
A FUNCTIONAL CENTRAL LIMIT THEOREM
FOR RECURSIVE RESIDUALS AND

APPLICATIONS IN ASYMPTOTIC STATISTICS

– DISSERTATION –

SUBMITTED BY KARSTEN EVERS

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR RERUM NATURALIUM

(Dr. rer. nat.)

Veitsbronn (Germany), 2022/04/26

Chair of Mathematics – Statistics

First reviewer: Prof. Dr. Wolfgang Bischoff
Katholische Universität Eichstätt-Ingolstadt

Second reviewer: Prof. Dr. Enkelejd Hashorva
Université de Lausanne

Date of oral examination: 2022/07/14



Preface

In this thesis, we study stochastic processes based on recursive and ordinary residuals.
In Part A of this thesis we study partial sums of recursive residuals. We consider a classical

linear regression model, where the regression functions are defined on a compact domain in the
real numbers and sample data at specific points from the design area in the form of a triangular
array. Next we define recursive least squares residuals and prove a number of their interesting
properties. These have many remarkable advantages over classical residuals. We then consider
partial sums of recursive residuals, define a recursive residual partial sum process and prove
that this process converges weakly against Brownian motion. For not normally distributed
errors, the limit process has been known only for time series samples under assumptions that
are difficult to verify, or in the case of triangular schemes of design points only under strong
assumptions on the regression functions. For the first time, we determine the limit process for
triangular schemes without the restrictive assumption of normally distributed errors and under
very mild assumptions on the regression functions (they have to be left continuous, of bounded
variation and linearly independent with respect to the L2 norm) that are of great benefit for
practical applications. Crucial for the proof are Donsker’s invariance principle for triangular
schemes, a technique to factorize simultaneously a family of functions and Rubin’s famous
continuous mapping theorem. Our approach, based on Rubin’s theorem, further allows us
to compute the distribution of the limit process under local alternatives. With the help of
these asymptotic results we are then able to define and study asymptotic tests and we give an
example of an asymptotically uniformly most powerful test.

In Part B we give an introduction to the theory of weak convergence of finite measures,
and present these classical results in a more general form than usual. We consider measures on
perfectly normal spaces instead on metric spaces, and we consider filters of measures instead
of sequences of measures. To our knowledge, this approach has not yet been published.

In Part C, we summarize the main basics needed to understand the main statements from
Part A, and we develop some technical tools needed to understand the corresponding proofs.
Some of these results are also interesting in their own right, such as the simultaneous factor-
ization of a whole family of functions mentioned above or the estimation of the eigenvalues
of certain Gram matrices. Finally, all proofs of all statements of the previous sections can be
found here.

Part D, the appendices, contains all R scripts of the simulations, a list of all new results,
and a list of symbols and abbreviations.
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Part A. Sums of recursive residuals
and their asymptotics

1 Introduction
We consider regression models of the form

Y = g+ ε (1)

where g : E → R is an unknown deterministic regression function, ε : Ω→ R is a random
variable (the error) with E(ε) = 0 and Var(ε) = σ2 < ∞, where (Ω,A ,P) is the unknown
probability space, E ⊆ R is the experimental region and Y is the observable result of the
experiment. To get information on the unknown function g we sample data at certain design
points tn0,1 ≤ tn0,2 ≤ . . .≤ tn0,n0 of the experimental region E and embed these into a triangular
array of design points tn,1≤ tn,2≤ ...≤ tn,n, n= 1,2,3, . . ., to obtain asymptotic information on
the regression model as n goes to infinity. To do this, we assume that the empirical distribution
function Fn of the design array converges to a limit design F (limit distribution), in a sense
precisely defined later. Especially, we are interested in the case that the experimental region
E is a compact interval. Therefore, we must consider a triangular array of design points to get
asymptotic results, rather than design points t1 < t2 · · ·< tn < .. . from a time series sampling
which can be regarded as specific triangular array. Without loss of generality we can assume
for our experimental region E = [a,b] with a < b. We are interested in testing whether the
above model is a linear regression, i.e., more exactly, in testing

H0 : g =
d

∑
k=1

βk fk vs. H1 : g 6=
d

∑
k=1

βk fk, (2)

where f1, ..., fd : [a,b]→ R are known, left continuous functions of bounded variation such
that f1 · 1[a,c], . . . , fd · 1[a,c] are linearly independent in L2([a,b],F) for some c ∈ (a,b] and
β = (β1, ...,βd)

> ∈ Rd is the vector of the unknown regression parameters.
Recursive residuals play a major role in problems concerning the change point of a se-

quence of random variables, such as the CUSUM and the CUSUM of squares tests introduced
by Brown et al. (1975). The CUSUM test is based on the sum of the recursive residuals. If
this exceeds a critical bound, it is concluded that there is a structural break. The CUSUM of
squares test plots the cumulative sum of squared recursive residuals divided by the squared
sum over all observations. These are an alternative to ordinary residual-based regression diag-
nostics. In fact, recursive residuals have been known since 1891, cf. Farebrother (1978) and
are very popular among statistical users and researchers today. Google Scholar lists nearly
2000 (!) articles containing “recursive residuals” from 2020 to the present alone. In contrast,
recursive residuals seem relatively less discussed in books. Some notable recent and older
monographs and textbooks that contain some material on recursive residuals are Hawkins
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(1980), Sen (1985), Kramer and Sonnberger (1986), Harvey (1989), Wells (1996), Csörgo and
Horvath (1997), Hawkins and Olwell (1998), Herrmann (2005), Kennedy (2008), Baltagie
(2011), Young (2011), Hackl (2012) and Paolella (2019).

We consider partial sums of recursive residuals and use them to define stochastic processes
and we are interested in the asymptotics of these processes for n→ ∞. To determine the limit
process, we proceed in two steps. In the first step, using Rubin’s continuous mapping theorem,
we determine the limit process for continuous regresson functions. In the second step, we
decompose the given regression functions fi = gi ◦G−, which we now only assume to be left
continuous, into continuous functions gi and a quantile function G−, where we “move” the
discontinuity points of all fi in G− and G is a continuous distribution function. This way,
we finally succeed in computing the limit process even under the weaker assumptions of left
continuous regression functions. It turns out that, under suitable assumptions, the limit process
depends only on the limit design (i.e., on F). Thus, we have an invariance principle.

Such results were obtained by MacNeill (1978a, b) for ordinary least squares residuals
wn, given a triangular array of equidistant design points. Bischoff (1998) generalized this
result for arbitrary triangular design points and less restrictive regularity assumptions on the
regression functions. Both results were proved by using Rubin’s continuous mapping theorem.
Corresponding results for recursive residuals were proved by Sen (1982), Csörgo and Horvath
(1997), Rabovski (2003), Otto (2019) and Sakhanenko et al. (2021). However, Sen proved his
result for a time series sampling t1 < t2 < .. . , instead for a triangular array (note that most re-
sults on recursive residuals are developed for time series samplings). Moreover, the conditions
(2.9) to (2.11) in Theorems 1 resp. 2 in Sen (1982) are given by complicated functions of the
model variables and even in the simple example of a polynomial regression considered there,
they can only be checked with considerable effort. Whether this can also be shown for more
complicated examples or even in our general model is unknown. In contrast, the conditions
given by us refer directly to the regression functions of the model and can therefore be easily
checked (and are obviously fulfilled in the example mentioned). Furthermore, he mentioned
that his results cannot be proved using the continuous mapping theorem, instead he used the
concept of tightness. The result in Csörgo and Horvath (1997), Theorem 3.4.3, is more similar
to our results. However, only equidistant design points tn,i = i

n are considered there and, in
addition, strong restrictive regularity conditions are imposed on the regression functions (e.g.
these must be differentiable and satisfy max1≤ j≤d sup0≤t≤1 | f ′j(t)| < ∞). In Rabovski (2003),
only the special case of a constant regression function is studied (i.e., d = 1 and f1(t) = 1) and
in Sakhanenko et al. (2021) only the special case for one-dimensional β is considered. Finally,
Otto (2021) goes in the same direction as Sen and considers time series samples, although it
should be noted that the underlying model differs from ours anyway.

Results on the limit process under a local alternative are known in our setting so far only
in special cases, cf. Rabovski (2003). For time series samplings and in another context (testing
for changes in regression coefficients β ), corresponding statements can be found in Ploberger
and Krämer (1990) and Otto (2019), although our results cannot be derived from theirs. Our
approach, based on Rubin’s continuous mapping theorem, allows us to compute the distri-
bution of the limit process, under the local alternative given in (2) for an fd+1 of bounded
variation, for the first time in the form of an explicit formula. With the help of these asymp-
totic results we are then able to define and study asymptotic tests. By analogy with partial
sums of recursive residuals, we also consider reverse partial sums and their limits. It turns
out that tests based on these processes have greater power and we give an example of such an
asymptotically uniformly most powerful test.
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2 Ordinary residuals in linear regression
We consider model (1) under H0 given in (2) with E = [a,b]. Sequentially sampled observa-
tions Yn,1, ...,Yn,n at the design points a≤ tn,1 ≤ tn,2 ≤ ...≤ tn,n ≤ b leads to n linear modelsYn,1

...
Yn,i


︸ ︷︷ ︸

=:Yi

=

 f1(tn,1) . . . fd(tn,1)
... . . . ...

f1(tn,i) . . . fd(tn,i)


︸ ︷︷ ︸

=:Xn,i∈Ri×d

·

β1
...

βd


︸ ︷︷ ︸
=:β

+

εn,1
...

εn,i


︸ ︷︷ ︸

=:εi

, i ∈ {1, ...,n}. (3)

We assume

εn,1, ...,εn,n i.i.d. with E(εn,i) = 0 and Var(εn,i) = σ
2, i = 1, ...,n, (4)

holds and f1, . . . , fd : [a,b]→R are of bounded variation, left continuous on (a,b] and contin-
uous in a and furthermore f1 · 1[a,c], . . . , fd · 1[a,c] are linearly independent in L2([a,b],F), for
some c ∈ (a,b], where F , in a sense precisely defined later, is the distribution function of the
limit design of the design sequence (tn,1, . . . , tn,n)n∈N. By the assumption that the observations
Yn,1, ...,Yn,n are sequentially sampled, the unknown parameter β can be uniquely estimated,
as soon as rank(Xn,i) = d. The linear independence of f1 · 1[a,c], . . . , fd · 1[a,c] in L2([a,b],F),
together with appropriate conditions we impose on the design sequence, guarantees, that there
exists an n0 ∈ N such that all design matrices Xn,k, n ≥ n0, relevant to the recursive residual
partial sum process to be defined later (cf. Definition 4), have full rank (cf. Remark 76).
Therefore, in order not to complicate the presentation unnecessarily, we assume

rank(Xn,d) = d. (5)

So, according to the sequentially sampled observations we have n−d +1 linear models

Yi = Xn,iβ + εi, i ∈ {d, ...,n}, (6)

where the ordinary least squares (OLS) estimation for β can be updated after each observation
Yn,i, i = d, . . . ,n, by

β̂n,i = (X>n,iXn,i)
−1X>n,iYi = β +(X>n,iXn,i)

−1X>n,iεi, i ∈ {d, ...,n}.

By the Gauss-Markov theorem, β̂n,i is the best linear unbiased estimation (BLUE) for β given
the observation Yn,1, . . . ,Yn,i. In the sequel we use the notation

f : [a,b]→ Rd, t 7→ ( f1(t), ..., fd(t))>

for the vector of known regression functions. The least squares estimation β̂n,i for β using the
observations Yn,1, . . . ,Yn,i can be applied to forecast the expectation E(Yn,i+1) = f (tn,i+1)

>β

of the next observation Yn,i+1, i = d, . . . ,n−1 by the best linear unbiased estimation

f (tn,i+1)
>

β̂n,i = f (tn,i+1)
>(X>n,iXn,i)

−1X>n,iYi, i ∈ {d, ...,n−1}.

We abbreviate this estimator by

a>n,i+1 := f (tn,i+1)
>(X>n,iXn,i)

−1X>n,i ∈ Ri, i = d, . . . ,n−1.
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It holds

a>n,i+1Yi = f (tn,i+1)
>(X>n,iXn,i)

−1X>n,i(Xn,iβ + εi)

= f (tn,i+1)
>

β + f (tn,i+1)
>(X>n,iXn,i)

−1X>n,iεi, i ∈ {d, ...,n−1}, (7)

implying for i ∈ {d, ...,n−1}

E(a>n,i+1Yi) = f (tn,i+1)
>

β = E(Yn,i+1), (8)

Var(a>n,i+1Yi) = σ
2 f (tn,i+1)

>(X>n,iXn,i)
−1 f (tn,i+1) = σ

2||an,i+1||2, (9)

where || · || is the Euclidian norm. We consider the linear model given in (3) for all n observa-
tions Yn,1, . . . ,Yn,n, i.e. for i=n,

Yn = Xn,nβ + εn. (10)

Then the ordinary (linear) regression residuals are defined for model (10) as the difference
between the observed value Yn, j and the least squares estimation f (tn, j)>β̂n,n using the infor-
mation of all data to estimate E(Yn, j) = f (tn, j)>β in (10), i.e.

wn, j := Yn, j− f (tn, j)>β̂n,n = Yn, j− f (tn, j)>(X>n,nXn,n)
−1X>n,nYn , j = 1, ...,n. (11)

Let prU,V : U⊕V →U , u+v 7→ u be the projection on the first summand of a direct sum. Thus

wn := (wn,1, . . . ,wn,n)
> = Yn−Xn,nβ̂n,n =

(
In−Xn,n(X>n,nXn,n)

−1X>n,n
)

Yn = prU⊥n Yn, (12)

where Un := im(Xn,n) and U⊥n is the subspace orthogonal to Un and furthermore we write
abbreviatively prU := prU,U⊥ for a subspace U of Rn. The proof of (12) is basic linear algebra
(projections), which we have summarized for the reader in Lemma 47.

3 Recursive residuals
Recursive residuals are defined as the difference between the present observation and its
forecasting obtained by the observations sampled before. Furthermore they are standardized
(thus they are standardized forecast errors) and have many nice properties (e.g. they are ho-
moscedastic and uncorrelated), as shown below. Recursive residuals can be considered as
the result of transforming the correlated and heteroscedastic ordinary regression residuals to
uncorrelated and homoscedastic random variables, see below.

Definition 1. For the n− d linear models given in (6), under the assumptions (4) and (5),
recursive residuals rn, j are defined by

rn, j :=
Yn, j−a>n, jYj−1

(1+ ||an, j||2)
1
2
, j = d +1, ...,n,

with a>n, j = f (tn, j)>(X>n, j−1Xn, j−1)
−1X>n, j−1 ∈ R1×( j−1).
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(8) and (9) imply immediately E(rn, j) = 0, Var(rn, j) = σ2, j = d +1, ...,n, and by (7),

rn, j :=
εn, j−a>n, jε j−1

(1+ ||an, j||2)
1
2
, j = d +1, ...,n. (13)

We now rewrite (13) as a matrix equation. To do so, we define

M>n,k :=


1√

1+||an,d+1||2
. . . 0

... . . . ...
0 . . . 1√

1+||an,k||2


︸ ︷︷ ︸

∈R(k−d)×(k−d)

·


−a>n,d+1 1 0 . . . 0

... . . . . . . ...

... . . . 0
−a>n,k 1


︸ ︷︷ ︸

∈R(k−d)×k

∈ R(k−d)×k.

Because of

(−a>n j 1)Xn, j =
(
− f (tn, j)>(X>n, j−1Xn, j−1)

−1X>n, j−1 1
)
·
(

Xn, j−1
f (tn, j)>

)
︸ ︷︷ ︸

=Xn, j

= (0 ... 0) ∈ Rd

we get

M>n,kXn,k = 0 and M>n,kMn,k = Ik−d (14)

and (13) thus becomes

rn = M>n,n · εn = M>n,n ·Yn, (15)

where rn := (rn,d+1, . . . ,rn,n)
> is the vector of recursive residuals. If εn ∼ N(0,σ2In) holds,

(14) and (15) together imply

rn ∼ N(0,σ2In−d) and rn,d+1, ...,rn,n are independent. (16)

Furthermore

Mn,kM>n,k = prU⊥k with Uk := Im(Xn,k), (17)

which follows immediately from Lemma 47. Next, we state a relation between the vector of
ordinary residuals wn = (wn,1, . . . ,wn,n)

>, defined in (12) and rn from (15). It holds

M>n,nwn = rn and Mn,nrn = wn (18)

since wn = prU⊥n Yn = prU⊥n εn = Mn,nM>n,nεn = Mn,nrn. Almost all of the results in this section
so far follow more or less directly from the definition and can be found, for example, in Brown
et al. (1975). We close this section with a theorem (which can be found in Brown et al. (1975)
too, but goes back in part to Plackett (1950) and Bartlett (1951)), where we summarize some
technical properties that are useful for the efficient computation of recursive residuals.

Theorem 2. Given the linear models (6) under conditions (4) and (5).

1. X>n, jXn, j = X>n, j−1Xn, j−1 + f (tn, j) f (tn, j)> = ∑
j
i=1 f (tn,i) f (tn,i)>

8



2. (X>n, jXn, j)
−1 =(X>n, j−1Xn, j−1)

−1− 1
1+‖an, j‖2 (X>n, j−1Xn, j−1)

−1 f (tn, j) f (tn, j)>(X>n, j−1Xn, j−1)
−1

3. β̂n, j = β̂n, j−1 +
√

1+‖an, j‖2rn, j(X>n, jXn, j)
−1 f (tn, j), j ∈ {1, ...,n}.

4. ‖wd+1‖2 = ‖rn,d+1‖2 and
∥∥w j

∥∥2
=
∥∥w j−1

∥∥2
+ r2

n, j for j = d + 2, . . . ,n where w j :=
Yj−Xn, jβ̂n, j, j ∈ {d +1, ...,n}.

The proof can be found on page 39.

4 Recursive residual partial sum process
All processes considered in this work are defined with the help of the following operator.

Definition 3. The partial sum operator Tn : Rn→C[0,1], a := (a1, . . . ,an)
> 7→ Tn(a),

Tn(a)(x) :=

{
ak(nx− k)+∑

k
i=1 ai for x ∈

[k−1
n , k

n

)
, k ∈ {1, ...,n},

∑
n
i=1 ai for x = 1.

(19)

Tn(a) is a continuous piecewise linear function on [0,1], where the line segments connect the
points ( k

n ,∑
k
i=1 ai),k = 0, ...,n. Note ∑

m
i=1 ai = 0 for m≤ 0. Thus for (19) we can write

Tn(a)(x) = (nx−bnxc)abnxc+1 +
bnxc

∑
i=1

ai , x ∈ [0,1]. (20)

Definition 4. Let δ ∈ (0,1) be fixed. The recursive residual partial sum process is defined as

Bn,δ :=
1

σ
√

n−d
·Tn−d ◦g◦ rn, (21)

where σ is defined in (4), rn is defined in (15) and g = gδ : Rn−d → Rn−d is defined by

a = (a1, . . . ,an−d)
> 7→ (0, . . . ,0,ab(n−d)δc+1, . . . ,an−d)

>. (22)

Later δ = F(c) will hold, where the c comes from the assumption

f1 ·1[a,c], . . . , fd ·1[a,c] are linearly independent in L2([a,b],F) for some c ∈ (a,b] (23)

and F is the distribution function of the limit design of the design sequence (tn,1, . . . , tn,n)n∈N,
in a sense precisely defined later (cf. Definition 9). We need condition (23) on the one hand
to ensure in the proofs that the eigenvalues of certain Gram matrices are bounded (cf. Lemma
75 and Lemma 78) and on the other hand to ensure that the process exists at all. Note that
b(n−d)F(c)c≥ bnF(c)c−d holds and thus, according to Remark 76, there is n0 ∈N such that
all recursive residuals relevant to the process from (21) actually exist (i.e., the corresponding
design matrix Xn,k has full rank for all n≥ n0 and all k ≥ b(n−d)F(c)c+1). In practical ap-
plications, usually only functions f1, . . . , fd that satisfy (23) for each c∈ (a,b] occur. Provided
that the limit designs are chosen such that no mass lies in a, i.e. F(a) = 0, from a theoretical
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point of view δ can be chosen arbitrarily small (δ → 0). The composition of Tn−d and g is
computed by means of (20) to

Tn−d(g(a))(x) = ((n−d)x−b(n−d)xc)ab(n−d)xc+1 +
b(n−d)xc

∑
i=b(n−d)δc+1

ai (24)

for x≥ b(n−d)δc
n−d and Tn−d(g(a))(x) = 0 for x < b(n−d)δc

n−d . Note that δ ∈
[
b(n−d)δc

n−d , b(n−d)δc+1
n−d

)
.

rn : Ω→ Rn−d from (15) is a a real multivariate random variable and Bn,δ : Ω→C[0,1] is a
random variable with values in C[0,1], cf. the sample paths of Bn,δ in Figure 1.

Figure 1: 30 randomly selected sample paths of Bn,δ , whereby n = 10000, f (t)> = (0.5, t, t2)

for t ∈ [0,0.25], f (t)> = (1, t, t2) for t ∈ (0.25,0.5], f (t)> = (1, t,(t − 3/2)2) for
t ∈ (0.5,1], d = 3, tn,i = i

n , εn,i ∼ unif([−1
2 ,

1
2 ]) and δ = 0.001, cf. R-script on p. 75.

Remark 5. If εn ∼ N(0,σ2In), then rn ∼ Nn−d(0,σ2In−d) by (16) and

1
σ
√

n−d
Tn−d ◦g◦ rn

D→ B′
(

P
(

1
σ
√

n−d
Tn−d◦g◦rn

)
w→ PB′ , cf. definition 43

)
(25)

follows by Theorem 53, where B′, (B′t)t∈[0,1] is a shifted Brownian motion, i.e. B′t(ω) = 0 for
all t ∈ [0,δ ) and B′t(ω) = Bt−δ (ω), whereby B, (Bt)t∈[0,1] is a Brownian motion on [0,1].

