ NL1+L2

and to satisfy L(Φ3) = L1 + L2 − 1 and W (Φ3) ≤W (Φ1) +W (Φ2) +NL1−1M1.

• If L1 = L2, d1 = d2 and NL1 = ML1 , then, given arbitrary a, b ∈ R there exists a neural
network Φ4 such that RφΦ4 = aRφΦ1 + bRφΦ2. Moreover, Φ4 can be chosen to have
architecture

(d1, N1 +M1, N2 +M2, . . . , NL1−1 +ML1−1, NL1)

and to satisfy L(Φ4) = L1 and W (Φ4) ≤W (Φ1) +W (Φ2).

2 Uniform approximation of Barron-type functions using ReLU networks
In this section, we formalize the notion of the (Fourier-analytic) Barron space that we will use
in the sequel. We then prove that functions in the Barron class can be approximated up to
error O(N−1/2) using shallow ReLU neural networks with N neurons. For neural networks
with the Heaviside activation function, this result is due to Barron [3]. Furthermore, it is
claimed in [3] that the result extends to neural networks with sigmoidal activation functions,
which would then also imply the same property for the ReLU activation function %, since
φ(x) = %(x)− %(x− 1) is sigmoidal. However, regarding the extension to sigmoidal activation
functions there seems to be a gap in the proof presented in [3]. Namely, it is argued in the
bottom left column on Page 3 of [3] that if f is uniformly continuous and ‖f −fT ‖sup . T−1/2

where fT is of the form fT (x) = c0 +
∑T

k=1 ck1(0,∞)(〈ak, x〉+ bk) with ck, bk ∈ R and ak ∈ Rd,
then one can also achieve ‖f − gT ‖sup . T−1/2 for gT (x) = C0 +

∑T
k=1Ck φ(〈Ak, x〉+Bk),

where φ is measurable and sigmoidal, meaning φ is bounded with limx→∞ φ(x) = 1 and
limx→−∞ φ(x) = 0. As we could not verify this claim, we provide an alternative proof for the
case of the ReLU activation function, based on the main ideas in [3]. In addition, our more
careful proof shows that one can choose the weights of the neural network to be uniformly
bounded, independent of the desired approximation accuracy.

We first formalize the notion of Barron class functions, essentially as introduced in [4, 3].

Definition 2.1. Let ∅ 6= X ⊂ Rd be bounded. A function f : X → R is said to be of
Barron class with constant C > 0, if there are x0 ∈ X, c ∈ [−C,C], and a measurable function
F : Rd → C satisfying
∫

Rd
|ξ|X,x0 · |F (ξ)| dξ ≤ C and f(x) = c+

∫

Rd

(
ei〈x,ξ〉−ei〈x0,ξ〉) ·F (ξ) dξ ∀x ∈ X, (2.1)

where we used the notation |ξ|X,x0 := supx∈X |〈ξ, x − x0〉|. We write BC(X,x0) for the class
of all such functions.

Remark. The precise choice of the “base point” x0 ∈ X is immaterial, in the sense that it at
most changes the resulting norm by a factor of 2. Indeed, let x0, x1 ∈ X and assume that f
satisfies (2.1) with |c| ≤ C. Then we see for arbitrary ξ ∈ Rd and x ∈ X that

|〈ξ, x− x1〉| ≤ |〈ξ, x− x0〉|+ |〈ξ, x0 − x1〉| = |〈ξ, x− x0〉|+ |〈ξ, x1 − x0〉| ≤ 2 |ξ|X,x0 ,

meaning |ξ|X,x1 ≤ 2 |ξ|X,x0 and hence
∫
Rd |ξ|X,x1 · |F (ξ)| dξ ≤ 2C. Furthermore, setting

c′ := c+
∫
Rd
(
ei〈x1,ξ〉 − ei〈x0,ξ〉)F (ξ) dξ, we have f(x) = c′ +

∫
Rd
(
ei〈x,ξ〉 − ei〈x1,ξ〉)F (ξ) dξ and
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|ei〈x1,ξ〉− ei〈x0,ξ〉| ≤ |〈x1− x0, ξ〉| ≤ |ξ|X,x0 , which implies |c′| ≤ C +
∫
Rd |ξ|X,x0 |F (ξ)| dξ ≤ 2C.

Overall, this shows that f ∈ B2C(X,x1) and hence BC(X,x0) ⊂ B2C(X,x1).
Based on this, it is straightforward to see

∀∅ 6= Y ⊂ X and x0 ∈ X, y0 ∈ Y : BC(X,x0) ⊂ B2C(Y, y0).

For the sake of clarity, note that if {x0} ⊂ Y ⊂ X and f ∈ BC(X,x0), then clearly
f |Y ∈ BC(Y, x0) as the conditions in (2.1) are already satisfied. Therefore the inclusion
BC(X,x0) ⊂ B2C(Y, y0) from above is to be understood, by slight abuse of notation, in the
sense of function restrictions.

The following result shows that functions from the Barron class can be uniformly approx-
imated with error O(N−1/2) using shallow ReLU neural networks with O(N) neurons. It
also shows that the weights of the approximating network can be chosen to be bounded in
a suitable way. We emphasize that the result is not covered by [16, Theorem 12], since the
Fourier-analytic Barron space that we use here is not contained in the Barron space considered
in [16]; see Proposition 7.4.

Proposition 2.2. There is a universal constant κ > 0 with the following property: For any
bounded set X ⊂ Rd with nonempty interior, for any C > 0, x0 ∈ X and f ∈ BC(X,x0), and
any N ∈ N, there is a shallow neural network Φ with 8N neurons in the hidden layer such that

‖f −R%Φ‖sup ≤ κ
√
d · C ·N−1/2.

Furthermore, one can choose all weights and biases of Φ to be bounded by

(
5 + ϑ(X,x0)

)
·
(
1 + ‖x0‖`1

)
·
√
C, where ϑ(X,x0) := sup

ξ∈Rd\{0}

(
‖ξ‖`∞

/
|ξ|X,x0

)
.

Remark 2.3. The quantity ϑ(X,x0) roughly speaking measures how big of a rectangle the set
X contains. More precisely, assume that X ⊃ [a, b] where bi − ai ≥ ε > 0 for all i ∈ d. Then
we see with the standard basis (e1, . . . , ed) of Rd that

ε |ξi| =
∣∣〈ξ, a+ ε ei − x0〉 − 〈ξ, a− x0〉

∣∣ ≤ |〈ξ, a+ εei − x0〉|+ |〈ξ, a− x0〉| ≤ 2 sup
x∈X
|〈ξ, x− x0〉|.

Since this holds for all i ∈ d, we see |ξ|X,x0 ≥ ε
2 ‖ξ‖`∞ and hence ϑ(X,x0) ≤ 2

ε .
Note that since X has nonempty interior, we can always find a sufficiently small non-

degenerate rectangle in X; therefore, |ξ|X,x0 & ‖ξ‖`∞ for all ξ ∈ Rd.

Proof. It is enough to prove the claim for the case C = 1. Indeed, for f ∈ BC(X,x0), we have
f̃ := f/C ∈ B1(X,x0). Applying the claim to f̃ , we thus get ‖f̃ − g̃‖sup ≤ κ

√
d ·N−1/2, where

g̃(x) =
∑8N

i=1 ai %(bi + 〈wi, x〉) with ‖wi‖`∞ , |ai|, |bi| ≤ (5 + ϑ(X,x0)) · (1 + ‖x0‖`1). Hence,
defining g(x) =

∑8N
i=1

√
Cai %(

√
Cbi + 〈

√
Cwi, x〉), we have g(x) = C · g̃(x), which easily yields

the claim for f . We will thus assume C = 1 in what follows. The actual proof is divided into
three steps.
Step 1 (Writing f as an expectation of indicators of half-spaces): Let c ∈ [−C,C] and
F : Rd → C such that Equation (2.1) is satisfied. The case where F = 0 almost everywhere is
easy to handle; we thus assume that F 6= 0 on a set of positive measure.

Set X0 := {x − x0 : x ∈ X}, and define f0 : X0 → R by f0(x) := f(x + x0) − c and
F0 : Rd → C, ξ 7→ ei〈x0,ξ〉 F (ξ). With this notation, we have f0(x) =

∫
Rd(e

i〈x,ξ〉 − 1) · F0(ξ) dξ
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and
∫
Rd |ξ|X0 · |F0(ξ)| dξ ≤ C, where |ξ|X0 := supx∈X0

|〈x, ξ〉| = |ξ|X,x0 . Thus, (the proof of)
[3, Theorem 2] shows for all x ∈ X0 that

f0(x) = v ·
∫

Rd

∫ 1

0

(
1(0,∞)

(
−〈ξ/|ξ|X0 , x〉 − t

)
−1(0,∞)

(
〈ξ/|ξ|X0 , x〉 − t

))
· s(ξ, t) · p(ξ, t) dt dξ,

where, using the polar decomposition F0(ξ) = |F0(ξ)| ·ei θξ , the function s : Rd × [0, 1]→ {±1}
is given by s(ξ, t) = sign

(
sin(t |ξ|X0 + θξ)

)
, while p : Rd × [0, 1] → [0,∞) is defined as

p(ξ, t) = 1
v · |ξ|X0 ·

∣∣sin(t
∣∣ξ|X0 + θξ)| · |F0(ξ)|. Finally,

v =

∫

Rd

∫ 1

0
|ξ|X0 · | sin(t|ξ|X0 + θξ)| · |F0(ξ)| dt dξ ≤ C

is chosen such that p is a probability density function. It is easy to see v > 0 since F0 6= 0 on
a set of positive measure.

For brevity, define Ω := (Rd \ {0})× [0, 1]. Furthermore, set ξ∗ := ξ/|ξ|X0 for ξ ∈ Rd \ {0}
(where we note that |ξ|X0 > 0 since X0 has nonempty interior), and for x ∈ X0 define

Γx : Ω→ [−1, 1], (ξ, t) 7→ 1(0,∞)(−〈ξ∗, x〉 − t)− 1(0,∞)(〈ξ∗, x〉 − t).

Finally, let us set V± :=
∫
Rd
∫ 1

0 1s(ξ,t)=±1 · p(ξ, t) dt dξ, and define probability measures µ± on
Ω via

dµ± :=
1

V±
· 1s(ξ,t)=±1 · p(ξ, t) dt dξ.

Note that V+, V− ≥ 0 and V++V− = 1. Also note that strictly speaking µ± is only well-defined
in case of V± > 0. In case of V± = 0, one can simply drop the respective term in what follows;
we leave the straightforward modifications to the reader.

Given all these notations, we see that f0 = v · (V+ · f+ − V− · f−), where

f± : X0 → R is defined by f±(x) :=

∫

Ω
Γx(ξ, t) dµ±(ξ, t).

It is enough to show ‖f± − R%Φ±‖sup ≤ N−1/2 ·
(

C
v V±

+ κ0

√
d
)
for a shallow neural

network Φ± with 4N neurons in the hidden layer and with all weights and biases bounded by
4 + ϑ(X,x0). Indeed, once this is shown, it is easy to see that there exists a shallow network
Φ with 8N neurons in the hidden layer satisfying

R%Φ(x) = c+ v V+ ·R%Φ+(x− x0)− v V− ·R%Φ−(x− x0).

Because of f(x) = c+ f0(x− x0) = c+ v V+ · f+(x− x0)− v V− · f−(x− x0) and 0 < v ≤ C,
this yields

‖f −R%Φ‖sup ≤ N−1/2 ·
(
v V+ ·

(
C
v V+

+ κ0

√
d
)

+ v V− ·
(

C
v V−

+ κ0

√
d
))

= N−1/2 ·
(
2C + vκ

√
d
)
≤
(
2 + κ0

√
d
)
· C ·N−1/2 ≤ κ

√
d · C ·N−1/2

for a suitable absolute constant κ > 0. Again, since 0 < v ≤ C and c ∈ [−C,C] as well as
0 ≤ V± ≤ 1, and since we assume C = 1, it is easy to see that Φ can be chosen in such a
way that all weights of Φ are bounded by

(
4 + ϑ(X,x0)

)
· (1 + ‖x0‖`1). Here, we use that if

‖w‖`∞ , |b| ≤ 4 + ϑ(X,x0), then %(〈w, x− x0〉+ b) = %(〈w, x〉+ b− 〈w, x0〉), where
∣∣b− 〈w, x0〉

∣∣ ≤ |b|+
(
4 + ϑ(X,x0)

)
‖x0‖`1 ≤

(
4 + ϑ(X,x0)

)
·
(
1 + ‖x0‖`1

)
.
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Step 2 (Approximating f by an expectation of ReLU networks): For ε > 0, define

Hε : R→ [0, 1], x 7→ 1

ε

(
%(x)− %(x− ε)

)
,

noting that Hε(x) = 1(0,∞)(x) for all x ∈ R \ (0, ε). Next, for ε > 0 and x ∈ X0, set

Nε,x : Ω→ [−1, 1], (ξ, t) 7→ Hε(−〈ξ∗, x〉 − t)−Hε(〈ξ∗, x〉 − t).

Setting J (ε)
ξ,x := [−〈ξ∗, x〉 − ε, −〈ξ∗, x〉] ∪ [〈ξ∗, x〉 − ε, 〈ξ∗, x〉], we have Γx(ξ, t) = Nε,x(ξ, t) for

all (ξ, t) ∈ Ω with t /∈ J (ε)
ξ,x. Thus, using the bound 0 ≤ p(ξ, t) ≤ 1

v |ξ|X0 |F (ξ)| and the defini-
tions of f± and µ±, we see for all x ∈ X0 that

∣∣∣f±(x)−
∫

Ω
Nε,x(ξ, t) dµ±(ξ, t)

∣∣∣ ≤
∫

Rd\{0}

∫ 1

0
2 · 1

J
(ε)
ξ,x

(t) · 1

V±
p(ξ, t) dt dξ

≤ 4ε

v V±

∫

Rd
|ξ|X0 · |F (ξ)| dξ ≤ 4εC

v V±
.

We now choose ε := 1
4N
−1/2 and define f±,ε : X0 → R, x 7→

∫
ΩNε,x(ξ, t) dµ±(ξ, t). Then the

preceding estimate shows that ‖f± − f±,ε‖sup ≤ N−1/2 · C
v V±

.

Figure 1: Representation of the function (ξ, t) 7→ Nε,x(ξ, t)−λ as a ReLU network with L = 2
layers, W = 4d+ 16 weights, and U = 5 computation units (using the notation of [7]).

Step 3 (Using bounds for empirical processes to complete the proof): Denote by G0 the set
of all functions g : Rd × R → R that are implemented by ReLU neural networks with the
architecture shown in Figure 1 (that is, fully connected with one hidden layer containing four
neurons). Then the VC dimension bound for neural networks shown in [7, Theorem 6] implies
that there is an absolute constant κ1 ∈ N such that

VC({1g>0 : g ∈ G0}) ≤ κ1 d.

Moreover, using the map Θ : Ω→ Rd × [0, 1], (ξ, t) 7→ (ξ∗, t) = (ξ/|ξ|X0 , t), the construc-
tion in Figure 1 shows for arbitrary λ ∈ R that

{1Nε,x>λ : x ∈ X0} ⊂ {1g◦Θ>0 : g ∈ G0}.

Directly from the definition of the VC dimension, we see that composing a class of func-
tions with a fixed map (in this case, Θ) can not increase the VC dimension, so that we get
VC({1Nε,x>λ : x ∈ X0}) ≤ κ1 d for all ε > 0 and λ ∈ R.

13



Now, using the bound in Proposition A.1 and recalling that E(ξ,t)∼µ± [Nε,x(ξ, t)] = f±,ε(x),

we see that if we choose (ξ1, t1), . . . , (ξN , tN )
i.i.d.∼ µ±, then there is a universal constant κ2 > 0

satisfying for all N ∈ N that2

E
[

sup
x∈X0

∣∣∣f±,ε(x)− 1

N

N∑

i=1

Nε,x(ξi, ti)
∣∣∣
]
≤ κ2 ·

√
κ1d

N
. (2.2)

In particular, there is one specific realization
(
(ξ1, t1), . . . , (ξN , tN )

)
∈ ΩN such that

sup
x∈X0

∣∣∣f±,ε(x)− 1

N

N∑

i=1

Nε,x(ξi, ti)
∣∣∣ ≤ κ

√
dN−1/2.

Clearly, g±,ε : Rd → R, x 7→ 1
N

∑N
i=1Nε,x(ξi, ti) is implemented by a shallow ReLU network

with 4N neurons in the hidden layer, as follows from

1

N
Nε,x(ξi, ti) =

ε−1

N
·
(
%
(
−〈ξ∗i , x〉−ti

)
−%
(
−〈ξ∗i , x〉−ti−ε

)
−%
(
〈ξ∗i , x〉−ti

)
+%
(
〈ξ∗i , x〉−ti−ε

))
.

Now, note by definition of ϑ(X,x0) and ξ∗ = ξ/|ξ|X0 that ‖ξ∗i ‖`∞ ≤ ϑ(X,x0). Furthermore,
|ti| ≤ 1. Finally, by choice of ε = 1

4N
−1/2, we see ε−1/N = 4N−1/2 ≤ 4. Overall, we thus see

that g±,ε = R%Φ± where the shallow neural network Φ± has 4N neurons in the hidden layer
and all weights and biases bounded by 4 + ϑ(X,x0).

3 Approximation of sets with Barron class boundary
In this section, we show that indicator functions of sets with Barron class boundary are
well approximated by ReLU neural networks. Essentially the only property of Barron class
functions that we will need is that they can be uniformly approximated up to error O(N−1/2)
by shallow ReLU networks with N neurons and suitably bounded weight. Thus, to allow for a
slightly more general result, we introduce a “Barron approximation space” containing all such
functions.

Definition 3.1. Let d ∈ N and let X ⊂ Rd be bounded with nonempty interior. For C > 0,
we define the Barron approximation set BAC(X) as the set of all functions f : X → R such
that for every N ∈ N there is a shallow neural network Φ with N neurons in the hidden layer
such that

‖f −R%Φ‖sup ≤
√
d · C ·N−1/2

and such that all weights (and biases) of Φ are bounded in absolute value by

√
C ·
(

5 + inf
x0∈X

[
‖x0‖`1 + ϑ(X,x0)

])
, where ϑ(X,x0) := sup

ξ∈Rd\{0}

(
‖ξ‖`∞

/
|ξ|X,x0

)
.

The set BA(X) =
⋃
C>0 BAC(X) is called the Barron approximation space.

2Strictly speaking, Proposition A.1 yields a bound for

sup
X00⊂X0 finite

E
[

sup
x∈X00

∣∣f±,ε(x)−N−1∑N
i=1Nε,x(ξi, ti)

∣∣
]
.

But since x 7→ f±,ε(x) and x 7→ Nε,x(ξi, ti) are continuous, this coincides with the expression in Equation (2.2).
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Remark 3.2. a) Using Proposition 7.4, it is not hard to see BC(X,x0) ⊂ BAκ0C(X) for every
C > 0, with a constant κ0 > 0 that is absolute, (i.e., independent of all other quantities and
objects).

b) For the infinite-width Barron space B%(X) associated to the ReLU function (which will
be formally introduced in Section 7), it follows from [16, Theorem 12] that

B%,C(X) :=
{
f ∈ B%(X) : ‖f‖B%(X) ≤ C

}
⊂ BAσC(X),

where the constant σ > 0 scales polynomially with d and linearly with supx∈X ‖x‖`∞ .
c) If Y ⊂ X has nonempty interior, we have ϑ(X, y0) ≤ ϑ(Y, y0) for all y0 ∈ Y and hence

infx0∈X
[
‖x0‖`1 +ϑ(X,x0)

]
≤ infy0∈Y

[
‖y0‖`1 +ϑ(X, y0)

]
≤ infy0∈Y

[
‖y0‖`1 +ϑ(Y, y0)

]
. Based

on this, it is straightforward to see

f |Y ∈ BAC(Y ) if f ∈ BA(X) and Y ⊂ X has nonempty interior. (3.1)

Using the notion of Barron approximation spaces, we can now formally define sets with
Barron class boundary.

Definition 3.3. Let d ∈ N≥2 and B > 0 and let Q = [a, b] ⊂ Rd be a rectangle. A function
F : Q → R is called a Barron horizon function with constant B, if there are i ∈ d and
f ∈ BAB

(
[a(i), b(i)]

)
as well as θ ∈ {±1} such that

F (x) = 1θxi≤f(x(i)) ∀x ∈ Q.

We write BHB(Q) for the set of all such functions.
Finally, given M ∈ N and B > 0, a compact set Ω ⊂ Rd is said to have a Barron class

boundary with constant B if there exist rectangles Q1, . . . , QM ⊂ Rd such that Ω ⊂ ⋃M
i=1Qi

where the rectangles have disjoint interiors (i.e., Q◦i ∩ Q◦j = ∅ for i 6= j) and such that
1Qi∩Ω ∈ BHB(Qi) for each i ∈M . We write BBB,M (Rd) for the class of all such sets. Also, a
family (Qj)

M
j=1 of rectangles as above is called an associated cover of Ω.

Remark 3.4. By Remark 3.2, the set of functions with Barron class boundary contains all
characteristic functions of sets whose boundary is locally described by functions in the Fourier-
analytic Barron space or the infinite-width Barron space associated to the ReLU.

The following example illustrates the above definition.

Example. (1) Every set Ω of the form Ω = {x ∈ Q : x1 ≤ f(x2, . . . , xd)} for a rectangle
Q = [a(1), b(1)] × Q′ ⊂ Rd and a function f : Q′ → R from the Fourier-analytic Barron class
BB(Q′, x0) (for arbitrary x0 ∈ Q′) belongs to BBκ0B,1(Rd), for the absolute constant κ0 > 0
from Remark 3.2.

Examples for such functions f are discussed in great length in [4, Section IX]; here,
we just mention three special cases. First, for the Gaussian f(x) = e−|x|

2/2, it holds that
f ∈ B√d(Q′, x0) for any rectangle Q′ ⊂ Rd−1 and any x0 ∈ Q′; thus, one only has a polyno-
mial dependence on the dimension. Second, if Q′ = [0, 1]d−1 and f(x) =

∑
k∈Zd−1 cke

2πi〈k,x〉,
then f ∈ BC(Q′, 0) for C = |c0|+

∑
k∈Zd−1 |k| |ck|; this essentially follows as in [4, Section IX,

Point (16)]. Finally, if f ∈ Ck(Q′) for k ≥ 2 + b(d − 1)/2c, then [4, Section IX, Point (15)]
shows that f belongs to BC(Q′, x0), for a suitable C = C(f,Q′) > 0. This last observation,
however, is more of qualitative than of quantitative use, since the resulting constant C is often
quite large if d is large.
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Figure 2: An illustration of the cusp domain Ω (shown in gray) dis-
cussed in Part (2) of the example below. The blue and green boxes show
the rectangles Q1, Q2 ⊂ R2 satisfying Ω ⊂ Q1∪Q2 and such that 1Ω∩Qi

is a Barron horizon function. For more details see the example below.

(2) The class of sets with Barron class boundary also contains sets that are not necessarily
Lipschitz domains. An example of such a domain is the cusp domain

Ω =
{

(x, y) ∈ [−4, 4]× [0, 2] : y ≥
√
|x|
}

shown in Figure 2. Indeed, we claim for the rectanglesQ1 = [0, 4]×[0, 2] andQ2 = [−4, 0]×[0, 2]
that 1Ω∩Qi is a Barron horizon function. We only verify this for Q1. To see this, note that the
function f : [0, 2] → R, y 7→ y2 can be extended to a function f ∈ C3

c (R); one such extension
is shown in Figure 2. As seen above, this implies that f ∈ BC([0, 2], 0) for a certain C > 0.
Because of 1Ω∩Q1(x, y) = 1x≤f(y) for (x, y) ∈ Q1, this implies that 1Ω∩Q1 is a Barron horizon
function.

We will show in Section 6 that it is impossible to derive nontrivial minimax bounds for
the class of sets with Barron boundary for the case of general probability measures. For this
reason, we will restrict to the following class of measures.

Definition 3.5. Let µ be a finite Borel measure on Rd. We say that µ is tube compatible with
parameters α ∈ (0, 1] and C > 0 if for each measurable function f : Rd−1 → R, each i ∈ d and
each ε ∈ (0, 1], we have

µ
(
T

(i)
f,ε

)
≤ C · εα where T

(i)
f,ε :=

{
x ∈ Rd : |xi − f(x(i))| ≤ ε

}
.

The set T (i)
f,ε is called a tube of width ε (associated to f).

Remark 3.6. The definition might appear technical, but it is satisfied for a wide class of
product measures. For instance, if µ1, . . . , µd are Borel probability measures on Rd such that
each distribution function Fi(x) = µi((−∞, x]) is α-Hölder continuous with constant C, then
the product measure µ = µ1 ⊗ · · · ⊗ µd is tube compatible with parameters α and 2αC, since
Fubini’s theorem shows for µ(i) := µ1 ⊗ · · ·µi−1 ⊗ µi+1 ⊗ · · · ⊗ µd that

µ(T
(i)
f,ε) =

∫

Rd−1

∫

R
1|y−f(x)|≤ε dµi(y) dµ(i)(x),
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where
∫

R
1|y−f(x)|≤ε dµi(y) = µi([f(x)−ε, f(x)+ε])=Fi

(
f(x)+ε

)
−Fi

(
f(x)−ε

)
≤ C·(2ε)α = 2αC·εα,

from which we easily get µ
(
T

(i)
f,ε

)
≤ 2αC · εα, as claimed.

Measures that do not have a product structure can be tube compatible as well. For
example, if µ is tube compatible with parameters α ∈ (0, 1] and C > 0, then any measure
ν of the form dν = f dµ with a bounded density function f will be tube compatible, with
parameters α and C · supx f(x).

Next, we give our main approximation result for functions 1Ω, where Ω is a set with Barron
class boundary.

Theorem 3.7. Let d ∈ N≥2, M,N ∈ N, B,C > 0, and α ∈ (0, 1], and let Ω ∈ BBB,M (Rd).
There exists a neural network IN with 3 hidden layers such that for each tube compatible

measure µ with parameters α,C, we have

µ({x ∈ Rd : 1Ω(x) 6= R%IN (x)}) ≤ 6CMBα d3/2N−α/2.

Moreover, 0 ≤ R%IN (x) ≤ 1 for all x ∈ Rd and the architecture of IN is given by

A =
(
d, M(N + 2d+ 2), M(4d+ 2), M, 1

)
.

Thus, IN has at most 7M(N+d) neurons and at most 54d2M N non-zero weights. The weights
(and biases) of IN are bounded in magnitude by d(4 +R)(1 +B) +

√
N ·
(
B−1 +B−1/2

)
, where

R = supx∈Ω ‖x‖`∞ .

Proof. The proof will proceed in three parts. First we construct a neural network that satisfies
a certain approximation accuracy, without going into much detail regarding the architecture
of this network. Afterwards, we analyze the network architecture, and bound the network
weights.

Network construction and approximation bound:

Step 1. (Construction of neural networks locally approximating boundaries) Let
(Qj)

M
j=1 be an associated cover of Ω. Fix m ∈ M and write Qm := [a, b]. By the as-

sumption Ω ∈ BBB,M (Rd), there exist i = i(m) ∈ d and θm ∈ {±1} as well as a function
fm ∈ BAB(Qim) such that 1Ω(x) = 1θmxi≤fm(x(i)) for all x ∈ Qm. Here, we used the notation
Qim :=

∏
j 6=i[aj , bj ]. With R = supx∈Ω ‖x‖`∞ as in the theorem statement, note that if we

replace each Qj by Q̃j := Qj ∩ [−R,R]d, then the family (Q̃j)
M
j=1 is still a cover of Ω consist-

ing of rectangles. Furthermore, Equation (3.1) shows that fm ∈ BAC(Q̃im), and we clearly
have 1Ω(x) = 1θmxi≤fm(x(i)) for all x ∈ Q̃m. Therefore, we can assume in the following that
Qm ⊂ [−R,R]d for all m ∈M .

Now, by Definitions 3.3 and 3.1, there exists a shallow neural network ImN with N neurons
in the hidden layer such that ‖fm − R%I

m
N ‖sup ≤ γN−1/2 where γ := B

√
d− 1. Further-

more, all weights and biases of ImN are bounded by
√
B ·
(
6 + ϑ(Qim, qm) + ‖qm‖`1

)
for some

qm ∈ Qim ⊂ [−R,R]d−1.

Step 2. (Construction of neural networks approximating horizon functions) Set

Sm :=
{
x ∈ Qm : fm(x(i)) ≥ θm xi

}
and Tm :=

{
x ∈ Qm : R%I

m
N (x(i)) ≥ θm xi

}
,
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where ImN is the network obtained in the previous step. Recalling ‖fm −R%ImN ‖sup ≤ γ N−1/2

and using the notation Sm4Tm = (Sm \ Tm) ∪ (Tm \ Sm), we then see

Sm4Tm
=
{
x ∈ Qm : fm(x(i)) < θmxi ≤ R%ImN (x(i))

}
∪
{
x ∈ Qm : R%I

m
N (x(i)) < θmxi ≤ fm(x(i))

}

⊂
{
x ∈ Qm : −γN−1/2 ≤ fm(x(i))− θmxi < 0

}
∪
{
x ∈ Qm : 0 ≤ fm(x(i))− θmxi < γN−1/2

}

⊂
{
x ∈ Qm : |fm(x(i))− θmxi| ≤ γN−1/2

}
.

