A Functional Central Limit Theorem FOR RECURSIVE RESIDUALS AND Applications in Asymptotic Statistics

SUbMitted by Karsten Evers
in Partial Fulfilment of the Requirements
FOR THE DEGREE OF DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)

Veitsbronn (Germany), 2022/04/26

Katholische UniversitäT EICHSTÄTT-INGOLSTADT

Chair of Mathematics - Statistics

First reviewer:	Prof. Dr. Wolfgang Bischoff
	Katholische Universität Eichstätt-Ingolstadt
Second reviewer:	Prof. Dr. Enkelejd Hashorva
	Université de Lausanne
Date of oral examination:	$2022 / 07 / 14$

Preface

In this thesis, we study stochastic processes based on recursive and ordinary residuals.
In Part A of this thesis we study partial sums of recursive residuals. We consider a classical linear regression model, where the regression functions are defined on a compact domain in the real numbers and sample data at specific points from the design area in the form of a triangular array. Next we define recursive least squares residuals and prove a number of their interesting properties. These have many remarkable advantages over classical residuals. We then consider partial sums of recursive residuals, define a recursive residual partial sum process and prove that this process converges weakly against Brownian motion. For not normally distributed errors, the limit process has been known only for time series samples under assumptions that are difficult to verify, or in the case of triangular schemes of design points only under strong assumptions on the regression functions. For the first time, we determine the limit process for triangular schemes without the restrictive assumption of normally distributed errors and under very mild assumptions on the regression functions (they have to be left continuous, of bounded variation and linearly independent with respect to the L2 norm) that are of great benefit for practical applications. Crucial for the proof are Donsker's invariance principle for triangular schemes, a technique to factorize simultaneously a family of functions and Rubin's famous continuous mapping theorem. Our approach, based on Rubin's theorem, further allows us to compute the distribution of the limit process under local alternatives. With the help of these asymptotic results we are then able to define and study asymptotic tests and we give an example of an asymptotically uniformly most powerful test.

In Part B we give an introduction to the theory of weak convergence of finite measures, and present these classical results in a more general form than usual. We consider measures on perfectly normal spaces instead on metric spaces, and we consider filters of measures instead of sequences of measures. To our knowledge, this approach has not yet been published.

In Part C, we summarize the main basics needed to understand the main statements from Part A, and we develop some technical tools needed to understand the corresponding proofs. Some of these results are also interesting in their own right, such as the simultaneous factorization of a whole family of functions mentioned above or the estimation of the eigenvalues of certain Gram matrices. Finally, all proofs of all statements of the previous sections can be found here.

Part D, the appendices, contains all R scripts of the simulations, a list of all new results, and a list of symbols and abbreviations.

Acknowledgments

I would like to thank my mentor Wolfgang Bischoff. Without his guidance, the many conversations and his patience, this project would not have been possible. And I would like to thank Enkelejd Hashorva for taking on the second review. Finally, I would also like to thank Thomas Heindl for the many helpful discussions, which often led to new insights.

Contents

Preface 2
Part A. Sums of recursive residuals and their asymptotics 4
1 Introduction 4
2 Ordinary residuals in linear regression 6
3 Recursive residuals 7
4 Recursive residual partial sum process 9
5 Recursive residual partial sum limit process 10
6 Reversed partial sums of recursive residuals 17
7 An asymptotically uniformly most powerful test 20
Part B. Weak convergence of finite measures 21
1 Basic notations and definitions 22
2 Finite measures in perfectly normal spaces 23
3 Weak convergence of finite measures 24
4 Convergence in distribution 27
Part C. Technical statements and proofs 29
1 Brownian motion and Donskers Theorem 29
2 Functions with existing limits from left and right 31
3 Asymptotic- F-designs 35
4 Bounds for largest and smallest eigenvalues of a Gram matrix 36
5 A theorem on continuous convergence in $C[0,1]$ 38
6 Proofs 39
Part D. Appendices 75
1 List of figures and tables and R scripts generating them 75
2 New results 79
3 List of abbreviations and symbols 80
Bibliography 82

Part A. Sums of recursive residuals and their asymptotics

1 Introduction

We consider regression models of the form

$$
\begin{equation*}
Y=g+\varepsilon \tag{1}
\end{equation*}
$$

where $g: \mathscr{E} \rightarrow \mathbb{R}$ is an unknown deterministic regression function, $\varepsilon: \Omega \rightarrow \mathbb{R}$ is a random variable (the error) with $E(\varepsilon)=0$ and $\operatorname{Var}(\varepsilon)=\sigma^{2}<\infty$, where (Ω, \mathscr{A}, P) is the unknown probability space, $\mathscr{E} \subseteq \mathbb{R}$ is the experimental region and Y is the observable result of the experiment. To get information on the unknown function g we sample data at certain design points $t_{n_{0}, 1} \leq t_{n_{0}, 2} \leq \ldots \leq t_{n_{0}, n_{0}}$ of the experimental region \mathscr{E} and embed these into a triangular array of design points $t_{n, 1} \leq t_{n, 2} \leq \ldots \leq t_{n, n}, n=1,2,3, \ldots$, to obtain asymptotic information on the regression model as n goes to infinity. To do this, we assume that the empirical distribution function F_{n} of the design array converges to a limit design F (limit distribution), in a sense precisely defined later. Especially, we are interested in the case that the experimental region \mathscr{E} is a compact interval. Therefore, we must consider a triangular array of design points to get asymptotic results, rather than design points $t_{1}<t_{2} \cdots<t_{n}<\ldots$ from a time series sampling which can be regarded as specific triangular array. Without loss of generality we can assume for our experimental region $\mathscr{E}=[a, b]$ with $a<b$. We are interested in testing whether the above model is a linear regression, i.e., more exactly, in testing

$$
\begin{equation*}
H_{0}: g=\sum_{k=1}^{d} \beta_{k} f_{k} \quad \text { vs. } \quad H_{1}: g \neq \sum_{k=1}^{d} \beta_{k} f_{k}, \tag{2}
\end{equation*}
$$

where $f_{1}, \ldots, f_{d}:[a, b] \rightarrow \mathbb{R}$ are known, left continuous functions of bounded variation such that $f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]}$ are linearly independent in $L_{2}([a, b], F)$ for some $c \in(a, b]$ and $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right)^{\top} \in \mathbb{R}^{d}$ is the vector of the unknown regression parameters.

Recursive residuals play a major role in problems concerning the change point of a sequence of random variables, such as the CUSUM and the CUSUM of squares tests introduced by Brown et al. (1975). The CUSUM test is based on the sum of the recursive residuals. If this exceeds a critical bound, it is concluded that there is a structural break. The CUSUM of squares test plots the cumulative sum of squared recursive residuals divided by the squared sum over all observations. These are an alternative to ordinary residual-based regression diagnostics. In fact, recursive residuals have been known since 1891, cf. Farebrother (1978) and are very popular among statistical users and researchers today. Google Scholar lists nearly 2000 (!) articles containing "recursive residuals" from 2020 to the present alone. In contrast, recursive residuals seem relatively less discussed in books. Some notable recent and older monographs and textbooks that contain some material on recursive residuals are Hawkins
(1980), Sen (1985), Kramer and Sonnberger (1986), Harvey (1989), Wells (1996), Csörgo and Horvath (1997), Hawkins and Olwell (1998), Herrmann (2005), Kennedy (2008), Baltagie (2011), Young (2011), Hackl (2012) and Paolella (2019).

We consider partial sums of recursive residuals and use them to define stochastic processes and we are interested in the asymptotics of these processes for $n \rightarrow \infty$. To determine the limit process, we proceed in two steps. In the first step, using Rubin's continuous mapping theorem, we determine the limit process for continuous regresson functions. In the second step, we decompose the given regression functions $f_{i}=g_{i} \circ G^{-}$, which we now only assume to be left continuous, into continuous functions g_{i} and a quantile function G^{-}, where we "move" the discontinuity points of all f_{i} in G^{-}and G is a continuous distribution function. This way, we finally succeed in computing the limit process even under the weaker assumptions of left continuous regression functions. It turns out that, under suitable assumptions, the limit process depends only on the limit design (i.e., on F). Thus, we have an invariance principle.

Such results were obtained by MacNeill (1978a, b) for ordinary least squares residuals w_{n}, given a triangular array of equidistant design points. Bischoff (1998) generalized this result for arbitrary triangular design points and less restrictive regularity assumptions on the regression functions. Both results were proved by using Rubin's continuous mapping theorem. Corresponding results for recursive residuals were proved by Sen (1982), Csörgo and Horvath (1997), Rabovski (2003), Otto (2019) and Sakhanenko et al. (2021). However, Sen proved his result for a time series sampling $t_{1}<t_{2}<\ldots$, instead for a triangular array (note that most results on recursive residuals are developed for time series samplings). Moreover, the conditions (2.9) to (2.11) in Theorems 1 resp. 2 in Sen (1982) are given by complicated functions of the model variables and even in the simple example of a polynomial regression considered there, they can only be checked with considerable effort. Whether this can also be shown for more complicated examples or even in our general model is unknown. In contrast, the conditions given by us refer directly to the regression functions of the model and can therefore be easily checked (and are obviously fulfilled in the example mentioned). Furthermore, he mentioned that his results cannot be proved using the continuous mapping theorem, instead he used the concept of tightness. The result in Csörgo and Horvath (1997), Theorem 3.4.3, is more similar to our results. However, only equidistant design points $t_{n, i}=\frac{i}{n}$ are considered there and, in addition, strong restrictive regularity conditions are imposed on the regression functions (e.g. these must be differentiable and satisfy $\max _{1 \leq j \leq d} \sup _{0 \leq t \leq 1}\left|f_{j}^{\prime}(t)\right|<\infty$). In Rabovski (2003), only the special case of a constant regression function is studied (i.e., $d=1$ and $f_{1}(t)=1$) and in Sakhanenko et al. (2021) only the special case for one-dimensional β is considered. Finally, Otto (2021) goes in the same direction as Sen and considers time series samples, although it should be noted that the underlying model differs from ours anyway.

Results on the limit process under a local alternative are known in our setting so far only in special cases, cf. Rabovski (2003). For time series samplings and in another context (testing for changes in regression coefficients β), corresponding statements can be found in Ploberger and Krämer (1990) and Otto (2019), although our results cannot be derived from theirs. Our approach, based on Rubin's continuous mapping theorem, allows us to compute the distribution of the limit process, under the local alternative given in (2) for an f_{d+1} of bounded variation, for the first time in the form of an explicit formula. With the help of these asymptotic results we are then able to define and study asymptotic tests. By analogy with partial sums of recursive residuals, we also consider reverse partial sums and their limits. It turns out that tests based on these processes have greater power and we give an example of such an asymptotically uniformly most powerful test.

2 Ordinary residuals in linear regression

We consider model (1) under H_{0} given in (2) with $\mathscr{E}=[a, b]$. Sequentially sampled observations $Y_{n, 1}, \ldots, Y_{n, n}$ at the design points $a \leq t_{n, 1} \leq t_{n, 2} \leq \ldots \leq t_{n, n} \leq b$ leads to n linear models

$$
\underbrace{\left(\begin{array}{c}
Y_{n, 1} \tag{3}\\
\vdots \\
Y_{n, i}
\end{array}\right)}_{=: Y_{i}}=\underbrace{\left(\begin{array}{ccc}
f_{1}\left(t_{n, 1}\right) & \ldots & f_{d}\left(t_{n, 1}\right) \\
\vdots & \ddots & \vdots \\
f_{1}\left(t_{n, i}\right) & \ldots & f_{d}\left(t_{n, i}\right)
\end{array}\right)}_{=: X_{n, i} \in \mathbb{R}^{i \times d}} \cdot \underbrace{\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right)}_{=: \beta}+\underbrace{\left(\begin{array}{c}
\varepsilon_{n, 1} \\
\vdots \\
\varepsilon_{n, i}
\end{array}\right)}_{=: \varepsilon_{i}}, \quad i \in\{1, \ldots, n\} .
$$

We assume

$$
\begin{equation*}
\varepsilon_{n, 1}, \ldots, \varepsilon_{n, n} \quad \text { i.i.d. } \quad \text { with } \quad E\left(\varepsilon_{n, i}\right)=0 \quad \text { and } \quad \operatorname{Var}\left(\varepsilon_{n, i}\right)=\sigma^{2}, i=1, \ldots, n, \tag{4}
\end{equation*}
$$

holds and $f_{1}, \ldots, f_{d}:[a, b] \rightarrow \mathbb{R}$ are of bounded variation, left continuous on ($\left.a, b\right]$ and continuous in a and furthermore $f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]}$ are linearly independent in $L_{2}([a, b], F)$, for some $c \in(a, b]$, where F, in a sense precisely defined later, is the distribution function of the limit design of the design sequence $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$. By the assumption that the observations $Y_{n, 1}, \ldots, Y_{n, n}$ are sequentially sampled, the unknown parameter β can be uniquely estimated, as soon as $\operatorname{rank}\left(X_{n, i}\right)=d$. The linear independence of $f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]}$ in $L_{2}([a, b], F)$, together with appropriate conditions we impose on the design sequence, guarantees, that there exists an $n_{0} \in \mathbb{N}$ such that all design matrices $X_{n, k}, n \geq n_{0}$, relevant to the recursive residual partial sum process to be defined later (cf. Definition 4), have full rank (cf. Remark 76). Therefore, in order not to complicate the presentation unnecessarily, we assume

$$
\begin{equation*}
\operatorname{rank}\left(X_{n, d}\right)=d \tag{5}
\end{equation*}
$$

So, according to the sequentially sampled observations we have $n-d+1$ linear models

$$
\begin{equation*}
Y_{i}=X_{n, i} \beta+\varepsilon_{i}, \quad i \in\{d, \ldots, n\}, \tag{6}
\end{equation*}
$$

where the ordinary least squares (OLS) estimation for β can be updated after each observation $Y_{n, i}, i=d, \ldots, n$, by

$$
\hat{\beta}_{n, i}=\left(X_{n, i}^{\top} X_{n, i}\right)^{-1} X_{n, i}^{\top} Y_{i}=\beta+\left(X_{n, i}^{\top} X_{n, i}\right)^{-1} X_{n, i}^{\top} \varepsilon_{i}, \quad i \in\{d, \ldots, n\} .
$$

By the Gauss-Markov theorem, $\hat{\beta}_{n, i}$ is the best linear unbiased estimation (BLUE) for β given the observation $Y_{n, 1}, \ldots, Y_{n, i}$. In the sequel we use the notation

$$
f:[a, b] \rightarrow \mathbb{R}^{d}, t \mapsto\left(f_{1}(t), \ldots, f_{d}(t)\right)^{\top}
$$

for the vector of known regression functions. The least squares estimation $\hat{\beta}_{n, i}$ for β using the observations $Y_{n, 1}, \ldots, Y_{n, i}$ can be applied to forecast the expectation $E\left(Y_{n, i+1}\right)=f\left(t_{n, i+1}\right)^{\top} \beta$ of the next observation $Y_{n, i+1}, i=d, \ldots, n-1$ by the best linear unbiased estimation

$$
f\left(t_{n, i+1}\right)^{\top} \hat{\beta}_{n, i}=f\left(t_{n, i+1}\right)^{\top}\left(X_{n, i}^{\top} X_{n, i}\right)^{-1} X_{n, i}^{\top} Y_{i}, \quad i \in\{d, \ldots, n-1\} .
$$

We abbreviate this estimator by

$$
a_{n, i+1}^{\top}:=f\left(t_{n, i+1}\right)^{\top}\left(X_{n, i}^{\top} X_{n, i}\right)^{-1} X_{n, i}^{\top} \in \mathbb{R}^{i}, \quad i=d, \ldots, n-1 .
$$

It holds

$$
\begin{align*}
a_{n, i+1}^{\top} Y_{i} & =f\left(t_{n, i+1}\right)^{\top}\left(X_{n, i}^{\top} X_{n, i}\right)^{-1} X_{n, i}^{\top}\left(X_{n, i} \beta+\varepsilon_{i}\right) \\
& =f\left(t_{n, i+1}\right)^{\top} \beta+f\left(t_{n, i+1}\right)^{\top}\left(X_{n, i}^{\top} X_{n, i}\right)^{-1} X_{n, i}^{\top} \varepsilon_{i}, \quad i \in\{d, \ldots, n-1\}, \tag{7}
\end{align*}
$$

implying for $i \in\{d, \ldots, n-1\}$

$$
\begin{align*}
& E\left(a_{n, i+1}^{\top} Y_{i}\right)=f\left(t_{n, i+1}\right)^{\top} \beta=E\left(Y_{n, i+1}\right), \tag{8}\\
& \operatorname{Var}\left(a_{n, i+1}^{\top} Y_{i}\right)=\sigma^{2} f\left(t_{n, i+1}\right)^{\top}\left(X_{n, i}^{\top} X_{n, i}\right)^{-1} f\left(t_{n, i+1}\right)=\sigma^{2}\left\|a_{n, i+1}\right\|^{2} \tag{9}
\end{align*}
$$

where $\|\cdot\|$ is the Euclidian norm. We consider the linear model given in (3) for all n observations $Y_{n, 1}, \ldots, Y_{n, n}$, i.e. for $\mathrm{i}=\mathrm{n}$,

$$
\begin{equation*}
Y_{n}=X_{n, n} \beta+\varepsilon_{n} . \tag{10}
\end{equation*}
$$

Then the ordinary (linear) regression residuals are defined for model (10) as the difference between the observed value $Y_{n, j}$ and the least squares estimation $f\left(t_{n, j}\right)^{\top} \hat{\beta}_{n, n}$ using the information of all data to estimate $E\left(Y_{n, j}\right)=f\left(t_{n, j}\right)^{\top} \beta$ in (10), i.e.

$$
\begin{equation*}
w_{n, j}:=Y_{n, j}-f\left(t_{n, j}\right)^{\top} \hat{\beta}_{n, n}=Y_{n, j}-f\left(t_{n, j}\right)^{\top}\left(X_{n, n}^{\top} X_{n, n}\right)^{-1} X_{n, n}^{\top} Y_{n}, \quad j=1, \ldots, n . \tag{11}
\end{equation*}
$$

Let $\mathrm{pr}_{U, V}: U \oplus V \rightarrow U, u+v \mapsto u$ be the projection on the first summand of a direct sum. Thus

$$
\begin{equation*}
w_{n}:=\left(w_{n, 1}, \ldots, w_{n, n}\right)^{\top}=Y_{n}-X_{n, n} \hat{\beta}_{n, n}=\left(I_{n}-X_{n, n}\left(X_{n, n}^{\top} X_{n, n}\right)^{-1} X_{n, n}^{\top}\right) Y_{n}=\operatorname{pr}_{U_{n}^{\perp}} Y_{n}, \tag{12}
\end{equation*}
$$

where $U_{n}:=\operatorname{im}\left(X_{n, n}\right)$ and U_{n}^{\perp} is the subspace orthogonal to U_{n} and furthermore we write abbreviatively $\mathrm{pr}_{U}:=\mathrm{pr}_{U, U^{\perp}}$ for a subspace U of \mathbb{R}^{n}. The proof of (12) is basic linear algebra (projections), which we have summarized for the reader in Lemma 47.

3 Recursive residuals

Recursive residuals are defined as the difference between the present observation and its forecasting obtained by the observations sampled before. Furthermore they are standardized (thus they are standardized forecast errors) and have many nice properties (e.g. they are homoscedastic and uncorrelated), as shown below. Recursive residuals can be considered as the result of transforming the correlated and heteroscedastic ordinary regression residuals to uncorrelated and homoscedastic random variables, see below.

Definition 1. For the $n-d$ linear models given in (6), under the assumptions (4) and (5), recursive residuals $r_{n, j}$ are defined by

$$
r_{n, j}:=\frac{Y_{n, j}-a_{n, j}^{\top} Y_{j-1}}{\left(1+\left\|a_{n, j}\right\|^{2}\right)^{\frac{1}{2}}}, \quad j=d+1, \ldots, n,
$$

with $a_{n, j}^{\top}=f\left(t_{n, j}\right)^{\top}\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1} X_{n, j-1}^{\top} \in \mathbb{R}^{1 \times(j-1)}$.
(8) and (9) imply immediately $E\left(r_{n, j}\right)=0, \operatorname{Var}\left(r_{n, j}\right)=\sigma^{2}, j=d+1, \ldots, n$, and by (7),

$$
\begin{equation*}
r_{n, j}:=\frac{\varepsilon_{n, j}-a_{n, j}^{\top} \varepsilon_{j-1}}{\left(1+\left\|a_{n, j}\right\|^{2}\right)^{\frac{1}{2}}}, \quad j=d+1, \ldots, n \tag{13}
\end{equation*}
$$

We now rewrite (13) as a matrix equation. To do so, we define

$$
M_{n, k}^{\top}:=\underbrace{\left(\begin{array}{ccc}
\frac{1}{\sqrt{1+\left\|a_{n, d+1}\right\|^{2}}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{\sqrt{1++\left\|a_{n, k}\right\|^{2}}}
\end{array}\right)}_{\in \mathbb{R}^{(k-d) \times(k-d)}} \cdot \underbrace{\left(\begin{array}{ccccc}
-a_{n, d+1}^{\top} & 1 & 0 & \ldots & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
-a_{n, k}^{\top} & & & 1
\end{array}\right)}_{\in \mathbb{R}^{(k-d) \times k}} \in \mathbb{R}^{(k-d) \times k}
$$

Because of

$$
\left(\begin{array}{ll}
-a_{n j}^{\top} & 1
\end{array}\right) X_{n, j}=\left(\begin{array}{ll}
-f\left(t_{n, j}\right)^{\top}\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1} X_{n, j-1}^{\top} & 1
\end{array}\right) \cdot \underbrace{\binom{X_{n, j-1}}{f\left(t_{n, j}\right)^{\top}}}_{=X_{n, j}}=\left(\begin{array}{lll}
0 \ldots 0
\end{array}\right) \in \mathbb{R}^{d}
$$

we get

$$
\begin{equation*}
M_{n, k}^{\top} X_{n, k}=0 \quad \text { and } \quad M_{n, k}^{\top} M_{n, k}=I_{k-d} \tag{14}
\end{equation*}
$$

and (13) thus becomes

$$
\begin{equation*}
r_{n}=M_{n, n}^{\top} \cdot \varepsilon_{n}=M_{n, n}^{\top} \cdot Y_{n}, \tag{15}
\end{equation*}
$$

where $r_{n}:=\left(r_{n, d+1}, \ldots, r_{n, n}\right)^{\top}$ is the vector of recursive residuals. If $\varepsilon_{n} \sim N\left(0, \sigma^{2} I_{n}\right)$ holds, (14) and (15) together imply

$$
\begin{equation*}
r_{n} \sim N\left(0, \sigma^{2} I_{n-d}\right) \quad \text { and } \quad r_{n, d+1}, \ldots, r_{n, n} \quad \text { are independent. } \tag{16}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
M_{n, k} M_{n, k}^{\top}=\operatorname{pr}_{U_{k}^{\perp}} \quad \text { with } \quad U_{k}:=\operatorname{Im}\left(X_{n, k}\right), \tag{17}
\end{equation*}
$$

which follows immediately from Lemma 47. Next, we state a relation between the vector of ordinary residuals $w_{n}=\left(w_{n, 1}, \ldots, w_{n, n}\right)^{\top}$, defined in (12) and r_{n} from (15). It holds

$$
\begin{equation*}
M_{n, n}^{\top} w_{n}=r_{n} \quad \text { and } \quad M_{n, n} r_{n}=w_{n} \tag{18}
\end{equation*}
$$

since $w_{n}=\operatorname{pr}_{U_{n}^{\perp}} Y_{n}=\operatorname{pr}_{U_{n}^{\perp}} \varepsilon_{n}=M_{n, n} M_{n, n}^{\top} \varepsilon_{n}=M_{n, n} r_{n}$. Almost all of the results in this section so far follow more or less directly from the definition and can be found, for example, in Brown et al. (1975). We close this section with a theorem (which can be found in Brown et al. (1975) too, but goes back in part to Plackett (1950) and Bartlett (1951)), where we summarize some technical properties that are useful for the efficient computation of recursive residuals.

Theorem 2. Given the linear models (6) under conditions (4) and (5).

$$
\text { 1. } X_{n, j}^{\top} X_{n, j}=X_{n, j-1}^{\top} X_{n, j-1}+f\left(t_{n, j}\right) f\left(t_{n, j}\right)^{\top}=\sum_{i=1}^{j} f\left(t_{n, i}\right) f\left(t_{n, i}\right)^{\top}
$$

2. $\left(X_{n, j}^{\top} X_{n, j}\right)^{-1}=\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1}-\frac{1}{1+\left\|a_{n, j}\right\|^{2}}\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1} f\left(t_{n, j}\right) f\left(t_{n, j}\right)^{\top}\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1}$
3. $\hat{\beta}_{n, j}=\hat{\beta}_{n, j-1}+\sqrt{1+\left\|a_{n, j}\right\|^{2}} r_{n, j}\left(X_{n, j}^{\top} X_{n, j}\right)^{-1} f\left(t_{n, j}\right), j \in\{1, \ldots, n\}$.
4. $\left\|w_{d+1}\right\|^{2}=\left\|r_{n, d+1}\right\|^{2}$ and $\left\|w_{j}\right\|^{2}=\left\|w_{j-1}\right\|^{2}+r_{n, j}^{2}$ for $j=d+2, \ldots, n$ where $w_{j}:=$ $Y_{j}-X_{n, j} \hat{\beta}_{n, j}, j \in\{d+1, \ldots, n\}$.

The proof can be found on page 39 .

4 Recursive residual partial sum process

All processes considered in this work are defined with the help of the following operator.
Definition 3. The partial sum operator $T_{n}: \mathbb{R}^{n} \rightarrow C[0,1], a:=\left(a_{1}, \ldots, a_{n}\right)^{\top} \mapsto T_{n}(a)$,

$$
T_{n}(a)(x):= \begin{cases}a_{k}(n x-k)+\sum_{i=1}^{k} a_{i} & \text { for } x \in\left[\frac{k-1}{n}, \frac{k}{n}\right), k \in\{1, \ldots, n\}, \tag{19}\\ \sum_{i=1}^{n} a_{i} & \text { for } x=1 .\end{cases}
$$

$T_{n}(a)$ is a continuous piecewise linear function on $[0,1]$, where the line segments connect the points $\left(\frac{k}{n}, \sum_{i=1}^{k} a_{i}\right), k=0, \ldots, n$. Note $\sum_{i=1}^{m} a_{i}=0$ for $m \leq 0$. Thus for (19) we can write

$$
\begin{equation*}
T_{n}(a)(x)=(n x-\lfloor n x\rfloor) a_{\lfloor n x\rfloor+1}+\sum_{i=1}^{\lfloor n x\rfloor} a_{i}, x \in[0,1] . \tag{20}
\end{equation*}
$$

Definition 4. Let $\delta \in(0,1)$ be fixed. The recursive residual partial sum process is defined as

$$
\begin{equation*}
B_{n, \delta}:=\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ r_{n} \tag{21}
\end{equation*}
$$

where σ is defined in (4), r_{n} is defined in (15) and $g=g_{\delta}: \mathbb{R}^{n-d} \rightarrow \mathbb{R}^{n-d}$ is defined by

$$
\begin{equation*}
a=\left(a_{1}, \ldots, a_{n-d}\right)^{\top} \mapsto\left(0, \ldots, 0, a_{\lfloor(n-d) \delta\rfloor+1}, \ldots, a_{n-d}\right)^{\top} . \tag{22}
\end{equation*}
$$

Later $\delta=F(c)$ will hold, where the c comes from the assumption

$$
\begin{equation*}
f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]} \text { are linearly independent in } L_{2}([a, b], F) \text { for some } c \in(a, b] \tag{23}
\end{equation*}
$$

and F is the distribution function of the limit design of the design sequence $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$, in a sense precisely defined later (cf. Definition 9). We need condition (23) on the one hand to ensure in the proofs that the eigenvalues of certain Gram matrices are bounded (cf. Lemma 75 and Lemma 78) and on the other hand to ensure that the process exists at all. Note that $\lfloor(n-d) F(c)\rfloor \geq\lfloor n F(c)\rfloor-d$ holds and thus, according to Remark 76, there is $n_{0} \in \mathbb{N}$ such that all recursive residuals relevant to the process from (21) actually exist (i.e., the corresponding design matrix $X_{n, k}$ has full rank for all $n \geq n_{0}$ and all $\left.k \geq\lfloor(n-d) F(c)\rfloor+1\right)$. In practical applications, usually only functions f_{1}, \ldots, f_{d} that satisfy (23) for each $c \in(a, b]$ occur. Provided that the limit designs are chosen such that no mass lies in a, i.e. $F(a)=0$, from a theoretical
point of view δ can be chosen arbitrarily small $(\delta \rightarrow 0)$. The composition of T_{n-d} and g is computed by means of (20) to

$$
\begin{equation*}
T_{n-d}(g(a))(x)=((n-d) x-\lfloor(n-d) x\rfloor) a_{\lfloor(n-d) x\rfloor+1}+\sum_{i=\lfloor(n-d) \delta\rfloor+1}^{\lfloor(n-d) x\rfloor} a_{i} \tag{24}
\end{equation*}
$$

for $x \geq \frac{\lfloor(n-d) \delta\rfloor}{n-d}$ and $T_{n-d}(g(a))(x)=0$ for $x<\frac{\llcorner(n-d) \delta\rfloor}{n-d}$. Note that $\delta \in\left[\frac{\lfloor(n-d) \delta\rfloor}{n-d}, \frac{\lfloor(n-d) \delta\rfloor+1}{n-d}\right)$. $r_{n}: \Omega \rightarrow \mathbb{R}^{n-d}$ from (15) is a a real multivariate random variable and $B_{n, \delta}: \Omega \rightarrow C[0,1]$ is a random variable with values in $C[0,1]$, cf. the sample paths of $B_{n, \delta}$ in Figure 1.

Figure 1: 30 randomly selected sample paths of $B_{n, \delta}$, whereby $n=10000, f(t)^{\top}=\left(0.5, t, t^{2}\right)$ for $t \in[0,0.25], f(t)^{\top}=\left(1, t, t^{2}\right)$ for $t \in(0.25,0.5], f(t)^{\top}=\left(1, t,(t-3 / 2)^{2}\right)$ for $t \in(0.5,1], d=3, t_{n, i}=\frac{i}{n}, \varepsilon_{n, i} \sim \operatorname{unif}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$ and $\delta=0.001$, cf. R-script on p. 75.

Remark 5. If $\varepsilon_{n} \sim N\left(0, \sigma^{2} I_{n}\right)$, then $r_{n} \sim N_{n-d}\left(0, \sigma^{2} I_{n-d}\right)$ by (16) and

$$
\begin{equation*}
\frac{1}{\sigma \sqrt{n-d}} T_{n-d} \circ g \circ r_{n} \xrightarrow{\mathscr{B}} B^{\prime} \quad\left(P^{\left(\frac{1}{\sigma \sqrt{n-d}} T_{n-d} \circ g \circ r_{n}\right)} \xrightarrow{w} P^{B^{\prime}}, \quad c f . \text { definition } 43\right) \tag{25}
\end{equation*}
$$

follows by Theorem 53, where $B^{\prime},\left(B_{t}^{\prime}\right)_{t \in[0,1]}$ is a shifted Brownian motion, i.e. $B_{t}^{\prime}(\omega)=0$ for all $t \in[0, \delta)$ and $B_{t}^{\prime}(\omega)=B_{t-\delta}(\omega)$, whereby $B,\left(B_{t}\right)_{t \in[0,1]}$ is a Brownian motion on $[0,1]$.
If ε_{n} is not normally distributed, the limit process is known only for time series under conditions that are difficult to check, or for triangular schemes under strong restrictions on the regression functions, or only in special cases (cf. Introduction on page 4). Our goal in the following is to determine the limit process (i.e., the weak limit) of $B_{n, \delta}$ for a triangular array of design points under much weaker restrictions on the regression functions.

5 Recursive residual partial sum limit process

Each design $a \leq t_{n, 1} \leq t_{n, 2} \leq \ldots \leq t_{n, n} \leq b$ corresponds to a probability measure $\left(t_{n, 1}, \ldots, t_{n, n}\right) \mapsto$ $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{t_{n, i}}$ with Dirac measures $\delta_{t_{n, i}}$ on $t_{n, i}$. Let F_{n} be the distribution function of P_{n}, i.e.

$$
\begin{equation*}
F_{n}: \mathbb{R} \rightarrow[0,1], t \mapsto \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\left[t_{n, i}, \infty\right)}(t) \tag{26}
\end{equation*}
$$

Note this implies $F_{n}(t)=0$ for all $t<a$ and $F_{n}(t)=1$ for all $t \geq b$.
Definition 6. For a measure P on \mathbb{R}, we define the support by

$$
\begin{aligned}
\operatorname{support}(P): & =\{x \in \mathbb{R} \mid \forall \varepsilon>0: P((x-\varepsilon, x+\varepsilon))>0\} \\
& =\mathbb{R} \backslash \bigcup_{O \in \tau^{*}} O, \quad \tau^{*}:=\{O \subseteq \mathbb{R} \mid O \text { is open and } P(O)=0\}
\end{aligned}
$$

For a measure-defining function F, cf. Theorem 63, let support $(F):=\operatorname{support}\left(\mu_{F}\right)$.
Definition 7. Let F be a distribution function. We call $\left(F^{-}(1 / n), F^{-}(2 / n), \ldots, F^{-}(1)\right)$ upper F-design for n observations, $n \in \mathbb{N}$, where F^{-}is the quantil function (cf. Definition 56).
Lemma 8. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$ be an upper F-design for n observations. Then

$$
\begin{equation*}
F_{n}(t) \leq F(t) \leq F_{n}(t)+\frac{1}{n} \text { for all } t \in \mathbb{R} \tag{27}
\end{equation*}
$$

The proof can be found on page 40.
Definition 9. We call a sequence $\left(t_{n, 1}, \ldots, t_{n, n}\right), n \in \mathbb{N}$, asymptotic- F-design if

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\left|F_{n}(t)-F(t)\right| \rightarrow 0 \quad \text { for } \quad n \rightarrow \infty . \tag{28}
\end{equation*}
$$

If we write asymptotic F-design in $[a, b]$, this means $a \leq t_{n, 1} \leq \ldots \leq t_{n, n} \leq b$ for all $n \in \mathbb{N}$. In this case $F(t)=0$ for $t<a$ and $F(t)=1$ for $t \geq b$, according to (28). If F is continuous, then (28) holds if $F_{n}(t) \xrightarrow{n \rightarrow \infty} F(t)$ holds at every t where F is continuous (cf. Kannan and Krueger (1996), Theorem 1.4.2 or Roussas (1997), §8.6* Polyas Lemma). Eisenberg and Shixin (1983) give a characterization of (28) in terms of the convergence of characteristic functions. Note in this context also Theorem 42, Definition 61 and Lemma 62.

Limit process of $B_{n, F(c)}$ under null hypothesis

To simplify notation, we suppress the dependence of $F(c)$ in $B_{n, F(c)}$ and write $B_{n}:=B_{n, F(c)}$.
Theorem 10. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$ be an asmptotic F-design in $[a, b]$ and consider model (3) with $f_{1}, \ldots, f_{d}:[a, b] \rightarrow \mathbb{R}$ all of bounded variation, left continuous on ($\left.a, b\right]$, continuous in a, let $f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]}$ be linearly independent (l.i.) in $L_{2}([a, b], F)$ for some $c \in(a, b]$ and let $\delta:=F(c)>0$. Under the assumptions of H_{0} given in (2), $B_{n} \xrightarrow{\mathscr{O}} B^{\prime}$ holds true, whereby B^{\prime} is a shifted Brownian motion (cf. Remark 5 for the definition of B^{\prime}).
The proof can be found on page 40 . Thus, using this theorem, we can use the test statistic B_{n} directly for an asymptotic size α test. The corresponding procedure is well known. We only need appropriate knowledge about the boundary crossing probability for a Brownian motion. These probabilities are well known, see Theorem 51.

Theorem 11. Under the assumptions of Theorem 10, an asymptotic test of size α is given by each of the following rules.

$$
\begin{align*}
& \text { reject } H_{0} \text { given in (2) }: \Leftrightarrow \exists s \in[0,1] \text { with } \frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d}\left(g \circ r_{n}\right)(s)>x, \tag{29}\\
& \text { reject } H_{0} \text { given in (2) }: \Leftrightarrow \exists s \in[0,1] \text { with } \frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d}\left(g \circ r_{n}\right)(s)<y, \tag{30}\\
& \text { reject } H_{0} \text { given in (2) }: \Leftrightarrow \exists s \in[0,1] \text { with }\left|\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d}\left(g \circ r_{n}\right)(s)\right| \geq z \tag{31}
\end{align*}
$$

where $x:=(1-\delta) \cdot \Phi^{-1}\left(1-\frac{\alpha}{2}\right), y:=(1-\delta) \cdot \Phi^{-1}\left(\frac{\alpha}{2}\right)=-x, z:=(1-\delta) z^{\prime}$, with z^{\prime} chosen such that $\sum_{n=-\infty}^{\infty}\left(\Phi\left((4 n+1) z^{\prime}\right)-\Phi\left((4 n-1) z^{\prime}\right)-\Phi\left(-(4 n-3) z^{\prime}\right)+\Phi\left(-(4 n-1) z^{\prime}\right)\right) \geq 1-\alpha$ holds, δ is defined in Theorem 10 and $\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} t^{2}} d t$.

The proof can be found on page 40 .
Remark 12. To determine x, y and z in Theorem 11, one needs $\Phi^{-1}\left(1-\frac{\alpha}{2}\right), \Phi^{-1}\left(\frac{\alpha}{2}\right)$ and z^{\prime}. For the significance levels $\alpha=0.01$ and $\alpha=0.05$ these are given in the table. For the computation we use $\Phi^{-1}\left(1-\frac{\alpha}{2}\right)=-\Phi^{-1}\left(\frac{\alpha}{2}\right)$ and the R Script on page 76. See also Figure 2.

α	$\Phi^{-1}\left(1-\frac{\alpha}{2}\right)$	$\Phi^{-1}\left(\frac{\alpha}{2}\right)$	z^{\prime}
0.05	1.959964	-1.959964	2.2414028
0.01	2.575829	-2.575829	2.8070338

From the definition of the partial sum operator (19), it follows that the test statistics (29), (30) and (31) can be computed (i.e., updated) stepwise with each new recursive residual, and H_{0} can be rejected as soon as the bounds are crossed the first time.

Figure 2: A very rare event: two out of 30 sample paths of a Brownian motion on $[\boldsymbol{\delta}, 1]$ cross both outer boundaries (i.e. z). The horizontal lines represent the boundaries x, y $(=-x)$ and z from Theorem 11 for $\delta=0.001$ and $\alpha=0.01$. R-script on p .76

Limit process of B_{n} under a local alternative

We now consider the assumption that the (true) observations Y in fact did not occur under H_{0}, but under the local alternative H_{1}, given in (32),

$$
\begin{equation*}
H_{0}: Y=\sum_{k=1}^{d} \beta_{k} f_{k}+\varepsilon \quad \text { vs. } \quad H_{1}: Y=\sum_{k=1}^{d+1} \beta_{k} f_{k}+\varepsilon, \quad \beta_{d+1} \neq 0 \tag{32}
\end{equation*}
$$

where $f_{d+1}:[a, b] \rightarrow \mathbb{R}$ is a known function of bounded variation.

Example 13. In Figure 1 (p.10) we plotted 30 randomly chosen sample paths of B_{n}, assuming that the observations occurred under $H_{0}: Y(t)=\sum_{k=1}^{3} \beta_{k} \cdot f_{k}(t)+\varepsilon(t)$. In Theorem 10 we proved that $B_{n} \xrightarrow{\mathscr{O}} B$ holds (assuming H_{0}). How does B_{n} and its limit process B change if the observations were in fact made under the local alternative $H_{1}: Y(t)=\sum_{k=1}^{4} \beta_{k} \cdot f_{k}(t)+\varepsilon(t)$, $f_{4}(t)=t^{3}$, but the recursive residuals are computed under H_{0} (cf. Figure 3)?

Figure 3: 30 randomly selected sample paths of B_{n}, where the observations in truth occurred under H_{1} and f_{1} to f_{3} are defined as in Figure 1 and $f_{4}(t):=t^{3}$ with $n=1000$, $t_{n, i}=\frac{i}{n}, \varepsilon_{n, i} \sim \operatorname{unif}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$ and $\delta=0.001$. It looks like a somewhat strange but quite clearly drifted Brownian motion (cf. R-script on p. 76).

How can the trend from Figure 3 be explained? To do so, we follow Bischoff and Miller (2000) and Rabovski (2003) and compute B_{n} under the assumption that the true observations in fact occurred under the local alternative H_{1} from (32), but the recursive residuals were computed under the false assumption H_{0} :

$$
\begin{align*}
B_{n} & =\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ r_{n}=\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ(\underbrace{M_{n, n}^{\top}}_{\text {computed under } H_{0}} \cdot \underbrace{\left(\tilde{X}_{n, n} \tilde{\beta}+\varepsilon_{n}\right)}_{\text {observations under } H_{1}}) \\
& =\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(X_{n, n} \beta+\varepsilon_{n}\right)+\beta_{d+1} M_{n, n}^{\top} \cdot \xi_{n}\right) \\
& =\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(X_{n, n} \beta+\varepsilon_{n}\right)\right)+\frac{n \cdot \beta_{d+1}}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right) \tag{33}
\end{align*}
$$

with $M_{n, n}^{\top}$ from (15), $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right)^{\top}, \tilde{\beta}=\left(\beta_{1}, \ldots, \beta_{d+1}\right)^{\top}, \xi_{n}=\left(f_{d+1}\left(t_{n, 1}\right), \ldots, f_{d+1}\left(t_{n, n}\right)\right)^{\top}$, $X_{n, n}:=\left(\begin{array}{ccc}f_{1}\left(t_{n, 1}\right) & \ldots & f_{d}\left(t_{n, 1}\right) \\ \vdots & \ddots & \vdots \\ f_{1}\left(t_{n, n}\right) & \ldots & f_{d}\left(t_{n, n}\right)\end{array}\right) \quad$ and $\quad \tilde{X}_{n, n}:=\left(\begin{array}{cccc}f_{1}\left(t_{n, 1}\right) & \ldots & f_{d}\left(t_{n, 1}\right) & f_{d+1}\left(t_{n, 1}\right) \\ \vdots & \ddots & \vdots & \vdots \\ f_{1}\left(t_{n, n}\right) & \ldots & f_{d}\left(t_{n, n}\right) & f_{d+1}\left(t_{n, n}\right)\end{array}\right)$.
According to Theorem 10, $\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(X_{n, n} \beta+\varepsilon_{n}\right)\right) \xrightarrow{\mathscr{B}} B^{\prime}$ holds true. It remains to determine whether and against what $\frac{n \cdot \beta_{d+1}}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right)$ from equation (33) converges. The following lemma is a generalization of a result from Rabovski (2003). However, the proof given there is incorrect (the mappings u_{n} defined there on p. 20 are not necessarily continuous, cf. our Example 80 on page 42).

Lemma 14. Under the premises of Theorem 10 and if $f_{d+1}:[a, b] \rightarrow \mathbb{R}$ is of bounded variation,

$$
\begin{equation*}
\sup _{s \in[0,1]}\left|T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right)(s)-\Gamma(s)\right| \xrightarrow{n \rightarrow \infty} 0 \tag{34}
\end{equation*}
$$

holds, where $\Gamma \in C[0,1]$ with $\Gamma(s):=0$ for $s \in[0, \delta)$ and otherwise

$$
\begin{aligned}
\Gamma(s): & =u(s)-u(\delta) \\
& +\int_{\delta}^{s} f\left(F_{0}^{-}(t)\right)^{\top}\left(\int_{[0, t]}\left(f f^{\top}\right) \circ F_{0}^{-} d \lambda\right)^{-1}\left[\int_{\left(a, F_{0}^{-}(t)\right)}\left(u \circ F_{0}\right) d \mu_{f}-f\left(F_{0}^{-}(t)\right) u(t)\right] d t,
\end{aligned}
$$

applies, where $F_{0}:=F_{[[a, b]}$ and $u \in C[0,1]$ is defined by $u(s):=\int_{0}^{s} f_{d+1} \circ F_{0}^{-} d \lambda$.
The proof can be found on page 41. Because of $\frac{n}{\sqrt{n-d}} \xrightarrow{n \rightarrow \infty} \infty$ and Lemma 14, $\frac{n \cdot \beta_{d+1}}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ$ $g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right)$ literally seems to explode for $n \rightarrow \infty$ (see Figure 4).