If εn is not normally distributed, the limit process is known only for time series under con-
ditions that are difficult to check, or for triangular schemes under strong restrictions on the
regression functions, or only in special cases (cf. Introduction on page 4). Our goal in the
following is to determine the limit process (i.e., the weak limit) of Bn,δ for a triangular array
of design points under much weaker restrictions on the regression functions.

5 Recursive residual partial sum limit process
Each design a≤ tn,1≤ tn,2≤ ...≤ tn,n≤ b corresponds to a probability measure (tn,1, ..., tn,n) 7→
Pn := 1

n ∑
n
i=1 δtn,i with Dirac measures δtn,i on tn,i. Let Fn be the distribution function of Pn, i.e.

Fn : R→ [0,1] , t 7→ 1
n

n

∑
i=1

1[tn,i,∞)(t). (26)

10



Note this implies Fn(t) = 0 for all t < a and Fn(t) = 1 for all t ≥ b.

Definition 6. For a measure P on R, we define the support by

support(P) : = {x ∈ R | ∀ε > 0 : P((x− ε,x+ ε))> 0}
= R\

⋃
O∈τ∗

O , τ
∗ := {O⊆ R | O is open and P(O) = 0}.

For a measure-defining function F, cf. Theorem 63, let support(F) := support(µF).

Definition 7. Let F be a distribution function. We call (F−(1/n),F−(2/n), ...,F−(1)) upper
F-design for n observations, n ∈ N, where F− is the quantil function (cf. Definition 56).

Lemma 8. Let (tn,1, ..., tn,n)n∈N be an upper F-design for n observations. Then

Fn(t)≤ F(t)≤ Fn(t)+
1
n

for all t ∈ R. (27)

The proof can be found on page 40.

Definition 9. We call a sequence (tn,1, ..., tn,n), n ∈ N, asymptotic-F-design if

sup
t∈R
|Fn(t)−F(t)| → 0 for n→ ∞. (28)

If we write asymptotic F-design in [a,b], this means a≤ tn,1 ≤ . . .≤ tn,n ≤ b for all n ∈ N. In
this case F(t) = 0 for t < a and F(t) = 1 for t ≥ b, according to (28). If F is continuous, then
(28) holds if Fn(t)

n→∞−→ F(t) holds at every t where F is continuous (cf. Kannan and Krueger
(1996), Theorem 1.4.2 or Roussas (1997), §8.6∗ Polyas Lemma). Eisenberg and Shixin (1983)
give a characterization of (28) in terms of the convergence of characteristic functions. Note in
this context also Theorem 42, Definition 61 and Lemma 62.

Limit process of Bn,F(c) under null hypothesis

To simplify notation, we suppress the dependence of F(c) in Bn,F(c) and write Bn := Bn,F(c).

Theorem 10. Let (tn,1, ..., tn,n)n∈N be an asmptotic F-design in [a,b] and consider model (3)
with f1, . . . , fd : [a,b]→ R all of bounded variation, left continuous on (a,b], continuous in a,
let f1 ·1[a,c], . . . , fd ·1[a,c] be linearly independent (l.i.) in L2([a,b],F) for some c ∈ (a,b] and

let δ := F(c)> 0. Under the assumptions of H0 given in (2), Bn
D→ B′ holds true, whereby B′

is a shifted Brownian motion (cf. Remark 5 for the definition of B′).

The proof can be found on page 40. Thus, using this theorem, we can use the test statistic Bn
directly for an asymptotic size α test. The corresponding procedure is well known. We only
need appropriate knowledge about the boundary crossing probability for a Brownian motion.
These probabilities are well known, see Theorem 51.

Theorem 11. Under the assumptions of Theorem 10, an asymptotic test of size α is given by
each of the following rules.

reject H0 given in (2) :⇔ ∃s ∈ [0,1] with
1

σ
√

n−d
·Tn−d(g◦ rn)(s)> x, (29)

reject H0 given in (2) :⇔ ∃s ∈ [0,1] with
1

σ
√

n−d
·Tn−d(g◦ rn)(s)< y, (30)

reject H0 given in (2) :⇔ ∃s ∈ [0,1] with
∣∣∣∣ 1
σ
√

n−d
·Tn−d(g◦ rn)(s)

∣∣∣∣≥ z, (31)

11



where x := (1− δ ) ·Φ−1(1− α

2 ), y := (1− δ ) ·Φ−1(α

2 ) = −x, z := (1− δ )z′, with z′ chosen

such that
∞

∑
n=−∞

(Φ((4n+1)z′)−Φ((4n−1)z′)−Φ(−(4n−3)z′)+Φ(−(4n−1)z′))≥ 1−α

holds, δ is defined in Theorem 10 and Φ(x) := 1√
2π

∫ x
−∞

e−
1
2 t2

dt.

The proof can be found on page 40.

Remark 12. To determine x,y and z in Theorem 11, one needs Φ−1(1− α

2 ), Φ−1(α

2 ) and
z′. For the significance levels α = 0.01 and α = 0.05 these are given in the table. For the
computation we use Φ−1(1− α

2 ) =−Φ−1(α

2 ) and the R Script on page 76. See also Figure 2.

α Φ−1(1− α

2 ) Φ−1(α

2 ) z′

0.05 1.959964 −1.959964 2.2414028
0.01 2.575829 −2.575829 2.8070338

From the definition of the partial sum operator (19), it follows that the test statistics (29), (30)
and (31) can be computed (i.e., updated) stepwise with each new recursive residual, and H0
can be rejected as soon as the bounds are crossed the first time.

Figure 2: A very rare event: two out of 30 sample paths of a Brownian motion on [δ ,1] cross
both outer boundaries (i.e. z). The horizontal lines represent the boundaries x, y
(=−x) and z from Theorem 11 for δ = 0.001 and α = 0.01. R-script on p. 76

Limit process of Bn under a local alternative

We now consider the assumption that the (true) observations Y in fact did not occur under H0,
but under the local alternative H1, given in (32),

H0 : Y =
d

∑
k=1

βk fk + ε vs. H1 : Y =
d+1

∑
k=1

βk fk + ε , βd+1 6= 0, (32)

where fd+1 : [a,b]→ R is a known function of bounded variation.

12



Example 13. In Figure 1 (p. 10) we plotted 30 randomly chosen sample paths of Bn, assuming
that the observations occurred under H0 : Y (t) = ∑

3
k=1 βk · fk(t)+ ε(t). In Theorem 10 we

proved that Bn
D→ B holds (assuming H0). How does Bn and its limit process B change if the

observations were in fact made under the local alternative H1 : Y (t) = ∑
4
k=1 βk · fk(t)+ ε(t),

f4(t) = t3, but the recursive residuals are computed under H0 (cf. Figure 3)?

Figure 3: 30 randomly selected sample paths of Bn, where the observations in truth occurred
under H1 and f1 to f3 are defined as in Figure 1 and f4(t) := t3 with n = 1000,
tn,i = i

n , εn,i ∼ unif([−1
2 ,

1
2 ]) and δ = 0.001. It looks like a somewhat strange but

quite clearly drifted Brownian motion (cf. R-script on p. 76).

How can the trend from Figure 3 be explained? To do so, we follow Bischoff and Miller (2000)
and Rabovski (2003) and compute Bn under the assumption that the true observations in fact
occurred under the local alternative H1 from (32), but the recursive residuals were computed
under the false assumption H0:

Bn =
1

σ
√

n−d
·Tn−d ◦g◦ rn =

1
σ
√

n−d
·Tn−d ◦g◦

(
M>n,n︸︷︷︸

computed under H0

·
(

X̃n,nβ̃ + εn

)
︸ ︷︷ ︸

observations under H1

)

=
1

σ
√

n−d
·Tn−d ◦g

(
M>n,n · (Xn,nβ + εn)+βd+1M>n,n ·ξn

)
=

1
σ
√

n−d
·Tn−d ◦g

(
M>n,n · (Xn,nβ + εn)

)
+

n ·βd+1

σ
√

n−d
·Tn−d ◦g

(
M>n,n ·

(
1
n
·ξn

))
(33)

with M>n,n from (15), β =(β1, . . . ,βd)
>, β̃ =(β1, . . . ,βd+1)

>, ξn =( fd+1(tn,1), . . . , fd+1(tn,n))>,

Xn,n :=

 f1(tn,1) . . . fd(tn,1)
... . . . ...

f1(tn,n) . . . fd(tn,n)

 and X̃n,n :=

 f1(tn,1) . . . fd(tn,1) fd+1(tn,1)
... . . . ...

...
f1(tn,n) . . . fd(tn,n) fd+1(tn,n)

.

According to Theorem 10, 1
σ
√

n−d
·Tn−d ◦g

(
M>n,n · (Xn,nβ + εn)

) D→ B′ holds true. It remains to

determine whether and against what n·βd+1
σ
√

n−d
·Tn−d ◦g

(
M>n,n ·

(1
n ·ξn

))
from equation (33) con-

verges. The following lemma is a generalization of a result from Rabovski (2003). However,
the proof given there is incorrect (the mappings un defined there on p. 20 are not necessarily
continuous, cf. our Example 80 on page 42).

13



Lemma 14. Under the premises of Theorem 10 and if fd+1 : [a,b]→R is of bounded variation,

sup
s∈[0,1]

∣∣∣∣Tn−d ◦g
(

M>n,n ·
(

1
n
·ξn

))
(s)−Γ(s)

∣∣∣∣ n→∞−→ 0 (34)

holds, where Γ ∈C[0,1] with Γ(s) := 0 for s ∈ [0,δ ) and otherwise

Γ(s) :=u(s)−u(δ )

+

s∫
δ

f (F−0 (t))>
(∫

[0,t]
( f f>)◦F−0 dλ

)−1[∫
(a,F−0 (t))

(u◦F0) dµ f − f (F−0 (t))u(t)
]

dt ,

applies, where F0 := F|[a,b] and u ∈C[0,1] is defined by u(s) :=
∫ s

0 fd+1 ◦F−0 dλ .

The proof can be found on page 41. Because of n√
n−d

n→∞−→ ∞ and Lemma 14, n·βd+1
σ
√

n−d
·Tn−d ◦

g
(
M>n,n ·

(1
n ·ξn

))
literally seems to explode for n→ ∞ (see Figure 4).

Figure 4: Single sample paths of Bn, for different n, where the observations in truth occurred
under H1. tn,i, εn,i, δ , and f as in Figure 3 (cf. R-script on p. 77).

Hence we need to re-parameterize the parameter space β ∗d+1 :=
√

n−d
n · βd+1 to obtain a r.v.

whose limit distribution we can use for a test statistic. Therefore we define the linear model

Y ∗n = Xn,nβ +β
∗
d+1ξn + εn. (35)

Note that the test problem (32) is equivalant to

H0 : Y =
d

∑
k=1

βk fk + ε vs. H1 : Y =
d

∑
k=1

βk fk +β
∗
d+1 fd+1 + ε , β

∗
d+1 6= 0 (36)

for all n, where fd+1 is of bounded variation. With this we have the following

Theorem 15. Under the assumptions of Theorem 10 and Lemma 14, for Bn under the alter-
native H1 given in (36), with respect to model (35), Bn

D→ B′+ βd+1
σ
·Γ holds.

The proof can be found on page 42.
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Example 16. Let d = 1, [a,b] = [0,1], f1(t) = 1 and tn,i = i
n . We consider the test problem

H0 : Y (t) = β1 + ε vs. H1 : Y (t) = β1 +β
∗
2 · f2(t)+ ε, β

∗
2 6= 0. (37)

We compute Γ according to Lemma 14 and obtain

Γ(s) = u(s)−u(δ )−
∫ s

δ

1
t
·u(t)dt

=
∫ s

δ

(
f2(t)−

1
t

∫ t

0
f2(τ)dτ

)
dt , s≥ δ . (38)

For f2(t) = t, Γ(s) = max
(
0, 1

4(s
2−δ 2)

)
follows. We simulate the partial sum process under

the alternative H1, δ = 0.001, εn,i ∼ unif([−1
2 ,

1
2 ]) and assuming (β1,β2) = (0.5,1) holds for

the true parameters and compare with the limit process. Cf. Figure 5.

Figure 5: We compute a sample path of the partial sum process under H0 (blue) and under H1
(red), each with the same simulated error vector εn. The difference is the black path,
which exactly fits Γ (cf. R-script on p. 77).

For the power P(reject H0 |H1is true) of the three tests from Theorem 11, under H1 given in
(36), we obtain

power(29) = P

(
sup

0≤s≤1−δ

(
Bs +

βd+1

σ
·Γ(s+δ )

)
> x

)
,

power(30) = P
(

inf
0≤s≤1−δ

(
Bs +

βd+1

σ
·Γ(s+δ )

)
< y
)
, (39)

power(31) = P

(
sup

0≤s≤1−δ

∣∣∣∣Bs +
βd+1

σ
·Γ(s+δ )

∣∣∣∣≥ z

)
.

Example 17. Following Bischoff (2016), we give a simple application from quality control in
which we use (39) to determine suitable designs to detect change-points in the quality of a
manufactured product. We consider the test problem of a constant product quality Y (t) vs. a
decreasing one, more precisely

H0 : Y (t) = β1 + ε vs. H1 : Y (t) = β1 +β
∗
2 ·gt0(t)+ ε , β

∗
2 < 0, (40)(

Constant vs. step function
)
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where t0 ∈ (0,1), gt0 : [0,1]→ R, gt0(t) := 1(t0,1](t). Let (tn,1, . . . , tn,n) be an asymptotic F–
design in [0,1] with F(t0) =: q ∈ (δ ,1). We call this an asymptotic q–F–design. First, we
determine Γ = Γgt0 ,F

from Lemma 14. Note gt0 ◦F−0 = 1(q,1], because r≤ q implies F−0 (r)≤ t0
and r > q implies F−0 (r)> t0. With some short calculations we get (note δ < q)

u(s) =
∫
[0,s]

gt0 ◦F−0 dλ = (s−q) ·1(q,1](s) , s ∈ [0,1]

and

Γ(s) = u(s)−u(δ )+
∫
[δ ,s]

1
t
[0−u(t)] dt

= q · ln
(

s
q

)
·1(q,1](s) , s ∈ [0,1].

With respect to power(30) given in (39), we call an asymptotic q1–F–design uniformly better
than an asymptotic q2–F–design if β ∗2 < 0 and

β
∗
2 q1 ln

(
s

q1

)
·1(q1,1](s)≤ β

∗
2 q2 ln

(
s

q2

)
·1(q2,1](s) (41)

holds for all s ∈ [δ ,1]. With this we have the following statement.

(U) For β ∗2 < 0 and e−1 ≤ q1 < q2, an asymptotic q1–F–design is uniformly better than an
asymptotic q2–F–design.

Proof of (U): For s≤ q1 and q1 < s≤ q2 the assertion is clear. For q2 < s≤ 1 we note

β
∗
2 q1 ln

(
s

q1

)
·1(q1,1](s)≤ β

∗
2 q2 ln

(
s

q2

)
·1(q2,1](s)

⇔ β
∗
2 q1 ln

(
s

q1

)
≤ β

∗
2 q2 ln

(
s

q2

)
⇔ q1 ln

(q1

s

)
≤ q2 ln

(q2

s

)
. (42)

For e−1 ≤ q < 1 we consider f (q) := q ln
(q

s

)
. Obviously, f ′(q) = ln

(q
s

)
+1≥ 0 and thus f is

strictly monotonically increasing. Consequently, (42) and thus overall (41) holds. �

Least-squares residual partial sum process
The technique of the factorization of the regression functions used in the proof of Theorem 10
(cf. Lemma 67) can of course be profitably used in the study of other stochastic processes. The
closest example to the recursive residual partial sum processe we considered is the ordinary
least squares residual partial sum process. In analogy to Definition 4, we thus come to

Definition 18. The ordinary least-squares residual partial sum process is defined as

Dn :=
1

σ
√

n
·Tn ◦wn, (43)

where σ is defined in (4) and wn is defined in (12).
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This leads to a generalization of Theorem 2.2 from Bischoff (1998), which can also be found
as Theorem 2.2.11 in Heindl (2022), since it was developed jointly by Heindl and Evers.

Theorem 19. Let (tn,1, ..., tn,n)n∈N be an asmptotic F-design in [a,b] and consider model (3)
with f1, . . . , fd : [a,b]→ R all of bounded variation and left continuous and let f1, . . . , fd be

linearly independent in L2([a,b],F). Under these assumptions and H0 given in (32), Dn
D→

B f ,F , where B f ,F is the Gaussian process on [0,1] given by

B f ,F(ω, t) := B(ω, t)+
(∫

(0,t)
f ◦F−0 dλ

)>
·
(∫

[a,b]
f f> dµF

)−1

·

·
(∫

[a,b)
B(ω,F)dµ f −B(ω,1) f (F−(1))

)
, (44)

where B is a Brownian motion on [0,1].

The proof can be found on page 43. Note that the proof is based on techniques developed for
the proof of Theorem 79.

6 Reversed partial sums of recursive residuals
Definition 20. The reversed recursive residual partial sum process is defined as

B(b)
n,δ :=

1
σ
√

n−d
·Tn−d ◦g◦ rn, (45)

where σ is defined in (4) and g = gδ : Rn−d → Rn−d is defined by

a = (a1, . . . ,an−d)
> 7→ (0, . . . ,0,an−d, . . . ,ab(n−d)δc+1)

>. (46)

Theorem 21. Under the assumptions of Theorem 10, B(b)
n,δ

D→ B′ holds under H0 from (36),
whereby B′ is a shifted Brownian motion (cf. Remark 5 for the definition of B′).

The proof can be found on page 45. As with Bn, for abbreviation we write B(b)
n instead of B(b)

n,δ .

Theorem 22. Under the assumptions of Theorem 21, an asymptotic test of size α is given by
each of the following rules.

reject H0 given in (32) :⇔ ∃s ∈ [0,1] with
1

σ
√

n−d
·Tn−d(g◦ rn)(s)> x, (47)

reject H0 given in (32) :⇔ ∃s ∈ [0,1] with
1

σ
√

n−d
·Tn−d(g◦ rn)(s)< y, (48)

reject H0 given in (32) :⇔ ∃s ∈ [0,1] with
∣∣∣∣ 1
σ
√

n−d
·Tn−d(g◦ rn)(s)

∣∣∣∣≥ z, (49)

where x, y and z are defined as in Theorem 11, but the mapping g is given here by (46).

The proof is the same as that already given for Theorem 11.
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Theorem 23. For B(b)
n under the alternative H1 given in (36), with respect to model (35),

B(b)
n

D→ B′+
βd+1

σ
·∆ (for n→ ∞) (50)

holds under the assumptions of Theorem 10, with ∆ ∈C[0,1], ∆(s) := 0 for s ∈ [0,δ ) and

∆(s) :=u(1)−u(1− s+δ ) (51)

+

1∫
1−s+δ

f (F−0 (t))>
(∫

[0,t]
( f f>)◦F−0 dλ

)−1[∫
(a,F−0 (t))

(u◦F0) dµ f − f (F−0 (t))u(t)
]

dt ,

applies, where u ∈C[0,1] is defined by u(s) :=
∫ s

0 fd+1 ◦F−0 dλ and F0 := F|[a,b].

The proof can be found on page 46.

Example 24. We again consider Example 16 and compute the reversed recursive residual
partial sum process under H0 and H1, cf. Figure 6. For the trend function ∆ we get

∆(s) = u(1)−u(1− s+δ )−
∫ 1

1−s+δ

1
t
·u(t)dt =

1
4
(s−δ )(2+δ − s) , s≥ δ .

Figure 6: Sample path of the reversed partial sum process under H0 (blue) and under H1 (red),
each with the same simulated error vector εn. The difference (black path) fits ∆.