Since µ is α,C tube compatible and since 1Ω(x) = 1Sm(x) for x ∈ Qm, it follows that

µ({x ∈ Qm : 1Ω(x) 6= 1Tm(x)}) = µ({x ∈ Qm : 1Sm(x) 6= 1Tm(x)})
= µ(Sm4Tm) ≤ CγαN−α/2.

Next, we define the approximate Heaviside function Hδ : R→ [0, 1] by

Hδ(x) :=





0 if x ≤ 0
x
δ if 0 ≤ x ≤ δ
1 if x ≥ 1.

Since Hδ can be realized by a ReLU neural network (via Hδ(x) = 1
δ (%(x)− %(x− δ))), we

next approximate the characteristic function of Tm by an appropriate approximate Heaviside
function applied to R%ImN (x(i))− θmxi.

To this end, note for δ > 0 and an arbitrary measurable function φ : Rd−1 → R that
{

(t, u) ∈ Rd−1 × R : 1φ(t)≥u 6= Hδ(φ(t)− u)
}

= {(t, u) : 0 < Hδ(φ(t)− u) < 1}
⊂ {(t, u) : 0 ≤ φ(t)− u ≤ δ}
⊂ {(t, u) : |φ(t)− u| ≤ δ}.

Therefore, by picking δ = γN−1/2 and using the tube compatibility of the measure we see
that µ({x ∈ Qm : 1Tm(x) 6= R%J

m
N (x)}) ≤ CγαN−α/2, where JmN is chosen such that

R%J
m
N (x) = HγN−1/2

(
R%I

m
N (x(i))− θmxi

)
. Note that 0 ≤ R%JmN ≤ 1.

Step 3. (Localization to patches) Next, we want to truncate each realization R%JmN such
that it is supported on Qm and we want to realize these truncations as ReLU neural networks.
This is based on a simplified version of the argument in [45, Lemma A.6] For the sake of
completeness, we recall the construction from [45, Lemma A.6].

Let [a, b] =
∏d
i=1[ai, bi] be a rectangle in Rd, let 0 < ε ≤ 1

2 mini∈d(bi − ai) and define
[a+ ε, b− ε] :=

∏d
i=1[ai + ε, bi− ε]. Furthermore, define the functions ti : R→ R, for i ∈ d, by

ti(u) :=





0 if u ∈ R \ [ai, bi]

1 if u ∈ [ai + ε, bi − ε]
u−ai
ε if u ∈ [ai, ai + ε]

bi−u
ε if u ∈ [bi − ε, bi],

and ηε : Rd × R → R by ηε(x, y) = %
(∑d

i=1 ti(xi) + %(y) − d
)
. Note that for y ∈ [0, 1],

if x ∈ [a + ε, b − ε], we have ηε(x, y) = %(%(y)) = y; furthermore, if x ∈ Rd \ [a, b], we have
0 ≤ ηε(x, y) ≤ %(d− 1 + %(y)− d) = %(y− 1) = 0. This implies for any function g : Rd → [0, 1]
that {x ∈ Rd : ηε(x, g(x)) 6= 1[a,b](x) · g(x)} ⊂ [a, b] \ [a + ε, b − ε]. Note additionally that
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the function ηε can be implemented by a ReLU neural network and that 0 ≤ ti ≤ 1, so that
0 ≤ ηε(x, y) ≤ %(%(y)) ≤ 1 for all y ∈ [0, 1], by monotonicity of the ReLU.

Returning now to the neural networks constructed in the previous step we distinguish two
cases: First, if the rectangle Qm has width along some coordinate direction i less than 2γN−1/2

(Qm is a “small rectangle”), then we see for a suitable (constant) function gm : Rd−1 → R that
Qm ⊂ T

(i)

gm,2γN−1/2 and hence µ(Qm) ≤ 2αCγαN−α/2 ≤ 2dCγαN−α/2, since α ≤ 1. We thus
choose LmN to be a trivial neural network with input dimension d+1, meaning R%LmN (x, y) = 0
for all x ∈ Rd and y ∈ R. We then have

µ
({
x ∈ Rd : 1Qm(x)R%J

m
N (x) 6= R%L

m
N (x,R%J

m
N (x))

})
≤ µ(Qm) ≤ 2dC γαN−α/2.

Otherwise (ifQm is a “large rectangle”), writing Qm=[a, b], we have γ√
N
≤ 1

2 mini∈d(bi−ai),
and it is not hard to see that [a, b] \ [a+ γN−1/2, b− γN−1/2] is contained in the union of 2d
tubes of width γN−1/2. Therefore, choosing LmN such that R%LmN = ηγN−1/2 , we obtain

µ
({
x ∈ Rd : 1Qm(x)R%J

m
N (x) 6= R%L

m
N (x,R%J

m
N (x))

})
≤ 2dCγαN−α/2.

In both cases, the function x 7→ R%L
m
N (x,R%J

m
N (x)) is supported on Qm and vanishes on the

boundary of Qm (due to continuity).

Step 4. (Finishing the construction and error estimate) To summarize, on each rect-
angle Qm we have

µ({x ∈ Rd : 1Ω∩Qm(x) 6= R%L
m
N (x,R%J

m
N (x))})

≤ µ({x ∈ Rd : R%L
m
N (x,R%J

m
N (x)) 6= 1Qm(x)R%J

m
N (x)})

+ µ({x ∈ Qm : R%J
m
N (x) 6= 1Tm(x)}) + µ({x ∈ Qm : 1Tm(x) 6= 1Ω(x)})

≤ 2dCγαN−α/2 + CγαN−α/2 + CγαN−α/2

= 2(d+ 1)CγαN−α/2.

Now, defining the neural network IN such that R%IN (x) :=
∑M

m=1R%L
m
N (x,R%J

m
N (x)), we

obtain because of 1Ω =
∑M

m=1 1Ω∩Qm (almost everywhere) that

µ
({
x ∈ Rd : 1Ω(x) 6= R%IN (x)

})
≤ 2M(d+ 1)CγαN−α/2 = 2(d+ 1)(d− 1)α/2CMBαN−α/2.

To simplify the estimate, using that α ≤ 1, we see (d + 1)(d − 1)α/2 ≤ (d + 1)3/2 ≤ (2d)3/2,
since d ≥ 2. Finally, note that 21+3/2 = 25/2 < 6. Combining these estimates we see that
2(d+ 1)(d− 1)α/2CMBαN−α/2 ≤ 6CMBα d3/2N−α/2.

Additionally, recall from above that 0 ≤ R%J
m
N ≤ 1 for every m ∈ M . As seen in Step 3,

this implies that ζm(x) := R%L
m
N (x,R%J

m
N (x)) satisfies 0 ≤ ζm(x) ≤ 1 for all x ∈ Rd. Since

each ζm is supported on Qm and vanishes on the boundary of Qm, and since the rectangles
Qm have disjoint interiors, this implies that 0 ≤ R%IN ≤ 1 as well.

The architecture:
Now let us examine the architecture of each LmN in more detail. For each rectangle Qm, the

flowchart of computations performed by each LmN can be visually represented as in Figure 3.
In the following, we explicitly describe each of the layers of the network computing LmN ;

we then describe how these networks are combined to obtain IN .

Inputs. The input layer with d neurons corresponding to the d coordinates of an input x ∈ Rd.

Layer 1. This layer will contain N + 2d+ 2 neurons split into 3 categories:
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x

x πm(x) π̃m(x)

x R%I
m
N (πm(x)) −θmπ̃m(x)

x ([R%I
m
N ] ◦ πm − θmπ̃m)(x)

x R%J
m
N (x) = Hδ(([R%I

m
N ] ◦ πm − θmπ̃m)(x))

(x, JmN (x))

LmN (x, JmN (x))

id πm π̃m

id ImN t 7→ −θmt

id + +

id Hδ

↪→ ↪→

LmN

Input

Layer 1

Layer 2

Figure 3: Visualization of the neural network LmN for the case of a “large” rectangle Qm.

• 2d neurons computing %(xi) and %(−xi) respectively for each i ∈ d.

• N neurons corresponding to the neurons in the hidden layer of the networks ImN . Explic-
itly, writing R%ImN (x) = D+

∑N
k=1Ck %(Bk+〈Ak, x〉) with D,Bk, Ck ∈ R and Ak ∈ Rd−1

for k ∈ N , the k-th of these neurons will compute φk(x) = %
(
Bk + 〈(πm)TAk, x〉

)
, where

πm is the projection that sends x to x(i) (with i = i(m)), viewed as a (d− 1)× d matrix.

• 2 neurons computing %(±θmπ̃m(x)), respectively, where π̃m is the projection that sends
x to xi (where i = i(m)), viewed as a 1× d matrix.

Layer 2. This layer will contain 4d+ 2 neurons split into 2 categories:

• 4 neurons for each coordinate i ∈ d computing the building blocks for the ti functions
in Step 3: t1i (ui) = %(ui − ai), t2i (ui) = %(ui − ai − ε), t3i (ui) = %(ui − bi + ε) and
t4i (ui) = %(ui − bi), where ui := %(xi)− %(−xi) = xi. Note that ti(ui) =

t1i−t2i−t3i+t4i
ε (ui).

Furthermore, recall that we chose ε = γN−1/2.

• 2 neurons computing the parts of the approximate Heaviside function Hδ, computing,
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respectively,

ψ1(x) := %
(
D +

N∑

k=1

Ckφk(x)− %
(
θmπ̃

m(x)
)

+ %
(
−θmπ̃m(x)

))

and

ψ2(x) := %
(
D +

N∑

k=1

Ckφk(x)− %
(
θmπ̃

m(x)
)

+ %
(
−θmπ̃m(x)

)
− δ
)
,

where we recall from above that R%ImN (πm(x)) = D +
∑N

k=1Ckφk(x) and δ = γN−1/2.
Therefore, 1

δ (ψ1(x)−ψ2(x)) = Hδ

(
R%I

m
N (πm(x))− θmπ̃m(x)

)
= R%J

m
N (x); in particular,

ψ1(x)− ψ2(x) ≥ 0.

Layer 3. This layer will have a single neuron, either computing the zero function (in the case
of a “small rectangle” Qm), or (in the case of a “large rectangle”) computing

ηε(x,R%J
m
N (x)) = R%L

m
N (x,R%J

m
N (x)) = %

(
1
ε

d∑

i=1

(
t1i −t2i −t3i +t4i

)
(xi)+ 1

δ

(
ψ1(x)−ψ2(x)

)
−d
)
.

We used here that (ψ1 − ψ2)(x) ≥ 0, so the difference is invariant under %.
Now, the full network IN can be realized with one more layer (the output layer), so that

R%IN (x) =
∑M

m=1R%L
m
N (x,R%J

m
N (x)).

Thus, IN can be realized by a ReLU neural network with 3 hidden layers, architecture
A =

(
d, M(N + 2d+ 2), M(4d+ 2), M, 1

)
, and d+1+M(N+6d+5) ≤ 7M(N+d) neurons.

Now let us estimate the number of non-zero weights of IN which we will denote by W (IN ).
An immediate bound can be found by taking the product of the number of neurons on every
pair of consecutive layers in the LmN networks, summing up over the layers, multiplying by M ,
adding M to account for the weights of the final output layer, and finally adding the total
number of non-input neurons to account for the biases. We thus see

W (IN ) ≤M ·
(
d(N +2d+2)+(N +2d+2)(4d+2)+(4d+2) ·1

)
+M +MN +6Md+5M +1,

so that a rough estimate shows W (IN ) ≤ 54Md2N .

Bounding the magnitude of the weights and biases:
Let us now acquire an upper bound for the absolute value of the weights and biases of

IN . Note first of all that for the networks ImN we have two cases depending on the size of the
corresponding rectangle Qm =

∏d
i=1[ai, bi]:

• If mini(bi − ai) < 2γN−1/2, we can set all weights of the “subnetwork” corresponding to
the rectangle Qm to be zero.

• If mini(bi − ai) ≥ 2γN−1/2, then by Remark 2.3, we have ϑ(Qm, qm) ≤ γ−1N1/2. Since
furthermore ‖qm‖`1 ≤ (d− 1)R, our choice of ImN in Step 1 ensures that the weights and
biases of ImN are bounded by

√
B · (6 +ϑ(Qm, qm) + ‖qm‖`1) ≤

√
B · (6 + γ−1N1/2 + dR).

In either case, we see that the weights and biases on the first layer are bounded in absolute
value by 1 +

√
B · (6 + γ−1N1/2 + dR).

For the second layer, the weights corresponding to the first 4d neurons are bounded by
1 + ε + R and for the last 2 neurons again by 1 +

√
B · (6 + γ−1N1/2 + dR). Finally for the

third layer, the weights and biases are bounded by max(1
ε ,

1
δ , d) ≤ d+ γ−1N1/2.
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In conclusion, the weights of IN will have magnitudes bounded by

max
{

1 + 6
√
B +

√
Bγ−1N1/2 +

√
BdR, 1 + ε+R, d+ γ−1N1/2

}

≤ d(4 +R)(1 +B) +
√
N ·

(
B−1 +B−1/2

)
.

Here, we used that d ≥ 2, combined with several elementary estimates including the bound√
B ≤ 1 +B.

4 Lower bounds for approximating sets with Barron class boundary
In this section, we present a lower bound on the achievable minimax rate for approximating
functions f ∈ BBB,M (Rd) in L1 with respect to the Lebesgue measure on [−1, 1]d. In fact,
we show that the approximation rate provided by Theorem 3.7 is almost optimal even when
only horizon functions with boundary from the Fourier-analytic Barron space are considered.
More precisely, we will see in Theorem 4.3 below that neural networks with W weights cannot
obtain a better approximation error than O(W−

1
2
− 1
d−1 ) over the class of horizon functions

with boundary from the Fourier-analytic Barron space; in contrast, our upper bound from
Theorem 3.7 guarantees that an approximation error of O(W−1/2) is achievable. Thus, even
though the two rates of approximation do not precisely agree, the difference between them
vanishes for increasing input dimension d→∞; therefore, we speak of almost optimality.

Since the arguments in this section are heavily based on the Fourier transform, we start
by fixing its normalization. Concretely, for f ∈ L1(Rd), we define

Ff(ξ) = f̂(ξ) = (2π)−d/2
∫

Rd
f(x)e−i〈x,ξ〉 dx,

so that the inverse Fourier transform is given by F−1f(x) = f̂(−x); see e.g. [22, Section 4.3.1].
Our first step towards lower bounds is to relate the covering numbers of certain sets of

horizon functions to covering numbers of certain subsets of Besov spaces. To fix the terminol-
ogy, recall that if Θ is a subset of a normed vector space X, then a set ∅ 6= M ⊂ X is called
an ε-net for Θ (in X), if supx∈Θ infm∈M ‖x−m‖X ≤ ε.

Proposition 4.1. Let d ∈ N≥2 and Ω := (−1, 1)d−1. Given a function f : Ω→ R, define the
associated horizon function as

Hf : (−1, 1)d−1 × (−1, 1)→ {0, 1}, (x, y) 7→ 1y≤f(x).

For each s > d+1
2 and C > 0, there is a constant λ = λ(d, s, C) > 0 with the following

property: If ε > 0 and if M ⊂ L1
(
(−1, 1)d

)
is an ε-net (in L1((−1, 1)d)) for

HF(BC) :=
{
Hf : f ∈ BC([−1, 1]d−1)

}
,

then there exists a set M ′ ⊂ B1,∞
0 (Ω) satisfying |M ′| ≤ |M | which is a λε-net (in B1,∞

0 (Ω))
for G :=

{
f ∈ B2,2

s (Ω): ‖f‖
B2,2
s
≤ 1
}
.

Remark 4.2. Here, for an open set Ω ⊂ Rd−1, we use the definition of the Besov spaces Bp,q
s (Ω)

as in [19, Section 2.5.1], that is, Bp,q
s (Ω) =

{
f |Ω : f ∈ Bp,q

s (Rd−1)
}
with norm

‖f‖Bp,qs (Ω) := inf
{
‖g‖Bp,qs (Rd−1) : g ∈ Bp,q

s (Rd−1) and f = g|Ω
}
.
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Proof. We divide the proof into four steps.

Step 1: For completeness, we prove the well-known embedding L1(Ω) ↪→ B1,∞
0 (Ω). Clearly,

it is enough to prove L1(Rd−1) ↪→ B1,∞
0 (Rd−1). To this end, recall from [19, Section 2.2.1]

that the norm on B1,∞
0 (Rd−1) is given by

‖f‖
B1,∞

0
= sup

j∈N0

∥∥∥F−1
[
ϕj f̂

]∥∥∥
L1
,

where ϕ0, ϕ ∈ S(Rd−1) are suitably chosen and ϕk(ξ) = ϕ1(2−k+1ξ) for k ∈ N. Note that
‖F−1ϕk‖L1 =

∥∥2(k−1)(d−1)(F−1ϕ1)(2k−1·)
∥∥
L1 = ‖F−1ϕ1‖L1 , whence ‖F−1ϕk‖L1 ≤ C1 < ∞

for all k ∈ N0. By Young’s inequality for convolutions, this implies
∥∥F−1

[
ϕj f̂

]∥∥
L1 = C0

∥∥(F−1ϕj) ∗ f
∥∥
L1 ≤ C ′1 · ‖f‖L1 ,

so that ‖f‖
B1,∞

0
≤ C ′1 · ‖f‖L1 for f ∈ L1(Rd−1), with C ′1 = C ′1(d) > 0.

Step 2: We show existence of c = c(s, d, C) > 0 such that every f ∈ G satisfies ‖cf‖sup ≤ 1
4

and cf ∈ BC([−1, 1]d−1). We remark that this inclusion was (up to minute differences) already
observed in [4, Example 15 on Page 941] and [18, Theorem 3.1]. We provide the proof here
for the sake of completeness.

To this end, we first prove
∫
Rd−1(1+ |ξ|) |f̂(ξ)| dξ ≤ C2 ·‖f‖B2,2

s
for all f ∈ B2,2

s (Rd−1), for a
suitable constant C2 = C2(s, d) > 0. First, recall from [53, Sections 2.2.2, 2.3.2, and 2.5.6] the
well-known identity B2,2

s (Rd−1) = F 2,2
s (Rd−1) = Hs,2(Rd−1), where the norm on the Sobolev

space Hs,2(Rd−1) is given by ‖f‖2Hs,2 =
∫
Rd−1(1 + |ξ|2)s |f̂(ξ)|2 dξ. Using the Cauchy-Schwarz

inequality, we therefore see for f ∈ B2,2
s (Rd−1) that

∫

Rd−1

(
1 + |ξ|

)
|f̂(ξ)| dξ .

∫

Rd−1

(
1 + |ξ|2

) 1−s
2
(
1 + |ξ|2

)s/2 |f̂(ξ)| dξ

≤
(∫

Rd−1

(
1 + |ξ|2

)1−s
dξ
)1/2(∫

Rd−1

(
1 + |ξ|2

)s |f̂(ξ)|2 dξ
)1/2

. ‖f‖Hs,2 . ‖f‖
B2,2
s
.

Here, we used that 2 · (1− s) < −(d− 1), so that
∫
Rd−1(1 + |ξ|2)1−s dξ <∞.

Now, by definition of G and of B2,2
s (Ω), for each f ∈ G, there is F ∈ B2,2

s (Rd−1) with
f = F |Ω and ‖F‖

B2,2
s
≤ 2. As seen above, this entails

∫
Rd−1(1 + |ξ|) |F̂ (ξ)| dξ ≤ 2C2. On the

one hand, this implies by Fourier inversion for all x ∈ Ω that

|f(x)| = |F (x)| = |(F−1F̂ )(x)| ≤ (2π)−(d−1)/2

∫

Rd−1

|F̂ (ξ)| dξ ≤ (2π)−(d−1)/22C2 ≤ 2C2.

On the other hand, f(x) = F (x) = F−1F̂ (x) =
∫
Rd−1 e

i〈x,ξ〉(2π)−
d−1

2 F̂ (ξ) dξ for x ∈ [−1, 1]d−1

and, in the notation of Definition 2.1, |ξ|[−1,1]d−1,0 = supx∈[−1,1]d−1 |〈ξ, x〉| = ‖ξ‖`1 . |ξ|, mean-
ing

∫
Rd−1 |ξ|[−1,1]d−1,0 · (2π)−(d−1)/2|F̂ (ξ)| dξ . C2 . 1. By combining these observations, it is

easy to see ‖cf‖sup ≤ 1
4 and cf ∈ BC([−1, 1]d−1), for c = c(s, d, C) > 0 small enough.

Step 3: We show that

‖Hf −Hg‖L1((−1,1)d) ≥ ‖f − g‖L1(Ω) ∀ f, g : Ω→
[
−1

2 ,
1
2

]
measurable.
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To see this, first note by Fubini’s theorem that

‖Hf −Hg‖L1((−1,1)d) =

∫

(−1,1)d−1

∫ 1

−1
|1y≤f(x) − 1y≤g(x)| dy dx

(∗)
=

∫

(−1,1)d−1

|f(x)− g(x)| dx = ‖f − g‖L1(Ω).

Here, the step marked with (∗) used that
∫ 1
−1 |1y≤f(x) − 1y≤g(x)| dy = |f(x) − g(x)|, which is

trivial if f(x) = g(x). Otherwise, if f(x) > g(x), then
∣∣1y≤f(x) − 1y≤g(x)

∣∣ = 1(g(x),f(x))(y),

which implies the claimed estimate. Here, we implicitly used that (g(x), f(x)) ⊂ [−1, 1], since
f(x), g(x) ∈ [−1

2 ,
1
2 ]. For f(x) < g(x), one can argue similarly.

Step 4: We complete the proof. To this end, write N := |M | and M = {G1, . . . , GN}. With
c > 0 as in Step 2, for each i ∈ N , choose fi ∈ G with

‖Hcfi −Gi‖L1 ≤ ε+ inf
f∈G
‖Hcf −Gi‖L1 . (4.1)

We claim that M ′ := {f1, . . . , fN} ⊂ L1(Ω) ⊂ B1,∞
0 (Ω) is a λε-net for G (in B1,∞

0 (Ω)), for a
suitable choice of λ = λ(d, s, C) > 0.

To see this, let f ∈ G be arbitrary. By Step 2, we have cf ∈ BC([−1, 1]d−1) and hence
Hcf ∈ HF(BC). Since M is an ε-net for HF(BC) (in L1((−1, 1)d)), this implies that there
exists i ∈ N with ‖Hcf − Gi‖L1 ≤ 2ε. Since f, fi ∈ G and hence ‖c f‖sup, ‖c fi‖sup ≤ 1

2 by
Step 2, the estimates from Steps 1 and 3 show

‖f − fi‖B1,∞
0 (Ω)

≤ C ′1 ‖f − fi‖L1(Ω) =
C ′1
c

∥∥c f − c fi
∥∥
L1(Ω)

≤ C ′1
c

∥∥Hcf −Hcfi

∥∥
L1((−1,1)d)

≤ C ′1
c

(
‖Hcf −Gi‖L1 + ‖Gi −Hcfi‖L1

)

(∗∗)
≤ C ′1

c

(
‖Hcf −Gi‖L1 + ε+ ‖Hcf −Gi‖L1

)
≤ 5C ′1

c
ε.

Here, the step marked with (∗∗) is justified by Equation (4.1).

Based on Proposition 4.1, we can now prove our first lower bound for the approximation of
Barron-class horizon functions. This result uses the notion of (τ, ε)-quantized networks intro-
duced in [45, Definition 2.9]. Precisely, given τ ∈ N and ε ∈ (0, 1

2), we say that a network Φ is
(τ, ε)-quantized, if all the weights and biases of Φ belong to the set [−ε−τ , ε−τ ]∩2−τdlog2(1/ε)eZ.
Similar notions of quantized networks have been employed in [13, 21] in the context of lower
bounds on approximation rates.

Theorem 4.3. Let d ∈ N≥2, τ ∈ N, and C, σ > 0. With notation as in Proposition 4.1,
assume that there are C1, C2 > 0 and a null-sequence (εn)n∈N ⊂ (0,∞) such that for ev-
ery f ∈ BC([−1, 1]d−1) and n ∈ N, there is a network Φ with d-dimensional input and 1-
dimensional output, with (τ, εn)-quantized weights, and such that

‖Hf −R%Φ‖L1((−1,1)d) ≤ C1 εn and W (Φ) ≤ C2 · ε−σn .

Then 1
σ ≤ 1

2 + 1
d−1 .
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Proof. Let Ω0 := B1/2(0) = {x ∈ Rd−1 : |x| < 1/2}, noting that this is a bounded C∞-domain
in the sense of [53, Section 3.2.1], and that Ω0 ⊂ Ω = (−1, 1)d−1. Let us fix s > d+1

2 for
the moment, and define A := B2,2

s (Ω0) and B := B1,∞
0 (Ω0). The proof is based on existing

entropy bounds for the embedding A ↪→ B. More precisely, writing UA := {x ∈ A : ‖x‖A ≤ 1}
(and similarly for UB), the k-th entropy number of this embedding is defined as

ek := inf
{
ε > 0 : ∃f1, . . . , f2k−1 ∈ B such that UA ⊂

2k−1⋃

i=1

(fi + εUB)
}

;

see [19, Definition 1 in Section 1.3.1]. Furthermore, [19, Theorem 1 in Section 3.3.3] shows
that there is a constant c = c(d, s) > 0 satisfying

ek ≥ c · k−s/(d−1) ∀ k ∈ N.

Given a neural network Φ, let us write din(Φ) and dout(Φ) for the input- and output-
dimension of Φ, respectively. Fix n ∈ N with ε := εn < 1/2, and define

Mn :=
{
R%Φ : Φ is (τ, ε)-quantized NN with din(Φ) = d, dout(Φ) = 1, and W (Φ) ≤ C2 ·ε−σ

}
.

Note that dlog2(1/ε)e ≤ 1 + log2(1/ε) ≤ 2 log2(1/ε), whence 2τdlog2(1/ε)e ≤ 22τ log2(1/ε) = ε−2τ .
Furthermore, note for arbitrary a, b > 0 that

∣∣[−a, a] ∩ bZ
∣∣ =

∣∣[−b−1a, b−1a] ∩ Z
∣∣ ≤ 1 + 2b−1a ,

which shows
∣∣[−ε−τ , ε−τ ] ∩ 2−τdlog2(1/ε)eZ

∣∣ ≤ 1 + 2 ε−τ 2τdlog2(1/ε)e ≤ 1 + 2ε−3τ ≤ ε−5τ ,

and hence
∣∣[−ε−τ , ε−τ ]∩2−τdlog2(1/ε)eZ

∣∣ ≤ 2K forK := dlog2(ε−5τ )e ≤ 6τ log2(1/ε). Therefore,
an application of [45, Lemma B.4] shows that there is a constant C3 = C3(d) ∈ N satisfying

|Mn| ≤ 2C3C2ε−σ ·(dlog2(C2 ε−σ)e+6τ log2(1/ε)) ≤ 2C4ε−σ log2(1/ε),

with C4 = C4(C2, d, τ, σ) > 0.
By assumption of the theorem to be proven and because of our choice ε = εn, we see with

notation as in Proposition 4.1 that Mn is a C1ε-net (in L1((−1, 1)d)) for HF(BC). There-
fore, with λ = λ(d, s, C) > 0 as in Proposition 4.1, there is a λC1ε-net M ′n ⊂ B1,∞

0 (Ω) for
G := {f ∈ B2,2

s (Ω): ‖f‖
B2,2
s
≤ 1} satisfying |M ′n| ≤ |Mn| ≤ 2k−1 for k := 1+dC4ε

−σ log2(1/ε)e.
Defining M ′′n := {f |Ω0 : f ∈M ′n} ⊂ B1,∞

0 (Ω0), we thus see that M ′′n is a λC1ε-net for UA.
Overall, we thus see because of k ≤ C5ε

−σ log2(1/ε) that

λC1 ε ≥ ek ≥ c · k−s/(d−1) ≥ c · C−s/(d−1)
5 · εsσ/(d−1) ·

(
log2(1/ε)

)−s/(d−1)
.

Note that this holds for all ε = εn → 0 as n → ∞. This is only possible if sσ/(d − 1) ≥ 1,
meaning 1

σ ≤ s
d−1 . Since s > d+1

2 can be chosen arbitrarily, this implies as claimed that
1
σ ≤ 1

2
d+1
d−1 = 1

2 + 1
d−1 .

The strength of the lower bound in Theorem 4.3 is that it applies to networks of arbitrary
depth; but it requires the neural networks to be quantized. Our final lower bound shows that
for neural networks of a fixed maximal depth, one can replace the quantization assumption by
a suitable growth condition on the magnitude of the weights.
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Theorem 4.4. Let d ∈ N≥2, L,N ∈ N, and γ,C,C1, C2, C3 > 0. Suppose that there is an
infinite set W ⊂ N such that for each W ∈ W and each f ∈ BC([−1, 1]d−1) there is a neural
network Φ with d-dimensional input and 1-dimensional output and with all weights bounded in
absolute value by C1W

N such that

‖Hf −R%Φ‖L1((−1,1)d) ≤ C2 ·W−γ , W (Φ) ≤ C3 ·W, and L(Φ) ≤ L.