Figure 4: Single sample paths of B_{n}, for different n, where the observations in truth occurred under $H_{1} . t_{n, i}, \varepsilon_{n, i}, \delta$, and f as in Figure 3 (cf. R-script on p. 77).

Hence we need to re-parameterize the parameter space $\beta_{d+1}^{*}:=\frac{\sqrt{n-d}}{n} \cdot \beta_{d+1}$ to obtain a r.v. whose limit distribution we can use for a test statistic. Therefore we define the linear model

$$
\begin{equation*}
Y_{n}^{*}=X_{n, n} \beta+\beta_{d+1}^{*} \xi_{n}+\varepsilon_{n} . \tag{35}
\end{equation*}
$$

Note that the test problem (32) is equivalant to

$$
\begin{equation*}
H_{0}: Y=\sum_{k=1}^{d} \beta_{k} f_{k}+\varepsilon \quad \text { vs. } \quad H_{1}: Y=\sum_{k=1}^{d} \beta_{k} f_{k}+\beta_{d+1}^{*} f_{d+1}+\varepsilon, \quad \beta_{d+1}^{*} \neq 0 \tag{36}
\end{equation*}
$$

for all n, where f_{d+1} is of bounded variation. With this we have the following
Theorem 15. Under the assumptions of Theorem 10 and Lemma 14, for B_{n} under the alternative H_{1} given in (36), with respect to model (35), $B_{n} \xrightarrow{\mathscr{B}} B^{\prime}+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma$ holds.

The proof can be found on page 42.

Example 16. Let $d=1,[a, b]=[0,1], f_{1}(t)=1$ and $t_{n, i}=\frac{i}{n}$. We consider the test problem

$$
\begin{equation*}
H_{0}: Y(t)=\beta_{1}+\varepsilon \quad \text { vs. } \quad H_{1}: Y(t)=\beta_{1}+\beta_{2}^{*} \cdot f_{2}(t)+\varepsilon, \beta_{2}^{*} \neq 0 . \tag{37}
\end{equation*}
$$

We compute Γ according to Lemma 14 and obtain

$$
\begin{align*}
\Gamma(s) & =u(s)-u(\delta)-\int_{\delta}^{s} \frac{1}{t} \cdot u(t) d t \\
& =\int_{\delta}^{s}\left(f_{2}(t)-\frac{1}{t} \int_{0}^{t} f_{2}(\tau) d \tau\right) d t, s \geq \delta \tag{38}
\end{align*}
$$

For $f_{2}(t)=t, \Gamma(s)=\max \left(0, \frac{1}{4}\left(s^{2}-\delta^{2}\right)\right)$ follows. We simulate the partial sum process under the alternative $H_{1}, \delta=0.001, \varepsilon_{n, i} \sim \operatorname{unif}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$ and assuming $\left(\beta_{1}, \beta_{2}\right)=(0.5,1)$ holds for the true parameters and compare with the limit process. Cf. Figure 5.

Figure 5: We compute a sample path of the partial sum process under H_{0} (blue) and under H_{1} (red), each with the same simulated error vector ε_{n}. The difference is the black path, which exactly fits Γ (cf. R-script on p. 77).

For the power P (reject $H_{0} \mid H_{1}$ is true) of the three tests from Theorem 11, under H_{1} given in (36), we obtain

$$
\begin{align*}
& \operatorname{power}(29)=P\left(\sup _{0 \leq s \leq 1-\delta}\left(B_{s}+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma(s+\delta)\right)>x\right), \\
& \operatorname{power}(30)=P\left(\inf _{0 \leq s \leq 1-\delta}\left(B_{s}+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma(s+\delta)\right)<y\right), \tag{39}\\
& \operatorname{power}(31)=P\left(\sup _{0 \leq s \leq 1-\delta}\left|B_{s}+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma(s+\delta)\right| \geq z\right)
\end{align*}
$$

Example 17. Following Bischoff (2016), we give a simple application from quality control in which we use (39) to determine suitable designs to detect change-points in the quality of a manufactured product. We consider the test problem of a constant product quality $Y(t)$ vs. a decreasing one, more precisely

$$
\begin{equation*}
H_{0}: Y(t)=\beta_{1}+\varepsilon \quad \text { vs. } \quad H_{1}: Y(t)=\beta_{1}+\beta_{2}^{*} \cdot g_{t_{0}}(t)+\varepsilon, \beta_{2}^{*}<0, \tag{40}
\end{equation*}
$$

(Constant vs. step function)
where $t_{0} \in(0,1), g_{t_{0}}:[0,1] \rightarrow \mathbb{R}, g_{t_{0}}(t):=1_{\left(t_{0}, 1\right]}(t)$. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)$ be an asymptotic $F-$ design in $[0,1]$ with $F\left(t_{0}\right)=: q \in(\delta, 1)$. We call this an asymptotic $q-F$-design. First, we determine $\Gamma=\Gamma_{g_{t_{0}}, F}$ from Lemma 14. Note $g_{t_{0}} \circ F_{0}^{-}=1_{(q, 1]}$, because $r \leq q$ implies $F_{0}^{-}(r) \leq t_{0}$ and $r>q$ implies $F_{0}^{-}(r)>t_{0}$. With some short calculations we get (note $\delta<q$)

$$
u(s)=\int_{[0, s]} g_{t_{0}} \circ F_{0}^{-} d \lambda=(s-q) \cdot 1_{(q, 1]}(s), s \in[0,1]
$$

and

$$
\begin{aligned}
\Gamma(s) & =u(s)-u(\delta)+\int_{[\delta, s]} \frac{1}{t}[0-u(t)] d t \\
& =q \cdot \ln \left(\frac{s}{q}\right) \cdot 1_{(q, 1]}(s), s \in[0,1] .
\end{aligned}
$$

With respect to power(30) given in (39), we call an asymptotic $q_{1}-F$-design uniformly better than an asymptotic $q_{2}-F$-design if $\beta_{2}^{*}<0$ and

$$
\begin{equation*}
\beta_{2}^{*} q_{1} \ln \left(\frac{s}{q_{1}}\right) \cdot 1_{\left(q_{1}, 1\right]}(s) \leq \beta_{2}^{*} q_{2} \ln \left(\frac{s}{q_{2}}\right) \cdot 1_{\left(q_{2}, 1\right]}(s) \tag{4}
\end{equation*}
$$

holds for all $s \in[\delta, 1]$. With this we have the following statement.
(U) For $\beta_{2}^{*}<0$ and $e^{-1} \leq q_{1}<q_{2}$, an asymptotic $q_{1}-F$-design is uniformly better than an asymptotic $q_{2}-F-$ design.

Proof of (U): For $s \leq q_{1}$ and $q_{1}<s \leq q_{2}$ the assertion is clear. For $q_{2}<s \leq 1$ we note

$$
\begin{align*}
& \beta_{2}^{*} q_{1} \ln \left(\frac{s}{q_{1}}\right) \cdot 1_{\left(q_{1}, 1\right]}(s) \leq \beta_{2}^{*} q_{2} \ln \left(\frac{s}{q_{2}}\right) \cdot 1_{\left(q_{2}, 1\right]}(s) \\
\Leftrightarrow & \beta_{2}^{*} q_{1} \ln \left(\frac{s}{q_{1}}\right) \leq \beta_{2}^{*} q_{2} \ln \left(\frac{s}{q_{2}}\right) \\
\Leftrightarrow & q_{1} \ln \left(\frac{q_{1}}{s}\right) \leq q_{2} \ln \left(\frac{q_{2}}{s}\right) . \tag{42}
\end{align*}
$$

For $e^{-1} \leq q<1$ we consider $f(q):=q \ln \left(\frac{q}{s}\right)$. Obviously, $f^{\prime}(q)=\ln \left(\frac{q}{s}\right)+1 \geq 0$ and thus f is strictly monotonically increasing. Consequently, (42) and thus overall (41) holds.

Least-squares residual partial sum process

The technique of the factorization of the regression functions used in the proof of Theorem 10 (cf. Lemma 67) can of course be profitably used in the study of other stochastic processes. The closest example to the recursive residual partial sum processe we considered is the ordinary least squares residual partial sum process. In analogy to Definition 4, we thus come to

Definition 18. The ordinary least-squares residual partial sum process is defined as

$$
\begin{equation*}
D_{n}:=\frac{1}{\sigma \sqrt{n}} \cdot T_{n} \circ w_{n}, \tag{43}
\end{equation*}
$$

where σ is defined in (4) and w_{n} is defined in (12).

This leads to a generalization of Theorem 2.2 from Bischoff (1998), which can also be found as Theorem 2.2.11 in Heindl (2022), since it was developed jointly by Heindl and Evers.

Theorem 19. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$ be an asmptotic F-design in $[a, b]$ and consider model (3) with $f_{1}, \ldots, f_{d}:[a, b] \rightarrow \mathbb{R}$ all of bounded variation and left continuous and let f_{1}, \ldots, f_{d} be linearly independent in $L_{2}([a, b], F)$. Under these assumptions and H_{0} given in (32), $D_{n} \xrightarrow{\mathscr{O}}$ $B_{f, F}$, where $B_{f, F}$ is the Gaussian process on $[0,1]$ given by

$$
\begin{align*}
B_{f, F}(\omega, t):=B(\omega, t)+ & \left(\int_{(0, t)} f \circ F_{0}^{-} d \lambda\right)^{\top} \cdot\left(\int_{[a, b]} f f^{\top} d \mu_{F}\right)^{-1} \\
& \cdot\left(\int_{[a, b)} B(\omega, F) d \mu_{f}-B(\omega, 1) f\left(F^{-}(1)\right)\right), \tag{44}
\end{align*}
$$

where B is a Brownian motion on $[0,1]$.
The proof can be found on page 43. Note that the proof is based on techniques developed for the proof of Theorem 79.

6 Reversed partial sums of recursive residuals

Definition 20. The reversed recursive residual partial sum process is defined as

$$
\begin{equation*}
B_{n, \delta}^{(b)}:=\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ r_{n}, \tag{45}
\end{equation*}
$$

where σ is defined in (4) and $g=g_{\delta}: \mathbb{R}^{n-d} \rightarrow \mathbb{R}^{n-d}$ is defined by

$$
\begin{equation*}
a=\left(a_{1}, \ldots, a_{n-d}\right)^{\top} \mapsto\left(0, \ldots, 0, a_{n-d}, \ldots, a_{\lfloor(n-d) \delta\rfloor+1}\right)^{\top} . \tag{46}
\end{equation*}
$$

Theorem 21. Under the assumptions of Theorem $10, B_{n, \delta}^{(b)} \xrightarrow{\mathscr{O}} B^{\prime}$ holds under H_{0} from (36), whereby B^{\prime} is a shifted Brownian motion (cf. Remark 5 for the definition of B^{\prime}).

The proof can be found on page 45. As with B_{n}, for abbreviation we write $B_{n}^{(b)}$ instead of $B_{n, \delta}^{(b)}$.
Theorem 22. Under the assumptions of Theorem 21, an asymptotic test of size α is given by each of the following rules.

$$
\begin{align*}
& \text { reject } H_{0} \text { given in (32) }: \Leftrightarrow \exists s \in[0,1] \text { with } \frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d}\left(g \circ r_{n}\right)(s)>x, \tag{47}\\
& \text { reject } H_{0} \text { given in (32) }: \Leftrightarrow \exists s \in[0,1] \text { with } \frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d}\left(g \circ r_{n}\right)(s)<y, \tag{48}\\
& \text { reject } H_{0} \text { given in (32) }: \Leftrightarrow \exists s \in[0,1] \text { with }\left|\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d}\left(g \circ r_{n}\right)(s)\right| \geq z, \tag{49}
\end{align*}
$$

where x, y and z are defined as in Theorem 11, but the mapping g is given here by (46).
The proof is the same as that already given for Theorem 11.

Theorem 23. For $B_{n}^{(b)}$ under the alternative H_{1} given in (36), with respect to model (35),

$$
\begin{equation*}
B_{n}^{(b)} \xrightarrow{\mathscr{O}} B^{\prime}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta \quad(\text { for } n \rightarrow \infty) \tag{50}
\end{equation*}
$$

holds under the assumptions of Theorem 10, with $\Delta \in C[0,1], \Delta(s):=0$ for $s \in[0, \delta)$ and

$$
\begin{align*}
\Delta(s): & =u(1)-u(1-s+\delta) \tag{51}\\
& +\int_{1-s+\delta}^{1} f\left(F_{0}^{-}(t)\right)^{\top}\left(\int_{[0, t]}\left(f f^{\top}\right) \circ F_{0}^{-} d \lambda\right)^{-1}\left[\int_{\left(a, F_{0}^{-}(t)\right)}\left(u \circ F_{0}\right) d \mu_{f}-f\left(F_{0}^{-}(t)\right) u(t)\right] d t
\end{align*}
$$

applies, where $u \in C[0,1]$ is defined by $u(s):=\int_{0}^{s} f_{d+1} \circ F_{0}^{-} d \lambda$ and $F_{0}:=F_{[[a, b]}$.
The proof can be found on page 46.
Example 24. We again consider Example 16 and compute the reversed recursive residual partial sum process under H_{0} and H_{1}, cf. Figure 6. For the trend function Δ we get

$$
\Delta(s)=u(1)-u(1-s+\delta)-\int_{1-s+\delta}^{1} \frac{1}{t} \cdot u(t) d t=\frac{1}{4}(s-\delta)(2+\delta-s), s \geq \delta
$$

Figure 6: Sample path of the reversed partial sum process under H_{0} (blue) and under H_{1} (red), each with the same simulated error vector ε_{n}. The difference (black path) fits Δ.

For the power of the tests (47), (48), and (49) under H_{1} given in (36), we obtain, completely analogous to the "normal" recursive residual partial sum process,

$$
\begin{aligned}
& \operatorname{power}(47)=P\left(\sup _{0 \leq s \leq 1-\delta}\left(B_{s}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta(s+\delta)\right)>x\right), \\
& \operatorname{power}(48)=P\left(\inf _{0 \leq s \leq 1-\delta}\left(B_{s}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta(s+\delta)\right)<y\right), \\
& \operatorname{power}(49)=P\left(\sup _{0 \leq s \leq 1-\delta}\left|B_{s}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta(s+\delta)\right| \geq z\right) .
\end{aligned}
$$

Example 25. We follow Bischoff et al. (2005) and consider the particular importend test problem

$$
\begin{equation*}
H_{0}: Y(t)=\beta_{1}+\varepsilon \quad \text { vs. } \quad H_{1}: Y(t)=\beta_{1}+\beta_{2}^{*} \cdot g(t)+\varepsilon, \beta_{2}^{*}>0 \tag{52}
\end{equation*}
$$

(Constant vs. non-constant)
with $g:[a, b] \rightarrow \mathbb{R}$ of bounded variation and we want to determine Γ of Theorem 15 (cf. Lemma 14) and Δ of Theorem 23. In both cases $u(s)=\int_{0}^{s} g \circ F_{0}^{-}(t) d t$, where $F_{0}:=F_{[[a, b]}$. Thus

$$
\begin{align*}
& \Gamma(s)=\int_{\delta}^{s}\left(g \circ F_{0}^{-}(t)-\frac{1}{t} \cdot \int_{0}^{t} g \circ F_{0}^{-}(\tau) d \tau\right) d t \tag{53}\\
& \Delta(s)=\int_{1-s+\delta}^{1}\left(g \circ F_{0}^{-}(t)-\frac{1}{t} \cdot \int_{0}^{t} g \circ F_{0}^{-}(\tau) d \tau\right) d t \tag{54}
\end{align*}
$$

with $\Gamma(s)=\Delta(s)=0$ for all $s \in[0, \delta]$. To compare the power of the associated tests, it would be helpful if we could show $\Gamma(s) \leq \Delta(s)$ for all s (or vice versa). To do this, we set $f:=g \circ F^{-}$and analyze the integrand $I(t):=f(t)-\frac{1}{t} \cdot \int_{0}^{t} f(\tau) d \tau$ from (53) and (54), respectively. Because of $1-(1-s+\delta)=s-\delta$, it would suffice if we specify conditions under which I is nondecreasing. If f is nondecreasing and $t<t^{\prime}$ holds,

$$
\begin{aligned}
\frac{1}{t^{\prime}} \cdot \int_{0}^{t^{\prime}} f(\tau) d \tau-\frac{1}{t} \cdot \int_{0}^{t} f(\tau) d \tau & \leq \frac{1}{t^{\prime}}\left(\int_{0}^{t} f(\tau) d \tau+\left(t^{\prime}-t\right) f\left(t^{\prime}\right)\right)-\frac{1}{t} \cdot \int_{0}^{t} f(\tau) d \tau \\
& \leq\left(\frac{1}{t^{\prime}}-\frac{1}{t}\right) \int_{0}^{t} f(\tau) d \tau+\left(1-\frac{t}{t^{\prime}}\right) f\left(t^{\prime}\right) \\
& \leq\left(\frac{1}{t^{\prime}}-\frac{1}{t}\right) \cdot t \cdot f(t)+\left(1-\frac{t}{t^{\prime}}\right) f\left(t^{\prime}\right) \\
& =\left(1-\frac{t}{t^{\prime}}\right) \cdot\left(f\left(t^{\prime}\right)-f(t)\right) \leq f\left(t^{\prime}\right)-f(t)
\end{aligned}
$$

follows. Hence $I(t)=f(t)-\frac{1}{t} \cdot \int_{0}^{t} f(\tau) d \tau$ would be non-decreasing. Thus

$$
\begin{equation*}
\forall s \in[\delta, 1]: \Gamma(s) \leq \Delta(s) \tag{55}
\end{equation*}
$$

holds if $g:[a, b] \rightarrow \mathbb{R}$ is non-decreasing (since $f=g \circ F^{-}$is non-decreasing as well and $1-(1-s+\boldsymbol{\delta})=s-\delta)$. So, if we consider test problem (52) for a non-decreasing g, we can either use test (29) based on process (21), or test (47) based on process (45). Since

$$
\begin{align*}
\operatorname{power}(47) & =P\left(\sup _{0 \leq s \leq 1-\delta}\left(B_{s}+\frac{\beta_{2}}{\sigma} \cdot \Delta(s+\delta)\right)>x\right) \\
& \stackrel{(55)}{\geq} P\left(\sup _{0 \leq s \leq 1-\delta}\left(B_{s}+\frac{\beta_{2}}{\sigma} \cdot \Gamma(s+\delta)\right)>x\right)=\operatorname{power}(29), \tag{56}
\end{align*}
$$

the test has a larger power when based on reversed sums of recursive residuals. Furthermore, $\Gamma:[0,1] \rightarrow \mathbb{R}$ is non-decreasing and convex and $\Delta:[0,1] \rightarrow \mathbb{R}$ is non-decreasing and concave, if g is non-decreasing. This follows from

$$
\Gamma^{\prime}(s)=I(s) \quad \text { and } \quad \Delta^{\prime}(s)=I(1-s+\delta)
$$

and because $s \mapsto I(s)$ is non-decreasing and $s \mapsto I(1-s+\delta)$ is non-increasing. Moreover, $\Gamma(1)=\Delta(1)$ and $\Gamma(s)=\Delta(s)$ holds for all $s \in[0, \delta]$.

7 An asymptotically uniformly most powerful test

For technical reasons, in this section we do not consider the processes $B_{n}, B_{n}^{(b)}$ and B^{\prime} (defined in (21), (45) resp. Remark 5), but we shift them to the left by δ and cut off the uninteresting part at the beginning, cf. (24) and the proof of Theorem 21).
Definition 26. For $X: \Omega \rightarrow \mathbb{R}^{[0,1]}, u:[0,1] \rightarrow \mathbb{R}$ and $\delta:=F(c)$ we define

$$
\begin{array}{ll}
X_{\bullet}^{\bullet}: \Omega \rightarrow C[0,1-\delta], & X^{\bullet}(\omega)(t):=X(\omega)(t+\delta) \\
u^{\bullet}:[0,1-\delta] \rightarrow \mathbb{R}, & u^{\bullet}(t):=u(t+\delta) .
\end{array}
$$

Note that $B^{\prime \bullet}$ is an ordinary Brownian motion on $[0,1-\delta]$ (the dash at $B^{\prime \bullet}$ is not to be confused with the derivative). It is obvious that all convergence results remain valid for the transformed processes, although one has to shift functions like Γ and Δ at appropriate places. For example, under the alternative H_{1} from (36) for B_{n}^{\bullet} and $B_{n}^{(b) \bullet}$ with respect to model (35),

$$
B_{n}^{\bullet} \xrightarrow{\mathscr{B}} B^{\bullet \bullet}+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma^{\bullet} \quad \text { and } \quad B_{n}^{(b) \bullet} \xrightarrow{\mathscr{O}} B^{\prime \bullet}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta^{\bullet}
$$

holds. In the following we consider the one-sided test problem

$$
\begin{equation*}
H_{0}: Y=\sum_{k=1}^{d} \beta_{k} f_{k}+\varepsilon \quad \text { vs. } \quad H_{1}: Y=\sum_{k=1}^{d} \beta_{k} f_{k}+\beta_{d+1}^{*} f_{d+1}+\varepsilon, \beta_{d+1}^{*}>0 \tag{57}
\end{equation*}
$$

with respect to model (35)
Definition 27. We call a sequence of functions $\varphi_{n}: C[0,1-\delta] \rightarrow\{0,1\}, n \in \mathbb{N} \geq 1$ an asymptotically uniformly most powerful size α test for recursive residuals, resp. reversed recursive residuals, with respect to model (35) if

$$
\begin{array}{ll}
& \varphi_{n}\left(\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ\left(M_{n, n}^{\top} Y_{n}^{*}\right)\right)^{\bullet} \xrightarrow{\mathscr{\rightarrow}} \varphi\left(B^{\prime \bullet}+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma^{\bullet}\right) \\
\text { resp. } & \varphi_{n}\left(\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ\left(M_{n, n}^{\top} Y_{n}^{*}\right)\right)^{\bullet} \xrightarrow{\mathscr{\rightarrow}} \varphi\left(B^{\prime \bullet}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta^{\bullet}\right), \tag{59}
\end{array}
$$

where the g in (58) comes from (22) and that in (59) comes from (46) and $\varphi: C[0,1-\delta] \rightarrow$ $\{0,1\}$ is a uniformly most powerful size α test for the test problem (57) observing $B^{\bullet \bullet}+\frac{\beta_{d+1}}{\sigma}$. Γ^{\bullet}, resp. observing $B^{\prime \bullet}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta^{\bullet}$.
Theorem 28. We define the test statistic $\rho: C[0,1-\delta] \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
\rho(u):=\left(-\int_{[0,1-\delta]} \Delta^{\bullet}(s) d\left(\Delta^{\bullet}\right)^{\prime}(t)\right)^{-\frac{1}{2}} \int_{[0,1-\delta]} u(t) d\left(\Delta^{\bullet}\right)^{\prime}(t) \tag{60}
\end{equation*}
$$

and the statistical test $\varphi:=1_{\rho^{-1}\left(\left(\Phi^{-1}(1-\alpha), \infty\right)\right)}$ with the decision rule

$$
\begin{equation*}
\text { reject } H_{0} \text { given in (57) }: \Leftrightarrow \varphi\left(\left(\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ\left(M_{n, n}^{\top} Y_{n}^{*}\right)\right)^{\bullet}\right)=1 \text {, } \tag{61}
\end{equation*}
$$

where $\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} t^{2}} d t$ and and g in (61) comes from (46) and the dashes ' in (60) denote the derivative. Under the assumptions of Theorem 10 and Lemma 14, whereby we additionally assume that $f_{d+1}(x)=0$ holds for all $x \in\left[a, F_{0}^{-}(\delta)\right], \varphi\left(=\varphi_{n}\right.$ for all $\left.n\right)$ is an asymptotically uniformly most powerful size α test for (57) with respect to model (35).
The proof can be found on page 46.

Part B. Weak convergence of finite measures

Here we describe the main principles of the theory of weak convergence of finite measures. The results in this section are, in principle, facts that have been known for almost 60 years. Therefore, to make the presentation more interesting, we present these classical results in a more general way than usual. On the one hand, we let the underlying spaces very general and consider measures on perfectly normal spaces instead on metric spaces and on the other hand, we consider filters of measures instead of sequences of measures.

It is sometimes like this: One considers certain structures on topological spaces (e.g. measures) and has a notion of convergence at hand. Nevertheless, one often considers only sequences of these structures (and correspondingly the convergence of sequences). However, if one considers the set of all these structures, one can sometimes naturally define a topology that respects convergence for sequences of these structures, which then gives a filter convergence anyway. If one then also finds that the theory for filters is basically no more difficult to develop than for sequences, then there is really no reason to restrict oneself to sequences and one can develop the notion of convergence directly for filters.

In the literature one can find presentations of the theory of weak convergence of measures using nets, cf. Topsoe (1970) and Bogachev (2018), but although nets and filters are both sufficient structures to describe topological properties, we think that filters are better and more natural to study problems concerning convergence. A net is defined as a function whose domain is a directed set I. Therefore one has to deal with indexed values all the time. Filters are defined much more directly and are virtually their own directed set. Although there is in principle a canonical correspondence between filters and nets, many arguments and concepts can be formulated more simply and naturally with filters. Finally, general convergence theory is and has been developed mainly in the language of filters, see, e.g., the monographs Bourbaki (1966), Binz (1975), Beattie and Butzmann (2002), Preuss (2002), Hart et al. (2004), Mynard and Pearl (2009), Dolecki and Mynard (2016), Nel (2016) and filters are better studied than nets with respect to their set-theoretic and algebraic properties and resulting applications in topological problems, cf. e.g. Comfort and Negrepontis (1974), Walker (1974), Kunen and Vaughan (1984), Jech (2003), Zelenyuk (2011), Hindman and Strauss (2012), to name just a few of the best-known books in this field. In fact, the author is not aware of any work in which nets are studied in a similar depth as filters in these books.

This generalization of the theory of weak convergence of measures for filters is of no direct relevance for the understanding of Part A of this thesis. Rather, it has arisen only as a by-product of the author's familiarization with the subject. However, since it is not found in this form in the literature, we decided to include it as a separate part.

The classical theory of weak convergence necessary to understand Part A for sequences of measures in the context of metric spaces is developed, for example, in Billingsley (1968, 1999), Kallenberg (2002), Borovkov (2013), Shorack (2017), and Klenke (2020).

1 Basic notations and definitions

Definition 29. We call a subset $\varphi \subseteq \mathscr{P}(X)$ of the powerset of a set X filter (on X), if

1. $\emptyset \notin \varphi$ and $X \in \varphi$
2. $P, Q \in \varphi$ implies $P \cap Q \in \varphi$
3. $P \in \varphi$ and $P \subseteq Q \subseteq X$ implies $Q \in \varphi$.

Filter that are maximal with respect to subset relation are called ultrafilter. Let $\mathscr{F}(X)$ (resp. $\mathscr{F}_{U}(X)$) the set of all filters (resp. ultrafilters) on $X . \varphi_{0} \subseteq \varphi$ is called filterbase or base (for φ) if for all $P \in \varphi$ exists some $Q \in \varphi_{0}$ with $Q \subseteq P$. A map $f: X \rightarrow Y$ has a natural extension $F: \mathscr{F}(X) \rightarrow \mathscr{F}(Y)\left(\right.$ resp. $F: \mathscr{F}_{U}(X) \rightarrow \mathscr{F}_{U}(Y)$) defined by

$$
\begin{equation*}
F(\phi):=\{Q \subseteq Y \mid \exists P \in \phi \text { with } f(P) \subseteq Q\} . \tag{62}
\end{equation*}
$$

For $x \in X$ we define $\dot{x}:=\{P \subseteq X \mid x \in P\}$. If we identify each $x \in X$ with \dot{x}, then F is an extension of X to all of $\mathscr{F}(X)$. If $\alpha \subseteq \mathscr{P}(X)$ we define $[\alpha]:=\{P \subseteq X \mid \exists A \in \alpha$ with $A \subseteq P\}$.

Definition 30. We call $\tau \subseteq \mathscr{P}(E)$ a topology on E if

1. $\emptyset, E \in \tau$
2. $U, V \in \tau$ implies $U \cap V \in \tau$
3. $\tau^{\prime} \subseteq \tau$ implies $\bigcup \tau^{\prime} \in \tau$

The pair (E, τ) is called topological space. Elements of τ are called open and their complements are called closed. To say that a filter ϕ on E converges to $a \in E$, denoted by $\phi \xrightarrow{\tau} a$, means that for all open U with $a \in U$ exists $P \in \phi$ with $P \subseteq U$.

A filter contain those subsets that are sufficiently large in some sense. For example let $x=$ $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in some set X and define $\varphi(x)$ by

$$
\varphi(x):=\left\{P \subseteq X \mid \exists n \in \mathbb{N} \forall k \geq n: x_{k} \in P\right\} .
$$

We can think of φ as the set of end-pieces of $\left(x_{n}\right)_{n \in \mathbb{N}}$. Note that $\varphi: X^{\mathbb{N}} \rightarrow \mathscr{F}(X)$ is not necessarily injective. For example $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6} \ldots$ and $\frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{5}, \ldots$ are two sequences $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ and $y=\left(y_{n}\right)_{n \in \mathbb{N}}$ with $x_{n} \neq y_{n}$ for all $n \in \mathbb{N}$, but $\varphi(x)=\varphi(y)$. Nevertheless all topological properties of $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ can be reformulated in terms of $\varphi(x)$. For example

$$
x_{n} \text { converges to } a \quad \Leftrightarrow \quad\{U \subseteq X \mid U \text { is a neighbourhood of } a\} \subseteq \varphi(x) \quad \Leftrightarrow \quad \varphi(x) \xrightarrow{\tau} a
$$

Filters were introduced by Cartan (1937) and brought to popularity by Bourbaki. For more details concerning general topological spaces and filters cf. Bourbaki (1966).

Definition 31. We call $(\Omega, \mathscr{A}, \mu)$ measure space if

1. Ω is a nonempty set
2. \mathscr{A} is a σ-algebra on Ω, that mean (a) $\Omega \in \mathscr{A}$, (b) $\Omega \backslash A \in \mathscr{A}$ whenever $A \in \mathscr{A}$ and (c) $\bigcup_{i \in \mathbb{N}} A_{i} \in \mathscr{A}$ whenever $A_{i} \in \mathscr{A}$ for all $i \in \mathbb{N}$
3. $\mu: \mathscr{A} \rightarrow[0, \infty) \cup\{\infty\}$ is a measure on (Ω, \mathscr{A}), that mean (a) $\mu(\emptyset)=0$ and (b)

$$
\mu\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right)
$$

whenever $A_{i} \in \mathscr{A}, i \in \mathbb{N}$ are pairwise disjoint sets.
For ∞ and $-\infty$ the usual properties apply (for example a $+\infty=\infty, \infty+\infty=\infty$ and so on). A measure space with $\mu(\Omega)<\infty$ is called finite measure space. If $\mu(\Omega)=1,(\Omega, \mathscr{A}, \mu)$ is called probability space. In this case μ is called probability measure.

Definition 32. Let $\alpha \subseteq \mathscr{P}(\Omega)$. We call

$$
\begin{equation*}
\sigma(\alpha):=\bigcap_{\substack{\alpha \subseteq \mathscr{A} \subseteq \mathscr{P}(\Omega) \\ \mathscr{A}: \sigma \text {-algebra }}} \mathscr{A}^{\mathscr{A}} \tag{63}
\end{equation*}
$$

the σ-algebra generated by α. If a topology τ is given on Ω, we call $\sigma(\tau)$ the Borel σ-algebra.
For basics from measure and integration theory in general and probability theory in particular, we refer to popular textbooks on these topics, such as Bauer (2001), Kallenberg (2002), Shorack (2017), Elstrodt (2018), and Klenke (2020).

2 Finite measures in perfectly normal spaces

Definition 33. A closed subset B of a topological space is called G_{δ}-set if there exists open sets $O_{n}, n \in \mathbb{N}$ with $B=\bigcap_{n \in \mathbb{N}} O_{n}$. A topological space E is said to be a G_{δ}-space if every closed subspace B of E is a $G_{\delta^{-}}$-set. A topological space E is said to be normal iffor disjoint, closed A, B exists disjoint, open U, V with $A \subseteq U$ and $B \subseteq V$. A normal G_{δ}-space is called perfectly normal.

Lemma 34. For a topological space X the following is equivalent.

1. X is perfectly normal.
2. For all closed A in X exists a continuous $f: X \rightarrow[0,1]$ with $A=f^{-1}(0)$.
3. For all closed, disjoint A, B in X exists a continuous $f: X \rightarrow[0,1]$ with $A=f^{-1}(0)$ and $B=f^{-1}(1)$.

The proof can be found on page 48. All metrizable spaces are perfectly normal (but not vice versa ${ }^{1}$) and all CW-complexes are perfectly normal (of course not vice versa), cf. Lundell and Weingram (1969), Proposition 4.3. But there exists nice spaces (e.g. hereditarily normal 2 compact Hausdorff spaces) that are not perfectly normal ${ }^{3}$. Nonetheless, in many cases

[^0]perfectly normal is exactly the property we need to prove a theorem in this context of weak convergence. This is mainly due to the following Lemma 35 (there especially the second point), which in combination with the dominated convergence theorem is crucial for the proof of the most basic results (cf. Lemma 36, Lemma 38 and Theorem 40).

Lemma 35.

1. Let (E, d) be a metric space, F a closed subspace and $\varepsilon>0$. Define

$$
\begin{aligned}
& h:[0, \infty) \rightarrow[0,1], \quad h(x):= \begin{cases}-\varepsilon^{-1} x+1 & \text { if } x \in[0, \varepsilon] \\
0 & \text { if } x>\varepsilon\end{cases} \\
& f_{F, \varepsilon}: E \rightarrow[0,1], \quad f_{F, \varepsilon}(x):=h(d(x, F))
\end{aligned}
$$

Then $f_{F, \varepsilon}$ has the following properties:
a) $0 \leq f_{F, \varepsilon}(x) \leq 1$ for all $x \in E$
b) $f_{F, \varepsilon}(x)=1$ for all $x \in F$
c) $f_{F, \varepsilon}(x)=0$ for all $x \in E$ with $d(x, F) \geq \varepsilon$
d) $f_{F, \varepsilon}$ is $\frac{1}{\varepsilon}$-Lipschitz-continuous
2. Let (E, τ) be normal and F a closed G_{δ}-set in E. Then there exists two sequences $\left(B_{n}\right)_{n \in \mathbb{N}}$ in τ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $C(E,[0,1])$ with

$$
\bigcap_{n \in \mathbb{N}} B_{n}=F, \quad \bar{B}_{n+1} \subseteq B_{n}, \quad f_{n}\left(\bar{B}_{n+1}\right) \subseteq\{1\}, \quad f_{n}\left(E \backslash B_{n}\right) \subseteq\{0\}
$$

and therefore $f_{n}(x) \xrightarrow{\tau_{\mathbb{R}}} 1_{F}(x)$ for $n \rightarrow \infty$ and for all $x \in E$.
The proof can be found on page 49. The aim of the next Lemma is to show that in a perfectly normal space a finite measure is determined by its values for closed and open sets.

Lemma 36. Let (E, τ) be perfectly normal and P a finite measure defined on $\mathscr{B}(E)$, the Borel σ-algebra. Then

$$
\forall A \in \mathscr{B}(E) \forall \varepsilon>0 \exists F: \text { closed, } G: \text { open, with } F \subseteq A \subseteq G \text { and } P(G \backslash F)<\varepsilon .
$$

This means P is regular.
The proof can be found on page 49 .

3 Weak convergence of finite measures

Intuitively, one would say of a series $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ of measures to converge against μ, if

$$
\begin{equation*}
\mu_{n}(A) \rightarrow \mu(A) \quad \text { as } \quad n \rightarrow \infty, \quad \text { for every } A \text { from the related } \sigma \text {-algebra } \tag{64}
\end{equation*}
$$

holds. On the other hand if μ_{n} is the Dirac measure at $\frac{1}{n}$ (In the measuring space $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$), one would intuitively expect that the sequence converges to μ, the Dirac measure in 0. But for $A=(-\infty, 0]$ the above requirement for the convergence of the measures is violated, because

$$
\lim _{n \rightarrow \infty} \mu_{n}(A)=0 \neq \mu(A) .
$$

This concept of convergence seems to be too strong. An equivalent formulation of the above, intuitive convergence concept of measures is (cf. Elstrodt (2018), VIII exercise 4.3):

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f \mathrm{~d} \mu_{n}=\int_{\Omega} f \mathrm{~d} \mu, \quad \text { for all bounded and measurable } f . \tag{65}
\end{equation*}
$$

The proof of the equivalence of (65) and (64) can be found on page 50.
On the basis of this characterization we seek for weaker functional classes \mathscr{F} and sets of measures \mathscr{M}, so that the above equation (65) holds for these measures and these classes of functions. Roughly speaking the average value of sufficiently nice functions should converge. Furthermore we want \mathscr{F} to be a separating family for \mathscr{M}. That means

$$
\int_{\Omega} f \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} v \text { for all } f \in \mathscr{F} \quad \Longrightarrow \quad \mu=v
$$

for all $\mu, v \in \mathscr{M}$. This guarantees the uniqueness of the limit value. If one chooses the finite measures on the borel σ-algebra as \mathscr{M} and the bounded continuous functions as \mathscr{F}, one obtains the weak convergence described below. It will turn out that this kind of convergence is exactly the kind of convergence we encounter in the central limit theorem. Another choice of function classes and sets of measures provides, for example, the vague convergence (which will not be discussed here).

Let (E, τ) be a topological space, $M(E):=\{p: \mathscr{B}(E) \rightarrow \mathbb{R} \mid p$ is a finite measure $\}$ where $\mathscr{B}(E)$ is the Borel σ-algebra. Let τ_{w} be the coarsest topology on $M(E)$ such that all mappings

$$
\alpha_{f}: M(E) \rightarrow \mathbb{R}, \quad p \mapsto \int_{E} f \mathrm{~d} p, \quad f \in C(E, \mathbb{R}) \cap B(E, \mathbb{R})
$$

continuous, where $C(E, \mathbb{R})$ are continuous and $B(E, \mathbb{R})$ are bounded functions. In other words: τ_{w} is the initial topology on $M(E)$, with respect to $\left\{\alpha_{f} \mid f \in C(E, \mathbb{R}) \cap B(E, \mathbb{R})\right\}$. If E is a metrizable space, that is separable and complete (as metric space), then this topology can even be defined by a metric, the Prokhorov metric. We study here only the topological case. It is widely known that a topology is completely characterized by its convergent filter. Also well known is that

$$
\begin{equation*}
\psi \xrightarrow{\tau_{\mathrm{w}}} p \Leftrightarrow \forall f \in C(E, \mathbb{R}) \cap B(E, \mathbb{R}): \alpha_{f}(\psi) \xrightarrow{\tau_{\text {㭗 }}} \alpha_{f}(p) \tag{66}
\end{equation*}
$$

holds for any filter ψ on $M(E)$ with respect to τ_{w}, cf. Bourbaki (1966), Part 1, Chap. I. §7.6 Proposition 10. However, in the next definition we will use the more intuitive notation $\int_{E} f \mathrm{~d} \psi$ instead of $\alpha_{f}(\psi)$, i.e. we set $\int_{E} f \mathrm{~d} \psi:=\alpha_{f}(\psi)$ from now on.
Definition 37. The initial topology τ_{w} on $M(E)$, with respect to $\left\{\alpha_{f} \mid f \in C(E, \mathbb{R}) \cap B(E, \mathbb{R})\right\}$ is called topology of weak convergence on $M(E)$. Let ψ be a filter on $M(E)$. We say ψ converges weakly to $p \in M(E)$ iff

$$
\int_{E} f d \psi \stackrel{\tau_{\mathbb{P}}}{\rightarrow} \int_{E} f d p \quad \text { for all } \quad f \in C(E, \mathbb{R}) \cap B(E, \mathbb{R})
$$

In this case we write $\psi \xrightarrow{w} p$ and call $\int_{E} f d p$ weak limit of ψ. A sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ in $M(E)$ converges weakly to $p \in M(E)$ iff the filter induced by $\left(q_{n}\right)_{n \in \mathbb{N}}$ converges weakly to p, i.e.

$$
\int_{E} f d q_{n} \xrightarrow[n \rightarrow \infty]{\tau_{\mathbb{R}}} \int_{E} f d p \quad \text { for all } \quad f \in C(E, \mathbb{R}) \cap B(E, \mathbb{R}) \text {. }
$$

In this case we write $\left(q_{n}\right)_{n \in \mathbb{N}} \xrightarrow{w} p$ or simply $q_{n} \xrightarrow{w} p$.

According to (66), $\psi \xrightarrow{\tau_{M}} p$ and $\psi \xrightarrow{w} p$ are two equivalent formulations. One more remark: If $p \in M^{\prime} \subseteq M(E)$ and ψ is a filter on M^{\prime} then obviously

$$
\psi \xrightarrow{\text { in } M^{\prime}} p \quad \Longleftrightarrow \quad i(\psi) \xrightarrow{\text { in }} p{ }^{M(E)} p \quad \text { for inclusion } i: M^{\prime} \hookrightarrow M(E) .
$$

Therefore we will not distinguish between ψ and $i(\psi)$.
Lemma 38. The weak limit of filters ψ on $M(E)$ is unique if (E, τ) is perfectly normal

$$
\psi \xrightarrow{w} P \quad \text { and } \quad \psi \xrightarrow{w} Q \quad \text { implies } \quad P=Q
$$

In other words $\left(M(E), \tau_{w}\right)$ is Hausdorff provided (E, τ) is perfectly normal ${ }^{4}$.
The proof can be found on page 50 .
Lemma 39. Let ψ be a filter on \mathbb{R}, ψ_{0} a filterbase of ψ and $x \in \mathbb{R}$.

1. a) $\operatorname{supinf} \psi:=\sup \{\inf P \mid P \in \psi\} \leq \inf \{\sup P \mid P \in \psi\}=: \inf \sup \psi \quad$ and
b) $\bigcap_{P \in \psi} \bar{P} \subseteq[\operatorname{supinf} \psi, \inf \sup \psi]$

Note that the two sets $\inf \bigcap_{P \in \psi} \bar{P}$ and $\sup \{\inf P \mid P \in \psi\}$ can be different ${ }^{5}$. The same holds for $\sup \bigcap_{P \in \psi} \bar{P}$ and $\inf \{\sup P \mid P \in \psi\}$.
2. $\psi \xrightarrow{\tau_{T}} x \quad \Longleftrightarrow \quad \sup \inf \psi=\inf \sup \psi=x$
3. a) $\sup \left\{\inf P \mid P \in \psi_{0}\right\}=\sup \{\inf P \mid P \in \psi\}$
b) $\inf \left\{\sup P \mid P \in \psi_{0}\right\}=\inf \{\sup P \mid P \in \psi\}$

The proof can be found on page 51. Using Definition 37 directly for checking if a filter ψ of finite Borel measures converge weakly or not seems to be somewhat elusive, because it characterizes $\psi \xrightarrow{w} P$ in terms of a whole bunch of conditions (for all bounded and continuous f) instead of using the definitions of the involved measures directly. In the next theorem (referred to as the Portmanteau Theorem) we therefore develop more suitable ways of defining weak convergence.

Theorem 40. (Portmanteau-Theorem)
For any perfectly normal space $E, P \in M(E)$ and filter ψ on $M(E)$ the following statements are equivalent.