For the power of the tests (47), (48), and (49) under H1 given in (36), we obtain, completely
analogous to the “normal” recursive residual partial sum process,

power(47) = P

(
sup

0≤s≤1−δ

(
Bs +

βd+1

σ
·∆(s+δ )

)
> x

)
,

power(48) = P
(

inf
0≤s≤1−δ

(
Bs +

βd+1

σ
·∆(s+δ )

)
< y
)
,

power(49) = P

(
sup

0≤s≤1−δ

∣∣∣∣Bs +
βd+1

σ
·∆(s+δ )

∣∣∣∣≥ z

)
.
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Example 25. We follow Bischoff et al. (2005) and consider the particular importend test
problem

H0 : Y (t) = β1 + ε vs. H1 : Y (t) = β1 +β
∗
2 ·g(t)+ ε, β

∗
2 > 0 (52)(

Constant vs. non-constant
)

with g : [a,b]→R of bounded variation and we want to determine Γ of Theorem 15 (cf. Lemma
14) and ∆ of Theorem 23. In both cases u(s) =

∫ s
0 g◦F−0 (t)dt, where F0 := F|[a,b]. Thus

Γ(s) =
∫ s

δ

(
g◦F−0 (t)− 1

t
·
∫ t

0
g◦F−0 (τ)dτ

)
dt (53)

∆(s) =
∫ 1

1−s+δ

(
g◦F−0 (t)− 1

t
·
∫ t

0
g◦F−0 (τ)dτ

)
dt, (54)

with Γ(s)=∆(s)= 0 for all s∈ [0,δ ]. To compare the power of the associated tests, it would be
helpful if we could show Γ(s)≤∆(s) for all s (or vice versa). To do this, we set f := g◦F− and
analyze the integrand I(t) := f (t)− 1

t ·
∫ t

0 f (τ)dτ from (53) and (54), respectively. Because of
1−(1−s+δ )= s−δ , it would suffice if we specify conditions under which I is nondecreasing.
If f is nondecreasing and t < t ′ holds,

1
t ′
·
∫ t ′

0
f (τ)dτ− 1

t
·
∫ t

0
f (τ)dτ ≤ 1

t ′

(∫ t

0
f (τ)dτ +(t ′− t) f (t ′)

)
− 1

t
·
∫ t

0
f (τ)dτ

≤
(

1
t ′
− 1

t

)∫ t

0
f (τ)dτ +

(
1− t

t ′

)
f (t ′)

≤
(

1
t ′
− 1

t

)
· t · f (t)+

(
1− t

t ′

)
f (t ′)

=
(

1− t
t ′

)
· ( f (t ′)− f (t))≤ f (t ′)− f (t)

follows. Hence I(t) = f (t)− 1
t ·
∫ t

0 f (τ)dτ would be non-decreasing. Thus

∀s ∈ [δ ,1] : Γ(s)≤ ∆(s) (55)

holds if g : [a,b]→ R is non-decreasing (since f = g ◦ F− is non-decreasing as well and
1− (1− s+δ ) = s−δ ). So, if we consider test problem (52) for a non-decreasing g, we can
either use test (29) based on process (21), or test (47) based on process (45). Since

power(47) = P

(
sup

0≤s≤1−δ

(
Bs +

β2

σ
·∆(s+δ )

)
> x

)
(55)
≥ P

(
sup

0≤s≤1−δ

(
Bs +

β2

σ
·Γ(s+δ )

)
> x

)
= power(29), (56)

the test has a larger power when based on reversed sums of recursive residuals. Furthermore,
Γ : [0,1]→R is non-decreasing and convex and ∆ : [0,1]→R is non-decreasing and concave,
if g is non-decreasing. This follows from

Γ
′(s) = I(s) and ∆

′(s) = I(1− s+δ )

and because s 7→ I(s) is non-decreasing and s 7→ I(1− s+ δ ) is non-increasing. Moreover,
Γ(1) = ∆(1) and Γ(s) = ∆(s) holds for all s ∈ [0,δ ].
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7 An asymptotically uniformly most powerful test

For technical reasons, in this section we do not consider the processes Bn, B(b)
n and B′ (defined

in (21), (45) resp. Remark 5), but we shift them to the left by δ and cut off the uninteresting
part at the beginning, cf. (24) and the proof of Theorem 21).

Definition 26. For X : Ω→ R[0,1], u : [0,1]→ R and δ := F(c) we define

X• : Ω→C[0,1−δ ] , X•(ω)(t) := X(ω)(t +δ )
u• : [0,1−δ ]→ R , u•(t) := u(t +δ ).

Note that B′• is an ordinary Brownian motion on [0,1−δ ] (the dash at B′• is not to be confused
with the derivative). It is obvious that all convergence results remain valid for the transformed
processes, although one has to shift functions like Γ and ∆ at appropriate places. For example,
under the alternative H1 from (36) for B•n and B(b)•

n with respect to model (35),

B•n
D→ B′•+

βd+1

σ
·Γ• and B(b)•

n
D→ B′•+

βd+1

σ
·∆•

holds. In the following we consider the one-sided test problem

H0 : Y =
d

∑
k=1

βk fk + ε vs. H1 : Y =
d

∑
k=1

βk fk +β
∗
d+1 fd+1 + ε, β

∗
d+1 > 0, (57)

with respect to model (35)

Definition 27. We call a sequence of functions ϕn : C[0,1−δ ]→ {0,1}, n ∈ N≥1 an asymp-
totically uniformly most powerful size α test for recursive residuals, resp. reversed recursive
residuals, with respect to model (35) if

ϕn

(
1

σ
√

n−d
·Tn−d ◦g◦ (M>n,nY ∗n )

)•
D→ ϕ

(
B′•+

βd+1

σ
·Γ•
)

(58)

resp. ϕn

(
1

σ
√

n−d
·Tn−d ◦g◦ (M>n,nY ∗n )

)•
D→ ϕ

(
B′•+

βd+1

σ
·∆•
)
, (59)

where the g in (58) comes from (22) and that in (59) comes from (46) and ϕ : C[0,1− δ ]→
{0,1} is a uniformly most powerful size α test for the test problem (57) observing B′•+ βd+1

σ
·

Γ•, resp. observing B′•+ βd+1
σ
·∆•.

Theorem 28. We define the test statistic ρ : C[0,1−δ ]→ R with

ρ(u) : =
(
−
∫
[0,1−δ ]

∆
•(s) d(∆•)′(t)

)− 1
2 ∫

[0,1−δ ]
u(t) d(∆•)′(t) (60)

and the statistical test ϕ := 1
ρ−1((Φ−1(1−α),∞)) with the decision rule

reject H0 given in (57) :⇔ ϕ

((
1

σ
√

n−d
·Tn−d ◦g◦ (M>n,nY ∗n )

)•)
= 1, (61)

where Φ(x) := 1√
2π

∫ x
−∞

e−
1
2 t2

dt and and g in (61) comes from (46) and the dashes ′ in (60)
denote the derivative. Under the assumptions of Theorem 10 and Lemma 14, whereby we
additionally assume that fd+1(x) = 0 holds for all x ∈ [a,F−0 (δ )], ϕ (= ϕn for all n) is an
asymptotically uniformly most powerful size α test for (57) with respect to model (35).

The proof can be found on page 46.

20



Part B. Weak convergence of finite
measures

Here we describe the main principles of the theory of weak convergence of finite measures.
The results in this section are, in principle, facts that have been known for almost 60 years.
Therefore, to make the presentation more interesting, we present these classical results in a
more general way than usual. On the one hand, we let the underlying spaces very general and
consider measures on perfectly normal spaces instead on metric spaces and on the other hand,
we consider filters of measures instead of sequences of measures.

It is sometimes like this: One considers certain structures on topological spaces (e.g.
measures) and has a notion of convergence at hand. Nevertheless, one often considers only
sequences of these structures (and correspondingly the convergence of sequences). However,
if one considers the set of all these structures, one can sometimes naturally define a topology
that respects convergence for sequences of these structures, which then gives a filter conver-
gence anyway. If one then also finds that the theory for filters is basically no more difficult to
develop than for sequences, then there is really no reason to restrict oneself to sequences and
one can develop the notion of convergence directly for filters.

In the literature one can find presentations of the theory of weak convergence of measures
using nets, cf. Topsoe (1970) and Bogachev (2018), but although nets and filters are both
sufficient structures to describe topological properties, we think that filters are better and more
natural to study problems concerning convergence. A net is defined as a function whose
domain is a directed set I. Therefore one has to deal with indexed values all the time. Filters
are defined much more directly and are virtually their own directed set. Although there is in
principle a canonical correspondence between filters and nets, many arguments and concepts
can be formulated more simply and naturally with filters. Finally, general convergence theory
is and has been developed mainly in the language of filters, see, e.g., the monographs Bourbaki
(1966), Binz (1975), Beattie and Butzmann (2002), Preuss (2002), Hart et al. (2004), Mynard
and Pearl (2009), Dolecki and Mynard (2016), Nel (2016) and filters are better studied than
nets with respect to their set-theoretic and algebraic properties and resulting applications in
topological problems, cf. e.g. Comfort and Negrepontis (1974), Walker (1974), Kunen and
Vaughan (1984), Jech (2003), Zelenyuk (2011), Hindman and Strauss (2012), to name just a
few of the best-known books in this field. In fact, the author is not aware of any work in which
nets are studied in a similar depth as filters in these books.

This generalization of the theory of weak convergence of measures for filters is of no
direct relevance for the understanding of Part A of this thesis. Rather, it has arisen only as a
by-product of the author’s familiarization with the subject. However, since it is not found in
this form in the literature, we decided to include it as a separate part.

The classical theory of weak convergence necessary to understand Part A for sequences
of measures in the context of metric spaces is developed, for example, in Billingsley (1968,
1999), Kallenberg (2002), Borovkov (2013), Shorack (2017), and Klenke (2020).
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1 Basic notations and definitions
Definition 29. We call a subset ϕ ⊆P(X) of the powerset of a set X filter (on X), if

1. /0 6∈ ϕ and X ∈ ϕ

2. P,Q ∈ ϕ implies P∩Q ∈ ϕ

3. P ∈ ϕ and P⊆ Q⊆ X implies Q ∈ ϕ .

Filter that are maximal with respect to subset relation are called ultrafilter. Let F (X) (resp.
FU(X)) the set of all filters (resp. ultrafilters) on X. ϕ0 ⊆ ϕ is called filterbase or base (for
ϕ) if for all P ∈ ϕ exists some Q ∈ ϕ0 with Q⊆ P. A map f : X → Y has a natural extension
F : F (X)→F (Y ) (resp. F : FU(X)→FU(Y )) defined by

F(φ) := {Q⊆ Y | ∃P ∈ φ with f (P)⊆ Q}. (62)

For x ∈ X we define
•
x := {P ⊆ X | x ∈ P}. If we identify each x ∈ X with

•
x, then F is an

extension of X to all of F (X). If α ⊆P(X) we define [α] := {P⊆ X | ∃A ∈ α with A⊆ P}.

Definition 30. We call τ ⊆P(E) a topology on E if

1. /0,E ∈ τ

2. U,V ∈ τ implies U ∩V ∈ τ

3. τ ′ ⊆ τ implies
⋃

τ ′ ∈ τ

The pair (E,τ) is called topological space. Elements of τ are called open and their comple-
ments are called closed. To say that a filter φ on E converges to a ∈ E, denoted by φ

τ→ a,
means that for all open U with a ∈U exists P ∈ φ with P⊆U.

A filter contain those subsets that are sufficiently large in some sense. For example let x =
(xn)n∈N be a sequence in some set X and define ϕ(x) by

ϕ(x) := {P⊆ X | ∃n ∈ N∀k ≥ n : xk ∈ P}.

We can think of ϕ as the set of end-pieces of (xn)n∈N. Note that ϕ : XN → F (X) is not
necessarily injective. For example 1, 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ... and 1

2 ,1,
1
4 ,

1
3 ,

1
6 ,

1
5 , ... are two sequences

x = (xn)n∈N and y = (yn)n∈N with xn 6= yn for all n ∈ N, but ϕ(x) = ϕ(y). Nevertheless all
topological properties of x = (xn)n∈N can be reformulated in terms of ϕ(x). For example

xn converges to a ⇔ {U ⊆ X |U is a neighbourhood of a} ⊆ ϕ(x) ⇔ ϕ(x) τ→ a

Filters were introduced by Cartan (1937) and brought to popularity by Bourbaki. For more
details concerning general topological spaces and filters cf. Bourbaki (1966).

Definition 31. We call (Ω,A ,µ) measure space if

1. Ω is a nonempty set

2. A is a σ -algebra on Ω, that mean (a) Ω ∈A , (b) Ω\A ∈A whenever A ∈A and (c)⋃
i∈N

Ai ∈A whenever Ai ∈A for all i ∈ N
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3. µ : A → [0,∞)∪{∞} is a measure on (Ω,A ), that mean (a) µ( /0) = 0 and (b)

µ

(⋃
i∈N

Ai

)
= ∑

i∈N
µ (Ai)

whenever Ai ∈A , i ∈ N are pairwise disjoint sets.

For ∞ and −∞ the usual properties apply (for example a+∞ = ∞, ∞+∞ = ∞ and so on). A
measure space with µ(Ω)< ∞ is called finite measure space. If µ(Ω) = 1, (Ω,A ,µ) is called
probability space. In this case µ is called probability measure.

Definition 32. Let α ⊆P(Ω). We call

σ(α) :=
⋂

α ⊆A ⊆P(Ω)
A : σ -algebra

A (63)

the σ -algebra generated by α . If a topology τ is given on Ω, we call σ(τ) the Borel σ -algebra.

For basics from measure and integration theory in general and probability theory in particu-
lar, we refer to popular textbooks on these topics, such as Bauer (2001), Kallenberg (2002),
Shorack (2017), Elstrodt (2018), and Klenke (2020).

2 Finite measures in perfectly normal spaces
Definition 33. A closed subset B of a topological space is called Gδ -set if there exists open
sets On, n ∈ N with B =

⋂
n∈NOn. A topological space E is said to be a Gδ -space if every

closed subspace B of E is a Gδ -set. A topological space E is said to be normal if for disjoint,
closed A,B exists disjoint, open U,V with A ⊆U and B ⊆ V . A normal Gδ -space is called
perfectly normal.

Lemma 34. For a topological space X the following is equivalent.

1. X is perfectly normal.

2. For all closed A in X exists a continuous f : X → [0,1] with A = f−1(0).

3. For all closed, disjoint A,B in X exists a continuous f : X → [0,1] with A = f−1(0) and
B = f−1(1).

The proof can be found on page 48. All metrizable spaces are perfectly normal (but not vice
versa1) and all CW-complexes are perfectly normal (of course not vice versa), cf. Lundell
and Weingram (1969), Proposition 4.3. But there exists nice spaces (e.g. hereditarily nor-
mal2 compact Hausdorff spaces) that are not perfectly normal3. Nonetheless, in many cases

1There is a prominent example called Sorgenfrey line: (R,τ), with τ := {
⋃

B′ | B′ ⊆ B} and B :=
{[a,b) | a,b ∈ R}, cf. Bourbaki (1966), Part 2, Ch. IX. §4 Exercise 8.

2A space X is called hereditarily normal iff every subspace is normal. In fact this is equivalent to the condition:
for all A,B ⊆ X with A∩B = /0 = A∩B exists open and disjoint U,V with A ⊆U and B ⊆ V . The proof of
this statement is not important for us and at the same time very simple and therefore omitted.

3Let X uncountable, x ∈ X , τ := {U ⊆ X | x 6∈U or X \U is finite}. Then (X ,τ) is not perfectly normal, since
{x} is closed but not a Gδ -set but (X ,τ) is hereditarily normal (for A∩B = /0 = A∩B exists open and disjoint
U,V with A⊆U and B⊆V ).
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perfectly normal is exactly the property we need to prove a theorem in this context of weak
convergence. This is mainly due to the following Lemma 35 (there especially the second
point), which in combination with the dominated convergence theorem is crucial for the proof
of the most basic results (cf. Lemma 36, Lemma 38 and Theorem 40).

Lemma 35.
1. Let (E,d) be a metric space, F a closed subspace and ε > 0. Define

h : [0,∞)→ [0,1] , h(x) :=

{
−ε−1x+1 if x ∈ [0,ε]
0 if x > ε

fF,ε : E→ [0,1] , fF,ε(x) := h(d(x,F))

Then fF,ε has the following properties:

a) 0≤ fF,ε(x)≤ 1 for all x ∈ E

b) fF,ε(x) = 1 for all x ∈ F

c) fF,ε(x) = 0 for all x ∈ E with d(x,F)≥ ε

d) fF,ε is 1
ε
-Lipschitz-continuous

2. Let (E,τ) be normal and F a closed Gδ -set in E. Then there exists two sequences
(Bn)n∈N in τ and ( fn)n∈N in C(E, [0,1]) with⋂

n∈N
Bn = F , Bn+1 ⊆ Bn , fn(Bn+1)⊆ {1} , fn(E \Bn)⊆ {0}

and therefore fn(x)
τR−→ 1F(x) for n→ ∞ and for all x ∈ E.

The proof can be found on page 49. The aim of the next Lemma is to show that in a perfectly
normal space a finite measure is determined by its values for closed and open sets.

Lemma 36. Let (E,τ) be perfectly normal and P a finite measure defined on B(E), the Borel
σ -algebra. Then

∀A ∈B(E)∀ε > 0∃F : closed, G : open, with F ⊆ A⊆ G and P(G\F)< ε.

This means P is regular.

The proof can be found on page 49.

3 Weak convergence of finite measures
Intuitively, one would say of a series (µn)n∈N of measures to converge against µ , if

µn(A)→ µ(A) as n→ ∞ , for every A from the related σ -algebra (64)

holds. On the other hand if µn is the Dirac measure at 1
n (In the measuring space (R,B(R))),

one would intuitively expect that the sequence converges to µ , the Dirac measure in 0. But for
A = (−∞,0] the above requirement for the convergence of the measures is violated, because

lim
n→∞

µn(A) = 0 6= µ(A).
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This concept of convergence seems to be too strong. An equivalent formulation of the above,
intuitive convergence concept of measures is (cf. Elstrodt (2018), VIII exercise 4.3):

lim
n→∞

∫
Ω

f dµn =
∫

Ω

f dµ , for all bounded and measurable f . (65)

The proof of the equivalence of (65) and (64) can be found on page 50.

On the basis of this characterization we seek for weaker functional classes F and sets of
measures M , so that the above equation (65) holds for these measures and these classes of
functions. Roughly speaking the average value of sufficiently nice functions should converge.
Furthermore we want F to be a separating family for M . That means∫

Ω

f dµ =
∫

Ω

f dν for all f ∈F =⇒ µ = ν

for all µ,ν ∈M . This guarantees the uniqueness of the limit value. If one chooses the finite
measures on the borel σ -algebra as M and the bounded continuous functions as F , one
obtains the weak convergence described below. It will turn out that this kind of convergence
is exactly the kind of convergence we encounter in the central limit theorem. Another choice
of function classes and sets of measures provides, for example, the vague convergence (which
will not be discussed here).

Let (E,τ) be a topological space, M(E) := {p : B(E)→ R | p is a finite measure} where
B(E) is the Borel σ -algebra. Let τw be the coarsest topology on M(E) such that all mappings

α f : M(E)→ R , p 7→
∫

E
f dp , f ∈C(E,R)∩B(E,R),

continuous, where C(E,R) are continuous and B(E,R) are bounded functions. In other words:
τw is the initial topology on M(E), with respect to {α f | f ∈ C(E,R)∩B(E,R)}. If E is a
metrizable space, that is separable and complete (as metric space), then this topology can even
be defined by a metric, the Prokhorov metric. We study here only the topological case. It is
widely known that a topology is completely characterized by its convergent filter. Also well
known is that

ψ
τw→ p ⇔ ∀ f ∈C(E,R)∩B(E,R) : α f (ψ)

τR→ α f (p) (66)

holds for any filter ψ on M(E) with respect to τw, cf. Bourbaki (1966), Part 1, Chap. I. §7.6
Proposition 10. However, in the next definition we will use the more intuitive notation

∫
E f dψ

instead of α f (ψ), i.e. we set
∫

E f dψ := α f (ψ) from now on.

Definition 37. The initial topology τw on M(E), with respect to {α f | f ∈C(E,R)∩B(E,R)}
is called topology of weak convergence on M(E). Let ψ be a filter on M(E). We say ψ

converges weakly to p ∈M(E) iff∫
E

f dψ
τR→
∫

E
f dp for all f ∈C(E,R)∩B(E,R).

In this case we write ψ
w→ p and call

∫
E f dp weak limit of ψ . A sequence (qn)n∈N in M(E)

converges weakly to p ∈M(E) iff the filter induced by (qn)n∈N converges weakly to p, i.e.∫
E

f dqn
τR−→

n→∞

∫
E

f dp for all f ∈C(E,R)∩B(E,R).

In this case we write (qn)n∈N
w→ p or simply qn

w→ p.
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According to (66), ψ
τw→ p and ψ

w→ p are two equivalent formulations. One more remark: If
p ∈M′ ⊆M(E) and ψ is a filter on M′ then obviously

ψ
in M′→ p ⇐⇒ i(ψ)

in M(E)→ p for inclusion i : M′ ↪→M(E).

Therefore we will not distinguish between ψ and i(ψ).

Lemma 38. The weak limit of filters ψ on M(E) is unique if (E,τ) is perfectly normal

ψ
w→ P and ψ

w→ Q implies P = Q

In other words (M(E),τw) is Hausdorff provided (E,τ) is perfectly normal4.

The proof can be found on page 50.

Lemma 39. Let ψ be a filter on R, ψ0 a filterbase of ψ and x ∈ R.

1. a) supinfψ := sup{infP | P ∈ ψ} ≤ inf{supP | P ∈ ψ}=: infsupψ and

b)
⋂

P∈ψ P⊆
[

supinfψ, infsupψ
]

Note that the two sets inf
⋂

P∈ψ P and sup{infP | P ∈ ψ} can be different5. The same
holds for sup

⋂
P∈ψ P and inf{supP | P ∈ ψ}.

2. ψ
τR→ x ⇐⇒ supinfψ = infsupψ = x

3. a) sup{infP | P ∈ ψ0}= sup{infP | P ∈ ψ}
b) inf{supP | P ∈ ψ0}= inf{supP | P ∈ ψ}

The proof can be found on page 51. Using Definition 37 directly for checking if a filter ψ

of finite Borel measures converge weakly or not seems to be somewhat elusive, because it
characterizes ψ

w→ P in terms of a whole bunch of conditions (for all bounded and continuous
f ) instead of using the definitions of the involved measures directly. In the next theorem
(referred to as the Portmanteau Theorem) we therefore develop more suitable ways of defining
weak convergence.

Theorem 40. (Portmanteau-Theorem)
For any perfectly normal space E, P ∈M(E) and filter ψ on M(E) the following statements
are equivalent.

1.
∫

E f dψ
τR→
∫

E f dP for each continuous map f : E→ [0,1] (ψ w→ P)

2.
∫

E f dψ
τR→
∫

E f dP for each Lipschitz-continuous map f : E → [0,1], if E is a metric
space (E,d).

3.
∫

E f dψ
τR→
∫

E f dP for each measurable and bounded map f : E→ R with P(D f ) = 0,
where D f := {x ∈ E | ∃ open V , f (x) ∈V such that ∀ open U, x ∈U: f (U) 6⊆V} is the
set of points of discontinuity.