Then γ ≤ 1
2 + 1

d−1 .

Proof. Let k := dmax{γ−1N + C1, γ
−1 + C3}e and m := 3kL. For W ∈ W large enough,

we have ε := εW := W−γ ≤ 1
2 . For this choice of W and given f ∈ BC([−1, 1]d−1), let Φ

as in the assumption of the theorem. Note that x ≤ 2x ≤ ε−x for all x ≥ 0, and hence
W (Φ) ≤ C3 ·W = C3 · ε−1/γ ≤ ε−(γ−1+C3) ≤ ε−k. Likewise, all weights of Φ are bounded in
absolute value by C1W

N = C1 ε
−N
γ ≤ ε−(N

γ
+C1) ≤ ε−k.

Overall, the “quantization lemma” [21, Lemma VI.8] shows that there exists an (m, ε)-
quantized network Ψ with d-dimensional input and 1-dimensional output and such that

W (Ψ) ≤W (Φ) ≤ C3 ·W = C3 · ε−1/γ and ‖R%Φ−R%Ψ‖sup ≤ ε,

where the ‖ · ‖sup norm is taken over (−1, 1)d. Hence, ‖Hf − R%Ψ‖L1((−1,1)d) ≤ (2d + C2) ε.
Since εW = W−γ → 0 as W →∞ with W ∈ W , Theorem 4.3 shows that γ = 1

1/γ ≤ 1
2 + 1

d−1 ,
as claimed.

5 Estimation bounds
In this section, we provide error bounds for the performance of empirical risk minimization for
learning the indicator function of a set with boundary of Barron class. We also briefly discuss
the optimality of these results. More precisely, we show that the best one can hope for is to
(roughly) double the “estimation-error rate” that we obtain. We conjecture that neither the
lower bound nor the derived rate are optimal, but we were unable to prove this.

In the following theorem, given a subset Ω ⊂ Rd, we use the notation

χΩ : Rd → {±1}, x 7→
{

1, if x ∈ Ω,

−1, otherwise.

Moreover, for A = (d,N1, . . . , NL) ∈ NL+1, we denote by NN (A) the set of neural networks
Φ with input dimension d, L layers, and N` neurons in the `th layer for all ` ∈ {1, . . . , L}.
Finally, we define sign : R→ {±1} by sign(x) = 1 for x ≥ 0 while sign(x) = −1 if x < 0.

Theorem 5.1. Let B,C ≥ 1, M ∈ N, d ∈ N≥2, α ∈ (0, 1], and m ∈ N. Define

N :=

⌈(
(BC)2dm/ ln(BCMdm)

)1/(1+α)
⌉
∈ N

and A :=
(
d, M(N + 2d + 2), M(4d + 2), M, 1

)
. Let P be a tube compatible probability

measure on Rd with parameters C,α, and let Ω ∈ BBB,M (Rd). Let SX = (X1, . . . , Xm)
iid∼ P

and define Yi := χΩ(Xi) for i ∈ m.
Then, given δ ∈ (0, 1), with probability at least 1− δ regarding the choice of SX , any

Φ∗ ∈ argmin
Φ∈NN (A)

m∑

i=1

1sign(R%Φ(Xi))6=Yi (5.1)
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satisfies

P
(

sign
(
R%Φ

∗(X)
)
6= χΩ(X)

)
≤ C0 ·

(
BCM d3/2 ·

( ln(BCMdm)

(BC)2dm

)γ/2
+
( ln(1/δ)

m

)1/2
)
, (5.2)

where X ∼ P. Here, C0 ≥ 1 is an absolute constant and γ = α
1+α .

Remark. 1) The set
{(

sign(f(X1)), . . . , sign(f(Xm))
)

: f : Rd → R
}
⊂ {±1}m is finite, which

implies that a minimizer as in Equation (5.1) always exists.

2) In the common case where α = 1 (for instance, if dP(x) = 1[0,1]d(x) dx), we have
γ = 1/2, so that one gets

P
(

sign
(
R%Φ

∗(X)
)
6= χΩ(X)

)
.
( lnm

m

)1/4
+
( ln(1/δ)

m

)1/2
.

Proof. All “implied constants” appearing in this proof are understood to be absolute constants.
Define Λ := (BC)2dm/ ln(BCMdm), so that N = dΛ1/(1+α)e. If Λ ≤ 1, then the right-

hand side of Equation (5.2) is at least 1, so that the estimate is trivial. We can thus assume
without loss of generality that Λ > 1, so that N ≥ 2 and N ≤ 1 + Λ1/(1+α) ≤ 2 Λ1/(1+α).

Let H := {sign ◦R%Φ: Φ ∈ NN (A)}. Note that since at most every neuron in layer ` can
be connected to every neuron in layer ` + 1, the number W (A) of weights of a network with
architecture A satisfies W (A) . M2d2N. Therefore, [8, Theorem 2.1] shows that there are
absolute constants C1, C2 > 0 such that

VC(H) ≤ C1 ·M2d2N · ln(M2d2N) ≤ C2 ·M2d2N · ln(dMN).

Next, recall that Λ ≥ 1 and hence N ≤ 2Λ1/(1+α) ≤ 2Λ . (BC)2dm. Therefore,
ln(dMN) . 1 + ln((BCd)2Mm) . ln(BCMdm), which easily implies that

√
VC(H)

m
. m−1/2Md

√
N
√

ln(dMN)

.
(

ln(BCdMm)
) 1

2
(1− 1

1+α
) ·M · d 1

2
(2+ 1

1+α
) · (BC)1/(1+α) ·m 1

2
( 1

1+α
−1)

= (BC)1−γ ·M · d 3
2
− γ

2 ·
(

ln(BCMdm)
)γ/2 ·m−γ/2 =: (∗).

(5.3)

To make use of this estimate, note that the Fundamental theorem of statistical learning theory
(see [50, Theorem 6.8 and Definitions 4.1 and 4.3]) shows for arbitrary ε, δ ∈ (0, 1) that if we
set

LP(h) := P
(
h(X) 6= χΩ(X)

)
and LS(h) :=

1

m

m∑

i=1

1h(Xi)6=χΩ(Xi),

then, with probability at least 1− δ with respect to the choice of S = (X1, . . . , Xm)
iid∼ P, we

have
∀h ∈ H : |LP(h)− LS(h)| ≤ ε, (5.4)

provided that m ≥ C3
VC(H)+ln(1/δ)

ε2
. Using the estimate

√
a+ b ≤ √a +

√
b for a, b ≥ 0, it is

easy to see that the condition on m is satisfied if ε ≥ √C3 ·
(√

VC(H)/m +
√

ln(1/δ)/m
)
.

Finally, thanks to Equation (5.3), we see that there is an absolute constant C0 > 0 (which we
can without loss of generality take to satisfy C0 ≥ 24) such that this condition holds as soon
as

ε ≥ ε0 :=
C0

4
·
[
(∗) +

( ln(1/δ)

m

)1/2]
.
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This is satisfied if we take ε as one fourth of the right-hand side of Equation (5.2); for this,
note that in case of ε ≥ 1, Estimate (5.4) is trivially satisfied.

Now, choosing ε to be one fourth of the right-hand side of Equation (5.2), we know that
with probability at least 1 − δ with respect to the choice of S, Equation (5.4) holds. Let us
assume that S = (X1, . . . , Xm) is chosen such that this holds. Now, Theorem 3.7 shows that
there is Φ0 ∈ NN (A) such that

P({x ∈ Rd : 1Ω(x) 6= R%Φ0(x)}) ≤ 6BCM d3/2N−α/2 ≤ C0

4
BCM d3/2 Λ−γ/2 ≤ ε.

It is not hard to see that there exists Φ1 ∈ NN (A) satisfying R%Φ1 = −1 + 2R%Φ0 and that
if 1Ω(x) = R%Φ0(x), then h1(x) = R%Φ1(x) = χΩ(x) for h1 := sign ◦(R%Φ1) ∈ H. Therefore,
LP(h1) = P(h1(X) 6= χΩ(X)) ≤ P(1Ω(X) 6= R%Φ0(X)) ≤ ε. Overall, if Φ∗ ∈ NN (A) satisfies
Equation (5.1), and if we set h∗ := sign ◦R%Φ∗, then Equation (5.4) shows

LP(h∗) ≤ LS(h∗) + ε ≤ LS(h1) + ε ≤ LP(h1) + 2ε ≤ 3ε ≤ 4ε = RHS (5.2) ,

which proves Equation (5.2).

Remark 5.2 (Quantifying the non-optimality of the learning bound). By taking δ ∼ m−γ/2, it
is not hard to see that the bound in Theorem 5.1 implies that the learning algorithm

(
(X1, χΩ(X1)), . . . , (Xm, χΩ(Xm))

)
7→ AS := sign ◦R%Φ∗S

with Φ∗S a solution to Equation (5.1) satisfies

ES
[
‖AS − χΩ‖L1(P)

]
.
[

ln(m)/m
]γ/2

;

here, we used that |AS − χΩ| ≤ 2 · 1AS 6=χΩ
. For the uniform measure dP = 2−d1[−1,1]d dx, we

have γ = 1/2, and therefore ES
[
‖AS − χΩ‖L1([−1,1]d)

]
.
[

ln(m)/m
]1/4

. In the remainder of
this remark, we sketch an argument showing that no learning algorithm S 7→ AS can satisfy

ES
[
‖AS − χΩ‖L1([−1,1]d)

]
. m−θ with θ > θ∗ :=

1

2

d+ 2 + 12Z+1(d)

d− 1
. (5.5)

Note that θ∗ → 1
2 as d → ∞, which still leaves a gap between this lower bound and the

estimation-error rate m−1/4 that we obtain.
We expect the lower bound of (5.5) to be suboptimal. One reason why we assume so

is that, for a general estimation problem, where the error of estimating a density from m
measurements is measured with respect to the Kullback-Leibler divergence, [56, Theorem 1]
yields a general lower bound in terms of the metric entropy of the class of densities. As we
have seen in the proof of Theorem 4.3, the metric entropy of the set of horizon functions
can be lower bounded by using fact that a ball in B2,2

s for s > (d + 1)/2 embedds into the
Fourier-analytic Barron space. By this observation it can be seen using [56, Theorem 1] that a
lower bound on the expected error of estimating χΩ from m measurements as in Theorem 5.1
measured with respect to the Kullback-Leibler divergence is given by O(m−( d+1

4d
+δ)) for any

δ > 0 . Note that this rate almost matches the upper bound given in Theorem 5.1 for the
L1 estimation error. The argument in [56] yields bounds for L2 distances under additional
assumptions, see [56, Theorems 4,5,6]. However, none of these assumptions are satisfied in our
case.
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To prove (5.5), assume by way of contradiction that some learning algorithm S 7→ AS satis-
fies Equation (5.5), uniformly for all Ω ∈ BB1,1(Rd). Let Q := (−1, 1)d−1 and s := 1 + bd+1

2 c,
as well as G := {f ∈ W s,2(Q) : ‖f‖W s,2 ≤ 1} with the usual Sobolev space W s,2(Q). Since
s > d+1

2 , we see as in the proof of Proposition 4.1 that there is c > 0 such that

∀ f ∈ G : ‖c f‖sup ≤ 1 and Ωf :=
{

(x, t) ∈ [−1, 1]d−1×[−1, 1] : t ≤ c f(x)
}
∈ BB1,1(Rd).

Let W = (W1, . . . ,Wm)
iid∼ U([−1, 1]d), and write Wi = (Xi, X

′
i) with Xi ∈ [−1, 1]d−1 and

X ′i ∈ [−1, 1]. Given f ∈ G, let
Yi := −1 + 2 · 1X′i≤cf(Xi) = χΩf (Wi),

and set Sf :=
(
(W1, Y1), . . . , (Wm, Ym)

)
. By Equation (5.5), there is C > 0 independent of m

such that
EW
[
‖ASf − χΩf ‖L1([−1,1]d)

]
≤ C ·m−θ.

Note that Sf is uniquely determined by fixing W and f , and that Sf does not depend fully
on f , but only on m point samples of f . Define

BW : [−1, 1]d−1 → R, x 7→ 1

c
·
(
− 1 +

∫ 1

−1

1 +ASf (x, t)

2
dt
)
.

Note that B : (W, f) 7→ BW is a Monte-Carlo algorithm in the sense of [26, Section 2], and
for each (random) choice of W , B computes its output based on m point samples of f . To
motivate the definition of BW , note because of ‖c f‖sup ≤ 1 that

∫ 1

−1

1 + χΩf (x, t)

2
dt =

∫ 1

−1
1Ωf (x, t) dt =

∫ 1

−1
1t≤c f(x) dt =

∫ c f(x)

−1
dt = c f(x) + 1,

and hence f(x) = 1
c

(
− 1 +

∫ 1
−1

1+χΩf
(x,t)

2 dt
)
. This implies

‖BW − f‖L1([−1,1]d−1) ≤
1

2c

∫

[−1,1]d−1

∣∣∣
∫ 1

−1
ASf (x, t)− χΩf (x, t) dt

∣∣∣ dx ≤ 1

2c
‖ASf − χΩf ‖L1 ,

and hence
EW ‖BW − f‖L1 ≤ 1

2c
EW ‖ASf − χΩf ‖L1 ≤ C

2c
·m−θ.

Note that this holds for every f ∈ G and recall from above that B : (W, f) 7→ BW is a Monte-
Carlo algorithm that depends on f only through m point samples. However, it is known from
information-based complexity (see for instance [26, Theorem 6.1]) that such an error bound
for a Monte-Carlo algorithm can only hold if θ ≤ s

d−1 = 1
2
d+2+12Z+1(d)

d−1 = θ∗.

6 The case against general measures
In this section, we show that for general probability measures, one cannot derive any non-
trivial minimax bound regarding the approximation of sets with Barron class boundary using
ReLU neural networks.

The following general result shows that for sets of infinite V C-dimension and general
probability measures, no non-trivial minimax approximation results using neural networks
can be derived. To conveniently formulate the result, we use the notation

NNN,L :=
{

Φ : Φ NN with input dimension d, with L(Φ) ≤ L and N(Φ) ≤ N
}
.

Furthermore, we continue to write % for the ReLU. The proof of the following lemma is based
on (the proof of) the no-free-lunch theorem as presented in [50, Theorem 5.1].
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Proposition 6.1. Let Ω ⊂ Rd be Borel measurable and let F⊂{F : Ω→{0, 1} : F measurable}
such that VC(F) =∞.

Then for arbitrary N,L ∈ N we have

sup
µ Borel prob. measure on Ω

sup
F∈F

inf
Φ∈NNN,L

∥∥F − 1(0,∞) ◦R%Φ
∥∥
L1(µ)

≥ 1

16
.

Remark 6.2. Even without composing the ReLU neural network R%Φ with 1(0,∞), the above
result implies that

sup
µ Borel prob. measure on Ω

sup
F∈F

inf
Φ∈NNN,L

∥∥F −R%Φ
∥∥
L1(µ)

≥ 1

32
.

This follows by first noting that {R%Φ: Φ ∈ NNN,L} is closed under addition of constant
functions and secondly by noting that

|y − 1(0,∞)(z − 1
2)| ≤ 2 |y − z| ∀ y ∈ {0, 1} and z ∈ R. (6.1)

This estimate is trivial in case of y = 1(0,∞)(z− 1
2); thus, let us assume that y 6= 1(0,∞)(z− 1

2).
Then there are two cases: First, if z ≤ 1

2 , then 1(0,∞)(z − 1
2) = 0 and y = 1, which implies

that 2 |y − z| ≥ 2(y − z) ≥ 1 = |y − 1(0,∞)(z − 1
2)|. If otherwise z > 1

2 , then 1(0,∞)(z − 1
2) = 1

and y = 0, so that 2 |y − z| = 2|z| ≥ 1 = |y − 1(0,∞)(z − 1
2)|. This proves (6.1).

Proof of Proposition 6.1. LetN,L ∈ N be arbitrary. As shown for instance in [2, Theorem 8.7],
if we consider the function class N := {1(0,∞) ◦R%Φ: Φ ∈ NNN,L}, then VC(N ) <∞. By the
fundamental theorem of statistical learning theory (see for instance [50, Theorem 6.7]), this
means that N has the uniform convergence property, which implies (see [50, Definition 4.3])
that there is some n ∈ N such that for each measurable F : Ω → {0, 1} and each Borel
probability measure µ on Ω, if we choose SX = (X1, . . . , Xn)

i.i.d.∼ µ, then with probability at
least 1− 1

10 with respect to the choice of SX , we have

sup
φ∈N

∣∣Rµ,F (φ)−RSX ,F (φ)
∣∣ ≤ 1

32
, (6.2)

where

Rµ,F (φ) = µ
(
{x ∈ Ω: φ(x) 6= F (x)}

)
and RSX ,F (φ) =

1

n

n∑

i=1

1φ(Xi)6=F (Xi).

Note |F−φ| ∈ {0, 1}, whenceRµ,F (φ) = ‖F−φ‖L1(µ) andRSX ,F (φ) = 1
n

∑n
i=1|φ(Xi)− F (Xi)|.

Since VC(F) =∞, there is a set Ω0 ⊂ Ω of cardinality |Ω0| = 2n such that Ω0 is shattered
by F , meaning that if we set G :=

{
g : Ω0 → {0, 1}

}
, then G = {f |Ω0 : f ∈ F}. Let µ := U(Ω0)

denote the uniform distribution on Ω0, meaning µ({x}) = 1/|Ω0| for all x ∈ Ω0, and assume
towards a contradiction that

sup
F∈F

inf
φ∈N

‖F − φ‖L1(µ) <
1

16
. (6.3)

Now, given any S =
(
(Xi, Yi)

)
i=1,...,n

∈
(
Ω0 × {0, 1}

)n, choose φS ∈ N satisfying

φS ∈ argmin
φ∈N

n∑

i=1

|φ(Xi)− Yi|. (6.4)
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Such a function φS exists, since the expression
∑N

i=1 |φ(Xi)− Yi| only depends on φ|Ω0 , while
{φ|Ω0 : φ ∈ N} ⊂ {0, 1}Ω0 is a finite set. Here, {0, 1}Ω0 =

{
ψ : Ω0 → {0, 1}

}
is the set of all

functions from Ω0 to {0, 1}.
For SX = (X1, . . . , Xn) ∈ Ωn

0 and g ∈ G, let us define SX(g) :=
(
(Xi, g(Xi))

)
i=1,...,n

. Now,
given an arbitrary g ∈ G, recall from above that g = F |Ω0 for some F ∈ F . Thanks to (6.3),
there is thus some φ∗ ∈ N satisfying ‖g−φ∗‖L1(µ) = ‖F −φ∗‖L1(µ) <

1
16 . Overall, we thus see

that with probability at least 1 − 1
10 with respect to the choice of SX = (X1, . . . , Xn)

i.i.d.∼ µ,
we have

‖g − φSX(g)‖L1(µ) = ‖F − φSX(F )‖L1(µ) = Rµ,F
(
φSX(F )

)

(6.2)
≤ 1

32
+RSX ,F

(
φSX(F )

)

(6.4)
≤ 1

32
+RSX ,F

(
φ∗
)

(6.2)
≤ 1

16
+Rµ,F

(
φ∗
)

=
1

16
+ ‖F − φ∗‖L1(µ)

(6.3)
<

1

8
.

Since |g − φSX(g)| ≤ 1, we thus see for every g ∈ G that

ESX ‖g − φSX(g)‖ ≤
1

10
+

1

8
<

1

4
and hence ESX

[ 1

|G|
∑

g∈G
‖g − φSX(g)‖L1(µ)

]
<

1

4
.

In the last part of the proof, we will show that this is impossible, by showing for every
SX = (X1, . . . , Xn) ∈ Ωn

0 that 1
|G|
∑

g∈G ‖g − φSX(g)‖L1(µ) ≥ 1
4 .

Thus, let SX = (X1, . . . , Xn) ∈ Ωn
0 be fixed, and set Ω1 := {X1, . . . , Xn}, noting that

|Ω0 \ Ω1| ≥ n. Given g ∈ G and x ∈ Ω0, define

g(x) : Ω0 → {0, 1}, y 7→
{
g(y), if y 6= x,

1− g(x), otherwise.

It is easy to see that G → G, g 7→ g(x) is bijective, since (g(x))(x) = g. Furthermore, given any
x ∈ Ω0 \ Ω1, note that SX(g) = SX(g(x)), so that
∣∣g(x)− φSX(g)(x)

∣∣+
∣∣g(x)(x)− φSX(g(x))(x)

∣∣ =
∣∣g(x)− φSX(g)(x)

∣∣+
∣∣g(x)(x)− φSX(g)(x)

∣∣ = 1.

Overall, we thus see

1

|G|
∑

g∈G
‖g − φSX(g)‖L1(µ) ≥

1

2n

1

|G|
∑

x∈Ω0\Ω1

∑

g∈G
|g(x)− φSX(g)(x)|

≥ 1

2n

1

2|G|
∑

x∈Ω0\Ω1

∑

g∈G

[
|g(x)− φSX(g)(x)|+ |g(x)(x)− φSX(g(x))(x)|

]

=
|Ω0 \ Ω1|

2n
· |G|

2|G| ≥
1

4
,

as claimed. This completes the proof.
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In Proposition 6.1, the measure µ might depend on the choice of N,L ∈ N. The next result
shows that even if one restricts to a fixed measure µ for all N,L ∈ N, the approximation rate
can get arbitrarily bad.

Proposition 6.3. Let Ω ⊂ Rd be Borel measurable and let F⊂{F : Ω→{0, 1} : F measurable}
such that VC(F) =∞.

Then for each null-sequence (εn)n∈N and arbitrary sequences (Nn)n∈N⊂N and (Ln)n∈N⊂N,
there is a Borel probability measure µ on Ω and some n0 ∈ N such that

sup
F∈F

inf
Φ∈NNNn,Ln

‖F − 1(0,∞) ◦R%Φ‖L1(µ) ≥ εn ∀n ∈ N≥n0 .

Proof. Define τn := supk≥n εk, as well as N ′n := max{N1, . . . , Nn} and L′n := max{L1, . . . , Ln}
for n ∈ N. Note that (τn)n∈N is a non-increasing null-sequence; in particular, τn ≥ 0 for all
n ∈ N. Choose a strictly increasing sequence (n`)`∈N ⊂ N satisfying τn` ≤ 2−5−`, so that
κ :=

∑∞
`=1 τn` ≤ 2−5

∑∞
`=1 2−` = 1

32 . Now, Proposition 6.1 yields for each ` ∈ N a Borel prob-
ability measure µ` and some F` ∈ F satisfying infΦ∈NNN′n` ,L′n`

‖F` − 1(0,∞) ◦R%Φ‖L1(µ`) ≥ 1
32 .

Fix some ω0 ∈ Ω and define µ := 32
∑∞

`=1 τn` µ`+1 + (1 − 32κ)δω0 , so that µ is a Borel
probability measure on Ω.

Now, given any n ∈ N≥n1 , let ` ∈ N with n` ≤ n < n`+1, so that τn` = supk≥n` εk ≥ εn
and Nn ≤ N ′n ≤ N ′n`+1

as well as Ln ≤ L′n ≤ L′n`+1
. Therefore,

sup
F∈F

inf
Φ∈NNNn,Ln

∥∥F − 1(0,∞) ◦R%Φ
∥∥
L1(µ)

≥ 32 τn` · inf
Φ∈NNN′n`+1

,L′n`+1

‖F`+1 − 1(0,∞) ◦R%Φ‖L1(µ`+1) ≥ τn` ≥ εn.

Since n ∈ N≥n1 was arbitrary, we are done.

Finally, we show that the class of Barron horizon functions (and thus also the class of sets
with boundary of Barron class) has infinite VC dimension, so that the previous results apply
in this setting.

Lemma 6.4. Let d ≥ 2 and Q = [−1, 1]d, as well as C > 0 and M ∈ N. Then

VC
(
BBC,M (Rd)

)
≥ VC

(
BHC(Q)

)
=∞.

Proof. Let n ∈ N be arbitrary. For each k ∈ n, choose ϕ(k)
n ∈ C∞c

(
(k−1
n , kn) × (−1, 1)d−2

)

satisfying ϕ(k)
n ≥ 0 and ϕ(k)

n (k−1
n + 1

2n , 0, . . . , 0) = 1. DefineX := [−1, 1]d−1 and use Remark 3.2
to select C ′ > 0 satisfying BC′(X, 0) ⊂ BAC(X). It is easy to see that there is some τn > 0

satisfying τn ϕ
(k)
n ∈ BC′/n(X). Now, given θ = (θ1, . . . , θn) ∈ {0, 1}n, define

f (θ)
n := τn

n∑

k=1

(2θk − 1)ϕ(k)
n ∈ BC′(X, 0) ⊂ BAC(X).

This implies H(θ)
n ∈ BHC(Q), where H(θ)

n (x) := 1
f

(θ)
n (x1,...,xd−1)≥xd

. Furthermore, in view of

f
(θ)
n (k−1

n + 1
2n , 0, . . . , 0) = (2θk − 1)τn, we see that

H(θ)
n

(
k−1
n + 1

2n , 0, . . . , 0
)

= 1(2θk−1)τn≥0 = 12θk≥1 = θk.

Therefore, BHC(Q) shatters the set
{(

k−1
n + 1

2n , 0 . . . , 0
)

: k ∈ n
}
⊂ Q, which shows that

VC
(
BHC(Q)

)
≥ n. Since this holds for every n ∈ N, we are done.

32



7 Three kinds of Barron spaces
In the literature (see for instance [16, 18, 38]), there are at least three different function spaces
that are referred to as Barron spaces. In the terminology that we used in the introduction,
these are the Fourier-analytic Barron space and the infinite-width Barron spaces, either using
the ReLU or the Heaviside activation function. In the current literature, the relationship
between these spaces has only been understood partially. Therefore, we clarify this issue in
this section.

To fix the terminology, let us write Pd for the set of all Borel probability measures on
R× Rd × R. Given a (measurable) function φ : R→ R and µ ∈ Pd, we write

µφ(x) :=

∫

R×Rd×R
a · φ

(
〈w, x〉+ c

)
dµ(a,w, c) for x ∈ Rd,

whenever the integral exists. Let us denote the Heaviside function by H := 1[0,∞) and the
ReLU by % : R→ R, x 7→ max{0, x}. Then, given a set ∅ 6= U ⊂ Rd and s ≥ 0, we define

BH(U) :=
{
f : U → R : ∃µ ∈ Pd : ‖µ‖H <∞ and ∀x ∈ U : f(x) = µH(x)

}
,

B%(U) :=
{
f : U → R : ∃µ ∈ Pd : ‖µ‖% <∞ and ∀x ∈ U : f(x) = µ%(x)

}
,

BF ,s(U) :=
{
f : U → R : ∃F : Rd → C : ‖F‖F ,s<∞ and ∀x ∈ U : f(x)=

∫

Rd
ei〈x,ξ〉F (ξ) dξ

}
,

where

‖µ‖H :=

∫

R×Rd×R
|a| dµ(a,w, c) and ‖µ‖% :=

∫

R×Rd×R
|a| · (|w|+ |c|) dµ(a,w, c),

while ‖F‖F ,s :=
∫
Rd(1 + |ξ|)s |F (ξ)| dξ. Finally, the norms on these spaces are given by

‖f‖BH := inf
{
‖µ‖H : µ ∈ Pd and f = µH |U

}

and similarly for ‖f‖B% , while

‖f‖BF,s := inf
{
‖F‖F ,s : F : Rd → C measurable and f(x)=

∫

Rd
ei〈x,ξ〉F (ξ) dξ for all x ∈ U

}
.

From the literature, the following properties of these spaces are known.

Lemma 7.1. Let ∅ 6= U ⊂ Rd be bounded. Then the following hold:

1) B%(U) ↪→ BH(U). If U has nonempty interior, then the inclusion is strict.

2) BF ,1(U) ↪→ BH(U).

3) BF ,2(U) ↪→ B%(U).

Remark. Regarding part 1), an easy modification of the proof shows that it would in fact
suffice for U to satisfy {tx+ (1− t)y : t ∈ [0, 1]} ⊂ U for certain x 6= y, even if U is not open.

Proof. Ad 1): Every function in B%(U) is Lipschitz continuous; see [18, Theorem 3.3]. On the
other hand, choosing µ to be a Dirac measure, we see Hw,c =

(
x 7→ H(〈w, x〉+ c)

)
∈ BH(U)

for arbitrary w ∈ Rd and c ∈ R. If U has nonempty interior, one can choose w, c in such a
way that Hw,c is discontinuous on U , and therefore cannot belong to B%(U). This shows that
the inclusion has to be strict if U has nonempty interior.
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The inclusion B%(U) ⊂ BH(U) is probably folklore; since we could not locate a reference,
however, we provide the proof. Since U is bounded, we have U ⊂ BR(0) for a suitable R > 0.
Set C := 1 +R and note that

%(y) =

∫ C

0
H(y − t) dt ∀ y ∈ R with |y| ≤ R.

Now, given w ∈ Rd and c ∈ R, define θw,c := |w| + |c| and note note |〈w, x〉 + c| ≤ C · θw,c
for all x ∈ U . Recall that %(γx) = γ %(x) for γ ≥ 0 and x ∈ R. Therefore, given a measure
µ ∈ Pd, and setting Ω := R× Rd × R, we see for all x ∈ U that

µ%(x) =

∫

Ω
a · %(〈w, x〉+ c) dµ(a,w, c) =

∫

Ω
a θw,c · %(〈 w

θw,c
, x〉+ c

θw,c
) dµ(a,w, c)

=

∫

Ω

∫ C

0
a θw,c ·H(〈 w

θw,c
, x〉+ c

θw,c
− t) dt dµ(a,w, c)

=

∫

Ω
α ·H(〈ω, x〉+ s) dν(α, ω, s) = νH(x),

where ν := Θ−1(µ⊗ λ) is the pushforward of the product measure µ⊗ λ (with λ denoting the
Lebesgue measure on [0, C]) under the map

Θ : Ω× [0, C]→ Ω,
(
(a,w, c), t

)
7→
(
a · θw,c, w

θw,c
, c
θw,c
− t
)
.