1. $\int_{E} f d \psi \xrightarrow{\tau_{\text {P }}} \int_{E} f d P$ for each continuous map $f: E \rightarrow[0,1] \quad(\psi \xrightarrow{w} P)$
2. $\int_{E} f d \psi \xrightarrow{\tau_{巴}} \int_{E} f d P$ for each Lipschitz-continuous map $f: E \rightarrow[0,1]$, if E is a metric space (E, d).
3. $\int_{E} f d \psi \xrightarrow{\tau_{\mathbb{R}}} \int_{E} f d P$ for each measurable and bounded map $f: E \rightarrow \mathbb{R}$ with $P\left(D_{f}\right)=0$, where $D_{f}:=\{x \in E \mid \exists$ open $V, f(x) \in V$ such that \forall open $U, x \in U: f(U) \nsubseteq V\}$ is the set of points of discontinuity.

[^1]4. $\inf \{\sup Q(F) \mid Q \in \psi\} \leq P(F)$ for each closed $F \subseteq E$
5. $\sup \{\inf Q(G) \mid Q \in \psi\} \geq P(G)$ for each open $G \subseteq E$

In 4. and 5. note that
$\sup \{\inf Q(G) \mid Q \in \psi\}=\liminf p_{n}(G) \quad$ and $\quad \inf \{\sup Q(G) \mid Q \in \psi\}=\limsup p_{n}(G)$
if ψ is induced by a sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of finite Borel measures.
The proof can be found on page 51. The next theorem gives a criterion for a filter ψ to converge weakly, by showing $\psi(A) \xrightarrow{w} P(A)$ for all $A \in \mathscr{U}$ for a suitable subclas $\mathscr{U} \subseteq \mathscr{B}(E)$.

Theorem 41. Let E be perfectly normal, $P \in M(E), \psi \in \mathscr{F}(M(E))$ and $\mathscr{U} \subseteq \mathscr{B}(E)$ with

1. $A_{1}, \ldots, A_{n} \in \mathscr{U} \Rightarrow \bigcap_{i=1}^{n} A_{i} \in \mathscr{U}$,
2. each open $G \subseteq E$ is a countable union of elements of \mathscr{U},
3. $\psi(A) \xrightarrow{\tau_{\mathbb{R}}} P(A)$ for all $A \in \mathscr{U}$.

Then $\psi \xrightarrow{w} P$.
The proof can be found on page 53. The last theorem in this paragraph provides a picturesque idea of weak convergence, especially in the context of sequences of measures and connects it to a famous example of weak convergence, the central limit theorem, cf. the introduction in Billingsley $(1968,1999)$ and Proposition 5.9 in Kallenberg (2002). Let $F: M(\mathbb{R}) \rightarrow \mathbb{R}^{\mathbb{R}}$, $F(q)(x):=q((-\infty, x])$. If ψ is a filter on $M(\mathbb{R})$, then $F(\psi)$ is a filter on $\mathbb{R}^{\mathbb{R}}$, cf. (62). Given $x \in \mathbb{R}, F(\psi)(x):=\{\{f(x) \mid f \in Q\} \mid Q \in F(\psi)\}$ is a filter on \mathbb{R}. If ψ is generated by a sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ of distribution functions, then $F(\psi)(x)$ is generated by the sequence $\left(F_{n}(x)\right)_{n \in \mathbb{N}}$. Note in this context Definition 61 and Lemma 62.

Theorem 42. Let $p \in M(\mathbb{R})$ and ψ be a filter on $M(\mathbb{R})$ such that there exists some $Q \in \psi$ with $q(\mathbb{R})=p(\mathbb{R})$ for all $q \in Q$. Then

$$
\psi \xrightarrow{w} p \Leftrightarrow \forall x \in c(F(p)): F(\psi)(x) \rightarrow F(p)(x),
$$

where $c(F(p))$ is the set of continuity points of $F(p)$.
The proof can be found on page 54 .

4 Convergence in distribution

We define the convergence of a filter of random variables in terms of the weak convergence of the distributions of these random variables. Aim of this paragraph is to state and prove Rubin's continuous mapping theorem ${ }^{6}$ (Theorem 46).

[^2]Definition 43. Let $X: \Omega \rightarrow E$ be a map from a probability space (Ω, \mathscr{A}, P) to a perfectly normal space (E, τ) that is measurbale (i.e. $X^{-1}(B) \in \mathscr{A}$ for all $B \in \mathscr{B}(E)$). The distribution of the random variable X is the probability measure $P^{X}: \mathscr{B}(E) \rightarrow \mathbb{R}$ defined by $P^{X}(B):=$ $P\left(X^{-1}(B)\right)$. I. e., we have a canonical mapping $\mathscr{D}: R(\Omega, E) \rightarrow M(E), \mathscr{D}(Y):=P^{Y}$. Let

$$
R(\Omega, E):=\left\{Y \in E^{\Omega} \mid Y^{-1}(B) \in \mathscr{A} \quad \text { for all } \quad B \in \mathscr{B}(E)\right\}
$$

be the set of all random variables. We say a filter ϕ on $R(\Omega, E)$ converges in distribution to $X \in R(\Omega, E)$ iff

$$
\mathscr{D}(\phi) \xrightarrow{w} \mathscr{D}(X) \quad \text { (the image filter converges weakly) }
$$

and we write $\phi \xrightarrow{\mathscr{O}} X$.
Definition 44. Let (X, τ) and (Y, σ) topological Spaces. A filter Φ on Y^{X} converges continuously in x to $h \in Y^{X}$ iff

$$
\begin{equation*}
\psi \xrightarrow{\tau} x \quad \text { implies } \quad \Phi(\psi) \xrightarrow{\sigma} h(x) \text { for all filter } \psi \text { on } X, \tag{67}
\end{equation*}
$$

whereby $\Phi(\psi):=\{A \subseteq Y \mid \exists P \in \Phi, Q \in \psi: P(Q) \subseteq A\}$ with $P(Q):=\{g(x) \mid g \in P, x \in Q\}$.
Since $\psi \xrightarrow{\tau} x \Leftrightarrow \dot{x} \cap \tau \subseteq \psi$, (67) is equivalent to

$$
\begin{equation*}
\phi([\dot{x} \cap \tau]) \xrightarrow{\sigma} h(x) . \tag{68}
\end{equation*}
$$

This is useful in that we have defined the weak convergence of a filter ψ on $M(E)$ with respect to the convergence of a topology τ_{w}, that is, $\psi \xrightarrow{w} P \Leftrightarrow \psi \xrightarrow{\tau_{w}} P$.

Lemma 45. Let (X, τ) and (Y, σ) topological spaces, $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in Y^{X} and $x \in X$ be a point with a countable neighbourhoodbase (cnb). Then the following is equivalent:

1. The filter associate with $\left(f_{n}\right)_{n \in \mathbb{N}}$ converge continously in x to f.
2. \forall sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X with $x_{n} \xrightarrow{\tau} x$ it follows $f_{n}\left(x_{n}\right) \xrightarrow{\sigma} f(x)$.

The proof can be found on page 55. The next theorem (continuous mapping theorem) is tremendously important for this thesis. We will use the following notation. Let $\gamma: F^{E} \rightarrow$ $M(F)^{M(E)}, \gamma(f)(P):=P^{f}, \phi$ be a filter on F^{E} and $\Phi:=\gamma(\phi)$ be the image filter of ϕ under γ.

Theorem 46. Let $(E, \tau),(F, \sigma)$ be perfectly normal, $P \in M(E), h: E \rightarrow F$ and ϕ be a filter on F^{E} with a countable base. If $P(D)=0$, with $D:=\{x \in E \mid \phi([\stackrel{\bullet}{x} \cap \tau]) \stackrel{\sigma}{\rightarrow} h(x)\}$ and if $\psi \xrightarrow{w} P$ holds as well, then $\Phi(\psi) \xrightarrow{w} h(P)$ follows (note that $h(P)=P^{h}$ denotes the image measure).

The proof can be found on page 55. Note that in Theorem 46 neither the mapping h needs to be continuous, nor $C(E, F) \in \phi$ was assumed. Moreover, any filter induced by a sequence has a countable basis, but not vice versa.

Part C. Technical statements and proofs

In this part we collect some important concepts and theorems necessary for understanding Part A or the proofs of some statements from it. Depending on the needs, the reader can thus refer here (references to this part are given at all appropriate places). For all statements given here, we provide detailed proofs or extensive references to standard works on the respective topic. We start with a simple lemma about projections, which we needed at the very beginning of the thesis when defining the residuals.

Lemma 47. 1. Let $B \in \mathbb{R}^{n \times n}$ be idempotent (i.e., $B B=B$). Then $B=p r_{U, V}, B^{\top}=p r_{V^{\perp}, U^{\perp}}$ and $I_{n}-B=p r_{V, U}$, where $U:=\operatorname{im}(B)$ and $V:=\operatorname{ker}(B)$.
2. Let $X \in \mathbb{R}^{k \times d}$ and $U:=\operatorname{im}(X)$. Then $p r_{U, U^{\perp}}=X\left(X^{\top} X\right)^{-} X^{\top}$, where $\left(X^{\top} X\right)^{-}$denotes a generalized inverse ${ }^{7}$ of $X^{\top} X$. Note that $\left(X^{\top} X\right)^{-}=\left(X^{\top} X\right)^{-1}$ if $\operatorname{rank}(X)=d$.
3. Let $X \in \mathbb{R}^{k \times d}, M \in \mathbb{R}^{k \times m}, \operatorname{rank}(M)+\operatorname{rank}(X) \geq k, M^{\top} X=0$ and $M^{\top} M=I_{m}$. Then $M M^{\top}=p r_{U^{\perp}, U}$, where $U:=\operatorname{im}(X)$.

The proof can be found on page 56 .

1 Brownian motion and Donskers Theorem

In this small paragraph we give a few important results on Brownian motion that are fundamental to this work and refer to classical and contemporary literature for proofs and further studies.

Brownian motion

Definition 48. We call $(X,(\Omega, \mathscr{A}, \mu),(E, \mathscr{B}), I)$ stochastic process if $(\Omega, \mathscr{A}, \mu)$ is a probability space, (E, \mathscr{B}) a measure space, I is some (index) set and $X: \Omega \times I \rightarrow E$ is a map, such that $X_{t}: \Omega \rightarrow E, X_{t}(\omega):=X(\omega, t)$ is measurable for all $t \in I$.

Definition 49. A real-valued stochastic process $(B,(\Omega, \mathscr{A}, \mu),(\mathbb{R}, \mathscr{B}(\mathbb{R})), I)$ with the following properties

1. $I \subseteq \mathbb{R}$ is an Intervall of positive length with $0=\inf (I) \in I$
2. $B_{0}(\omega)=0 \quad$ a.s.

[^3]3. $B_{t_{n}}-B_{t_{n-1}}, \ldots, B_{t_{2}}-B_{t_{1}}$ are independent for all $0 \leq t_{1}<\ldots<t_{n} \in I$
4. $B_{t}-B_{s} \sim N(0, t-s)$ for all $0 \leq s<t \in I$
5. the paths $I \ni t \mapsto B(\omega, t) \in \mathbb{R}$ are continuous for μ-almost all $\omega \in \Omega$
is called Brownian motion.

Figure 7: A typical path of a Brownian motion.

Because of 5. we can think of B as a random variable $B: \Omega \rightarrow C(I, \mathbb{R}), \omega \mapsto(t \mapsto B(\omega, t))$, where in $C(I, \mathbb{R})$ we take as σ algebra the trace of the product σ algebra $\prod_{i \in I} \mathscr{B}(\mathbb{R})$ on $C(I, \mathbb{R})$. The corresponding image measure $W:=\mu^{B}$ is called Wiener measure. That this procedure makes sense and that there are stochastic processes at all which satisfy Definition 49, we summarize with the following short theorem.

Theorem 50. A Brownian motion exists.
A proof of this Theorem can be found for example in Billingsley (1968), Ch. 2 or in Hida (1980), Ch. 2 or in Partzsch and Schilling (2012), Ch. 3 and 4. The following equations in the next theorem were first proved by P. Levy. Equation (69) is called Levi's triple law.

Theorem 51. Let $I \subseteq(a, b), a<0<b, t>0, m_{t}:=\inf _{0 \leq s \leq t} B_{s}$ and $M_{t}:=\sup _{0 \leq s \leq t} B_{s}$. Then

$$
\begin{align*}
\mu\left(M_{t}>b\right) & =2 \cdot \mu\left(B_{t}>b\right) \\
\mu\left(m_{t}<a\right) & =2 \cdot \mu\left(B_{t}<a\right) \\
\mu\left(m_{t}>a \wedge M_{t}<b \wedge B_{t} \in I\right) & =\sum_{n=-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} \int_{I}\left(e^{-\frac{(x+2 n(b-a))^{2}}{2 t}}-e^{-\frac{(x-2 a-2 n(b-a))^{2}}{2 t}}\right) d x \tag{69}
\end{align*}
$$

For a proof see for example Hida (1980), Proposition 2.9 and Proposition 2.10, respectively or Partzsch and Schilling (2012), Theorem 6.9 and Theorem 6.18, respectively.

Donsker's Theorem

Definition 52. We call $\left(\xi_{n, i}\right)_{\substack{n \in \mathbb{N} \\ 1 \leq i \leq n}}$ a triangular array of random variables if $\xi_{n, 1}, \ldots, \xi_{n, n}$: $(\Omega, \mathscr{A}, P) \rightarrow \mathbb{R}$ are i.i.d. r.v. with $E\left(\xi_{n, i}\right)=0$ and $\operatorname{Var}\left(\xi_{n, i}\right)=\sigma^{2}$ for all $n \in \mathbb{N}$ and $1 \leq i \leq n$.

Theorem 53. Suppose $\left(\xi_{n, i}\right)_{n \in \mathbb{N}, 1 \leq i \leq n}$ is a triangular array of random variables. Then

$$
\frac{1}{\sigma \sqrt{k_{n}}} T_{n}\left(\xi_{n, 1}, \ldots, \xi_{n, n}\right) \xrightarrow{\mathscr{B}} B \quad\left(P^{\frac{1}{\sigma \sqrt{k_{n}}} T_{n}\left(\xi_{n, 1}, \ldots, \xi_{n, n}\right)} \xrightarrow{w} P^{B}, c f . \text { Definition 43 }\right)
$$

For a proof see extension to Theorem 14.1 in Billingsley (1999), Theorem 20.1.1 and Remark 20.1.1 in Borovkov (2013), Satz 10.2 in Bischoff (2014) or Theorem 27.14 in Davidson (1994), the latter being proved for a martingale difference array.

2 Functions with existing limits from left and right

We study monotone functions in terms of their invertibility and define generalized inverses. We then summarize the most important results for us on functions of bounded variation and on measure-defining functions. Finally, we consider functions which have left and right limits at every point and we give a new and interesting construction to factorizes a family $\tilde{f}_{i}, i \in J$ of such functions simultaneously into continuous functions f_{i} and a strictly monotone function h, i.e., $\tilde{f}_{i}=f_{i} \circ h$ for all $i \in J$. This factorization will become important for weakening the regularity assumptions for the regression functions.

Monotone functions

Each monotone function can be assigned a generalized inverse function, which under certain conditions is the inverse function. In case of distribution functions, these are called quantile function. The corresponding construction for distribution functions is given in practically every textbook on statistics. However, we need this construction for a somewhat larger class of non-decreasing real functions. Curiously, this more general case is not really treated in the literature, although the underlying technique does not change. We try to overcome this deficiency by specifying of all classical properties of the quantile function exactly under which conditions they remain valid in the general case. Then we discuss by a short lemma how to undo "generalized inversion" and we pick up a new and interesting result about the probability integral transformation from Heindl (2022), Lemma 7.1.2, with an alternative and somewhat shorter proof. Finally, we give an extension of Theorem 42.

Definition 54. Let $f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}$ and t be a cluster point of D. We call L (resp. R) the left (resp. right) limit of f at t if $f\left(t_{n}\right) \rightarrow L$ holds (resp. $f\left(t_{n}\right) \rightarrow R$) for all sequences $\left(t_{n}\right)_{n \in \mathbb{N}}$ in $D \cap(-\infty, t)$ (resp. in $D \cap(t, \infty)$) with $t_{n} \rightarrow t$.

Lemma 55. Let $f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}$ and t be a cluster point of D. Then it is equivalent:

1. For all nondecreasing sequences $\left(t_{n}\right)_{n \in \mathbb{N}}$ in $D \cap(-\infty, t)$ with $t_{n} \rightarrow t, f\left(t_{n}\right) \rightarrow f(t)$ holds.
2. For all sequences $\left(t_{n}\right)_{n \in \mathbb{N}}$ in $D \cap(-\infty, t)$ with $t_{n} \rightarrow t, f\left(t_{n}\right) \rightarrow f(t)$ holds.

An analogous equivalence holds for right-sided limits.
The proof can be found on page 56 .

Definition 56. Let $I \subseteq \mathbb{R}$ be an intervall and $F: I \rightarrow \mathbb{R}$ be non-decreasing. We define the generalized inverse of F by $F^{-}: Q_{F} \rightarrow \bar{I} \cup\{-\infty\}, F^{-}(q):=\inf \{t \in I \mid F(t) \geq q\}$ where $Q_{F}:=\{q \in \mathbb{R} \mid \exists a, b \in I$ with $F(a) \leq q \leq F(b)\}$. If F is a distribution function, F^{-}is called quantile function.

Note that Q_{F} is an interval and $\inf (I)=-\infty$ if I is a left unbounded interval.
Lemma 57. Let $I \subseteq \mathbb{R}$ be an intervall and $F: I \rightarrow \mathbb{R}$ be non-decreasing. Then

1. F^{-}is non-decreasing on Q_{F}.
2. $F^{-}(q)=\min \{t \in I \mid F(t) \geq q\}$ if $F^{-}(q) \in I$ and F is right continuous in $F^{-}(q)$.
3. $F\left(F^{-}(q)\right) \geq q$ if $F^{-}(q) \in I$ and F is right continuous in $F^{-}(q)$.
4. $F^{-}(F(t)) \leq t$ for all $t \in I$.
5. $q \leq F(t) \Rightarrow F^{-}(q) \leq t$ for all $t \in I$ and $q \in Q_{F}$.
6. $F^{-1}(q) \leq t \Rightarrow q \leq F(t)$ if $F^{-}(q) \in I$ and F is right continuous in $F^{-}(q)$.
7. $F\left(F^{-}(q)\right)=q$ if $q \in F(I), F^{-}(q) \in I$ and F is right continuous in $F^{-}(q)$.
8. F^{-}is left continuous on Q_{F} if F is right continuous on I.
9. $F_{\mid B}^{-}$is the inverse of F if F is strictly increasing, where $B:=F(I)$.
10. Let J be an interval, $F: I \rightarrow J$ and let $G: J \rightarrow \mathbb{R}$ be non-decreasing. Then $(G \circ F)^{-}(q)=$ $F^{-}\left(G^{-}(q)\right)$ applies to any $q \in Q_{G}$ with $G^{-}(q) \in Q_{F}$ and $F^{-}\left(G^{-}(q)\right) \in I$.

Remark 58. If we interchange the terms "left" and "right" and " \leq " with " \geq ", all statements from above hold if we also interchange F^{-}with $F^{+}(q):=\sup \{t \in I \mid F(t) \leq q\}$.

The proof of Lemma 57 can be found on page 56.
Lemma 59. Let $h:[a, b] \rightarrow[h(a), h(b)]$ be a non-decreasing and left continuous function. Then $h^{+}:[h(a), h(b)] \rightarrow[a, b]$ is non-decreasing and right continuous and $\left(h^{+}\right)^{-}=h$ holds. If $h:[a, b] \rightarrow[h(a), h(b)]$ is right continuous instead, then $\left(h^{-}\right)^{+}=h$ holds.

The proof can be found on page 58 .
Lemma 60. Let $X:(\Omega, \mathscr{A}, P) \rightarrow \mathbb{R}$ be a r.v. and let F be its distribution function.

1. If U is a uniformly distributed r.v. on $(0,1)$, then $F^{-}(U)$, called quantile transformation, also has distribution function F.
2. Define $U:=F \circ X$, which is called the probability integral transformation. Then

$$
F_{U}(r):=P(F(X) \leq r)= \begin{cases}0 & \text { if } r \leq 0 \tag{70}\\ \lim _{\nearrow \nearrow F^{-}(r)} F(x) & \text { if } r \notin F(\mathbb{R}) \text { and } r \in(0,1) \\ r & \text { if } r \in F(\mathbb{R}) \text { and } r \in(0,1) \\ 1 & \text { if } r \geq 1 .\end{cases}
$$

Moreover,

$$
\begin{equation*}
P^{U}\left|\sigma\left(F^{-}\right)=\lambda\right| \sigma\left(F^{-}\right), \tag{71}
\end{equation*}
$$

where $P^{U} \mid \sigma\left(F^{-}\right)$resp. $\lambda \mid \sigma\left(F^{-}\right)$denotes the restriction of P^{U} (resp. λ) to the σ algebra $\left(F^{-}\right)^{-1}(\mathscr{B}(\mathbb{R}))$ that is generated by F^{-}and $\mathscr{B}(\mathbb{R})$. Finally, for $\tilde{X}:=F^{-}(U)$,

$$
\begin{equation*}
P(X=\tilde{X})=1 \quad \text { and } \quad F(\tilde{X})=U \tag{72}
\end{equation*}
$$

The proof can be found on page 57.
Definition 61. A sequence of cummulative distribution functions (respectively quantil functions) is defined to converge weakly to a cummulative distribution function (resp. a quantil function), denoted by $F_{n} \rightsquigarrow F$ (resp. $F_{n}^{-} \rightsquigarrow F^{-}$), if and only if $F_{n}(t) \xrightarrow{n \rightarrow \infty} F(t)$ at every t where F is continuous (resp. $F_{n}^{-}(u) \xrightarrow{n \rightarrow \infty} F^{-}(u)$ at every u where F^{-}is continuous).

Lemma 62. For any sequence of distribution functions, $F_{n} \rightsquigarrow F$ if and only if $F_{n}^{-} \rightsquigarrow F^{-}$.
The proof can be found on page 58 .

Measure defining functions and functions of bounded variation

An important class of real functions directly related to monotone functions are functions of bounded variation. This class plays a significant role in many areas of mathematics. It is interesting for us with respect to its properties in measure and integration theory, since they are directly related to signed measures. The next Theorem is from Tao (2011), Theorem 1.7.9.

Theorem 63. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be non-decreasing. Then there exists a unique Borel measure $\mu_{F}: \mathscr{B}(\mathbb{R}) \rightarrow[0, \infty]$ such that $\mu_{F}([a, b])=F\left(b^{+}\right)-F\left(a^{-}\right), \mu_{F}([a, b))=F\left(b^{-}\right)-F\left(a^{-}\right)$, $\mu_{F}((a, b])=F\left(b^{+}\right)-F\left(a^{+}\right), \mu_{F}((a, b))=F\left(b^{-}\right)-F\left(a^{+}\right)$and $\mu_{F}(\{a\})=F\left(a^{+}\right)-F\left(a^{-}\right)$ for all $-\infty<a<b<\infty$.

Definition 64. For $a \leq b$ and $f:[a, b] \rightarrow \mathbb{R}$,

$$
V(f, a, b):=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \mid n \in \mathbb{N}^{>0} \text { and } a=x_{0} \leq \ldots \leq x_{n}=b\right\}
$$

is the variation of f on $[a, b]$.
Lemma 65. Let $a \leq b$ and $f:[a, b] \rightarrow \mathbb{R}$ be given. It holds:

1. $[c, d] \subseteq[a, b] \Rightarrow V(f, c, d) \leq V(f, a, b)$
2. $a \leq c \leq b \Rightarrow V(f, a, b)=V(f, a, c)+V(f, c, b)$
3. $V(f+g, a, b) \leq V(f, a, b)+V(g, a, b)$
4. $V(f, a, b)<\infty \Leftrightarrow \exists g$, h non decreasing with $f=g-h$.

The representation $f=g-h$ with $g(x):=\frac{1}{2}(V(f, a, x)+f(x))$ and $h(x):=\frac{1}{2}(V(f, a, x)-$ $f(x))$ is called canonical Jordan decomposition.
5. $V(f, a, b)<\infty \Rightarrow f$ is Borel-measurable
6. Let f be left continuous in $c \in(a, b]$ (resp. right continuous in $c \in[a, b)$). Then the function $[a, b] \ni x \mapsto V(f, a, x)$ is left (resp. right) continuous in c too. In particular, g and h from the proof of 4 can be chosen appropriately.

The proof can be found on page 59 .
Lemma 66. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be Borel-measurable and $a \leq b$.

1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be non-decreasing and right continuous. Then

$$
\begin{equation*}
\int_{\mathbb{R}} 1_{(a, b]} \cdot g d \mu_{F}=\int_{[F(a), F(b)]} g \circ F_{0}^{-} d \lambda, \tag{73}
\end{equation*}
$$

where $F_{0}:=F_{[[a, b]}:[a, b] \rightarrow[F(a), F(b)]$ is the restriction of F on $[a, b]$.
2. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a distribution function. Then

$$
\begin{equation*}
\int_{\mathbb{R}} 1_{(a, b]} \cdot g d \mu_{F}=\int_{(F(a), F(b))} g \circ\left(F^{-}\right)_{\mid(0,1)} d \lambda . \tag{74}
\end{equation*}
$$

The proof can be found on page 60 .

A simultaneous factorization of a family of functions

Lemma 67. 1. All functions $\tilde{f}_{i}:[0,1] \rightarrow \mathbb{R}, i \in J$ have an existing left limit in all $x \in(0,1]$ and an existing right limit in all $x \in[0,1)$ and $D^{\prime}:=\left\{x \in[0,1] \mid \exists i \in J\right.$ such that \tilde{f}_{i} is discontinuous at $x\}$ is at most countable. Then there are continuous $f_{i}:[0,1] \rightarrow \mathbb{R}, i \in J$ and a strictly monotonically increasing $h:[0,1] \rightarrow[0,1]$ (i.e. $h\left(r_{1}\right)<h\left(r_{2}\right)$ for all $r_{1}<r_{2}$) with

$$
\tilde{f}_{i}=f_{i} \circ h \text { for all } i \in J .
$$

2. If all \tilde{f}_{i} are additionally left continuous (resp. right continuous), then h can be chosen to be additionally left continuous (resp. right continuous) and h can be written as the generalized inverse of a continuous nondecreasing function $F:[0,1] \rightarrow[0,1]$, i.e. $h=F^{-}\left(r e s p . h=F^{+}\right)$, with $F(0)=0$ and $F(1)=1$.
3. If in addition all \tilde{f}_{i} are continuous at $t=0$ (resp. $t=1$ if the \tilde{f}_{i} are right continuous), then

$$
\begin{equation*}
F(t)>0 \text { for all } t \in(0,1] \text { and } F(t)<1 \text { for all } t \in[0,1) . \tag{75}
\end{equation*}
$$

4. Regardless of the previous addition, the construction of the f_{i} yields that all f_{i} are of bounded variation if all \tilde{f}_{i} are of bounded variation.

The proof can be found on page 61. It is clear that all implications stated in Lemma 67 are in fact equivalences. That is, if, for example, $\tilde{f}_{i}=f_{i} \circ F^{-}$holds for all $i \in J$ and continuous f_{i} and F is a continuous distribution function, then D^{\prime} is countable, all \tilde{f}_{i} are left continuous and have right limits. An analogous formulation holds for all other stated implications. The usefulness of this lemma is then shown in the proof of Theorem 79 and the stochastic applications to the (recursive) residual partial sum processes given below. The basic idea is that regression functions \tilde{f}_{i} which are not continuous (but satisfy the conditions of Lemma 67) are factorized $\tilde{f}_{i}=f_{i} \circ F^{-}$. Certain computations can then be carried out for the "new" continuous
regression functions, while F can be integrated into the remaining statistical model assumptions. In the resulting formulas of the limit processes considered there, f_{i} and F now occur. By certain transformations these reduce to the "old" regression functions \tilde{f}_{i} and the factorization no longer appears in the formulas. However, we are sure that this lemma (together with the related Lemma 69) has applications in other areas as well.
Remark 68. Note that a function $f:[0,1] \rightarrow \mathbb{R}$ with existing left (or right) limits in every $x \in[0,1]$ can have at most countably many points of discontinuity. Thus it follows that D^{\prime} from Lemma 67 is countable in any case if J is countable. But of course D^{\prime} can still be countable even if J is uncountable. This remains then to be checked for the concrete $\tilde{f}_{i}, i \in J$.

The proof of Remark 68 can be found on page 63. We give a second version of Lemma 67 with a different proof. It was the version from Lemma 69 that was first conjectured by Thomas Heindl (with f_{i} being continuous and F being right continuous) and shortly thereafter proved independently by Heindl (in a version similar to that from Lemma 69 with f_{i} being Lipschitz continuous and F being right continuous, as Lemma 7.1.5 in his dissertation) and Evers (in the version given here in Lemma 67). For Lemma 69 we give two slightly different proofs, both based on Heindl's original measure-theoretic argument (cf. Remark 81). Note that the construction of F in the proof of Lemma 67 depends only on D^{\prime} and not on the mappings \tilde{f}_{i}, $i \in J$ and thus works for infinite J as well. The construction of F in the proof of Lemma 69, on the other hand, depends explicitly on all $\tilde{f}_{i}, i \in J$. Moreover, J must be finite and all \tilde{f}_{i} must be of bounded variation. But for this the second proof yields Lipschitz continuous functions, instead of continuous functions.
Lemma 69. Let $\tilde{f}_{1}, \ldots \tilde{f}_{d}:[0,1] \rightarrow \mathbb{R}$ be of bounded variation. Then there are Lipschitz continuous functions $f_{1}, \ldots f_{d}:[0,1] \rightarrow \mathbb{R}$ and a strictly monotonically increasing $h:[0,1] \rightarrow[0,1]$ with $\tilde{f}_{i}=f_{i} \circ h$ for all $i \in\{1, \ldots, d\}$. If all \tilde{f}_{i} are left continuous, then h is left contiunuous too and furthermore $h=F^{-}$for some non-decreasing continuous function $F:[0,1] \rightarrow[0,1]$ with $F(0)=0$ and $F(1)=1$. Moreover, if every \tilde{f}_{i} is continuous in 0 , then (75) also holds.

The proof can be found on page 63.

3 Asymptotic- F-designs

Lemma 70. Let $s \in(0,1]$ and $\left(t_{n, 1}, \ldots, t_{n, n}\right)$ be an asymptotic F-design in $[a, b]$, i.e. $a \leq t_{n, 1} \leq$ $\ldots \leq t_{n, n} \leq b$ for all $n \in \mathbb{N}$. Then $\left(t_{n,\lfloor s n\rfloor}\right)_{n \in \mathbb{N}}$ has cluster points and for each such cluster point $x^{\prime}, x^{\prime} \geq F^{-}(s)$ holds. If F^{-}is continuous in s, then $t_{n,\lfloor s n\rfloor} \xrightarrow{n \rightarrow \infty} F^{-}(s)$ holds.
The proof can be found on page 65. For the upper F-design we can strengthen Lemma 70 and we obtain $t_{n,\lfloor s n\rfloor} \rightarrow F^{-}(s)$ for every $s \in(0,1)$. [Proof: Since $t_{n,\lfloor s n\rfloor}=F^{-}\left(\frac{\lfloor s n\rfloor}{n}\right), \frac{\lfloor s n\rfloor}{n} \rightarrow s$ and $\frac{\lfloor s n\rfloor}{n} \leq s$, we are done due to the left continuity of F^{-}and Lemma 55. $\left.\square\right\rceil$ The nearby conjecture $t_{n,\lfloor s n\rfloor} \rightarrow F^{-}(t)$ for all s, is wrong. In fact, $F_{n}^{-}\left(s_{n}\right)$ may even be divergent, even if $\left(s_{n}\right)_{n \in \mathbb{N}}$ is a sequence convergent in $[0,1]$. This can be seen in the following example.
Example 71. We define on $[a, b]=[0,2]$ the designs $\left(t_{n, 1}, \ldots, t_{n, n}\right)$ with

$$
\left(t_{n, 1}, \ldots, t_{n, n}\right)= \begin{cases}(\overbrace{0, \ldots, 0}^{n / 2-1}, \overbrace{2, \ldots, 2}^{n / 2+1}) & \text { if } n \text { is even } \\ (\underbrace{0, \ldots, 0}_{(n+1) / 2}, \underbrace{2, \ldots, 2}_{(n-1) / 2}) & \text { if } n \text { is odd. }\end{cases}
$$

To these correspond $F_{n}: \mathbb{R} \rightarrow[0,1]$ for n even and odd, respectively, see (26)

$$
F_{n}(x)= \begin{cases}0 & \text { if } x<0 \\
\frac{1}{2}-\frac{1}{n} & \text { if } 0 \leq x<2, \quad \text { and } \quad F_{n}(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
1 & \text { if } x \geq 2
\end{array} \frac{1}{2}+\frac{1}{2 n}\right. \\
\text { if } 0 \leq x<2 \\
1 & \text { if } x \geq 2\end{cases}
$$

Obviously $\sup _{x \in[0,2]}\left|F_{n}(x)-F(x)\right| \xrightarrow{n \rightarrow \infty} 0$ holds for $F(x):= \begin{cases}0 & \text { if } x<0 \\ 1 / 2 & \text { if } 0 \leq x<2 . \\ 1 & \text { if } 2 \leq x\end{cases}$
Thus $t_{n,\left\lfloor\frac{n}{2}\right\rfloor}=\left\{\begin{array}{ll}2 & \text { ifn is even } \\ 0 & \text { if } n \text { is odd }\end{array}\right.$ and $F^{-}\left(\frac{1}{2}\right)=0$. But even if $\left(s_{n}\right)_{n \in \mathbb{N}}$ converges in $[0,1]$, in general $F_{n}^{-}\left(s_{n}\right)$ need not converge at all: $F_{n}^{-}\left(s_{n}\right)=\left\{\begin{array}{ll}2 & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{array}\right.$ for $s_{n}:=\frac{1}{2}-\frac{1}{2 n}$.

Lemma 72. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$ be an asymptotic F-design in $[a, b]$ and F^{-}be continuous in $s \in(0,1]$. Let $u \in C[0,1]$ and $f \in C[a, b]$ be of bounded variation. Then

$$
\begin{equation*}
\sum_{i=2}^{\lfloor s n\rfloor}\left(f\left(t_{n, i}\right)-f\left(t_{n, i-1}\right)\right) u\left(\frac{i-1}{n}\right) \xrightarrow{n \rightarrow \infty} \int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) d f . \tag{76}
\end{equation*}
$$

The proof can be found on page 65 .

4 Bounds for largest and smallest eigenvalues of a Gram matrix

In the context of recursive (resp. ordinary) residuals, Gramian matrices occur in a natural way. To ensure the convergence of certain expressions, we need estimates of the eigenvalues of these matrices. We define the spectral norm by $\|A\|_{2}:=\max _{\|x\|_{2}=1}\|A x\|_{2}$. Note the relations

$$
\left\|\frac{1}{n} X^{\top} X\right\|_{2}^{2}=\left[\chi_{\max }\left(\frac{1}{n} X^{\top} X\right)\right]^{2}, \quad\left\|\left(\frac{1}{n} X^{\top} X\right)^{-1}\right\|_{2}^{2}=\left[\chi_{\min }\left(\frac{1}{n} X^{\top} X\right)\right]^{-2}
$$

and

$$
\frac{1}{n} \sum_{k=1}^{m} f_{i}\left(t_{n, k}\right) f_{j}\left(t_{n, k}\right)=\int_{\left(0, \frac{m}{n}\right)}\left(f_{i} f_{j}\right) \circ F_{n}^{-} \mathrm{d} \lambda,
$$

where the minimum and maximum eigenvalues of a symmetric matrix are denoted by $\chi_{\min }(A)$ and $\chi_{\max }(A)$, respectively.

Lemma 73. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a distribution function, $a<c \leq b, f_{1}, \ldots, f_{d} \in L_{2}([a, b], F)$ and $H(t):=\int_{(0, t)}\left(f f^{\top}\right) \circ\left(F^{-}\right)_{\mid(0,1)} d \lambda$ for all $F(c) \leq t \leq F(b)$. If (A1) or (A2) holds,
(A1) $f_{1} \cdot 1_{(a, c]}, \ldots, f_{d} \cdot 1_{(a, c]}$ are linearly independent in $L_{2}([a, b], F)$,
(A2) $a \leq \inf (\operatorname{support}(F))$ and $f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]}$ are linearly independent in $L_{2}([a, b], F)$, then

$$
\begin{equation*}
\exists \chi_{\min }, \chi_{\max } \in(0, \infty) \forall t \in[F(c), F(b)]: \chi_{\min } \leq \chi_{\min }(H(t)) \leq \chi_{\max }(H(t)) \leq \chi_{\max } . \tag{77}
\end{equation*}
$$

The proof can be found on page 67.
Lemma 74. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$ be a sequence of designs in $[a, b]$ with distribution functions F_{n} (in the sense of (26)). Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a distribution function with $F_{n} \rightsquigarrow F$ (cf. Definition 61) and let $g:[a, b] \rightarrow \mathbb{R}$ be λ-a.e. continuous. Then $\forall \varepsilon>0 \exists K_{\varepsilon} \subseteq(0,1)$ with $\lambda\left(K_{\varepsilon}\right)>1-\varepsilon$ and $\sup _{s \in K_{\varepsilon}}\left|g\left(F_{n}^{-}(s)\right)-g\left(F^{-}(s)\right)\right| \rightarrow 0$.

The proof can be found on page 68.
Lemma 75. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$ be a sequence of designs in $[a, b]$ with distribution functions F_{n} (in the sense of (26)). Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a distribution function with $F_{n} \rightsquigarrow F$ (cf. Definition 61), $a<c \leq b$ with $F(c)>0, K \in \mathbb{N}$ and $f_{1}, \ldots, f_{d}:[a, b] \rightarrow \mathbb{R}$ be bounded. Under the assumptions of Lemma 73, $\tilde{\chi}_{\text {min }}, \tilde{\chi}_{\max }>0$ and $n_{0} \in \mathbb{N}$ exists such that $\forall n \geq n_{0} \forall t \in[F(c), F(b))$

$$
0<\tilde{\chi}_{\min } \leq \chi_{\min }\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right) \leq \chi_{\max }\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right) \leq \tilde{\chi}_{\max } .
$$

The proof can be found on page 68 .
Remark 76. From Lemma 75 it follows immediately that under its assumptions and consequences $\operatorname{rank}\left(X_{n, k}\right)=d$ holds for all $n \geq n_{0}$ and all k with $\lfloor n \cdot F(c)\rfloor-d \leq k \leq n$.

Lemma 77. Under the assumptions of Lemma 75,

$$
\begin{equation*}
\sup _{t \in[0,1]}\left\|\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}-\int_{[0, t]}\left(f f^{\top}\right) \circ F^{-} d \lambda\right\| \xrightarrow{n \rightarrow \infty} 0 \tag{78}
\end{equation*}
$$

holds for all $K \in \mathbb{N}$ and each matrix norm $\|\cdot\|$ (note that all matrix norms are equivalent). However, not only the above relation is valid, but also

$$
\begin{equation*}
\sup _{t \in[F(c), 1]}\left\|\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right)^{-1}-\left(\int_{[0, t]}\left(f f^{\top}\right) \circ F^{-} d \lambda\right)^{-1}\right\| \xrightarrow{n \rightarrow \infty} 0 . \tag{79}
\end{equation*}
$$

Note that the c from the premises in Lemma 75 plays no role for (78).
The proof can be found on page 69 .
Lemma 78. Under the assumptions of Lemma 75 there exists $r \geq 0$ and $n_{0} \in \mathbb{N}$ with

$$
1 \leq c_{n,\lfloor t n\rfloor-K}=1+\frac{1}{n} f\left(t_{n,\lfloor t n\rfloor-K}\right)^{\top}\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-1-K}^{\top} X_{n,\lfloor t n\rfloor-1-K}\right)^{-1} f\left(t_{n,\lfloor t n\rfloor-K}\right) \leq 1+\frac{r}{n}
$$

for all $n \geq n_{0}$ and $t \in[F(c), 1]$, where $c_{n, k}:=1+\left\|a_{n, k}\right\|^{2}$ and $a_{n, k}$ is defined in Definition 1.
The proof can be found on page 70 .

5 A theorem on continuous convergence in $C[0,1]$

In this section, we formulate the technical heart to determine the distribution of the recursive residual partial sum limit process under H_{0} and under H_{1}. Following MacNeill (1978a) we introduce a discrete difference operator $V_{n}: C[0,1] \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
V_{n}(u):=\left(u\left(\frac{1}{n}\right)-u(0), u\left(\frac{2}{n}\right)-u\left(\frac{1}{n}\right), \ldots, u(1)-u\left(\frac{(n-1)}{n}\right)\right)^{\top} \tag{80}
\end{equation*}
$$

Next, we define ${ }^{8}$

$$
\begin{equation*}
\phi_{n}: C[0,1] \rightarrow C[0,1], \quad \phi_{n}:=T_{n-d} \circ g \circ M_{n, n}^{\top} \circ V_{n}, \tag{81}
\end{equation*}
$$

according to the right digram, where $M_{n, n}$ is defined in

(15) and T_{n-d} and g were defined in (19) and (22), respectively. Obviously, the following equations hold true

$$
\begin{align*}
& V_{n} \circ T_{n}=i d_{\mathbb{R}^{n}}, \quad \text { (thus } T_{n} \text { is injective and } V_{n} \text { is surjective) } \tag{82}\\
& T_{n-d} \circ g \circ r_{n} \stackrel{(18)}{=} T_{n-d} \circ g \circ M_{n, n}^{\top} \circ \varepsilon_{n} \stackrel{(82)}{=} T_{n-d} \circ g \circ M_{n, n}^{\top} \circ V_{n} \circ T_{n} \circ \varepsilon_{n}=\phi_{n} \circ T_{n} \circ \varepsilon_{n} . \tag{83}
\end{align*}
$$

Because of (82) one can think of T_{n} as a discrete integral operator.
Theorem 79. Let $\left(t_{n, 1}, \ldots, t_{n, n}\right)_{n \in \mathbb{N}}$ be an asmptotic F-design in $[a, b]$ and consider model (3) with $f_{1}, \ldots, f_{d}:[a, b] \rightarrow \mathbb{R}$ all of bounded variation, left continuous on ($\left.a, b\right]$, continuous in a and let $f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]}$ are linearly independent (l.i.) in $L_{2}([a, b], F)$ for some $c \in(a, b]$. Let $\delta:=F(c)>0, \phi_{n}$ defined as in (81). Then $\phi: C[0,1] \rightarrow C[0,1]$,

$$
\begin{aligned}
& \phi(u)(x):=u(x)-u(\boldsymbol{\delta}) \\
+ & \int_{\delta}^{x} f\left(F_{0}^{-}(t)\right)^{\top}\left(\int_{[0, t]}\left(f f^{\top}\right) \circ F_{0}^{-} d \lambda\right)^{-1}\left[\int_{\left(a, F_{0}^{-}(t)\right)}\left(u \circ F_{0}\right) d \mu_{f}+f\left(F_{0}^{-}(0)\right) u(0)-f\left(F_{0}^{-}(t)\right) u(t)\right] d t,
\end{aligned}
$$

for $x \in[\delta, 1]$ and $\phi(u)(x)=0$ for $x \in[0, \delta)$, is continuous with respect to the sup norm, where $F_{0}:=F_{[a, b]}$ and μ_{f} is the Lebesgue-Stieltjes measure generated ${ }^{9}$ by f and

$$
\left\|\phi(u)-\phi_{n}(u)\right\| \rightarrow 0 \quad \text { and } \quad\left\|\phi(u)-\phi_{n}\left(u_{n}\right)\right\| \rightarrow 0
$$

holds for all $u, u_{n} \in C[0,1]$ with $\left\|u-u_{n}\right\| \rightarrow 0$ (with sup-norm $\|\cdot\|=\sup _{x \in[0,1]}|\cdot|$ on $C[0,1]$).
The proof can be found on page 70 .