4It is interesting to ask whether the converse also holds true.
5For example let ψ0 be an ultrafilter on (−∞,0] that does not converge in (−∞,0]. Define ψ := {R⊆ R | ∃P ∈

ψ0 with P∪ [1,2]⊆ R}. Then
⋂

P∈ψ P = [1,2] and sup{infP | P ∈ ψ} ≤ 0 < 1 = inf
(⋂

P∈ψ P
)
.
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4. inf{supQ(F) | Q ∈ ψ} ≤ P(F) for each closed F ⊆ E

5. sup{infQ(G) | Q ∈ ψ} ≥ P(G) for each open G⊆ E

6. ψ(A)
τR→ P(A) for each A⊆ E with P(∂A) = 0. These A are called P-continuity sets.

In 4. and 5. note that

sup{infQ(G) | Q ∈ ψ}= liminf pn(G) and inf{supQ(G) | Q ∈ ψ}= limsup pn(G)

if ψ is induced by a sequence (pn)n∈N of finite Borel measures.

The proof can be found on page 51. The next theorem gives a criterion for a filter ψ to
converge weakly, by showing ψ(A) w→ P(A) for all A ∈U for a suitable subclas U ⊆B(E).

Theorem 41. Let E be perfectly normal, P ∈M(E), ψ ∈F (M(E)) and U ⊆B(E) with

1. A1, ...,An ∈U ⇒
⋂n

i=1 Ai ∈U ,

2. each open G⊆ E is a countable union of elements of U ,

3. ψ(A)
τR−→ P(A) for all A ∈U .

Then ψ
w→ P.

The proof can be found on page 53. The last theorem in this paragraph provides a picturesque
idea of weak convergence, especially in the context of sequences of measures and connects
it to a famous example of weak convergence, the central limit theorem, cf. the introduction
in Billingsley (1968, 1999) and Proposition 5.9 in Kallenberg (2002). Let F : M(R)→ RR,
F(q)(x) := q((−∞,x]). If ψ is a filter on M(R), then F(ψ) is a filter on RR, cf. (62). Given
x∈R, F(ψ)(x) := {{ f (x) | f ∈Q} |Q∈F(ψ)} is a filter on R. If ψ is generated by a sequence
(Fn)n∈N of distribution functions, then F(ψ)(x) is generated by the sequence (Fn(x))n∈N. Note
in this context Definition 61 and Lemma 62.

Theorem 42. Let p ∈M(R) and ψ be a filter on M(R) such that there exists some Q ∈ψ with
q(R) = p(R) for all q ∈ Q. Then

ψ
w→ p ⇔ ∀x ∈ c(F(p)) : F(ψ)(x)→ F(p)(x),

where c(F(p)) is the set of continuity points of F(p).

The proof can be found on page 54.

4 Convergence in distribution
We define the convergence of a filter of random variables in terms of the weak convergence
of the distributions of these random variables. Aim of this paragraph is to state and prove
Rubin’s continuous mapping theorem6 (Theorem 46).

6This was first proven by H. Rubin in an unpublished paper, see the discussion in the appendix of Anderson
(1963) and it was brought to popularity by Billingsley (1968).
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Definition 43. Let X : Ω→ E be a map from a probability space (Ω,A ,P) to a perfectly
normal space (E,τ) that is measurbale (i.e. X−1(B) ∈A for all B ∈B(E)). The distribution
of the random variable X is the probability measure PX : B(E)→ R defined by PX(B) :=
P(X−1(B)). I. e., we have a canonical mapping D : R(Ω,E)→M(E), D(Y ) := PY . Let

R(Ω,E) := {Y ∈ EΩ | Y−1(B) ∈A for all B ∈B(E)}

be the set of all random variables. We say a filter φ on R(Ω,E) converges in distribution to
X ∈ R(Ω,E) iff

D(φ)
w→D(X) (the image filter converges weakly)

and we write φ
D→ X.

Definition 44. Let (X ,τ) and (Y,σ) topological Spaces. A filter Φ on Y X converges continu-
ously in x to h ∈ Y X iff

ψ
τ→ x implies Φ(ψ)

σ→ h(x) for all filter ψ on X , (67)

whereby Φ(ψ) := {A⊆ Y | ∃P ∈Φ,Q ∈ ψ : P(Q)⊆ A} with P(Q) := {g(x)| g ∈ P,x ∈ Q}.

Since ψ
τ→ x⇔ •

x∩ τ ⊆ ψ , (67) is equivalent to

φ([
•
x∩ τ])

σ→ h(x). (68)

This is useful in that we have defined the weak convergence of a filter ψ on M(E) with respect
to the convergence of a topology τw, that is, ψ

w→ P ⇔ ψ
τw→ P.

Lemma 45. Let (X ,τ) and (Y,σ) topological spaces, ( fn)n∈N be a sequence in Y X and x ∈ X
be a point with a countable neighbourhoodbase (cnb). Then the following is equivalent:

1. The filter associate with ( fn)n∈N converge continously in x to f .

2. ∀ sequences (xn)n∈N in X with xn
τ→ x it follows fn(xn)

σ→ f (x).

The proof can be found on page 55. The next theorem (continuous mapping theorem) is
tremendously important for this thesis. We will use the following notation. Let γ : FE →
M(F)M(E), γ( f )(P) := P f , φ be a filter on FE and Φ := γ(φ) be the image filter of φ under γ .

Theorem 46. Let (E,τ), (F,σ) be perfectly normal, P ∈M(E), h : E→ F and φ be a filter on

FE with a countable base. If P(D) = 0, with D := {x ∈ E | φ([•x∩ τ])
σ

6→ h(x)} and if ψ
w→ P

holds as well, then Φ(ψ)
w→ h(P) follows (note that h(P) = Ph denotes the image measure).

The proof can be found on page 55. Note that in Theorem 46 neither the mapping h needs to
be continuous, nor C(E,F) ∈ φ was assumed. Moreover, any filter induced by a sequence has
a countable basis, but not vice versa.
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Part C. Technical statements and
proofs

In this part we collect some important concepts and theorems necessary for understanding Part
A or the proofs of some statements from it. Depending on the needs, the reader can thus refer
here (references to this part are given at all appropriate places). For all statements given here,
we provide detailed proofs or extensive references to standard works on the respective topic.
We start with a simple lemma about projections, which we needed at the very beginning of the
thesis when defining the residuals.

Lemma 47. 1. Let B ∈Rn×n be idempotent (i.e., BB = B). Then B = prU,V , B> = prV⊥,U⊥

and In−B = prV,U , where U := im(B) and V := ker(B).

2. Let X ∈Rk×d and U := im(X). Then prU,U⊥ = X(X>X)−X>, where (X>X)− denotes a
generalized inverse7 of X>X. Note that (X>X)− = (X>X)−1 if rank(X) = d.

3. Let X ∈ Rk×d , M ∈ Rk×m, rank(M)+ rank(X) ≥ k, M>X = 0 and M>M = Im. Then
MM> = prU⊥,U , where U := im(X).

The proof can be found on page 56.

1 Brownian motion and Donskers Theorem
In this small paragraph we give a few important results on Brownian motion that are funda-
mental to this work and refer to classical and contemporary literature for proofs and further
studies.

Brownian motion
Definition 48. We call (X ,(Ω,A ,µ),(E,B), I) stochastic process if (Ω,A ,µ) is a probabil-
ity space, (E,B) a measure space, I is some (index) set and X : Ω× I→ E is a map, such that
Xt : Ω→ E, Xt(ω) := X(ω, t) is measurable for all t ∈ I.

Definition 49. A real-valued stochastic process (B,(Ω,A ,µ),(R,B(R)), I) with the follow-
ing properties

1. I ⊆ R is an Intervall of positive length with 0 = inf(I) ∈ I

2. B0(ω) = 0 a.s.

7A− ∈Rd×k is a generalized inverse of A∈Rk×d if AA−A = A holds, which in turn is equivalent to ∀y∈ im(A) :
A(A−y) = y. One possible generalized inverse is given, for example, by the Moore-Penrose inverse.
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3. Btn−Btn−1 , ... , Bt2−Bt1 are independent for all 0≤ t1 < ... < tn ∈ I

4. Bt−Bs ∼ N(0, t− s) for all 0≤ s < t ∈ I

5. the paths I 3 t 7→ B(ω, t) ∈ R are continuous for µ-almost all ω ∈Ω

is called Brownian motion.

Figure 7: A typical path of a Brownian motion.

Because of 5. we can think of B as a random variable B : Ω→C(I,R), ω 7→ (t 7→ B(ω, t)),
where in C(I,R) we take as σ algebra the trace of the product σ algebra ∏i∈I B(R) on C(I,R).
The corresponding image measure W := µB is called Wiener measure. That this procedure
makes sense and that there are stochastic processes at all which satisfy Definition 49, we
summarize with the following short theorem.

Theorem 50. A Brownian motion exists.

A proof of this Theorem can be found for example in Billingsley (1968), Ch. 2 or in Hida
(1980), Ch. 2 or in Partzsch and Schilling (2012), Ch. 3 and 4. The following equations in the
next theorem were first proved by P. Levy. Equation (69) is called Levi’s triple law.

Theorem 51. Let I ⊆ (a,b), a < 0 < b, t > 0, mt := inf
0≤s≤t

Bs and Mt := sup
0≤s≤t

Bs. Then

µ (Mt > b) = 2 ·µ(Bt > b)
µ (mt < a) = 2 ·µ(Bt < a)

µ(mt > a ∧ Mt < b ∧ Bt ∈ I) =
∞

∑
n=−∞

1√
2πt

∫
I

(
e−

(x+2n(b−a))2
2t − e−

(x−2a−2n(b−a))2
2t

)
dx (69)

For a proof see for example Hida (1980), Proposition 2.9 and Proposition 2.10, respectively
or Partzsch and Schilling (2012), Theorem 6.9 and Theorem 6.18, respectively.
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Donsker’s Theorem
Definition 52. We call (ξn,i) n ∈ N

1≤ i≤ n
a triangular array of random variables if ξn,1, ...,ξn,n :

(Ω,A ,P)→ R are i.i.d. r.v. with E(ξn,i) = 0 and Var(ξn,i) = σ2 for all n ∈ N and 1≤ i≤ n.

Theorem 53. Suppose (ξn,i)n∈N,1≤i≤n is a triangular array of random variables. Then

1
σ
√

kn
Tn(ξn,1, ...,ξn,n)

D→ B
(

P
1

σ
√

kn
Tn(ξn,1,...,ξn,n) w→ PB , cf. Definition 43

)
For a proof see extension to Theorem 14.1 in Billingsley (1999), Theorem 20.1.1 and Re-
mark 20.1.1 in Borovkov (2013), Satz 10.2 in Bischoff (2014) or Theorem 27.14 in Davidson
(1994), the latter being proved for a martingale difference array.

2 Functions with existing limits from left and right
We study monotone functions in terms of their invertibility and define generalized inverses.
We then summarize the most important results for us on functions of bounded variation and
on measure-defining functions. Finally, we consider functions which have left and right limits
at every point and we give a new and interesting construction to factorizes a family f̃i, i ∈ J of
such functions simultaneously into continuous functions fi and a strictly monotone function
h, i.e., f̃i = fi ◦ h for all i ∈ J. This factorization will become important for weakening the
regularity assumptions for the regression functions.

Monotone functions
Each monotone function can be assigned a generalized inverse function, which under certain
conditions is the inverse function. In case of distribution functions, these are called quantile
function. The corresponding construction for distribution functions is given in practically
every textbook on statistics. However, we need this construction for a somewhat larger class
of non-decreasing real functions. Curiously, this more general case is not really treated in
the literature, although the underlying technique does not change. We try to overcome this
deficiency by specifying of all classical properties of the quantile function exactly under which
conditions they remain valid in the general case. Then we discuss by a short lemma how to
undo “generalized inversion” and we pick up a new and interesting result about the probability
integral transformation from Heindl (2022), Lemma 7.1.2, with an alternative and somewhat
shorter proof. Finally, we give an extension of Theorem 42.

Definition 54. Let f : D→ R, D ⊆ R and t be a cluster point of D. We call L (resp. R) the
left (resp. right) limit of f at t if f (tn)→ L holds (resp. f (tn)→ R) for all sequences (tn)n∈N
in D∩ (−∞, t) (resp. in D∩ (t,∞)) with tn→ t.

Lemma 55. Let f : D→ R, D⊆ R and t be a cluster point of D. Then it is equivalent:
1. For all nondecreasing sequences (tn)n∈N in D∩ (−∞, t) with tn→ t, f (tn)→ f (t) holds.
2. For all sequences (tn)n∈N in D∩ (−∞, t) with tn→ t, f (tn)→ f (t) holds.
An analogous equivalence holds for right-sided limits.

The proof can be found on page 56.
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Definition 56. Let I ⊆ R be an intervall and F : I → R be non-decreasing. We define the
generalized inverse of F by F− : QF → I ∪ {−∞}, F−(q) := inf{t ∈ I | F(t) ≥ q} where
QF := {q ∈ R | ∃a,b ∈ I with F(a)≤ q≤ F(b)}. If F is a distribution function, F− is called
quantile function.

Note that QF is an interval and inf(I) =−∞ if I is a left unbounded interval.

Lemma 57. Let I ⊆ R be an intervall and F : I→ R be non-decreasing. Then

1. F− is non-decreasing on QF .

2. F−(q) = min{t ∈ I | F(t)≥ q} if F−(q) ∈ I and F is right continuous in F−(q).

3. F(F−(q))≥ q if F−(q) ∈ I and F is right continuous in F−(q).

4. F−(F(t))≤ t for all t ∈ I.

5. q≤ F(t)⇒ F−(q)≤ t for all t ∈ I and q ∈ QF .

6. F−1(q)≤ t ⇒ q≤ F(t) if F−(q) ∈ I and F is right continuous in F−(q).

7. F(F−(q)) = q if q ∈ F(I), F−(q) ∈ I and F is right continuous in F−(q).

8. F− is left continuous on QF if F is right continuous on I.

9. F−|B is the inverse of F if F is strictly increasing, where B := F(I).

10. Let J be an interval, F : I→ J and let G : J→R be non-decreasing. Then (G◦F)−(q) =
F−(G−(q)) applies to any q ∈ QG with G−(q) ∈ QF and F−(G−(q)) ∈ I.

Remark 58. If we interchange the terms “left” and “right” and “≤” with “≥”, all statements
from above hold if we also interchange F− with F+(q) := sup{t ∈ I | F(t)≤ q}.

The proof of Lemma 57 can be found on page 56.

Lemma 59. Let h : [a,b]→ [h(a),h(b)] be a non-decreasing and left continuous function.
Then h+ : [h(a),h(b)]→ [a,b] is non-decreasing and right continuous and (h+)− = h holds.
If h : [a,b]→ [h(a),h(b)] is right continuous instead, then (h−)+ = h holds.

The proof can be found on page 58.

Lemma 60. Let X : (Ω,A ,P)→ R be a r.v. and let F be its distribution function.

1. If U is a uniformly distributed r.v. on (0,1), then F−(U), called quantile transformation,
also has distribution function F.

2. Define U := F ◦X, which is called the probability integral transformation. Then

FU(r) := P(F(X)≤ r) =


0 if r ≤ 0

lim
x↗F−(r)

F(x) if r 6∈ F(R) and r ∈ (0,1)

r if r ∈ F(R) and r ∈ (0,1)
1 if r ≥ 1.

(70)
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Moreover,

PU |σ(F−) = λ |σ(F−), (71)

where PU |σ(F−) resp. λ |σ(F−) denotes the restriction of PU (resp. λ ) to the σ algebra
(F−)−1(B(R)) that is generated by F− and B(R). Finally, for X̃ := F−(U),

P(X = X̃) = 1 and F(X̃) =U. (72)

The proof can be found on page 57.

Definition 61. A sequence of cummulative distribution functions (respectively quantil func-
tions) is defined to converge weakly to a cummulative distribution function (resp. a quantil
function), denoted by Fn F (resp. F−n  F−), if and only if Fn(t)

n→∞−→ F(t) at every t where
F is continuous (resp. F−n (u) n→∞−→ F−(u) at every u where F− is continuous).

Lemma 62. For any sequence of distribution functions, Fn F if and only if F−n  F−.

The proof can be found on page 58.

Measure defining functions and functions of bounded variation
An important class of real functions directly related to monotone functions are functions of
bounded variation. This class plays a significant role in many areas of mathematics. It is
interesting for us with respect to its properties in measure and integration theory, since they
are directly related to signed measures. The next Theorem is from Tao (2011), Theorem 1.7.9.

Theorem 63. Let F : R→ R be non-decreasing. Then there exists a unique Borel measure
µF : B(R) → [0,∞] such that µF([a,b]) = F(b+)− F(a−), µF([a,b)) = F(b−)− F(a−),
µF((a,b]) = F(b+)−F(a+), µF((a,b)) = F(b−)−F(a+) and µF({a}) = F(a+)−F(a−)
for all −∞ < a < b < ∞.

Definition 64. For a≤ b and f : [a,b]→ R,

V ( f ,a,b) := sup

{
n

∑
i=1
| f (xi)− f (xi−1)|

∣∣∣∣ n ∈ N>0 and a = x0 ≤ ...≤ xn = b

}
is the variation of f on [a,b].

Lemma 65. Let a≤ b and f : [a,b]→ R be given. It holds:

1. [c,d]⊆ [a,b]⇒ V ( f ,c,d)≤V ( f ,a,b)

2. a≤ c≤ b⇒ V ( f ,a,b) =V ( f ,a,c)+V ( f ,c,b)

3. V ( f +g,a,b)≤V ( f ,a,b)+V (g,a,b)

4. V ( f ,a,b)< ∞⇔ ∃ g,h non decreasing with f = g−h.

The representation f = g−h with g(x) := 1
2(V ( f ,a,x)+ f (x)) and h(x) := 1

2(V ( f ,a,x)−
f (x)) is called canonical Jordan decomposition.

5. V ( f ,a,b)< ∞⇒ f is Borel-measurable
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6. Let f be left continuous in c ∈ (a,b] (resp. right continuous in c ∈ [a,b)). Then the
function [a,b] 3 x 7→ V ( f ,a,x) is left (resp. right) continuous in c too. In particular, g
and h from the proof of 4 can be chosen appropriately.

The proof can be found on page 59.

Lemma 66. Let g : R→ R be Borel-measurable and a≤ b.

1. Let F : R→ R be non-decreasing and right continuous. Then∫
R

1(a,b] ·g dµF =
∫
[F(a),F(b)]

g◦F−0 dλ , (73)

where F0 := F|[a,b] : [a,b]→ [F(a),F(b)] is the restriction of F on [a,b].

2. Let F : R→ R be a distribution function. Then∫
R

1(a,b] ·g dµF =
∫
(F(a),F(b))

g◦ (F−)|(0,1) dλ . (74)

The proof can be found on page 60.

A simultaneous factorization of a family of functions
Lemma 67. 1. All functions f̃i : [0,1]→R, i ∈ J have an existing left limit in all x ∈ (0,1] and
an existing right limit in all x∈ [0,1) and D′ := {x∈ [0,1] | ∃ i∈ J such that f̃i is discontinuous
at x} is at most countable. Then there are continuous fi : [0,1]→ R, i ∈ J and a strictly
monotonically increasing h : [0,1]→ [0,1] (i.e. h(r1)< h(r2) for all r1 < r2) with

f̃i = fi ◦h for all i ∈ J.

2. If all f̃i are additionally left continuous (resp. right continuous), then h can be chosen to be
additionally left continuous (resp. right continuous) and h can be written as the generalized
inverse of a continuous nondecreasing function F : [0,1]→ [0,1], i.e. h = F− (resp. h = F+),
with F(0) = 0 and F(1) = 1.
3. If in addition all f̃i are continuous at t = 0 (resp. t = 1 if the f̃i are right continuous), then

F(t)> 0 for all t ∈ (0,1] and F(t)< 1 for all t ∈ [0,1). (75)

4. Regardless of the previous addition, the construction of the fi yields that all fi are of
bounded variation if all f̃i are of bounded variation.

The proof can be found on page 61. It is clear that all implications stated in Lemma 67 are
in fact equivalences. That is, if, for example, f̃i = fi ◦F− holds for all i ∈ J and continuous
fi and F is a continuous distribution function, then D′ is countable, all f̃i are left continuous
and have right limits. An analogous formulation holds for all other stated implications. The
usefulness of this lemma is then shown in the proof of Theorem 79 and the stochastic appli-
cations to the (recursive) residual partial sum processes given below. The basic idea is that
regression functions f̃i which are not continuous (but satisfy the conditions of Lemma 67) are
factorized f̃i = fi ◦F−. Certain computations can then be carried out for the “new” continuous
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regression functions, while F can be integrated into the remaining statistical model assump-
tions. In the resulting formulas of the limit processes considered there, fi and F now occur. By
certain transformations these reduce to the “old” regression functions f̃i and the factorization
no longer appears in the formulas. However, we are sure that this lemma (together with the
related Lemma 69) has applications in other areas as well.

Remark 68. Note that a function f : [0,1]→ R with existing left (or right) limits in every
x ∈ [0,1] can have at most countably many points of discontinuity. Thus it follows that D′ from
Lemma 67 is countable in any case if J is countable. But of course D′ can still be countable
even if J is uncountable. This remains then to be checked for the concrete f̃i, i ∈ J.

The proof of Remark 68 can be found on page 63. We give a second version of Lemma 67
with a different proof. It was the version from Lemma 69 that was first conjectured by Thomas
Heindl (with fi being continuous and F being right continuous) and shortly thereafter proved
independently by Heindl (in a version similar to that from Lemma 69 with fi being Lipschitz
continuous and F being right continuous, as Lemma 7.1.5 in his dissertation) and Evers (in
the version given here in Lemma 67). For Lemma 69 we give two slightly different proofs,
both based on Heindl’s original measure-theoretic argument (cf. Remark 81). Note that the
construction of F in the proof of Lemma 67 depends only on D′ and not on the mappings f̃i,
i ∈ J and thus works for infinite J as well. The construction of F in the proof of Lemma 69,
on the other hand, depends explicitly on all f̃i, i∈ J. Moreover, J must be finite and all f̃i must
be of bounded variation. But for this the second proof yields Lipschitz continuous functions,
instead of continuous functions.