Finally, note that

‖ν‖H =

∫

Ω
|α| dν(α, ω, s) =

∫

Ω

∫ C

0
|a·θw,c| dt dµ(a,w, c) ≤ C

∫

Ω
|a| (|w|+|c|) dµ(a,w, c) = C ‖µ‖%.

This easily shows that ‖f‖BH(U) ≤ C · ‖f‖B%(U) <∞ for all f ∈ B%(U).

Ad 2): This follows from [3, Theorem 2].

Ad 3): This essentially follows from [16, Theorem 9], which is itself a consequence of (the
proof of) [31, Theorem 6].

More precisely, since U ⊂ Rd is bounded, we can choose x0 ∈ Rd and R ≥ 1 such that
U ⊂ x0 + [0, R]d. Let f ∈ BF ,2(U) with ‖f‖BF,2 ≤ 1. This implies f(x) =

∫
Rd e

i〈x,ξ〉F (ξ) dξ

for x ∈ U , where ‖F‖F ,2 ≤ 2. Define G,H : Rd → C by G(ξ) = 1
2

(
F (ξ) + F (−ξ)

)
and

H(ξ) = R−d · ei〈
x0
R
,ξ〉 · G(ξ/R). A direct calculation shows ‖G‖F ,2 ≤ 2 and ‖H‖F ,2 ≤ 2R2.

Next, define g, h : Rd → R by g(x) :=
∫
Rd e

i〈x,ξ〉G(ξ) dξ and h(x) :=
∫
Rd e

i〈x,ξ〉H(ξ) dξ. It is
straightforward to verify h(x−x0

R ) = g(x) = f(x) for x ∈ U .
By elementary properties of the Fourier transform, we see

∫
Rd |ξ|2 |ĥ(ξ)| dξ ≤ C and h ∈ C1

with ‖h‖sup, ‖∇h‖sup ≤ C where C = C(d,R). Thanks to [16, Theorem 9], this implies
‖h‖B%([0,1]d) ≤ C ′ <∞. Therefore, h(y) =

∫
Ω a %(c + 〈w, x〉) dµ(a,w, c) for all y ∈ [0, 1]d,

where µ ∈ Pd satisfies ‖µ‖% ≤ 2C ′. Because of y = x−x0
R ∈ [0, 1]d for x ∈ U , this implies

f(x) = h(x−x0
R ) =

∫
Ω a %

(
〈wR , x〉+ c− 〈w,x0〉

R

)
dµ(a,w, c) = ν%(x), where ν = Ψ∗µ is the push-

forward of µ under the map Ψ : Ω→ Ω, (a,w, c) 7→
(
a, wR , c−

〈w,x0〉
R

)
. A direct calculation shows

‖ν‖% ≤ (1+ |x0|)‖µ‖% ≤ C ′′ for C ′′ = C ′′(d,R, x0). Hence, f ∈ B%(U) with ‖f‖B%(U) ≤ C ′′.

The previous lemma collected several relations between the different Barron-type spaces
from the literature. The question of how the spaces B% and BF ,1 are related, however, has,
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to the best of our knowledge, not been answered until now. While it is claimed in [18, Theo-
rem 3.1] that BF ,1 embeds continuously into B%, citing [4] as a reference, we believe that this
mischaracterizes the results of [4]. In fact, in [4] (or rather [3]), it is merely shown that BF ,1
embeds into BH , not B%. As we will see in Proposition 7.4 below, we actually have BF ,1 * B%.
The proof will be based on the following lemma, which shows that the partial derivatives of
functions in B% are “uniformly of bounded variation along the coordinate axes”. This lemma is
similar in spirit to [18, Example 4.1], which essentially corresponds to the one-dimensional case
of the result given here. In the following lemma, we use for a Lipschitz continuous function
g : Rd → R, i, j ∈ d, and x ∈ Rd, the following functions

gj,i,x : R→ R, t 7→ (∂jg)(x+ tei), (7.1)

where (e1, . . . , ed) denotes the standard basis of Rd.

Lemma 7.2. Let ∅ 6= U ⊂ Rd be bounded. For every f ∈ B%(U), there exists a Lipschitz
continuous function g : Rd → R satisfying f = g|U and

sup
i,j∈d,x∈Rd

‖gj,i,x‖BV ≤ 4 ‖f‖B% , (7.2)

where we write ‖h‖BV := ‖h‖sup + TV(h) for h : R → R, with TV(h) denoting the total
variation of h; see for instance [23, Chapter 3.5] for the definition.

Remark. The partial derivative ∂jg appearing in Equation (7.1) above is the weak derivative
of g, and thus a priori only uniquely defined up to changes on a null-set. What is meant is
that there is a version of this derivative such that gj,i,x is of bounded variation for all i, j ∈ d
and x ∈ Rd, and such that Equation (7.2) holds.

Proof. The claim is clear in case of ‖f‖B% = 0; thus, let us assume that ‖f‖B% > 0. By

definition of B%(U) there is a probability measure µ ∈ Pd satisfying ‖µ‖% ≤ 5
4‖f‖B% and

f = µ%|U . Define Ω := R× Rd × R and g := µ%, noting that g : Rd → R is well-defined, since
∫

Ω
|a %(〈w, x〉+ c)| dµ(a,w, c) ≤ (1 + |x|)

∫

Ω
|a| · (|w|+ |c|) dµ(a,w, c) <∞

for each x ∈ Rd. Furthermore, since % is 1-Lipschitz, we see for all x, y ∈ Rd that

|g(x)−g(y)| ≤
∫

Ω
|a|·|〈w, x−y〉| dµ(a,w, c) ≤ |x−y|

∫

Ω
|a|·(|w|+|c|) dµ(a,w, c) ≤ |x−y|·‖µ‖%,

meaning that g is Lipschitz continuous.
Now, note that x 7→ %(〈w, x〉 + c) either vanishes identically (in case of w = c = 0)

or otherwise is differentiable on {x ∈ Rd : 〈w, x〉+ c 6= 0} which is open and of full measure,
with partial derivatives ∂j [%(〈w, x〉+ c)] = wjH(〈w, x〉+ c). Furthermore, x 7→ %(〈w, x〉+ c) is
Lipschitz continuous and hence weakly differentiable, and the weak derivative coincides almost
everywhere with the classical derivative; see for instance [22, Theorems 4 and 5 in Section 5.8].
Therefore, for any ϕ ∈ C∞c (U) and j ∈ d, Fubini’s theorem shows that
∫

U
f(x) ∂jϕ(x) dx =

∫

Ω
a

∫

U
%(〈w, x〉+ c)∂jϕ(x) dx dµ(a,w, c)

= −
∫

Ω

∫

U
awj H(〈w, x〉+ c)ϕ(x) dx dµ(a,w, c) = −

∫

U
ϕ(x)gj(x) dx,
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meaning that gj = ∂jg for

gj : Rd → R, x 7→
∫

U
awj H(〈w, x〉+ c) dµ(a,w, c).

Now, using the convention sign(x) = 1 for x ≥ 0 and sign(x) = −1 if x < 0, given i, j ∈ d,
define

Mα,β :=
{

(a,w, c) ∈ Ω : sign(awj) = α and sign(wi) = β
}

for α, β ∈ {±1}.

Since the Heaviside function H is non-decreasing, it is then straightforward to see for each
x ∈ Rd that each of the functions Fα,β,x : R→ R, t 7→

∫
Mα,β

awj H(wi t+〈w, x〉+c) dµ(a,w, c)

is monotonic and gj,i,x =
∑

α,β∈{±1} Fα,β,x. Furthermore, each of the Fα,β,x is bounded;
precisely,

|Fα,β,x(t)| ≤
∫

Mα,β

|a| |wj | dµ(a,w, c) ≤
∫

Mα,β

|a| · (|w|+ |c|) dµ(a,w, c),

so that
∑

α,β∈{±1} ‖Fα,β,x‖sup ≤ ‖µ‖%. It is easy to see (see [23, Section 3.5]) that every
monotonic function h : R → R satisfies ‖h‖BV ≤ 3‖h‖sup. Therefore, gj,i,x is of bounded
variation with

‖gj,i,x‖BV ≤
∑

α,β∈{±1}
‖Fα,β,x‖BV ≤ 3‖µ‖% ≤

15

4
‖f‖B% ,

which easily implies the claim.

We will also need the following technical lemma. It is a well-known property of BV func-
tions; see for instance the proof of [1, E6.10]. For the sake of completeness and for readers
unfamiliar with functions of bounded variation, we provide a proof in Appendix B.

Lemma 7.3. Let g : R → R be bounded and of bounded variation. Then, for arbitrary
ϕ ∈ C∞c (R), we have |

∫
R ϕ
′(t) g(t)dt| ≤ ‖ϕ‖sup TV(g).

With these preparations, we can finally show that for most domains U , we have that
BF ,1(U) is not contained in B%(U).

Proposition 7.4. Let U ⊂ Rd have nonempty interior and let α ≥ 0. If BF ,α(U) ⊆ B%(U),
then α ≥ 2. In particular, BF ,1(U) * B%(U).

Proof. The proof is divided into three steps:
Step 1 (Setup of Banach spaces X,Y ′): We define β := max{1, α} and

X :=
{
F−1f : f ∈ L1

(1+|ξ|)β (Rd;C) and F−1f is real-valued
}

with norm ‖F−1f‖X := ‖f‖L1
(1+|ξ|)β

=
∫
Rd(1 + |ξ|)β |f(ξ)| dξ, which is well-defined since the

Fourier transform is injective on L1(Rd) ⊃ L1
(1+|ξ|)β (Rd). It is straightforward to verify that

X is a Banach space (with R as the scalar field, since we require F−1f to be real-valued for
f ∈ X), and by differentiation under the integral it is easy to see that X ↪→ C1

b (Rd), where
C1
b (Rd) = {g ∈ C1(Rd;R) : ‖g‖1Cb <∞} and ‖g‖C1

b
:= ‖g‖sup +

∑d
j=1 ‖∂jg‖sup.

Since U has nonempty interior, we have U0 := x0 + (−3ε, 3ε)d ⊂ U for certain x0 ∈ Rd
and ε ∈ (0, 1). Let Y :=

(
C∞c ((−2ε, 2ε);R), ‖ · ‖sup

)
, and let Y ′ denote the dual space of Y .

Note that Y ′ is a Banach space (see for instance [23, Proposition 5.4]), even though Y is not.
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Step 2 (Constructing a bounded operator Γ : X → Y ′): Assume that BF ,α ⊂ B%(U). Then,
since |ξ|α ≤ (1 + |ξ|)β , we have for f ∈ X that f |U ∈ BF ,α(U) ⊂ B%(U), so that Lemma 7.2
shows that there is a Lipschitz continuous function g : Rd → R satisfying g|U = f |U and such
that for some choice of the weak derivative ∂1g of g, if we set e1 = (1, 0, . . . , 0) ∈ Rd and
gx : R→ R, t 7→ (∂1g)(x+ t e1), then supx∈Rd ‖gx‖BV ≤ 4 ‖f |U‖B%(U) =: Cf .

Since f |U0 = g|U0 and f is continuously differentiable, we have ∂1g = ∂1f almost ev-
erywhere on U0. By Fubini’s theorem, this implies for almost every z ∈ (−ε, ε)d−1 that
gx0+(0,z)(t) = (∂1g)(x0 + (0, z) + t e1) = (∂1f)(x0 + (0, z) + t e1) for almost all t ∈ (−2ε, 2ε).

For arbitrary ϕ ∈ Y and z as above, we thus see by Lemma 7.3 that
∣∣∣
∫

R
ϕ′(t) (∂1f)

(
x0 +(0, z)+t e1

)
dt
∣∣∣=
∣∣∣
∫

R
ϕ′(t) gx0+(0,z)(t)dt

∣∣∣≤
∥∥gx0+(0,z)

∥∥
BV
‖ϕ‖sup≤ Cf ‖ϕ‖sup.

Recall that this holds for almost all z ∈ (−ε, ε)d−1, and thus in particular for a dense sub-
set of (−ε, ε)d−1. By continuity of ∂1f , we can thus take the limit z → 0 to see that
|
∫
R ϕ
′(t) (∂1f)(x0 + t e1) dt| ≤ Cf · ‖ϕ‖sup for all ϕ ∈ Y . We have thus shown that the

linear map

Γ : X → Y ′, f 7→
(
ϕ 7→

∫

R
ϕ′(t) (∂1f)(x0 + t e1) dt

)

is well-defined. Note that if fn
X−−−→

n→∞
f , then ∂1fn → ∂1f with uniform convergence. Using

this observation, it is straightforward to verify that Γ has closed graph, and is thus a bounded
linear map, thanks to the closed graph theorem.

Finally, note that if f ∈ X ∩ C2(Rd), then we see by partial integration that
∣∣∣
∫

R
ϕ(t) (∂2

1f)(x0 + t e1) dt
∣∣∣ =

∣∣∣
∫

R
ϕ′(t) (∂1f)(x0 + t e1) dt

∣∣∣ ≤ ‖Γf‖Y ′‖ϕ‖sup ≤ ‖Γ‖ ‖f‖X ‖ϕ‖sup

for all ϕ ∈ Y = C∞c ((−2ε, 2ε);R). By the dual characterization of the L1-norm (see for
instance [1, Corollary 6.13]), this implies

∫ 2ε

−2ε

∣∣(∂2
1f)(x0 + t e1)

∣∣ dt ≤ ‖Γ‖ · ‖f‖X ∀ f ∈ X ∩ C2(Rd). (7.3)

Step 3 (Completing the proof): Pick γ ∈ C∞c (Rd) with 0 ≤ γ ≤ 1 and such that γ ≡ 1 on
U0 = x0 + (−3ε, 3ε)d. For n ∈ N, define fn : Rd → R, x 7→ γ(x) · cos

(
nπ
ε (x− x0) · e1

)
. Writing

Tyf(x) = f(x − y) and Mξf(x) = ei〈x,ξ〉 f(x) for translation and modulation, and using the
identity cos(x) = 1

2(eix + e−ix), it is easy to see fn = 1
2Tx0

[
Mnπe1/εT−x0γ +M−nπe1/εT−x0γ

]
,

where e1 = (1, 0, . . . , 0). Consequently, elementary properties of the Fourier transform show
that f̂n = 1

2M−x0

[
Tnπe1/εMx0 γ̂ + T−nπe1/εMx0 γ̂

]
, and hence

|f̂n(ξ)| ≤ 1

2

(
|γ̂(ξ − nπ

ε e1)|+ |γ̂(ξ + nπ
ε e1)|

)
for all ξ ∈ Rd.

Since 1 + |ξ| ≤ 1 + |ξ± nπ
ε e1|+ nπ

ε ≤ (1 + |ξ± nπ
ε e1|)(1 + nπ

ε ) ≤ 2nπ
ε (1 + |ξ± nπ

ε e1|), this shows
that

‖fn‖X =

∫

Rd
(1 + |ξ|)β · |f̂n(ξ)| dξ

≤ 1

2

(2πn

ε

)β ∫

Rd

∑

θ∈{±1}

(
1 + |ξ + θnπε e1|

)β∣∣γ̂(ξ + θnπε e1)
∣∣ dξ

≤
(2πn

ε

)β ∫

Rd
(1 + |η|)β |γ̂(η)| dη . nβ .

(7.4)
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On the other hand, for t ∈ (−2ε, 2ε) we see because of γ ≡ 1 on U0 that

(∂2
1fn)(x0 + t e1) =

d2

dt2
fn(x0 + t e1) =

d2

dt2
cos
(nπ
ε
t
)

= −
(nπ
ε

)2
cos
(nπ
ε
t
)

and hence
∫ 2ε

−2ε
|(∂2

1fn)(x0 + t e1)| dt = (nπ/ε)2

∫ 2ε

−2ε

∣∣cos
(
nπt/ε

)∣∣ dt =
nπ

ε

∫ 2πn

2πn
| cos(s)| ds

(∗)
=

4π n2

ε

∫ π

0
| cos(s)| ds =

8πn2

ε
.

Here, we used at (∗) that s 7→ | cos(s)| is π-periodic and even. Combining the last calculation
with Equations (7.3) and (7.4), we arrive at n2 .

∫ 2ε
−2ε |(∂2

1fn)(x0 + t e1)| dt . ‖fn‖X . nβ , for
all n ∈ N. This is only possible if β ≥ 2, and since β = max{α, 1} this requires α ≥ 2.

A A bound for empirical processes with finite pseudo-dimension
In this section, we prove a “uniform law of large numbers,” similar to the pseudo-dimension
based generalization bound in [40, Theorem 11.8], which is used in the third part of the proof
of Proposition 2.2. The result given here is probably well-known; but since we could not locate
a reference, we provide the proof. The main difference to the bound in [40] is that we estimate
the expected sampling error, instead of giving a high probability bound; this allows us to omit
a log factor. Furthermore, we use a complexity measure of the hypothesis class that differs
slightly from the usual pseudo-dimension.

Proposition A.1. There is a universal constant κ > 0 with the following property: If (Ω,F , µ)
is a probability space, if a, b ∈ R with a < b, and if ∅ 6= G ⊂ {g : Ω → [a, b] : g measurable}
satisfies

d := sup
λ∈R

VC({Ig,λ : g ∈ G}) <∞, where Ig,λ : Ω→ {0, 1}, ω 7→ 1g(ω)>λ,

then for any n ∈ N and S = (X1, . . . , Xn)
i.i.d.∼ µ, we have

ES
[

sup
g∈G

∣∣∣EX∼µ[ g(X) ]− 1

n

n∑

i=1

g(Xi)
∣∣∣
]
≤ κ · (b− a) ·

√
d

n
.

Remark. Here, as in most sources studying empirical processes (see e.g. [54, Section 7.2]), we
interpret E[supi∈I Xi] as supI0⊂I finite E[supi∈I0 Xi], in order to avoid measurability issues.

Proof. Given a sample S = (X1, . . . , Xn) ∈ Ωn, we write µS := 1
n

∑n
i=1 δXi for the associated

empirical measure. We want to bound

E
[

sup
g∈G

∣∣EX∼µ[g(X)]− EX∼µS [g(X)]
∣∣
]
,

where the outer expectation is with respect to S = (X1, . . . , Xn)
i.i.d.∼ µ. First, by replacing G

with G∗ := {g−a : g ∈ G}, it is easy to see that we can assume a = 0 without loss of generality.
Define M := b = b − a. Then, for any g ∈ G and any probability measure ν on Ω, the layer
cake formula (see e.g. [23, Proposition 6.24]) shows

EX∼ν [g(X)] =

∫ M

0
ν({ω ∈ Ω : g(ω) > λ}) dλ =

∫ M

0
EX∼ν [Ig,λ(X)] dλ.
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Therefore,
∣∣∣EX∼µ[g(X)]− EX∼µS [g(X)]

∣∣∣ =

∣∣∣∣
∫ M

0
EX∼µ

[
Ig,λ(X)

]
− EX∼µS

[
Ig,λ(X)

]
dλ

∣∣∣∣

≤
∫ M

0

∣∣∣EX∼µ
[
Ig,λ(X)

]
− EX∼µS

[
Ig,λ(X)

]∣∣∣ dλ.

In combination with the elementary estimate supg∈G
∫M

0 Γg(λ) dλ ≤
∫M

0 supg∈G Γg(λ) dλ and
Tonelli’s theorem, this implies

E
[

sup
g∈G

∣∣EX∼µ[g(X)]− EX∼µS [g(X)]
∣∣
]
≤ E

[
sup
g∈G

∫ M

0

∣∣∣EX∼µ
[
Ig,λ(X)

]
− EX∼µS

[
Ig,λ(X)

]∣∣∣ dλ
]

≤
∫ M

0
E
[

sup
g∈G

∣∣∣EX∼µ
[
Ig,λ(X)

]
− EX∼µS

[
Ig,λ(X)

]∣∣∣
]
dλ

(∗)
≤
∫ M

0
κ ·
√

VC({Ig,λ : g ∈ G})
n

dλ ≤ κ ·M ·
√
d

n
.

Here, the step marked with (∗) is an immediate consequence of the bound for the suprema of
empirical processes based on the VC dimension given in [54, Theorem 8.3.23].

B A technical bound involving the total variation
Proof of Lemma 7.3. Step 1: We first show that if h : R→ R is non-decreasing and bounded,
then |

∫
R ϕ
′(t)h(t) dt| ≤ ‖ϕ‖sup · limx→∞[h(x) − h(−x)] for every ϕ ∈ C∞c (R). To see this,

define c := limx→−∞ h(x) and h̃ : R→ R, x 7→ limy↓x h(y)− c. It is straightforward to see that
h̃ is non-decreasing, bounded, and right-continuous with limx→−∞ h̃(x) = 0, so that h̃ ∈ NBV
in the notation of [23, Section 3.5]. Furthermore, since a monotonic function can have at most
countably many discontinuities (see [23, Theorem 3.23]), we have h̃ = h−c on the complement
of a countable set, and hence almost everywhere. Since we also have

∫
R ϕ
′(t) dt = 0 thanks

to the compact support of ϕ, if we denote by µ the unique Borel measure on R satisfying
h̃(x) = µ

(
(−∞, x]

)
for all x ∈ R, then the partial integration formula in [23, Theorem 3.36]

shows as claimed that
∣∣∣
∫

R
ϕ′(t)h(t) dt

∣∣∣=
∣∣∣
∫

R
ϕ′(t) [h(t)− c] dt

∣∣∣ =
∣∣∣
∫

R
ϕ′(t) h̃(t) dt

∣∣∣=
∣∣∣
∫

R
h̃(t) dϕ(t)

∣∣∣=
∣∣∣
∫

R
ϕ(t) dµ(t)

∣∣∣

≤ ‖ϕ‖sup · µ(R) = ‖ϕ‖sup · lim
x→∞

[
h̃(x)− h̃(−x)

]

= ‖ϕ‖sup · lim
x→∞

[
h(x)− h(−x)

]
.

Step 2: Define

Tg : R→ R, x 7→ sup
{ n∑

j=1

|g(xj)− g(xj−1)| : n ∈ N and −∞ < x0 < · · · < xn = x
}
.

Then Tg is non-decreasing and satisfies limx→−∞ Tg(x) = 0 and limx→∞ Tg(x) = TV(g);
furthermore, g1 := 1

2(Tg + g) and g2 := 1
2(Tg − g) are both non-decreasing and bounded

with g = g1 − g2; all of these properties can be found in [23, Section 3.5]. Note that
limx→∞[ gi(x)− gi(−x) ] = 1

2TV(g) + (−1)i−1

2 limx→∞[g(x)− g(−x)]. In combination with the
estimate from Step 1 (applied to h = gi), this implies as claimed that

∣∣∣
∫

R
ϕ′(t) g(t) dt

∣∣∣≤
2∑

i=1

∣∣∣
∫

R
ϕ′(t) gi(t) dt

∣∣∣≤‖ϕ‖sup

2∑

i=1

lim
x→∞

[
gi(x)− gi(−x)

]
=‖ϕ‖sup TV(g).
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Quantitative approximation results
for complex-valued neural networks ∗

A. Caragea† , D.G. Lee† , J. Maly† , G.E. Pfander† , and F. Voigtlaender† ‡

Abstract. Until recently, applications of neural networks in machine learning have almost exclusively relied
on real-valued networks. It was recently observed, however, that complex-valued neural networks
(CVNNs) exhibit superior performance in applications in which the input is naturally complex-
valued, such as MRI fingerprinting. While the mathematical theory of real-valued networks has,
by now, reached some level of maturity, this is far from true for complex-valued networks. In this
paper, we analyze the expressivity of complex-valued networks by providing explicit quantitative
error bounds for approximating Cn functions on compact subsets of Cd by complex-valued neural
networks that employ the modReLU activation function, given by σ(z) = ReLU(|z|−1) sgn(z), which
is one of the most popular complex activation functions used in practice. We show that the derived
approximation rates are optimal (up to log factors) in the class of modReLU networks with weights
of moderate growth.

Key words. Deep neural networks, Complex-valued neural networks, function approximation, modReLU acti-
vation function

AMS subject classifications. 68T07, 41A25, 41A46.

1. Introduction. Motivated by the remarkable practical success of machine learning algo-
rithms based on deep neural networks (collectively called deep learning [18]) in applications
like image recognition [17] and machine translation [25], the expressive power of such neural
networks is the topic of an active and rich area of study [20, 22, 31, 32]. Results on the ex-
pressivity of real-valued neural networks date back to the 90s, when the main focus was on
networks with smooth activation functions [21]. More recently, emphasis has shifted towards
networks using the rectified linear unit (ReLU) activation function %(x) = max{0, x}, as those
networks have been observed to yield similar expressive power at a greatly reduced training
time cost [10, 18].

Due to the missing support for complex arithmetic in the leading deep learning soft-
ware libraries [26], practical applications of deep neural networks have almost exclusively
employed real-valued neural networks. Recently, however, there has been an increased inter-
est in complex-valued neural networks (CVNNs) for problems in which the input is naturally
complex-valued and in which a faithful treatment of phase information is important [26, 28].
For instance, for the problem of MRI fingerprinting, CVNNs significantly outperform their real-
valued counterparts [28]. Moreover, CVNNs have demonstrated greatly improved stability and
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convergence properties for the setting of recurrent neural networks [4, 30].
Motivated by the increased interest in complex-valued neural networks, we herein initiate

the analysis of their expressive power, quantified by their ability to approximate functions of
a given regularity. Specifically, we analyze how well CVNNs with the modReLU activation
function (defined in Subsection 1.1) can approximate functions of Sobolev regularity Wn,∞ on
compact subsets of Cd (see Subsection 1.2). The explicit result is given in Subsection 1.3.

1.1. Complex-valued neural networks and the modReLU function. In a complex-valued
neural network (CVNN), each neuron computes a function of the form z 7→ σ(wTz + b) with
z,w ∈ CN and b ∈ C, where σ : C→ C is a complex activation function.

Formally, a complex-valued neural network (CVNN) is a tuple Φ =
(
(A1, b1), . . . , (AL, bL)

)
,

where L =: L(Φ) ∈ N denotes the depth of the network and where A` ∈ CN`×N`−1 and
b` ∈ CN` for ` ∈ {1, . . . , L}. Then din(Φ) := N0 and dout(Φ) := NL denote the input- and
output-dimension of Φ. Given any function σ : C→ C, the network function associated to the
network Φ (also called the realization of Φ) is the function

RσΦ := TL ◦ (σ ◦ TL−1) ◦ · · · ◦ (σ ◦ T1) : Cdin(Φ) → Cdout(Φ) where T` z = A` z + b`,

and where σ acts componentwise on vectors, meaning σ
(
(z1, . . . , zk)

)
=
(
σ(z1), . . . , σ(zk)

)
.

The functions TL and σ ◦T` for ` ∈ {1, . . . , L− 1} are the functions computed by the different
layers of the network Φ. The network Φ is called shallow if L = 2, i.e., if Φ has only one
“internal layer” (neither an input, nor an output layer), which is usually called a hidden layer.

The number of neurons N(Φ) of Φ is N(Φ) :=
∑L

`=0N`, the width (or breadth) of Φ is
B(Φ) := max0≤`≤LN`, and the number of weights of Φ is W (Φ) :=

∑L
j=1(‖Aj‖`0 + ‖bj‖`0),

where ‖A‖`0 denotes the number of nonzero entries of a matrix or vector A. Moreoever,
writing ‖A‖∞ := maxi,j |Ai,j | for a matrix (or vector) A, we define the norm of the network Φ
as ‖Φ‖ := max1≤`≤L max{‖A`‖∞, ‖b`‖∞}. We then say that the weights of Φ are bounded by
C ≥ 0 if ‖Φ‖ ≤ C.

Finally, we will also use the notion of a network architecture1. Formally, this is a tu-
ple A =

(
(N0, . . . , NL), (I1, . . . , IL), (J1, . . . , JL)

)
where (N0, . . . , NL) determines the depth L

of the network and the number of neurons N` in each layer. The sets J` ⊂ {1, . . . , N`} and
I` ⊂ {1, . . . , N`} × {1, . . . , N`−1} determine which weights of the network are permitted to
be nonzero. Thus, a network Φ is of architecture A as above if Φ =

(
(A1, b1), . . . , (AL, bL)

)

where A` ∈ CN`×N`−1 and b` ∈ CN` , and if furthermore (A`)j,k = 0 if (j, k) /∈ I` and
(b`)j = 0 if j /∈ J`. The number of weights and neurons of an architecture A are defined
as W (A) :=

∑L
`=1(|J`|+ |I`|) and N(A) :=

∑L
`=0N`, respectively.