[^4]

[^5]
6 Proofs

Proof of Theorem 2 from page 8:

1. A short computation immediately results in

$$
\begin{aligned}
X_{n, j}^{\top} X_{n, j} & =\left(\begin{array}{ll}
\left(\begin{array}{ll}
X_{n, j-1}^{\top} & 0_{d \times 1}
\end{array}\right)+\left(\begin{array}{ll}
0_{d \times(j-1)} & \left.f\left(t_{n, j}\right)\right)
\end{array}\right)\left(\binom{X_{n, j-1}}{0_{1 \times d}}+\binom{0_{(j-1) \times d}}{f\left(t_{n, j}\right)^{\top}}\right) \\
& =X_{n, j-1}^{\top} X_{n, j-1}+f\left(t_{n, j}\right) f\left(t_{n, j}\right)^{\top} .
\end{array}\right. \text {. }
\end{aligned}
$$

2. From 1. we obtain

$$
\begin{aligned}
\left(X_{n, j}^{\top} X_{n, j}\right)^{-1} & =\left(X_{n, j-1}^{\top} X_{n, j-1}+f\left(t_{n, j}\right) f\left(t_{n, j}\right)^{\top}\right)^{-1} \\
& \stackrel{(*)}{=}\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1}-\frac{1}{1+\left\|a_{n, j}\right\|^{2}}\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1} f\left(t_{n, j}\right) f\left(t_{n, j}\right)^{\top}\left(X_{n, j-1}^{\top} X_{n, j-1}\right)^{-1}
\end{aligned}
$$

where (*) follows from Woodbury's formula

$$
(R+S T U)^{-1}=R^{-1}-R^{-1} S\left(T^{-1}+U R^{-1} S\right)^{-1} U R^{-1}
$$

if $R \in \mathbb{R}^{n \times n}, S \in \mathbb{R}^{n \times m}, T \in \mathbb{R}^{m \times m}, U \in \mathbb{R}^{m \times n}$, and R, T and $T^{-1}+U R^{-1} S$ are nonsingular. See Harville (2008), Theorem 18.2.8 (Woodbury's formula).
3. First of all,

$$
\begin{aligned}
X_{n, j}^{\top} X_{n, j} \hat{\beta}_{n, j} & =X_{n, j}^{\top} Y_{j}=X_{n, j-1}^{\top} Y_{j-1}+f\left(t_{n, j}\right) Y_{n, j} \\
& =X_{n, j-1}^{\top} X_{n, j-1} \hat{\beta}_{n, j-1}+Y_{n, j} f\left(t_{n, j}\right) \\
& \stackrel{1 .}{=}\left(X_{n, j}^{\top} X_{n, j}-f\left(t_{n, j}\right) f\left(t_{n, j}\right)^{\top}\right) \hat{\beta}_{n, j-1}+Y_{n, j} f\left(t_{n, j}\right) \\
& =X_{n, j}^{\top} X_{n, j} \hat{\beta}_{n, j-1}+\left(Y_{n, j}-f\left(t_{n, j}\right)^{\top} \hat{\beta}_{n, j-1}\right) f\left(t_{n, j}\right) .
\end{aligned}
$$

By multiplying with $\left(X_{n, j}^{\top} X_{n, j}\right)^{-1}$ we get

$$
\begin{aligned}
\hat{\beta}_{n, j} & =\hat{\beta}_{n, j-1}+\left(Y_{n, j}-f\left(t_{n, j}\right)^{\top} \hat{\beta}_{n, j-1}\right)\left(X_{n, j}^{\top} X_{n, j}\right)^{-1} f\left(t_{n, j}\right) \\
& =\hat{\beta}_{n, j-1}+\sqrt{1+\left\|a_{n, j}\right\|^{2}} r_{n, j}\left(X_{n, j}^{\top} X_{n, j}\right)^{-1} f\left(t_{n, j}\right) .
\end{aligned}
$$

4. By (18) we get $w_{j}=\operatorname{pr}_{U_{j}^{\perp}, U_{j}} Y_{j}=M_{n, j} M_{n, j}^{\top} Y_{j}$ for $j=d+1, \ldots, n$, which implies $\left\|w_{d+1}\right\|^{2}=$ $\left\|M_{n, d+1}^{\top} Y_{d+1}\right\|^{2}=\left\|r_{n, d+1}\right\|^{2}$ and

$$
\begin{aligned}
\left\|w_{j}\right\|^{2} & =Y_{j}^{\top} M_{n, j} M_{n, j}^{\top} M_{n, j} M_{n, j}^{\top} Y_{j}=\left\|M_{n, j}^{\top} Y_{j}\right\|^{2} \\
& =\left\|M_{n, j-1}^{\top} Y_{j-1}\right\|^{2}+\frac{1}{1+a_{n, j}^{2}}\left|\left(-a_{n, j}^{\top} 1\right) Y_{j}\right|^{2} \\
& =\left\|w_{j-1}\right\|^{2}+r_{n, j}^{2}, \quad j=d+2, \ldots, n,
\end{aligned}
$$

noting $\left\|\left(v_{1}, \ldots, v_{k}\right)^{\top}\right\|^{2}=\left\|\left(v_{1}, \ldots, v_{k-1}\right)^{\top}\right\|^{2}+v_{k}^{2}$ for all $v_{1}, \ldots, v_{k} \in \mathbb{R}$.

Proof of Lemma 8 from page 11:

(27) is best seen by means of the following 3 cases:

1. $t<t_{n, 1}$. In this case $F_{n}(t)=0 \leq F(t)<\frac{1}{n}=F_{n}(t)+\frac{1}{n}$.
2. $\exists i$ with $t_{n, i} \leq t<t_{n, i+1}$. Then

$$
F_{n}\left(t_{n, i}\right)=F_{n}(t)=\frac{i}{n} \leq F\left(t_{n, i}\right) \leq F(t)<\frac{i+1}{n}=F_{n}\left(t_{n, i}\right)+\frac{1}{n} \leq F_{n}(t)+\frac{1}{n} .
$$

3. $t_{n, n} \leq t$. In this case $F_{n}(t)=1=F_{n}\left(t_{n, n}\right) \leq F\left(t_{n, n}\right) \leq F(t) \leq 1 \leq F_{n}\left(t_{n, n}\right)+\frac{1}{n}$ follows.

Proof of Theorem 10 from page 11:

$P^{\frac{1}{\sigma \sqrt{n}} T_{n} \circ g \circ \varepsilon_{n}} \xrightarrow{w} P^{B^{\prime}}$ in $C[0,1]$ and $P^{\frac{1}{\sigma \sqrt{n}} T_{n} \circ \varepsilon_{n}} \xrightarrow{w} P^{B}$ in $C[0,1]$ hold by Theorem 53 (Donsker's Theorem). Theorem 46, Theorem 79 and equation (83) now imply
$P^{\left(\frac{1}{\sigma \sqrt{n-d}} T_{n-d} \circ g \circ r_{n}\right)}=P^{\left(\sqrt{\frac{n}{n-d}} \cdot \phi_{n} \circ\left(\frac{1}{\sigma \sqrt{n}} T_{n} \circ \varepsilon_{n}\right)\right.}=\left(P^{\frac{1}{\sigma \sqrt{n}} T_{n} \circ \varepsilon_{n}}\right) \xrightarrow{\sqrt{\frac{n}{n-d}} \cdot \phi_{n}} \xrightarrow{w}\left(P^{B}\right)^{\phi^{\prime}}=P^{\phi^{\prime} \circ B}$
But $P^{\phi^{\prime} \circ B}$ is always the same (independent of the concrete distribution of ε_{n}). Without loss of generality we assume additionally $\varepsilon_{n} \sim N\left(0, \sigma^{2} I_{n}\right)$. Then r_{n} is independent, by (16) and we conclude with Donsker's Theorem, as in (25), $P^{\left(\frac{1}{\sigma \sqrt{n-d}} T_{n-d} \circ g \circ r_{n}\right)} \xrightarrow{w} P^{B^{\prime}}$.

Proof of Theorem 11 from page 11:

Note that the limit process B is a Brownian motion on $[\delta, 1]$ with $B_{t}=0$ for all $t \in[0, \delta)$. Therefore, for the relevant crossing probabilities, we consider instead a standard Brwonian motion on the interval $[0,1-\delta]$, which we denote by B^{*} to distinguish them. Note that B_{n}, B : $\Omega \rightarrow C[0,1]$ can be understood as random variables with values in $C[0,1]$. Furthermore, let $\sup : C[0,1] \rightarrow \mathbb{R}, \sup (f):=\sup _{0 \leq x \leq 1} f(x)$. Obviously sup is continuous $(C[0,1]$ with sup norm). Therefore, by Theorem 46 it follows $\left(P^{B_{n}}\right)^{\text {sup }} \xrightarrow{w}\left(P^{B}\right)^{\text {sup }}$ and together with Theorem 40.6 and Theorem 51 we conclude for the first test (29)

$$
\begin{aligned}
P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right) & =\left(P^{B_{n}}\right)^{\sup }((x, \infty)) \xrightarrow{n \rightarrow \infty}\left(P^{B}\right)^{\sup }((x, \infty)) \\
& =P\left(\sup _{0 \leq s \leq 1} B_{s}>x\right)=P\left(\sup _{0 \leq s \leq 1-\delta} B_{s}^{*}>x\right) \\
& =2 \cdot P\left(B_{1-\delta}^{*}>x\right)=2 \cdot\left(1-\Phi\left(\frac{x}{1-\delta}\right)\right)=\alpha,
\end{aligned}
$$

since $\left(P^{B}\right)^{\text {sup }}(\partial(x, \infty))=\left(P^{B}\right)^{\text {sup }}(\{x\})=\lim _{\varepsilon}{ }_{\lambda 0} P\left(x-\varepsilon<\sup _{0 \leq s \leq t} B_{s}^{*} \leq x\right)=0$ (this follows from the distribution of $\sup _{0 \leq s \leq t} B_{s}^{*}$, cf. Partzsch and Schilling (2012), Theorem 6.9). We proceed completely analogously for the tests (30) and (31).

$$
\begin{aligned}
P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right) & \xrightarrow{n \rightarrow \infty} P\left(\inf _{0 \leq s \leq 1-\delta} B_{s}^{*}<y\right) \\
& =2 \cdot P\left(B_{1-\delta}^{*}<y\right)=2 \cdot \Phi\left(\frac{y}{1-\delta}\right)=\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right) & \xrightarrow{n \rightarrow \infty} P\left(\inf _{0 \leq s \leq 1-\delta} B_{s}^{*} \leq-z \vee \sup _{0 \leq s \leq 1-\delta} B_{s}^{*} \geq z\right) \\
& =1-P\left(\inf _{0 \leq s \leq 1-\delta} B_{s}^{*}>-z \wedge \sup _{0 \leq s \leq 1-\delta} B_{s}^{*}<z \wedge B_{1-\delta}^{*} \in(-z, z)\right) \\
& =1-\sum_{n=-\infty}^{\infty} \frac{1}{\sqrt{2 \pi(1-\delta)}} \int_{-z}^{z}\left(e^{-\frac{(x+4 n)^{2}}{2(1-\delta)}}-e^{-\frac{(x-2 z(2 n-1))^{2}}{2(1-\delta)}}\right) \mathrm{d} x \\
& =1-\sum_{n=-\infty}^{\infty} A_{n} \leq \alpha,
\end{aligned}
$$

respectively, where

$$
\begin{aligned}
A_{n}: & =\frac{1}{\sqrt{2 \pi(1-\delta)}} \int_{-z}^{z}\left(e^{-\frac{(x+4 n z)^{2}}{2(1-\delta)}}-e^{-\frac{(x-2 z(2 n-1))^{2}}{2(1-\delta)}}\right) \mathrm{d} x \\
& =\Phi\left(\frac{(4 n+1) z}{1-\delta}\right)-\Phi\left(\frac{(4 n-1) z}{1-\delta}\right)-\Phi\left(-\frac{(4 n-3) z}{1-\delta}\right)+\Phi\left(-\frac{(4 n-1) z}{1-\delta}\right) .
\end{aligned}
$$

Proof of Lemma 14 from page 14:

First of all, $\Gamma \in C[0,1]$ obviously holds. We define $u, u_{n} \in C[0,1]$ by

$$
u(s):=\int_{0}^{s} f_{d+1} \circ F_{0}^{-} \mathrm{d} \lambda \quad \text { and } \quad u_{n}(s):=\int_{0}^{s} f_{d+1} \circ F_{n}^{-} \mathrm{d} \lambda .
$$

Note that $u(0)=0$. Thus

$$
V_{n}\left(u_{n}\right)=\frac{1}{n} \cdot \xi_{n},
$$

since

$$
u_{n}(k / n)=\int_{0}^{k / n} f_{d+1} \circ F_{n}^{-} \mathrm{d} \lambda=\sum_{i=1}^{k} f_{d+1}\left(F_{n}^{-}(i / n)\right) \cdot \frac{1}{n} .
$$

We infer

$$
T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right)=T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot V_{n}\left(u_{n}\right)\right)=\phi_{n}\left(u_{n}\right) .
$$

Let $\varepsilon>0 . f_{d+1}$ is bounded, since it is of bounded variation. Thus we can define $m:=$ $\sup _{t \in[a, b]}\left|f_{d+1}(t)\right|$. By Lemma 74

$$
\begin{aligned}
& \exists K_{\varepsilon} \subseteq[0,1] \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: \\
& \lambda\left(K_{\varepsilon}\right)>1-\varepsilon \quad \text { and } \quad \sup _{s \in K_{\varepsilon}}\left|f_{d+1} \circ F_{0}^{-}(s)-f_{d+1} \circ F_{n}^{-}(s)\right| \leq \varepsilon .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|u(s)-u_{n}(s)\right| & =\left|\int_{[0, s]} f_{d+1} \circ F_{0}^{-} \mathrm{d} \lambda-\int_{[0, s]} f_{d+1} \circ F_{n}^{-} \mathrm{d} \lambda\right| \\
& \leq \int_{[0, s]}\left|f_{d+1} \circ F_{0}^{-}-f_{d+1} \circ F_{n}^{-}\right| \mathrm{d} \lambda \\
& \leq \int_{[0,1]}\left|f_{d+1} \circ F_{0}^{-}-f_{d+1} \circ F_{n}^{-}\right| \mathrm{d} \lambda \\
& \leq \lambda\left(K_{\varepsilon}\right) \cdot \varepsilon+\lambda\left(K_{\varepsilon}^{C}\right) \cdot 2 \cdot m \leq \varepsilon(1+2 m),
\end{aligned}
$$

holds for all $s \in[0,1]$. Thus

$$
\sup _{s \in[0,1]}\left|u(s)-u_{n}(s)\right| \xrightarrow{n \rightarrow \infty} 0 .
$$

Now we can apply Theorem 79 to infer

$$
\sup _{s \in[0,1]}\left|T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right)(s)-\Gamma(s)\right|=\sup _{s \in[0,1]}\left|\phi_{n}\left(u_{n}\right)(s)-\phi(u)(s)\right| \xrightarrow{n \rightarrow \infty} 0 .
$$

Example 80. To understand the example, note the comment before Lemma 14. Let $[a, b]=$ $[0,1]$ and $t_{10, i}:=\frac{i}{10}, i \in\{1, \ldots, 10\}$. According to Rabovski (2003), p. 20,

$$
u_{10}\left(\frac{k}{10 k+1}\right)=\int_{[0,1]} f_{d+1} d F_{10, \frac{k}{10 k+1}}=0,
$$

because

$$
F_{10, \frac{k}{10 k+1}}(x)=\min \left(F_{10}(x), \frac{\left.\frac{10 k}{10 k+1}\right\rfloor}{10}\right)=0, \quad \text { for all } x \in[0,1] .
$$

On the other hand,

$$
u_{10}\left(\frac{1}{10}\right)=\int_{[0,1]} f_{d+1} d F_{10, \frac{1}{10}}=\frac{1}{10} \cdot f_{d+1}\left(\frac{1}{10}\right)
$$

because

$$
F_{10, \frac{1}{10}}(x)=\min \left(F_{10}(x), \frac{1}{10}\right)=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq x<\frac{1}{10} \\
\frac{1}{10} & \text { if } \frac{1}{10} \leq x \leq 1
\end{array}, \quad \text { for all } x \in[0,1] .\right.
$$

Thus u_{10} is not continuous because of $\frac{k}{10 k+1} \xrightarrow{k \rightarrow \infty} \frac{1}{10}\left(\right.$ if $\left.f_{d+1}\left(\frac{1}{10}\right) \neq 0\right)$.

Proof of Theorem 15 from page 14:

The computation from (33) gives

$$
\begin{aligned}
B_{n} & =\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(X_{n, n} \beta+\varepsilon_{n}\right)\right)+\frac{n \cdot \beta_{d+1}^{*}}{\sigma \cdot \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right) \\
& =\underbrace{\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(X_{n, n} \beta+\varepsilon_{n}\right)\right)}_{=: Z_{n}}+\underbrace{\frac{\beta_{d+1}}{\sigma} \cdot T_{n-d} \circ g\left(M_{n, n}^{\top} \cdot\left(\frac{1}{n} \cdot \xi_{n}\right)\right)}_{=: \Gamma_{n}}
\end{aligned}
$$

for model (35). If we define $h, h_{n}: C[0,1] \rightarrow C[0,1]$ by $h(\alpha):=\alpha+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma$ and $h_{n}(\alpha):=$ $\alpha+\Gamma_{n}$, then $P^{B_{n}}=h_{n}\left(P^{Z_{n}}\right)$ holds and the conditions of Theorem 46 are satisfied because of Lemma 14. Thus it follows $h_{n}\left(P^{Z_{n}}\right) \xrightarrow{w} h\left(P^{B^{\prime}}\right)$, which means $B_{n} \xrightarrow{\mathscr{O}} B^{\prime}+\frac{\beta_{d+1}}{\sigma} \cdot \Gamma$.

Proof of Theorem 19 from page 17:

First we proceed exactly as in Step 2 in the proof of Theorem 79, up to and including (127). Next, we show the linear independence of $g_{i}, i \in\{1, \ldots, d\}$ in $L_{2}([a, b], F \circ G)$.

$$
\begin{aligned}
& g_{1}, \ldots, g_{d} \text { are l.i. in } L_{2}([a, b], F \circ G) \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \cdot 1_{[a, b]}\right)^{2} \mathrm{~d} \mu_{F \circ G}>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \cdot 1_{(a, b]}\right)^{2} \mathrm{~d} \mu_{F \circ G}+\left(\sum_{i=1}^{d} \alpha_{i} g_{i}(a)\right)^{2} \cdot F(G(a))>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \stackrel{(73)}{\Leftrightarrow} \int_{[F(G(a)), F(G(b))]}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \circ(F \circ G)_{0}^{-}\right)^{2} \mathrm{~d} \lambda+\left(\sum_{i=1}^{d} \alpha_{i} g_{i}\left(G_{0}^{-}(a)\right)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{[F(a), F(b)]}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \circ G_{0}^{-} \circ F_{0}^{-}\right)^{2} \mathrm{~d} \lambda+\left(\sum_{i=1}^{d} \alpha_{i} f_{i}(a)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \stackrel{733}{ } \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \cdot 1_{(a, b]}\right)^{2} \mathrm{~d} \mu_{F}+\left(\sum_{i=1}^{d} \alpha_{i} f_{i}(a)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \cdot 1_{[a, b]}\right)^{2} \mathrm{~d} \mu_{F}>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow f_{1}, \ldots, f_{d} \text { are } 1 . i . \text { in } L_{2}([a, b], F),
\end{aligned}
$$

with $(F \circ G)_{0}:=(F \circ G)_{\mid[F(a), G(b)]}$ and $F_{0}:=F_{\mid[a, b]}$. According to Bischoff (1998), Theorem 2.2, $D_{n} \xrightarrow{\mathscr{O}} D$ follows with

$$
\begin{aligned}
D(\omega, z):=B(\omega, z)+\left(\int_{[a, b]} g \mathrm{~d} \mu_{H_{z}}\right)^{\top} & \cdot\left(\int_{[a, b]} g g^{\top} \mathrm{d} \mu_{H}\right)^{-1} \\
& \cdot\left(\int_{[a, b]}^{(R)} B(\omega, H) \mathrm{d} g-B(\omega, 1) g\left(H^{-}(1)\right)\right)
\end{aligned}
$$

whereby $H:=F \circ G$ and $H_{z}(x):=\min (z, H(x))$. For all $q \in\left[F_{z}(a), z\right]$ a similar relation holds as in Lemma 57.10 (which we also use in the following):

$$
\begin{align*}
\left((F \circ G)_{z}\right)_{0}^{-}(q) & =\inf \{x \in[a, b] \mid \min (z, F \circ G(x)) \geq q\} \\
& =\inf \{x \in[a, b] \mid F \circ G(x) \geq q\} \\
& =(F \circ G)_{0}^{-}(q)=G_{0}^{-} \circ F_{0}^{-}(q), \tag{84}
\end{align*}
$$

whereby $\left((F \circ G)_{z}\right)_{0}:=\left((F \circ G)_{z}\right)_{\mid[a, b]}:[a, b] \rightarrow\left[F_{z}(a), F_{z}(b)\right]$. Thus we get

$$
\begin{align*}
\int_{[a, b]} g \mathrm{~d} \mu_{(F \circ G)_{z}} & =\int_{(a, b]} g \mathrm{~d} \mu_{(F \circ G)_{z}}+g(a) \cdot(F \circ G)_{z}(a) \\
& \stackrel{(73)}{=} \int_{\left((F \circ G)_{z}(a),(F \circ G)_{z}(b)\right)} g \circ\left((F \circ G)_{z}\right)_{0}^{-} \mathrm{d} \lambda+g(a) \cdot F_{z}(a) \\
& =\int_{\left(F_{z}(a), z\right)} g \circ(F \circ G)_{0}^{-} \mathrm{d} \lambda+g\left(G_{0}^{-}(a)\right) \cdot F_{z}(a) \\
& \stackrel{(84)}{=} \int_{\left(F_{z}(a), z\right)} g \circ G_{0}^{-} \circ F_{0}^{-} \mathrm{d} \lambda+f(a) \cdot F_{z}(a) \\
& =\int_{\left(F_{z}(a), z\right)} f \circ F_{0}^{-} \mathrm{d} \lambda+f(a) \cdot F_{z}(a) \\
& =\int_{(0, z)} f \circ F_{0}^{-} \mathrm{d} \lambda \tag{85}
\end{align*}
$$

For this note that $G_{0}^{-}(a)=a$ and $\int_{\left(0, F_{z}(a)\right)} f \circ F_{0}^{-} \mathrm{d} \lambda=f(a) \cdot F_{z}(a)$ since $F_{0}^{-}(q)=a$ for all $q \in\left[0, F_{z}(a)\right]$ and $F_{z}(0)=0$. Further

$$
\begin{align*}
\int_{[a, b]} g g^{\top} \mathrm{d} \mu_{F \circ G} & \stackrel{(73)}{=} \int_{(F(G(a)), F(G(b)))}\left(g g^{\top}\right) \circ(F \circ G)_{0}^{-} \mathrm{d} \lambda+g(a) g(a)^{\top} \cdot F(G(a)) \\
& =\int_{(F(a), F(b))}\left(g g^{\top}\right) \circ G_{0}^{-} F_{0}^{-} \mathrm{d} \lambda+g\left(G_{0}^{-}(a)\right) g\left(G_{0}^{-}(a)\right)^{\top} \cdot F(a) \\
& \stackrel{(73)}{=} \int_{(a, b]} f f^{\top} \mathrm{d} \mu_{F}+f(a) f(a)^{\top} \cdot F(a) \\
& =\int_{[a, b]} f f^{\top} \mathrm{d} \mu_{F} \tag{86}
\end{align*}
$$

and

$$
\begin{equation*}
g\left((F \circ G)^{-}(1)\right)=g\left(G^{-}\left(F^{-}(1)\right)\right)=f\left(F^{-}(1)\right) . \tag{87}
\end{equation*}
$$

is valid. Finally,

$$
\begin{align*}
\int_{[a, b]}^{(R)} B(\omega, F \circ G) \mathrm{d} g & \stackrel{(*)}{=} \int_{(a, b)} B(\omega, F \circ G) \mathrm{d} \mu_{g} \\
& \stackrel{(* *)}{=} \int_{[a, b)} B(\omega, F) \mathrm{d} \mu_{g}^{G} \\
& \stackrel{(* *)}{=} \int_{[a, b)} B(\omega, F) \mathrm{d} \mu_{f} \tag{88}
\end{align*}
$$

is valid. For ($*$) note that the Riemann-Stieltjes integral is equal to the corresponding LebesgueStieltjes integral (cf. Kirillov and Gvishiani (1982), Theorem 14, p. 29 or Stroock (1994), Theorem 5.1.2). ($* *$) follows directly from the change of variable formula $\int_{\Omega^{\prime}} \kappa \mathrm{d} \mu^{T}=$ $\int_{\Omega}(\kappa \circ T) \mathrm{d} \mu$ for $\kappa: \Omega^{\prime} \rightarrow \mathbb{R}$ and $T: \Omega \rightarrow \Omega^{\prime}$, see, e.g., Stroock (1994), Lemma 5.0.1, where in our case $\kappa(t):=B(\omega, F(t))$ and $T(x):=G(x), x \in \Omega$ holds, with $\Omega=(a, b)$ and $\Omega^{\prime}=[a, b)$. For this, note that $T(\Omega) \subseteq \Omega^{\prime}$ actually holds as well. For $(* * *)$ we show $\mu_{g}^{G}=\mu_{f}$ on $\mathscr{B}([a, b))$.

It suffices to show the equality on $\mathscr{E}:=\left\{E \cap[a, b) \mid E \in \mathscr{E}_{0}\right\}$, where $\mathscr{E}_{0}:=\{[x, y) \mid x \leq y\}$ is a generator of $\mathscr{B}(\mathbb{R})$. The equality now follows from $\mathscr{E}=\{[x, y) \mid a \leq x \leq y \leq b\}$ and

$$
\begin{aligned}
\mu_{g}^{G}([x, y)) & =\mu_{g}\left(G^{-1}([x, y))\right)=\mu_{g}\left(\left[G^{-}(x), G^{-}(y)\right)\right)=g\left(G^{-}(y)\right)-g\left(G^{-}(x)\right) \\
& =f\left(y^{-}\right)-f\left(x^{-}\right) \quad(\text { since } f \text { is left continuous and } g \text { is continuous }) \\
& =\mu_{f}([x, y)), \quad(\text { cf. Theorem 63) } .
\end{aligned}
$$

Note that to define the measures we can canonically extend f (resp. g) by $f(x):=f(a)$ for $x<a$ and $f(x):=f(b)$ for $x>b$ (resp. analogously with g) left continuous (resp. continuous) to \mathbb{R}. Thus $D=B_{f, F}$, because of (85), (86), (87), and (88).

Proof of Theorem 21 from page 17:

We proceed as in Theorem 79 and Theorem 10 and their proofs. Note that

$$
\begin{equation*}
T_{n-d}(g(a))(x)=((n-d) x-\lfloor(n-d) x\rfloor) a_{n-d-i_{1}+i_{0}-1}+\sum_{i=i_{0}}^{i_{1}} a_{n-d-i_{1}+i} \tag{89}
\end{equation*}
$$

for $x \geq \frac{\lfloor(n-d) \delta\rfloor}{n-d}$ and $T_{n-d}(g(a))(x)=0$ for $x<\frac{\lfloor(n-d) \delta\rfloor}{n-d}$, where $i_{0}:=\lfloor(n-d) \delta\rfloor+1$ and $i_{1}:=\lfloor(n-d) x\rfloor$. Note also $\delta \in\left[\frac{\lfloor(n-d) \delta\rfloor}{n-d}, \frac{\lfloor(n-d) \delta\rfloor+1}{n-d}\right)$. Analogous to (81), we define

$$
\psi_{n}: C[0,1] \rightarrow C[0,1], \quad \psi_{n}:=T_{n-d} \circ g \circ M_{n, n}^{\top} \circ V_{n},
$$

according to the digram, where $M_{n, n}$ is defined in (15)
 and T_{n-d} and g were defined in (19) and (46), respectively. Analogous to (83),

$$
T_{n-d} \circ g \circ r_{n} \stackrel{(18)}{=} T_{n-d} \circ g \circ M_{n, n}^{\top} \circ \varepsilon_{n} \stackrel{(82)}{=} T_{n-d} \circ g \circ M_{n, n}^{\top} \circ V_{n} \circ T_{n} \circ \varepsilon_{n}=\psi_{n} \circ T_{n} \circ \varepsilon_{n}
$$

is also valid. We now proceed exactly as in the proof of our main Theorem 79 from page 70. The arguments given there - slightly adapted - remain completely valid here as well. And here, too, we proceed in two steps.
Step 1, the regression functions f_{i} are first assumed to be continuous. We set $\xi_{n-d}:=M_{n, n}^{\top} \circ$ $V_{n}(u) \in \mathbb{R}^{n-d}$ and obtain the following computation

$$
\begin{aligned}
& \psi_{n}(u)(x)=T_{n-d} \circ g\left(M_{n, n}^{\top} \circ V_{n}(u)\right)(x)=T_{n-d} \circ g\left(\xi_{n-d}\right)(x) \\
&= \underbrace{((n-d) x-\lfloor(n-d) x\rfloor) \cdot\left(\xi_{n-d}\right)_{n-d-i_{1}+i_{0}}}_{=: z}+\sum_{i=i_{0}}^{i_{1}}\left(\xi_{n-d}\right)_{n-d-i_{1}+i} \\
&= z+\sum_{i=i_{0}}^{i_{1}} \frac{1}{\sqrt{c_{n, n-i_{1}+i}}}\left[u\left(\frac{n-i_{1}+i}{n}\right)-u\left(\frac{n-i_{1}+i-1}{n}\right)\right] \\
&-\sum_{i=i_{0}}^{i_{1}} \frac{1}{\sqrt{c_{n, n-i_{1}+i}}}\left[f\left(t_{n, n-i_{1}+i}\right)^{\top}\left(X_{n, n-i_{1}+i-1}^{\top} X_{n, n-i_{1}+i-1}\right)^{-1} X_{n, n-i_{1}+i-1}^{\top} \cdot\left(\begin{array}{c}
u(1 / n)-u(0) \\
\vdots \\
u\left(\frac{n-i_{1}+i-1}{n}\right)-u\left(\frac{n-i_{1}+i-2}{n}\right)
\end{array}\right)\right] \\
&= z-\sum_{i=i_{0}}^{i_{1}-1}\left[\frac{1}{\sqrt{c_{n, n-i_{1}+i+1}}}-\frac{1}{\sqrt{c_{n, n-i_{1}+i}}}\right] u\left(\frac{n-i_{1}+i}{n}\right)+\frac{u(1)}{\sqrt{c_{n, n}}}-\frac{u\left(\frac{n-i_{1}+i_{0}-1}{n}\right)}{\sqrt{c_{n, n-i_{1}+i_{0}-1}}} \\
&+\sum_{i=i_{0}}^{i_{1}} \frac{1}{n} \cdot \frac{1}{\sqrt{c_{n, n-i_{1}+i}}} f\left(t_{n, n-i_{1}+i}\right)^{\top}\left(\frac{1}{n} X_{n, n-i_{1}+i-1}^{\top} X_{n, n-i_{1}+i-1}\right)^{-1}\left[\left(\Delta X_{n, n-i_{1}+i-1}\right)^{\top} \cdot\left(\begin{array}{c}
u(1 / n) \\
\vdots \\
u\left(\frac{n-i_{1}+i-2}{n}\right)
\end{array}\right)+z_{i}^{*}\right]
\end{aligned}
$$

where $z_{i}^{*}=f\left(t_{n, 1}\right) u(0)-f\left(t_{n, n-i_{1}+i-1}\right) u\left(\frac{n-i_{1}+i-1}{n}\right)$
$=z-\sum_{i=i_{0}}^{i_{1}-1}\left[\frac{1}{\sqrt{c_{n, n-i_{1}+i+1}}}-\frac{1}{\sqrt{c_{n, n-i_{1}+i}}}\right] u\left(\frac{n-i_{1}+i}{n}\right)+\frac{u(1)}{\sqrt{c_{n, n}}}-\frac{u\left(\frac{n-i_{1}+i_{0}-1}{n}\right)}{\sqrt{c_{n, n-i_{1}+i_{0}-1}}}+\int_{\frac{n-i_{1}+i_{0}-1}{n}}^{1} \Theta_{n}(t) \mathrm{d} t$
$\xrightarrow{n \rightarrow \infty} 0-0+u(1)-u(1-x+\delta)+\int_{1-x+\delta}^{1} \Theta(t) \mathrm{d} t$, where
$\Theta_{n}(t) \xrightarrow{n \rightarrow \infty} \Theta(t):=f(h(t))^{\top}\left(\int_{[0, t]}\left(f f^{\top}\right) \circ h \mathrm{~d} \lambda\right)^{-1}\left[\int_{\left[a, F^{-}(t)\right]}^{(R)}(u \circ F) \mathrm{d} f+f(h(0)) u(0)-f(h(t)) u(t)\right]$
and $h:=F_{0}^{-}$. Exactly as in the proof of Theorem 79 we conclude

$$
\left\|\psi(u)-\psi_{n}\left(u_{n}\right)\right\| \xrightarrow{n \rightarrow \infty} 0
$$

for all $u, u_{n} \in C[0,1]$ with $\left\|u-u_{n}\right\| \xrightarrow{n \rightarrow \infty} 0$, where

$$
\begin{aligned}
& \psi(u)(x):=u(1)-u(1-x+\delta) \\
& \quad+\int_{1-x+\delta}^{1} f(h(t))^{\top}\left(\int_{[0, t]}\left(f f^{\top}\right) \circ h \mathrm{~d} \lambda\right)^{-1}\left[\int_{\left[a, F^{-}(t)\right]}^{(R)}(u \circ F) \mathrm{d} f+f(h(0)) u(0)-f(h(t)) u(t)\right] \mathrm{d} t
\end{aligned}
$$

for $x \in[\boldsymbol{\delta}, 1]$ and $\psi(u)(x)=0$ for $x \in[0, \boldsymbol{\delta})$.
In the 2nd step we proceed exactly as in the 2 nd step from the proof of Theorem 79 (which can be taken practically unchanged). To complete the proof, we also mimic the procedure in the proof of Theorem 10 (which we can do without any changes), which then concludes this proof.

Proof of Theorem 23 from page 18

We can directly adopt the calculation (33) under the alternative (32) for this situation. Likewise, we can adopt Lemma 14 and finally the assertion follows exactly as in the proof of Theorem 15. We only need to replace ϕ with ψ and Γ with Δ in all places. For this, of course, note the proof of Theorem 21, since ψ was defined there.

Proof of Theorem 28 from page 20:

In Luschgy (1991), for a process

$$
X_{t}=S(\theta, t)+Z_{t}, \quad 0 \leq t \leq T, \quad T<\infty
$$

where S is a known (nonrandom) function, Z is a zero-mean Gaussian process with known covariance function $K(s, t)=\operatorname{Cov}\left(Z_{s}, Z_{t}\right)$ and $\theta \in \Theta$ is an unknown parameter with Θ a right open interval in \mathbb{R}, criteria are given that a uniformly most powerful test exists to test

$$
H=\left\{\theta_{0}\right\} \quad \text { vs. } \quad K=\left\{\theta \in \Theta \mid \theta>\theta_{0}\right\}
$$

To be more concrete, the following conditions must be fulfilled.
(A.1) Z has continuous sample paths.
(A.2) $t \mapsto S(\theta, t)$ must be an element in the reproducing kernel Hilbert space generated by K.
(A.3) $\theta \mapsto S(\theta, t)$ is differentiable at θ_{0} with derivative $\frac{\partial S(\theta, t)}{\partial \theta}\left(\theta_{0}\right) \neq 0$.

Furthermore, if there is a measure μ with

$$
\begin{equation*}
\int_{[0, T]} K(s, t) \mu(\mathrm{d} t)=\frac{\partial S(\theta, s)}{\partial \theta}\left(\theta_{0}\right), s \in[0,1], \tag{90}
\end{equation*}
$$

the test can be given in the computable form (95)whereby in our case $T=1-\delta, Z_{t}=B_{t}^{\prime \bullet}$, $\theta=\frac{\beta_{d+1}}{\sigma}, \theta_{0}=0$ and $S(\theta, t)=\theta \cdot \Delta^{\bullet}(t)$. Obviously, (A.1), (A.2), and (A.3) are satisfied. For (A.2), see also Paulsen and Raghupathi (2016), Theorem 11.3 and the discussion afterwards. It remains to show (90). To do this, we define a measure μ by the following relation.

$$
\mu([0, t]):=\Xi^{\prime}(t),
$$

where Ξ is a differentiable function whose derivative Ξ^{\prime} is of bounded variation. Obviously, $K(s, t)=\min (s, t)$. Thus,

$$
\begin{align*}
\int_{[0,1-\delta]} K(s, t) \mu(\mathrm{d} t) & =\int_{[0,1-\delta]} \min (s, t) \mu(\mathrm{d} t) \\
& =\int_{[0, s]} t \mu(\mathrm{~d} t)+\int_{(s, 1-\delta]} s \mu(\mathrm{~d} t) \\
& =\int_{[0, s]} t \mathrm{~d}\left(\Xi^{\prime}(t)\right)+s \cdot \mu((s, 1-\delta]) \\
& =s \cdot \Xi^{\prime}(s)-\int_{[0, s]} \Xi^{\prime}(t) \mathrm{d} t+s \cdot\left(\Xi^{\prime}(1-\delta)-\Xi^{\prime}(s)\right) \\
& =\Xi(0)-\Xi(s)+s \cdot \Xi^{\prime}(1-\delta) \tag{91}
\end{align*}
$$

follows. For (90) to hold, (91) would have to lead to $\Delta^{\bullet}(s)$. In any case

$$
\begin{equation*}
\Delta^{\bullet}(0)=0 . \tag{92}
\end{equation*}
$$

Moreover, for the first derivative of Δ from (51), we conclude

$$
\begin{aligned}
\Delta^{\prime}(s)= & f_{d+1} \circ F_{0}^{-}\left(s_{\delta}\right) \\
& +f\left(F_{0}^{-}\left(s_{\delta}\right)\right)^{\top}\left(\int_{\left[0, s_{\delta}\right]}\left(f f^{\top}\right) \circ F_{0}^{-} \mathrm{d} \lambda\right)^{-1}\left[\int_{\left[a, F_{0}^{-}\left(s_{\delta}\right)\right]}\left(u \circ F_{0}\right) \mathrm{d} \mu_{f}-f\left(F_{0}^{-}\left(s_{\delta}\right)\right) u\left(s_{\delta}\right)\right]
\end{aligned}
$$

and therefore for the first derivative of Δ^{\bullet}

$$
\begin{aligned}
\left(\Delta^{\bullet}\right)^{\prime}(1-\delta)= & f_{d+1} \circ F_{0}^{-}(\boldsymbol{\delta}) \\
& +f\left(F_{0}^{-}(\boldsymbol{\delta})\right)^{\top}\left(\int_{[0, \delta]}\left(f f^{\top}\right) \circ F_{0}^{-} \mathrm{d} \lambda\right)^{-1}\left[\int_{\left[a, F_{0}^{-}(\delta)\right]}\left(u \circ F_{0}\right) \mathrm{d} \mu_{f}-f\left(F_{0}^{-}(\boldsymbol{\delta})\right) u(\boldsymbol{\delta})\right]
\end{aligned}
$$

with $s_{\delta}:=1-s+\delta$ and $u(s):=\int_{0}^{s} f_{d+1} \circ F_{0}^{-} \mathrm{d} \lambda$. But now $f_{d+1} \circ F_{0}^{-}(\boldsymbol{\delta})=0, u(s)=0$ for all $s \in[0, \delta]$ and $u \circ F_{0}(x)=0$ for all $x \in\left[a, F_{0}^{-}(\delta)\right]$ follows, because $f_{d+1}(x)=0$ and $F_{0}(x) \in$ $\left[0, F_{0}\left(F_{0}^{-}(\delta)\right)\right]=[0, \delta]$ holds for all $x \in\left[a, F_{0}^{-}(\delta)\right]$. Note $\delta=F(c)=F_{0}(c)$. Thus

$$
\begin{equation*}
\left(\Delta^{\bullet}\right)^{\prime}(1-\delta)=0 . \tag{93}
\end{equation*}
$$

An analogous relation for Γ cannot be derived under these conditions. For $\Xi(t):=-\Delta^{\bullet}(t)$,

$$
\int_{[0,1-\delta]} K(s, t) \mu(\mathrm{d} t)=\Delta^{\bullet}(s)=\frac{\partial S(\theta, s)}{\partial \theta}\left(\theta_{0}\right)
$$

follows because of (91), (92) and (93. That is, (90) is verified. Following Luschgy (1991), for the test problem

$$
\begin{equation*}
H_{0}: \theta=0 \quad \text { vs. } \quad H_{1}: \theta>0, \quad\left(\text { observing } B^{\prime \bullet}+\theta \cdot \Delta^{\bullet}\right) \tag{94}
\end{equation*}
$$

we obtain the test statistic $\rho: C[0,1-\delta] \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
\rho(u): & =\left(\int_{[0,1-\delta]} \int_{[0,1-\delta]} K(s, t) \mu(\mathrm{d} t) \mu(\mathrm{d} s)\right)^{-\frac{1}{2}} \int_{[0,1-\delta]} u(t) \mu(\mathrm{d} t) \\
& =\left(-\int_{[0,1-\delta]} \Delta^{\bullet}(s) \mathrm{d}\left(\Delta^{\bullet}\right)^{\prime}(t)\right)^{-\frac{1}{2}} \int_{[0,1-\delta]} u(t) \mathrm{d}\left(\Delta^{\bullet}\right)^{\prime}(t), \quad u \in C[0,1-\delta] .
\end{aligned}
$$

Thus we get the test $\varphi:=1_{\rho^{-1}\left(\left(\Phi^{-1}(1-\alpha), \infty\right)\right)}$ with the decision rule

$$
\begin{equation*}
\text { reject } H_{0} \text { given in (94) }: \Leftrightarrow \varphi\left(B^{\bullet \bullet}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta^{\bullet}\right)=1 \tag{95}
\end{equation*}
$$

where $\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} t^{2}} \mathrm{~d} t$. If we set $\varphi_{n}:=\varphi$, then (59) is satisfied. This follows from Theorem 46. To see this, we define ϕ to be the filter generated by $\{\varphi\}$. For the conditions of Theorem 46 to be satisfied, φ must be continuous almost everywhere. In fact, φ is continuous everywhere, because for $0<\varepsilon<1$ and $u \in C[0,1-\delta]$,

$$
\begin{equation*}
|\varphi(u)-\varphi(v)|<\varepsilon \Leftrightarrow\left[\rho(u)>\Phi^{-1}(1-\alpha) \Leftrightarrow \rho(v)>\Phi^{-1}(1-\alpha)\right] . \tag{96}
\end{equation*}
$$

follows. From the definition of ρ it is clear that the right equivalence from (96) is satisfied for sufficiently small ε_{0} and all $v \in C[0,1-\delta]$ with $\|u-v\|<\varepsilon_{0}$. Just as in the proof of Theorem 23, we conclude

$$
\left(\frac{1}{\sigma \sqrt{n-d}} \cdot T_{n-d} \circ g \circ\left(M_{n, n}^{\top} Y_{n}^{*}\right)\right)^{\bullet} \xrightarrow[\rightarrow]{\mathscr{O}} B^{\bullet \bullet}+\frac{\beta_{d+1}}{\sigma} \cdot \Delta^{\bullet} .
$$

(59) thus follows from Theorem 46.