Lemma 69. Let f̃1, . . . f̃d : [0,1]→ R be of bounded variation. Then there are Lipschitz con-
tinuous functions f1, . . . fd : [0,1]→R and a strictly monotonically increasing h : [0,1]→ [0,1]
with f̃i = fi ◦h for all i ∈ {1, . . . ,d}. If all f̃i are left continuous, then h is left contiunuous too
and furthermore h = F− for some non-decreasing continuous function F : [0,1]→ [0,1] with
F(0) = 0 and F(1) = 1. Moreover, if every f̃i is continuous in 0, then (75) also holds.

The proof can be found on page 63.

3 Asymptotic-F-designs
Lemma 70. Let s ∈ (0,1] and (tn,1, . . . , tn,n) be an asymptotic F-design in [a,b], i.e. a≤ tn,1 ≤
. . .≤ tn,n ≤ b for all n ∈N. Then (tn,bsnc)n∈N has cluster points and for each such cluster point
x′, x′ ≥ F−(s) holds. If F− is continuous in s, then tn,bsnc

n→∞−→ F−(s) holds.

The proof can be found on page 65. For the upper F-design we can strengthen Lemma 70
and we obtain tn,bsnc→ F−(s) for every s ∈ (0,1). [Proof: Since tn,bsnc = F−(bsnc

n ), bsnc
n → s

and bsnc
n ≤ s, we are done due to the left continuity of F− and Lemma 55. �] The nearby

conjecture tn,bsnc→ F−(t) for all s, is wrong. In fact, F−n (sn) may even be divergent, even if
(sn)n∈N is a sequence convergent in [0,1]. This can be seen in the following example.

Example 71. We define on [a,b] = [0,2] the designs (tn,1, ..., tn,n) with

(tn,1, ..., tn,n) =


(

n/2−1︷ ︸︸ ︷
0, ...,0,

n/2+1︷ ︸︸ ︷
2, ...,2) if n is even,

(0, ...,0︸ ︷︷ ︸
(n+1)/2

,2, ...,2︸ ︷︷ ︸
(n−1)/2

) if n is odd.
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To these correspond Fn : R→ [0,1] for n even and odd, respectively, see (26)

Fn(x) =


0 if x < 0
1
2 −

1
n if 0≤ x < 2,

1 if x≥ 2
and Fn(x) =


0 if x < 0
1
2 +

1
2n if 0≤ x < 2,

1 if x≥ 2.

Obviously supx∈[0,2] |Fn(x)−F(x)| n→∞−→ 0 holds for F(x) :=


0 if x < 0
1/2 if 0≤ x < 2
1 if 2≤ x

.

Thus tn,b n
2c =

{
2 if n is even
0 if n is odd

and F−(1
2) = 0. But even if (sn)n∈N converges in [0,1], in

general F−n (sn) need not converge at all: F−n (sn) =

{
2 if n is even
0 if n is odd

for sn := 1
2 −

1
2n .

Lemma 72. Let (tn,1, ..., tn,n)n∈N be an asymptotic F-design in [a,b] and F− be continuous in
s ∈ (0,1]. Let u ∈C[0,1] and f ∈C[a,b] be of bounded variation. Then

bsnc

∑
i=2

( f (tn,i)− f (tn,i−1))u
(

i−1
n

)
n→∞−→

∫ (R)

[a,F−(s)]
(u◦F) d f . (76)

The proof can be found on page 65.

4 Bounds for largest and smallest eigenvalues of a
Gram matrix

In the context of recursive (resp. ordinary) residuals, Gramian matrices occur in a natural way.
To ensure the convergence of certain expressions, we need estimates of the eigenvalues of
these matrices. We define the spectral norm by ‖A‖2 := max‖x‖2=1 ‖Ax‖2. Note the relations

∥∥∥∥1
n

X>X
∥∥∥∥2

2
=

[
χmax

(
1
n

X>X
)]2

,

∥∥∥∥∥
(

1
n

X>X
)−1

∥∥∥∥∥
2

2

=

[
χmin

(
1
n

X>X
)]−2

and

1
n

m

∑
k=1

fi(tn,k) f j(tn,k) =
∫
(0,m

n )
( fi f j)◦F−n dλ ,

where the minimum and maximum eigenvalues of a symmetric matrix are denoted by χmin(A)
and χmax(A), respectively.

Lemma 73. Let F : R→R be a distribution function, a < c≤ b, f1, . . . , fd ∈ L2([a,b],F) and

H(t) :=
∫
(0,t)

( f f>)◦ (F−)|(0,1) dλ for all F(c)≤ t ≤ F(b). If (A1) or (A2) holds,

(A1) f1 ·1(a,c], . . . , fd ·1(a,c] are linearly independent in L2([a,b],F),
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(A2) a≤ inf(support(F)) and f1 ·1[a,c], . . . , fd ·1[a,c] are linearly independent in L2([a,b],F),

then

∃χmin,χmax ∈ (0,∞) ∀t ∈ [F(c),F(b)] : χmin ≤ χmin(H(t))≤ χmax(H(t))≤ χmax. (77)

The proof can be found on page 67.

Lemma 74. Let (tn,1, ..., tn,n)n∈N be a sequence of designs in [a,b] with distribution functions
Fn (in the sense of (26)). Let F : R→ R be a distribution function with Fn F (cf. Definition
61) and let g : [a,b]→R be λ–a.e. continuous. Then ∀ε > 0 ∃Kε ⊆ (0,1) with λ (Kε)> 1−ε

and sups∈Kε
|g(F−n (s))−g(F−(s))| → 0.

The proof can be found on page 68.

Lemma 75. Let (tn,1, ..., tn,n)n∈N be a sequence of designs in [a,b] with distribution functions
Fn (in the sense of (26)). Let F : R→ R be a distribution function with Fn F (cf. Definition
61), a < c ≤ b with F(c) > 0, K ∈ N and f1, . . . , fd : [a,b]→ R be bounded. Under the as-
sumptions of Lemma 73, χ̃min, χ̃max > 0 and n0 ∈N exists such that ∀n≥ n0∀ t ∈ [F(c),F(b))

0 < χ̃min ≤ χmin

(
1
n

X>n,btnc−KXn,btnc−K

)
≤ χmax

(
1
n

X>n,btnc−KXn,btnc−K

)
≤ χ̃max.

The proof can be found on page 68.

Remark 76. From Lemma 75 it follows immediately that under its assumptions and conse-
quences rank(Xn,k) = d holds for all n≥ n0 and all k with bn ·F(c)c−d ≤ k ≤ n.

Lemma 77. Under the assumptions of Lemma 75,

sup
t∈[0,1]

∥∥∥∥1
n

X>n,btnc−KXn,btnc−K−
∫
[0,t]

( f f>)◦F− dλ

∥∥∥∥ n→∞−→ 0 (78)

holds for all K ∈ N and each matrix norm ‖ · ‖ (note that all matrix norms are equivalent).
However, not only the above relation is valid, but also

sup
t∈[F(c),1]

∥∥∥∥∥
(

1
n

X>n,btnc−KXn,btnc−K

)−1

−
(∫

[0,t]
( f f>)◦F− dλ

)−1
∥∥∥∥∥ n→∞−→ 0. (79)

Note that the c from the premises in Lemma 75 plays no role for (78).

The proof can be found on page 69.

Lemma 78. Under the assumptions of Lemma 75 there exists r ≥ 0 and n0 ∈ N with

1≤ cn,btnc−K = 1+
1
n

f (tn,btnc−K)
>(

1
n

X>n,btnc−1−KXn,btnc−1−K)
−1 f (tn,btnc−K)≤ 1+

r
n

for all n≥ n0 and t ∈ [F(c),1], where cn,k := 1+‖an,k‖2 and an,k is defined in Definition 1.

The proof can be found on page 70.
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5 A theorem on continuous convergence in C[0,1]

In this section, we formulate the technical heart to determine the distribution of the recursive
residual partial sum limit process under H0 and under H1. Following MacNeill (1978a) we
introduce a discrete difference operator Vn : C[0,1]→ Rn by

Vn(u) :=
(

u
(

1
n

)
−u(0),u

(
2
n

)
−u
(

1
n

)
, ...,u(1)−u

(
(n−1)

n

))>
(80)

Next, we define8

φn : C[0,1]→C[0,1] , φn := Tn−d ◦g◦M>n,n ◦Vn,

according to the right digram, where Mn,n is defined in

Rn M>n,n // Rn−d

Tn−d◦g
��

C[0,1]

Vn

OO

φn
//C[0,1]

(81)

(15) and Tn−d and g were defined in (19) and (22), respectively. Obviously, the following
equations hold true

Vn ◦Tn = idRn, (thus Tn is injective and Vn is surjective) (82)

Tn−d ◦g◦ rn
(18)
= Tn−d ◦g◦M>n,n ◦ εn

(82)
= Tn−d ◦g◦M>n,n ◦Vn ◦Tn ◦ εn = φn ◦Tn ◦ εn. (83)

Because of (82) one can think of Tn as a discrete integral operator.

Theorem 79. Let (tn,1, ..., tn,n)n∈N be an asmptotic F-design in [a,b] and consider model (3)
with f1, . . . , fd : [a,b]→ R all of bounded variation, left continuous on (a,b], continuous in a
and let f1 ·1[a,c], . . . , fd ·1[a,c] are linearly independent (l.i.) in L2([a,b],F) for some c ∈ (a,b].
Let δ := F(c)> 0, φn defined as in (81). Then φ : C[0,1]→C[0,1],

φ(u)(x) := u(x)−u(δ )

+

x∫
δ

f (F−0 (t))>
(∫

[0,t]
( f f>)◦F−0 dλ

)−1[∫
(a,F−0 (t))

(u◦F0) dµ f + f (F−0 (0))u(0)− f (F−0 (t))u(t)
]

dt,

for x ∈ [δ ,1] and φ(u)(x) = 0 for x ∈ [0,δ ), is continuous with respect to the sup norm, where
F0 := F|[a,b] and µ f is the Lebesgue-Stieltjes measure generated9 by f and

‖φ(u)−φn(u)‖→ 0 and ‖φ(u)−φn(un)‖→ 0

holds for all u,un ∈C[0,1] with ‖u−un‖→ 0 (with sup-norm ‖ · ‖= sup
x∈[0,1]

| · | on C[0,1]).

The proof can be found on page 70.

8For ordinary residuals MacNeill (1978a) and Bischoff (1998) defined a
similar function ϕn by ϕn : C[0,1]→ C[0,1], ϕn := Tn ◦ prU⊥n

◦Vn with
Un := Im(Xn,n). Note that prU⊥n

= Mn,nM>n,n, cf. (17).

Rn
pr

U⊥n // U ≤ Rn

Tn
��

C[0,1]

Vn

OO

ϕn
// C[0,1]

9For the existence of the Lebesgue-Stieltjes measure µ f , see Theorem 63. Note that it is formulated for non-
decreasing functions. By means of Lemma 65.4, it can be formulated and prooved also for functions of
bounded variation.
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6 Proofs
Proof of Theorem 2 from page 8:

1. A short computation immediately results in

X>n, jXn, j =
((

X>n, j−1 0d×1

)
+
(
0d×( j−1) f (tn, j)

))((Xn, j−1
01×d

)
+

(
0( j−1)×d
f (tn, j)>

))
= X>n, j−1Xn, j−1 + f (tn, j) f (tn, j)>.

2. From 1. we obtain

(X>n, jXn, j)
−1 = (X>n, j−1Xn, j−1 + f (tn, j) f (tn, j)>)−1

(∗)
= (X>n, j−1Xn, j−1)

−1− 1
1+ ‖ an, j ‖2 (X

>
n, j−1Xn, j−1)

−1 f (tn, j) f (tn, j)>(X>n, j−1Xn, j−1)
−1

where (∗) follows from Woodbury’s formula

(R+STU)−1 = R−1−R−1S(T−1 +UR−1S)−1UR−1,

if R ∈ Rn×n,S ∈ Rn×m,T ∈ Rm×m,U ∈ Rm×n, and R, T and T−1 +UR−1S are nonsin-
gular. See Harville (2008), Theorem 18.2.8 (Woodbury’s formula).

3. First of all,

X>n, jXn, jβ̂n, j = X>n, jY j = X>n, j−1Yj−1 + f (tn, j)Yn, j

= X>n, j−1Xn, j−1β̂n, j−1 +Yn, j f (tn, j)
1.
= (X>n, jXn, j− f (tn, j) f (tn, j)>)β̂n, j−1 +Yn, j f (tn, j)

= X>n, jXn, jβ̂n, j−1 +(Yn, j− f (tn, j)>β̂n, j−1) f (tn, j).

By multiplying with (X>n, jXn, j)
−1 we get

β̂n, j = β̂n, j−1 +(Yn, j− f (tn, j)>β̂n, j−1)(X>n, jXn, j)
−1 f (tn, j)

= β̂n, j−1 +
√

1+‖an, j‖2rn, j(X>n, jXn, j)
−1 f (tn, j).

4. By (18) we get w j = prU⊥j ,U j
Yj =Mn, jM>n, jYj for j = d+1, . . . ,n, which implies ‖wd+1‖2 =

‖M>n,d+1Yd+1‖2 = ‖rn,d+1‖2 and

∥∥w j
∥∥2

= Y>j Mn, jM>n, jMn, jM>n, jYj =
∥∥∥M>n, jYj

∥∥∥2

=
∥∥∥M>n, j−1Yj−1

∥∥∥2
+

1
1+a2

n, j
|(−a>n, j 1)Yj|2

=
∥∥w j−1

∥∥2
+ r2

n, j , j = d +2, . . . ,n,

noting ‖(v1, . . . ,vk)
>‖2 = ‖(v1, . . . ,vk−1)

>‖2 + v2
k for all v1, . . . ,vk ∈ R. �
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Proof of Lemma 8 from page 11:

(27) is best seen by means of the following 3 cases:

1. t < tn,1. In this case Fn(t) = 0≤ F(t)< 1
n = Fn(t)+ 1

n .

2. ∃ i with tn,i ≤ t < tn,i+1. Then

Fn(tn,i) = Fn(t) =
i
n
≤ F(tn,i)≤ F(t)<

i+1
n

= Fn(tn,i)+
1
n
≤ Fn(t)+

1
n
.

3. tn,n ≤ t. In this case Fn(t) = 1 = Fn(tn,n)≤ F(tn,n)≤ F(t)≤ 1≤ Fn(tn,n)+ 1
n follows. �

Proof of Theorem 10 from page 11:

P
1

σ
√

n Tn◦g◦εn w→ PB′ in C[0,1] and P
1

σ
√

n Tn◦εn w→ PB in C[0,1] hold by Theorem 53 (Donsker’s
Theorem). Theorem 46, Theorem 79 and equation (83) now imply

P
(

1
σ
√

n−d
Tn−d◦g◦rn

)
= P

(√ n
n−d ·φn◦( 1

σ
√

n Tn◦εn)
)
=

(
P

1
σ
√

n Tn◦εn

)√ n
n−d ·φn

w→
(
PB)φ ′

= Pφ ′◦B

But Pφ ′◦B is always the same (independent of the concrete distribution of εn). Without loss of
generality we assume additionally εn ∼ N(0,σ2In). Then rn is independent, by (16) and we

conclude with Donsker’s Theorem, as in (25), P( 1
σ
√

n−d
Tn−d◦g◦rn) w→ PB′ . �

Proof of Theorem 11 from page 11:

Note that the limit process B is a Brownian motion on [δ ,1] with Bt = 0 for all t ∈ [0,δ ).
Therefore, for the relevant crossing probabilities, we consider instead a standard Brwonian
motion on the interval [0,1−δ ], which we denote by B∗ to distinguish them. Note that Bn,B :
Ω→ C[0,1] can be understood as random variables with values in C[0,1]. Furthermore, let
sup : C[0,1]→ R, sup( f ) := sup0≤x≤1 f (x). Obviously sup is continuous (C[0,1] with sup
norm). Therefore, by Theorem 46 it follows (PBn)sup w→ (PB)sup and together with Theorem
40.6 and Theorem 51 we conclude for the first test (29)

P(reject H0 |H0 is true) =(PBn)sup((x,∞))
n→∞−→ (PB)sup((x,∞))

=P

(
sup

0≤s≤1
Bs > x

)
= P

(
sup

0≤s≤1−δ

B∗s > x

)

=2 ·P
(
B∗1−δ

> x
)
= 2 ·

(
1−Φ

(
x

1−δ

))
= α,

since (PB)sup(∂ (x,∞))= (PB)sup({x})= limε↘0 P
(
x− ε < sup0≤s≤t B∗s ≤ x

)
= 0 (this follows

from the distribution of sup0≤s≤t B∗s , cf. Partzsch and Schilling (2012), Theorem 6.9). We
proceed completely analogously for the tests (30) and (31).

P(reject H0 |H0 is true) n→∞−→ P
(

inf
0≤s≤1−δ

B∗s < y
)

=2 ·P
(
B∗1−δ

< y
)
= 2 ·Φ

(
y

1−δ

)
= α
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and

P(reject H0 |H0 is true) n→∞−→ P

(
inf

0≤s≤1−δ

B∗s ≤−z ∨ sup
0≤s≤1−δ

B∗s ≥ z

)

=1−P

(
inf

0≤s≤1−δ

B∗s >−z ∧ sup
0≤s≤1−δ

B∗s < z ∧ B∗1−δ
∈ (−z,z)

)

=1−
∞

∑
n=−∞

1√
2π(1−δ )

∫ z

−z

(
e−

(x+4nz)2

2(1−δ ) − e−
(x−2z(2n−1))2

2(1−δ )

)
dx

=1−
∞

∑
n=−∞

An ≤ α,

respectively, where

An : =
1√

2π(1−δ )

∫ z

−z

(
e−

(x+4nz)2

2(1−δ ) − e−
(x−2z(2n−1))2

2(1−δ )

)
dx

= Φ

(
(4n+1)z

1−δ

)
−Φ

(
(4n−1)z

1−δ

)
−Φ

(
−(4n−3)z

1−δ

)
+Φ

(
−(4n−1)z

1−δ

)
.

�

Proof of Lemma 14 from page 14:

First of all, Γ ∈C[0,1] obviously holds. We define u,un ∈C[0,1] by

u(s) :=
∫ s

0
fd+1 ◦F−0 dλ and un(s) :=

∫ s

0
fd+1 ◦F−n dλ .

Note that u(0) = 0. Thus

Vn(un) =
1
n
·ξn,

since

un(k/n) =
∫ k/n

0
fd+1 ◦F−n dλ =

k

∑
i=1

fd+1(F−n (i/n)) · 1
n
.

We infer

Tn−d ◦g
(

M>n,n ·
(

1
n
·ξn

))
= Tn−d ◦g

(
M>n,n ·Vn(un)

)
= φn(un).

Let ε > 0. fd+1 is bounded, since it is of bounded variation. Thus we can define m :=
supt∈[a,b] | fd+1(t)|. By Lemma 74

∃Kε ⊆ [0,1] ∃n0 ∈ N ∀n≥ n0 :

λ (Kε)> 1− ε and sup
s∈Kε

| fd+1 ◦F−0 (s)− fd+1 ◦F−n (s)| ≤ ε.
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Therefore

|u(s)−un(s)|=
∣∣∣∣∫

[0,s]
fd+1 ◦F−0 dλ −

∫
[0,s]

fd+1 ◦F−n dλ

∣∣∣∣
≤
∫
[0,s]

∣∣ fd+1 ◦F−0 − fd+1 ◦F−n
∣∣ dλ

≤
∫
[0,1]

∣∣ fd+1 ◦F−0 − fd+1 ◦F−n
∣∣ dλ

≤λ (Kε) · ε +λ (KC
ε ) ·2 ·m≤ ε(1+2m),

holds for all s ∈ [0,1]. Thus

sup
s∈[0,1]

|u(s)−un(s)|
n→∞−→ 0.

Now we can apply Theorem 79 to infer

sup
s∈[0,1]

∣∣∣∣Tn−d ◦g
(

M>n,n ·
(

1
n
·ξn

))
(s)−Γ(s)

∣∣∣∣= sup
s∈[0,1]

|φn(un)(s)−φ(u)(s)| n→∞−→ 0.

�

Example 80. To understand the example, note the comment before Lemma 14. Let [a,b] =
[0,1] and t10,i := i

10 , i ∈ {1, . . . ,10}. According to Rabovski (2003), p. 20,

u10

(
k

10k+1

)
=
∫
[0,1]

fd+1 dF10, k
10k+1

= 0,

because

F10, k
10k+1

(x) = min

(
F10(x),

b 10k
10k+1c

10

)
= 0 , for all x ∈ [0,1].

On the other hand,

u10

(
1

10

)
=
∫
[0,1]

fd+1 dF10, 1
10
=

1
10
· fd+1

(
1

10

)
,

because

F10, 1
10
(x) = min

(
F10(x),

1
10

)
=

{
0 if 0≤ x < 1

10
1
10 if 1

10 ≤ x≤ 1
, for all x ∈ [0,1].

Thus u10 is not continuous because of k
10k+1

k→∞−→ 1
10 (if fd+1(

1
10) 6= 0).