In the present paper, we focus on neural networks using the modReLU activation function

σ : C→ C, z 7→ %(|z| − 1) sgn(z) =

{
0, if |z| ≤ 1,

z − z
|z| , if |z| ≥ 1

(1.1)

1The term “network architecture” as used here does not refer to conceptual network architectures like
feed-forward networks, recursive neural networks, and others. Instead, since we are only concerned with fully
connected feed-forward networks, the “network architecture” only prescribes the network shape in terms of the
number of layers, the number of neurons per layer, and which weights of the network may be non-zero. This
terminology is widespread in the literature studying the approximation properties of neural networks; see e.g.
[22, 31].
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proposed in [4] as a generalization of the ReLU activation function % : R→ R, x 7→ max{0, x}
to the complex domain. Note that the complex sign function is defined as sgn(z) = z

|z| for
z 6= 0, and sgn(z) = 0 else. We briefly discuss other activation functions in Subsection 1.4.

1.2. Smoothness assumptions. We are interested in approximating functions f : Cd → C
that belong to the Sobolev space Wn,∞, with differentiability understood in the sense of real
variables. Specifically, let

QCd :=
{
z = (z1, . . . , zd) ∈ Cd : Re zk, Im zk ∈ [0, 1] for all 1 ≤ k ≤ d

}

be the (real) unit cube in Cd. As in the definition of QCd , we will use throughout the paper
boldface characters to denote real and complex vectors.

Identifying z = (z1, . . . , zd) ∈ Cd with x =
(
Re(z1), . . . ,Re(zd), Im(z1), . . . , Im(zd)

)
∈ R2d,

we will consider Cd ∼= R2d as usual. With this in mind, a complex function g : Cd → C can be
identified with a pair of functions gRe, gIm : R2d → R given by gRe = Re(g) and gIm = Im(g).

Given a real function f : [0, 1]2d → R and n ∈ N, we write f ∈ Wn,∞([0, 1]2d;R) if f
is n − 1 times continuously differentiable with all derivatives of order n − 1 being Lipschitz
continuous. We then define

‖f‖Wn,∞ := max
{

max
|α|≤n−1

‖∂αf‖L∞ , max
|α|=n−1

Lip(∂αf)
}
.

Using this norm, we define the unit ball in the Sobolev space Wn,∞ as

Fn,d :=
{
f ∈ Wn,∞([0, 1]2d;R) : ‖f‖Wn,∞ ≤ 1

}

and define the set of functions that we seek to approximate by

Fn,d :=
{
g : QCd → C : gRe, gIm ∈ Fn,d

}
.

1.3. Main result. Our main result provides explicit error bounds for approximating func-
tions g ∈ Fn,d using modReLU networks. This result can be seen as a generalization to the
complex domain of the approximation bounds for ReLU networks developed in [31].

Theorem 1. For any d, n ∈ N, there exists C = C(d, n) > 0 with the following property:
Given any ε ∈ (0, 1) there exists a modReLU-network architecture A with no more than

C · ln(2/ε) layers and no more than C · ε−2d/n · ln2(2/ε) weights such that for any g ∈ Fn,d
there exists a network Φ of architecture A with all weights bounded by C · ε−44d and such that
|g(z)−RσΦ(z)| ≤ ε for all z ∈ QCd .

The exponent −2d
n in place of − d

n in the real setting is a consequence of the identifica-
tion Cd ∼= R2d. More precisely, making the identifications Cd ∼= R2d and C ∼= R2 and using
(real-valued) ReLU networks (with two output channels), the results in [31] show that—up to
logarithmic factors—ReLU networks achieve the same approximation bounds as those shown
in Theorem 1 for modReLU-CVNNs. Thus, as far as the asymptotic approximation rate is con-
cerned, modReLU-CVNNs do not strictly improve on the approximation capabilities of ReLU
networks, but they can match their approximation power. This is an important theoretical
finding, since even though CVNNs were found to have advantages in several applications [4,28],
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up to now, no quantitative approximation results for CVNNs were known whatsoever—only
universal approximation type results were available [2, 29]. Our results show that, at least
for the approximation problem considered here, there is no additional “cost” in using CVNNs,
compared to ReLU networks.

Since Theorem 1 only provides asymptotic rates (i.e., no explicit bound on the constant
C is provided) and since the Cn assumption regarding the function to be approximated or
learned cannot be verified in practical applications, the theorem is of limited use for guiding
deep learning practitioners. Rather, it is intended as a first step towards mathematically un-
derstanding the expressivity of CVNNs and is furthermore expected to be informative for other
theoretical works, for instance for analyzing the performance of CVNNs for approximating the
solutions of PDEs, similar to the results in [11–13].

Remark 2. Note that the architecture and therefore the size of the network Φ is inde-
pendent of the function g to approximate, once we fix an approximation accuracy ε and the
parameters n and d. Only the choice of weights depends on g.

1.4. Comparison to existing work.
Approximation results for CVNNs. While the approximation properties of real-valued neural

networks are comparatively well understood by now, the corresponding questions for complex-
valued networks remain mostly open. In fact, even the property of universality—well studied
for real-valued networks [9, 15, 16, 19]—was only settled for very specific activation functions
[1–3, 14], until the recent paper [29] resolved the question. This universal approximation
theorem for CVNNs highlights that the properties of complex-valued networks are significantly
more subtle than those of their real-valued counterparts: Real-valued networks (either shallow
or deep) are universal if and only if the activation function is not a polynomial [19]. In contrast,
shallow complex-valued networks are universal if and only if the real part or the imaginary
part of the activation function σ is not polyharmonic, while deep complex-valued networks
(with more than one hidden layer) are universal if and only if σ is neither holomorphic, nor
antiholomorphic, nor a polynomial (in z and z). For instance, deep networks with the activation
function σ(z) = z ·ez are universal, but shallow networks with this activation function are not.

Aside of these purely qualitative universality results, no quantitative approximation bounds
for complex-valued networks are known whatsoever. The present paper is thus the first to
provide such bounds.

Role of the activation function. As empirically observed in [4, 28], the main advantage of
complex-valued networks over their real-valued counterparts stems from the fact that the set
of implementable complex activation functions is much richer than in the real-valued case. In
fact, each real-valued activation function ρ : R → R can be lifted to the complex function
σ(z) := ρ(Re z); then, σ(wTz + b) = ρ(αTx− βTy + Re b) for z = x + iy and w = α+ iβ.
Thus, identifying Cd ∼= R2d, every real-valued network can be written as a complex-valued
one. Therefore, one can in principle transfer every approximation result involving real-valued
networks to a corresponding complex-valued result. Similar arguments apply to activation
functions of the form σ(z)=ρ(Re z)+iρ(Im z).

However, using such “intrinsically real-valued” activation functions forfeits the main ben-
efits of using complex-valued networks, namely increased expressivity and a faithful handling
of phase and magnitude information. Therefore, the two most prominent complex-valued
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activation functions appearing in the literature (see [4, 26, 28]) are the modReLU (see Equa-
tion (1.1)) and the complex cardioid (given by σ(z) = z

2 ·
(
1 + Re z

|z|
)
), neither of which is of the

form ρ(Re(z)) for a real activation function ρ.
In the present work, we focus on the modReLU activation function because it satisfies the

natural phase homogeneity property σ(eiθz) = eiθσ(z). Investigating the complex cardioid—
and other complex-valued activation functions—is an interesting topic for future work.

Role of the network depth. Deep networks greatly outperform their shallow counterparts
in applications [18]; therefore, much research has been devoted to rigorously quantify the
influence of the network depth on the expressivity of (real-valued) neural networks. The precise
findings depend on the activation function: While for smooth activation functions, already
shallow networks with O(ε−d/n) weights and neurons can uniformly approximate functions
f ∈ Cn([0, 1]d) up to error ε (see [21]), this is not true for ReLU networks. To achieve the
same approximation rate, ReLU networks need at least O(1 + n

d ) layers [22–24]. The proofs
of these bounds crucially use that the ReLU is piecewise linear. Since this is not true of the
modReLU, these arguments do not apply here.

Regarding sufficiency, the best known approximation result for ReLU networks [31] shows—
similar to our main theorem—that ReLU networks with depth O(ln(2/ε)) andO(ε−d/n ln(2/ε))
weights can approximate functions f ∈ Cn([0, 1]d) uniformly up to error ε. For networks with
bounded depth, similar results are only known for approximation in Lp [22] or for approxi-
mation in terms of the network width instead of the number of nonzero weights [20]. It is an
interesting question whether these two results extend to modReLU networks as well.

Finally, we mention an intriguing result in [32] which shows that extremely deep ReLU net-
works (for which the number of layers is proportional to the number of weights) with extremely
complicated weights (meaning the number of significant digits per weight grows unboundedly
as ε ↓ 0) can approximate functions f ∈ Cn([0, 1]d) up to error ε using only O(ε−d/(2n)) weights
(up to log factors). Due to the prohibitive complexity of the network weights this bound has
limited practical significance, but is an extremely surprising and insightful mathematical re-
sult. We expect that the arguments in [32] can be extended to modReLU networks, but leave
this as future work.

Optimality. For modReLU networks with polynomial growth of the individual weights and
logarithmic growth of the depth (as in Theorem 1), the approximation rate of Theorem 1 is
essentially optimal. We prove this in detail in Section 7, Theorem 12. Our proof relies on
entropy arguments, which are closely related to the proof techniques based on rate distortion
theory as used in [7,22]. Furthermore, for deriving suitable covering bounds for certain network
sets (which then give rise to entropy bounds), we borrow several proof ideas from [6].

For ReLU networks, a similar optimality result holds for networks with logarithmic growth
of the depth even without assumptions on the magnitude of the network weights [31]. The proof
relies on sharp bounds for the VC dimension of ReLU networks [5]. For modReLU networks, a
similar question is more subtle, since to the best of our knowledge no analogous VC dimension
bounds are available. We thus leave it as future work to study optimality without assumptions
on the magnitude of the network weights.

1.5. Structure of the paper. Inspired by [31], our proof of Theorem 1 proceeds by locally
approximating g using Taylor polynomials, and then showing that these Taylor polynomials
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and a suitable partition of unity can be well approximated by modReLU networks. To prove
this, we first show in Section 2 that modReLU networks of constant size can approximate
the functions z 7→ Re z and z 7→ Im z arbitrarily well—only the magnitude of the individual
weights of the network grows as the approximation accuracy improves. Then, based on proof
techniques in [31], we show in Section 3 that modReLU networks with O(ln2(2/ε)) weights and
O(ln(2/ε)) layers can approximate the function z 7→ (Re z)2 up to error ε. By a polarization
argument, this also allows to approximate the product function (z, w) 7→ zw; see Section 4.
After describing in Section 5 how a partition of unity can be implemented with modReLU
networks, we combine all the ingredients in Section 6 to prove Theorem 1. Finally, Section 7
proves that Theorem 1 is essentially optimal.

2. Approximating real and imaginary parts. This section shows that modReLU networks
of constant size can approximate the functions z 7→ Re z and z 7→ Im z arbitrarily well:

Proposition 3. For any R ≥ 1 and ε ∈ (0, 1), there exist functions ReR,ε, ImR,ε : C → C
that are implemented by shallow σ-networks with 5 neurons and 10 weights, all bounded in
absolute value by C ·R3/ε3 with an absolute constant C > 0, satisfying

|ReR,ε(z)− Re(z)| ≤ ε and | ImR,ε(z)− Im(z)| ≤ ε for all z ∈ C with |z| ≤ R.

To prove Proposition 3, we need two ingredients: First, modReLU networks can implement
the identity function on bounded subsets of C exactly. To be precise, for arbitrary R > 0 it
holds that IdR(z) = z for z ∈ C with |z| ≤ R, where

IdR(z) := σ
(
2z + 2R+ 2

)
− σ(z +R+ 1)− (R+ 1). (2.1)

Indeed, for w ∈ C with |w| ≥ 1, we have σ(2w)− σ(w) = 2w − 2w
|2w| − (w − w

|w|) = w. For
z ∈ C with |z| ≤ R, setting w = z +R+ 1 so that |w| ≥ 1 gives IdR(z) = z.

As the second ingredient, we use the following functions, parameterized by h > 0:

Imh(z) :=
−i
h2
·
(

sgn
(
hz + 1

h

)
− 1
)

and Reh(z) :=
1

h2
·
(

sgn
(
hz − i

h

)
+ i
)
, z ∈ C.

The next lemma shows that these complex-valued functions well approximate the real-
valued functions Re and Im. The proof of Proposition 3 will then consist of showing that Imh

and Reh can be implemented by modReLU networks.

Lemma 4. For z ∈ C and 0 < h ≤ 1
2+2|z| , we have

∣∣∣ Im(z)− Imh(z)
∣∣∣ ≤ 2h|z| and

∣∣∣Re(z)− Reh(z)
∣∣∣ ≤ 2h|z|. (2.2)

Proof. See Appendix A.1.

Proof of Proposition 3. Set h := ε
2+2R , noting that indeed 0 < h ≤ 1

2+2|z| and h |z| ≤ ε
2

whenever |z| ≤ R. Note that w := hz − i
h satisfies |w| ≤ 1

h + h |z| ≤ 2
h =: R′ and

|w| = |hz − i
h | ≥ 1

h − h |z| ≥ 2− 1
2 ≥ 1, so that sgn(w) = w − σ(w) = IdR′(w) − σ(w), with



APPROXIMATION BOUNDS FOR COMPLEX NEURAL NETWORKS 7

IdR′ as in Equation (2.1). Putting together the definitions of h,R′, w and of IdR, we see that

Reh(z) = h−2 ·
(
IdR′(w)− σ(w) + i

)

= h−2 ·
(
σ(2hz + 4

h + 2− 2i
h )− σ(hz + 2

h + 1− i
h)− σ(hz − i

h) + i− 2
h − 1

)

=: ReR,ε(z)

(2.3)

is implemented by a shallow σ-network with 5 neurons and 10 weights (see Figure 1), where
all the weights are bounded by 4

h3
≤ C R3/ε3 for an absolute constant C > 0. Finally,

Lemma 4 shows |Re(z)− ReR,ε(z)| ≤ ε for all z ∈ C with |z| ≤ R. The claim concerning the
approximation of Im(z) is shown similarly.

z
N1

N2

N3

ReR,ε
σ ◦ T1 T2

Figure 1. Architecture of the network ReR,ε, where T1(·) = A1(·) + b1 for A1 =
(

ε
1+R

, ε
2(1+R)

, ε
2(1+R)

)T

and b1 =
( (8−4i)(1+R)

ε
+ 2, (4−2i)(1+R)

ε
+ 1, −2i(1+R)

ε

)T , and T2(·) = A2(·) + b2 for A2 = 4(1+R)2

ε2
(1,−1,−1) and

b2 = 4(1+R)2

ε2
·
(
− 1− 4(1+R)

ε
+ i
)
.

3. Approximating the squared real part. The main result of this section is Proposition 8
below, showing that the function z 7→ (Re(z))2 on the set {z ∈ C : |z| ≤ R, |Re(z)| ≤ 1} can
be uniformly approximated up to error ε by modReLU networks with O

(
ln(2/ε)

)
layers and

O
(

ln2(2/ε)
)
weights of size O

(
R6 ε−7

)
.

As a first step towards proving Proposition 8, we show that modReLU networks can ap-
proximate functions of the form z 7→ %(Re(z) + c) with the usual ReLU %; this will then allow
us to use the approximation of the square function by ReLU networks as derived in [31].

Proposition 5. For any choice of R ≥ 1, c ∈ R, and ε ∈ (0, 1), there exist functions
%Re,c
R,ε , %

Im,c
R,ε : C→ C that are implemented by depth-3 σ-networks with 6 neurons and 11 weights,

all bounded in absolute value by C · R3/ε3 + 2|c| (with an absolute constant C), satisfying
|%Re,c
R,ε (z)− %(Re(z) + c)| ≤ ε and |%Im,c

R,ε (z)− %(Im(z) + c)| ≤ ε for all z ∈ C with |z| ≤ R.

Proof. Let us first prove the statement for %Re,c
R,ε . To this end, first note that the modReLU

σ : C→ C is 1-Lipschitz; see Lemma 6 below.
Now, set δ := 1/

(
2 · (R+ |c|)

)
and define

%Re,c
R,ε : C→ C, z 7→ 1

δ
· σ
(
1 + δ ·

(
ReR,ε(z) + c

))
, (3.1)

where ReR,ε is as in Proposition 3. Now, a direct computation (see also Figure 2) shows that
σ(x + 1) = %(x) for x ∈ [−2,∞). Because of |δ · (Re(z) + c)| ≤ δ · (|z| + |c|) ≤ 1

2 for |z| ≤ R,
this implies 1

δ · σ
(
1 + δ · (Re(z) + c)

)
= 1

δ · %
(
δ · (Re(z) + c)

)
= %
(

Re(z) + c
)
. Combined with

the 1-Lipschitz continuity of σ, we thus see

|%(Re(z) + c)− %Re,c
R,ε (z)| =

∣∣1
δ · σ(1 + δ · (Re(z) + c))− 1

δ · σ(1 + δ · (ReR,ε(z) + c))
∣∣

≤ |Re(z)− ReR,ε(z)| ≤ ε for all z ∈ C with |z| ≤ R.
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−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3 σ(x)

%(x)

Figure 2. A plot of the modReLU function σ on [−3, 3]. The plot shows that σ(x+ 1) = %(x) for x ∈ [−2,∞).

Based on the properties of ReR,ε from Proposition 3 (see also Equation (2.3) noting that
h = ε

2+2R in that equation), it follows that %Re,c
R,ε is implemented by a depth-3 σ-network with

6 neurons and 11 weights (see Figure 3), all bounded in absolute value by 2 |c| + C · R3/ε3.
The construction of %Im,c

R,ε is similar, replacing ReR,ε(z) with ImR,ε(z).

z
N1

N2

N3

N4 %Re,c
R,ε (z)

σ ◦ T1 σ ◦ T2 T3

Figure 3. Architecture of the network %Re,c
R,ε , where T1(·) = A1(·) + b1 for A1 =

(
ε

1+R
, ε
2(1+R)

, ε
2(1+R)

)T and

b1 =
( (8−4i)(1+R)

ε
+ 2, (4−2i)(1+R)

ε
+ 1, −2i(1+R)

ε

)T , and T2(·) = A2(·) + b2 for A2 = 2(1+R)2

(R+|c|)ε2 (1,−1,−1) and

b2 = 2(1+R)2

(R+|c|)ε2
(
− 1− 4(1+R)

ε
+ i
)
+ 1 + c

2(R+|c|) , and finally T3(z) = 2(R+ |c|) · z.

The next lemma shows that σ : C→ C is 1-Lipschitz, which was used in the proof above.

Lemma 6. The modReLU function σ : C→ C defined in Equation (1.1) is 1-Lipschitz, i.e.,
|σ(z)− σ(w)| ≤ |z − w| for all z, w ∈ C.

Proof. Simply note that

∣∣σ(z)− σ(w)
∣∣ =





0 if |z|, |w| ≤ 1,

|σ(z)| = |z| − 1 ≤ |z| − |w| ≤ |z − w| if |z| > 1 and |w| ≤ 1,

|σ(w)| = |w| − 1 ≤ |w| − |z| ≤ |w − z| if |z| ≤ 1 and |w| > 1,∣∣(z − z
|z|)− (w − w

|w|)
∣∣ ≤ |z − w| if |z|, |w| > 1,

where we used that if z, w ∈ C with |z|, |w| > 1, then
∣∣(z − z

|z|)− (w − w
|w|)
∣∣2 =

∣∣ z
|z| · (|z| − 1)− w

|w| · (|w| − 1)
∣∣2

= (|z| − 1)2 + (|w| − 1)2 − 2(|z| − 1)(|w| − 1) Re
(
z
|z|

w
|w|
)

= |z|2 + |w|2 − 2|z||w|Re
(
z
|z|

w
|w|
)
−
(
2|z|+ 2|w| − 2

)(
1− Re

(
z
|z|

w
|w|
))

≤ |z|2 + |w|2 − 2|z||w|Re
(
z
|z|

w
|w|
)

= |z − w|2.
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Our next goal is to construct σ-networks approximating the function z 7→ (Re z)2. This
will be based on combining Proposition 5 with the approximation of the real function x 7→ x2

by ReLU networks, as presented in [31].
The construction in [31] is based on the following auxiliary functions, depicted in Figure 4:

g : R→ R, g(x) := 2%(x)− 4%(x− 1
2) + 2%(x− 1),

gk : R→ R, gk(x) := g ◦ · · · ◦ g︸ ︷︷ ︸
k−times

(x) for k ∈ N,

fm : R→ R, fm(x) := x−
m∑

k=1

gk(x)

22k
for m ∈ N ∪ {0}.

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
g

g ◦ g
g ◦ g ◦ g

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
x2

f0

f1

f2

Figure 4. A plot of the function g, its compositions g ◦ g and g ◦ g ◦ g, and the square approximations fm,
for m = 0, 1, 2. Evidently, g is 2-Lipschitz.

One can show (cf. [31, Proof of Proposition 2]) that
∣∣x2 − fm(x)

∣∣ ≤ 2−2m−2 for 0 ≤ x ≤ 1. (3.2)

Further, we define

gRe : C→ C, gRe(z) := g
(
Re(z)

)
= 2%

(
Re(z)

)
− 4%

(
Re(z)− 1

2

)
+ 2%

(
Re(z)− 1

)
,

gRe,k : C→ C, gRe,k(z) := gRe ◦ · · · ◦ gRe

︸ ︷︷ ︸
k−times

(z) = gk
(
Re(z)

)
(since g : R→ R).

As is clear from Figure 4, the function g : R → R is 2-Lipschitz, which in turn implies that
gRe : C→ C is 2-Lipschitz; indeed,

∣∣g(Re(z))− g(Re(z′))
∣∣ ≤ 2 |Re(z)−Re(z′)| ≤ 2 |z − z′| for

z, z′ ∈ C. In view of Proposition 5, we consider the approximation of gRe and gRe,k respectively
by the following functions:

gRe
R,ε : C→ C, gRe

R,ε(z) := 2%Re,0
R,ε (z)− 4%

Re,−1/2
R,ε (z) + 2%Re,−1

R,ε (z),

gRe,k
R,ε : C→ C, gRe,k

R,ε (z) := gRe
R,ε ◦ · · · ◦ gRe

R,ε︸ ︷︷ ︸
k−times

(z) for k ∈ N,
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where R ≥ 1 and ε ∈ (0, 1). As the last preparation for the proof of Proposition 8, we need
the following technical lemma concerning the size of gRe,k

R,ε (z).

Lemma 7. Let R ≥ 1, 0 < ε < min{1, R8 }, and k ∈ N. Then
∣∣gRe,k
R+1,ε(z)

∣∣ ≤ R + 1 for all
z ∈ C with |z| ≤ R+ 1.

Proof. Proposition 5 implies that if z ∈ C with |z| ≤ R+ 1, then
∣∣gRe
R+1,ε(z)− gRe(z)

∣∣ ≤ (2 + 4 + 2) · ε ≤ R

and since |gRe(z)| = |g(Re(z))| ≤ 1 for all z ∈ C (see Figure 4), we have

|gRe
R+1,ε(z)| ≤

∣∣gRe
R+1,ε(z)− gRe(z)

∣∣+
∣∣gRe(z)

∣∣ ≤ R+ 1.

This shows that gRe
R+1,ε maps {z ∈ C : |z| ≤ R + 1} into itself. It then follows by induction

that gRe,k
R+1,ε maps {z ∈ C : |z| ≤ R+ 1} into itself, as claimed.

Proposition 8. Let R ≥ 3 and 0 < ε < min{1, R8 }. There exists a function ΦR,ε : C → C
that is implemented by a σ-network of depth O(ln(2/ε)) and width O(ln(2/ε)) and with the
number of weights and neurons bounded by O(ln2(2/ε)) and all weights bounded by O(R6/ε7)
and such that |(Re z)2 − ΦR,ε(z)| ≤ ε for all z ∈ C with |z| ≤ R and |Re z| ≤ 1.

Proof. First, it holds for any z ∈ C with |z| ≤ R+ 1 that
∣∣gRe(z)− gRe

R+1,ε(z)
∣∣ ≤ (2 + 4 + 2) · ε = 8ε (3.3)

and
∣∣gRe,k
R+1,ε(z)

∣∣ ≤ R + 1 for all k ∈ N, by Proposition 5 and Lemma 7 respectively. We claim
that this implies

|gRe,k(z)− gRe,k
R+1,ε(z)| ≤ 8ε · (2k − 1) ∀ k ∈ N and |z| ≤ R+ 1. (3.4)

Indeed, for k = 1 we have gRe,k
R+1,ε = gRe

R+1,ε and gRe,k = gRe, so that Equation (3.3) shows
|gRe,k(z)− gRe,k

R+1,ε(z)| ≤ 8ε = 8ε · (2k − 1).
Next, suppose Equation (3.4) holds for some k ∈ N. Lemma 7 shows that w := gRe,k

R+1,ε(z)

satisfies |w| ≤ R+1. Further, setting w′ := gRe,k(z), Equation (3.4) shows |w−w′| ≤ 8ε·(2k−1).
Thus, using that gRe is 2-Lipschitz, we see

|gRe,k+1(z)− gRe,k+1
R+1,ε (z)| = |gRe(w′)− gRe

R+1,ε(w)|
≤ |gRe(w′)− gRe(w)|+ |gRe(w)− gRe

R+1,ε(w)|
(∗)
≤ 2 · 8ε · (2k − 1) + 8ε = 8ε · (2k+1 − 1)

where Equation (3.3) was used at (∗). Thus, Equation (3.4) holds for k + 1 if it holds for k.
Now, using the function IdR from Equation (2.1) (which is implemented by a 2-layer σ-

network with 7 weights, all bounded by 2R + 2) and the function ReR,ε from Proposition 3,
we define for m ∈ N,

fm,R,ε(z) := ReR,ε ◦IdR ◦ · · · ◦ IdR(z)−
m∑

k=1

gRe,k
R+1,ε ◦ IdR ◦ · · · ◦ IdR(z)

4k
for z ∈ C,
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where the number of the “factors” IdR is chosen such that all (sub)networks have the same depth
and thus can be added/subtracted—see Appendices A.2 and A.3 for details on implementing
composition and summation of networks. It then follows for m ∈ N and |z| ≤ R that

|fm(Re(z))− fm,R,ε(z)| ≤ |Re(z)− ReR,ε(z)|+
m∑

k=1

|gRe,k(z)− gRe,k
R+1,ε(z)|

4k

≤ ε+ 8ε
m∑

k=1

2−k ≤ 9ε.

(3.5)

Setting m :=
⌈

1
2 ln(1

ε )/ ln(2)
⌉
∈ N (so that 2−2m−2 ≤ ε) and combining (3.2) and (3.5), we

deduce for |z| ≤ R with 0 ≤ Re(z) ≤ 1 that

|Re(z)2 − fm,R,ε(z)| ≤ |Re(z)2 − fm(Re(z))|+ |fm(Re(z))− fm,R,ε(z)| ≤ 10ε. (3.6)

We will now extend this result to z ∈ C with |z| ≤ R and |Re(z)| ≤ 1. Given such a
z, define w := 1

2(z + 1), noting that |w| ≤ R (since R ≥ 1) and 0 ≤ Rew ≤ 1. Therefore,
applying Equation (3.6) to w instead of z, we see |(Rew)2 − fm,R,ε(w)| ≤ 10ε. Note that
(Rew)2 = 1

4(1 + Re z)2 = 1
4 + 1

2 Re z + 1
4(Re z)2 and hence (Re z)2 = 4 (Rew)2 − 2 Re z − 1.

Thus, setting

hm,R,ε(z) := 4 fm,R,ε
(

1
2(z + 1)

)
− 2 ReR,ε ◦IdR ◦ · · · ◦ IdR(z)− 1,

where again IdR is used to match the depth of the (sub)networks, we see

|(Re z)2 − hm,R,ε(z)| ≤ 4 · |(Rew)2 − fm,R,ε(w)|+ 2 · |Re(z)− ReR,ε(z)| ≤ 42ε.

It remains to bound the depth, width, and number of weights of the σ-network defining
the function ΦR,ε(z) := hm,R,ε(z), and to estimate the size of the weights. The following
estimates regarding these quantities should be fairly intuitive; the reader interested in the
full details is referred to Appendices A.2 and A.3. Note that fm,R,ε, with our choice of
m =

⌈
1
2 ln(1

ε )/ ln(2)
⌉

= O(ln(2/ε)), is a σ-network with depth and width O(m), and with
O(m2) neurons and weights, all of which are bounded by O(ln(2/ε)R6/ε6) ⊂ O(R6/ε7). Con-
sequently, ΦR,ε is a σ-network whose depth and width is O(ln(2/ε)), whose number of weights,
and neurons are O(ln2(2/ε)), and whose weights are bounded by O(R6/ε7).

4. Approximating the product of complex numbers. In this section, we approximate the
map C2 → C, (z, w) 7→ zw using modReLU networks. To do so, we first approximate the func-
tion C2 → C, (z, w) 7→ Re(z) Re(w) based on the approximation of (Re z)2 from Proposition 8
and then use a polarization argument. This idea is motivated by [31, Proposition 3].