Proof of Lemma 34 from page 23:

$1 \Rightarrow 2$: Let A be closed, so $A=\bigcap_{n=1}^{\infty} O_{n}$ with open O_{n}. By Urysohn's Lemma ${ }^{10}$ there exists a continuous $f_{n}: X \rightarrow[0,1]$ with $A \subseteq f_{n}^{-1}(0)$ and $X \backslash O_{n} \subseteq f_{n}^{-1}(1)$. Then $f: X \rightarrow[0,1]$, $f(x):=\sum_{n=1}^{\infty} 2^{-n} f_{n}(x)$ is continuous with $A=f^{-1}(0)$.
$2 \Rightarrow 3$: Let A, B closed and disjoint. So $A=f^{-}(0)$ and $B=g^{-1}(0)$ for continuous $f, g: X \rightarrow$ $[0,1]$. Then $h: X \rightarrow[0,1]$ defined by $h(x):=\frac{f(x)}{f(x)+g(x)}$ is continuous with $A=h^{-1}(0)$ and $B=h^{-1}(1)$.
$3 \Rightarrow 1$: Let A, B closed and disjoint. Let $f: X \rightarrow[0,1]$ be continuous with $A=f^{-1}(0)$ and $B=f^{-1}(1)$. Then $\left.U:=f^{-1}[0,1 / 2)\right)$ and $V:=f^{-1}((1 / 2,1])$ are open and disjoint with $A \subseteq U$ and $B \subseteq V$ (i.e. X is normal). Moreover, $A=\bigcap_{n=1}^{\infty} O_{n}$, where $O_{n}:=f^{-1}([0,1 / n))$ is open.

[^6]
Proof of Lemma 35 from page 24:

1. a), b) and c) are trivial. To show d), one distinguishes all possible cases (minus symmetry, six cases remain) of how two points can be distributed on the three sets F, $F_{<\varepsilon}:=\{z \in F \mid d(z, F)<\varepsilon\} \backslash F$ and $F_{\geq \varepsilon}:=\{z \in F \mid d(z, F) \geq \varepsilon\}$. In two of these cases, one has to use the inequality $d(x, F) \leq d(x, y)+d(y, F)$:
For $x, y \in F$ and $x, y \in F_{\geq \varepsilon}$, respectively, $\left|F_{F, \varepsilon}(x)-F_{F, \varepsilon}(y)\right|=0 \leq \frac{1}{\varepsilon} d(x, y)$ follows.
For $x, y \in F_{<\varepsilon},\left|F_{F, \varepsilon}(x)-F_{F, \varepsilon}(y)\right|=\frac{1}{\varepsilon}|d(x, F)-d(y, F)| \leq \frac{1}{\varepsilon} d(x, y)$ follows.
For $x \in F$ and $y \in F_{<\varepsilon},\left|F_{F, \varepsilon}(x)-F_{F, \varepsilon}(y)\right|=\frac{1}{\varepsilon} d(y, F) \leq \frac{1}{\varepsilon} d(x, y)$ follows.
For $x \in F$ and $y \in F_{\geq \varepsilon},\left|F_{F, \varepsilon}(x)-F_{F, \varepsilon}(y)\right|=1 \leq \frac{1}{\varepsilon} d(x, y)$ follows.
For $x \in F_{<\varepsilon}$ and $y \in F_{\geq \varepsilon},\left|F_{F, \varepsilon}(x)-F_{F, \varepsilon}(y)\right|=1-\frac{1}{\varepsilon} d(x, F) \leq \frac{1}{\varepsilon} d(x, y)$ follows.
2. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence in τ with $\bigcap_{n \in \mathbb{N}} A_{n}=F$. Let $B_{0} \in \tau$ with $F \subseteq B_{0} \subseteq \bar{B}_{0} \subseteq A_{0}$. If B_{n} is defined, let $B_{n+1} \in \tau$ with $F \subseteq B_{n+1} \subseteq \bar{B}_{n+1} \subseteq A_{n+1} \cap B_{n}$. By Urysohn's Theorem exists $f_{n}: E \rightarrow[0,1]$ with $f_{n}\left(\bar{B}_{n+1}\right) \subseteq\{1\}$ and $f_{n}\left(E \backslash B_{n}\right) \subseteq\{0\}$.

Proof of Lemma 36 from page 24:

Define

$$
\mathscr{A}:=\{A \in \mathscr{B}(E) \mid \forall \varepsilon>0 \exists F: \text { closed, } G: \text { open, with } F \subseteq A \subseteq G \text { and } P(G \backslash F)<\varepsilon\} .
$$

We will show

$$
\text { 1. } \alpha:=\{A \subseteq E \mid A \text { is closed }\} \subseteq \mathscr{A} \quad \text { and } \quad \text { 2. } \mathscr{A} \text { is a } \sigma \text {-algebra }
$$

Therefore $\mathscr{B}(E) \subseteq \mathscr{A}$ because α generates $\mathscr{B}(E)$.

1. If $A \in \alpha$ and $\varepsilon>0$ then

$$
P(A) \leq P\left(B_{n}\right) \underset{B_{n+1} \subseteq B_{n}, A=\bigcap_{n \in \mathbb{N}} B_{n}}{n \text { sufficiently large }} P(A)+\varepsilon
$$

with B_{n} as in Lemma $35\left(F:=A\right.$ and $\left.G:=B_{n}\right)$.
2. We have to show:
(i) $A_{1}, A_{2} \in \mathscr{A} \Rightarrow A_{1} \backslash A_{2} \in \mathscr{A}$
(ii) $A_{n} \in \mathscr{A}, n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in \mathscr{A}$
(obviously $\emptyset \in \mathscr{A}$ and $E \in \mathscr{A}$)
(i) Let $A_{1}, A_{2} \in \mathscr{A}$ and $\varepsilon>0$. Then there are $F_{1}, F_{2}, G_{1}, G_{2}$ with

$$
\begin{aligned}
& F_{1} \subseteq A_{1} \subseteq G_{1} \text { and } P\left(G_{1} \backslash F_{1}\right)<\varepsilon \\
& F_{2} \subseteq A_{2} \subseteq G_{2} \text { and } P\left(G_{2} \backslash F_{2}\right)<\varepsilon .
\end{aligned}
$$

This implies

$$
\underbrace{F_{1} \backslash G_{2}}_{:=F^{\prime} \text { closed }} \subseteq A_{1} \backslash A_{2} \subseteq \underbrace{G_{1} \backslash F_{2}}_{:=G^{\prime} \text { open }}
$$

with

$$
\begin{aligned}
P\left(G^{\prime} \backslash F^{\prime}\right) & =P\left(\left(G_{1} \backslash F_{2}\right) \backslash\left(F_{1} \backslash G_{2}\right)\right) \\
& =P\left(\left[G_{1} \backslash\left(F_{1} \cup F_{2}\right)\right] \cup\left[\left(G_{1} \cap G_{2}\right) \backslash F_{2}\right]\right)<2 \varepsilon
\end{aligned}
$$

(ii) For each $A_{n} \in \mathscr{A}, n \in \mathbb{N}$ and $\varepsilon>0$ choose some closed F_{n} and open G_{n} with $F_{n} \subseteq A_{n} \subseteq G_{n}$ and $P\left(G_{n} \backslash F_{n}\right)<2^{-n-1} \varepsilon$. Let $N \in \mathbb{N}$ large enough with

$$
P\left(\bigcup_{n \in \mathbb{N}} F_{n}\right) \leq P\left(\bigcup_{n \leq N} F_{n}\right)+\frac{\varepsilon}{2} .
$$

We define

$$
F:=\bigcup_{n \leq N} F_{n} \quad \text { (closed) } \quad \text { and } \quad G:=\bigcup_{n \in \mathbb{N}} G_{n} \quad \text { (open). }
$$

Thus $F \subseteq \bigcup_{n \in \mathbb{N}} A_{n} \subseteq G$ and

$$
P(G \backslash F) \leq P\left(G \backslash \bigcup_{n \in \mathbb{N}} F_{n}\right)+P\left(\bigcup_{n \in \mathbb{N}} F_{n} \backslash F\right) \leq \sum_{n \in \mathbb{N}} P\left(G_{n} \backslash F_{n}\right)+\frac{\varepsilon}{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Proof of the equivalence of (64) and (65) from page 25:

$(65) \Rightarrow$ (64) follows for $f=1_{A}$. . 64$) \Rightarrow(65)$: Without loss of generality $f \geq 0$. Let $\left(e_{k}\right)_{k \in \mathbb{N}}$ be a sequence of simple funktions with $e_{k} \nearrow f$ and $\left\|f-e_{k}\right\|_{\text {sup }} \xrightarrow{n \rightarrow \infty} 0$ (cf. Elstrodt (2018), III, Korollar 4.14). From (64) and the definition of the integral for simple functions, $\int e_{k} \mathrm{~d} \mu_{n} \xrightarrow{n \rightarrow \infty}$ $\int e_{k} \mathrm{~d} \mu$ follows $(\forall k)$. This leads to the folowing attempt:

$$
\begin{aligned}
\left|\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \mu\right| & \leq\left|\int f \mathrm{~d} \mu_{n}-\int e_{k} \mathrm{~d} \mu_{n}\right|+\left|\int e_{k} \mathrm{~d} \mu_{n}-\int e_{k} \mathrm{~d} \mu\right|+\left|\int e_{k} \mathrm{~d} \mu-\int f \mathrm{~d} \mu\right| \\
& \leq \underbrace{\left\|f-e_{k}\right\|_{\text {sup }}}_{\substack{k \rightarrow \infty \\
\rightarrow 0}} \cdot \underbrace{\mu_{n}(\Omega)}_{\substack{n \rightarrow \infty \\
\rightarrow \mu(\Omega)}}+\underbrace{\left|\int e_{k} \mathrm{~d} \mu_{n}-\int e_{k} \mathrm{~d} \mu\right|}_{\substack{n \rightarrow \infty \\
\rightarrow 0} k}+\underbrace{\left\|f-e_{k}\right\|_{\text {sup }}}_{\substack{k \rightarrow \infty \\
\rightarrow 0}} \cdot \underbrace{\mu(\Omega)}_{\substack{n \rightarrow \infty \\
\rightarrow \mu(\Omega)}}
\end{aligned}
$$

This Inequality give the idea for the proof. Let $\varepsilon>0$. Let $N_{1} \in \mathbb{N}$ such that $\forall n \geq N_{1}: \mu_{n}(\Omega) \leq$ $1+\mu(\Omega)$. Let $k \in \mathbb{N}$ with $\left\|f-e_{k}\right\|_{\text {sup }} \cdot(1+2 \mu(\Omega))<2 \varepsilon / 3$. And let $N_{2} \geq N_{1}$ such that $\forall n \geq N_{2}:\left|\int e_{k} \mathrm{~d} \mu_{n}-\int e_{k} \mathrm{~d} \mu\right|<\varepsilon / 3$. Then $\forall n \geq N_{2}:\left|\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \mu\right|<\varepsilon$.

Proof of Lemma 38 from page 26:

Let F be a closed set and $\left(f_{n}\right)_{n \in \mathbb{N}}$ as in Lemma 35. Then

$$
\int_{E} f_{n} \mathrm{~d} P=\int_{E} f_{n} \mathrm{~d} Q \quad(\text { for all } n \in \mathbb{N})
$$

because of $\int_{E} f_{n} \mathrm{~d} \psi \xrightarrow{\tau_{T}} \int_{E} f_{n} \mathrm{~d} P$ and $\int_{E} f_{n} \mathrm{~d} \psi \xrightarrow{\tau_{P}} \int_{E} f_{n} \mathrm{~d} Q$ and $\int_{E} f_{n} \mathrm{~d} \psi$ is a filter on \mathbb{R} (a Hausdorff Space). Now let $\varepsilon>0$ arbitrary. Then

$$
Q(F)=\int_{E} 1_{F} \mathrm{~d} Q \leq \int_{E} f_{n} \mathrm{~d} Q=\int_{E} f_{n} \mathrm{~d} P \underset{\text { sufficiently large }}{\stackrel{\text { for } n}{\leq}} \int_{E} 1_{F} \mathrm{~d} P+\varepsilon=P(F)+\varepsilon
$$

by the dominated convergence theorem. This implies $Q(F) \leq P(F)$ because $\varepsilon>0$ is arbitrary. Analogously $P(F) \leq Q(F)$ and therefore $P(F)=Q(F)$. But $\{F \subseteq E \mid F$ is closed $\}$ is a generator of $\mathscr{B}(E)$ and therefore $P(A)=Q(A)$ for all $A \in \mathscr{B}(E)$.

Proof of Lemma 39 from page 26:

1. a) $P_{1}, P_{2} \in \psi$ implies $\inf P_{1} \leq \sup P_{2}$ (otherwise $P_{1} \cap P_{2}=\emptyset$). Therefore

$$
\sup \{\inf P \mid P \in \psi\} \leq \inf \{\sup P \mid P \in \psi\} .
$$

b) $x \in \bigcap_{P \in \psi} \bar{P}$ implies $\inf P \leq x \leq \sup P$, for all $P \in \psi$.
2. " \Rightarrow " With $\psi_{0}:=\{(x-\varepsilon, x+\varepsilon) \mid \varepsilon>0\}$ follows

$$
\begin{aligned}
\sup \{\inf P \mid P \in \psi\} & \leq \inf \{\sup P \mid P \in \psi\} \\
& \leq \inf \left\{\sup P \mid P \in \psi_{0}\right\} \\
& =x=\sup \left\{\inf P \mid P \in \psi_{0}\right\} \\
& \leq \sup \{\inf P \mid P \in \psi\}
\end{aligned}
$$

" \Leftarrow " Let $\varepsilon>0 . \quad x=\sup \{\inf P \mid P \in \psi\}$ implies $\exists P_{1} \in \psi$ with $\inf P_{1} \in(x-\varepsilon, x+\varepsilon)$. $x=\inf \{\sup P \mid P \in \psi\}$ implies $\exists P_{2} \in \psi$ with $\sup P_{2} \in(x-\varepsilon, x+\varepsilon)$. Therefore $P_{3}:=$ $P_{1} \cap P_{2} \subseteq(x-\varepsilon, x+\varepsilon)$
3. a) " \leq " because $\psi_{0} \subseteq \psi$, " \geq " because for $P \in \psi$ exists $P_{0} \in \psi_{0}$ with $P_{0} \subseteq P$ and therefore $\inf P \leq \inf P_{0}$.
b) follows analogously.

Proof of Theorem 40 from page 26:

We use Lemma 35 and the dominated convergence theorem.
$1 \underset{\text { metrizable }}{\stackrel{\text { if } E \text { is }}{\Longrightarrow}} 2$: Trivial.
$3 \Rightarrow 1:$ Trivial.
$4 \Leftrightarrow 5$: By complements.
$(1 \vee 2) \Rightarrow 4$: Let F closed $\subseteq E,\left(f_{n}\right)_{n \in \mathbb{N}}$ as in Lemma 35 (if E is metrizable $f_{n}:=f_{F, \frac{1}{n}}$) and $\varepsilon>0$. Then

$$
\begin{aligned}
\inf \{\sup Q(F) \mid Q \in \psi\} & =\inf \left\{\sup \left\{\int_{E} 1_{F} d q \mid q \in Q\right\} \mid Q \in \psi\right\} \\
& \leq \inf \left\{\sup \left\{\int_{E} f_{n} d q \mid q \in Q\right\} \mid Q \in \psi\right\} \\
& =\int_{E} f_{n} d P \quad \text { by } 1 . \text { or } 2 . \text { and Lemma } 39 \\
& \leq \int_{E} 1_{F} \mathrm{~d} P+\varepsilon=P(F)+\varepsilon \quad \text { for } n \text { large enough. }
\end{aligned}
$$

Therefore $\inf \{\sup Q(F) \mid Q \in \psi\} \leq P(F)$, because ε was arbitrary.
$(4 \wedge 5) \Rightarrow 6$: follows from Lemma 39 and

$$
\begin{aligned}
\sup \left\{\inf Q\left(A^{\circ}\right) \mid Q \in \psi\right\} & \leq \sup \{\inf Q(A) \mid Q \in \psi\} \\
& \leq \inf \{\sup Q(A) \mid Q \in \psi\} \\
& \leq \inf \{\sup Q(\bar{A}) \mid Q \in \psi\} \\
& \leq P(\bar{A}) \\
& =P\left(A^{\circ}\right)+P(\partial A)=P\left(A^{\circ}\right) \quad(=P(A)) \\
& \leq \sup \left\{\inf Q\left(A^{\circ}\right) \mid Q \in \psi\right\}
\end{aligned}
$$

$6 \Rightarrow 3$: Let $f: E \rightarrow \mathbb{R}$ measurable, bounded and nonconstant with $P\left(D_{f}\right)=0$.
Claim: $\forall A \subseteq \mathbb{R}: \partial f^{-1}(A) \subseteq f^{-1}(\partial A) \cup D_{f}$.
Proof: Let $x \in \partial f^{-1}(A)$. If $x \notin D_{f}$ let V be open with $f(x) \in V$. Then \exists open U with $x \in U$ and $f(U) \subseteq V$. Let $y \in U \cap f^{-1}(A)$. Then $f(y) \in f(U) \cap A$ and so $V \cap A \neq \emptyset$. This means $f(x) \in \bar{A}$. If $f(x) \in A^{\circ}$, then \exists open W with $x \in W$ and $f(W) \subseteq A^{\circ}$. Therefore $x \in W \subseteq f^{-1}\left(A^{\circ}\right) \subseteq f^{-1}(A)$ in contradiction to $x \in \partial f^{-1}(A)$.
Let $\varepsilon>0 . A:=\left\{y \in \mathbb{R} \mid P\left(f^{-1}(\{y\})\right)>0\right\}$ is at most countable. Therefore $\overline{\mathbb{R} \backslash A}=\mathbb{R}$, so we can choose $y_{0}, y_{1}, \ldots, y_{N} \in \mathbb{R} \backslash A$ with
a) $y_{0}<-\sup _{x \in E}|f(x)|<y_{1}<\ldots<y_{N-1}<\sup _{x \in E}|f(x)|<y_{N} \quad$ and
b) $y_{i+1}-y_{i}<\varepsilon$ for each $i \in\{0, \ldots, N-1\}$

Now $E=\stackrel{N}{\biguplus}{ }_{i=1}^{+} E_{i}$ with $E_{i}:=f^{-1}\left(\left[y_{i-1}, y_{i}\right)\right)$ and

$$
P\left(\partial E_{i}\right) \stackrel{\text { Claim }}{\leq} \underbrace{P\left(f^{-1}\left(\partial\left[y_{i-1}, y_{i}\right)\right)\right.}_{=P\left(f^{-1}\left(y_{i-1}\right)\right)+P\left(f^{-1}\left(y_{i}\right)\right)=0}+\underbrace{P\left(D_{f}\right)}_{=0}=0, i \in\{1, \ldots, N\} .
$$

Thus

$$
\begin{align*}
\inf \left\{\sup \int_{E} f d Q \mid Q \in \psi\right\} & =\inf \left\{\sup \left\{\sum_{i=1}^{N} \int_{E_{i}} f d q \mid q \in Q\right\} \mid Q \in \psi\right\} \\
& \leq \sum_{i=1}^{*} \inf \left\{\sup \left\{\int_{E_{i}} f d q \mid q \in Q\right\} \mid Q \in \psi\right\} \\
& \leq \sum_{i=1}^{N} \inf \left\{\sup Q\left(E_{i}\right) y_{i} \mid Q \in \psi\right\} \\
& =\sum_{i=1}^{N}\left[\inf \left\{\sup Q\left(E_{i}\right) \mid Q \in \psi\right\}\right] y_{i} \\
& =\sum_{i=1}^{N} y_{i} P\left(E_{i}\right) \leq \sum_{i=1}^{N} P\left(E_{i}\right)\left(y_{i-1}+\varepsilon\right) \\
& \leq \sum_{i=1}^{N} \int_{E_{i}} f \mathrm{~d} P+\varepsilon=\int_{E} f \mathrm{~d} P+\varepsilon \tag{97}
\end{align*}
$$

by Lemma 39 . Proof of $(*)$: Let $t>0$ arbitrary and define

$$
\begin{aligned}
& s:=\inf \left\{\sup \left\{\sum_{i=1}^{N} \int_{E_{i}} f d q \mid q \in Q\right\} \mid Q \in \psi\right\} \quad \text { and } \\
& s^{\prime}:=\sum_{i=1}^{N} \inf \left\{\sup \left\{\int_{E_{i}} f d q \mid q \in Q\right\} \mid Q \in \psi\right\}
\end{aligned}
$$

Let $Q_{1}, \ldots, Q_{N} \in \psi$ with $s^{\prime} \leq \sum_{i=1}^{N} \sup \left\{\int_{E_{i}} f d q \mid q \in Q_{i}\right\}<s^{\prime}+t$. Then

$$
s \leq \sup \left\{\sum_{i=1}^{N} \int_{E_{i}} f d q \mid q \in Q^{\prime}\right\} \leq \sum_{i=1}^{N} \sup \left\{\int_{E_{i}} f d q \mid q \in Q_{i}\right\}<s^{\prime}+t
$$

with $Q^{\prime}:=\bigcap_{i=1}^{N} Q_{i}$ and therefore $s \leq s^{\prime}$ because t was arbitrary. This proves (*).
(97) implies

$$
\begin{equation*}
\inf \left\{\sup \int_{E} f d Q \mid Q \in \psi\right\} \leq \int_{E} f \mathrm{~d} P \tag{98}
\end{equation*}
$$

because ε was arbitrary. By substitute f through $-f$ we get the analogous inequality to (98)

$$
\sup \left\{\inf \int_{E} f d Q \mid Q \in \psi\right\} \geq \int_{E} f \mathrm{~d} P
$$

These two inequalities together with Lemma 39 implie $\int_{E} f \mathrm{~d} \psi \xrightarrow{\tau_{\text {震 }}} \int_{E} f \mathrm{~d} P$

Proof of Theorem 41 from page 27:

We will use Theorem 40.5. Let $G \subseteq E$ be an open set. There exists $A_{i} \in \mathscr{U}, i=1,2, \ldots$ with $G=\bigcup_{i=1}^{\infty} A_{i}$, especially $P\left(\bigcup_{i=1}^{n} A_{i}\right) \xrightarrow[n \rightarrow \infty]{\tau_{\mathbb{R}}} P(G)$. Now let $\varepsilon>0$. Then there exists $n \geq 1$ with $P(G)-\varepsilon \leq P\left(\bigcup_{i=1}^{n} A_{i}\right)$.

Claim: $\psi\left(\bigcup_{i=1}^{n} A_{i}\right) \xrightarrow{\tau_{\mathbb{R}}} P\left(\bigcup_{i=1}^{n} A_{i}\right)$
Proof of the claim: Let $L:=\mathscr{P}(\{1, \ldots, n\}) \backslash\{\emptyset\}=\left\{J_{1}, \ldots, J_{s}\right\}, f: \mathbb{R}^{s} \rightarrow \mathbb{R}, f\left(x_{1}, \ldots, x_{s}\right):=$ $\sum_{r=1}^{s}(-1)^{\left|J_{r}\right|+1} x_{r}$ and

$$
\phi:=\left\{R \subseteq \mathbb{R}^{s} \mid \exists Q_{1}, \ldots, Q_{s} \in \psi \text { with } \prod_{r=1}^{s} Q_{r}\left(\bigcap_{i \in J_{r}} A_{i}\right) \subseteq R\right\}
$$

the productfilter of $\psi\left(\bigcap_{i \in J_{r}} A_{i}\right), r=1, \ldots, s$. Thus $\phi \xrightarrow{\tau_{\mathbb{R} s}}\left(P\left(\bigcap_{i \in J_{1}} A_{i}\right), \ldots, P\left(\bigcap_{i \in J_{s}} A_{i}\right)\right)$ by assumption. Since f is continuous,

$$
f(\phi) \xrightarrow{\tau_{\mathbb{R}}} f\left(P\left(\bigcap_{i \in J_{1}} A_{i}\right), \ldots, P\left(\bigcap_{i \in J_{s}} A_{i}\right)\right)=\sum_{r=1}^{s}(-1)^{\left|J_{r}\right|+1} P\left(\bigcap_{i \in J_{r}} A_{i}\right)=P\left(\bigcup_{i=1}^{n} A_{i}\right)
$$

follows. On the other hand $f(\phi) \subseteq \psi\left(\bigcup_{i=1}^{n} A_{i}\right)$. To see this let $R \in \phi$. Then there are $Q_{1}, \ldots, Q_{s} \in \psi$ with $Q_{1}\left(\bigcap_{i \in J_{1}} A_{i}\right) \times \ldots \times Q_{s}\left(\bigcap_{i \in J_{s}} A_{i}\right) \subseteq R$. Thus

$$
\begin{equation*}
f(R) \supseteq f\left(Q\left(\bigcap_{i \in J_{1}} A_{i}\right) \times \ldots \times Q\left(\bigcap_{i \in J_{s}} A_{i}\right)\right) \supseteq Q\left(\bigcup_{i=1}^{n} A_{i}\right), \tag{99}
\end{equation*}
$$

where $Q:=\bigcap_{r=1}^{s} Q_{r} \in \psi$ and the last inclusion relation in (99) holds by the inclusion-exclusion principle. This proves $f(\phi) \subseteq \psi\left(\bigcup_{i=1}^{n} A_{i}\right)$ and therefore the claim. With Lemma 39 we conclude
$P(G)-\varepsilon \leq \sup \left\{\inf \mathscr{R} \mid \mathscr{R} \in \psi\left(\bigcup_{i=1}^{n} A_{i}\right)\right\}=\sup \left\{\inf Q\left(\bigcup_{i=1}^{n} A_{i}\right) \mid Q \in \psi\right\} \leq \sup \{\inf Q(G) \mid Q \in \psi\}$
and therefore $P(G) \leq \sup \{\inf Q(G) \mid Q \in \psi\}$ because ε was arbitrary.

Proof of Theorem 42 from page 27:

" \Leftarrow ": We will use Theorem 40.2. Let $f: \mathbb{R} \rightarrow[0,1]$ be Lipschitz-continuous with constant $L>0$. We need to show $\int_{\mathbb{R}} f \mathrm{~d} \psi \rightarrow \int_{\mathbb{R}} f \mathrm{~d} p$. To do this we use Lemma 39 and show

$$
\begin{equation*}
\inf \sup \int_{\mathbb{R}} f \mathrm{~d} \psi \leq \int_{\mathbb{R}} f \mathrm{~d} p \tag{100}
\end{equation*}
$$

By analogous reasoning, or alternatively going over to $1-f$ and use (100) again, we get $\operatorname{supinf} \int_{\mathbb{R}} f \mathrm{~d} \psi \geq \int_{\mathbb{R}} f \mathrm{~d} p$ and we are done. To show (100), let $\varepsilon>0, N \in \mathbb{N}, a:=p(\mathbb{R})$ and $y_{0}<\ldots<y_{N}$ with $y_{0}, \ldots, y_{N} \in c(F(p))$ with $F(p)\left(y_{0}\right)<\varepsilon, F(p)\left(y_{N}\right)>a-\varepsilon$ and $y_{i}-y_{i-1}<$ ε for all $i \in\{1, \ldots, N\}$. Define $f\left(y_{i}^{*}\right)=\sup _{y \in\left[y_{i-1}, y_{i}\right]} f(y)$ and $f\left(y_{i *}\right)=\inf _{y \in\left[y_{i-1}, y_{i}\right]} f(y)$. For any $x \in c(F(p)), \inf \sup F(\psi)(x)=F(p)(x)=\operatorname{supinf} F(\psi)(x)$ holds by lemma 39. Let $r:=$ $\max \left\{1, \sum_{i=1}^{N} f\left(y_{i}\right)\right\}$. For every $x \in c(F(p))$ there is a $Q_{x} \in \psi$ such that

$$
F(p)(x)-\varepsilon / r \leq F(q)(x) \leq F(p)(x)+\varepsilon / r
$$

holds for all $q \in Q_{x}$. Let $Q^{\prime}:=Q \cap Q_{y_{0}} \cap \ldots \cap Q_{y_{N}} \in \psi$. For each $q \in Q^{\prime}$,

$$
\begin{aligned}
\int_{\mathbb{R}} f \mathrm{~d} q & \leq q\left(\left(-\infty, y_{0}\right]\right)+q\left(\left[y_{N}, \infty\right)\right)+\sum_{i=1}^{N} f\left(y_{i}^{*}\right) q\left(\left[y_{i-1}, y_{i}\right]\right) \\
& \leq F(q)\left(y_{0}\right)+a-F(q)\left(y_{N}\right)+\sum_{i=1}^{N}\left(f\left(y_{i}\right)+L \cdot \varepsilon\right) q\left(\left[y_{i-1}, y_{i}\right]\right) \\
& \leq F(p)\left(y_{0}\right)+a-F(p)\left(y_{N}\right)+(2+L) \varepsilon+\sum_{i=1}^{N} f\left(y_{i}\right)\left(F(q)\left(y_{i}\right)-F(q)\left(y_{i-1}\right)\right) \\
& \leq(4+L) \varepsilon+\sum_{i=1}^{N} f\left(y_{i}\right)\left(F(p)\left(y_{i}\right)-F(p)\left(y_{i-1}\right)+2 \varepsilon / r\right) \\
& \leq(6+L) \varepsilon+\sum_{i=1}^{N} f\left(y_{i}\right)\left(F(p)\left(y_{i}\right)-F(p)\left(y_{i-1}\right)\right) \\
& \leq(6+L) \varepsilon+\sum_{i=1}^{N}\left(f\left(y_{i *}\right)+L \cdot \varepsilon\right) p\left(\left[y_{i-1}, y_{i}\right]\right) \\
& \leq(6+2 L) \varepsilon+\sum_{i=1}^{N} f\left(y_{i *}\right) p\left(\left[y_{i-1}, y_{i}\right]\right) \\
& \leq(6+2 L) \varepsilon+\int_{\mathbb{R}} f \mathrm{~d} p
\end{aligned}
$$

follows. Thus (100) because ε was arbitrary.
$" \Rightarrow "$ Let $x \in c(F(p))$. Then $p(\partial(-\infty, x])=p(\{x\}) \stackrel{x \in c(F(p))}{=} 0$. Thus

$$
F(\psi)(x)=\psi((-\infty, x]) \rightarrow p((-\infty, x])=F(p)(x)
$$

follows by Theorem 40.6.

Proof of Lemma 45 from page 28:

1. $\Rightarrow 2$: Let $x_{n} \rightarrow x, \varphi$ the filter associate with $\left(x_{n}\right)_{n \in \mathbb{N}}$ and ψ the filter associate with $\left(f_{n}\right)_{n \in \mathbb{N}}$. From $\varphi \xrightarrow{\tau} x$ follows $\psi(\varphi) \xrightarrow{\sigma} f(x)$. This means for all $U \in f(x) \cap \sigma$ exists $P \in \psi, Q \in \varphi$ with $P(Q) \subseteq U$. So there is $N \in \mathbb{N}$ with $f_{n}\left(x_{m}\right) \in U$ for all $n, m \geq N$. For $n \geq N$ follows $f_{n}\left(x_{n}\right) \in U$. This direction works without a cnb.
2. $\Rightarrow 1$: Let ψ the filter associate with $\left(f_{n}\right)_{n \in \mathbb{N}}, x \in X$ and $\varphi \xrightarrow{\tau} x$. We show $\psi(\varphi) \xrightarrow{\sigma} f(x)$. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ a cnb of x. If not $\psi(\varphi) \xrightarrow{\sigma} f(x)$ then $\exists U \in \dot{f(x)} \cap \sigma \forall P \in \varphi \forall k \in \mathbb{N} \exists n_{k} \geq$ $k \exists x_{k} \in P$ with $f_{n_{k}}\left(x_{k}\right) \notin U$
To A_{0} and 0 exists $n_{0} \geq 0$ and $x_{0} \in A_{0}$ with $f_{n_{0}}\left(x_{0}\right) \notin U$.
To $A_{n_{k}+1}$ and $n_{k}+1$ exists $n_{k+1} \geq n_{k}+1$ and $x_{k+1} \in A_{n_{k}+1}$ with $f_{n_{k+1}}\left(x_{k+1}\right) \notin U$.
So there is a strictly monotone sequence $\left(n_{l}\right)_{l \in \mathbb{N}}$ in \mathbb{N}, a sequence $\left(x_{l}\right)_{l \in \mathbb{N}}$ in X with $x_{l} \rightarrow x$ and $f_{n_{l}}\left(x_{l}\right) \notin U$. For $n \in \mathbb{N}$ let $l(n):=\min \left\{l \in \mathbb{N} \mid n \leq n_{l}\right\}$ and $x_{n}^{\prime}:=x_{l(n)}$. Obviously $x_{n}^{\prime} \rightarrow x$ but not $f_{n}\left(x_{n}^{\prime}\right) \rightarrow f(x)$. A contradiction!

Proof of Theorem 46 from page 28:

We use Theorem 40.5. Let G be open in F. Let $\beta=\left\{B_{n} \mid n \in \mathbb{N}\right\}$ be a countable basis of ϕ. Without restriction of generality, $B_{n+1} \subseteq B_{n}$ holds for all n. Then $h^{-1}(G) \subseteq D \cup \bigcup_{B \in \beta} T_{B}^{\circ}$ holds with $T_{B}:=\bigcap_{f \in B} f^{-1}(G)$. [Proof: Let $x \in h^{-1}(G)$. If $x \notin D$, then $\exists B^{\prime} \in \beta \exists V \in \dot{x} \cap \tau$ with $B^{\prime}(V) \subseteq G$. Therefore $V \subseteq \bigcap_{f \in B^{\prime}} f^{-1}(G)$ and so $x \in\left(\bigcap_{f \in B^{\prime}} f^{-1}(G)\right)^{\circ} \subseteq \bigcup_{B \in \beta} T_{B}^{\circ}$.] Now let $\varepsilon>0$ be arbitrary but fixed. From $T_{B_{k}} \subseteq T_{B_{k+1}}$ follows $P\left(T_{B_{k}}^{\circ} \xrightarrow{k \rightarrow \infty} P\left(\bigcup_{B \in \beta} T_{B}^{\circ}\right) \leq 1\right.$. So there $\exists B^{\prime} \in \beta$ with $P\left(\bigcup_{B \in \beta} T_{B}^{\circ}\right) \leq P\left(T_{B^{\prime}}^{\circ}\right)+\varepsilon$. Therefore

$$
\begin{aligned}
P\left(h^{-1}(G)\right) & \leq P\left(\bigcup_{B \in \beta} T_{B}^{\circ}\right) \\
& \leq P\left(T_{B^{\prime}}^{\circ}\right)+\varepsilon \\
& \leq \sup \left\{\inf \left\{Q\left(T_{B^{\prime}}^{\circ}\right)\right\} \mid Q \in \psi\right\}+\varepsilon, \quad \text { by Theorem } 40.5 \\
& \stackrel{(*)}{\leq} \sup \left\{\inf \left\{Q^{B^{\prime}}(G)\right\} \mid Q \in \psi\right\}+\varepsilon \\
& =\sup \{\inf \{R(G)\} \mid R \in \Phi(\psi)\}+\varepsilon, \quad \text { by Lemma } 39 .
\end{aligned}
$$

For $(*)$ note $Q\left(T_{B^{\prime}}^{\circ}\right)=\left\{q\left(\bigcap_{f \in B^{\prime}} f^{-1}(G)\right) \mid q \in Q\right\}$ and $Q^{B^{\prime}}(G)=\left\{q\left(f^{-1}(G)\right) \mid q \in Q, f \in B^{\prime}\right\}$. Thus $P^{h}(G) \leq \sup \{\inf \{R(G)\} \mid R \in \Phi\}$, because $\varepsilon>0$ was arbitrary.

Proof of Lemma 47 from page 29

1. Note that for idempotent $B \in \mathbb{R}^{n \times n}, \operatorname{im}(B) \oplus \operatorname{ker}(B)=\mathbb{R}^{n}$ holds and thus $B=\mathrm{pr}_{U, V}$ is satisfied, where $U:=\operatorname{im}(B)$ and $V:=\operatorname{ker}(B)$. Since $I_{n}-B$ is idempotent to and because of $\operatorname{ker}\left(I_{n}-B\right)=\operatorname{im}(B)$ and $\operatorname{im}\left(I_{n}-B\right)=\operatorname{ker}(B)$ it follows $I_{n}-B=\mathrm{pr}_{V, U}$. Since with B also B^{\top} is idempotent, it follows $B^{\top}=\operatorname{pr}_{U^{\prime}, V^{\prime}}$, where $U^{\prime}:=\operatorname{im}\left(B^{\top}\right)$ and $V^{\prime}:=\operatorname{ker}\left(B^{\top}\right)$. Since $\operatorname{ker}\left(B^{\top}\right)=(\operatorname{im}(B))^{\perp}$ and $\operatorname{ker}(B)=\left(U^{\prime}\right)^{\perp}$ holds, it follows $B^{\top}=\operatorname{pr}_{V^{\perp}, U^{\perp}}$.
2. The first assertion follows from the easily provable equivalence $\operatorname{pr}_{U, U^{\perp}}(y)=X w \Leftrightarrow$ $X^{\top} X w=X^{\top} y$. The second assertion follows from the equivalence $\operatorname{rank}(X)=d \Leftrightarrow$ $X^{\top} X$ is invertible. For the proof of this second equivalence note $\operatorname{ker}\left(X^{\top} X\right)=\operatorname{ker}(X)$ and $\operatorname{im}\left(X^{\top} X\right)=\operatorname{im}\left(X^{\top}\right)$.
3. Let $P:=M M^{\top}$. Then $P P=M M^{\top} M M^{\top}=M M^{\top}=P$. Thus $P=\operatorname{pr}_{K, L}$ and $P^{\top}=\mathrm{pr}_{L^{\perp}, K^{\perp}}$ with $K=\operatorname{im}(P)$ and $L=\operatorname{ker}(P)$. But $P^{\top}=P$ and so $K^{\perp}=L$. Furthermore $\operatorname{dim}(U)=$ $\operatorname{rank}(X) \geq k-\operatorname{rank}\left(M^{\top}\right)=\operatorname{dim}\left(\operatorname{ker}\left(M^{\top}\right)\right)$ and $U \subseteq \operatorname{ker}\left(M^{\top}\right)$ since $M^{\top} X=0$. Thus $U=\operatorname{ker}\left(M^{\top}\right)=\operatorname{ker}\left(M M^{\top}\right)=L$ and $K=\left(K^{\perp}\right)^{\perp}=L^{\perp}=U^{\perp}$.

Proof of Lemma 55 from page 31:

2. $\Rightarrow 1$. is clear. Let us show $1 . \Rightarrow 2$. Let $\left(t_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $D \cap(-\infty, t)$ with $t_{n} \rightarrow t$. Assume $f\left(t_{n}\right) \nrightarrow f(t)$. Then there exists $\varepsilon>0$ and a subsequence $\left(t_{n_{k}}\right)_{k \in \mathbb{N}}$ with $\left|f\left(t_{n_{k}}\right)-f(t)\right| \geq \varepsilon$ for all $k \in \mathbb{N}$. Since every sequence of real numbers contains a monotone subsequence, we can assume without restriction that $\left(t_{n_{k}}\right)_{k \in \mathbb{N}}$ is already monotone. Because of $t_{n_{k}} \leq t$ and $t_{n_{k}} \rightarrow t,\left(t_{n_{k}}\right)_{k \in \mathbb{N}}$ is therefore nondecreasing. Thus $f\left(t_{n_{k}}\right) \rightarrow f(t)$ holds in contradiction to $\left|f\left(t_{n_{k}}\right)-f(t)\right| \geq \varepsilon$ for all $k \in \mathbb{N}$.

Proof of Lemma 57 from page 32:

1. $q, q^{\prime} \in Q_{F}$ with $q \leq q^{\prime}$ implies $F^{-}(q)=\inf \{t \in I \mid q \leq F(t)\} \leq \inf \left\{t \in I \mid q^{\prime} \leq F(t)\right\}=$ $F^{-}\left(q^{\prime}\right)$, since $\left\{t \in I \mid q^{\prime} \leq F(t)\right\} \subseteq\{t \in I \mid q \leq F(t)\}$.
2. Let $t:=F^{-}(q)$ and let $\left(t_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\left\{t^{\prime} \in I \mid F\left(t^{\prime}\right) \geq q\right\}$ with $t_{n} \searrow t$. It follows $F(t)=\lim _{n \rightarrow \infty} F\left(t_{n}\right) \geq q$. Thus $t \in\left\{t^{\prime} \in I \mid F\left(t^{\prime}\right) \geq q\right\}$ and $F^{-}(q)=\min \left\{t^{\prime} \in I \mid F\left(t^{\prime}\right) \geq q\right\}$.
3. Follows directly from 2 .
4. $F^{-}(F(t))=\inf \left\{t^{\prime} \in I \mid F\left(t^{\prime}\right) \geq F(t)\right\} \leq t$ since $t \in\left\{t^{\prime} \in I \mid F\left(t^{\prime}\right) \geq F(t)\right\}$.
5. $F^{-}(q)=\inf \left\{t^{\prime} \in I \mid F\left(t^{\prime}\right) \geq q\right\} \leq t$ since $t \in\left\{t^{\prime} \in I \mid F\left(t^{\prime}\right) \geq q\right\}$.
6. $t \geq F^{-}(q) \Rightarrow F(t) \geq F\left(F^{-}(q)\right) \stackrel{3 .}{\geq} q$
7. Let $t \in I$ with $q=F(t)$. Therefore $F^{-}(q) \leq t$ and thus $q \stackrel{3 .}{\leq} F\left(F^{-}(q)\right) \leq F(t)$.
8. We assume that F is not constant (otherwise $\left|Q_{F}\right|=1$). Let $q \in Q_{F} \backslash\left\{Q_{F}^{-}\right\}, t:=F^{-}(q)$ and $\left(q_{n}\right)_{n \in \mathbb{N}}$ be a sequence in Q_{F} with $q_{n} \nearrow q$. Since $q \in Q_{F} \backslash\left\{Q_{F}^{-}\right\}$there exists $\delta>0$ with $q-\delta \in Q_{F} \backslash\left\{Q_{F}^{-}\right\}$. Thus there is $a \in I$ with $F(a) \leq q-\delta<q-\frac{\delta}{2}$. This implies $F(a)<q-\frac{\delta}{2}, a<F^{-}\left(q-\frac{\delta}{2}\right), F^{-}\left(q-\frac{\delta}{2}\right) \in I \backslash\left\{I^{-}\right\}$and $t \in I \backslash\left\{I^{-}\right\}$. Let $\varepsilon>0$ with
$t-\varepsilon \in I$. Since $F(t-\varepsilon)<q$, there is an $N \in \mathbb{N}$ with $F(t-\varepsilon)<q_{n} \leq q$ and $F^{-}\left(q_{n}\right) \in$ $I \backslash\left\{I^{-}\right\}$for all $n \geq N$. From 6. and 1. we deduce $t-\varepsilon<F^{-}\left(q_{n}\right) \leq F^{-}(q)$ for all $n \geq N$. Thus $F^{-}\left(q_{n}\right) \rightarrow F^{-}(q)$, since ε was arbitrary.
9. $F^{-}(F(t))=\inf \left\{t^{\prime} \in I \mid F(t) \leq F\left(t^{\prime}\right)\right\}=t$ for all $t \in I$, since F is strictly increasing. Let $q=F(t) \in B$. Thus $F^{-}(q)=t$ and $F\left(F^{-}(q)\right)=F(t)=q$. Hence $\left(F_{\mid B}^{-}\right) \circ F=$ id and $F \circ\left(F_{\mid B}^{-}\right)=$id, i.e. $F_{\mid B}^{-}=F^{-1}$.
10. Applying 5. several times yields $(G \circ F)^{-}(q)=\inf \{t \in I \mid q \leq G(F(t))\}=\inf \{t \in$ $\left.I \mid G^{-}(q) \leq F(t)\right\}=\inf \left\{t \in I \mid F^{-}\left(G^{-}(q)\right) \leq t\right\}=F^{-}\left(G^{-}(q)\right)$.