Proof of Theorem 15 from page 14:

The computation from (33) gives

Bn =
1

σ
√

n−d
·Tn−d ◦g

(
M>n,n · (Xn,nβ + εn)

)
+

n ·β ∗d+1

σ ·
√

n−d
·Tn−d ◦g

(
M>n,n ·

(
1
n
·ξn

))
=

1
σ
√

n−d
·Tn−d ◦g

(
M>n,n · (Xn,nβ + εn)

)
︸ ︷︷ ︸

=:Zn

+
βd+1

σ
·Tn−d ◦g

(
M>n,n ·

(
1
n
·ξn

))
︸ ︷︷ ︸

=:Γn
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for model (35). If we define h,hn : C[0,1]→ C[0,1] by h(α) := α +
βd+1

σ
·Γ and hn(α) :=

α +Γn, then PBn = hn(PZn) holds and the conditions of Theorem 46 are satisfied because of

Lemma 14. Thus it follows hn(PZn)
w→ h(PB′), which means Bn

D→ B′+ βd+1
σ
·Γ. �

Proof of Theorem 19 from page 17:

First we proceed exactly as in Step 2 in the proof of Theorem 79, up to and including (127).
Next, we show the linear independence of gi, i ∈ {1, . . . ,d} in L2([a,b],F ◦G).

g1, . . . ,gd are l.i. in L2([a,b],F ◦G)

⇔
∫
R

(
d

∑
i=1

αigi ·1[a,b]

)2

dµF◦G > 0 , ∀α ∈ Rd \{0}

⇔
∫
R

(
d

∑
i=1

αigi ·1(a,b]

)2

dµF◦G +

(
d

∑
i=1

αigi(a)

)2

·F(G(a))> 0 , ∀α ∈ Rd \{0}

(73)⇔
∫
[F(G(a)),F(G(b))]

(
d

∑
i=1

αigi ◦ (F ◦G)−0

)2

dλ +

(
d

∑
i=1

αigi(G−0 (a))

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

⇔
∫
[F(a),F(b)]

(
d

∑
i=1

αigi ◦G−0 ◦F−0

)2

dλ +

(
d

∑
i=1

αi fi(a)

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

(73)⇔
∫
R

(
d

∑
i=1

αi fi ·1(a,b]

)2

dµF +

(
d

∑
i=1

αi fi(a)

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

⇔
∫
R

(
d

∑
i=1

αi fi ·1[a,b]

)2

dµF > 0 , ∀α ∈ Rd \{0}

⇔ f1, . . . , fd are l.i. in L2([a,b],F),

with (F ◦G)0 := (F ◦G)|[F(a),G(b)] and F0 := F|[a,b]. According to Bischoff (1998), Theorem

2.2, Dn
D→ D follows with

D(ω,z) := B(ω,z)+
(∫

[a,b]
gdµHz

)>
·
(∫

[a,b]
gg> dµH

)−1

·
(∫ (R)

[a,b]
B(ω,H)dg−B(ω,1)g(H−(1))

)
,

whereby H := F ◦G and Hz(x) := min(z,H(x)). For all q ∈ [Fz(a),z] a similar relation holds
as in Lemma 57.10 (which we also use in the following):

((F ◦G)z)
−
0 (q) = inf{x ∈ [a,b] | min(z,F ◦G(x))≥ q}

= inf{x ∈ [a,b] | F ◦G(x)≥ q}
= (F ◦G)−0 (q) = G−0 ◦F−0 (q), (84)
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whereby ((F ◦G)z)0 := ((F ◦G)z)|[a,b] : [a,b]→ [Fz(a),Fz(b)]. Thus we get∫
[a,b]

gdµ(F◦G)z =
∫
(a,b]

gdµ(F◦G)z +g(a) · (F ◦G)z(a)

(73)
=
∫
((F◦G)z(a),(F◦G)z(b))

g◦ ((F ◦G)z)
−
0 dλ +g(a) ·Fz(a)

=
∫
(Fz(a),z)

g◦ (F ◦G)−0 dλ +g(G−0 (a)) ·Fz(a)

(84)
=
∫
(Fz(a),z)

g◦G−0 ◦F−0 dλ + f (a) ·Fz(a)

=
∫
(Fz(a),z)

f ◦F−0 dλ + f (a) ·Fz(a)

=
∫
(0,z)

f ◦F−0 dλ (85)

For this note that G−0 (a) = a and
∫
(0,Fz(a)) f ◦F−0 dλ = f (a) ·Fz(a) since F−0 (q) = a for all

q ∈ [0,Fz(a)] and Fz(0) = 0. Further∫
[a,b]

gg> dµF◦G
(73)
=
∫
(F(G(a)),F(G(b)))

(gg>)◦ (F ◦G)−0 dλ +g(a)g(a)> ·F(G(a))

=
∫
(F(a),F(b))

(gg>)◦G−0 F−0 dλ +g(G−0 (a))g(G
−
0 (a))

> ·F(a)

(73)
=
∫
(a,b]

f f> dµF + f (a) f (a)> ·F(a)

=
∫
[a,b]

f f> dµF (86)

and

g((F ◦G)−(1)) = g(G−(F−(1))) = f (F−(1)). (87)

is valid. Finally, ∫ (R)

[a,b]
B(ω,F ◦G)dg

(∗)
=
∫
(a,b)

B(ω,F ◦G)dµg

(∗∗)
=
∫
[a,b)

B(ω,F)dµ
G
g

(∗∗∗)
=

∫
[a,b)

B(ω,F)dµ f (88)

is valid. For (∗) note that the Riemann-Stieltjes integral is equal to the corresponding Lebesgue-
Stieltjes integral (cf. Kirillov and Gvishiani (1982), Theorem 14, p. 29 or Stroock (1994),
Theorem 5.1.2). (∗∗) follows directly from the change of variable formula

∫
Ω′ κ dµT =∫

Ω
(κ ◦T )dµ for κ : Ω′→ R and T : Ω→ Ω′, see, e.g., Stroock (1994), Lemma 5.0.1, where

in our case κ(t) := B(ω,F(t)) and T (x) := G(x), x ∈Ω holds, with Ω = (a,b) and Ω′ = [a,b).
For this, note that T (Ω)⊆Ω′ actually holds as well. For (∗∗∗) we show µG

g = µ f on B([a,b)).
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It suffices to show the equality on E := {E ∩ [a,b) | E ∈ E0}, where E0 := {[x,y) | x≤ y} is a
generator of B(R). The equality now follows from E = {[x,y) | a≤ x≤ y≤ b} and

µ
G
g ([x,y)) = µg(G−1([x,y))) = µg([G−(x),G−(y))) = g(G−(y))−g(G−(x))

= f (y−)− f (x−)
(
since f is left continuous and g is continuous

)
= µ f ([x,y)),

(
cf. Theorem 63

)
.

Note that to define the measures we can canonically extend f (resp. g) by f (x) := f (a) for
x < a and f (x) := f (b) for x > b (resp. analogously with g) left continuous (resp. continuous)
to R. Thus D = B f ,F , because of (85), (86), (87), and (88). �

Proof of Theorem 21 from page 17:

We proceed as in Theorem 79 and Theorem 10 and their proofs. Note that

Tn−d(g(a))(x) = ((n−d)x−b(n−d)xc)an−d−i1+i0−1 +
i1

∑
i=i0

an−d−i1+i (89)

for x ≥ b(n−d)δc
n−d and Tn−d(g(a))(x) = 0 for x < b(n−d)δc

n−d , where i0 := b(n− d)δc+ 1 and

i1 := b(n−d)xc. Note also δ ∈
[
b(n−d)δc

n−d , b(n−d)δc+1
n−d

)
. Analogous to (81), we define

ψn : C[0,1]→C[0,1] , ψn := Tn−d ◦g◦M>n,n ◦Vn,

according to the digram, where Mn,n is defined in (15)

Rn M>n,n // Rn−d

Tn−d◦g
��

C[0,1]

Vn

OO

ψn
//C[0,1]

and Tn−d and g were defined in (19) and (46), respectively. Analogous to (83),

Tn−d ◦g◦ rn
(18)
= Tn−d ◦g◦M>n,n ◦ εn

(82)
= Tn−d ◦g◦M>n,n ◦Vn ◦Tn ◦ εn = ψn ◦Tn ◦ εn

is also valid. We now proceed exactly as in the proof of our main Theorem 79 from page 70.
The arguments given there – slightly adapted – remain completely valid here as well. And
here, too, we proceed in two steps.
Step 1, the regression functions fi are first assumed to be continuous. We set ξn−d := M>n,n ◦
Vn(u) ∈ Rn−d and obtain the following computation

ψn(u)(x) = Tn−d ◦g(M>n,n ◦Vn(u))(x) = Tn−d ◦g(ξn−d)(x)

=
(
(n−d)x−b(n−d)xc

)
· (ξn−d)n−d−i1+i0︸ ︷︷ ︸

=:z

+
i1

∑
i=i0

(ξn−d)n−d−i1+i by (89)

= z+
i1

∑
i=i0

1
√cn,n−i1+i

[
u(

n− i1 + i
n

)−u(
n− i1 + i−1

n
)

]

−
i1

∑
i=i0

1
√cn,n−i1+i

 f (tn,n−i1+i)
>
(

X>n,n−i1+i−1Xn,n−i1+i−1

)−1
X>n,n−i1+i−1 ·

 u(1/n)−u(0)
...

u(n−i1+i−1
n )−u(n−i1+i−2

n )




= z−
i1−1

∑
i=i0

[
1

√cn,n−i1+i+1
− 1
√cn,n−i1+i

]
u(

n− i1 + i
n

)+
u(1)
√cn,n

−
u(n−i1+i0−1

n )
√cn,n−i1+i0−1

+
i1

∑
i=i0

1
n
· 1
√cn,n−i1+i

f (tn,n−i1+i)
>
(

1
n

X>n,n−i1+i−1Xn,n−i1+i−1

)−1

(∆Xn,n−i1+i−1)
> ·

 u(1/n)
...

u(n−i1+i−2
n )

+ z∗i
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where z∗i = f (tn,1)u(0)− f (tn,n−i1+i−1)u(n−i1+i−1
n )

= z−
i1−1

∑
i=i0

[
1

√cn,n−i1+i+1
− 1
√cn,n−i1+i

]
u(

n− i1 + i
n

)+
u(1)
√cn,n

−
u(n−i1+i0−1

n )
√cn,n−i1+i0−1

+
∫ 1

n−i1+i0−1
n

Θn(t)dt

n→∞−→ 0−0+u(1)−u(1− x+δ )+
∫ 1

1−x+δ

Θ(t)dt, where

Θn(t)
n→∞−→ Θ(t) := f (h(t))>

(∫
[0,t]

( f f>)◦hdλ

)−1[∫ (R)

[a,F−(t)]
(u◦F) d f + f (h(0))u(0)− f (h(t))u(t)

]
and h := F−0 . Exactly as in the proof of Theorem 79 we conclude

‖ψ(u)−ψn(un)‖
n→∞−→ 0

for all u,un ∈C[0,1] with ‖u−un‖
n→∞−→ 0, where

ψ(u)(x) := u(1)−u(1− x+δ )

+

1∫
1−x+δ

f (h(t))>
(∫

[0,t]
( f f>)◦hdλ

)−1[∫ (R)

[a,F−(t)]
(u◦F) d f + f (h(0))u(0)− f (h(t))u(t)

]
dt

for x ∈ [δ ,1] and ψ(u)(x) = 0 for x ∈ [0,δ ).
In the 2nd step we proceed exactly as in the 2nd step from the proof of Theorem 79 (which

can be taken practically unchanged). To complete the proof, we also mimic the procedure in
the proof of Theorem 10 (which we can do without any changes), which then concludes this
proof. �

Proof of Theorem 23 from page 18

We can directly adopt the calculation (33) under the alternative (32) for this situation. Like-
wise, we can adopt Lemma 14 and finally the assertion follows exactly as in the proof of
Theorem 15. We only need to replace φ with ψ and Γ with ∆ in all places. For this, of course,
note the proof of Theorem 21, since ψ was defined there. �

Proof of Theorem 28 from page 20:

In Luschgy (1991), for a process

Xt = S(θ , t)+Zt , 0≤ t ≤ T , T < ∞,

where S is a known (nonrandom) function, Z is a zero-mean Gaussian process with known
covariance function K(s, t) =Cov(Zs,Zt) and θ ∈ Θ is an unknown parameter with Θ a right
open interval in R, criteria are given that a uniformly most powerful test exists to test

H = {θ0} vs. K = {θ ∈Θ | θ > θ0}.

To be more concrete, the following conditions must be fulfilled.

(A.1) Z has continuous sample paths.

(A.2) t 7→ S(θ , t) must be an element in the reproducing kernel Hilbert space generated by K.

(A.3) θ 7→ S(θ , t) is differentiable at θ0 with derivative ∂S(θ ,t)
∂θ

(θ0) 6= 0.
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Furthermore, if there is a measure µ with∫
[0,T ]

K(s, t)µ(dt) =
∂S(θ ,s)

∂θ
(θ0) , s ∈ [0,1], (90)

the test can be given in the computable form (95)whereby in our case T = 1− δ , Zt = B′•t ,
θ =

βd+1
σ

, θ0 = 0 and S(θ , t) = θ ·∆•(t). Obviously, (A.1), (A.2), and (A.3) are satisfied. For
(A.2), see also Paulsen and Raghupathi (2016), Theorem 11.3 and the discussion afterwards.
It remains to show (90). To do this, we define a measure µ by the following relation.

µ([0, t]) := Ξ
′(t),

where Ξ is a differentiable function whose derivative Ξ′ is of bounded variation. Obviously,
K(s, t) = min(s, t). Thus,∫

[0,1−δ ]
K(s, t)µ(dt) =

∫
[0,1−δ ]

min(s, t)µ(dt)

=
∫
[0,s]

t µ(dt)+
∫
(s,1−δ ]

s µ(dt)

=
∫
[0,s]

t d(Ξ′(t))+ s ·µ((s,1−δ ])

= s ·Ξ′(s)−
∫
[0,s]

Ξ
′(t) dt + s · (Ξ′(1−δ )−Ξ

′(s))

= Ξ(0)−Ξ(s)+ s ·Ξ′(1−δ ) (91)

follows. For (90) to hold, (91) would have to lead to ∆•(s). In any case

∆
•(0) = 0. (92)

Moreover, for the first derivative of ∆ from (51), we conclude

∆
′(s) = fd+1 ◦F−0 (sδ )

+ f (F−0 (sδ ))
>
(∫

[0,sδ ]
( f f>)◦F−0 dλ

)−1[∫
[a,F−0 (sδ )]

(u◦F0) dµ f − f (F−0 (sδ ))u(sδ )

]
and therefore for the first derivative of ∆•

(∆•)′(1−δ ) = fd+1 ◦F−0 (δ )

+ f (F−0 (δ ))>
(∫

[0,δ ]
( f f>)◦F−0 dλ

)−1[∫
[a,F−0 (δ )]

(u◦F0) dµ f − f (F−0 (δ ))u(δ )
]

with sδ := 1− s+δ and u(s) :=
∫ s

0 fd+1 ◦F−0 dλ . But now fd+1 ◦F−0 (δ ) = 0, u(s) = 0 for all
s ∈ [0,δ ] and u ◦F0(x) = 0 for all x ∈ [a,F−0 (δ )] follows, because fd+1(x) = 0 and F0(x) ∈
[0,F0(F−0 (δ ))] = [0,δ ] holds for all x ∈ [a,F−0 (δ )]. Note δ = F(c) = F0(c). Thus

(∆•)′(1−δ ) = 0. (93)

An analogous relation for Γ cannot be derived under these conditions. For Ξ(t) :=−∆•(t),∫
[0,1−δ ]

K(s, t)µ(dt) = ∆
•(s) =

∂S(θ ,s)
∂θ

(θ0)
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follows because of (91), (92) and (93. That is, (90) is verified. Following Luschgy (1991), for
the test problem

H0 : θ = 0 vs. H1 : θ > 0,
(

observing B′•+θ ·∆•
)

(94)

we obtain the test statistic ρ : C[0,1−δ ]→ R with

ρ(u) : =
(∫

[0,1−δ ]

∫
[0,1−δ ]

K(s, t)µ(dt)µ(ds)
)− 1

2 ∫
[0,1−δ ]

u(t) µ(dt)

=

(
−
∫
[0,1−δ ]

∆
•(s) d(∆•)′(t)

)− 1
2 ∫

[0,1−δ ]
u(t) d(∆•)′(t) , u ∈C[0,1−δ ].

Thus we get the test ϕ := 1
ρ−1((Φ−1(1−α),∞)) with the decision rule

reject H0 given in (94) :⇔ ϕ

(
B′•+

βd+1

σ
·∆•
)
= 1, (95)

where Φ(x) := 1√
2π

∫ x
−∞

e−
1
2 t2

dt. If we set ϕn := ϕ , then (59) is satisfied. This follows from
Theorem 46. To see this, we define φ to be the filter generated by {ϕ}. For the conditions of
Theorem 46 to be satisfied, ϕ must be continuous almost everywhere. In fact, ϕ is continuous
everywhere, because for 0 < ε < 1 and u ∈C[0,1−δ ],

|ϕ(u)−ϕ(v)|< ε ⇔
[
ρ(u)> Φ

−1(1−α) ⇔ ρ(v)> Φ
−1(1−α)

]
. (96)

follows. From the definition of ρ it is clear that the right equivalence from (96) is satisfied for
sufficiently small ε0 and all v ∈C[0,1−δ ] with ‖u− v‖< ε0. Just as in the proof of Theorem
23, we conclude (

1
σ
√

n−d
·Tn−d ◦g◦ (M>n,nY ∗n )

)•
D→ B′•+

βd+1

σ
·∆•.

(59) thus follows from Theorem 46. �

Proof of Lemma 34 from page 23:

1⇒ 2: Let A be closed, so A =
⋂

∞
n=1 On with open On. By Urysohn’s Lemma10 there exists a

continuous fn : X → [0,1] with A ⊆ f−1
n (0) and X \On ⊆ f−1

n (1). Then f : X → [0,1],
f (x) := ∑

∞
n=1 2−n fn(x) is continuous with A = f−1(0).

2⇒ 3: Let A,B closed and disjoint. So A = f−(0) and B = g−1(0) for continuous f ,g : X →
[0,1]. Then h : X → [0,1] defined by h(x) := f (x)

f (x)+g(x) is continuous with A = h−1(0)

and B = h−1(1).

3⇒ 1: Let A,B closed and disjoint. Let f : X → [0,1] be continuous with A = f−1(0) and
B = f−1(1). Then U := f−1[0,1/2)) and V := f−1((1/2,1]) are open and disjoint with
A⊆U and B⊆V (i.e. X is normal). Moreover, A=

⋂
∞
n=1 On, where On := f−1([0,1/n))

is open. �
10(X ,τ) is normal iff to every two closed and disjoint A,B⊆ X there exists a continuous mapping f : X → [0,1],

with A⊆ f−1(0) and B⊆ f−1(1), cf. Bourbaki (1966), Chapter IX, §4.1, Theorem 1.

48



Proof of Lemma 35 from page 24:

1. a), b) and c) are trivial. To show d), one distinguishes all possible cases (minus sym-
metry, six cases remain) of how two points can be distributed on the three sets F ,
F<ε := {z ∈ F | d(z,F) < ε} \F and F≥ε := {z ∈ F | d(z,F) ≥ ε}. In two of these
cases, one has to use the inequality d(x,F)≤ d(x,y)+d(y,F):

For x,y ∈ F and x,y ∈ F≥ε , respectively, |FF,ε(x)−FF,ε(y)|= 0≤ 1
ε
d(x,y) follows.

For x,y ∈ F<ε , |FF,ε(x)−FF,ε(y)|= 1
ε
|d(x,F)−d(y,F)| ≤ 1

ε
d(x,y) follows.

For x ∈ F and y ∈ F<ε , |FF,ε(x)−FF,ε(y)|= 1
ε
d(y,F)≤ 1

ε
d(x,y) follows.

For x ∈ F and y ∈ F≥ε , |FF,ε(x)−FF,ε(y)|= 1≤ 1
ε
d(x,y) follows.

For x ∈ F<ε and y ∈ F≥ε , |FF,ε(x)−FF,ε(y)|= 1− 1
ε
d(x,F)≤ 1

ε
d(x,y) follows.

2. Let (An)n∈N be a sequence in τ with
⋂

n∈N
An = F . Let B0 ∈ τ with F ⊆ B0 ⊆ B0 ⊆ A0. If

Bn is defined, let Bn+1 ∈ τ with F ⊆ Bn+1 ⊆ Bn+1 ⊆ An+1∩Bn. By Urysohn’s Theorem
exists fn : E→ [0,1] with fn(Bn+1)⊆ {1} and fn(E \Bn)⊆ {0}. �

Proof of Lemma 36 from page 24:

Define

A := {A ∈B(E) | ∀ε > 0∃F : closed, G : open, with F ⊆ A⊆ G and P(G\F)< ε}.

We will show

1. α := {A⊆ E | A is closed} ⊆A and 2. A is a σ -algebra

Therefore B(E)⊆A because α generates B(E).

1. If A ∈ α and ε > 0 then

P(A)≤ P(Bn)
n sufficiently large

≤
Bn+1⊆Bn,A=

⋂
n∈N

Bn

P(A)+ ε

with Bn as in Lemma 35 (F := A and G := Bn).

2. We have to show:

(i) A1,A2 ∈A ⇒ A1 \A2 ∈A and (ii) An ∈A , n ∈ N⇒
⋃

n∈N
An ∈A

(obviously /0 ∈A and E ∈A )

(i) Let A1,A2 ∈A and ε > 0. Then there are F1,F2,G1,G2 with

F1 ⊆ A1 ⊆ G1 and P(G1 \F1)< ε

F2 ⊆ A2 ⊆ G2 and P(G2 \F2)< ε.

This implies

F1 \G2︸ ︷︷ ︸
:=F ′ closed

⊆ A1 \A2 ⊆ G1 \F2︸ ︷︷ ︸
:=G′ open
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with

P(G′ \F ′) = P((G1 \F2)\ (F1 \G2))

= P([G1 \ (F1∪F2)]∪ [(G1∩G2)\F2])< 2ε

(ii) For each An ∈ A , n ∈ N and ε > 0 choose some closed Fn and open Gn with
Fn ⊆ An ⊆ Gn and P(Gn \Fn)< 2−n−1ε . Let N ∈ N large enough with

P(
⋃

n∈N
Fn)≤ P(

⋃
n≤N

Fn)+
ε

2
.