Proposition 9. Given R ≥ 3 and ε ∈ (0, 1), there is a function ×̃Re,R,ε : C2 → C such that

1. for any inputs z, w ∈ C with |z|, |w| ≤ R we have |×̃Re,R,ε(z, w)− Re(z) Re(w)| ≤ ε;
2. the function ×̃Re,R,ε is implemented by a σ-network of depth and width O

(
ln(R2 ε−1)

)
,

with at most O
(

ln2(R2 ε−1)
)
weights and neurons, and all weights bounded in absolute

value by O
(
R16ε−7

)
.
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Proof. Define R′ := 3 and note that 0 < ε′ := ε
6R2 <

1
54 ≤ min{1, R′8 }. Therefore, we can

apply Proposition 8 with R′, ε′ instead of R, ε, which produces the function ΦR′,ε′ = Φ3, ε
6R2

.
We then set

×̃Re,R,ε(z, w) := 2R2 ·
(

Φ3, ε
6R2

( z+w2R )− Φ3, ε
6R2

( z
2R)− Φ3, ε

6R2
( w2R)

)
for z, w ∈ C.

Comparing with the equation

Re(z) Re(w) = 2R2 ·
(

[Re( z+w2R )]2 − [Re( z
2R)]2 − [Re( w2R)]2

)
for z, w ∈ C

and applying Proposition 8, we see that if z, w ∈ C with |z|, |w| ≤ R, then
∣∣Re(z) Re(w)− ×̃Re,R,ε(z, w)

∣∣

≤ 2R2 ·
(∣∣∣[Re( z+w2R )]2 − Φ3, ε

6R2
( z+w2R )

∣∣∣+
∣∣∣[Re( z

2R)]2 − Φ3, ε
6R2

( z
2R)
∣∣∣+
∣∣∣[Re( w2R)]2 − Φ3, ε

6R2
( w2R)

∣∣∣
)

≤ 2R2 ·
(

ε
6R2 + ε

6R2 + ε
6R2

)
= ε.

According to Proposition 8, the function ΦR′,ε′ is implemented by a σ-network of depth
and width O

(
ln( 2

ε′ )
)
, with O

(
ln2( 2

ε′ )
)
weights and neurons, and all weights bounded by

O((R′)6(ε′)−7)). Consequently, the function Φ3, ε
6R2

is implemented by a σ-network of depth
and width O

(
ln(12R2ε−1)

)
, with O

(
ln2(12R2ε−1)

)
weights and neurons, and all weights

bounded by O(R14ε−7). Note that ×̃Re,R,ε(z, w) is a parallel connection of three copies
of Φ3, ε

6R2
with the adjustment that all weights in the last layer are scaled by a factor of

2R2, and the first layer is composed with appropriate linear transforms. Hence, the function
×̃Re,R,ε(z, w) is again implemented by a σ-network whose depth and width are O

(
ln(R2 ε−1)

)
,

whose number of weights and neurons are O
(

ln2(R2 ε−1)
)
, and whose weights are bounded by

O
(
R16ε−7

)
in absolute value.

As a direct consequence of Proposition 9, we obtain an approximation for the complex
product function C2 → C, (z, w) 7→ zw.

Corollary 10. Given R ≥ 3 and ε ∈ (0, 1), there is a function ×̃R,ε : C2 → C such that

1. for any inputs z, w ∈ C with |z|, |w| ≤ R we have |×̃R,ε(z, w)− zw| ≤ ε;
2. the function ×̃R,ε is implemented by a σ-network of depth and width O

(
ln(R2 ε−1)

)
,

with at most O
(

ln2(R2 ε−1)
)
weights and neurons, and all weights bounded in absolute

value by O
(
R16ε−7

)
.

Proof. Noting that for z, w ∈ C,

zw = Re(z) Re(w)− Im(z) Im(w) + i
(

Re(z) Im(w) + Im(z) Re(w)
)

= Re(z) Re(w)− Re(−iz) Re(−iw) + i
(

Re(z) Re(−iw) + Re(−iz) Re(w)
)
,

we define

×̃R,ε(z, w) := ×̃Re,R, ε
4
(z, w)− ×̃Re,R, ε

4
(−iz,−iw) + i

(
×̃Re,R, ε

4
(z,−iw) + ×̃Re,R, ε

4
(−iz, w)

)
.
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It then follows from Proposition 9 that |×̃R,ε(z, w)− zw| ≤ ε for all z, w ∈ C with |z|, |w| ≤ R.
The function ×̃R,ε(z, w) is a sum of four equivalent copies of ×̃Re,R, ε

4
and therefore is again

implemented by a σ-network whose depth and width are O
(

ln(R2 ε−1)
)
, whose number of

weights and neurons are O
(

ln2(R2 ε−1)
)
, and whose weights are bounded by O

(
R16ε−7

)
in

absolute value.

5. Partition of unity. Define the functions ψRe, ψIm : C→ C by

ψRe(z) := 1− σ(z + 1
2) + σ(z − 1

2) and ψIm(z) := 1 + i σ(z + 1
2 i)− i σ(z − 1

2 i). (5.1)

Note for x ∈ R that

ψRe(x) =





1 if |x| ≤ 1
2

3
2 − |x| if 1

2 ≤ |x| ≤ 3
2

0 if |x| ≥ 3
2

and for z ∈ C that ψIm(iz) = ψRe(z), since σ(iz) = i σ(z).

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25

0.0

0.2

0.4

0.6

0.8

1.0

ψR (4x)

ψR (4(x− 1
2))

ψR (4(x− 1))

Figure 5. A plot of the function ψRe(4•) and its shifts, showing that they form a partition of unity.

Let N ≥ 1 be a natural number. Form ∈ {0, 1, . . . , 2N} define the functions φRe
m,N : C→ C

by φRe
m,N (z) := ψRe(4N(z − m

2N )). It is not difficult to see that the φRe
m,N (m ∈ {0, 1, . . . , 2N})

form a partition of unity on the unit interval [0, 1] ⊂ R ⊂ C, and that

supp
(
φRe
m,N |R

)
⊂
{
x ∈ R : |x− m

2N | ≤ 3
8N
−1
}

;

see Figure 5. Similarly, defining φIm
m,N (z) := ψIm(4N(z − im

2N )) for m ∈ {0, 1, . . . , 2N}, we see
that the φIm

m,N form a partition of unity on the imaginary unit interval i · [0, 1] ⊂ C.

6. Main result. In this section, we prove our main result, Theorem 1. As a preparation for
the proof, we collect the following technical lemma, whose proof is deferred to Appendix A.4.

Lemma 11. Let Ω 6= ∅ be a set, M ∈ N, ε ∈ (0, 1
M+1), and 0 < δ ≤ ε2. Suppose that

• ×̃ : C2 → C satisfies |×̃(z, w)− zw| ≤ ε for all |z|, |w| ≤ 4;

• α1, . . . , αM : Ω→ C satisfy |αj(z)| ≤ 1 for all z ∈ Ω;

• β1, . . . , βM : Ω→ C satisfy |αj(z)− βj(z)| ≤ δ for all z ∈ Ω.
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Define inductively γ1(z) := β1(z) and γj+1(z) := ×̃
(
βj+1(z), γj(z)

)
for z ∈ Ω. Then

∣∣∣γM (z)−
M∏

`=1

α`(z)
∣∣∣ ≤ 3M ε ∀ z ∈ Ω.

Proof of Theorem 1. As in Subsection 1.2, we identify the function g : QCd → C with the
pair of functions gRe, gIm : [0, 1]2d → R and we will only explicitly show the approximation of
f := gRe, since gIm can be approximated in exactly the same way.

We roughly follow the structure of the proof of Theorem 1 in [31]: In the first step, we ap-
proximate f by f∗, a sum of Taylor polynomials subordinate to a partition of unity, constructed
with our activation function σ in mind; see Section 5. In the second step we approximate f∗
by the realization f̃ of a σ-network of an appropriate architecture. An additional complication
compared to the real setting considered in [31] is that we cannot access the real and imaginary
parts of the inputs of f exactly with a σ network, but only approximatively; see Proposition 3.

Step 1. Employing similar notations to [31], we will denote ordered pairs (vectors) of
coordinates by bold-faced characters. Given N ∈ N (specified precisely in Equation (6.1)
below), let us write

N := {0, 1, . . . , 2N}d × {0, 1, . . . , 2N}d.
For m := (m1,m2, . . . ,m2d) ∈ N , we define on QCd

∼= [0, 1]2d the function

φm(x) = φN,m(x) =

d∏

k=1

ψRe
(

4N ·
(
xk − mk

2N

)) 2d∏

`=d+1

ψIm
(

4N ·
(
x` i− im`

2N

))
,

where x = (x1, . . . , xd, xd+1, . . . , x2d) and where ψRe, ψIm are given by Equation (5.1).
Based on the observations in Section 5, we see that the φm (m ∈ N) form a partition of

unity on [0, 1]2d and satisfy supp(φm) ⊂ Sm for the set

Sm :=
{
x ∈ R2d : |xk − mk

2N | < 1
2N and |x` − m`

2N | < 1
2N for all 1 ≤ k ≤ d < ` ≤ 2d

}
.

Now for any m ∈ N , consider the Taylor polynomial of f at the point x = m
2N of degree

n− 1, given by

Pm(x) =
∑

n∈N2d
0 ,|n|<n

[
∂nf( m

2N )

n!
·
(
x− m

2N

)n]
, and define f∗ :=

∑

m∈N
φmPm.

For any x ∈ [0, 1]2d, we can bound the error by

|f(x)− f∗(x)| =
∣∣∣
∑

m∈N
φm(x)

(
f(x)− Pm(x)

)∣∣∣ ≤
∑

m:x∈Sm

∣∣f(x)− Pm(x)
∣∣φm(x)

≤ max
m:x∈Sm

∣∣f(x)− Pm(x)
∣∣ ∑

m∈N
φm(x) ≤ (2d)n

n!

(
1

N

)n
‖f‖Wn,∞

≤ (2d)n

n!

(
1

N

)n
,
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where, similar to the arguments on Page 108 of [31], we used successively the fact that the
φm form a partition of unity and are supported on Sm, a standard bound for the error of
approximation by the Taylor polynomial (see e.g. the proof of [22, Lemma A.8]), and finally
that f is in the unit ball of the Sobolev space, meaning ‖f‖Wn,∞ ≤ 1. Therefore by choosing

N :=

⌈(
n! · ε

2 · (2d)n

)−1/n⌉
(6.1)

(where dxe is the smallest integer bigger or equal to x), we obtain that ‖f − f∗‖L∞ ≤ ε
2 .

Step 2. We approximate f∗ up to error ε
2 by a σ-network. To this end, note that we can

rewrite f∗ as
f∗(x) =

∑

m∈N

∑

n∈N2d
0 :|n|<n

am,n · φm(x) ·
(
x− m

2N

)n
.

Note that all the coefficients am,n have absolute value at most 1, since ‖f‖Wn,∞ ≤ 1. Therefore
f∗ is a linear combination of no more than n2d (2N + 1)2d terms of the form

fm,n(x) := φm(x) ·
(
x− m

2N

)n
.

Fixm ∈ N and n ∈ N2d
0 with |n| < n for the moment. We want to approximate the func-

tion fm,n via Lemma 11. Thus, set S := n2d·|N | andM := 2d+|n| < 2d+n, and ε̃ := ε
6(2d+n)·S ,

as well as δ := ε̃2, and finally Ω := QCd =
{
z ∈ Cd : Re(zj), Im(zj) ∈ [0, 1] for j ∈ {1, . . . , d}

}
.

As a first step, we estimate ε̃. Directly from Equation (6.1), we see

N ≤ 1 +
(2 · (2d)n

n! · ε
)1/n

≤ 1 + 4d · ε−1 ≤ 5d · ε−1.

Thus, S = n2d (2N + 1)2d ≤ (12dn)2d · ε−2d, whence ε̃−1 ≤ C1(d, n) · ε−2d−1 ≤ C1(d, n) · ε−3d.
Therefore, ln(2/ε̃) ≤ ln(2C1(d, n)) + 3d ln(1/ε) ≤ C2(d, n) · ln(2/ε) for suitable constants
C1(d, n) ≥ 1 and C2(d, n) ≥ 1.

Thus, Corollary 10 (applied with ε̃ instead of ε) yields a function ×̃ : C2 → C satisfying
|×̃(z, w) − z w| ≤ ε̃ for all z, w ∈ C with |z|, |w| ≤ 4, and such that ×̃ is implemented
by a σ-network with width and depth bounded by C3 ln(2/ε̃) ≤ C4 · ln(2/ε) and at most
C3 · ln2(2/ε̃) ≤ C4 · ln2(2/ε) weights, each bounded in absolute value by C3 · ε̃−7 ≤ C4 · ε−21d.
Here, C3 ≥ 1 is an absolute constant and C4 = C4(d, n) ≥ 1.

Next, note that 8N
ε̃2
≤ C5(d, n) · ε−7d. Therefore, Proposition 3 shows that there exist

functions Re\, Im\ : C → C with |Re\(z)− Re(z)| ≤ ε̃2

8N and | Im\(z) − Im(z)| ≤ ε̃2

8N for all
z ∈ C with |z| ≤ 4, and such that Re\ and Im\ are implemented by shallow σ-networks with
10 weights of magnitude at most C5 ( ε̃

2

8N )−3 ≤ C6 · ε−21d, for suitable C6 = C6(d, n) ≥ 1.
Finally, to apply Lemma 11, writing n = (n1, . . . , n2d), we define αk, βk : Cd → C for

1 ≤ k ≤ 2d+ |n| = M as follows:
• For 1 ≤ k ≤ d, set

αk(z) := ψRe
(
4N Re(zk)− 2mk

)
and βk(z) := ψRe

(
4N Re\(zk)− 2mk

)
;
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• For d+ 1 ≤ k ≤ 2d, set

αk(z) := ψIm
(
4Ni Im(zk−d)− 2imk

)
and βk(z) := ψIm

(
4Ni Im\(zk−d)− 2imk

)
;

• For 2d+ n1 + · · ·+ n`−1 < k ≤ 2d+ n1 + · · ·+ n` ≤ 2d+ n1 + · · ·+ nd (1 ≤ ` ≤ d), set

αk(z) := Re(z`)−
m`

2N
and βk(z) := Re\(z`)−

m`

2N
;

• For 2d+n1 + · · ·+nd ≤ 2d+n1 + · · ·+n`−1 < k ≤ 2d+n1 + · · ·+n` (d+ 1 ≤ ` ≤ 2d),
set

αk(z) := Im(z`−d)−
m`

2N
and βk(z) := Im\(z`−d)−

m`

2N
.

Since ψRe, ψIm are 2-Lipschitz (this follows from the definition of ψRe, ψIm and from Lemma 6),
we see that |αk(z) − βk(z)| ≤ ε̃2 = δ ≤ 1 for all z ∈ Ω and 1 ≤ k ≤ M . Furthermore, note
that indeed |αk(z)| ≤ 1 (and hence |βk(z)| ≤ 2) for all z ∈ Ω and 1 ≤ k ≤M .

Overall, we can thus apply Lemma 11, which shows for

f̃m,n := ×̃
(
β1, ×̃

(
β2, . . . , ×̃(β2d+|n|−1, β2d+|n|)

))

that
|fm,n(z)− f̃m,n(z)| ≤ 3M ε̃ ≤ ε

2S
=
ε

2

1

n2d|N | ∀ z ∈ Ω = QCd ,

where we identify z = (z1, ..., zd) ∈ QCd with
(
Re(z1), ...,Re(zd), Im(z1), ..., Im(zd)

)
∈ [0, 1]2d.

Thus, setting f̃ :=
∑

m∈N
∑

n∈N2d
0 ,|n|<n am,nf̃m,n and recalling that |am,n| ≤ 1, we see

for any z ∈ Ω that

|f∗(z)− f̃(z)| ≤
∑

m∈N

∑

n∈N2d
0 ,|n|<n

|am,n||fm,n(z)− f̃m,n(z)| ≤ |N | · n2d · ε
2

1

n2d|N | =
ε

2
,

and hence |f(z)− f̃(z)| ≤ ε for all z ∈ QCd , thanks to the bound from Step 1.

Step 3 (Size of the network): Note that f̃m,n can be expressed as a composition of
the networks IdR (with R = 2) and Re\, Im\, ψRe, ψIm, as well as ×̃ (see Figure 6) and that
the number of such subnetworks that appear in f̃m,n depends only on the dimension d and
the degree of smoothness n.

Next, note that with the implied constants (potentially) depending on d and n, the follow-
ing hold:
• IdR (with R = 2) is implemented by a σ-network with O(1) weights and layers, and all

weights bounded by O(1);

• Re\ and Im\ are implemented by σ-networks with O(1) weights and layers and all weights
bounded by O(ε−21d);

• ψRe and ψIm are implemented by σ-networks with O(1) weights and layers and all weights
bounded by O(1); hence, ψRe(4N • −2m) and ψIm(4iN • −2im) (for m ∈ {0, 1, . . . , 2N})
are implemented by σ-networks with O(1) weights and layers and all weights bounded by
O(N) ⊂ O(ε−1);
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z

Re\ z1, . . . ,Re\ zd Im\ z1, . . . , Im
\ zd

βk(z), k ∈ Nd1 βk(z), k ∈ N2d
d+1 βk(z), k ∈ N2d+s

2d+1 βk(z), k ∈ N2d+|n|
2d+s+1

βk(z), k ∈ Nd1 βk(z), k ∈ N2d
d+1 βk(z), k ∈ N2d+s

2d+1 βk(z), k ∈ N2d+|n|−2
2d+s+1

u(z) := ×̃(β2d+|n|−1(z), β2d+|n|(z))

βk(z), k ∈ Nd1 βk(z), k ∈ N2d
d+1 βk(z), k ∈ N2d+s

2d+1 βk(z), k ∈ N2d+|n|−3
2d+s+1

×̃(β2d+|n|−2(z), u(z))

...
...

...
...

...

β1(z) ×̃(β2(z), . . . , ×̃(β2d+|n|−1(z), β2d+|n|(z)))

f̃m,n(z)

Re\ Im\

ψRe(4N�− 2m) �− m
2N ψIm(4iN�− 2im) �− m

2N

IdR IdR IdR IdR ×̃

IdR IdR IdR IdR ×̃ ×̃

IdR IdR IdR IdR ×̃ ×̃

IdR ×̃ ×̃

×̃ ×̃

Figure 6. Schematic of the architecture of the network implementing f̃m,n. For brevity, the figure uses the
notation N`k := {k, k + 1, . . . , `− 1, `} and s := n1 + · · ·+ nd as well as R := 2.

• ×̃ is implemented by a σ-network with depth and width bounded by O(ln(2/ε)) and
O(ln2(2/ε)) weights, bounded in absolute value by O(ε−21d).

This implies that f̃m,n is implemented by a σ-network Φε
m,n satisfyingW(Φε

m,n)∈O(ln2(2/ε)),
B(Φε

m,n), L(Φε
m,n) ∈ O(ln(2/ε)), and ‖Φε

m,n‖ ∈ O(ε−42d), where the implied constants (only)
depend on d, n. For the full details, we refer to Appendices A.2 and A.3.

Now, since f̃ is a linear combination of the no more than n2d(2N + 1)2d functions f̃m,n

with coefficients no larger in absolute value than 1 and recalling that N .d,n ε−1/n (see
Equation (6.1)), it follows that for some C = C(d, n) > 0 independent of ε and f , the function
f̃ is implemented by a σ-network with no more than C · ln(2/ε) layers and no more than
C · ε−2d/n · ln2(2/ε) weights, each bounded in absolute value by C · ε−44d.

Finally, note that f̃ =
∑

m∈N
∑

n∈N2d
0 ,|n|<n am,nf̃m,n where only the coefficients am,n

depend on f , whereas the functions f̃m,n are independent of f . This easily implies that one



18 A. CARAGEA, D.G. LEE, J. MALY, G.E. PFANDER, AND F. VOIGTLAENDER

can choose a fixed network architecture A (only depending on d, n, ε but independent of f)
with L(A) ≤ C · ln(2/ε) and W (A) ≤ C · ε−2d/n · ln2(2/ε) such that f̃ is implemented by a
σ-network Φf of architecture A and with ‖Φf‖ ≤ C · ε−44d.

7. Optimality. In this section, we show that the approximation rate obtained in Theorem 1
cannot be improved significantly. Precisely, we prove the following result:

Theorem 12. Let d, n ∈ N, θ, κ, γ ≥ 0, and C0 ≥ 1. Assume that for every ε ∈ (0, 1)
and every g ∈ Fn,d there exists a function gε implemented by a σ-network with at most
C0 · (ln(2/ε))κ layers and at most C0 · ε−γ weights, all bounded in absolute value by C0 · ε−θ
satisfying ‖g − gε‖L∞ ≤ ε

2 .
Then necessarily γ ≥ 2d/n.

The proof idea consists in showing that the set of σ-networks of a given complexity satisfies
certain entropy bounds. If the approximation rate from Theorem 1 could be strictly improved,
this would then imply entropy bounds for the set Fn,d that contradict the known asymptotics
of the entropy numbers of Fn,d [8].

We will derive the entropy bounds for the network sets as a consequence of the following
Lipschitz bound for the realization map Φ 7→ RσΦ. Since this bound is quite similar to the
one in [6, Theorem 2.6]—although there only real-valued networks with the ReLU activation
function are considered—we postpone the proof to Appendix A.5.

Lemma 13. Given two networks Φ =
(
(A`, b`)

)L
`=1

and Ψ =
(
(B`, c`)

)L
`=1

such that for each
` ∈ {1, . . . , L}, the matrices A`, B` and vectors b`, c` have the same dimension, define Φ − Ψ

to be the network
(
(A` −B`, b` − c`)

)L
`=1

.
Let R,R0 ≥ 1 and assume ‖Φ‖, ‖Ψ‖ ≤ R. Then, for every z ∈ CN0 with ‖z‖`∞ ≤ R0, we

have
|RσΦ(z)−RσΨ(z)| ≤ R0 ·N1 · · ·NL · 4LRL−1 · ‖Φ−Ψ‖.

As the final preparation for the proof of Theorem 12, we recall the notion of covering num-
bers and a few related facts. Given a non-empty subset ∅ 6= M ⊂ X of a metric space (X, d),
the covering number Cov(M, ε) = CovX(M, ε) ∈ N∪ {∞} is the minimal number n ∈ N of el-
ements m1, . . . ,mn ∈ M satisfying M ⊂ ⋃n

i=1Bε(mi), where Bε(m) = {x ∈ X : d(x,m) ≤ ε}
is the closed ball of radius ε around m.

It follows directly from the definitions that if F : M ⊂ X → Y is Lipschitz continuous
with Lip(F ) ≤ L for some L > 0, then

CovY (F (M), ε) ≤ CovX(M, ε/L) (7.1)

and that
Cov

(⋃n
j=1Mj , ε

)
≤∑n

j=1 Cov(Mj , ε). (7.2)

Using the identification QCd
∼= [0, 1]2d, the following bound for the covering numbers of

the set Fn,d (considered as a subset of C(QCd) with the sup-norm) is an easy consequence of
[8, Theorem 3 and Theorem on Page 1086]:

Lemma 14. For d, n ∈ N there exists a constant C1 = C1(d, n) > 0 satisfying

ln
(
CovC(QCd )(Fn,d, ε)

)
≥ C1 · ε−2d/n ∀ ε ∈ (0, 1].
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Furthermore, we will use the following bound for the covering numbers of subsets of Rn,
taken from [6, Lemma 2.7]:

Lemma 15. Let n ∈ N, R ∈ [1,∞) and ε ∈ (0, e−1). Then, using the ‖ · ‖`∞-norm on Rn,
we have

Cov
(
[−R,R]n, ε

)
≤ exp

(
n · ln(dR/εe)

)
≤ exp

(
2n · ln(R/ε)

)
= (R/ε)2n.

Using these preparations, we can finally prove Theorem 12.

Proof of Theorem 12. Step 1: Given ε ∈ (0, e−1), setWε :=
⌊
C0·
(

2
ε

)γ⌋ andRε := C0·(2
ε )θ,

as well as Lε :=
⌊
C0 ·

(
ln(4

ε )
)κ⌋. Finally, let

NN ε :=
{
RσΦ|QCd

: din(Φ) = d, dout(Φ) = 1,W (Φ) ≤Wε, L(Φ) ≤ Lε and ‖Φ‖ ≤ Rε
}
.

In this step, we show that

ln
(

CovC(QCd )(NN ε, ε/2)
)
≤ C1 ·

(
ln(2/ε)

)1+2κ · ε−γ (7.3)

for a suitable constant C1 = C1(d, C0, κ, γ, θ) > 0 independent of ε.
To see this, let us write n := {1, . . . , n} for n ∈ N. Furthermore, given L ∈ Lε and

N = (N1, . . . , NL) ∈ Wε
L with NL = 1 and given J = (J1, . . . , JL) with J` ⊂ N` ×N`−1 and

|J`| ≤Wε, define

ΛN ,J :
L∏

`=1

(
[−Rε, Rε]J` × [−Rε, Rε]N` × [−Rε, Rε]J` × [−Rε, Rε]N`

)
→ C(QCd),

((
A

(`)
j,k

)
(j,k)∈J` , b

(`),
(
B

(`)
j,k

)
(j,k)∈J` , c

(`)
)L
`=1
7→ Rσ

((
A(`) + iB(`), b(`) + ic(`)

)L
`=1

)
,

where A(`)
j,k = B

(`)
j,k = 0 for (j, k) ∈ (N` ×N`−1 ) \ J`.

We first claim that NN ε ⊂
⋃

N ,J Im(ΛN ,J ), where the union is taken over all N ,J as
above. To see this, note for f ∈ NN ε that f = RσΦ for a network Φ =

(
(A`, b`)

)
`=1,...,L

that satisfies L ≤ Lε,
∑L

j=1(‖Aj‖`0 + ‖bj‖`0) = W (Φ) ≤ Wε, and ‖A`‖∞, ‖b`‖∞ ≤ Rε. Since
σ(0) = 0, it is easy to see simply by dropping “dead neurons” (i.e., neurons that always compute
the value 0, independent of the network input) that one can assume A` ∈ CN`×N`−1 where
N` ≤Wε for ` ∈ L. Furthermore, the condition on the number of weights shows that for every
` ∈ L, one can choose a set J` ⊂ N` × N`−1 satisfying |J`| ≤ Wε and such that (A`)j,k = 0

unless (j, k) ∈ J`. This easily implies f = RσΦ ∈ Im(ΛN ,J ).
Next, note for fixed L ∈ Lε and N ∈Wε

L that N` ≤ dWε (even for ` = 0) and hence

∣∣{J` ⊂ N` ×N`−1 : |J`| ≤Wε

}∣∣ =

min{Wε,N`N`−1}∑

t=0

(
N`N`−1

t

)

(∗)
≤
(
eN`N`−1

/
min{Wε, N`N`−1}

)min{Wε,N`N`−1}

≤
(
d2eW 2

ε

/
Wε

)min{Wε,N`N`−1} ≤
(
d2eWε

)Wε .

(7.4)
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Here, the step marked with (∗) used the elementary bound
∑m

t=0

(
n
t

)
≤ (en/m)m which is valid

for 1 ≤ m ≤ n; see e.g. [27, Exercise 0.0.5].
As the next step, note that Lemma 13 shows that if we equip the domain of ΛN ,J with

the ‖ • ‖`∞ norm, then ΛN ,J is Lipschitz continuous with Lipschitz constant

Lip(ΛN ,J ) ≤ 2 · (8WεRε)
Lε ≤

(
16C2

0 · (2/ε)γ+θ
)C0 (ln(4/ε))κ

=: Θε.

Combining this with Equations (7.1), (7.2), and (7.4) and Lemma 15, we therefore see

CovC(QCd )(NN ε, ε/2) ≤
∑

L,N ,J

CovC(QCd )

(
Im(ΛN ,J ), ε/2

)

≤
∑

L,N ,J

Cov
(
[−Rε, Rε]

∑L
`=1(2|J`|+2Wε), ε

2Θε

)

≤ Lε ·WLε
ε · (d2eWε)

Wε ·
(
Rε

2Θε

ε

)8LεWε

.

It is straightforward to see that ln(Wε) ≤ ln(d2eWε) . ln(2/ε) and ln(Lε) . ln(2/ε), as well
as ln(Rε) . ln(2/ε) and ln(Θε) .

(
ln(2/ε)

)κ+1, where the implied constants only depend on
d, C0, γ, κ, θ. In view of these estimates and because of Lε,Wε ≥ 1, the preceding displayed
equation shows

ln
(

CovC(QCd )(NN ε, ε/2)
)
. Lε ·Wε ·

(
ln(2/ε)

)κ+1 .
(

ln(2/ε)
)1+2κ · ε−γ ,

proving Equation (7.3).