Proof of Lemma 60 from page 32:

1. $P\left(F^{-}(U) \leq t\right)=P\left(\left\{\omega \mid F^{-}(U(\omega)) \leq t\right\} \stackrel{57}{=} P(\{\omega \mid U(\omega) \leq F(t)\})=F(t)\right.$.
2. Let us first show (70). $P(F(X) \leq 1)=1$ is obvious. So let $r \in[0,1), M:=\{t \mid F(t) \leq r\}$ and $t_{0}:=\sup M$, if $M \neq \emptyset$. We distinguish the cases $r \in F(\mathbb{R})$ and $r \notin F(\mathbb{R})$.
$r \notin F(\mathbb{R}):$ If $r=0, M=\emptyset$ and $P(F(X) \leq r)=P(\{\omega \mid X(\omega) \in M\})=P(\emptyset)=0$ follows. If $r>0$ then $M \neq \emptyset$. Assume $t_{0} \in M$. Since $r \notin F(\mathbb{R}), M=\{t \mid F(t)<r\}$ follows. Thus $F\left(t_{0}\right)<r$. But F is right continuous, so $F\left(t_{0}\right)=\lim _{x \backslash t_{0}} F(x) \geq r$ (since $F(x)>r$ for all $\left.x>t_{0}\right)$. A contradiction. Thus $t_{0} \notin M$. Therefore $t_{0}=F^{-}(r)$ and

$$
\begin{aligned}
P(F(X) \leq r) & =P(\{\omega \mid X(\omega) \in M\})=P\left(\left\{\omega \mid X(\omega) \in\left(-\infty, t_{0}\right)\right\}\right) \\
& =P\left(X<t_{0}\right)=\lim _{x \nearrow t_{0}} F(x)=\lim _{x \nearrow F^{-}(r)} F(x) .
\end{aligned}
$$

$r \in F(\mathbb{R})$: In this case we do not need to consider $r=0$ separately. If $t_{0} \in M, P(F(X) \leq r)=$ $P(\{\omega \mid X(\omega) \in M\})=F\left(t_{0}\right)=r$ follows, since $r \in F(\mathbb{R})$. If $t_{0} \notin M, F\left(t_{0}\right)>r$ follows. Let $t_{1}<t_{0}$ with $F\left(t_{1}\right)=r$. Hence $F(t)=r$ for all $t \in\left[t_{1}, t_{0}\right)$ and thus

$$
\begin{aligned}
P(F(X) \leq r) & =P(\{\omega \mid X(\omega) \in M\})=P\left(\left\{\omega \mid X(\omega) \in\left(-\infty, t_{0}\right)\right\}\right) \\
& =P\left(X<t_{0}\right)=\lim _{x \nmid t_{0}} F(x)=r
\end{aligned}
$$

Let us show (71). A generator of $\left(F^{-}\right)^{-1}(\mathscr{B}(\mathbb{R}))$ is $\mathscr{E}:=\left\{\left(F^{-}\right)^{-1}((-\infty, r]) \mid r \in \mathbb{R}\right\}$. By Lemma 57, $\left(F^{-}\right)^{-1}((-\infty, r])=I_{r}$ with $I_{r}=[0, F(r)]$ or $I_{r}=(0, F(r)]$, depending on wether $0 \in F(\mathbb{R})$ or $0 \notin F(\mathbb{R})$, because $F^{-}(q) \leq r \Leftrightarrow q \leq F(r)$. With this we get

$$
P^{U}\left(\left(F^{-}\right)^{-1}((-\infty, r])\right)=P^{U}\left(I_{r}\right) \stackrel{(70)}{=} F(r)=\lambda\left(I_{r}\right)=\lambda\left(\left(F^{-}\right)^{-1}((-\infty, r])\right) .
$$

Thus (71) is also shown. Finally, we come to the proof of (72). First of all,

$$
P(\tilde{X} \leq r)=P\left(F^{-}(U) \leq r\right)=P(U \leq F(r)) \stackrel{(70)}{=} F(r)=P(X \leq r),
$$

is valid and so is $P^{X}=P^{\tilde{X}}$. Moreover, $\tilde{X}(\omega)=F^{-}(F(X(\omega))) \leq X(\omega)$ for all ω. Thus,

$$
\begin{aligned}
P(\tilde{X} \neq X) & =P(\tilde{X}<X)=P\left(F^{-}(F(X))<X\right)=P^{X}\left(\left\{t \mid F^{-}(F(t))<t\right\}\right) \\
& =P^{\tilde{X}}\left(\left\{t \mid F^{-}(F(t))<t\right\}\right)=P\left(F^{-}(F(\tilde{X}))<\tilde{X}\right) \\
& =P\left(F^{-}\left(F\left(F^{-}(U)\right)\right)<F^{-}(U)\right) \stackrel{(*)}{=} 0 .
\end{aligned}
$$

For $(*)$, note that $F^{-}\left(F\left(F^{-}(q)\right)\right)=F^{-}(q)$ holds by Lemma 57. Moreover,

$$
F(\tilde{X})=F\left(F^{-}(F(X))\right)=F(X)=U
$$

holds because of lemma 57.7. Thus, the second equation in (72) is also shown.

Proof of Lemma 62 from page 33:

Let $V:(\Omega, \mathscr{A}, P) \rightarrow(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be a normally distributed random variable, $V \sim N(0,1)$ and $\Phi(x)$ be its distribution function. If $F_{n} \rightsquigarrow F$ then $F_{n}(V) \rightarrow F(V)$ almost surely, because

$$
\Omega_{0}:=\left\{\omega \mid F_{n}(V(\omega)) \nrightarrow F(V(\omega))\right\} \subseteq\{\omega \mid V(\omega) \in \mathbb{R} \backslash c(F)\}=V^{-1}(\mathbb{R} \backslash c(F))
$$

and $P\left(\Omega_{0}\right) \leq P\left(V^{-1}(\mathbb{R} \backslash c(F))\right)=P^{V}(\mathbb{R} \backslash c(F))=0$, since $\mathbb{R} \backslash c(F)$ is at most countable. Let F^{-}be continuous at u and $\Omega_{1}:=\{\omega \in \Omega \mid F(V(\omega))=u\}$. Then $P\left(\Omega_{1}\right)=0$, since $\Omega_{1} \subseteq\{\omega \in$ $\left.\Omega \mid V(\omega)=F^{-}(u)\right\}$, because F^{-}is continuous at u. Thus

$$
\begin{aligned}
\Phi\left(F_{n}^{-}(u)\right) & =P\left(V<F_{n}^{-}(u)\right)=P\left(F_{n}(V)<u\right) \\
& =\int_{\Omega} 1_{\left\{\omega \in \Omega \mid F_{n}(V(\omega))<u\right\}} \mathrm{d} P \stackrel{(*)}{\rightarrow} \int_{\Omega} 1_{\{\omega \in \Omega \mid F(V(\omega))<u\}} \mathrm{d} P \\
& =P(F(V)<u)=P\left(V<F^{-}(u)\right)=\Phi\left(F^{-}(u)\right)
\end{aligned}
$$

holds. In $(*)$ we can use the dominated convergence theorem, because

$$
1_{\left\{\omega \in \Omega \mid F_{n}(V(\omega))<u\right\}}(\omega) \rightarrow 1_{\{\omega \in \Omega \mid F(V(\omega))<u\}}(\omega)
$$

holds for all $\omega \in \Omega \backslash\left(\Omega_{0} \cup \Omega_{1}\right)$ and $P\left(\Omega_{0} \cup \Omega_{1}\right)=0$. By continuity of $\Phi^{-1}, F_{n}^{-}(u) \rightarrow F^{-}(u)$ follows for every such u.

For a proof of the converse let U be uniformly distributed on $(0,1)$. Because of $F_{n}^{-} \rightsquigarrow F^{-}$, just like in the first case, $F_{n}^{-}(U) \rightarrow F^{-}(U)$ almost surely follows and therefore ${ }^{11} F_{n}^{-}(U) \xrightarrow{\mathscr{P}}$ $F^{-}(U)$. Thus $F_{n} \rightsquigarrow F$ by Lemma 42 and Lemma 60.1

Proof of Lemma 59 from page 32:

Let $g:=h^{+}$. Obviously $g:[h(a), h(b)] \rightarrow[a, b]$ is non decreasing. Let $r=g(t)$ and $\left(r_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\left\{r^{\prime} \in[a, b] \mid h\left(r^{\prime}\right) \leq t\right\}$ with $r_{n} \nearrow r$. It follows $h(r)=\lim _{n \rightarrow \infty} h\left(r_{n}\right) \leq t$. Thus $r \in\left\{r^{\prime} \in[a, b] \mid h\left(r^{\prime}\right) \leq t\right\}$ and therefore $g(t)=\max \left\{r^{\prime} \in[a, b] \mid h\left(r^{\prime}\right) \leq t\right\}$. From this we can directly deduce

$$
\begin{equation*}
h(r)>t \Leftrightarrow r>g(t), \quad \text { for all } r \in[a, b], t \in[h(a), h(b)] . \tag{101}
\end{equation*}
$$

Next, we show that g is right continuous. Let $r=g(t), t_{n} \searrow t \in[h(a), h(b))$ and $\varepsilon>0$. Then $h(r+\varepsilon)>t$ follows. So there is $N \in \mathbb{N}$ with $h(r+\varepsilon)>t_{n} \geq t$ for all $n \geq N$. Thus $r+\varepsilon>$ $g\left(t_{n}\right) \geq g(t)$ follows for all $n \geq N$, because of (101). Since $\varepsilon>0$ is arbitrary, $g\left(t_{n}\right) \xrightarrow{n \rightarrow \infty} g(t)$ follows. Now we show $g^{-}(r)=h(r)$ for all $r \in[a, b]$. In any case

$$
g(h(r))=\sup \left\{r^{\prime} \in[a, b] \mid h\left(r^{\prime}\right) \leq h(r)\right\} \geq r
$$

[^7]and so $g^{-}(r) \leq h(r)$. Suppose $t:=g^{-}(r)<h(r)$. Due to (101), $g(t)<r$ follows in contradiction to $g^{-}(r)=\min \left\{t^{\prime} \in[h(a), h(b)] \mid r \leq g\left(t^{\prime}\right)\right\}$ (cf. Lemma 57.2). Thus $g^{-}(r)=h(r)$.

Let us now consider the case where h is right continuous. Also in this case we set to abbreviation $g:=h^{-}:[h(a), h(b)] \rightarrow[a, b]$. Now we show $g^{+}=h$. We have $g(h(r))=\inf \left\{r^{\prime} \in\right.$ $\left.[a, b] \mid h\left(r^{\prime}\right) \geq h(r)\right\} \leq r$. Consequently $g^{+}(r)=\sup \{t \in[h(a), h(b)] \mid g(t) \leq r\} \geq h(r)$. Assume $t:=g^{+}(r)>h(r)$. Completely analogous to (101), one shows that this assumption is equivalent to $r<g(t)$. This is a contradiction to $g^{+}(r)=\max \left\{t^{\prime} \in[h(a), h(b)] \mid g\left(t^{\prime}\right) \leq r\right\}$.

Proof of Lemma 65 from page 33:

1. Trivial.
2. For the proof of " \leq " transform a decomposition of $[a, b]$ into decompositions of $[a, c]$ and $[c, b]$ (if necessary add c as new decomposition point) and use the triangle inequality.
For the proof of " \geq " let $\varepsilon>0$ be given. Now approximate $V(f, a, c)$ by some decomposition with a precision of $\varepsilon / 2$. Proceed analogously with $V(f, c, b)$. Then it follows $V(f, a, b) \leq V(f, a, c)+\varepsilon / 2+V(f, c, b)+\varepsilon / 2$. Since ε is arbitrary, it follows $V(f, a, b) \leq V(f, a, c)+V(f, c, b)$.
3. Follows trivially from the triangle inequality.
4. For " \Rightarrow " let $g(x):=\frac{1}{2}(V(f, a, x)+f(x))$ and $h(x):=\frac{1}{2}(V(f, a, x)-f(x))$. For $x^{\prime}<x$

$$
\begin{aligned}
g(x)-g\left(x^{\prime}\right) & =\frac{1}{2}\left(V(f, a, x)-V\left(f, a, x^{\prime}\right)+f(x)-f\left(x^{\prime}\right)\right) \\
& =\frac{1}{2}\left(V\left(f, x^{\prime}, x\right)-\left(f\left(x^{\prime}\right)-f(x)\right)\right) \geq 0
\end{aligned}
$$

follows by definition of the variation V. Analogously $h(x)-h\left(x^{\prime}\right) \geq 0$. Thus $f=g-h$ and g and h are non decreasing.
For " \Rightarrow " obviously $V(g, a, b)=g(b)-g(a)$ holds for non-decreasing g (analogously for non-increasing). The assertion then follows from 3.
5. Because of 4. it is sufficient to show the measurability of non-decreasing mappings $f:[a, b] \rightarrow[f(a), f(b)]$. This follows from $f^{-1}([c, f(b)])=\left[f^{-}(c), b\right]$, cf. Lemma 57 and the fact that $\{[c, f(b)] \mid c \in[f(a), f(b)]\}$ is a generator of Borel sets in $[f(a), f(b)]$.
6. If $x \mapsto V(f, a, x)$ were not left continuous in $c \in(a, b]$, it would have a jump since it is non-decreasing. I.e.

$$
\begin{equation*}
\exists \varepsilon>0 \forall x \in[a, c): V(f, a, x)<V(f, a, c)-\varepsilon . \tag{102}
\end{equation*}
$$

However, f is left continuous in c, i.e.

$$
\begin{equation*}
\exists \delta>0 \forall x \in(c-\delta, c]: f(c)-f(x)<\varepsilon / 2 . \tag{103}
\end{equation*}
$$

Let $a=x_{1}<\ldots<x_{n}=c$ with $x_{i+1}-x_{i}<\delta$ for all $i=1, \ldots, n-1$ and

$$
\begin{equation*}
V(f, a, c)-\varepsilon / 2<\sum_{i=1}^{n-1}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right| \leq V(f, a, c) . \tag{104}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{n-2}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right| \leq V\left(f, a, x_{n-1}\right) \stackrel{(102)}{<} V(f, a, c)-\varepsilon \tag{105}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
V(f, a, c)-\varepsilon / 2 & \stackrel{(104)}{<} \sum_{i=1}^{n-1}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right| \leq V\left(f, a, x_{n-1}\right)+\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \\
& \stackrel{(103)}{<} V\left(f, a, x_{n-1}\right)+\varepsilon / 2 \stackrel{(105)}{<} V(f, a, c)-\varepsilon+\varepsilon / 2=V(f, a, c)-\varepsilon / 2
\end{aligned}
$$

Obviously, this is a contradiction. Hence $x \mapsto V(f, a, x)$ is left continuous.

Proof of Lemma 66 from page 34:

1. Define $F_{1}: \mathbb{R} \rightarrow \mathbb{R}$ by $F_{1}(x)=F(x)$ for $a \leq x \leq b, F_{1}(x)=F(a)$ for $x<a$ and $F_{1}(x)=F(b)$ for $b<x$. Then $\lambda^{F_{0}^{-}}=\mu_{F_{1}}$ holds on $\mathscr{B}(\mathbb{R})$, because for $x<y, x \leq b$ and $a \leq y$,

$$
\begin{aligned}
\lambda^{F_{0}^{-}}((x, y]) & =\lambda\left(\left(F_{0}^{-}\right)^{-1}((x, y])\right) \\
& =\lambda\left(\left\{q \in[F(a), F(b)] \mid x<F_{0}^{-}(q) \leq y\right\}\right) \\
& =(*)
\end{aligned}
$$

if $a \leq x, y \leq b: \quad(*)=\lambda\left(\left\{q \in[F(a), F(b)] \mid F_{0}(x)<q \leq F_{0}(y)\right\}\right) \quad$ cf. Lemma 57.5

$$
=F_{1}\left(y^{+}\right)-F_{1}\left(x^{+}\right) \quad \text { since } F \text { and } F_{1} \text { are right continuous }
$$

$$
=\mu_{F_{1}}((x, y])
$$

if $x<a, y \leq b: \quad(*)=\lambda\left(\left\{q \in[F(a), F(b)] \mid a \leq F_{0}^{-}(q) \leq y\right\}\right)$
$=\lambda\left(\left\{q \in[F(a), F(b)] \mid F_{0}(a) \leq q \leq F_{0}(y)\right\}\right)$

$$
=\mu_{F_{1}}((x, y])
$$

$$
\text { if } \begin{aligned}
a \leq x, b<y: \quad(*) & =\lambda\left(\left\{q \in[F(a), F(b)] \mid x<F_{0}^{-}(q) \leq b\right\}\right) \\
& =\lambda\left(\left\{q \in[F(a), F(b)] \mid F_{0}(x)<q \leq F_{0}(b)\right\}\right) \\
& =\mu_{F_{1}}((x, y])
\end{aligned}
$$

if $x<a, b<y: \quad(*)=\lambda\left(\left\{q \in[F(a), F(b)] \mid a \leq F_{0}^{-}(q) \leq b\right\}\right)$
$=\lambda\left(\left\{q \in[F(a), F(b)] \mid F_{0}(a) \leq q \leq F_{0}(b)\right\}\right)$ $=\mu_{F_{1}}((x, y])$
follows. If $y \leq x$ or $b<x$ or $y<a$, then $\lambda F_{0}^{-}((x, y])=0=\mu_{F_{1}}((x, y])$. By means of the change-of-variables formula $\int_{\Omega^{\prime}} \alpha \mathrm{d} \mu^{T}=\int_{\Omega}(\alpha \circ T) \mathrm{d} \mu$ for $\alpha: \Omega^{\prime} \rightarrow \mathbb{R}$ and $T: \Omega \rightarrow \Omega^{\prime}$, see e. g. Stroock (1994), Lemma 5.0.1, we conclude (note $T:=F_{0}^{-}:[F(a), F(b)] \rightarrow \mathbb{R}$ and $\alpha:=g$)

$$
\int_{[F(a), F(b)]} g \circ F_{0}^{-} \mathrm{d} \lambda=\int_{\mathbb{R}} g \mathrm{~d} \lambda^{F_{0}^{-}}=\int_{\mathbb{R}} g \mathrm{~d} \mu_{F_{1}}=\int_{\mathbb{R}} 1_{(a, b]} g \mathrm{~d} \mu_{F_{1}}=\int_{\mathbb{R}} 1_{(a, b]} g \mathrm{~d} \mu_{F}
$$

2. First note $\left(F^{-}\right)_{\mid(0,1)}:(0,1) \rightarrow \mathbb{R}$. Then one shows $\lambda^{\left(F^{-}\right)_{\mid(0,1)}}=\mu_{F}$ similarly as above.

$$
\begin{aligned}
\lambda^{\left(F^{-}\right)_{\mid(0,1)}((x, y])} & =\lambda\left(\left\{q \in(0,1) \mid x<F^{-}(q) \leq y\right\}\right) \\
& =\lambda(\{q \in(0,1) \mid F(x)<q \leq y\}) \\
& =F\left(y^{+}\right)-F\left(x^{+}\right)=\mu_{F}((x, y]),
\end{aligned}
$$

for all $x \leq y$. Thus $\lambda^{\left(F^{-}\right)_{(0,1)}}=\mu_{F}$ holds on $\mathscr{B}(\mathbb{R})$. Now

$$
\begin{aligned}
\int_{(F(a), F(b))} g \circ\left(F^{-}\right)_{\mid(0,1)} \mathrm{d} \lambda & =\int_{(0,1)} 1_{(F(a), F(b)]} \cdot\left(g \circ\left(F^{-}\right)_{\mid(0,1)}\right) \mathrm{d} \lambda \\
& =\int_{(0,1)}\left(1_{(a, b]} \circ\left(F^{-}\right)_{\mid(0,1)}\right) \cdot\left(g \circ\left(F^{-}\right)_{\mid(0,1)}\right) \mathrm{d} \lambda \\
& =\int_{\mathbb{R}} 1_{(a, b]} \cdot g \mathrm{~d} \lambda^{\left(F^{-}\right)_{(0,1)}}=\int_{\mathbb{R}} 1_{(a, b]} \cdot g \mathrm{~d} \mu_{F}
\end{aligned}
$$

follows again with the change-of-variables formula and Lemma 57.5.

Proof of Lemma 67 from page 34:

1. Let $D:=D^{\prime} \cup((0,1) \cap \mathbb{Q})$. Then D is countably infinite, includes all discontinuities of all \tilde{f}_{i}, $i \in J$, and D is also dense in $[0,1]$. Now let $D=\left\{q_{k} \mid k \in \mathbb{N}^{\geq 1}\right\}$ be a fixed bijective enumeration of D. Each $r \in[0,1]$ is assigned a (possibly degenerate) interval $I_{r} \subset[0,1]$,

$$
I_{r}:=\left[\sum_{q_{k}<r} 2^{-k}, \sum_{q_{k} \leq r} 2^{-k}\right] .
$$

(Where $\sum_{q_{k}<r}$ means that the sum is formed over all $k \in \mathbb{N}^{\geq 1}$ to which $q_{k}<r$ applies. Analogue with " \leq ".) I_{r} is an interval of positive length if $r \in D$. For $r \in[0,1] \backslash D, I_{r}=\left\{\sum_{q_{k}<r} 2^{-k}\right\}$ is degenerated to a single point, since in this case $\sum_{q_{k}<r} 2^{-k}=\sum_{q_{k} \leq r} 2^{-k}$. Furthermore,

$$
\begin{equation*}
r<r^{\prime} \quad \Leftrightarrow \quad I_{r}^{+}<I_{r^{\prime}}^{-} \quad \text { for all } r, r^{\prime} \in[0,1] . \tag{106}
\end{equation*}
$$

This follows immediately from the fact that $D \cap\left(r, r^{\prime}\right) \neq \emptyset$ holds for all $r<r^{\prime}$. Between every two $I_{r}, I_{r^{\prime}}$ with $r<r^{\prime}$, there are infinitely many $I_{r^{\prime \prime}}$ with $r^{\prime \prime} \in D$ and infinitely many with $r^{\prime \prime} \in[0,1] \backslash D$. Nevertheless, $Z:=\left\{I_{r} \mid r \in[0,1]\right\}$ is a decomposition of $[0,1]$.

Proof: The only thing to show is that for each $z \in[0,1] \backslash \bigcup_{r \in D} I_{r}$ there is $x \in[0,1] \backslash D$, with $z=\sum_{q_{k}<x} 2^{-k}$. The uniqueness then follows from (106). So let $z \in[0,1] \backslash \bigcup_{r \in D} I_{r}$.
$\underline{1 \text { st case }} 0 \in D^{\prime}$, so $0 \in D$. Let $M:=\left\{\sum_{q_{k} \leq r} 2^{-k} \mid r \in D \wedge \sum_{q_{k} \leq r} 2^{-k}<z\right\}$. Then $M \neq \emptyset$ because $z \notin I_{0}=\left[0,2^{-k}\right]$, where $0=q_{k}$. Thus $z_{0}:=\sup M$ exists. Obviously $z_{0} \leq z$. Since all intervals in Z are pairwise disjoint, $z_{0}<z$ cannot be valid because of $\sum_{r \in D}$ length $\left(I_{r}\right)=1$. Therefore $z_{0}=z$. Let $\left(\sum_{q_{k} \leq r_{i}} 2^{-k}\right)_{i \in \mathbb{N}}$ be a strictly monotone increasing sequence of M with $\lim _{i \rightarrow \infty} \sum_{q_{k} \leq r_{i}} 2^{-k}=z$. Then $\left(r_{i}\right)_{i \in \mathbb{N}}$ is a strictly monotone increasing sequence of D. Let $x:=\lim _{i \rightarrow \infty} r_{i} \in(0,1]$. Thus $\sum_{q_{k}<x} 2^{-k}=\lim _{i \rightarrow \infty} \sum_{q_{k} \leq r_{i}} 2^{-k}=$ z. By choice, $x \in[0,1] \backslash D$ must hold.
2nd case $0 \notin D^{\prime}$, so $0 \notin D$. If $z=0$ holds, then $z=\sum_{q_{k}<x} 2^{-k}$ where $x:=0 \in[0,1] \backslash D$. If $z>0$, we define M as above. For all $N \in \mathbb{N} \geq 1$, let $x_{N}:=\frac{1}{2} \min \left(q_{1}, \ldots, q_{N}\right)$. Thus $S_{N}:=\sum_{q_{k} \leq x_{N}} 2^{-k} \leq \sum_{k=N+1}^{\infty} 2^{-k}=\sum_{k=0}^{\infty} 2^{-N-1-k}=2^{-N-1} \sum_{k=0}^{\infty} 2^{-k}=2^{-N}$. Choose $N \in \mathbb{N} \geq 1$ and $r \in D$ with $r<x_{N}$ and $S_{N}<z$. Then $\sum_{q_{k} \leq r} 2^{-k} \in M$, i.e. $M \neq \emptyset$. The rest now follows exactly as in the 1st case.

This means (illustratively) that each $r \in D$ is "blown up" to a small interval I_{r} and each element $r \in[0,1] \backslash D$ is left as a single element. Now we come to the definition of the $f_{i}, i \in J$.

On the degenerate intervals $I_{r^{\prime}}=\left\{\sum_{q_{k}<r^{\prime}} 2^{-k}\right\}, r^{\prime} \in$ $[0,1] \backslash D, f_{i}$ has the value $\tilde{f}_{i}\left(r^{\prime}\right)$. On the intervals of positive length $I_{r}=\left[\sum_{q_{k}<r} 2^{-k}, \sum_{q_{k} \leq r} 2^{-k}\right], r \in D, f_{i}$ has value $\tilde{f}_{i}\left(r^{-}\right)$on I_{r}^{-}with $f_{i}(0):=\tilde{f}_{i}(0)$ if $0=I_{0}^{-}$, $\tilde{f}_{i}\left(r^{+}\right)$on I_{r}^{+}with $f_{i}(1):=\tilde{f}_{i}(1)$ if $1=I_{1}^{+}$and $\tilde{f}_{i}(r)$ in the middle between them and everything linearly

connected (see sketch). We will show f_{i} is right continuous (left continuous is shown analogously). From the definition of f_{i} it follows immediately that f_{i} is right continuous in every $x \in I_{r} \backslash\left\{I_{r}^{+}\right\}$for $r \in D$. It remains to show f_{i} is right continuous in the points I_{r}^{+}with $r \in D$ and in all $x \in I_{r^{\prime}}=\left\{\sum_{q_{k}<r^{\prime}} 2^{-k}\right\}, r^{\prime} \in[0,1] \backslash D$. Each $x \in[0,1]$ lies in exactly one $I_{r(x)}$. Thus

$$
\begin{equation*}
\min \left\{\tilde{f}_{i}\left(r(x)^{-}\right), \tilde{f}_{i}(r(x)), \tilde{f}_{i}\left(r(x)^{+}\right)\right\} \leq f_{i}(x) \leq \max \left\{\tilde{f}_{i}\left(r(x)^{-}\right), \tilde{f}_{i}(r(x)), \tilde{f}_{i}\left(r(x)^{+}\right)\right\} \tag{107}
\end{equation*}
$$

follows, due to the construction of f_{i}. If $x_{n} \searrow x$ holds in [0, 1], then $r\left(x_{n}\right) \searrow r(x)$ follows, since $\sum_{r(x)<q_{k}<r\left(x_{n}\right)} 2^{-k}=I_{r\left(x_{n}\right)}^{-}-I_{r(x)}^{+} \rightarrow 0$. If $r(x) \in[0,1] \backslash D$, then

$$
\tilde{f}_{i}\left(r\left(x_{n}\right)^{-}\right) \rightarrow \tilde{f}_{i}(r(x)), \tilde{f}_{i}\left(r\left(x_{n}\right)\right) \rightarrow \tilde{f}_{i}(r(x)) \text { and } \tilde{f}_{i}\left(r\left(x_{n}\right)^{+}\right) \rightarrow \tilde{f}_{i}(r(x))
$$

follows, since \tilde{f}_{i} is continuous in $r(x)$. Thus $f_{i}\left(x_{n}\right) \rightarrow f_{i}(x)$, due to $\tilde{f}_{i}(r(x))=f_{i}(x)$ and (107). If $r(x) \in D$, i.e. $x=I_{r(x)}^{+}$, then

$$
\tilde{f}_{i}\left(r\left(x_{n}\right)^{-}\right) \rightarrow \tilde{f}_{i}\left(r(x)^{+}\right), \tilde{f}_{i}\left(r\left(x_{n}\right)\right) \rightarrow \tilde{f}_{i}\left(r(x)^{+}\right) \text {and } \tilde{f}_{i}\left(r\left(x_{n}\right)^{+}\right) \rightarrow \tilde{f}_{i}\left(r(x)^{+}\right)
$$

by definition of the right limit $\tilde{f}_{i}\left(r(x)^{+}\right)$. So $f_{i}\left(x_{n}\right) \rightarrow f_{i}(x)$, due to $\tilde{f}_{i}\left(r(x)^{+}\right)=f_{i}(x)$ and (107). Now h is defined by

$$
h(r):=\frac{1}{2}\left(\sum_{q_{k}<r} 2^{-k}+\sum_{q_{k} \leq r} 2^{-k}\right) .
$$

Then h is strictly monotonically increasing (obviously) with $\tilde{f}_{i}=f_{i} \circ h$ for all $i \in J$ (this is easy to prove; it is best to systematically go through all possible cases).
2. We only consider the case where all \tilde{f}_{i} are left continuous. Note that this implies $1 \notin D$. In this case we define h by ${ }^{12}$

$$
h(r):=\sum_{q_{k}<r} 2^{-k} .
$$

Then $h\left(r_{1}\right)<h\left(r_{2}\right)$ for all $r_{1}<r_{2}, h(0)=0, h(1)=1, h$ is left continuous and

$$
I_{r}=\left[h\left(r^{-}\right), h\left(r^{+}\right)\right]=\left[h(r), h\left(r^{+}\right)\right] .
$$

for all $r \in(0,1]$. Since every $\tilde{f}_{i}, i \in J$, is left continuous, $f_{i}(h(r))=f_{i}\left(h\left(r^{-}\right)\right)=\tilde{f}_{i}\left(r^{-}\right)=\tilde{f}_{i}(r)$ for all $r \in(0,1]$ and $f_{i}(h(0))=f_{i}(0)=\tilde{f}_{i}(0)$ holds, i.e. $f_{i} \circ h=\tilde{f}_{i}$. It remains to be shown that h is the quantile function of an corresponding distribution function $F:[0,1] \rightarrow[0,1]$. We define $F(t):=h^{+}(t)=\sup \{r \in[0,1] \mid h(r) \leq t\}$, cf. Remark 58. Then $F(0)=0$, since $h(0)=0$ and $h(r)>0$ for all $r>0$. Moreover $F(1)=1, F$ is non-decreasing, right continuous and satisfies $F^{-}=h$, by Lemma 59. If F were not continuous, F would have jumps and $F^{-}=h$ would be

[^8]constant on some intervals of positive length, in contradiction to h being strictly monotonically increasing.
3. We assume that all \tilde{f}_{i} are continuous in 0 . Then (75) holds. For if $F(t)=\sup \left\{r^{\prime} \in\right.$ $\left.[0,1] \mid h\left(r^{\prime}\right) \leq t\right\}=0$ holds for $t>0$, then
$$
h\left(x_{N}\right)=\sum_{q_{k}<x_{N}} 2^{-k} \leq \sum_{k=N+1}^{\infty} 2^{-k}=\sum_{k=0}^{\infty} 2^{-N-1-k}=2^{-N-1} \sum_{k=0}^{\infty} 2^{-k}=2^{-N},
$$
with $x_{N}:=\min \left(q_{1}, \ldots, q_{N}\right)>0$. For this, note that $0 \notin D$ holds, since all \tilde{f}_{i} are continuous in 0 . For sufficiently large N with $2^{-N}<t$, a contradiction would result. The assumption $F(t)=\sup \left\{r^{\prime} \in[0,1] \mid h\left(r^{\prime}\right) \leq t\right\}=1$ for some $t<1$ leads directly to a contradiction.
4. If all \tilde{f}_{i} are of bounded variation, there are non-decreasing functions $\tilde{g}_{i 1}$ and $\tilde{g}_{i 2}$ with $\tilde{f}_{i}=\tilde{g}_{i 1}-\tilde{g}_{i 2}$. The same construction as above with \tilde{f}_{i}, but now carried out with $\tilde{g}_{i 1}$ and $\tilde{g}_{i 2}$, leads because of $\tilde{f}_{i}\left(r^{-}\right)=\tilde{g}_{i 1}\left(r^{-}\right)-\tilde{g}_{i 2}\left(r^{-}\right), \tilde{f}_{i}\left(r^{+}\right)=\tilde{g}_{i 1}\left(r^{+}\right)-\tilde{g}_{i 2}\left(r^{+}\right)$and the linear construction on I_{r} to non-decreasing functions $g_{i 1}$ and $g_{i 2}$, with $f_{i}=g_{i 1}-g_{i 2}$. Consequently, all f_{i} are also of bounded variation.

Proof of Remark 68 from page 35:

We assume f has a left limit in each $x \in[0,1]$. Let $D^{\prime}:=\{x \in[0,1] \mid f$ is discontinuous in $x\}$. If $x \in D^{\prime}$, then

$$
\exists n \in \mathbb{N}^{\geq 1} \forall \delta>0 \exists x^{\prime} \in[0,1] \text { such that }\left|x-x^{\prime}\right|<\delta \wedge\left|f(x)-f\left(x^{\prime}\right)\right| \geq \frac{1}{n}
$$

Thus $D^{\prime}=\bigcup_{n \in \mathbb{N} \geq 1} D_{n}^{\prime}$, where,

$$
D_{n}^{\prime}:=\left\{x \in[0,1] \mid \forall \delta>0 \exists x^{\prime} \in[0,1] \text { with }\left|x-x^{\prime}\right|<\delta \wedge\left|f(x)-f\left(x^{\prime}\right)\right| \geq 1 / n\right\} .
$$

Suppose D^{\prime} is uncountable. Then there exists $n \in \mathbb{N}^{\geq 1}$ such that D_{n}^{\prime} is uncountable too. We will show

$$
\begin{equation*}
\exists x_{0} \in D_{n}^{\prime} \forall \varepsilon>0:\left(x_{0}-\varepsilon, x_{0}\right) \cap D_{n}^{\prime} \neq \emptyset . \tag{108}
\end{equation*}
$$

If (108) were false, then for every $x \in D_{n}^{\prime}$ there would be an $\varepsilon_{x}>0$ with $\left(x-\varepsilon_{x}, x\right) \cap D_{n}^{\prime}=$ \emptyset. Then $\left(x-\varepsilon_{x}, x\right), x \in D_{n}^{\prime}$ would be a family of pairwise disjoint nonempty open intervals and in particular D_{n}^{\prime} would thus be countable - a contradiction! Consequently, (108) is true. By definition of D_{n}^{\prime} and because of (108), for every $k \in \mathbb{N}^{\geq 1}$ exists $x_{k}, x_{k}^{\prime} \in\left(x_{0}-\frac{1}{k}, x_{0}\right) \cap D_{n}^{\prime}$ with $\left|f\left(x_{k}\right)-f\left(x_{k}^{\prime}\right)\right| \geq \frac{1}{n}$. The sequence $\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots\right)$ converges from the left to x_{0} in contradiction to the fact that $\left(f\left(x_{1}\right), f\left(x_{1}^{\prime}\right), f\left(x_{2}\right), f\left(x_{2}^{\prime}\right), \ldots\right)$ does not converge at all.

Proof of Lemma 69 from page 35:

For each $i \in J$ let $\tilde{f}_{i, 1}$ and $\tilde{f}_{i, 2}$ non-decreasing with $\tilde{f}_{i}=\tilde{f}_{i, 1}-\tilde{f}_{i, 2}$. We first consider the case where $\tilde{f}_{i}(0)=0$ holds for all $i \in J$. Thus $\tilde{f}_{i, 1}$ and $\tilde{f}_{i, 2}$ can be chosen a priori such that $\tilde{f}_{i, 1}(0)=0$ and $\tilde{f}_{i, 2}(0)=0$ for all $i \in J$ too. Define $h:[0,1] \rightarrow[0,1]$ by

$$
\begin{equation*}
h(r):=\frac{r}{L}+\frac{1}{L} \cdot \sum_{i=1}^{d}\left(\tilde{f}_{i, 1}(r)+\tilde{f}_{i, 2}(r)\right) \text { with } L:=1+\sum_{i=1}^{d}\left(\tilde{f}_{i, 1}(1)+\tilde{f}_{i, 2}(1)\right) . \tag{109}
\end{equation*}
$$

Obviously h is strictly monotonically increasing with $h(0)=0$ and $h(1)=1$. We define mappings $g_{i}: \operatorname{Image}(h) \rightarrow \mathbb{R}$ by $g_{i}(h(x)):=\tilde{f}_{i}(x)$ for every $i \in J$. Since h is strictly monotonically increasing, all g_{i} are well-defined with $\tilde{f}_{i}=g_{i} \circ h$. All g_{i} are Lipschitz continuous. To show this, we assume $x<y$ for $x, y \in \operatorname{Image}(h)$. Then there are $s, t \in[0,1]$ with $x=h(s)$ and $y=h(t)$. Therefore $s<t$ and

$$
\begin{aligned}
\left|g_{i}(y)-g_{i}(x)\right| & =\left|g_{i}(h(t))-g_{i}(h(s))\right|=\left|\tilde{f}_{i}(t)-\tilde{f}_{i}(s)\right| \\
& \leq t-s+\sum_{i=1}^{d}\left|\tilde{f}_{i, 1}(t)-\tilde{f}_{i, 2}(t)-\tilde{f}_{i, 1}(s)+\tilde{f}_{i, 2}(s)\right| \\
& \leq t-s+\sum_{i=1}^{d}\left|\tilde{f}_{i, 1}(t)-\tilde{f}_{i, 1}(s)\right|+\sum_{i=1}^{d}\left|\tilde{f}_{i, 2}(t)-\tilde{f}_{i, 2}(s)\right| \\
& =t+\sum_{i=1}^{d}\left(\tilde{f}_{i, 1}(t)+\tilde{f}_{i, 2}(t)\right)-\left(s+\sum_{i=1}^{d}\left(\tilde{f}_{i, 1}(s)+\tilde{f}_{i, 2}(s)\right)\right) \\
& =L(h(t)-h(s))=L|y-x|
\end{aligned}
$$

Using McShane's Lemma ${ }^{13}$ or the Kirszbraun Theorem, we extend each $g_{i}, i \in J$ to a Lipschitz continuous mapping $f_{i}:[0,1] \rightarrow \mathbb{R}$. Thus $\tilde{f}_{i}=f_{i} \circ h$, for all $i \in J$. If all \tilde{f}_{i} are left continuous (or right continuous), then h is also left continuous (or right continuous). We now conclude, as in the proof of Lemma 67, that $F:[0,1] \rightarrow[0,1]$ defined by $F(t):=\sup \{r \in[0,1] \mid h(r) \leq t\}$ is a non-decreasing continuous function (in case that all \tilde{f}_{i} are left continuous) with $F(0)=0$, $F(1)=1$ and $h=F^{-}$. Finally, if all \tilde{f}_{i} are continuous in 0 , then (75) follows, as in the proof of Lemma 67, from $h(0)=0$ and the fact that h is continuous in 0 .

We still have to prove the general case with $\tilde{f}_{i}(0) \in \mathbb{R}$ arbitrarily. For this we define $\hat{f}_{i}(t):=\tilde{f}_{i}(t)-\tilde{f}_{i}(0), i \in J$. Then $\hat{f}_{i}(0)=0$ holds and we get $\hat{f}_{i}=f_{i} \circ h$ according to what we proved before. Then we set $h_{i}(t):=f_{i}(t)+\tilde{f}_{i}(0)$. And it follows $\tilde{f}_{i}=\hat{f}_{i}+\tilde{f}_{i}(0)=h_{i} \circ h$ for all $i \in J$. Of course, all $h_{i}, i \in J$ are also continuous. Thus the lemma is completely proved.

Remark 81. h from (109) in the proof of Lemma 69 could also be defined by

$$
\begin{equation*}
h(x):=\frac{x}{L}+\frac{1}{L} \cdot \sum_{i=1}^{d} V\left(\tilde{f}_{i}, 0, x\right) \text { with } L:=1+\sum_{i=1}^{d} V\left(\tilde{f}_{i}, 0,1\right)>0 . \tag{110}
\end{equation*}
$$

${ }^{13}$ This is a very useful theorem. See e.g. Heinonen (2001), Theorem 6.2. Since the proof is short and relatively simple, we give it here. We extend each g_{i} to a Lipschitz continuous mapping $f_{i}:[0,1] \rightarrow \mathbb{R}$ by $f_{i}(x):=$ $\inf _{y \in A}\left(g_{i}(y)+L \cdot|x-y|\right)$, where $A:=$ Image (h). Since

$$
\begin{aligned}
g(y)+L \cdot|a-y|-g(a) & =g(y)-g(a)+L \cdot|a-y| \leq 2 L \cdot|a-y| \quad \text { and } \\
g(a)-(g(y)+L \cdot|a-y|) & =g(a)-g(y)-L \cdot|a-y| \leq 0
\end{aligned}
$$

$f_{i}(a)=g_{i}(a)$ for all $a \in A$ follows. Let us now show that all $f_{i}, i \in J$ are Lipschitz continuous. Let $x, x^{\prime} \in[0,1]$ and let $\varepsilon>0$. Choose $y_{0} \in A$ with $g\left(y_{0}\right)+L \cdot\left|x^{\prime}-y_{0}\right|-\varepsilon<f\left(x^{\prime}\right)$. Because of

$$
\begin{aligned}
f(x)-f\left(x^{\prime}\right) & =\inf _{y \in A}\left(g_{i}(y)+L \cdot|x-y|\right)-\inf _{y^{\prime} \in A}\left(g_{i}\left(y^{\prime}\right)+L \cdot\left|x^{\prime}-y^{\prime}\right|\right) \\
& <\inf _{y \in A}\left(g_{i}(y)+L \cdot|x-y|\right)-\left(g_{i}\left(y_{0}\right)+L \cdot\left|x^{\prime}-y_{0}\right|-\varepsilon\right) \\
& \leq\left(g_{i}\left(y_{0}\right)+L \cdot\left|x-y_{0}\right|\right)-\left(g_{i}\left(y_{0}\right)+L \cdot\left|x^{\prime}-y_{0}\right|\right)+\varepsilon \\
& =L\left(\left|x-y_{0}\right|+\left|x^{\prime}-y_{0}\right|\right)+\varepsilon \leq L \cdot\left|x-x^{\prime}\right|+\varepsilon
\end{aligned}
$$

and (analogously) $f\left(x^{\prime}\right)-f(x)<L \cdot\left|x^{\prime}-x\right|+\varepsilon,\left|f(x)-f\left(x^{\prime}\right)\right| \leq L \cdot\left|x-x^{\prime}\right|$ follows, since $\varepsilon>0$ was arbitrary.

Then, h is left continuous by Lemma 65.6 and strictly monotonically increasing with $h(0)=0$ and $h(1)=1$. We define $g_{i}: \operatorname{Image}(h) \rightarrow \mathbb{R}$ by $g_{i}(h(x)):=\tilde{f}_{i}(x)$ for every $i \in J$. Since h is strictly monotonically increasing, all g_{i} are well-defined with $\tilde{f}_{i}=g_{i} \circ h$. The Lipschitz continuity of g_{i} then follows from

$$
\begin{aligned}
\left|g_{i}(y)-g_{i}(x)\right| & =\left|g_{i}(h(t))-g_{i}(h(s))\right|=\left|\tilde{f}_{i}(t)-\tilde{f}_{i}(s)\right| \\
& \leq t-s+V\left(\tilde{f}_{i}, s, t\right) \leq t-s+\sum_{i=1}^{d} V\left(\tilde{f}_{i}, s, t\right) \\
& =t-s+\sum_{i=1}^{d}\left(V\left(\tilde{f}_{i}, 0, t\right)-V\left(\tilde{f}_{i}, 0, s\right)\right)=L(h(t)-h(s))=L|y-x|
\end{aligned}
$$

for $x<y$ with $x=h(s), y=h(t)$ and $s<t$. The rest follows as in the proof of Lemma 69.

Proof of Lemma 70 from page 35:

Since $\left(t_{n,\lfloor s n\rfloor}\right)_{n \in \mathbb{N}}$ is bounded, it has cluster points. Assume there is a cluster point x^{\prime} with $x^{\prime}<x:=F^{-}(s)$. We choose a subsequence $\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right)_{k \in \mathbb{N}}$ of $\left(t_{n,\lfloor s n\rfloor}\right)_{n \in \mathbb{N}}$ with $t_{n_{k},\left\lfloor s n_{k}\right\rfloor} \xrightarrow{k \rightarrow \infty} x^{\prime}$. Since every real sequence contains a monotone subsequence, we can assume without loss of generality that the subsequence is already monotone. Then $F\left(x^{\prime}\right)<s \leq F(x)$ holds by Lemma 57. Let $\varepsilon:=s-F\left(x^{\prime}\right)>0$.