We define

F :=
⋃

n≤N

Fn (closed) and G :=
⋃

n∈N
Gn (open).

Thus F ⊆
⋃

n∈N
An ⊆ G and

P(G\F)≤ P(G\
⋃

n∈N
Fn)+P(

⋃
n∈N

Fn \F)≤ ∑
n∈N

P(Gn \Fn)+
ε

2
<

ε

2
+

ε

2
= ε. �

Proof of the equivalence of (64) and (65) from page 25:

(65)⇒ (64) follows for f = 1A. (64)⇒ (65): Without loss of generality f ≥ 0. Let (ek)k∈N
be a sequence of simple funktions with ek↗ f and ‖ f −ek‖sup

n→∞−→ 0 (cf. Elstrodt (2018), III,
Korollar 4.14). From (64) and the definition of the integral for simple functions,

∫
ek dµn

n→∞−→∫
ek dµ follows (∀k). This leads to the folowing attempt:∣∣∣∣∫ f dµn−

∫
f dµ

∣∣∣∣≤ ∣∣∣∣∫ f dµn−
∫

ek dµn

∣∣∣∣+ ∣∣∣∣∫ ek dµn−
∫

ek dµ

∣∣∣∣+ ∣∣∣∣∫ ek dµ−
∫

f dµ

∣∣∣∣
≤ ‖ f − ek‖sup︸ ︷︷ ︸

k→∞

−→0

·µn(Ω)︸ ︷︷ ︸
n→∞

→µ(Ω)

+

∣∣∣∣∫ ek dµn−
∫

ek dµ

∣∣∣∣︸ ︷︷ ︸
n→∞

−→0 ∀k

+‖ f − ek‖sup︸ ︷︷ ︸
k→∞

−→0

· µ(Ω)︸ ︷︷ ︸
n→∞

→µ(Ω)

This Inequality give the idea for the proof. Let ε > 0. Let N1 ∈N such that ∀n≥N1: µn(Ω)≤
1+ µ(Ω). Let k ∈ N with ‖ f − ek‖sup · (1+ 2µ(Ω)) < 2ε/3. And let N2 ≥ N1 such that
∀n≥ N2: |

∫
ek dµn−

∫
ek dµ|< ε/3. Then ∀n≥ N2: |

∫
f dµn−

∫
f dµ|< ε . �

Proof of Lemma 38 from page 26:

Let F be a closed set and ( fn)n∈N as in Lemma 35. Then∫
E

fndP =
∫

E
fndQ (for all n ∈ N)

because of
∫

E fndψ
τR→
∫

E fndP and
∫

E fndψ
τR→
∫

E fndQ and
∫

E fndψ is a filter on R (a Haus-
dorff Space). Now let ε > 0 arbitrary. Then

Q(F) =
∫

E
1FdQ≤

∫
E

fndQ =
∫

E
fndP

for n
≤

sufficiently large

∫
E

1FdP+ ε = P(F)+ ε

by the dominated convergence theorem. This implies Q(F) ≤ P(F) because ε > 0 is arbi-
trary. Analogously P(F)≤ Q(F) and therefore P(F) = Q(F). But {F ⊆ E | F is closed} is a
generator of B(E) and therefore P(A) = Q(A) for all A ∈B(E). �
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Proof of Lemma 39 from page 26:

1. a) P1,P2 ∈ ψ implies infP1 ≤ supP2 (otherwise P1∩P2 = /0). Therefore

sup{infP | P ∈ ψ} ≤ inf{supP | P ∈ ψ}.

b) x ∈
⋂

P∈ψ P implies infP≤ x≤ supP, for all P ∈ ψ .

2. “⇒” With ψ0 := {(x− ε,x+ ε) | ε > 0} follows

sup{infP | P ∈ ψ} ≤ inf{supP | P ∈ ψ}
≤ inf{supP | P ∈ ψ0}
= x = sup{infP | P ∈ ψ0}
≤ sup{infP | P ∈ ψ}

“⇐” Let ε > 0. x = sup{infP | P ∈ ψ} implies ∃P1 ∈ ψ with infP1 ∈ (x− ε,x+ ε).
x = inf{supP | P ∈ ψ} implies ∃P2 ∈ ψ with supP2 ∈ (x− ε,x+ ε). Therefore P3 :=
P1∩P2 ⊆ (x− ε,x+ ε)

3. a) “≤” because ψ0 ⊆ ψ , “≥” because for P ∈ ψ exists P0 ∈ ψ0 with P0 ⊆ P and
therefore infP≤ infP0.

b) follows analogously. �

Proof of Theorem 40 from page 26:

We use Lemma 35 and the dominated convergence theorem.

1 if E is⇒
metrizable

2: Trivial.

3⇒ 1: Trivial.

4⇔ 5: By complements.

(1 ∨ 2)⇒ 4: Let F closed ⊆ E, ( fn)n∈N as in Lemma 35 (if E is metrizable fn := fF, 1
n
) and ε > 0.

Then

inf{supQ(F) | Q ∈ ψ}= inf
{

sup
{∫

E
1Fdq

∣∣∣∣ q ∈ Q
} ∣∣∣∣ Q ∈ ψ

}
≤ inf

{
sup
{∫

E
fndq

∣∣∣∣ q ∈ Q
} ∣∣∣∣ Q ∈ ψ

}
=
∫

E
fndP by 1. or 2. and Lemma 39

≤
∫

E
1FdP+ ε = P(F)+ ε for n large enough.

Therefore inf{supQ(F) | Q ∈ ψ} ≤ P(F), because ε was arbitrary.
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(4 ∧ 5)⇒ 6: follows from Lemma 39 and

sup{infQ(A◦) | Q ∈ ψ} ≤ sup{infQ(A) | Q ∈ ψ}
≤ inf{supQ(A) | Q ∈ ψ}
≤ inf{supQ(A) | Q ∈ ψ}
≤ P(A)
= P(A◦)+P(∂A) = P(A◦) (= P(A))
≤ sup{infQ(A◦) | Q ∈ ψ}

6⇒ 3: Let f : E→ R measurable, bounded and nonconstant with P(D f ) = 0.

Claim: ∀A⊆ R: ∂ f−1(A)⊆ f−1(∂A)∪D f .

Proof: Let x ∈ ∂ f−1(A). If x 6∈ D f let V be open with f (x) ∈ V . Then ∃ open U with
x∈U and f (U)⊆V . Let y∈U ∩ f−1(A). Then f (y)∈ f (U)∩A and so V ∩A 6= /0.
This means f (x) ∈ A. If f (x) ∈ A◦, then ∃ open W with x ∈W and f (W ) ⊆ A◦.
Therefore x ∈W ⊆ f−1(A◦)⊆ f−1(A) in contradiction to x ∈ ∂ f−1(A).

Let ε > 0. A := {y ∈ R | P( f−1({y}))> 0} is at most countable. Therefore R\A = R,
so we can choose y0,y1, ...,yN ∈ R\A with

a) y0 <−sup
x∈E
| f (x)|< y1 < ... < yN−1 < sup

x∈E
| f (x)|< yN and

b) yi+1− yi < ε for each i ∈ {0, ...,N−1}

Now E =
N⊎

i=1
Ei with Ei := f−1([yi−1,yi)) and

P(∂Ei)
Claim
≤ P( f−1(∂ [yi−1,yi)))︸ ︷︷ ︸

=P( f−1(yi−1))+P( f−1(yi))=0

+P(D f )︸ ︷︷ ︸
=0

= 0 , i ∈ {1, ...,N}.

Thus

inf
{

sup
∫

E
f dQ

∣∣∣∣ Q ∈ ψ

}
= inf

{
sup

{
N

∑
i=1

∫
Ei

f dq

∣∣∣∣∣ q ∈ Q

} ∣∣∣∣∣ Q ∈ ψ

}
(∗)
≤

N

∑
i=1

inf
{

sup
{∫

Ei

f dq
∣∣∣∣ q ∈ Q

} ∣∣∣∣ Q ∈ ψ

}
≤

N

∑
i=1

inf{supQ(Ei)yi | Q ∈ ψ}

=
N

∑
i=1

[inf{supQ(Ei) | Q ∈ ψ}]yi

=
N

∑
i=1

yiP(Ei)≤
N

∑
i=1

P(Ei)(yi−1 + ε)

≤
N

∑
i=1

∫
Ei

f dP+ ε =
∫

E
f dP+ ε, (97)

by Lemma 39. Proof of (∗): Let t > 0 arbitrary and define
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s := inf
{

sup
{

∑
N
i=1
∫

Ei
f dq | q ∈ Q

}
| Q ∈ ψ

}
and

s′ :=
N
∑

i=1
inf
{

sup
{∫

Ei
f dq | q ∈ Q

}
| Q ∈ ψ

}
Let Q1, ...,QN ∈ ψ with s′ ≤

N
∑

i=1
sup{

∫
Ei

f dq | q ∈ Qi}< s′+ t. Then

s≤ sup

{
N

∑
i=1

∫
Ei

f dq

∣∣∣∣∣ q ∈ Q′
}
≤

N

∑
i=1

sup
{∫

Ei

f dq
∣∣∣∣ q ∈ Qi

}
< s′+ t

with Q′ :=
⋂N

i=1 Qi and therefore s≤ s′ because t was arbitrary. This proves (∗).
(97) implies

inf
{

sup
∫

E
f dQ

∣∣∣∣ Q ∈ ψ

}
≤
∫

E
f dP (98)

because ε was arbitrary. By substitute f through − f we get the analogous inequality to
(98)

sup{inf
∫

E
f dQ | Q ∈ ψ} ≥

∫
E

f dP.

These two inequalities together with Lemma 39 implie
∫

E f dψ
τR→
∫

E f dP �

Proof of Theorem 41 from page 27:

We will use Theorem 40.5. Let G ⊆ E be an open set. There exists Ai ∈ U , i = 1,2, ... with
G =

⋃
∞
i=1 Ai, especially P(

⋃n
i=1 Ai)

τR−→
n→∞

P(G). Now let ε > 0. Then there exists n ≥ 1 with

P(G)− ε ≤ P(
⋃n

i=1 Ai).

Claim: ψ(
⋃n

i=1 Ai)
τR−→ P(

⋃n
i=1 Ai)

Proof of the claim: Let L := P({1, ...,n}) \ { /0} = {J1, ...,Js}, f : Rs → R, f (x1, ...,xs) :=
∑

s
r=1(−1)|Jr|+1xr and

φ :=

{
R⊆ Rs

∣∣∣∣∣ ∃Q1, ...,Qs ∈ ψ with
s

∏
r=1

Qr(
⋂
i∈Jr

Ai)⊆ R

}
,

the productfilter of ψ(
⋂

i∈Jr
Ai), r = 1, ...,s. Thus φ

τRs−→ (P(
⋂

i∈J1
Ai), ...,P(

⋂
i∈Js

Ai)) by as-
sumption. Since f is continuous,

f (φ)
τR−→ f (P(

⋂
i∈J1

Ai), ...,P(
⋂
i∈Js

Ai)) =
s

∑
r=1

(−1)|Jr|+1P(
⋂
i∈Jr

Ai) = P(
n⋃

i=1

Ai)

follows. On the other hand f (φ) ⊆ ψ(
⋃n

i=1 Ai). To see this let R ∈ φ . Then there are
Q1, ...,Qs ∈ ψ with Q1(

⋂
i∈J1

Ai)× ...×Qs(
⋂

i∈Js
Ai)⊆ R. Thus

f (R)⊇ f (Q(
⋂
i∈J1

Ai)× ...×Q(
⋂
i∈Js

Ai))⊇ Q(
n⋃

i=1

Ai), (99)
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where Q :=
⋂s

r=1 Qr ∈ψ and the last inclusion relation in (99) holds by the inclusion-exclusion
principle. This proves f (φ) ⊆ ψ(

⋃n
i=1 Ai) and therefore the claim. With Lemma 39 we con-

clude

P(G)− ε ≤ sup{infR |R ∈ ψ(
n⋃

i=1

Ai)}= sup{infQ(
n⋃

i=1

Ai) | Q ∈ ψ} ≤ sup{infQ(G) | Q ∈ ψ}

and therefore P(G)≤ sup{infQ(G) | Q ∈ ψ} because ε was arbitrary. �

Proof of Theorem 42 from page 27:

“⇐”: We will use Theorem 40.2. Let f : R→ [0,1] be Lipschitz-continuous with constant
L > 0. We need to show

∫
R f dψ →

∫
R f dp. To do this we use Lemma 39 and show

infsup
∫
R

f dψ ≤
∫
R

f dp. (100)

By analogous reasoning, or alternatively going over to 1− f and use (100) again, we get
supinf

∫
R f dψ ≥

∫
R f dp and we are done. To show (100), let ε > 0, N ∈ N, a := p(R) and

y0 < ... < yN with y0, ...,yN ∈ c(F(p)) with F(p)(y0) < ε , F(p)(yN) > a− ε and yi− yi−1 <
ε for all i ∈ {1, ...,N}. Define f (y∗i ) = sup

y∈[yi−1,yi]

f (y) and f (yi∗) = inf
y∈[yi−1,yi]

f (y). For any

x ∈ c(F(p)), infsupF(ψ)(x) = F(p)(x) = supinfF(ψ)(x) holds by lemma 39. Let r :=
max

{
1,∑N

i=1 f (yi)
}

. For every x ∈ c(F(p)) there is a Qx ∈ ψ such that

F(p)(x)− ε/r ≤ F(q)(x)≤ F(p)(x)+ ε/r

holds for all q ∈ Qx. Let Q′ := Q∩Qy0 ∩ . . .∩QyN ∈ ψ . For each q ∈ Q′,

∫
R

f dq≤ q((−∞,y0])+q([yN ,∞))+
N

∑
i=1

f (y∗i )q([yi−1,yi])

≤ F(q)(y0)+a−F(q)(yN)+
N

∑
i=1

( f (yi)+L · ε)q([yi−1,yi])

≤ F(p)(y0)+a−F(p)(yN)+(2+L)ε +
N

∑
i=1

f (yi)(F(q)(yi)−F(q)(yi−1))

≤ (4+L)ε +
N

∑
i=1

f (yi)(F(p)(yi)−F(p)(yi−1)+2ε/r)

≤ (6+L)ε +
N

∑
i=1

f (yi)(F(p)(yi)−F(p)(yi−1))

≤ (6+L)ε +
N

∑
i=1

( f (yi∗)+L · ε)p([yi−1,yi])

≤ (6+2L)ε +
N

∑
i=1

f (yi∗)p([yi−1,yi])

≤ (6+2L)ε +
∫
R

f dp
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follows. Thus (100) because ε was arbitrary.

“⇒”: Let x ∈ c(F(p)). Then p(∂ (−∞,x]) = p({x}) x∈c(F(p))
= 0. Thus

F(ψ)(x) = ψ((−∞,x])→ p((−∞,x]) = F(p)(x)

follows by Theorem 40.6. �

Proof of Lemma 45 from page 28:

1. ⇒ 2: Let xn→ x, ϕ the filter associate with (xn)n∈N and ψ the filter associate with ( fn)n∈N.

From ϕ
τ→ x follows ψ(ϕ)

σ→ f (x). This means for all U ∈
•

f (x)∩σ exists P∈ψ, Q∈ ϕ

with P(Q)⊆U . So there is N ∈ N with fn(xm) ∈U for all n,m≥ N. For n≥ N follows
fn(xn) ∈U . This direction works without a cnb.

2. ⇒ 1: Let ψ the filter associate with ( fn)n∈N, x ∈ X and ϕ
τ→ x. We show ψ(ϕ)

σ→ f (x). Let

(An)n∈N a cnb of x. If not ψ(ϕ)
σ→ f (x) then ∃U ∈

•
f (x) ∩σ ∀P ∈ ϕ ∀k ∈ N∃nk ≥

k∃xk ∈ P with fnk(xk) 6∈U

To A0 and 0 exists n0 ≥ 0 and x0 ∈ A0 with fn0(x0) 6∈U .

To Ank+1 and nk +1 exists nk+1 ≥ nk +1 and xk+1 ∈ Ank+1 with fnk+1(xk+1) 6∈U .

So there is a strictly monotone sequence (nl)l∈N in N, a sequence (xl)l∈N in X with
xl → x and fnl(xl) 6∈ U . For n ∈ N let l(n) := min{l ∈ N | n ≤ nl} and x′n := xl(n).
Obviously x′n→ x but not fn(x′n)→ f (x). A contradiction! �

Proof of Theorem 46 from page 28:

We use Theorem 40.5. Let G be open in F . Let β = {Bn | n ∈ N} be a countable basis of
φ . Without restriction of generality, Bn+1 ⊆ Bn holds for all n. Then h−1(G) ⊆ D∪

⋃
B∈β T ◦B

holds with TB :=
⋂

f∈B f−1(G). [Proof: Let x ∈ h−1(G). If x 6∈ D, then ∃B′ ∈ β ∃V ∈ •x∩ τ

with B′(V )⊆G. Therefore V ⊆
⋂

f∈B′ f−1(G) and so x ∈ (
⋂

f∈B′ f−1(G))◦ ⊆
⋃

B∈β T ◦B .] Now

let ε > 0 be arbitrary but fixed. From TBk ⊆ TBk+1 follows P(T ◦Bk
)

k→∞−→ P
(⋃

B∈β T ◦B
)
≤ 1. So

there ∃B′ ∈ β with P
(⋃

B∈β T ◦B
)
≤ P(T ◦B′)+ ε . Therefore

P(h−1(G))≤ P
( ⋃

B∈β

T ◦B
)

≤ P(T ◦B′)+ ε

≤ sup
{

inf
{

Q
(
T ◦B′
)} ∣∣ Q ∈ ψ

}
+ ε , by Theorem 40.5

(∗)
≤ sup

{
inf
{

QB′(G)
} ∣∣ Q ∈ ψ

}
+ ε

= sup
{

inf
{

R(G)
} ∣∣ R ∈Φ(ψ)

}
+ ε , by Lemma 39.

For (∗) note Q
(
T ◦B′
)
= {q(

⋂
f∈B′ f−1(G)) | q ∈Q} and QB′(G) = {q( f−1(G)) | q ∈Q, f ∈ B′}.

Thus Ph(G)≤ sup
{

inf
{

R(G)
} ∣∣ R ∈Φ

}
, because ε > 0 was arbitrary. �
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Proof of Lemma 47 from page 29

1. Note that for idempotent B ∈ Rn×n, im(B)⊕ ker(B) = Rn holds and thus B = prU,V is
satisfied, where U := im(B) and V := ker(B). Since In−B is idempotent to and because
of ker(In−B) = im(B) and im(In−B) = ker(B) it follows In−B = prV,U . Since with B
also B> is idempotent, it follows B> = prU ′,V ′ , where U ′ := im(B>) and V ′ := ker(B>).
Since ker(B>) = (im(B))⊥ and ker(B) = (U ′)⊥ holds, it follows B> = prV⊥,U⊥ .

2. The first assertion follows from the easily provable equivalence prU,U⊥(y) = Xw ⇔
X>Xw = X>y. The second assertion follows from the equivalence rank(X) = d ⇔
X>X is invertible. For the proof of this second equivalence note ker(X>X) = ker(X)
and im(X>X) = im(X>).

3. Let P :=MM>. Then PP=MM>MM>=MM>=P. Thus P= prK,L and P>= prL⊥,K⊥

with K = im(P) and L = ker(P). But P> = P and so K⊥ = L. Furthermore dim(U) =
rank(X) ≥ k− rank(M>) = dim(ker(M>)) and U ⊆ ker(M>) since M>X = 0. Thus
U = ker(M>) = ker(MM>) = L and K = (K⊥)⊥ = L⊥ =U⊥. �

Proof of Lemma 55 from page 31:

2. ⇒ 1. is clear. Let us show 1. ⇒ 2. Let (tn)n∈N be a sequence in D∩ (−∞, t) with
tn → t. Assume f (tn) 6→ f (t). Then there exists ε > 0 and a subsequence (tnk)k∈N with
| f (tnk)− f (t)| ≥ ε for all k ∈ N. Since every sequence of real numbers contains a monotone
subsequence, we can assume without restriction that (tnk)k∈N is already monotone. Because
of tnk ≤ t and tnk → t, (tnk)k∈N is therefore nondecreasing. Thus f (tnk)→ f (t) holds in contra-
diction to | f (tnk)− f (t)| ≥ ε for all k ∈ N. �

Proof of Lemma 57 from page 32:

1. q,q′ ∈ QF with q≤ q′ implies F−(q) = inf{t ∈ I | q≤ F(t)} ≤ inf{t ∈ I | q′ ≤ F(t)}=
F−(q′), since {t ∈ I | q′ ≤ F(t)} ⊆ {t ∈ I | q≤ F(t)}.

2. Let t :=F−(q) and let (tn)n∈N be a sequence in {t ′ ∈ I |F(t ′)≥ q}with tn↘ t. It follows
F(t) = lim

n→∞
F(tn)≥ q. Thus t ∈ {t ′ ∈ I | F(t ′)≥ q} and F−(q) = min{t ′ ∈ I | F(t ′)≥ q}.