Step 2 (Completing the proof): Let ε ∈ (0, e−1). Equation (7.3) implies that there
exists a constantMε ∈ N withMε ≤ exp

(
C1 ·(ln(2/ε))1+2κ ·ε−γ

)
and NN ε ⊂

⋃Mε
m=1Bε/2(g

(ε)
m )

for suitable g(ε)
m ∈ NN ε, where Bδ(g) := {f ∈ C(QCd) : ‖f − g‖L∞ ≤ δ} is the closed ball of

radius δ around g.
Now, for each m ∈Mε choose h

(ε)
m ∈ Fn,d ∩Bε(g

(ε)
m ) if this intersection is non-empty, and

h
(ε)
m = 0 otherwise. By assumption of the theorem, for each f ∈ Fn,d there exists g ∈ NN ε

satisfying ‖f−g‖L∞ ≤ ε/2. Then, ‖f−g(ε)
m ‖L∞ ≤ ε

2 +‖g−g(ε)
m ‖L∞ ≤ ε for a suitable m ∈Mε,

and hence ‖f − h(ε)
m ‖L∞ ≤ ‖f − g(ε)

m ‖L∞ + ‖g(ε)
m − h(ε)

m ‖L∞ ≤ 2ε.

Overall, this shows Fn,d ⊂
⋃Mε
m=1B(h

(ε)
m , 2ε) and hence

ln
(

Cov(Fn,d, 2ε)
)
≤ ln(Mε) ≤ C1 · (ln(2/ε))1+2κ · ε−γ ∀ ε ∈ (0, e−1).

In view of Lemma 14, this is only possible if γ ≥ 2d/n, which is what we wanted to show.

8. Conclusion. In the present paper, we studied the problem of approximating functions of
regularity Cn defined on Cd using feed-forward complex-valued neural networks (CVNNs) with
modReLU activation function. We showed that (ignoring logarithmic factors) a suitably con-
structed modReLU CVNN with O(ε−2d/n) parameters (weights) can achieve uniform approxi-
mation error ε. Moreover, we showed that this rate is near-optimal. This is as expected, since
comparable real-valued neural networks obtain the same rates, cf. [31] (identifying C ' R2).
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Since it is known that ReLU neural networks achieve optimal approximation rates for Cn

functions (see [7, 22, 31]), it cannot be expected that (modReLU) CVNNs strictly improve on
ReLU networks, even in the complex setting. Rather, since CVNNs have been empirically
observed to outperform real-valued neural networks in many applications involving complex-
valued inputs [4,28], our goal is to initiate the study of the expressivity of CVNNs; furthermore,
our goal was to rigorously prove that modReLU CVNNs can match the approximation capa-
bilities of ReLU neural networks. Our results confirm that this is indeed the case.

The essential properties of the modReLU on which our proof relies are the following:
• modReLU CVNNs of a constant size can approximate the function z 7→ Re(z) (and

hence also the function z 7→ Im(z)) arbitrarily well; see Proposition 3;
• modReLU CVNNs of a constant size can approximate the “complexified” ReLU func-

tion z 7→ %(Re(z)) = max{0,Re(z)} arbitrarily well; see Proposition 5; and
• the modReLU is Lipschitz continuous.

Once these properties are known for a given activation function, the arguments used to prove
our main theorem (which build upon the ideas in [31]), can be used to prove an analogous
approximation result for that activation function. The Lipschitz continuity is used to control
the propagation of errors among the layers of the network; it can probably be replaced by
Hölder continuity and possibly even by uniform continuity. The main technical contribution
of the paper is thus to verify that the above properties are satisfied for the modReLU and to
show that these properties imply the main approximation result.

Appendix A. Postponed technical proofs.

A.1. Proof of Lemma 4.

Proof. Set w := hz+ 1
h . If Im(z) = 0, then w ∈ (0,∞) and hence sgn(w)− 1 = 0 = Im(z),

so that the first part of Equation (2.2) is true. Hence, we can assume in what follows that
Im(z) 6= 0. Now, note by choice of h that 0 < h ≤ 1

2 and h |z| ≤ 1
2 , which shows that

|1 + zh2| ≥ 1− h · h |z| ≥ 3
4 and therefore also |w| = 1

h |1 + h2z| ≥ 3
4h > 0.

As a consequence, we obtain the estimate
∣∣∣ 1

h2

1

|w| −
1

h

∣∣∣ =
1

h
·
∣∣∣1
h

1

|h−1 + hz| − 1
∣∣∣ =

1

h
·
∣∣∣ 1

|1 + h2z| − 1
∣∣∣

=
1

h
·
∣∣1− |1 + h2z|

∣∣
|1 + h2z| ≤ 1

h

h2|z|
3/4

=
4

3
h |z| ≤ 2

3
≤ 1.

As Im(w) = h Im(z) 6= 0, this implies
∣∣∣ 1

h2
Im(w/|w|)− Im(z)

∣∣∣ = h · | Im(z)| ·
∣∣∣ 1

h2

Im(w/|w|)
Im(w)

− 1

h

∣∣∣

= h · | Im(z)| ·
∣∣∣ 1

h2

1

|w| −
1

h

∣∣∣ ≤ h |z|.

Next, note Re(w) = 1
h ·
(
1 +h2 Re(z)

)
≥ 1

h ·
(
1−h ·h |z|

)
≥ 1

h ·
(
1− 1

2 · 1
2

)
= 3

4h > 0. Hence,
Re(w) + |w| ≥ 2 Re(w) ≥ 3

2h . Since also | Im(w)| = h | Im(z)| ≤ h |z|, we thus see

∣∣Re(w)− |w|
∣∣ =

∣∣(Re(w)− |w|)(Re(w) + |w|)
∣∣

∣∣Re(w) + |w|
∣∣ =

∣∣(Re(w))2 − |w|2
∣∣

∣∣Re(w) + |w|
∣∣ ≤ | Im(w)|2

3
2h
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and hence
∣∣Re(w)− |w|

∣∣ ≤ 2
3h

3 |z|2. Together with the estimate |w| ≥ 3
4h from the beginning

of the proof, we get

1

h2

∣∣∣Re(w/|w|)− 1
∣∣∣ =

1

h2

∣∣∣∣
Re(w)− |w|
|w|

∣∣∣∣ ≤
1

h2

2
3h

3|z|2
3

4h

=
4

3

2

3
h2|z|2 ≤ h2|z|2.

Combining everything, we arrive at
∣∣∣ Im(z)− −i

h2
·
(

sgn(hz + 1
h)− 1

)∣∣∣ =
∣∣∣−i
h2
·
( w
|w| − 1

)
− Im(z)

∣∣∣

≤
∣∣∣−i
h2
· i · Im

( w
|w|
)
− Im(z)

∣∣∣+
∣∣∣−i
h2
·
(

Re
( w
|w|
)
− 1
)∣∣∣

≤
∣∣∣ 1

h2
Im(w/|w|)− Im(z)

∣∣∣+
1

h2

∣∣Re(w/|w|)− 1
∣∣

≤ h |z|+ h2|z|2 ≤ 2h |z|,
proving the first estimate in Equation (2.2). To prove the second estimate in Equation (2.2),
simply note that Re(z) = Im(iz) and sgn(iw) = i sgn(w); hence, we get as claimed that

2h |z| = 2h |iz| ≥
∣∣∣ Im(iz)− −i

h2
·
(

sgn(hiz + 1
h)− 1

)∣∣∣

=
∣∣∣Re(z)− −i

h2
·
(
i sgn(hz − i

h) + i i
)∣∣∣ =

∣∣∣Re(z)− 1

h2
·
(

sgn(hz − i
h) + i

)∣∣∣.

A.2. Composition of neural networks. The composition of several neural networks is
clearly again represented by a neural network. In this appendix we make this statement more
precise, showing how the size of the resulting network is related to the size of the “input”
networks. We note that the bounds for modReLU networks that we derive here are slightly
worse than those derived for ReLU networks in [22, Section 2], owing to the fact that one can
easily implement the identity function using the ReLU while this seems not to be possible (on
all of C) using the modReLU.

But first, we need some additional notation: Given a network Φ =
(
(A1, b1), . . . , (AL, bL)

)
,

let us write Win(Φ) := ‖A1‖`0 + ‖b1‖`0 and Wout(Φ) := ‖AL‖`0 + ‖bL‖`0 and furthermore
‖Φ‖in := max{‖A1‖∞, ‖b1‖∞} and ‖Φ‖out := max{‖AL‖∞, ‖bL‖∞}. Now, assuming that
L ≥ 2 and given a further network Ψ =

(
(B1, c1), . . . , (BM , cM )

)
with dout(Ψ) = din(Φ) and

M ≥ 2, define the composition of Φ,Ψ as

Φ •Ψ :=
(
(B1, c1), . . . , (BM−1, cM−1), (A1BM , b1 +A1cM ), (A2, b2), . . . , (AL, bL)

)
. (A.1)

It is straightforward to verify Rσ(Φ •Ψ) = RσΦ ◦RσΨ and L(Φ •Ψ) = L(Φ) + L(Ψ)− 1 and
B(Φ •Ψ) ≤ max{B(Φ), B(Ψ)}. The next lemma provides further bounds on the size of Φ •Ψ.

Lemma 16. Let Φ(1), . . . ,Φ(K) be neural networks of depth L(Φ(i)) ≥ 2 for i ∈ {1, . . . ,K}
and satisfying dout(Φ

(i)) = din(Φ(i+1)) for i ∈ {1, . . . ,K − 1}. Then the following hold:

1. If Win(Φ(i)),Wout(Φ
(i)) ≤ C for all i ∈ {1, . . . ,K} and some C > 0, then

W
(
Φ(K) • · · · • Φ(1)

)
≤ C2 · (K − 1) +

K∑

i=1

W (Φ(i)). (A.2)
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2. If ‖Φ(i)‖ ≤ C for all i ∈ {1, . . . ,K} and some C ≥ 1 and dout(Φ
(i)) ≤ D for all

i ∈ {1, . . . ,K}, then ∥∥Φ(K) • · · · • Φ(1)
∥∥ ≤ 2D · C2. (A.3)

3. L(Φ(K)•· · ·•Φ(1))=
[∑K

i=1 L(Φ(i))
]
−(K−1) and Rσ(Φ(K)•· · ·•Φ(1))=RσΦ(K)◦· · ·◦RσΦ(1).

Remark 17. In particular, Equation (A.2) shows that if B,W ≥ 1 and W (Φ(i)) ≤ W as
well as B(Φ(i)) ≤ B for all i ∈ {1, . . . ,K}, then W (Φ(K) • · · · • Φ(1)) ≤ K · (B2 +W ).

Proof. Before we prove the general case, we analyze the composition of two networks as in
Equation (A.1). First, note for A ∈ CN×K and B ∈ CK×P that

‖AB‖`0 =
∑

i,j

1(AB)i,j 6=0 ≤
∑

i,j,`

1Ai,` 6=01B`,j 6=0 ≤
∑

i,`

(
1Ai,` 6=0 max

t

∑

j

1Bt,j 6=0

)
≤ ‖A‖`0‖B‖`0 .

A similar (but easier) calculation shows that ‖Av‖`0 ≤ ‖A‖`0 for v ∈ CK . Based on these
estimates, we see (in the notation of Equation (A.1)) that

‖b1 +A1cM‖`0 + ‖A1BM‖`0 ≤ ‖b1‖`0 + ‖A1‖`0 + ‖A1‖`0‖BM‖`0 ≤Win(Φ) · (1 +Wout(Ψ)).

Directly from the definition of Φ •Ψ, we thus see

W (Φ •Ψ) ≤W (Ψ)−Wout(Ψ) +W (Φ)−Win(Φ) +Win(Φ)(1 +Wout(Ψ))

≤W (Ψ) +W (Φ) +Win(Φ)Wout(Ψ).
(A.4)

Next, given A ∈ CN×K and B ∈ CK×P it is easy to see |(AB)i,j | ≤ K · ‖A‖∞‖B‖∞. Based
on this, we see in the notation of Equation (A.1) that ‖A1BM‖∞ ≤ dout(Ψ) ‖A1‖∞‖BM‖∞
and ‖b1 +A1cM‖∞ ≤ ‖b1‖∞ + dout(Ψ)‖A1‖∞‖cM‖∞ ≤ ‖Φ‖in · (1 + dout(Ψ)‖Ψ‖out). Thus, we
see directly from the definition of Φ •Ψ that

‖Φ •Ψ‖ ≤ max
{
‖Φ‖, ‖Ψ‖, ‖Φ‖in · (1 + dout(Ψ) ‖Ψ‖out)

}
. (A.5)

Now, we prove Equations (A.2) and (A.3) by induction on K ∈ N. For K = 1 the claim is
trivial. Next, assume that the claim holds for some K ∈ N and set Ψ := Φ(K) • · · · • Φ(1).

For proving Equation (A.2), note Win(Φ(K+1)) ≤ C and Wout(Ψ) = Wout(Φ
(K)) ≤ C.

Therefore, combining Equation (A.4) with the inductive assumption, we see

W (Φ(K+1) •Ψ) ≤W (Φ(K+1)) +W (Ψ) +Win(Φ(K+1))Wout(Ψ)

≤W (Φ(K+1)) + C2 · (K − 1) +
K∑

i=1

W (Φ(i)) + C · C

= C2 · ((K + 1)− 1) +

K+1∑

i=1

W (Φ(i)),

completing the induction for Equation (A.2).
To prove Equation (A.3), note ‖Ψ‖out = ‖Φ(K)‖out ≤ C and dout(Ψ) = dout(Φ

(K)) ≤ D
and use Equation (A.5) and the inductive assumption to obtain

‖Φ(K+1) •Ψ‖ ≤ max
{
‖Φ(K+1)‖, ‖Ψ‖, ‖Φ(K+1)‖in · (1 + dout(Ψ) ‖Ψ‖out)

}
≤ 2D · C2,
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completing the induction for Equation (A.3).
The last part of the lemma follows by induction after noting that L(Φ•Ψ) = L(Φ)+L(Ψ)−1

and Rσ(Φ •Ψ) = RσΦ ◦RσΨ.

A.3. Linear combinations of neural networks. In this appendix we show that the lin-
ear combinations of neural networks of a common depth can again be implemented as a
neural network. Indeed, let d,K ∈ N, and for each j ∈ {1, . . . ,K} let aj ∈ C and let
Φ(j) =

(
(A

(j)
1 , b

(j)
1 ), . . . , (A

(j)
L , b

(j)
L )
)
be a neural network with din(Φ(j)) = d and dout(Φ

(j)) = 1

and of common depth L(Φ(j)) = L. Define Ψ :=
(
(A1, b1), . . . , (AL, bL)

)
, where

A1 :=




A
(1)
1
...

A
(K)
1


 , AL :=

(
a1A

(1)
L

∣∣ · · ·
∣∣ aKA(K)

L

)
, and b` :=




b
(1)
`
...

b
(K)
`




for ` ∈ {1, . . . , L − 1}, as well as A` := diag(A
(1)
` , . . . , A

(K)
` ) for ` ∈ {2, . . . , L − 1} and

bL :=
∑K

j=1 aj b
(j)
L . It is easy to verify that

RσΨ =

K∑

j=1

aj RσΦ(j), L(Ψ) = L, W (Ψ) ≤
K∑

j=1

W (Φ(j)),

B(Ψ) ≤
K∑

j=1

B(Φ(j)), and ‖Ψ‖ ≤
K∑

j=1

(1 + |aj |)
∥∥Φ(j)

∥∥.
(A.6)

Indeed, all except the first and final of these statements follow directly from the definitions.
To verify the final statement, note by definition of ‖ • ‖∞ that

‖A1‖∞ = max
j∈{1,...,K}

∥∥A(j)
1

∥∥
∞ ≤ max

j∈{1,...,K}

∥∥Φ(j)
∥∥

and ‖b`‖∞ = max
j∈{1,...,K}

∥∥b(j)`
∥∥
∞ ≤ max

j∈{1,...,K}

∥∥Φ(j)
∥∥ for ` ∈ {1, . . . , L− 1},

as well as ‖AL‖∞ ≤ max
j∈{1,...,K}

|aj |
∥∥A(j)

L

∥∥
∞ ≤ max

j∈{1,...,K}
|aj |

∥∥Φ(j)
∥∥

and ‖bL‖∞ ≤
K∑

j=1

|aj | ‖b(j)L ‖ ≤
K∑

j=1

|aj |
∥∥Φ(j)

∥∥,

which implies as claimed that ‖Ψ‖ ≤∑K
j=1(1 + |aj |) ‖Φ(j)‖.

Finally, to verify the first statement, an induction with respect to ` ∈ {1, . . . , L−1} shows
that if we set T (j)

` := A
(j)
` (•)+b(j)` and T` := A`(•)+b` and finally F (j)

` := (σ◦T (j)
` )◦· · ·◦(σ◦T (j)

1 )

and F` := (σ ◦ T`) ◦ · · · ◦ (σ ◦ T1), then F`(z) =
(
F

(1)
` (z), . . . , F

(K)
` (z)

)
for z ∈ Cd and

` ∈ {1, . . . , L − 1}. Based on this, the first statement in Equation (A.6) follows from the
definition of the realization map Rσ (see Subsection 1.1).
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A.4. Proof of Lemma 11.

Proof. Define θj(z) :=
∏j
`=1 α`(z) and κj := ε

∑j
`=1(1 + ε)`. We will show inductively

that |γj(z)− θj(z)| ≤ κj . This will imply the claim by taking j = M , since we have

(1 + ε)` ≤ (1 + ε)M+1 ≤
(
1 + 1

M+1

)M+1 ≤ e ≤ 3

and hence κj ≤ κM ≤ 3M ε.
The case j = 1 is trivial, since |γ1(z)− θ1(z)| = |β1(z)−α1(z)| ≤ δ ≤ ε2 ≤ ε ≤ κ1. For the

induction step, first note that

κj ≤ κM = ε(1 + ε)

M−1∑

`=0

(1 + ε)` = ε(1 + ε)
(1 + ε)M − 1

(1 + ε)− 1

≤ (1 + ε)M+1 ≤
(

1 + 1
M+1

)M+1
≤ e ≤ 3

and hence |γj(z)| ≤ |θj(z)| + κj ≤ 4, since |α`(z)| ≤ 1 for all `, and thus |θj(z)| ≤ 1. Since
also |βj+1(z)| ≤ δ + |αj+1(z)| ≤ 1 + δ ≤ 4, we see by the properties of ×̃ for any z ∈ Ω that

∣∣γj+1(z)− θj+1(z)
∣∣ ≤

∣∣∣×̃
(
βj+1(z), γj(z)

)
− βj+1(z)γj(z)

∣∣∣
+
∣∣βj+1(z)γj(z)− βj+1(z)θj(z)

∣∣
+
∣∣(βj+1(z)− αj+1(z)

)
θj(z)

∣∣
≤ ε+ |βj+1(z)| · κj + δ · |θj(z)|
≤ ε+ δ + (1 + δ)κj ≤ ε(1 + ε) + (1 + ε)κj ,

where the last step used that δ ≤ ε2 ≤ ε. Finally, note by choice of κj that

ε(1 + ε) + (1 + ε)κj = ε(1 + ε) + ε

j+1∑

`=2

(1 + ε)` = ε

j+1∑

`=1

(1 + ε)` = κj+1.

This completes the induction and thus the proof.

A.5. Proof of Lemma 13.

Proof. Set σ` := σ for ` ∈ {1, . . . , L− 1} and σL := idC. It is easy to see in each case that
σ`(0) = 0; furthermore, Lemma 6 implies that each σ` is 1-Lipschitz. Now, inductively define
w0 := v0 := z as well as w`+1 := σ`+1(A`+1w` + b`+1) and v`+1 := σ`+1(B`+1v` + c`+1) for
` ∈ {0, . . . , L − 1}. We then have RσΦ(z) = wL and RσΨ(z) = vL. We will show inductively
that ‖v`‖`∞ ≤ R0 · (2R)` ·N1 · · ·N`−1 and ‖v` − w`‖`∞ ≤ R0 ·N1 · · ·N`−1 · 4`R`−1 · ‖Φ−Ψ‖,
which then implies the claim of the lemma.

For ` = 0, we trivially have ‖v0‖`∞ = ‖z‖`∞ ≤ R0 = R0 ·(2R)` ·N1 · · ·N`−1 and furthermore
‖v0 − w0‖`∞ = 0 ≤ R0 ·N1 · · ·N`−1 · 4`R`−1 · ‖Φ−Ψ‖.
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Next, if the claimed estimates hold for some ` ∈ {0, . . . , L− 1}, we see
∣∣(v`+1)j

∣∣ =
∣∣σ`+1

(
(B`+1v` + c`+1)j

)∣∣ ≤
∣∣(B`+1v` + c`+1)j

∣∣

≤ |(c`+1)j |+
N∑̀

m=1

|(B`+1)j,m| |(v`)m| ≤ R+N`RR0 · (2R)` ·N1 · · ·N`−1

≤ R0 · (2R)`+1 ·N1 · · ·N` ·
(

1
2

1
R0 (2R)`N1···N` + 1

2

)
≤ R0 · (2R)`+1 ·N1 · · ·N`,

proving the first estimate for `+ 1 instead of `. In a similar way, we see
∣∣(w`+1)j − (v`+1)j

∣∣ =
∣∣σ`+1

(
(A`+1w` + b`+1)j

)
− σ`+1

(
(B`+1v` + c`+1)j

)∣∣
≤
∣∣(A`+1w` −B`+1 v`)j

∣∣+ ‖b`+1 − c`+1‖`∞ .
(A.7)

Next, note that

∣∣(A`+1w` −B`+1 v`)j
∣∣ ≤

N∑̀

m=1

[∣∣(A`+1)j,m
(
(w`)m − (v`)m

)∣∣+
∣∣((A`+1)j,m − (B`+1)j,m

)
(v`)m

∣∣
]

≤ N` ·
(
R · ‖w` − v`‖`∞ + ‖Φ−Ψ‖ · ‖v`‖`∞

)

(∗)
≤ R0 ·N1 · · ·N` · 4`+1R` · ‖Φ−Ψ‖ ·

(
1
4 + 2`

4`+1

)

≤ 1

2
·R0 ·N1 · · ·N` · 4`+1R` · ‖Φ−Ψ‖,

where the step marked with (∗) used the induction hypothesis. Combining this estimate with
Equation (A.7) and noting ‖b`+1 − c`+1‖`∞ ≤ ‖Φ−Ψ‖ ≤ 1

2 ·R0 ·N1 · · ·N` · 4`+1R` · ‖Φ−Ψ‖
completes the induction.
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A note on exponential Riesz bases

Andrei Caragea, Dae Gwan Lee∗

Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt-Ingolstadt,
85071 Eichstätt, Germany

Abstract

We prove that if Iℓ = [aℓ, bℓ), ℓ = 1, . . . , L, are disjoint intervals in [0, 1) with
the property that the numbers 1, a1, . . . , aL, b1, . . . , bL are linearly independent
over Q, then there exist pairwise disjoint sets Λℓ ⊂ Z, ℓ = 1, . . . , L, such that
for every J ⊂ {1, . . . , L}, the system {e2πiλx : λ ∈ ∪ℓ∈J Λℓ} is a Riesz basis
for L2(∪ℓ∈J Iℓ). Also, we show that for any disjoint intervals Iℓ, ℓ = 1, . . . , L,
contained in [1, N) with N ∈ N, the orthonormal basis {e2πinx : n ∈ Z} of
L2[0, 1) can be complemented by a Riesz basis {e2πiλx : λ ∈ Λ} for L2(∪L

ℓ=1 Iℓ)
with some set Λ ⊂ ( 1

NZ)\Z, in the sense that their union {e2πiλx : λ ∈ Z ∪ Λ}
is a Riesz basis for L2([0, 1) ∪ I1 ∪ · · · ∪ IL).

Keywords: exponential bases, Riesz bases, hierarchical structure, finite union
of intervals, Kronecker–Weyl equidistribution along the primes
2000 MSC: 42C15

1. Introduction and Main Results

In 1995, Seip [18] showed that if S is an interval contained in [0, 1), then there
exists a set Λ ⊂ Z such that E(Λ) := {e2πiλx : λ ∈ Λ} is a Riesz basis for L2(S).
Since then, there have been various attempts towards finding/characterizing
the sets S that admit a Riesz spectrum, see e.g., [1, 3, 4, 6, 7, 9]. A significant
breakthrough was made by Kozma and Nitzan [10] who proved that if [aℓ, bℓ),
ℓ = 1, . . . , L, are disjoint intervals contained in [0, 1), then there exists a set
Λ ⊂ Z such that E(Λ) is a Riesz basis for L2(∪L

ℓ=1[aℓ, bℓ)). Recently, Pfander,
Revay and Walnut [17] showed that if the intervals [aℓ, bℓ) form a partition
of [0, 1), then the set of integers Z can be partitioned into some sets Λℓ, ℓ =
1, . . . , L, such that for each ℓ, the system E(Λℓ) is a Riesz basis for L

2[aℓ, bℓ), and
moreover E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J Sℓ) whenever J ⊂ {1, . . . , L}
is a consecutive index set (see [17, Theorems 1 and 2]). We would like to point
out that up to date, the existence of exponential Riesz bases is known only
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Email addresses: andrei.caragea@gmail.com (Andrei Caragea), daegwans@gmail.com

(Dae Gwan Lee)
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for several classes of sets S ⊂ R. Recently, Kozma, Nitzan and Olevskii [12]
constructed a bounded measurable set S ⊂ R such that the space L2(S) has no
exponential Riesz basis. For an overview of the known results on exponential
Riesz bases, we refer to [14, Section 1].

We are interested in the following two problems:

Problem 1 (Hierarchical structured exponential Riesz bases). Given a family
of disjoint sets S1, S2, . . . , SL ⊂ [0, 1) with positive measure, can we find dis-
joint sets Λ1,Λ2, . . . ,ΛL ⊂ Z such that for every J ⊂ {1, . . . , L}, the system
E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J Sℓ)?

Problem 2 (Complementability of exponential Riesz bases). Let Λ ⊂ R be a
discrete set and let S ⊂ R be a finite positive measure set such that E(Λ) is a
Riesz basis for L2(S). Given a finite positive measure set S′ ⊂ R\S, can we
find a discrete set Λ′ ⊂ R\Λ such that

• E(Λ′) is a Riesz basis for L2(S′), and

• E(Λ ∪ Λ′) is a Riesz basis for L2(S ∪ S′)?

The second problem is closely related to the first, as it deals with the case
L = 2 under the assumption that the sets S1 and Λ1 are already fixed.

Considering the result of Kozma, Nitzan and Olevskii [12], it is necessary to
restrict the sets Sℓ, S and S′ to certain classes of sets. In this paper, we will
address the above problems in the case that Sℓ, S and S′ are intervals or finite
unions of intervals.

Our first main result answers Problem 1 in the affirmative when Sℓ = [aℓ, bℓ),
ℓ = 1, . . . , L, are disjoint intervals in [0, 1) with the property that the numbers
1, a1, . . . , aL, b1, . . . , bL are linearly independent over Q, which means that hav-
ing q + q1a1 + . . .+ qLaL + q′1b1 + . . .+ q′LbL = 0 for some q, qℓ, q

′
ℓ ∈ Q implies

q = qℓ = q′ℓ = 0 for all ℓ. The result is motivated by [10, p.279, Claim 2].

Theorem 1. Let 0 < a1 < b1 < · · · < aL < bL < 1 with L ∈ N. Assume that
the numbers 1, a1, . . . , aL, b1, . . . , bL are linearly independent over Q. There exist
pairwise disjoint sets Λℓ ⊂ Z, ℓ = 1, . . . , L, such that for every J ⊂ {1, . . . , L},
the system E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J [aℓ, bℓ)).

Concerning Problem 2, we have the following result which builds on the fact
that E(Z) is an orthonormal basis (thus, a Riesz basis) for L2[0, 1).

Theorem 2. Let 1 ≤ a1 < b1 < a2 < b2 < · · · < aL < bL ≤ N with L,N ∈ N.
There exists a set Λ′ ⊂ ( 1

NZ)\Z such that

• E(Λ′) is a Riesz basis for L2(∪L
ℓ=1[aℓ, bℓ)), and

• E(Z ∪ Λ′) is a Riesz basis for L2([0, 1) ∪ [a1, b1) ∪ · · · ∪ [aL, bL)).

This theorem answers Problem 2 in the affirmative when S = [0, 1), Λ = Z,
and S′ is a finite union of disjoint bounded intervals in [1,∞).
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While the result of Pfander, Revay and Walnut [17] relies on Avdonin’s the-
orem and the ergodic properties of a certain type of integer sequences, Theorem
1 is based on a refinement of the key lemma of [10] for primes, together with
Chebotarëv’s theorem on roots of unity and the Kronecker–Weyl equidistribu-
tion theorem along the primes.

1.1. Remarks

We state the following conjecture which improves upon Theorem 1.

Conjecture 1. Let [aℓ, bℓ), ℓ = 1, . . . , L, be disjoint intervals contained in
[0, 1), that is, 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aL < bL ≤ 1. There exist
pairwise disjoint sets Λℓ ⊂ Z, ℓ = 1, . . . , L, such that for every J ⊂ {1, . . . , L},
the system E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J [aℓ, bℓ)).

This conjecture generalizes Theorem 1 by removing the Q-linear indepen-
dence of the endpoints and by allowing for contiguous intervals in [0, 1), i.e.,
bℓ = aℓ+1 for some ℓ ∈ {1, . . . , L − 1}. The conjecture can be easily reformu-
lated as follows.