1st case $\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right)_{k \in \mathbb{N}}$ is non decreasing. Because of $\left.F_{n_{k}}\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right)\right) \geq \frac{\left\lfloor s n_{k}\right\rfloor}{n_{k}} \xrightarrow{k \rightarrow \infty} s$ there is a k_{0} with $F_{n_{k}}\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right) \geq s-\varepsilon / 3$ for all $k \geq k_{0}$. Due to $\sup _{x \in[a, b]}\left|F_{n}(x)-F(x)\right| \xrightarrow{n \rightarrow \infty} 0$ there is a $k_{1} \geq k_{0}$ with $\left|F_{n_{k}}(x)-F(x)\right|<\varepsilon / 3$ for all $k \geq k_{1}$ and all $x \in[a, b]$. Thus $F\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right) \geq s-2 \varepsilon / 3$ for all $k \geq k_{1}$. This is a contradiction to $t_{n_{k},\left\lfloor s n_{k}\right\rfloor} \leq x^{\prime}$ and $F\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right) \leq F\left(x^{\prime}\right)=s-\varepsilon$.
2nd case $\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right)_{k \in \mathbb{N}}$ is non increasing. As just shown $F\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right) \geq \frac{\left\lfloor s n_{k}\right\rfloor}{n_{k}} \geq s-2 \varepsilon / 3$ for all sufficiently large k, contradicting $F\left(t_{n_{k},\left\lfloor s n_{k}\right\rfloor}\right) \xrightarrow{k \rightarrow \infty} F\left(x^{\prime}\right)=s-\varepsilon$, since F is right continuous.
To show the second assertion, we assume that F^{-}is continuous in s. Let x_{0} be the smallest cluster point of $\left(t_{n,\lfloor s n\rfloor}\right)_{k \in \mathbb{N}}$. Let $\varepsilon>0$ be arbitrary. Thus there exists $n_{0} \in \mathbb{N}$ with $x_{0}-\varepsilon<t_{n,\lfloor s n\rfloor}$ for all $n \geq n_{0}$. Consequently

$$
\begin{equation*}
\forall n \geq n_{0}: F^{-}(s)-\varepsilon \leq x_{0}-\varepsilon<t_{n,\lfloor s n\rfloor} \tag{111}
\end{equation*}
$$

Because of $\sup _{x \in[a, b]}\left|F_{n}(x)-F(x)\right| \xrightarrow{n \rightarrow \infty} 0$ it follows $F_{n}^{-}(s) \rightarrow F^{-}(s)$ by Lemma 62, i.e.

$$
\begin{equation*}
\exists n_{1} \geq n_{0} \forall n \geq n_{1}: F^{-}(s) \geq F_{n}^{-}(s)-\varepsilon \geq F_{n}^{-}(\lfloor s n\rfloor / n)-\varepsilon=t_{n,\lfloor s n\rfloor}-\varepsilon . \tag{112}
\end{equation*}
$$

Thus $t_{n,\lfloor s n\rfloor} \xrightarrow{n \rightarrow \infty} F^{-}(s)$ by (111) and (112).

Proof of Lemma 72 from page 36

Our proof based on the proof of Lemma A. 1 in Bischoff (1998). Let $D:=\operatorname{support}(F) \subseteq[a, b]$. First we show

$$
\begin{equation*}
\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} f \quad \text { exists. } \tag{113}
\end{equation*}
$$

Proof of (113): First, note that the integral $\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} f$ exists if and only if both integrals $\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} g$ as well as $\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} h$ exist, where $f=g-h$ is the canonical Jordan decomposition (cf. Lojasiewicz (1988), Theorem 1.5.3 and Lemma 65 in this thesis). The rest follows with Theorem 5.1.2 from Stroock (1994) because $u \circ F$ has at most countably many discontinuity points and consequently the set of discontinuity points is a null set with respect to the measures μ_{g} and μ_{h} generated by f, resp. g and h (because f is continuous by premise, so g and h are continuous too, see Lemma 65).
We will now show that the difference $\left|\sum_{i=2}^{\lfloor s n\rfloor}\left(f\left(t_{n, i}\right)-f\left(t_{n, i-1}\right)\right) u\left(\frac{i-1}{n}\right)-\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} f\right|$ becomes arbitrarily small for sufficiently large n. To this end, let $\varepsilon>0$. Since $f \in C[a, b], f$ is uniformly continuous on $[a, b]$, i.e. there exists δ_{0} with $0<\delta_{0} \leq \varepsilon$ and

$$
\begin{equation*}
\left|x-x^{\prime}\right|<\delta_{0} \quad \Rightarrow \quad\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon \tag{114}
\end{equation*}
$$

for all $x, x^{\prime} \in[a, b]$. Since (113), there exists δ_{1} with $0<\delta_{1} \leq \delta_{0}$ and

$$
\begin{equation*}
\left|\sum_{i=1}^{k}\left(f\left(v_{i}\right)-f\left(v_{i-1}\right)\right) u\left(F\left(v_{i-1}\right)\right)-\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} f\right|<\varepsilon \tag{115}
\end{equation*}
$$

for all $k \in \mathbb{N}^{\geq 1}$ and $a=v_{0} \leq v_{1} \leq \ldots \leq v_{k-1} \leq v_{k}=F^{-}(s)$ with $v_{i}-v_{i-1}<\delta_{1}$ for all $i \in$ $\{1, \ldots, k\}$. Since the variation (cf. Definition 64) $x \mapsto V(f, a, x)$ of f is uniformly continuous on $[a, b]$ (because f is continuous, cf. Lemma 65.6) there exists δ with $0<\delta \leq \delta_{0}$ and

$$
\begin{equation*}
x^{\prime}-\delta<x \leq x^{\prime} \quad \Rightarrow \quad V\left(f, x, x^{\prime}\right)<\varepsilon \tag{116}
\end{equation*}
$$

for all $x, x^{\prime} \in[a, b]$. Because of Lemma 70, there is $n_{0} \in \mathbb{N}$ with

$$
\begin{equation*}
\left|t_{n,\lfloor s n\rfloor}-F^{-}(s)\right|<\delta / 2 \quad \text { for all } \quad n \geq n_{0} . \tag{117}
\end{equation*}
$$

Since u is also uniformly continuous on $[0,1]$ and because of $\sup _{x \in[a, b]}\left|F_{n}(x)-F(x)\right| \xrightarrow{n \rightarrow \infty} 0$, there exists an $n_{1} \geq n_{0}$ with

$$
\begin{equation*}
\left|u\left(F_{n}(x)\right)-u(F(x))\right| \leq \varepsilon \text { for all } n \geq n_{1} \text { and all } x \in[a, b] . \tag{118}
\end{equation*}
$$

Because of $\sup _{x \in[a, b]}\left|F_{n}(x)-F(x)\right| \rightarrow 0$ and (117) there exists an $n_{2} \geq n_{1}$ such that

$$
\forall n \geq n_{2} \forall d \in D \cap\left[a, F^{-}(s)\right] \exists j \in\{1, \ldots,\lfloor s n\rfloor\}:\left|d-t_{n, j}\right|<\delta / 2 .
$$

Thus

$$
\begin{aligned}
& t_{n, 1}-a \geq \delta \quad \Rightarrow \quad\left(a+\frac{\delta}{2}, t_{n, 1}-\frac{\delta}{2}\right) \cap D=\emptyset \\
& t_{n, i}-t_{n, i-1} \geq \delta \quad \Rightarrow \quad\left(t_{n, i-1}+\frac{\delta}{2}, t_{n, i}-\frac{\delta}{2}\right) \cap D=\emptyset \\
& F^{-}(s)-t_{n, i} \geq \delta \quad \Rightarrow \quad\left(t_{n, i}+\frac{\delta}{2}, F^{-}(s)-\frac{\delta}{2}\right) \cap D=\emptyset \\
& t_{n, i}-F^{-}(s) \geq \delta \quad \Rightarrow \quad\left(F^{-}(s)+\frac{\delta}{2}, t_{n, i}-\frac{\delta}{2}\right) \cap D=\emptyset
\end{aligned}
$$

holds for all $n \geq n_{2}$ and $i \leq\lfloor s n\rfloor$. Consequently $s_{1}, \ldots, s_{r} \in\left[a, F^{-}(s)\right] \backslash D$ can be found with $s_{1}<\ldots<s_{r}$ such that

$$
\begin{equation*}
v_{n, 1}-a<\delta \quad \text { and } \quad v_{n, i}-v_{n, i-1}<\delta \quad \text { for all } i \in\{1, \ldots, \ell(n, s)\} \tag{119}
\end{equation*}
$$

where $v_{n, 1}<\ldots<v_{n, \ell(n, s)}$ with $\left\{v_{n, 1}, \ldots, v_{n, \ell(n, s)}\right\}=\left\{t_{n, 1}, \ldots, t_{n,\lfloor s n\rfloor}\right\} \cup\left\{s_{1}, \ldots, s_{r}\right\}$. Thus

$$
A(n, s):=\sum_{i=2}^{\lfloor s n\rfloor}\left(f\left(t_{n, i}\right)-f\left(t_{n, i-1}\right)\right) u\left(\frac{i-1}{n}\right)=\sum_{i=2}^{\ell(n, s)}\left(f\left(v_{n, i}\right)-f\left(v_{n, i-1}\right)\right) u\left(F_{n}\left(v_{n, i-1}\right)\right) .
$$

Note for this that for $t_{n, i}=\ldots=t_{n, j}$ the corresponding summands on the left-hand side are $=0$ and for $t_{n, i}<s_{n, p}<\ldots<s_{n, q}<t_{n, j}$ a finite telescoping series results on the right-hand side. Let $\ell^{\prime}(n, s):=\max \left\{i \in\{1, \ldots, \ell(n, s)\} \mid v_{n, i} \leq F^{-}(s)\right\}$ and

$$
I(n, s):=\sum_{i=2}^{\ell^{\prime}(n, s)}\left(f\left(v_{n, i}\right)-f\left(v_{n, i-1}\right)\right) u\left(F\left(v_{n, i-1}\right)\right)
$$

Let $u_{0}:=\sup _{r \in[0,1]}|u(r)|$. Thus

$$
\begin{align*}
\left|I(n, s)-\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} f\right| & <\varepsilon+\left|f\left(v_{n, 1}\right)-f(a)\right| \cdot u_{0}+\left|f\left(F^{-}(s)\right)-f\left(v_{n, \ell^{\prime}(n, s)}\right)\right| \cdot u_{0} \\
& <\varepsilon\left(1+2 u_{0}\right) \tag{120}
\end{align*}
$$

for all $n \geq n_{2}$ by (114), (115) and (119) and

$$
\begin{align*}
|A(n, s)-I(n, s)| \leq & \sum_{i=2}^{\ell^{\prime}(n, s)}\left|f\left(v_{n, i}\right)-f\left(v_{n, i-1}\right)\right| \cdot\left|u\left(F_{n}\left(v_{n, i-1}\right)\right)-u\left(F\left(v_{n, i-1}\right)\right)\right| \\
& +\sum_{i \in J}\left|f\left(v_{n, i}\right)-f\left(v_{n, i-1}\right)\right| \cdot 2 \cdot u_{0} \\
& \leq V(f, a, b) \cdot \varepsilon+V\left(f, F^{-}(s)-\delta / 2, F^{-}(s)+\delta / 2\right) \cdot 2 u_{0} \\
& <\varepsilon\left(V(f, a, b)+2 u_{0}\right) \tag{121}
\end{align*}
$$

for all $n \geq n_{2}$ by (116), (118) and (119), where $J:=\left\{i \in \mathbb{N} \mid \ell^{\prime}(n, s)<i \leq \ell(n, s)\right\}$. Finally

$$
\left|A(n, s)-\int_{\left[a, F^{-}(s)\right]}^{(R)}(u \circ F) \mathrm{d} f\right|<\varepsilon\left(1+V(f, a, b)+4 u_{0}\right)
$$

for all $n \geq n_{2}$. Thus (76).

Proof of Lemma 73 from page 36:

As $h_{i, j}(s):=\int_{(0, s)}\left(f_{i} f_{j}\right) \circ F_{0}^{-} \mathrm{d} \lambda$ is continuous with respect to $s \in[F(c), F(b)]$, the minimal eigenvalue $\chi_{\min }(H(s))$ and the maximal eigenvalue $\chi_{\max }(H(s))$ of $H(s)$ are continuous as well ${ }^{14}$. Since $[F(c), F(b)]$ is compact $s_{\min }, s_{\max } \in[F(c), F(b)]$ exist with

$$
\chi_{\min }:=\chi_{\min }\left(H\left(s_{\min }\right)\right) \leq \chi_{\min }(H(s)) \leq \chi_{\max }(H(s)) \leq \chi_{\max }\left(H\left(s_{\max }\right)\right)=: \chi_{\max }
$$

[^9]for all $s \in[F(c), F(b)]$. Moreover, if (A2) holds,
\[

$$
\begin{aligned}
& f_{1} \cdot 1_{[a, c]}, \ldots, f_{d} \cdot 1_{[a, c]} \text { are 1.i. in } L_{2}(F) \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \cdot 1_{[a, c]}\right)^{2} \mathrm{~d} \mu_{F}>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \cdot 1_{(a, c]}\right)^{2} \mathrm{~d} \mu_{F}+\left(\sum_{i=1}^{d} \alpha_{i} f_{i}(a)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \stackrel{(74)}{\Leftrightarrow} \quad \int_{(F(a), F(c))}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ\left(F^{-}\right)_{\mid(0,1)}\right)^{2} \mathrm{~d} \lambda+\left(\sum_{i=1}^{d} \alpha_{i} f_{i}(a)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{(F(a), F(c))}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ\left(F^{-}\right)_{\mid(0,1)}\right)^{2} \mathrm{~d} \lambda+\int_{(0, F(a))}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ\left(F^{-}\right)_{\mid(0,1)}\right)^{2} \mathrm{~d} \lambda>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{(0, F(c))}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ\left(F^{-}\right)_{\mid(0,1)}\right)^{2} \mathrm{~d} \lambda>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\}
\end{aligned}
$$
\]

If (A1) holds, one can omit the additional summand $\left(\sum_{i=1}^{d} \alpha_{i} f_{i}(a)\right)^{2} \cdot F(a)$ in the above equivalence sequence and the chain shortens accordingly, but one comes to the same conclusion $\int_{(0, s)}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ\left(F^{-}\right)_{\mid(0,1)}\right)^{2} \mathrm{~d} \lambda>0$ for all $\alpha \in \mathbb{R}^{d} \backslash\{0\}$ and all $s \in[F(c), F(b)]$.
Since $\alpha^{\top} H(s) \alpha=\sum_{i, j=1}^{d} \int_{(0, s)}\left(\alpha_{i} \alpha_{j} f_{i} f_{j}\right) \circ\left(F^{-}\right)_{\mid(0,1)} \mathrm{d} \lambda=\int_{(0, s)}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ\left(F^{-}\right)_{\mid(0,1)}\right)^{2} \mathrm{~d} \lambda$, $H(s)$ is positive definite for each $s \in[F(c), F(b)]$ and $\chi_{\text {min }}\left(H\left(s_{\text {min }}\right)\right)>0$. Thus (77).

Proof of Lemma 74 from page 37:

$g\left(F_{n}^{-}(s)\right) \xrightarrow{n \rightarrow \infty} g\left(F^{-}(s)\right)$, for $\lambda-$ a.a. $s \in[0,1]$, since Lemma 62 and g is continuous λ a.e. F_{n}^{-}, F^{-}and g are λ-measurable, since they are λ-a.e. continuous. Thus, it follows by Egorov's theorem, cf. Kallenberg (2002), Lemma 1.36 or Bauer (2001), §20, exercise 7.

Proof of Lemma 75 from page 37:

Let $1 \leq i, j \leq d$, and $\varepsilon>0$. Note that $f_{i} f_{j}$ is of bounded variation, since both f_{i} and f_{j} are (this follows from Lemma 65.4). By Lemma 74 it holds true

$$
\begin{aligned}
\exists K_{\varepsilon}= & K_{\varepsilon}^{(i, j)} \subseteq(0,1) \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: \\
& \lambda\left(K_{\varepsilon}\right)>1-\varepsilon \text { and } \sup _{s \in K_{\varepsilon}}\left|f_{i}\left(F_{n}^{-}(s)\right) f_{j}\left(F_{n}^{-}(s)\right)-f_{i}\left(F^{-}(s)\right) f_{j}\left(F^{-}(s)\right)\right| \leq \varepsilon .
\end{aligned}
$$

Moreover, let $m_{i, j}:=\sup _{t \in[a, b]}\left|f_{i}(t) f_{j}(t)\right|$ and $n_{1}>\max \left(n_{0}, \frac{K+1}{F(c)}, \frac{K+1}{\varepsilon}\right)$. Thus $\frac{K}{n} \leq t-\frac{\lfloor t n\rfloor-K}{n} \leq$ $\frac{K+1}{n}$ for all $n \geq n_{1}$ and for all $n \geq n_{1}$

$$
\begin{align*}
& =\left|\int_{(0, t)}\left(f_{i} f_{j}\right) \circ\left(F^{-}\right)_{\mid(0,1)} \mathrm{d} \lambda-\int_{\left(0, \frac{\lfloor t n\rfloor-K}{n}\right)}\left(f_{i} f_{j}\right) \circ F_{n}^{-} \mathrm{d} \lambda\right| \\
& \leq\left|\int_{\left(0, \frac{\lfloor t n\rfloor-K}{n}\right)}\left(f_{i} f_{j}\right) \circ\left(F^{-}\right)_{\mid(0,1)} \mathrm{d} \lambda-\int_{\left(0, \frac{\lfloor t n\rfloor-K}{n}\right)}\left(f_{i} f_{j}\right) \circ F_{n}^{-} \mathrm{d} \lambda\right|+\left(t-\frac{\lfloor t n\rfloor-K}{n}\right) \cdot m_{i, j} \\
& \leq\left|\int_{\left(0, \frac{\lfloor t n\rfloor-K}{n}\right)}\right|\left(f_{i} f_{j}\right) \circ\left(F^{-}\right)_{\mid(0,1)}-\left(f_{i} f_{j}\right) \circ F_{n}^{-}|\mathrm{d} \lambda|+\varepsilon \cdot m_{i, j} \\
& \leq \int_{(0,1)}\left|\left(f_{i} f_{j}\right) \circ\left(F^{-}\right)_{\mid(0,1)}-\left(f_{i} f_{j}\right) \circ F_{n}^{-}\right| \mathrm{d} \lambda+\varepsilon \cdot m_{i, j} \\
& \leq \lambda\left(K_{\varepsilon}\right) \cdot \varepsilon+2 \lambda\left(K_{\varepsilon}^{C}\right) \cdot m_{i, j}+\varepsilon \cdot m_{i, j} \leq \varepsilon\left(1+3 m_{i, j}\right) \tag{122}
\end{align*}
$$

follows (note that all integrals are well defined). So, we have

$$
\begin{equation*}
\sup _{t \in(0,1)}\left|\frac{1}{n} \sum_{k=1}^{\lfloor t n\rfloor-K} f_{i}\left(t_{n, k}\right) f_{j}\left(t_{n, k}\right)-H_{i, j}(t)\right| \rightarrow 0, H_{i, j}(t):=\int_{(0, t)}\left(f_{i} f_{j}\right) \circ\left(F^{-}\right)_{\mid(0,1)} \mathrm{d} \lambda \tag{123}
\end{equation*}
$$

for all $1 \leq i, j \leq d$, since $\frac{1}{n} \sum_{k=1}^{\lfloor t n\rfloor-K} f_{i}\left(t_{n, k}\right) f_{j}\left(t_{n, k}\right)=\int_{\left[0, \frac{\lfloor t n\rfloor-K}{n}\right]}\left(f_{i} f_{j}\right) \circ F_{n}^{-} \mathrm{d} \lambda$. Thus $\forall \varepsilon>$ $0 \exists n_{1} \in \mathbb{N} \forall n \geq n_{1} \forall t \in(0,1):-\varepsilon \mathbf{1}_{d} \mathbf{1}_{d}^{\top} \leq \frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}-H(t) \leq \varepsilon \mathbf{1}_{d} \mathbf{1}_{d}^{\top}$, where $\mathbf{1}_{d}=$ $(1, \ldots, 1)^{\top}, H(t)=\left(H_{i, j}(t)\right)_{i, j=1}^{d}$ and " \leq " holds componentwise. Let $\zeta_{n}(t)$ be a normalized eigenvector belonging to the smallest eigenvalue of $\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}$. Then $\forall \varepsilon>0 \exists n_{1} \in$ $\mathbb{N} \forall n \geq n_{1} \forall t \in[F(c), F(b)): \quad\left(A \leq B\right.$ componentwise, implies $\left.x^{\top} A x \leq x^{\top} B x\right)$

$$
\begin{align*}
& -\varepsilon\left(\mathbf{1}_{d}^{\top} \zeta_{n}(t)\right)^{\top}\left(\mathbf{1}_{d}^{\top} \zeta_{n}(t)\right) \leq \chi_{\min }\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right)-\zeta_{n}(t)^{\top} H(t) \zeta_{n}(t) \\
\Rightarrow & -\varepsilon d+\zeta_{n}(t)^{\top} H(t) \zeta_{n}(t) \stackrel{(1)}{\leq}-\varepsilon\left(\sum_{i}\left(\zeta_{n}(t)\right)_{i}\right)^{2}+\zeta_{n}(t)^{\top} H(t) \zeta_{n}(t) \leq \chi_{\min }\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right) \\
\Rightarrow & -\varepsilon d+\chi_{\min } \stackrel{(2)}{\leq}-\varepsilon d+\zeta_{n}(t)^{\top} H(t) \zeta_{n}(t) \leq \chi_{\min }\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right), \tag{124}
\end{align*}
$$

where $\chi_{\text {min }}$ is defined in Lemma 73 and in (1) we used $\left|1_{d}^{\top} \cdot x\right|^{2} \leq\left\|1_{d}\right\|^{2} \cdot\|x\|^{2}$ and in (2) we used the following argumentation: Let $\lambda_{1} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of $H(t)$ and $\left\{x_{1}, \ldots, x_{d}\right\}$ an orthonormal basis of corresponding eigenvectors. Let $x=\sum \alpha_{i} x_{i}$ with $|x|=1$. Then
$x^{\top} H(t) x=\left(\sum \alpha_{i} x_{i}\right)^{\top} H(t)\left(\sum \alpha_{i} x_{i}\right)=\left(\sum \alpha_{i} x_{i}\right)^{\top}\left(\sum \alpha_{i} \lambda_{i} x_{i}\right)=\sum \alpha_{i}^{2} \lambda_{i} \geq \lambda_{1} \sum \alpha_{i}^{2}=\lambda_{1} x^{\top} x=\lambda_{1}$.
The assertion for $\chi_{\min }\left(\frac{1}{n} X_{n,|t n|-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right)$ thus follows from (124), since $\varepsilon>0$ is arbitrarily small. The result for $\chi_{\max }\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}\right)$ can be shown analogously.

Proof of Lemma 77 from page 37:

(78) follows from (123). For the proof of (79) let $V:=\mathrm{GL}(d, \mathbb{R}):=\left\{M \in \mathbb{R}^{d^{2}} \mid \operatorname{det}(M) \neq 0\right\}$. V is open in $\mathbb{R}^{d^{2}}$. Let $i: V \rightarrow V, i(M):=M^{-1}$. Since det $: \mathbb{R}^{d^{2}} \rightarrow \mathbb{R}$ is continuous and $M^{-1}=$
$\frac{1}{\operatorname{det}(M)} \operatorname{Adj}(M)$ holds, i is continuous. Let A_{n}, B be defined by $A_{n}(t):=\frac{1}{n} X_{n,\lfloor t n\rfloor-K}^{\top} X_{n,\lfloor t n\rfloor-K}$ and $B(t):=\int_{[0, t]}\left(f f^{\top}\right) \circ F^{-} \mathrm{d} \lambda$ for $t \in[F(c), 1]$. Obviously B is continuous, $W:=B([F(c), 1]) \subseteq V$, since $\alpha^{\top}\left(\int_{0}^{t}\left(f f^{\top}\right) \circ F^{-} \mathrm{d} \lambda\right) \alpha=\int_{0}^{t}\left(\sum_{i, j=1}^{d} \alpha_{i} \alpha_{j}\left(f_{i} f_{j}\right) \circ F^{-}\right) \mathrm{d} \lambda=\int_{0}^{t}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ F^{-}\right)^{2} \mathrm{~d} \lambda \geq$ $\int_{F(a)}^{F(c)}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \circ F^{-}\right)^{2} \mathrm{~d} \lambda=\int_{a}^{c}\left(\sum_{i=1}^{d} \alpha_{i} f_{i}\right)^{2} \mathrm{~d} F>0$ for all $t \geq F(c), \alpha \in \mathbb{R}^{d} \backslash\{0\}$ and W is compact in V (and compact in $R^{d^{2}}$). For any $t \in[F(c), 1]$, let $\varepsilon_{t}>0$ with $K\left(B(t), 2 \varepsilon_{t}\right) \subseteq V$, where $K(M, r):=\left\{M^{\prime} \in \mathbb{R}^{d^{2}} \mid\left\|M-M^{\prime}\right\|<r\right\}$. Since W is compact, there exists t_{1}, \ldots, t_{r} with $W \subseteq \bigcup_{k=1}^{r} K\left(B\left(t_{k}\right), \frac{\varepsilon_{t_{k}}}{2}\right)$. Hence $W \subseteq \bigcup_{k=1}^{r} K\left(B\left(t_{k}\right), \frac{\varepsilon_{t_{k}}}{2}\right) \subseteq \bigcup_{k=1}^{r} K\left(B\left(t_{k}\right), \varepsilon_{t_{k}}\right)=: P \subseteq \bar{P} \subseteq$ $\bigcup_{k=1}^{r} K\left(B\left(t_{k}\right), 2 \varepsilon_{t_{k}}\right) \subseteq V$. Since \bar{P} is closed and bounded, \bar{P} is also compact. Consequently, $i: \bar{P} \rightarrow V$ is uniformly continuous (Heine-Cantor theorem). Let $\varepsilon>0$ be arbitrary. Then there is $\delta>0$ with $\delta<\min \left\{\varepsilon_{t_{k}} / 2 \mid 1 \leq k \leq r\right\}$ such that $\left\|M_{1}-M_{2}\right\|<\delta \Rightarrow\left\|i\left(M_{1}\right)-i\left(M_{2}\right)\right\|<\varepsilon$ holds for all $M_{1}, M_{2} \in \bar{P}$. By (78) $\exists n_{0} \in \mathbb{N} \forall n \geq n_{0} \forall t \in[F(c), 1]:\left\|A_{n}(t)-B(t)\right\|<\delta$. Thus $A_{n}(t) \in \bar{P}$ follows for any $n \geq n_{0}$ and $t \in[F(c), 1]$ and hence also $\left\|i\left(A_{n}(t)\right)-i(B(t))\right\|<\varepsilon$. Since $\varepsilon>0$ was arbitrary, $\sup _{t \in[F(c), 1]}\left\|i\left(A_{n}(t)\right)-i(B(t))\right\| \xrightarrow{n \rightarrow \infty} 0$ follows.

Proof of Lemma 78 from page 37:

$$
\begin{aligned}
0 \leq\left\|a_{n,\lfloor t n\rfloor-K}\right\|^{2} & =\frac{1}{n} f\left(t_{n,\lfloor t n\rfloor-K}\right)^{\top}\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-1-K}^{\top} X_{n,\lfloor t n\rfloor-1-K}\right)^{-1} f\left(t_{n,\lfloor t n\rfloor-K}\right) \\
& \leq \frac{1}{n} \cdot \frac{\left\|f\left(t_{n,\lfloor t n\rfloor-K}\right)\right\|^{2}}{\chi_{\min }(n, t)} \leq \frac{1}{n} \cdot \frac{\sum_{i=1}^{d} \max _{t \in[0,1]} f_{i}(t)^{2}}{\chi_{\min }},
\end{aligned}
$$

where $\chi_{\min }(n, t)=\chi_{\min }\left(\left(\frac{1}{n} X_{n,\lfloor t n\rfloor-1-K}^{\top} X_{n,\lfloor t n\rfloor-1-K}\right), \chi_{\text {min }}\right.$ is defined in Lemma 75 and the last inequality holds true by Lemma 75 . Thus the assertion follows.

Proof of Theorem 79 from page 38:

We divide the proof into two steps. For the proof note that all integrals are Lebesgue-Stieltjes ones, except those denoted by $\int{ }^{(R)}$ which are obtained as the limit of Riemann-Stieltjes sums. Note that $a \leq \inf (\operatorname{support}(F))$, since $\left(t_{n, 1}, \ldots, t_{n, n}\right)$ is an asymptotic F-design.

Step 1, all f_{i} are assumed to be continuous. Let $\xi_{n-d}:=M_{n, n}^{\top} \circ V_{n}(u) \in \mathbb{R}^{n-d}$. Thus for $x \geq \delta$, $\phi_{n}(u)(x)=T_{n-d} \circ g\left(M_{n, n}^{\top} \circ V_{n}(u)\right)(x)=T_{n-d} \circ g\left(\xi_{n-d}\right)(x)$
$=T_{n-d} \circ g\left(\left(\frac{1}{\sqrt{1+\left\|a_{n, d+i}\right\|^{2}}}\left[u\left(\frac{d+i}{n}\right)-u\left(\frac{d+i-1}{n}\right)-a_{n, d+i}^{\top}\left(\begin{array}{c}u\left(\frac{1}{n}\right)-u(0) \\ \vdots \\ u\left(\frac{d+i-1}{n}\right)-u\left(\frac{d+i-2}{n}\right)\end{array}\right)\right]\right)_{i=1}^{n-d}\right)$
$=\underbrace{((n-d) x-\lfloor(n-d) x\rfloor) \cdot\left(\xi_{n-d}\right)_{\lfloor(n-d) x\rfloor+1}}_{=: z}+\sum_{i=\lfloor(n-d) \delta\rfloor+1}^{\lfloor(n-d) x\rfloor}\left(\xi_{n-d}\right)_{i}$
$=z+\sum_{i=i_{0}}^{i_{1}} \frac{1}{\sqrt{c_{n, d+i}}}\left[u\left(\frac{d+i}{n}\right)-u\left(\frac{d+i-1}{n}\right)\right]$
$-\sum_{i=i_{0}}^{i_{1}} \frac{1}{\sqrt{c_{n, d+i}}}\left[f\left(t_{n, d+i}\right)^{\top}\left(X_{n, d+i-1}^{\top} X_{n, d+i-1}\right)^{-1} X_{n, d+i-1}^{\top} \cdot\left(\begin{array}{c}u(1 / n)-u(0) \\ \vdots \\ u\left(\frac{d+i-1}{n}\right)-u\left(\frac{d+i-2}{n}\right)\end{array}\right)\right]$

$$
\begin{aligned}
& \text { (with } \left.c_{n, d+i}:=1+\left\|a_{n, d+i}\right\|^{2}, i_{0}:=\lfloor(n-d) \delta\rfloor+1 \text { and } i_{1}:=\lfloor(n-d) x\rfloor\right) \\
& =z-\sum_{i=i_{0}}^{i_{1}-1}\left[\frac{1}{\sqrt{c_{n, d+i+1}}}-\frac{1}{\sqrt{c_{n, d+i}}}\right] u\left(\frac{d+i}{n}\right)+\frac{u\left(\frac{d+i_{1}}{n}\right)}{\sqrt{c_{n, d+i_{1}}}}-\frac{u\left(\frac{d+i_{0}-1}{n}\right)}{\sqrt{c_{n, d+i_{0}}}} \\
& +\sum_{i=i_{0}}^{i_{1}} \frac{1}{n} \cdot \frac{1}{\sqrt{c_{n, d+i}}} f\left(t_{n, d+i}\right)^{\top}\left(\frac{1}{n} X_{n, d+i-1}^{\top} X_{n, d+i-1}\right)^{-1}\left[\left(\Delta X_{n, d+i-1}\right)^{\top} \cdot\left(\begin{array}{c}
u(1 / n) \\
\vdots \\
u\left(\frac{d+i-2}{n}\right)
\end{array}\right)+z_{i}^{*}\right] \\
& \left(\begin{array}{cc}
\text { where } & \left(\Delta X_{n, d+i-1}\right)^{\top}:=\left(\begin{array}{ccc}
f_{1}\left(t_{n, 2}\right)-f_{1}\left(t_{n, 1}\right) & \ldots & f_{1}\left(t_{n, d+i-1}\right)-f_{1}\left(t_{n, d+i-2}\right) \\
\vdots & \ddots & \vdots \\
f_{d}\left(t_{n, 2}\right)-f_{d}\left(t_{n, 1}\right) & \ldots & f_{d}\left(t_{n, d+i-1}\right)-f_{d}\left(t_{n, d+i-2}\right)
\end{array}\right) \in \mathbb{R}^{d \times(d+i-2)} \\
\text { and } & z_{i}^{*}:=f\left(t_{n, 1}\right) u(0)-f\left(t_{n, d+i-1}\right) u\left(\frac{d+i-1}{n}\right)
\end{array}\right) \\
& =z-\int_{[\delta, 1]} u(t) \mathrm{d} G_{n}+\frac{u\left(\frac{d+i_{1}}{n}\right)}{\sqrt{c_{n, d+i_{1}}}}-\frac{u\left(\frac{d+i_{0}-1}{n}\right)}{\sqrt{c_{n, d+i_{0}}}}+\int_{\frac{d+i_{0}-1}{n}}^{\frac{d+i_{1}}{n}} \Theta_{n}(t) \mathrm{d} t \\
& \xrightarrow{n \rightarrow \infty} 0-0+u(x)-u(\delta)+\int_{\delta}^{x} \Theta(t) \mathrm{d} t,
\end{aligned}
$$

by Lebesgue's dominated convergence theorem, since $\Theta_{n}(t) \rightarrow \Theta(t)$ holds for all t outside a Lebesgue null set. Below follow the details of the last two steps.

- $z=\frac{(n-d) x-k+1}{\sqrt{1+\left\|a_{n, d+k}\right\|^{2}}}\left[u\left(\frac{d+k}{n}\right)-u\left(\frac{d+k-1}{n}\right)+\frac{1}{n} \cdot A(n, x)\right] \quad$ with $k:=\lfloor(n-d) x\rfloor+1$ and
$A(n, x):=-n \cdot a_{n, d+k}^{\top}\left(\begin{array}{c}u\left(\frac{1}{n}\right)-u(0) \\ \vdots \\ u\left(\frac{d+k-1}{n}\right)-u\left(\frac{d+k-2}{n}\right)\end{array}\right)$
$=f\left(t_{n, d+k}\right)^{\top}\left(\frac{1}{n} X_{n, d+k-1}^{\top} X_{n, d+k-1}\right)^{-1}\left[\left(\Delta X_{n, d+k-1}\right)^{\top}\left(\begin{array}{c}u(1 / n) \\ \vdots \\ u\left(\frac{d+k-2}{n}\right)\end{array}\right)+f\left(t_{n, 1}\right) u(0)-f\left(t_{n, d+k-1}\right) u\left(\frac{d+k-1}{n}\right)\right]$.
By Lemmas 75 and 78 and since all f_{k} are continuous and of bounded variation there is $s \in \mathbb{R}$ with

$$
\begin{aligned}
|A(n, x)| \leq \sup |f| \cdot & \cdot\left\|\left(\frac{1}{n} X_{n, d+k-1}^{\top} X_{n, d+k-1}\right)^{-1}\right\|_{2} \\
\cdot & \cdot\left[\left(\sum_{k=1}^{d} \sum_{j=2}^{d+k-1}\left|f_{k}\left(t_{n, j}\right)-f_{k}\left(t_{n, j-1}\right)\right|\right) \cdot \sup |u|+2 \sup |f| \cdot \sup |u|\right] \leq s
\end{aligned}
$$

for all x and all sufficiently large n (note of course that u is also continuous). Thus $z \xrightarrow{n \rightarrow \infty} 0$.

- $\int_{[\delta, 1]} u(t) \mathrm{d} G_{n}=\sum_{i=i_{0}}^{i_{1}-1}\left[\frac{1}{\sqrt{c_{n, d t i+1}}}-\frac{1}{\sqrt{c_{n, d+i}}}\right] u\left(\frac{d+i}{n}\right)$, where the discrete signed measure G_{n} is given by the
measure generating function $g_{n}:[\delta, 1] \rightarrow \mathbb{R}$, defined by $g_{n}(t):= \begin{cases}\frac{1}{\sqrt{c_{n, d+i_{0}}}} & \text { for } t \in\left[\delta, \frac{d+i_{0}}{n}\right) \\ \frac{1}{\sqrt{c_{n}, 1 m b+1}} & \text { for } t \in\left[\frac{d+i_{0}}{n}, \frac{d+i_{1}}{n}\right] \\ \frac{\sqrt{c_{n, d+}}}{} & \text { for } t \in\left(\frac{d+i_{1}}{n}, 1\right]\end{cases}$
Note that $\delta<\frac{d+i_{0}}{n}$ and g_{n} is a step function and thus of bounded variation. Since $g_{n}(t)$ converges to 1 uniformly for all $t \in[\delta, 1]$ and $x \in[0,1]$ by Lemma 78, G_{n} converges weakly to the zero-measure (i.e. the measure given by the measure generating function $1_{[\delta, 1]}$, see Bogachev (2018), Theorem 1.4.7) thus $\int_{[\delta, 1]} u(t) \mathrm{d} G_{n} \xrightarrow{n \rightarrow \infty} 0$ independently of x.
- $\Theta_{n}(t):=\frac{f\left(t_{n},[n]+1\right)^{\top}}{\sqrt{[n,\lfloor t n\rfloor+1}}\left(\frac{1}{n} X_{n,\lfloor t n\rfloor}^{\top} X_{n,\lfloor t n\rfloor}\right)^{-1} \cdot\left[\left(\Delta X_{n,\lfloor n t]}\right)^{\top} \cdot\left(\begin{array}{c}u(1 / n) \\ \vdots \\ u\left(\frac{\lfloor t n\rfloor-1}{n}\right)\end{array}\right)+f\left(t_{n, 1}\right) u(0)-f\left(t_{n,\lfloor n\rfloor\rfloor}\right) u\left(\frac{\lfloor t n\rfloor}{n}\right)\right]$
for $t \in\left[\frac{d+i_{0}-1}{n}, \frac{d+i_{1}}{n}\right)$ and $\Theta_{n}(t):=0$ for $t \in[0,1] \backslash\left[\frac{d+i_{0}-1}{n}, \frac{d+i_{1}}{n}\right)$. Because of Lemmas 75 and 78 and because all f_{k} are bounded and of bounded variation and

$$
\begin{aligned}
\left|\Theta_{n}(t)\right| \leq\left|\frac{1}{\sqrt{c_{n,\lfloor t n\rfloor+1}}}\right| \cdot \sup |f| \cdot & \left\|\left(\frac{1}{n} X_{n,\lfloor t n\rfloor}^{\top} X_{n,\lfloor t n\rfloor}\right)^{-1}\right\|_{2} \\
\cdot & {\left[\left(\sum_{k=1}^{d} \sum_{j=2}^{\lfloor t n\rfloor}\left|f_{k}\left(t_{n, j}\right)-f_{k}\left(t_{n, j-1}\right)\right|\right) \cdot \sup |u|+2 \sup |f| \cdot \sup |u|\right] }
\end{aligned}
$$

for all $t \in\left[\frac{d+i_{0}-1}{n}, \frac{d+i_{1}}{n}\right)$, there is $s \in \mathbb{R}$ with $\left|\Theta_{n}(t)\right| \leq s$ for all $t \in[0,1]$. Furthermore

$$
\Theta_{n}(t) \xrightarrow{n \rightarrow \infty} \Theta(t):=f(h(t))^{\top}\left(\int_{[0, t]}\left(f f^{\top}\right) \circ h \mathrm{~d} \lambda\right)^{-1}\left[\int_{[a, h(t)]}^{(R)}(u \circ F) \mathrm{d} f+f(h(0)) u(0)-f(h(t)) u(t)\right]
$$

holds for all $t \in[\delta, 1]$ where $h:=F^{-}$is continuous (by Lemma 77 and Lemma 72). Also in this case the convergence is independent of x, in the sense that

$$
\begin{equation*}
\sup _{x \in[\delta, 1]}\left|\int_{\frac{d+i_{0}-1}{n}}^{\frac{d+i_{1}}{n}} \Theta_{n}(t) \mathrm{d} t-\int_{\delta}^{x} \Theta(t) \mathrm{d} t\right| \xrightarrow{n \rightarrow \infty} 0 \tag{125}
\end{equation*}
$$

holds. To any $\varepsilon>0$, according to Egorov's theorem, there exists an $A_{\varepsilon} \subseteq[\boldsymbol{\delta}, 1]$ with $\sup _{t \in A_{\varepsilon}} \mid \Theta_{n}(t)-$ $\Theta(t) \mid \xrightarrow{n \rightarrow \infty} 0$ and $\lambda\left([\delta, 1] \backslash A_{\varepsilon}\right)<\varepsilon$. To show (125), we now proceed in the same way as for (122).
Hence $\sup \left|\phi(u)(x)-\phi_{n}(u)(x)\right| \xrightarrow{n \rightarrow \infty} 0$ holds true. Note that ϕ and ϕ_{n} are linear and $\|\phi\|<$ $x \in[\delta, 1]$
∞. Thus we conclude $\left\|\phi(u)-\phi_{n}\left(u_{n}\right)\right\| \leq\left\|\phi(u)-\phi_{n}(u)\right\|+\left\|\phi_{n}\right\| \cdot\left\|u-u_{n}\right\| \xrightarrow{n \rightarrow \infty} 0$ and the assertions of the Theorem are proved in case of step 1.
Step 2, the regression functions are left continuous. Let $\alpha:[0,1] \rightarrow[a, b], \alpha(x):=(b-a) x+a$. By Lemma 67 there exists continuous $\tilde{g}_{i}:[0,1] \rightarrow \mathbb{R}, i \in J$, all of bounded variation and a continuous distribution function $\tilde{F}:[0,1] \rightarrow[0,1]$ such that $f_{i} \circ \alpha=\tilde{g}_{i} \circ \tilde{F}^{-}$for all $i \in J$ and $\tilde{F}(0)=0, \tilde{F}(1)=1$. Thus we conclude with $\beta:[a, b] \rightarrow[0,1], \beta(x):=\frac{x-a}{b-a}$ and by means of Theorem 57.10 (note $\alpha^{-1}=\alpha^{-}, \beta^{-1}=\beta^{-}$and $\beta=\alpha^{-1}$),

$$
f_{i}=\tilde{g}_{i} \circ \tilde{F}^{-} \circ \alpha^{-1}=\tilde{g}_{i} \circ \beta \circ \beta^{-1} \circ \tilde{F}^{-} \circ \alpha^{-1}=\left(\tilde{g}_{i} \circ \beta\right) \circ(\alpha \circ \tilde{F} \circ \beta)^{-}=g_{i} \circ G_{0}^{-},
$$

where $g_{i}:=\tilde{g}_{i} \circ \beta:[a, b] \rightarrow \mathbb{R}, i \in J$ are continuous and of bounded variation and $G_{0}:=\alpha \circ \tilde{F} \circ$ $\beta:[a, b] \rightarrow[a, b]$ is non-decreasing and continuous (note that $G_{0}(a)=a$ and $\left.G_{0}(b)=b\right)$. We define $G: \mathbb{R} \rightarrow[a, b]$ by $G(x):=G_{0}(x)$ for $x \in[a, b], G(x):=G(a)$ for $x<a$ and $G(x)=G(b)$ for $x>b$. Since all f_{i} are continuous in $a, f_{i} \circ \alpha$ is continuous in 0 and therefore $\tilde{F}(t)>0$ for all $t \in(0,1]$ and $\tilde{F}(t)<1$ for all $t \in[0,1)$ by Lemma 67. Thus, by definition of G,

$$
\begin{equation*}
G(t)>a \text { for all } t>a \text { and } G(t)<b \text { for all } t<b . \tag{126}
\end{equation*}
$$