Conjecture 1′. Let Iℓ, ℓ = 1, . . . , L, be intervals which form a partition of [0, 1).
There exists a partition Λℓ, ℓ = 1, . . . , L, of Z such that for every J ⊂ {1, . . . , L},
the system E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J Iℓ).

Indeed, Conjecture 1 obviously implies Conjecture 1′, and the converse is
seen by considering the partition of [0, 1) formed using the endpoints of all
[aℓ, bℓ). Note that Conjecture 1′ generalizes the result of Pfander, Revay and
Walnut [17] from consecutive index sets J to arbitrary index sets J .

Lastly, we mention that both Problems 1 and 2 remain open for more general
classes of sets Sℓ, S and S′.

2. Preliminaries

Definition. A sequence {fn}n∈Z in a separable Hilbert space H is called

• a frame for H (with frame bounds A and B) if there are constants 0 <
A ≤ B < ∞ such that

A ‖f‖2 ≤
∑

n∈Z
|〈f, fn〉|2 ≤ B ‖f‖2 for all f ∈ H;

• a Riesz sequence in H (with Riesz bounds A and B) if there are constants
0 < A ≤ B < ∞ such that

A ‖c‖2ℓ2 ≤
∥∥∥
∑

n∈Z
cn fn

∥∥∥
2

≤ B ‖c‖2ℓ2 for all {cn}n∈Z ∈ ℓ2(Z);

• a Riesz basis for H if it is a complete Riesz sequence in H.

3



It is well-known (see e.g., [5, Proposition 3.7.3, Theorems 5.4.1 and 7.1.1] or
[10, Lemma 1]) that a sequence in H is a Riesz basis if and only if it is both a
frame and a Riesz sequence. Moreover in this case, the optimal frame bounds
coincides with the optimal Riesz bounds. It is worth noting that Riesz bases
are equivalent to unconditional bases that are norm-bounded above and below
[5, Lemma 3.6.9]. Since every exponential function has constant norm in L2(S)
with S ⊂ Rd, namely ‖e2πiλ·(·)‖L2(S) = |S|1/2 for any λ ∈ Rd, Riesz bases of
exponentials coincide with unconditional bases of exponentials.

Proposition 3 (Proposition 2.1 in [16], Proposition 5.4 in [2]). Let {en}n∈I be
an orthonormal basis of a separable Hilbert space H, where I is a countable index
set. Let P : H → M be the orthogonal projection from H onto a closed subspace
M. Let J ⊂ I, Jc := I\J , and 0 < α ≤ 1. The following are equivalent.

(i) {Pen}n∈J ⊂ M is a frame for M with optimal lower bound α.

(ii) {Pen}n∈Jc ⊂ M is a Bessel sequence with optimal bound 1− α.

(iii) {(Id− P )en}n∈Jc ⊂ M⊥ is a Riesz sequence with optimal lower bound α.

As a direct consequence of Proposition 3, we have that for a set Λ ⊂ Z and
a measurable set S ⊂ [0, 1), the system E(Λ) is a frame for L2(S) if and only if
E(Z\Λ) is a Riesz sequence in L2([0, 1)\S).

Lemma 4. Assume that E(Λ) is a Riesz basis for L2(S) with bounds 0 < A ≤
B < ∞, where Λ ⊂ Rd is a discrete set and S ⊂ Rd is a measurable set. Then
the following hold.
(a) For any a, b ∈ Rd, the system E(Λ + a) is a Riesz basis for L2(S + b) with
bounds A and B.
(b) For any c > 0, the system E(cΛ) is a Riesz basis for L2(1cS) with bounds A

c

and B
c .

Lemma 4 remains valid if all the terms “Riesz basis” are replaced by “Riesz
sequence” or by “frame”. A proof of Lemma 4 can be found in [14].

For any N ∈ N, a measurable set S ⊂ [0, 1), and n = 1, . . . , N , we define

A≥n = A≥n(N,S) :=
{
t ∈ [0, 1

N ) : t+ k
N ∈ S for at least n values

of k ∈ {0, 1, . . . , N − 1}
}
.

(1)

Lemma 5 (Lemma 2 in [10]). Let N ∈ N and let S ⊂ [0, 1) be a measurable
set. If there exist sets Λ1, . . . ,ΛN ⊂ NZ such that E(Λn) is a Riesz basis for
L2(A≥n), then E(∪N

n=1(Λn+n)) is a Riesz basis for L2(S).

This lemma, which plays a central role in [10], combines Riesz bases by
introducing consecutive shift factors n to the frequency sets Λn and then taking
their union ∪N

n=1(Λn+n). For our purpose, we generalize the lemma to allow
for arbitrary shift factors when N is prime.
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Lemma 6. Let N ∈ N be a prime and let S ⊂ [0, 1) be a measurable set. If there
exist sets Λ1, . . . ,ΛN ⊂ NZ such that E(Λn) is a Riesz basis (resp. a frame, a
Riesz sequence) for L2(A≥n), then for every permutation {jn}Nn=1 of {1, . . . , N}
the system E(∪N

n=1(Λn+jn)) is a Riesz basis (resp. a frame, a Riesz sequence)
for L2(S).

See Appendix A for a proof of Lemma 6.
We will use the following notation throughout the proofs. For x ∈ R, we

denote the fractional part of x by {x}, that is, 0 ≤ {x} := x − ⌊x⌋ < 1, where
⌊x⌋ is the greatest integer less than or equal to x. Also, we adopt the convention
that [x, y) = ∅ if x = y ∈ R.

For the proof of Theorem 1, we will need the following version of the Kronecker–
Weyl equidistribution theorem (see e.g., [8, Theorem 443] or [13, p.48, Theorem
6.3 and Example 6.1]) along the primes. The one-dimensional case (d = 1) was
proved by Vinogradov [20] (see also [13, p.22]): if a is an irrational number,
the sequence {2a}, {3a}, {5a}, {7a}, . . . is uniformly distributed in [0, 1), mean-
ing that for every interval I ⊂ [0, 1), the ratio of the numbers {pa} with prime
p ≤ N that are contained in I, tends to |I| as N → ∞. The notion of uniform
distribution is defined similarly in higher dimensions, see e.g., [13, p.47, Defini-
tion 6.1]. As we could not find any reference for the multi-dimensional case, we
include a short proof here.

Proposition 7 (Kronecker–Weyl equidistribution along the primes). Let d ∈ N
and a1, . . . , ad ∈ R. If the numbers 1, a1, . . . , ad are linearly independent over
Q, which means that having q+ q1a1 + . . .+ qd ad = 0 for some q, q1, . . . , qd ∈ Q
implies q = q1 = . . . = qd = 0, then the d-dimensional vectors

(
{p a1}, . . . , {p ad}

)
for p ∈ P

are uniformly distributed in [0, 1)d, where P = {2, 3, 5, 7, . . .} is the set of primes.

Proof. For convenience, we denote the n-th prime by pn, that is, p1=2, p2=3,
p3=5, p4=7, and so on. ByWeyl’s criterion (see e.g., [13, p.48, Theorems 6.2 and
6.3]), the claim is equivalent to having that for every z = (z1, . . . , zd) ∈ Zd\{0},
the fractional part of 〈z, (pna1, . . . , pnad)〉 = z1 · pna1 + . . . + zd · pnad = pn ·
(z1a1 + . . . + zd ad) for n = 1, 2, . . . are uniformly distributed in [0, 1). Note
that for any fixed z = (z1, . . . , zd) ∈ Zd\{0}, the number ã := z1a1 + . . .+ zd ad
is irrational because 1, a1, . . . , ad are linearly independent over Q. Hence, the
result of Vinogradov [20] implies that the numbers {pnã}, n = 1, 2, . . ., are
uniformly distributed in [0, 1), as desired.

3. Proof of Theorem 1

Proposition 7 implies that there exist infinitely many prime numbers N ∈ N
satisfying

0 < {Na1} < {Na2} < . . . < {NaL−1} < {NaL}
< {NbL} < {NbL−1} < . . . < {Nb2} < {Nb1} < 1.

(2)
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Among such numbers, choose a large N ∈ N so that every spacing between the
numbers 0 < a1 < b1 < a2 < b2 < · · · < aL < bL < 1 contains at least one of k

N ,
k = 1, . . . , N−1, as an interior point (which clearly requires 2L+ 1 ≤ N). This
ensures that with respect to the grid 1

NZ the interval [aℓ, bℓ) is partitioned into
translates of

[{Naℓ}
N , 1

N

)
,

[
0, {Nbℓ}

N

)
, and possibly some extra intervals [0, 1

N ), (3)

and that the rightmost segment of [aℓ, bℓ), corresponding to [0, {Nbℓ}
N ) in (3),

lies in a set [ kN , k+1
N ) which does not intersect the next interval [aℓ+1, bℓ+1).

Consequently, each of the sets A≥n = A≥n(N,S), n = 1, 2, . . . , N , is one of the
form

∅, [0, 1
N ), and

[ {Naℓ}
N , {Nbℓ}

N

)
for some ℓ ∈ {0, 1, . . . , N − 1}.

Note that due to (2), the translates of [{Naℓ}
N , 1

N ) and [0, {Nbℓ}
N ) in (3) together

contribute exactly [0, 1
N ) and [{Naℓ}

N , {Nbℓ}
N ) to the family of sets A≥n. The

nested sets
A≥1 ⊃ A≥2 ⊃ · · · ⊃ A≥N

are thus given by

K︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N ) ⊃

L︷ ︸︸ ︷[ {Na1}
N , {Nb1}

N

)
⊃ · · · ⊃

[{NaL}
N , {NbL}

N

)

⊃
N−K−L︷ ︸︸ ︷

∅ = · · · = ∅ for some integer K ≥ L.

Let us associate each set A≥n with the interval [aℓ, bℓ) which it originates from.
The sets [0, 1

N ) can be associated with the intervals [aℓ, bℓ) in various ways, but
for convenience we will assume

K1︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N )︸ ︷︷ ︸

l
[a1,b1)

= · · · =
KL︷ ︸︸ ︷

[0, 1
N ) = · · · = [0, 1

N )︸ ︷︷ ︸
l

[aL,bL)

⊃
L︷ ︸︸ ︷[ {Na1}

N , {Nb1}
N

)
︸ ︷︷ ︸

l
[a1,b1)

⊃ · · · ⊃
[ {NaL}

N , {NbL}
N

)
︸ ︷︷ ︸

l
[aL,bL)

⊃
N−K−L︷ ︸︸ ︷

∅ = · · · = ∅

where K =
∑L

ℓ=1Kℓ with Kℓ ∈ N for all ℓ.

Step 1. Construction of the sets Λℓ ⊂ Z, ℓ = 1, . . . , L.
For each n = 1, . . . , N , we apply the result of Seip [18] (see the beginning of
Section 1) to obtain a set Λ(n) ⊂ NZ such that E(Λ(n)) is a Riesz basis for
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L2(A≥n); it is easily seen that

Λ(n) =





NZ for 1 ≤ n ≤ K,

( NZ for K+1 ≤ n ≤ K+L,

∅ for K+L+1 ≤ n ≤ N.

Lemma 5 implies that E(∪N
n=1(Λ

(n)+n)) is a Riesz basis for L2(S). For each
ℓ = 1, . . . , L, let Λℓ be the union of Λ(n)+n over all n such that A≥n is associated
with [aℓ, bℓ), that is,

Λ1 :=
⋃
·

n∈{1, 2, ...,K1,K+1}
(Λ(n)+n) =

(⋃· K1

n=1 (NZ+n)
) ⋃· (Λ(K+1)+K+1),

Λ2 :=
⋃
·

n∈{K1+1,K1+2, ...,K1+K2,K+2}
(Λ(n)+n)

=
(⋃· K1+K2

n=K1+1 (NZ+n)
) ⋃· (Λ(K+2)+K+2),

...

ΛL :=
⋃
·

n∈{K1+···+KL−1+1, ...,K,K+L}
(Λ(n)+n)

=
(⋃· K

n=K1+···+KL−1+1 (NZ+n)
) ⋃· (Λ(K+L)+K+L).

Clearly, we have
L⋃
·

ℓ=1

Λℓ =

N⋃
·

n=1

(Λ(n)+n)

and thus, E(∪L
ℓ=1 Λℓ) is a Riesz basis for L2(S).

Step 2. For a subset J ⊂ {1, . . . , L}, we set ΛJ := ∪ℓ∈J Λℓ and SJ :=
∪ℓ∈J [aℓ, bℓ). We claim that E(ΛJ) is a Riesz basis for L2(SJ).

First, note that the corresponding sets AJ
≥n := A≥n(N,SJ) for n = 1, . . . , N

are again of the form

∅, [0, 1
N ), or

[{Naℓ}
N , {Naℓ}

N

)
for some ℓ ∈ J.

Denoting J = {ℓ1, . . . , ℓM} with ℓ1 < . . . < ℓM , we see that the nested sets

AJ
≥1 ⊃ AJ

≥2 ⊃ · · · ⊃ AJ
≥N
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are given by

Kℓ1︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N )︸ ︷︷ ︸

l[
aℓ1

,bℓ1

)

= · · · =

KℓM︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N )︸ ︷︷ ︸

l[
aℓM

,bℓM

)

⊃

M︷ ︸︸ ︷[{Naℓ1
}

N ,
{Nbℓ1}

N

)

︸ ︷︷ ︸
l[

aℓ1
,bℓ1

)

⊃ · · · ⊃
[{NaℓM

}
N ,

{NbℓM }
N

)

︸ ︷︷ ︸
l[

aℓM
,bℓM

)

⊃
N−KJ−M︷ ︸︸ ︷
∅ = · · · = ∅

where KJ :=
∑

ℓ∈J Kℓ. Note that applying Lemma 5 directly to this setup will
incur different shift factors in the frequency sets. Indeed, Lemma 5 implies that
E(Λ′) is a Riesz basis for L2(SJ), with

Λ′ :=
(⋃· KJ

n=1 (NZ+n)
) ⋃· (Λ(K+ℓ1)+KJ+1)

⋃· (Λ(K+ℓ2)+KJ+2)
⋃
· · · ·

⋃
· (Λ(K+ℓM )+KJ+M),

(4)

where Λ(n) ⊂ NZ for n = 1, . . . , N are the sets defined in Step 1. However, our
goal is to show that E(∪M

m=1 Λℓm) is a Riesz basis for L2(SJ), where

Λℓ1 :=
(⋃· K1+K2+···+Kℓ1

n=K1+K2+···+Kℓ1−1+1 (NZ+n)
) ⋃· (Λ(K+ℓ1)+K+ℓ1),

Λℓ2 :=
(⋃· K1+K2+···+Kℓ2

n=K1+K2+···+Kℓ2−1+1 (NZ+n)
) ⋃· (Λ(K+ℓ2)+K+ℓ2),

...

ΛℓM :=
(⋃· K1+K2+···+KℓM

n=K1+K2+···+KℓM−1+1 (NZ+n)
) ⋃· (Λ(K+ℓM)+K+ℓM ).
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To show this, consider the KJ+M sets

Ω1 := NZ+(K1+K2+ · · ·+Kℓ1−1+1),

...
...

ΩKℓ1
:= NZ+(K1+K2+ · · ·+Kℓ1),

ΩKℓ1
+1 := NZ+(K1+K2+ · · ·+Kℓ2−1+1),

...
...

ΩKℓ1
+Kℓ2

:= NZ+(K1+K2+ · · ·+Kℓ2),

...
...

ΩKℓ1
+Kℓ2

+···+KℓM−1
:= NZ+(K1+K2+ · · ·+KℓM−1+1),

...
...

ΩKJ := NZ+(K1+K2+ · · ·+KℓM ) = NZ+KJ ,

ΩKJ+1 := Λ(K+ℓ1)+(K+ℓ1),

ΩKJ+2 := Λ(K+ℓ2)+(K+ℓ2),

...
...

ΩKJ+M := Λ(K+ℓM)+(K+ℓM ),

which partitions ∪M
m=1 Λℓm , that is, ∪·KJ+M

n=1 Ωn = ∪M
m=1 Λℓm . Here, the sets

Ωn are exactly ordered in the way that E(Ωn) is a Riesz basis for L2(AJ
≥n).

Note that while the KJ+M components of Λ′ in (4) have consecutive shift
factors, namely from 1 up to KJ+M , the shift factors associated with Ωn are
not consecutive in general. However, since N ∈ N is prime, Lemma 6 implies
that E(∪M

m=1 Λℓm) = E(∪·KJ+M
n=1 Ωn) is a Riesz basis for L2(SJ ). This completes

the proof.

4. Proof of Theorem 2

To prove Theorem 2, we will use Lemma 5 which is the key lemma of Kozma
and Nitzan [10]. Note that by Lemma 4, one may replace the frequency set
∪N
n=1(Λn+n) in Lemma 5 by ∪N

n=1(Λn+n−1), while preserving the Riesz basis
property.

We will first prove the case L = 1 and then extend the proof to the case
L ≥ 2.

Case L = 1. Given a set V = [0, 1) ∪ [a, b) ⊂ [0, N) with N ∈ N and
1 ≤ a < b ≤ N , let S := 1

N V = [0, 1
N ) ∪ [ aN , b

N ) ⊂ [0, 1). We will apply Lemma
5 directly to this set S. There are two cases, either {a} ≤ {b} or {b} < {a}.

First, assume that 0 ≤ {a} ≤ {b} < 1. Then there exists a number M ∈ N
such that

A≥1 = A≥2 = · · · = A≥M = [0, 1
N ) ⊃ A≥M+1 =

[{a}
N , {b}

N

)
⊃ A≥M+2 = ∅.
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Clearly, we may choose the canonical frequency sets Λ1 = · · · = ΛM = NZ for
A≥1 = A≥2 = · · · = A≥M = [0, 1

N ), so that for each n = 1, . . . ,M , the system
E(Λn) is a Riesz basis (in fact, an orthogonal basis) for L2(A≥n). Also, there

exists a set ΛM+1 ⊂ NZ such that E(ΛM+1) is a Riesz basis for L2
[ {a}

N , {b}
N

)
;

indeed, such a set ΛM+1 can be obtained from the result of Seip [18] with a
dilation (see Lemma 4). Then Lemma 5 with shift factors ‘n − 1’ in place of
‘n’ yields that E((∪M

n=1NZ+n−1) ∪ (ΛM+1+M)) is a Riesz basis for L2(S) =
L2( 1

N V ). By a dilation, we obtain that E((∪M
n=1Z+n−1

N ) ∪ ( 1
NΛM+1+

M
N )) =

E(Z ∪ (∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis for L2(V ) = L2([0, 1) ∪

[a, b)). Now, we claim that E(Λ′) is a Riesz basis for L2[a, b), where Λ′ :=
(∪M−1

k=1 Z+ k
N )∪( 1

NΛM+1+
M
N ). To see this, we again apply Lemma 5 (the original

version) to the set S′ := 1
N V ′ with V ′ = [a, b). One can easily check that the

corresponding set A′
≥n is equal to the set A≥n−1 above, that is,

A′
≥1 = · · · = A′

≥M−1 = [0, 1
N ) ⊃ A′

≥M =
[ {a}

N , {b}N
)

⊃ A′
≥M+1 = ∅. (5)

Then Lemma 5 implies that E((∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis

for L2[a, b), as claimed.
Now, assume that 0 ≤ {b} < {a} < 1. Then there exists a number M ∈ N

such that

A≥1 = · · · = A≥M = [0, 1
N ) ⊃ A≥M+1 =

[
0, {b}

N

)
∪
[ {a}

N , 1
N

)
⊃ A≥M+2 = ∅.

Again, using the result of Seip [18] with a dilation, we obtain a set ΛM+1 ⊂ NZ
such that E(ΛM+1) is a Riesz basis for L2

[ {a}
N , 1+{b}

N

)
. Since all elements in

E(NZ) are 1
N -periodic, it follows that E(ΛM+1) is a Riesz basis for L

2
([
0, {b}N

)
∪[{a}

N , 1
N

))
. Then, by similar arguments as in the case {a} ≤ {b}, we deduce that

E(Z ∪ (∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis for L2([0, 1) ∪ [a, b)), and

that E((∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis for L2[a, b).

Case L ≥ 2. We will use essentially the same arguments as in the case L = 1,
but employ the main result of Kozma and Nitzan [10] instead of Seip [18]. Given
a set V = [0, 1) ∪ [a1, b1) ∪ · · · ∪ [aL, bL) ⊂ [0, N) with L,N ∈ N and 1 ≤ a1 <
b1 < · · · < aL < bL ≤ N , let S := 1

N V = [0, 1
N )∪ [a1

N , b1N )∪· · ·∪ [aL

N , bL
N ) ⊂ [0, 1).

As in the case L = 1, we will apply Lemma 5 to this set S.
Note that there are finitely many possible ordering of the values

0 ≤ {a1}
N , {b1}

N , · · · , {aL}
N , {bL}

N < 1
N ,

where equalities are also allowed, e.g., the values are all zero if all aℓ and bℓ
are integers. It is easily seen that besides 0 and 1

N , these are the only possible
values that can be the boundary points of A≥n, n = 1, . . . , N . In any case, since
[0, 1

N ) ⊂ S we have

A≥1 = [0, 1
N ) ⊃ A≥2 ⊃ · · · ⊃ A≥N ,

where each of the sets A≥2, . . . , A≥N is either empty or a finite union of intervals.
One can therefore use the main result of [10] with a dilation, to construct sets
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Λ1=NZ,Λ2,Λ3, . . . ,ΛN ⊂ NZ such that for each n, the system E(Λn) is a Riesz
basis for L2(A≥n). The rest of the proof is similar to the case L = 1. �
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Appendix A. Proof of Lemma 6

To prove Lemma 6, we will follow the proof strategy of Lemma 5 [10, Lemma
2]. For any N ∈ N, a measurable set S ⊂ [0, 1), and n = 0, 1, . . . , N , we define

An :=
{
t ∈ [0, 1

N ) : t+ k
N ∈ S for exactly n values of k ∈ {0, 1, . . . , N − 1}

}
,

Bn :=
{
t ∈ S : t+ k

N ∈ S for exactly n integers k ∈ Z
}
.

Obviously, considering the set Bn modulo 1
N yields the n-fold of An, which

means that each element of An corresponds to exactly n points of Bn that
are distanced apart by multiples of 1

N . Note that {An}Nn=0 and {Bn}Nn=0 form
partitions of [0, 1

N ) and [0, 1), respectively, that is, [0, 1
N ) = ∪· Nn=0 An and [0, 1) =

∪· Nn=0 Bn. Also, the family {Bn}Nn=1 forms a partition of S, i.e., S = ∪· Nn=1 Bn.
For f ∈ L2(S) and n = 1, . . . , N , we denote by fn the restriction of f to Bn,
that is, fn(t) = f(t) for t ∈ Bn and 0 otherwise. This yields the decomposition
L2(S) ∋ f = f1 + . . . + fN with all fn having disjoint support. Note that the
set A≥n given by (1) can be expressed as A≥n = ∪N

ℓ=n Aℓ for n = 1, . . . , N .

Similarly, we define B≥n := ∪N
ℓ=n Bℓ and f≥n :=

∑N
ℓ=n fℓ for n = 1, . . . , N . For

brevity, we write Λ := ∪N
ℓ=1(Λℓ+jℓ).

Frame. Assume that Λ1, . . . ,ΛN ⊂ NZ are such that E(Λn) is a frame for
L2(A≥n). To prove that E(Λ) is a frame for L2(S), it is enough to show that
there exists a constant c > 0 satisfying

∑

λ∈Λ

∣∣〈f, e2πiλ(·)〉L2(S)

∣∣2 ≥ c ‖fn‖2L2(S) −
n−1∑

ℓ=1

‖fℓ‖2L2(S)

for all f ∈ L2(S) and n = 1, . . . , N.

In turn, it is enough to show that there exists a constant c > 0 satisfying

∑

λ∈Λ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2 ≥ c ‖fn‖2L2(S), f ∈ L2(S), n = 1, . . . , N. (A.1)
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Such reductions are essentially due to the decomposition f = f1 + . . . + fN
with all fn having disjoint support, and due to S ⊂ [0, 1) and Λ ⊂ Z; see [10,
Eqns. (6)–(7)] for detailed arguments.

To prove (A.1), fix any f ∈ L2(S) and any n ∈ {1, . . . , N}. Since f≥n is
supported in ∪N

ℓ=n Bℓ ⊂ S, we have for any λ ∈ Λℓ+jℓ with ℓ ∈ {1, . . . , N},

〈
f≥n, e

2πiλ(·)〉
L2(S)

=

∫ 1

0

f≥n(t) e
−2πiλt dt

=

∫ 1/N

0

N−1∑

k=0

f≥n

(
t+ k

N

)
exp(−2πiλ(t+ k

N )) dt

=

∫ 1/N

0

hn,ℓ(t) e
−2πiλt dt =

〈
hn,ℓ, e

2πiλ(·)〉
L2[0, 1

N )
,

where

hn,ℓ(t) := 1A≥n
(t) ·

N−1∑

k=0

f≥n

(
t+ k

N

)
e−2πijℓk/N . (A.2)

Note that for ℓ = 1, . . . , n, the function hn,ℓ is supported in A≥n ⊂ A≥ℓ. Since
E(Λℓ) is a frame for L2(A≥ℓ), say, with lower frame bound αℓ > 0, we have

∑

λ∈Λℓ+jℓ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2 =
∑

λ∈Λℓ+jℓ

∣∣〈hn,ℓ, e
2πiλ(·)〉L2[0, 1

N )

∣∣2

≥ αℓ ‖hn,ℓ‖2.
(A.3)

Summing up (A.3) for ℓ = 1, . . . , n gives

∑

λ∈Λ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2 ≥
n∑

ℓ=1

∑

λ∈Λℓ+jℓ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2

≥
(

min
1≤ℓ≤n

αℓ

)
·

n∑

ℓ=1

‖hn,ℓ‖2

≥
(

min
1≤ℓ≤n

αℓ

)
·

n∑

ℓ=1

‖hn,ℓ · 1An‖2.

(A.4)

On the other hand, for any fixed t ∈ An, Equation (A.2) becomes

hn,ℓ(t) =
N−1∑

k=0

f≥n

(
t+ k

N

)
e−2πijℓk/N

and collecting the equation for ℓ = 1, . . . , n gives the n×N linear system

[
hn,ℓ(t)

]n
ℓ=1

=
[
e−2πijℓk/N

]
1≤ℓ≤n,0≤k≤N−1

[
f≥n

(
t+ k

N

)]N−1

k=0
.

Since t ∈ An, the vector [f≥n

(
t + k

N

)
]0≤k≤N−1 has exactly n nonzero entries,

say, at the indices k1 < . . . < kn from {0, 1, . . . , N − 1}. This reduces the above
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system to an n×n linear system
[
hn,ℓ(t)

]n
ℓ=1

=
[
e−2πijℓkr/N

]
1≤ℓ≤n,1≤r≤n

[
f≥n

(
t+ kr

N

)]n
r=1

,

where the associated matrix [e−2πijℓkr/N ]1≤ℓ≤n,1≤r≤n is invertible since N is
prime (by Chebotarëv’s theorem on roots of unity, see e.g., [19]). As there are
only finitely many possible choices of k1 < . . . < kn from {0, 1, . . . , N−1}, there
exists a constant c′ > 0 such that

n∑

ℓ=1

∣∣hn,ℓ(t)
∣∣2 ≥ c′

N−1∑

k=0

∣∣f≥n

(
t+ k

N

)∣∣2 for all t ∈ An.

Integrating over t ∈ An then gives

n∑

ℓ=1

‖hn,ℓ · 1An‖2 ≥ c′
∫

An

N−1∑

k=0

∣∣f≥n

(
t+ k

N

)∣∣2 = c′ ‖fn‖2L2(Bn)
= c′ ‖fn‖2L2(S).

Combining this inequality with (A.4) yields the desired inequality (A.1).

Riesz sequence. Assume that Λ1, . . . ,ΛN ⊂ NZ are such that E(Λn) is
a Riesz sequence in L2(A≥n). We will show that E(Λ) is a Riesz sequence
in L2(S) by using the frame part which is proved above (a similar trick was
used in [11, Lemma 7]). Let S′ := [0, 1)\S and let A′

≥n, n = 1, . . . , N , be the

corresponding sets of (1) for S′. It is easily seen that A′
≥n = [0, 1

N )\A≥N+1−n for

n = 1, . . . , N . Since E(ΛN+1−n) is a Riesz sequence in L2(A≥N+1−n), we deduce
from Proposition 3 with a dilation that the system E(NZ\ΛN+1−n) is a frame
for L2([0, 1

N )\A≥N+1−n) = L2(A′
≥n); see the discussion after Proposition 3. The

frame part then implies that the system E(∪N
n=1((NZ\ΛN+1−n)+jN+1−n)) is a

frame for L2(S′). Finally, again by Proposition 3, we conclude that the system
E(Λ) = E(∪N

n=1(Λn+jn)) = E(Z\ ∪N
n=1 ((NZ\ΛN+1−n)+jN+1−n)) is a Riesz

sequence in L2(S) = L2([0, 1)\S′).

Riesz basis. Since a family of vectors in a separable Hilbert space is a Riesz
basis if and only if it is both a frame and a Riesz sequence, this part follows
immediately by combining the frame and Riesz sequence parts. �
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