Due to $f_{k}\left(t_{n, i}\right)=g_{k}\left(G_{0}^{-}\left(t_{n, i}\right)\right)$ for all $i \in\{1, \ldots, d\}$, we consider the design $\left(s_{n, 1}, \ldots, s_{n, n}\right)$ in $[a, b]$, where $s_{n, i}:=G_{0}^{-}\left(t_{n, i}\right)$. Next, we prove that $\left(s_{n, 1}, \ldots, s_{n, n}\right)$ is an asymptotic H-design, where $H:=F \circ G$. Let $H_{n}: \mathbb{R} \rightarrow[0,1]$ be the empirical distribution function corresponding to $\left(s_{n, 1}, \ldots, s_{n, n}\right)$ with $H_{n}(s)=0$ for all $s<a$ and $H_{n}(s)=1$ for all $s \geq b$ and let F_{n} be the empirical distribution function corresponding to ($t_{n, 1}, \ldots, t_{n, n}$), both according to (26). Then $H_{n}(s)=F_{n}(G(s))$ holds for all $s \in[a, b]$, because for all $s \in[a, b]$ and all $t_{n, i}, G_{0}^{-}\left(t_{n, i}\right) \leq s \Leftrightarrow$ $t_{n, i} \leq G(s)$ holds. Thus it follows

$$
\begin{equation*}
\sup _{s \in[a, b]}\left|H_{n}(s)-H(s)\right|=\sup _{s \in[a, b]}\left|F_{n}(G(s))-F(G(s))\right| \xrightarrow{n \rightarrow \infty} 0, \tag{127}
\end{equation*}
$$

because $\left(t_{n, 1}, \ldots, t_{n, n}\right)$ is an asymptotic F-design by assumption and the assertion is proven. To apply the previously proved step 1 , it remains to show the linear independence of $g_{i} \cdot 1_{\left[a, c^{\prime}\right]}, i \in$ $\{1, \ldots, d\}$ in $L_{2}([a, b], F \circ G)$ for some $c^{\prime}>a$. Let $c^{\prime}:=G_{0}^{-}(c)$. Note that $a \leq \inf (\operatorname{support}(F))$.

$$
\begin{aligned}
& g_{1} \cdot 1_{\left[a, c^{\prime}\right]}, \ldots, g_{d} \cdot 1_{\left[a, c^{\prime}\right]} \text { are 1.i. in } L_{2}([a, b], F \circ G) \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \cdot 1_{\left[a, c^{\prime}\right]}\right)^{2} \mathrm{~d} \mu_{F \circ G}>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \cdot 1_{\left(a, c^{\prime}\right]}\right)^{2} \mathrm{~d} \mu_{F \circ G}+\left(\sum_{i=1}^{d} \alpha_{i} g_{i}(a)\right)^{2} \cdot F(G(a))>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \stackrel{(73)}{\Leftrightarrow} \int_{\left[F(G(a)), F\left(G\left(c^{\prime}\right)\right)\right]}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \circ(F \circ G)_{0}^{-}\right)^{2} \mathrm{~d} \lambda+\left(\sum_{i=1}^{d} \alpha_{i} g_{i}\left(G_{0}^{-}(a)\right)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{\left[F(a), F\left(G\left(c^{\prime}\right)\right)\right]}\left(\sum_{i=1}^{d} \alpha_{i} g_{i} \circ G_{0}^{-} \circ F_{0}^{-}\right)^{2} \mathrm{~d} \lambda+\left(\sum_{i=1}^{d} \alpha_{i} f_{i}(a)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \stackrel{73}{ } \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \cdot 1_{\left(a, G\left(c^{\prime}\right)\right]}\right)^{2} \mathrm{~d} \mu_{F}+\left(\sum_{i=1}^{d} \alpha_{i} f_{i}(a)\right)^{2} \cdot F(a)>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow \int_{\mathbb{R}}\left(\sum_{i=1}^{d} \alpha_{i} f_{i} \cdot 1_{\left[a, G\left(c^{\prime}\right)\right]}\right)^{2} \mathrm{~d} \mu_{F}>0, \forall \alpha \in \mathbb{R}^{d} \backslash\{0\} \\
& \Leftrightarrow f_{1} \cdot 1_{\left[a, G\left(c^{\prime}\right)\right]}, \ldots, f_{d} \cdot 1_{\left[a, G\left(c^{\prime}\right)\right]} \text { are } 1 . i . \operatorname{in} L_{2}([a, b], F),
\end{aligned}
$$

with $(F \circ G)_{0}:=(F \circ G)_{\mid[F(a), G(b)]}$ and $F_{0}:=F_{[[a, b]}$. Note that $G_{0}^{-}(a)=a$. Since $G\left(c^{\prime}\right) \geq c>a$, the last equivalence is satisfied by assumption. Now we apply the previously proven step 1 and thus immediately obtain $\phi_{n}(u) \rightarrow \phi(u)$ regarding sup-norm, where

$$
\begin{aligned}
& \phi(u)(x):=u(x)-u\left(H_{0}\left(c^{\prime}\right)\right) \\
& +\int_{H_{0}\left(c^{\prime}\right)}^{x} g\left(H_{0}^{-}(t)\right)^{\top}\left(\int_{[0, t]}\left(g g^{\top}\right) \circ H_{0}^{-} \mathrm{d} \lambda\right)^{-1}\left[\int_{\left[a, H_{0}^{-}(t)\right]}^{(R)}\left(u \circ H_{0}\right) \mathrm{d} g+g\left(H_{0}^{-}(0)\right) u(0)-g\left(H_{0}^{-}(t)\right) u(t)\right] \mathrm{d} t,
\end{aligned}
$$

with $H_{0}:=H_{[[a, b]}=F_{0} \circ G_{0}$. Finally we use $g \circ H_{0}^{-}=f \circ F_{0}^{-}, H_{0}\left(c^{\prime}\right)=F_{0}\left(G_{0}\left(G_{0}^{-}(c)\right)\right)=$ $F_{0}(c)=\delta$ (because G_{0} is continuous with $G_{0}(a)=a, G_{0}(b)=b$, thus $c \in[a, b]=G_{0}([a, b])$, cf. Lemma 57.7) and

$$
\begin{equation*}
\int_{\left[a, H_{0}^{-}(t)\right]}^{(R)}\left(u \circ H_{0}\right) \mathrm{d} g=\int_{\left(a, F_{0}^{-}(t)\right)}\left(u \circ F_{0}\right) \mathrm{d} \mu_{f}, \tag{128}
\end{equation*}
$$

where μ_{f} is the Lebesgue-Stieltjes measure generated by f. It remains to prove (128). To do so, we use the change-of-variables formula $\int_{\Omega^{\prime}} \kappa \mathrm{d} \mu^{T}=\int_{\Omega}(\kappa \circ T) \mathrm{d} \mu$ for $\kappa: \Omega^{\prime} \rightarrow \mathbb{R}$ and $T: \Omega \rightarrow \Omega^{\prime}$, see e.g. Stroock (1994), Lemma 5.0.1, where in our case $\kappa:=u \circ F_{0}$ and $T(x):=$ $G_{0}(x), x \in \Omega$ holds with $\Omega=\left(a, G_{0}^{-}\left(F_{0}^{-}(t)\right)\right)$ and $\Omega^{\prime}=\left(a, G_{0}\left(G_{0}^{-}\left(F_{0}^{-}(t)\right)\right)\right)$. First, we note
that $G_{0}\left(G_{0}^{-}\left(F_{0}^{-}(t)\right)\right)=F_{0}^{-}(t)$ holds (same argument as above with $\left.G_{0}\left(G_{0}^{-}(c)\right)=c\right)$. Next, we show that $T(\Omega)=\Omega^{\prime}$ holds. For this, let $a<x<G_{0}^{-}\left(F_{0}^{-}(t)\right)$. Then $G_{0}(x)>a$ by (126) and $G_{0}(x)<F_{0}^{-}(t)$ by Lemma 57.5. Thus $T(\Omega)=\Omega^{\prime}=\left(a, F^{-}(t)\right)$ holds. Now we show $\mu_{g}^{G_{0}}=\mu_{f}$ on $\mathscr{B}\left(\left(a, F_{0}^{-}(t)\right)\right)$. For this it is enough to show the equality on $\mathscr{E}:=\left\{E \cap\left(a, F_{0}^{-}(t)\right) \mid E \in \mathscr{E}_{0}\right\}$, where $\mathscr{E}_{0}:=\{[x, y) \mid x \leq y\}$ is a generator of $\mathscr{B}(\mathbb{R})$. Since

$$
\begin{aligned}
\mathscr{E} & \left.=\left\{[x, y) \mid a<x \leq y \leq F_{0}^{-}(t)\right\} \cup\{(a, y)\} \mid a<y \leq F_{0}^{-}(t)\right\}, \\
\mu_{g}^{G_{0}}([x, y)) & =\mu_{g}\left(G_{0}^{-1}([x, y))\right)=\mu_{g}\left(\left[G_{0}^{-}(x), G_{0}^{-}(y)\right)\right)=g\left(G_{0}^{-}(y)\right)-g\left(G_{0}^{-}(x)\right) \\
& =f\left(y^{-}\right)-f\left(x^{-}\right) \quad \quad \quad \text { since } f \text { is left continuous) } \\
& =\mu_{f}([x, y)) \quad \text { (cf. Theorem 63) }
\end{aligned}
$$

and

$$
\mu_{g}^{G_{0}}((a, y))=\lim _{n \rightarrow \infty} \mu_{g}^{G_{0}}([a+1 / n, y))=\lim _{n \rightarrow \infty} \mu_{f}([a+1 / n, y))=\mu_{f}((a, y))
$$

$\mu_{g}^{G_{0}}=\mu_{f}$ holds on $\mathscr{B}\left(\left(a, F_{0}^{-}(t)\right)\right)$. Thus

$$
\begin{aligned}
& \int_{\left[a, H_{0}^{-}(t)\right]}^{(R)}\left(u \circ H_{0}\right) \mathrm{d} g \stackrel{(*)}{=} \int_{\left(a, G_{0}^{-}\left(F_{0}^{-}(t)\right)\right)}\left(u \circ F_{0} \circ G_{0}\right) \mathrm{d} \mu_{g} \quad \text { (note that } g \text { is continuous) } \\
&=\int_{\left(a, G_{0}\left(G_{0}^{-}\left(F_{0}^{-}(t)\right)\right)\right)}\left(u \circ F_{0}\right) \mathrm{d} \mu_{g}^{G_{0}}=\int_{\left(a, F_{0}^{-}(t)\right)}\left(u \circ F_{0}\right) \mathrm{d} \mu_{f} .
\end{aligned}
$$

For $(*)$ note that the Riemann-Stieltjes integral is equal to the Lebesgue-Stieltjes integral (cf. Kirillov and Gvishiani (1982), Theorem 14, p. 29 or Stroock (1994), Theorem 5.1.2).

Part D. Appendices

1 List of figures and tables and R scripts generating them

R script to generate Figure 1 from page 10.

```
delta = 0.001
q0 = 30 # number of simulations
d = 3 # regression functions f_1, f__2, ..., f_d
# in this example f_1(t)=1, f_2(t)=t, f__3(t)=t^2 and t_ni=i/n
n = 10000 # d<n
betaH0 = c(1,1,1)
betaH1 = c(1,1,1,1)
for (q in 1:q0) {
    epsilon = c(runif(1)-0.5) # error
    for (i in 2:n) {
        epsilon = c(epsilon,runif(1)-0.5)
    }
    vHO = c((sign (1/n -0.25) +3)/4,1/n,(1/n)^2)
    XHO = rbind(vHO) # design matrix under HO
    for (i in 2:n) {
        if (i/n <= 0.5)
            vHO = c((sign(i/n -0.25)+3)/4,i/n,(i/n)^2) # v_i = (f_1(t_ni),...,f__d(t_ni))
        } else {
            vHO}=c((\operatorname{sign}(i/n -0.25)+3)/4,i/n,(i/n -3/2)^2
        }
        XHO = rbind( }\textrm{XHO},\textrm{vHO}
    }
    vH1 = c((sign (1/n -0.25) +3)/4,1/n,(1/n)^2,(1/n)^3)
    XH1 = rbind(vH1) # design matrix under H1
    for (i in 2:n) {
        if (i/n <= 0.5) {
            vHO = c((sign(i/n -0.25) +3)/4,i/n,(i/n)^2,(i/n)^3) # v_i = (f__1(t_ni),...,f_d(t_ni))
        } else {
            vHO = c((sign(i/n -0.25) +3)/4,i/n,(i/n -3/2)^2,(i/n)^3)
        }
        XHO = rbind(XHO,vHO)
    }
    YHO = XHO %*% betaHO + epsilon # observations under HO
    YH1 = XH1 %*% betaH1 + epsilon # observations under H1
    # the following function "recresid" requires R package "strucchange"
    # library(strucchange)
    rr = recresid(XH0,YH0) # B_n under H_0 resp. H_1
    z1 = NULL;
    for (i in 1:(n-d)) {
        z1[i] = i/(n-d)
    }
    z2 = NULL;
    i1 = floor((n-d)*delta)
    for (i in 1:i1) {
        z2[i] = 0
    }
    for (i in (i1+1):(n-d)) {
        z2[i] = sum(rr[i1+1:i])
    }
    z2 = 2*sqrt(3)*z2/sqrt(n-d)
```

```
plot(z1,z2,type="l",ylim =c( - 3 ,3),main = "Recursive residual partial sum
        process",xlab="t (time)")
    par(new=T)
}
# text (x=1,y=1.5,paste("n=100"))
```


R script to generate Figure 2 from page 12.

```
delta = 0.001
x = 2.573253
y = -2.573253
z = 2.8042267
numSim = 30 # number of simulations
N = 10000 # number of endpoints of the decomposition, including T
T = 1 # end point of the interval [0,T]
D = T/N # time unit (time step)
B = NULL # Initialization of the vector B
B[1]=0; B[2]=0; B[3]=0; B[4]=0; B[5]=0; B[6]=0; B[7]=0; B[8]=0; B[9]=0; B[10]=0;
for (i in 11:(N+1)) {
    B[i] = B[i-1] + rnorm(1)*sqrt(D)
}
t = seq(0,T,length=length(B))
plot(t,B,type ="l",main = "Brownian Motion",xlab="t (time)",ylim =c( -3 ,3))
for (i in 1:(numSim - 1)) {
    par(new=T)
    B = NULL; B[1]=0 # Initialization of the vector B
    for (i in 2:(N+1)) {
        B[i] = B[i-1] + rnorm(1)*sqrt(D)
    }
    plot(t,B,type ="l",ylim =c( -3 ,3))
}
abline(h=c(x,y,z,-z), col=c("green","blue","red","red"))
legend(0, 3, legend=c("+-2.8042267", "-2.573253", "2.573253"),
    col=c("red", "blue", "green"), lty=1, cex=1)
```

R script to compute the bounds in Remark 12 from page 12.

```
alpha = 0.05
z = 2.24140277
x = qnorm(p=1-alpha/2,mean=0,sd=1)
y q qnorm(p=alpha/2,mean=0,sd=1)
summe = 0
m = 10000 # summation from -m to m
for (n in (-m):m) {
    A1 = pnorm((4*n+1)*z,mean=0,sd=1)
    A2 = pnorm((4*n-1)*z,mean=0,sd=1)
    A3 = pnorm(- (4*n-3)*z,mean=0,sd=1)
    A4 = pnorm(- (4*n-1)*z,mean=0,sd=1)
    summe = summe + A1 - A2 - A3 + A4
}
x;y;1-summe
```


R script to generate Figure 3 from page 13.

See R-script from page 75 for Figure 1.

R script to generate Figure 4 from page 14.

See R-script from page 75 for Figure 1.

R script to generate Figure 5 from page 15.

```
delta = 0.001
q0 = 1 # number of sample paths
d = 1
# in this example f_1(t)=1 and t_ni=i/n
n = 10000 # d<n
betaH0 = c(0.5)
# betaH1 = c(0.5,1)
betaH1 = c(0.5,sqrt (n-d)/n)
for (q in 1:q0) {
    epsilon = c(runif(1)-0.5) # error
    for (i in 2:n) {
        epsilon = c(epsilon,runif(1)-0.5)
    }
    vHO = c(1)
    XHO = rbind(vHO) # design matrix under HO
    for (i in 2:n) {
        vHO = c(1)
        XHO = rbind(XHO,vHO)
    }
    vH1 = c(1,1/n)
    XH1 = rbind(vH1) # design matrix under H1
    for (i in 2:n) {
        vH1 = c(1,i/n) # v_i = (f_1(t_ni),...,f_d(t_ni))
        XH1 = rbind(XH1,vH1)
    }
    YHO = XHO %*% betaHO + epsilon # observations under HO
    YH1 = XH1 %*% betaH1 + epsilon # observations under H1
    # the following function "recresid" requires R package "strucchange"
    rrO = recresid(XH0,YHO) # recursive residuals under H_0
    rr1 = recresid(XH0,YH1) # recursive residuals under H_1
    z1 = NULL;
    for (i in 1:(n-d)) {
        z1[i] = i/(n-d)
    }
    z20 = NULL;
    i1 = floor((n-d)*delta)
    for (i in 1:i1) {
        z20[i] = 0
    }
    for (i in (i1+1):(n-d)) {
        z20[i] = sum(rr0[(i1+1):i])
    }
    z20 = 2*sqrt(3)*z20/sqrt(n-d)
    z21 = NULL;
    i1 = floor((n-d)*delta)
    for (i in 1:il) {
        z21[i] = 0
    }
    for (i in (i1+1):(n-d)) {
        z21[i] = sum(rr1[(i1+1):i])
    }
    z21 = 2*sqrt(3)*z21/sqrt(n-d)
    plot(z1,z21-z20,type="l",ylim =c( - 3 , 3),main = "Recursive residual partial sum
process under H0 and H1",xlab="t (time)")
    par(new=T)
    plot(z1,z20,type="l",col="blue",ylim =c( -3 ,3),xlab="t (time)")
    par(new=T)
    plot(z1,z21,type="l",col="red",ylim =c ( - , 3),xlab="t (time)")
    if (q==q0) {
        break
    }
    par(new=T)
```

```
}
N = 10000 # number of points of the decomposition, including T
T = 1 # end point of the interval [0,T]
D = T/N # time unit (time step)
shift = NULL
for (i in 1:(delta*N)) {
    shift[i] = 0
}
for (i in (delta*N+1):(N+1)) {
    shift[i] = 0.25*sqrt(12)*(((i-1)/N)^2 - delta^2)
}
for (q in 1:q0) {
    B = NULL # Initialization of the vector B
    for (i in 1:(delta*N)) {
        B[i] = 0
    }
    for (i in (delta*N+1):(N+1)) {
        B[i] = B[i-1] + rnorm(1)*sqrt(D)
    }
    t = seq(0,T,length=length(B))
    B0 = B + shift
    plot(t,B0,type ="l",col="red",main = "Brownian motion with and without trend",xlab="t
            (time)",ylim =c( - 3 , 3))
    par(new=T)
    plot(t,B,type ="l",col="blue",ylim =c ( -3 , 3),xlab="t (time)")
    par(new=T)
    plot(t,shift,type ="l",ylim =c( - 3 , 3),xlab="t (time)")
    if (q==q0) {
        break
    }
    par(new=T)
}
text(x=0.98,y=2,paste("H0/H1/difference")) # Labeling of the paths
```


R script to generate Figure 6 from page 18.

See R-script from page 77 for Figure 4, noting the following minor changes. Line 41 must be replaced by " $z_{20[\mathrm{i}]}=\operatorname{sum}(\operatorname{rro[(n-d)}:(\mathrm{n}-\mathrm{d}-\mathrm{i}+\mathrm{i} 1+1) \mathrm{f})$ ", line 50 must be replaced by " $\mathrm{z} 21[\mathrm{i}]=$ $\operatorname{sum}(\operatorname{rr1}[(\mathrm{n}-\mathrm{d}):(\mathrm{n}-\mathrm{d}-\mathrm{i}+\mathrm{i} 1+\mathrm{i})])$ " and line 72 must be replaced by "shift[i] $=0.25 * \operatorname{sqrt}(12) *((\mathrm{i}-1) / \mathrm{N}$ - delta) * $(2+$ delta - (i-1)/N)".

R script to generate Figure 7 from page 30.

```
N = 100000 # number of points of the decomposition, including T
T = 1 # end point of the interval [0,T]
D = T/N # time unit (time step)
B = NULL; B[1]=0 # Initialization of the vector B
for (i in 2:(N+1)) {
    B[i] = B[i-1] + rnorm(1)*sqrt(D)
}
t = seq(0,T,length=length(B))
plot(t,B,type ="l",main = "Brownian Motion",xlab="t (time)",ylim =c( -1 ,1))
```


Figure from page 62

Created by the author with Microsoft Paint.

2 New results

("Thesen zur Dissertation")

Unless stated otherwise, the following statements and their proofs are new and cannot be found in the literature so far

- Computation of the limit process under the null hypothesis in Theorem 10 and Theorem 21 and under a local alternative in Lemma 14, Theorem 15 and Theorem 23, where the technical basis for the computation under the null hypothesis and also under the local alternative is given in Theorem 79.
- The tests in Theorem 11, Theorem 22, and Theorem 28.
- Generalization of some classical results on weak convergence of measures to filter of measures: Lemma 38, Theorem 40, Theorem 41, Theorem 42 and Theorem 46
- Lemma 67 on the factorization of functions with existing left and right limits.
- Lemma 70 and Lemma 72 on asymptotic F-designs and Example 71 motivating the need for certain assumptions.
- Lemma 77 on the uniform convergence of certain matrices.
- In direct collaboration with Wolfgang Bischoff:

Lemma 73, Lemma 74, Lemma 75 and Lemma 78 to estimate the eigenvalues of certain matrices. The authors contribution is to adapt the original lemmas (which were communicated to the author in private correspondence) to the situation given here and modify the proofs accordingly.

- In direct collaboration with Thomas Heindl ${ }^{15}$:

Theorem 19 about the least squares residual partial sum limit process was developed jointly by Heindl and Evers.

Lemma 60.1 about the probability integral transformation was first discovered and proved by Thomas Heindl. The authors contribution is an alternative and slightly shorter proof.

Lemma 66, as a more or less direct application of the change of variable formula, seems to be known at least in a similar form in the literature, cf. e.g. Shorack (2017), Exercise 3.3 or Bogachev (2007), Example 3.6.2, but was jointly developed and proved in this concrete formulation by Heindl and Evers.
Lemma 69 on the simultaneous factorization of finitely many functions of bounded variation is also from Heindl (2022). The authors contribution consists in two improved and shortened proofs for this Lemma, both based on the measure-theoretic approach given in Heindl (2022).

[^10]
3 List of abbreviations and symbols

We follow the generally known notation as far as possible. In particular, this applies to all basic operations on sets and numbers. To accommodate the reader, some more special notations are listed below. In some cases, a reference to the first occurrence is given. In the case of symbols with multiple meanings, their meaning is always clear from the respective context.

Abbreviations:

a.a., a.e.	almost all, almost everywhere
iff	if and only if
1.i.	linear independent
r.v.	random variable
Set theory:	
$\overline{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}}$	sets of natural, integer, rational, real numbers ($0 \in \mathbb{N}$)
$\lfloor x\rfloor,\lceil x\rceil$	greatest integer less than or equal to x , least integer greater than or equal to x
$\mathbb{N}^{2} 1$	set of positiv natural numbers
$\mathscr{P}(X)$	powerset of X
$\stackrel{\bullet}{x}$	filter generated by x, cf. Definition 29
B^{A}	set of all functions $f: A \rightarrow B, A, B$ sets
id	identity function $\operatorname{id}(x)=x$
$f^{-1}(B)$	preimage or inverse image of a set B under a mapping f
$f \circ g$	composition of the mappings f and g
$f_{\mid A}$	restriction of the mapping f to $A \cap \operatorname{dom}(f)$, where $\operatorname{dom}(f)$ is the domain of f
1_{A}	indicator function, $1_{A}(x)=1$ for $x \in A$ and $1_{A}(x)=0$ for $x \notin A$
$\mathscr{F}(X), \mathscr{F}_{U}(X)$	set of all filter/ultrafilter on X
$[\alpha], \alpha \subseteq \mathscr{P}(X)$	filter generated by α, if $A_{1} \cap \ldots \cap A_{n} \neq \emptyset$ for all $A_{1}, \ldots, A_{n} \in \alpha$ $[\alpha]:=\left\{P \subseteq X \mid \exists \emptyset \neq \alpha^{\prime} \subseteq \alpha, \alpha^{\prime}:\right.$ finite, with $\left.\cap \in \alpha^{\prime} A \subseteq P\right\}$
Topology:	
$\overline{(X, \tau)}$	topological space (set X with topology τ)
$\overline{\bar{A}}, A^{\circ}, \partial A$	closure, interior and boundary of a subset A of a topological space
$d(A, B), d(x, A)$	distance from A to B with respect to some metric space $(X, d), A, B \subseteq X$, $d(A, B):=\inf \{d(a, b) \mid(a, b) \in A \times B\}$ and $d(x, A):=d(\{x\}, A)$
$K(x, \varepsilon), K_{d}(x, \varepsilon)$	open ball centered at x with radius $\varepsilon, K(x, \varepsilon)=K_{d}(x, \varepsilon)=\{y \in E \mid d(x, y)<\varepsilon)$
$\tau_{\mathbb{R}}, \tau_{\mathbb{R}^{n}}$	Topology on \mathbb{R} and \mathbb{R}^{n}, respectively, induced by Euclidean metric
$\phi \xrightarrow{\tau} a, a_{n} \xrightarrow{\tau} a$	convergence with respect to a topology τ, cf. Definition 30
$a_{n} \rightarrow a, a_{n} \xrightarrow{n \rightarrow \infty} a$	convergence of a sequence (in the given context)
$f\left(r^{-}\right), f\left(r^{+}\right)$	left and right limit $f\left(r^{-}\right)=\lim _{r_{n} \nmid r} f\left(r_{n}\right)$ and $f\left(r^{+}\right)=\lim _{r_{n}>r} f\left(r_{n}\right)$, cf. Def. 54
I^{-}, I^{+}	left resp. right endpoint of a (bounded or unbounded) interval $I \subseteq \mathbb{R}$
$C(X, Y)$	set of all continuous functions $f: X \rightarrow Y$, for topological spaces X, Y
$C[a, b]$	set of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$
$B(X, E)$	set of all bounded functions $f: X \rightarrow E, X$ set, E metric space
$B V[a, b]$	set of all functions $f:[a, b] \rightarrow \mathbb{R}$ of bounded variation
$V(f, a, b)$	variation of f on $[a, b]$, cf. Definition 64
$c(f)$	set of points of continuity of the function f
	partial sum operator, cf. Definition 3

Linear algebra:

$\overline{\mathbb{K}^{m \times n}}$
$\operatorname{ker}(\alpha)$
$\operatorname{im}(\alpha)$
$\operatorname{dim}(U)$
$\operatorname{rank}(A)$
I_{n}
A^{\top}
A^{-1}
$\operatorname{det}(A)$
U^{\perp}
$\operatorname{pr}_{U, V}$
pr_{U}
r_{n}
$M_{n, k}$
$\langle\cdot \cdot \cdot\rangle,\|\cdot\|$
$\|a\|_{2},\|A\|_{2}$
vector space of $m \times n$ matrices with entries from the field \mathbb{K}
kernel of the linear map α
image of the map α
dimension of the linear space U
rank of the matrix A
n dimensional dentity matrix $I_{n}=\left(e_{i, j}\right)_{i, j=1}^{n}, e_{i, j}=1$ if $i=j, e_{i, j}=0$ if $i \neq j$
transpose of the matrix A
inverse of the matrix A
determinant of the matrix A
orthogonal complement of a subspace U with respect to a scalar product projection on the first summand of a direct sum $\operatorname{pr}_{U, V}: U \oplus V \rightarrow U, u+v \mapsto u$ $\mathrm{pr}_{U}:=\mathrm{pr}_{U, U^{\perp}}$
$\left(r_{n, d+1}, \ldots, r_{n, n}\right)^{\top}$ vector of recursive residuals, cf. (15)
cf. (15)
general scalar product and norm on some linear space
Euclidean norm on $\mathbb{R}^{n},\|a\|_{2}=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}$ and matrix norm $\|A\|_{2}:=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}$

Measure Theory:

λ
λ

λ
μ^{f} or $f(\mu)$
$\sigma(\alpha)$
$\mathscr{B}(E)$
λ
$M(E)$
$\int_{E} f \mathrm{~d} \psi$
$\psi \xrightarrow{w} p, p_{n} \xrightarrow{w} p$
measure space (set Ω with sigma-algebra \mathscr{A} and measure μ)
image measure (also known as pushforward measure), $\mu^{f}(A):=\mu\left(f^{-1}(A)\right)$
sigma-algebra generated by α, cf. (63)
Borel sigma-algebra of E, generated by open sets in E
Lebesgue measure, unless defined otherwise
$M(E):=\{p: \mathscr{B}(E) \rightarrow \mathbb{R} \mid p$ is a finite measure $\}$, cf. p. 25
if ψ is a filter, see Definition 37 and the passage directly above it weak convergence of measures, cf. Definition 37
$\phi \xrightarrow{\mathscr{B}} X, X_{n} \xrightarrow{\mathscr{B}} X$
weak convergence of r . v. (convergence in distribution), cf. Definition 43
$B,\left(B_{t}\right)_{t \in[0,1]}$
$B^{\prime},\left(B_{t}^{\prime}\right)_{t \in[0,1]}$
X^{\bullet}
F^{-}, F^{+}
$V(f, a, b)$
$E(X)$
$\operatorname{Var}(X)$
$\operatorname{Cov}(X, Y)$
$B_{n}, B_{n, \delta}, B_{n}^{(b)}, B_{n, \delta}^{(b)}$
support (P)
$L_{2}([a, b], F)$
$\int_{I}^{(R)} f \mathrm{~d} g$

Brownian motion, cf. Definition 49
shifted Brownian motion, $B_{t}^{\prime}(\omega)=0$ for all $t \in[0, \delta)$ and $B_{t}^{\prime}(\omega)=B_{t-\delta}(\omega)$ for $t \in[\delta, 1]$, cf. Theorem 10
Definition 26
generalized inverse of monotone function, cf. Definition 56 and Remark 58
variation of f on $[a, b]$, cf. Definition 64
expected value of a random variable X
variance of a random variable X
covariance of two random variables X, Y
recursive residual partial sum process, resp. reversed residual partial sum process, cf. (21) resp. (45)
support of a measure (resp. a measure defining function), cf. Definition 6 space of square-integrable functions on $[a, b]$ with respect to the measure defining function F
integrals marked by (R) are obtained as the limit of Riemann-Stieltjes sums all other integrals are are understood as general measure integrals

Bibliography

Anderson, T.W. (1963), Asymptotic Theory for Principal Component Analysis, Ann. Math. Statist. 34 (1) 122-148Baltagi, B.H. (2011), Econometrics, Springer
Bartlett, M.S. (1951), An inverse matrix adjustment arising in discriminant analysis, Ann. Math. Statist. 22, pp. 107-111, 1951Bauer, H. (2001), Measure and Integration Theory, Walter de Gruyter
Beattie, R., Butzmann, H.-P. (2002), Convergence Structures and Applications to Functional Analysis, SpringerBhatia, R. (1997), Matrix Analysis, SpringerBillingsley, P. (1968), Convergence of probability measures, John Wiley and Sons
Billingsley, P. (1999), Convergence of probability measures, WileyBinz, E. (1975), Continuous Convergence on C(X), Springer
Bischoff, W. (1998), A functional central limit theorem for regression models, Ann. Statist., Vol. 26, No. 4, pp. 1398-1410Bischoff, W. (2014), Brownsche Bewegung und funktionale zentrale Grenzwertsätze, Lecture notes

Bischoff, W. (2016), On Designs for Recursive Least Squares Residuals to Detect Alternatives. In: Kunert J., Müller C., Atkinson A. (eds) (2016), mODa 11 - Advances in Model-Oriented Design and Analysis, Springer

Bischoff, W., Hashorva, E., Hüsler, J., Miller, F. (2005), Analysis of a changepoint regression problem in quality control by partial sums processes and Kolmogorov type tests, Metrika, 62(1), 85-98

Bischoff, W., Miller, F (2000), Asymptotically Optimal Tests and Optimal Designs for Testing the Mean in Regression Models with Applications to Change-Point Problems, Annals of the Institute of Statistical Mathematics, 52(4), 658-679

Bogachev, V.I. (2007), Measure Theory, Vol. 1 and 2, Springer
Bogachev, V.I. (2018), Weak Convergence of Measures, American Mathematical Society

Borodin, A.N., Salminen, P. (2002), Handbook of Brownian Motion - Facts and Formulae, Springer

Borovkov, A.A. (2013), Probability Theory, SpringerBourbaki, N. (1966), General Topology, Part 1 and 2, Addison-WesleyBrown, R.L., Durbin, J. and Evans, J.M. (1975), Techniques for Testing the Constancy of Regression Relationships over Time, J. Roy. Stat. Soc., Series B, Vol. 37, No. 2, pp. 149-192

Cartan, H. (1937), Theorie des Filtres, C.R. Acad. Sci. Paris 205, 595-598
Comfort, W. W., Negrepontis, S. (1974), The theory of ultrafilters, Springer
Csörgo, M., Horvath, L. (1997), Limit Theorems in Change-Point Analysis, Wiley
Daley, D.J., Vere-Jones, D. (2003), An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods, SpringerDavidson, J. (1994), Stochastic Limit Theory, Oxford University Press
Dolecki, S., Mynard, F. (2016) Convergence Foundations Of Topology, World Scientific

Eisenberg, B., Shixin, G (1983), Uniform convergence of distribution functions, Proceedings of the American Mathematical Society 88:145-146Elstrodt, J. (2018), Maß- und Integrationstheorie, Springer
Farebrother, R.W. (1978), An historical note on recursive residuals, Journal of the Royal Statistical Society B 40, pp. 373-375Hackl, P. (2012), Einführung in die Ökonometrie, Pearson StudiumHarvey, A.C. (1989), Forecasting Structural Time Series Models and the Kalman Filter, Cambridge University Press

Harville, D.A. (2008), Matrix Algebra From a Statistician's Perspective, Springer
Hart, K.P., Nagata, J., Vaughn, J.E. (Eds.) (2004), Encyclopedia of General Topology, Elsevier

Hawkins, D.M. (1980), Identification of Outliers, Chapman \& Hall
HAWKINS, D.M., OlwELL, D.H. (1998), Cumulative Sum Charts and Charting for Quality Improvement, Springer

HEindl, T. (2022), Cumulated sum processes of residuals for goodness-of-fit tests in linear regression models, Dissertation, Katholische Universität Eichstätt - Ingolstadt

Q Heinonen, J. (2001), Lectures on Analysis on Metric Spaces, Springer
Herrmann, F. (2005), Integration und Volatilitat bei Emerging Markets, Springer
HidA, T. (1980) Brownian Motion, Springer
Hindman, N., Strauss, D. (2012), Algebra in the Stone-Cech compactification, Walter de Gruyter
© Jech, T. (2003), Set Theory, Springer
Q Kallenberg, O. (2002), Foundations of Modern Probability, Springer
R Kannan, R., Krueger, C.K. (1996), Advanced Analysis - on the Real Line, Springer
Q Kennedy, P. (2008), A Guide to Econometrics, Blackwell Publishing
Q Kirillov, A.A., Gvishiani, A.D. (1982), Theorems and Problems in Functional Analysis, Springer

Klenke, A. (2020), Wahrscheinlichkeitstheorie, Springer-Verlag
Kramer, W., Sonnberger, H. (1986), The Linear Regression Model Under Test, PhysicaVerlag

Kunen, K., Vaughan, J.E. (Eds) (1984), Handbook of Set-theoretic Topology, NorthHolland

Q Lojasiewicz, S. (1988), An Introduction to the Theory of Real Functions, Wiley
Q Lundell, A.T., Weingram, S. (1969), The Topology of CW Complexes, Van Nostrand ReinholdLuschgy, H. (1991) Testing one-sided hypotheses for the mean of a gaussian process, Metrika, 38(1), 179-194MacNeill, I. (1978a), Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times, Ann. Statist. 6 (2), pp. 422-433Macneill, I. (1978b), Limit Processes for Sequences of Partial Sums of Regression Residuals, Annals of Probability, 6, No. 4, 695-698
(Mynard, F., Pearl, E. (eds.) (2009), Beyond Topology, Contemporary Mathematics, vol. 486, American Mathematical Society

Nel, L. (2016), Continuity Theory, SpringerОтто, S. (2019) Three Essays on Structural Stability of Time Series Models, Dissertation, Universität zu Köln

Partzsch, L., Schilling, R.L. (2012), Brownian Motion, Walter de Gruyter
Paulsen, V.I., Raghupathi, M. (2016), An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge University PressPlackett, R.L. (1950), Some theorems in leasts quares, Biometrika 37, pp. 149-157Ploberger, W., Krämer, W. (1990), The local power of the cusum and cusum of squares tests, Econometric Theory, 6, pp. 335-347

Preuss, G. (2002), Foundations of Topology - An Approach to Convenient Topology, Kluwer Academic Publisher

Rabovski, O. (2003), Asymptotische Tests basierend auf rekursiven Residuen von Regressionsmodellen, Diplomarbeit

R Core Team (2021), R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rubin, H. (unpublished), Topological properties of measures on topological spaces
Sen, P.K. (1982), Invariance Principles for Recursive Residuals, Ann. Stat. Vol. 10, No. 1, pp. 307-312

Sen, P.K. (1985), Theory and Applications of Sequential Nonparametrics, Society for Industrial and Applied MathematicsSakhanenko, A.,Kovalevskif, A., Shelepova, A. (2021), Remarks on invariance principle for one-parametric recursive residuals, Sib. Elektron. Mat. Izv., 18:2, 10581074

Q Shorack, G.R. (2017), Probability for Statisticians, Springer
Q Stroock, D.W. (1994), A Concise Introduction to the Theory of Integration, Birkhäuser
TaO, T. (2011), An Introduction to Measure Theory, American Mathematical Society
Q Topsoe, F. (1970), Topology and Measure, Springer
Q VAart, A.W. VAN DER (1998), Asymptotic Statistics, Cambridge University Press
Whlker, R.C. (1974), The Stone-Cech Compactification, SpringerWells, C. (1996), The Kalman Filter in Finance, Springer
Q Young, P.C. (2011), Recursive Estimation and Time-Series Analysis, Springer
Zeileis A, Leisch F, Hornik K, Kleiber C (2002), strucchange: An R Package for Testing for Structural Change in Linear Regression Models, Journal of Statistical Software, 7(2), 1-38 https://CRAN.R-project.org/package=strucchange

Zelenyuk, Y.G. (2011), Ultrafilters and Topologies on Groups, Walter de Gruyter

[^0]: ${ }^{1}$ There is a prominent example called Sorgenfrey line: (\mathbb{R}, τ), with $\tau:=\left\{\bigcup \mathscr{B}^{\prime} \mid \mathscr{B}^{\prime} \subseteq \mathscr{B}\right\}$ and $\mathscr{B}:=$ $\{[a, b) \mid a, b \in \mathbb{R}\}$, cf. Bourbaki (1966), Part 2, Ch. IX. §4 Exercise 8.
 ${ }^{2} \mathrm{~A}$ space X is called hereditarily normal iff every subspace is normal. In fact this is equivalent to the condition: for all $A, B \subseteq X$ with $\bar{A} \cap B=\emptyset=A \cap \bar{B}$ exists open and disjoint U, V with $A \subseteq U$ and $B \subseteq V$. The proof of this statement is not important for us and at the same time very simple and therefore omitted.
 ${ }^{3}$ Let X uncountable, $x \in X, \tau:=\{U \subseteq X \mid x \notin U$ or $X \backslash U$ is finite $\}$. Then (X, τ) is not perfectly normal, since $\{x\}$ is closed but not a G_{δ}-set but (X, τ) is hereditarily normal (for $\bar{A} \cap B=\emptyset=A \cap \bar{B}$ exists open and disjoint U, V with $A \subseteq U$ and $B \subseteq V$).

[^1]: ${ }^{4}$ It is interesting to ask whether the converse also holds true.
 ${ }^{5}$ For example let ψ_{0} be an ultrafilter on $(-\infty, 0]$ that does not converge in $(-\infty, 0]$. Define $\psi:=\{R \subseteq \mathbb{R} \mid \exists P \in$ ψ_{0} with $\left.P \cup[1,2] \subseteq R\right\}$. Then $\bigcap_{P \in \psi} \bar{P}=[1,2]$ and $\sup \{\inf P \mid P \in \psi\} \leq 0<1=\inf \left(\bigcap_{P \in \psi} \bar{P}\right)$.

[^2]: ${ }^{6}$ This was first proven by H. Rubin in an unpublished paper, see the discussion in the appendix of Anderson (1963) and it was brought to popularity by Billingsley (1968).

[^3]: ${ }^{7} A^{-} \in \mathbb{R}^{d \times k}$ is a generalized inverse of $A \in \mathbb{R}^{k \times d}$ if $A A^{-} A=A$ holds, which in turn is equivalent to $\forall y \in \operatorname{im}(A)$: $A\left(A^{-} y\right)=y$. One possible generalized inverse is given, for example, by the Moore-Penrose inverse.

[^4]: ${ }^{8}$ For ordinary residuals MacNeill (1978a) and Bischoff (1998) defined a similar function φ_{n} by $\varphi_{n}: C[0,1] \rightarrow C[0,1], \varphi_{n}:=T_{n} \circ \mathrm{pr}_{U_{n}^{\perp}} \circ V_{n}$ with $U_{n}:=\operatorname{Im}\left(X_{n, n}\right)$. Note that $\mathrm{pr}_{U_{n}^{\perp}}=M_{n, n} M_{n, n}^{\top}$, cf. (17).

[^5]: ${ }^{9}$ For the existence of the Lebesgue-Stieltjes measure μ_{f}, see Theorem 63. Note that it is formulated for nondecreasing functions. By means of Lemma 65.4, it can be formulated and prooved also for functions of bounded variation.

[^6]: ${ }^{10}(X, \tau)$ is normal iff to every two closed and disjoint $A, B \subseteq X$ there exists a continuous mapping $f: X \rightarrow[0,1]$, with $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$, cf. Bourbaki (1966), Chapter IX, $\S 4.1$, Theorem 1.

[^7]: ${ }^{11}$ If $X_{n} \rightarrow X$ converges almost surely, then $X_{n} \xrightarrow{\mathscr{O}} X$ holds. This follows directly from the definition together with the change of variable formula and the dominated convergence theorem.

[^8]: ${ }^{12}$ If all \tilde{f} are right continuous, h could instead be defined by $h(r):=\sum_{q_{k} \leq r} 2^{-k}$. Then h would be right continuous and would satisfy $\tilde{f}_{i}=f_{i} \circ h$ for all $i \in J$ and all other corresponding properties.

[^9]: ${ }^{14}$ All eigenvalues $\lambda_{1}(s)$ to $\lambda_{d}(s)$ of the matrix $H(s)$ are continuous functions $\lambda_{i}:[F(c), F(b)] \rightarrow \mathbb{R}$, if $s \mapsto H(s)$ is continuous (and that is the case here). This is proven, for example, in Bhatia (1997), Corollary VI.1.6. Thus $\chi_{\min }(H(s))=\min \left(\lambda_{1}(s), \ldots, \lambda_{d}(s)\right)$ and $\chi_{\max }(H(s))=\max \left(\lambda_{1}(s), \ldots, \lambda_{d}(s)\right)$ are also continuous functions.

[^10]: ${ }^{15}$ It should be noted here that our two dissertations were written at the same time and we regularly discussed new results. Some references to Heindl (2022) might therefore be (slightly) inaccurate, since the final results and their proofs might still have been changed by Heindl without the author's awareness.