3. Follows directly from 2.

4. F−(F(t)) = inf{t ′ ∈ I | F(t ′)≥ F(t)} ≤ t since t ∈ {t ′ ∈ I | F(t ′)≥ F(t)}.

5. F−(q) = inf{t ′ ∈ I | F(t ′)≥ q} ≤ t since t ∈ {t ′ ∈ I | F(t ′)≥ q}.

6. t ≥ F−(q)⇒ F(t)≥ F(F−(q))
3.
≥ q

7. Let t ∈ I with q = F(t). Therefore F−(q)≤ t and thus q
3.
≤ F(F−(q))≤ F(t).

8. We assume that F is not constant (otherwise |QF |= 1). Let q ∈ QF \{Q−F }, t := F−(q)
and (qn)n∈N be a sequence in QF with qn↗ q. Since q ∈ QF \{Q−F } there exists δ > 0
with q− δ ∈ QF \{Q−F }. Thus there is a ∈ I with F(a) ≤ q− δ < q− δ

2 . This implies
F(a) < q− δ

2 , a < F−(q− δ

2 ), F−(q− δ

2 ) ∈ I \ {I−} and t ∈ I \ {I−}. Let ε > 0 with
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t− ε ∈ I. Since F(t− ε) < q, there is an N ∈ N with F(t− ε) < qn ≤ q and F−(qn) ∈
I \{I−} for all n≥ N. From 6. and 1. we deduce t−ε < F−(qn)≤ F−(q) for all n≥ N.
Thus F−(qn)→ F−(q), since ε was arbitrary.

9. F−(F(t)) = inf{t ′ ∈ I | F(t)≤ F(t ′)}= t for all t ∈ I, since F is strictly increasing. Let
q = F(t) ∈ B. Thus F−(q) = t and F(F−(q)) = F(t) = q. Hence (F−|B ) ◦F = id and

F ◦ (F−|B ) = id, i.e. F−|B = F−1.

10. Applying 5. several times yields (G ◦ F)−(q) = inf{t ∈ I | q ≤ G(F(t))} = inf{t ∈
I | G−(q)≤ F(t)}= inf{t ∈ I | F−(G−(q))≤ t}= F−(G−(q)). �

Proof of Lemma 60 from page 32:

1. P(F−(U)≤ t) = P({ω | F−(U(ω))≤ t} 57
= P({ω |U(ω)≤ F(t)}) = F(t).

2. Let us first show (70). P(F(X) ≤ 1) = 1 is obvious. So let r ∈ [0,1), M := {t | F(t) ≤ r}
and t0 := supM, if M 6= /0. We distinguish the cases r ∈ F(R) and r 6∈ F(R).

r 6∈ F(R): If r = 0, M = /0 and P(F(X) ≤ r) = P({ω | X(ω) ∈M}) = P( /0) = 0 follows. If r > 0
then M 6= /0. Assume t0 ∈ M. Since r 6∈ F(R), M = {t | F(t) < r} follows. Thus
F(t0)< r. But F is right continuous, so F(t0) = limx↘t0 F(x)≥ r (since F(x)> r for all
x > t0). A contradiction. Thus t0 6∈M. Therefore t0 = F−(r) and

P(F(X)≤ r) = P({ω | X(ω) ∈M}) = P({ω | X(ω) ∈ (−∞, t0)})
= P(X < t0) = lim

x↗t0
F(x) = lim

x↗F−(r)
F(x).

r ∈ F(R): In this case we do not need to consider r = 0 separately. If t0 ∈ M, P(F(X) ≤ r) =
P({ω | X(ω) ∈M}) = F(t0) = r follows, since r ∈ F(R). If t0 6∈M, F(t0)> r follows.
Let t1 < t0 with F(t1) = r. Hence F(t) = r for all t ∈ [t1, t0) and thus

P(F(X)≤ r) = P({ω | X(ω) ∈M}) = P({ω | X(ω) ∈ (−∞, t0)})
= P(X < t0) = lim

x↗t0
F(x) = r.

Let us show (71). A generator of (F−)−1(B(R)) is E :=
{
(F−)−1((−∞,r]) | r ∈ R

}
. By

Lemma 57, (F−)−1((−∞,r]) = Ir with Ir = [0,F(r)] or Ir = (0,F(r)], depending on wether
0 ∈ F(R) or 0 6∈ F(R), because F−(q)≤ r ⇔ q≤ F(r). With this we get

PU ((F−)−1((−∞,r])
)
= PU (Ir)

(70)
= F(r) = λ (Ir) = λ

(
(F−)−1((−∞,r])

)
.

Thus (71) is also shown. Finally, we come to the proof of (72). First of all,

P(X̃ ≤ r) = P(F−(U)≤ r) = P(U ≤ F(r))
(70)
= F(r) = P(X ≤ r),

is valid and so is PX = PX̃ . Moreover, X̃(ω) = F−(F(X(ω)))≤ X(ω) for all ω . Thus,

P(X̃ 6= X) = P(X̃ < X) = P(F−(F(X))< X) = PX({t | F−(F(t))< t})

= PX̃({t | F−(F(t))< t}) = P(F−(F(X̃))< X̃)

= P(F−(F(F−(U)))< F−(U))
(∗)
= 0.
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For (∗), note that F−(F(F−(q))) = F−(q) holds by Lemma 57. Moreover,

F(X̃) = F(F−(F(X))) = F(X) =U

holds because of lemma 57.7. Thus, the second equation in (72) is also shown. �

Proof of Lemma 62 from page 33:

Let V : (Ω,A ,P)→ (R,B(R)) be a normally distributed random variable, V ∼ N(0,1) and
Φ(x) be its distribution function. If Fn F then Fn(V )→ F(V ) almost surely, because

Ω0 := {ω | Fn(V (ω)) 6→ F(V (ω))} ⊆ {ω |V (ω) ∈ R\ c(F)}=V−1(R\ c(F))

and P(Ω0)≤ P(V−1(R\ c(F))) = PV (R\ c(F)) = 0, since R\ c(F) is at most countable. Let
F− be continuous at u and Ω1 := {ω ∈Ω | F(V (ω)) = u}. Then P(Ω1) = 0, since Ω1 ⊆ {ω ∈
Ω |V (ω) = F−(u)}, because F− is continuous at u. Thus

Φ(F−n (u)) = P(V < F−n (u)) = P(Fn(V )< u)

=
∫

Ω

1{ω∈Ω | Fn(V (ω))<u}dP
(∗)→
∫

Ω

1{ω∈Ω | F(V (ω))<u}dP

= P(F(V )< u) = P(V < F−(u)) = Φ(F−(u))

holds. In (∗) we can use the dominated convergence theorem, because

1{ω∈Ω | Fn(V (ω))<u}(ω)→ 1{ω∈Ω | F(V (ω))<u}(ω)

holds for all ω ∈Ω\ (Ω0∪Ω1) and P(Ω0∪Ω1) = 0. By continuity of Φ−1, F−n (u)→ F−(u)
follows for every such u.

For a proof of the converse let U be uniformly distributed on (0,1). Because of F−n  F−,

just like in the first case, F−n (U)→ F−(U) almost surely follows and therefore11 F−n (U)
D→

F−(U). Thus Fn F by Lemma 42 and Lemma 60.1 �

Proof of Lemma 59 from page 32:

Let g := h+. Obviously g : [h(a),h(b)]→ [a,b] is non decreasing. Let r = g(t) and (rn)n∈N
be a sequence in {r′ ∈ [a,b] | h(r′) ≤ t} with rn↗ r. It follows h(r) = lim

n→∞
h(rn) ≤ t. Thus

r ∈ {r′ ∈ [a,b] | h(r′)≤ t} and therefore g(t) = max{r′ ∈ [a,b] | h(r′)≤ t}. From this we can
directly deduce

h(r)> t ⇔ r > g(t) , for all r ∈ [a,b], t ∈ [h(a),h(b)]. (101)

Next, we show that g is right continuous. Let r = g(t), tn↘ t ∈ [h(a),h(b)) and ε > 0. Then
h(r+ ε) > t follows. So there is N ∈ N with h(r+ ε) > tn ≥ t for all n ≥ N. Thus r+ ε >

g(tn) ≥ g(t) follows for all n ≥ N, because of (101). Since ε >0 is arbitrary, g(tn)
n→∞−→ g(t)

follows. Now we show g−(r) = h(r) for all r ∈ [a,b]. In any case

g(h(r)) = sup{r′ ∈ [a,b] | h(r′)≤ h(r)} ≥ r

11If Xn→ X converges almost surely, then Xn
D→ X holds. This follows directly from the definition together with

the change of variable formula and the dominated convergence theorem.
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and so g−(r)≤ h(r). Suppose t := g−(r)< h(r). Due to (101), g(t)< r follows in contradic-
tion to g−(r) = min{t ′ ∈ [h(a),h(b)] | r ≤ g(t ′)} (cf. Lemma 57.2). Thus g−(r) = h(r).

Let us now consider the case where h is right continuous. Also in this case we set to abbre-
viation g := h− : [h(a),h(b)]→ [a,b]. Now we show g+ = h. We have g(h(r)) = inf{r′ ∈
[a,b] | h(r′) ≥ h(r)} ≤ r. Consequently g+(r) = sup{t ∈ [h(a),h(b)] | g(t) ≤ r} ≥ h(r). As-
sume t := g+(r) > h(r). Completely analogous to (101), one shows that this assumption is
equivalent to r < g(t). This is a contradiction to g+(r) = max{t ′ ∈ [h(a),h(b)] | g(t ′)≤ r}. �

Proof of Lemma 65 from page 33:

1. Trivial.

2. For the proof of “≤” transform a decomposition of [a,b] into decompositions of [a,c]
and [c,b] (if necessary add c as new decomposition point) and use the triangle inequality.

For the proof of “≥” let ε > 0 be given. Now approximate V ( f ,a,c) by some de-
composition with a precision of ε/2. Proceed analogously with V ( f ,c,b). Then it
follows V ( f ,a,b) ≤ V ( f ,a,c)+ ε/2+V ( f ,c,b)+ ε/2. Since ε is arbitrary, it follows
V ( f ,a,b)≤V ( f ,a,c)+V ( f ,c,b).

3. Follows trivially from the triangle inequality.

4. For “⇒” let g(x) := 1
2(V ( f ,a,x)+ f (x)) and h(x) := 1

2(V ( f ,a,x)− f (x)). For x′ < x

g(x)−g(x′) =
1
2
(V ( f ,a,x)−V ( f ,a,x′)+ f (x)− f (x′))

=
1
2
(V ( f ,x′,x)− ( f (x′)− f (x)))≥ 0

follows by definition of the variation V . Analogously h(x)−h(x′)≥ 0. Thus f = g−h
and g and h are non decreasing.

For “⇒” obviously V (g,a,b) = g(b)−g(a) holds for non-decreasing g (analogously for
non-increasing). The assertion then follows from 3.

5. Because of 4. it is sufficient to show the measurability of non-decreasing mappings
f : [a,b]→ [ f (a), f (b)]. This follows from f−1([c, f (b)]) = [ f−(c),b], cf. Lemma 57
and the fact that {[c, f (b)] | c ∈ [ f (a), f (b)]} is a generator of Borel sets in [ f (a), f (b)].

6. If x 7→ V ( f ,a,x) were not left continuous in c ∈ (a,b], it would have a jump since it is
non-decreasing. I.e.

∃ε > 0∀x ∈ [a,c) : V ( f ,a,x)<V ( f ,a,c)− ε. (102)

However, f is left continuous in c, i.e.

∃δ > 0∀x ∈ (c−δ ,c] : f (c)− f (x)< ε/2. (103)

Let a = x1 < .. . < xn = c with xi+1− xi < δ for all i = 1, . . . ,n−1 and

V ( f ,a,c)− ε/2 <
n−1

∑
i=1
| f (xi+1)− f (xi)| ≤V ( f ,a,c). (104)
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Thus
n−2

∑
i=1
| f (xi+1)− f (xi)| ≤V ( f ,a,xn−1)

(102)
< V ( f ,a,c)− ε (105)

and therefore

V ( f ,a,c)− ε/2
(104)
<

n−1

∑
i=1
| f (xi+1)− f (xi)| ≤ V ( f ,a,xn−1)+ | f (xn)− f (xn−1)|

(103)
< V ( f ,a,xn−1)+ ε/2

(105)
< V ( f ,a,c)− ε + ε/2 =V ( f ,a,c)− ε/2.

Obviously, this is a contradiction. Hence x 7→V ( f ,a,x) is left continuous. �

Proof of Lemma 66 from page 34:

1. Define F1 : R→R by F1(x) = F(x) for a≤ x≤ b, F1(x) = F(a) for x < a and F1(x) = F(b)
for b < x. Then λ F−0 = µF1 holds on B(R), because for x < y, x≤ b and a≤ y,

λ
F−0 ((x,y]) = λ

(
(F−0 )−1((x,y])

)
= λ

(
{q ∈ [F(a),F(b)] | x < F−0 (q)≤ y}

)
= (∗)

if a≤ x,y≤ b : (∗) = λ
(
{q ∈ [F(a),F(b)] | F0(x)< q≤ F0(y)}

)
cf. Lemma 57.5

= F1(y+)−F1(x+) since F and F1 are right continuous
= µF1((x,y])

if x < a,y≤ b : (∗) = λ
(
{q ∈ [F(a),F(b)] | a≤ F−0 (q)≤ y}

)
= λ

(
{q ∈ [F(a),F(b)] | F0(a)≤ q≤ F0(y)}

)
= µF1((x,y])

if a≤ x,b < y : (∗) = λ
(
{q ∈ [F(a),F(b)] | x < F−0 (q)≤ b}

)
= λ

(
{q ∈ [F(a),F(b)] | F0(x)< q≤ F0(b)}

)
= µF1((x,y])

if x < a,b < y : (∗) = λ
(
{q ∈ [F(a),F(b)] | a≤ F−0 (q)≤ b}

)
= λ

(
{q ∈ [F(a),F(b)] | F0(a)≤ q≤ F0(b)}

)
= µF1((x,y])

follows. If y ≤ x or b < x or y < a, then λ F−0 ((x,y]) = 0 = µF1((x,y]). By means of the
change-of-variables formula

∫
Ω′ α dµT =

∫
Ω
(α ◦T )dµ for α : Ω′→R and T : Ω→Ω′, see e.

g. Stroock (1994), Lemma 5.0.1, we conclude (note T := F−0 : [F(a),F(b)]→ R and α := g)∫
[F(a),F(b)]

g◦F−0 dλ =
∫
R

gdλ
F−0 =

∫
R

gdµF1 =
∫
R

1(a,b]gdµF1 =
∫
R

1(a,b]gdµF .

2. First note (F−)|(0,1) : (0,1)→ R. Then one shows λ
(F−)|(0,1) = µF similarly as above.

λ
(F−)|(0,1)((x,y]) = λ

(
{q ∈ (0,1) | x < F−(q)≤ y}

)
= λ

(
{q ∈ (0,1) | F(x)< q≤ y}

)
= F(y+)−F(x+) = µF((x,y]),

60



for all x≤ y. Thus λ
(F−)|(0,1) = µF holds on B(R). Now∫

(F(a),F(b))
g◦ (F−)|(0,1) dλ =

∫
(0,1)

1(F(a),F(b)] ·
(
g◦ (F−)|(0,1)

)
dλ

=
∫
(0,1)

(
1(a,b] ◦ (F−)|(0,1)

)
·
(
g◦ (F−)|(0,1)

)
dλ

=
∫
R

1(a,b] ·gdλ
(F−)|(0,1) =

∫
R

1(a,b] ·gdµF

follows again with the change-of-variables formula and Lemma 57.5. �

Proof of Lemma 67 from page 34:

1. Let D := D′∪((0,1)∩Q). Then D is countably infinite, includes all discontinuities of all f̃i,
i∈ J, and D is also dense in [0,1]. Now let D= {qk | k ∈N≥1} be a fixed bijective enumeration
of D. Each r ∈ [0,1] is assigned a (possibly degenerate) interval Ir ⊂ [0,1],

Ir :=
[

∑
qk<r

2−k, ∑
qk≤r

2−k
]
.

(Where ∑qk<r means that the sum is formed over all k ∈ N≥1 to which qk < r applies. Analogue with “≤”.)
Ir is an interval of positive length if r ∈ D. For r ∈ [0,1]\D, Ir =

{
∑qk<r 2−k} is degenerated

to a single point, since in this case ∑qk<r 2−k = ∑qk≤r 2−k. Furthermore,

r < r′ ⇔ I+r < I−r′ for all r,r′ ∈ [0,1]. (106)

This follows immediately from the fact that D∩ (r,r′) 6= /0 holds for all r < r′. Between every
two Ir, Ir′ with r < r′, there are infinitely many Ir′′ with r′′ ∈ D and infinitely many with
r′′ ∈ [0,1]\D. Nevertheless, Z := {Ir | r ∈ [0,1]} is a decomposition of [0,1].

Proof: The only thing to show is that for each z ∈ [0,1] \
⋃

r∈D Ir there is x ∈ [0,1] \D, with
z = ∑qk<x 2−k. The uniqueness then follows from (106). So let z ∈ [0,1]\

⋃
r∈D Ir.

1st case 0 ∈ D′, so 0 ∈ D. Let M :=
{

∑qk≤r 2−k
∣∣ r ∈ D ∧ ∑qk≤r 2−k < z

}
. Then

M 6= /0 because z 6∈ I0 = [0,2−k], where 0 = qk. Thus z0 := sup M exists. Obviously
z0 ≤ z. Since all intervals in Z are pairwise disjoint, z0 < z cannot be valid because
of ∑r∈D length(Ir) = 1. Therefore z0 = z. Let

(
∑qk≤ri 2−k)

i∈N be a strictly monotone
increasing sequence of M with lim

i→∞
∑qk≤ri 2−k = z. Then (ri)i∈N is a strictly monotone in-

creasing sequence of D. Let x := limi→∞ ri ∈ (0,1]. Thus ∑qk<x 2−k = lim
i→∞

∑qk≤ri 2−k =

z. By choice, x ∈ [0,1]\D must hold.

2nd case 0 6∈ D′, so 0 6∈ D. If z = 0 holds, then z = ∑qk<x 2−k where x := 0 ∈ [0,1]\D.
If z > 0, we define M as above. For all N ∈ N≥1, let xN := 1

2 min(q1, . . . ,qN). Thus
SN := ∑qk≤xN 2−k ≤ ∑

∞
k=N+1 2−k = ∑

∞
k=0 2−N−1−k = 2−N−1

∑
∞
k=0 2−k = 2−N . Choose

N ∈ N≥1 and r ∈ D with r < xN and SN < z. Then ∑qk≤r 2−k ∈M, i.e. M 6= /0. The rest
now follows exactly as in the 1st case.

This means (illustratively) that each r ∈D is “blown up” to a small interval Ir and each element
r ∈ [0,1]\D is left as a single element. Now we come to the definition of the fi, i ∈ J.
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On the degenerate intervals Ir′ = {∑qk<r′ 2−k}, r′ ∈
[0,1] \D, fi has the value f̃i(r′). On the intervals of
positive length Ir = [∑qk<r 2−k,∑qk≤r 2−k], r ∈ D, fi

has value f̃i(r−) on I−r with fi(0) := f̃i(0) if 0 = I−0 ,
f̃i(r+) on I+r with fi(1) := f̃i(1) if 1 = I+1 and f̃i(r) in
the middle between them and everything linearly
connected (see sketch). We will show fi is right continuous (left continuous is shown analo-
gously). From the definition of fi it follows immediately that fi is right continuous in every
x ∈ Ir \ {I+r } for r ∈ D. It remains to show fi is right continuous in the points I+r with r ∈ D
and in all x ∈ Ir′ = {∑qk<r′ 2−k}, r′ ∈ [0,1]\D. Each x ∈ [0,1] lies in exactly one Ir(x). Thus

min{ f̃i(r(x)−), f̃i(r(x)), f̃i(r(x)+)} ≤ fi(x)≤max{ f̃i(r(x)−), f̃i(r(x)), f̃i(r(x)+)} (107)

follows, due to the construction of fi. If xn↘ x holds in [0,1], then r(xn)↘ r(x) follows, since
∑r(x)<qk<r(xn) 2−k = I−r(xn)

− I+r(x)→ 0. If r(x) ∈ [0,1]\D, then

f̃i(r(xn)
−)→ f̃i(r(x)) , f̃i(r(xn))→ f̃i(r(x)) and f̃i(r(xn)

+)→ f̃i(r(x))

follows, since f̃i is continuous in r(x). Thus fi(xn)→ fi(x), due to f̃i(r(x)) = fi(x) and (107).
If r(x) ∈ D, i.e. x = I+r(x), then

f̃i(r(xn)
−)→ f̃i(r(x)+) , f̃i(r(xn))→ f̃i(r(x)+) and f̃i(r(xn)

+)→ f̃i(r(x)+)

by definition of the right limit f̃i(r(x)+). So fi(xn)→ fi(x), due to f̃i(r(x)+) = fi(x) and (107).
Now h is defined by

h(r) :=
1
2

(
∑

qk<r
2−k + ∑

qk≤r
2−k

)
.

Then h is strictly monotonically increasing (obviously) with f̃i = fi ◦h for all i∈ J (this is easy
to prove; it is best to systematically go through all possible cases).

2. We only consider the case where all f̃i are left continuous. Note that this implies 1 6∈D.
In this case we define h by12

h(r) := ∑
qk<r

2−k.

Then h(r1)< h(r2) for all r1 < r2, h(0) = 0, h(1) = 1, h is left continuous and

Ir = [h(r−),h(r+)] = [h(r),h(r+)].

for all r ∈ (0,1]. Since every f̃i, i ∈ J, is left continuous, fi(h(r)) = fi(h(r−)) = f̃i(r−) = f̃i(r)
for all r ∈ (0,1] and fi(h(0)) = fi(0) = f̃i(0) holds, i.e. fi◦h= f̃i. It remains to be shown that h
is the quantile function of an corresponding distribution function F : [0,1]→ [0,1]. We define
F(t) := h+(t) = sup{r ∈ [0,1] | h(r)≤ t}, cf. Remark 58. Then F(0) = 0, since h(0) = 0 and
h(r)> 0 for all r > 0. Moreover F(1) = 1, F is non-decreasing, right continuous and satisfies
F− = h, by Lemma 59. If F were not continuous, F would have jumps and F− = h would be

12If all f̃ are right continuous, h could instead be defined by h(r) :=∑qk≤r 2−k. Then h would be right continuous
and would satisfy f̃i = fi ◦h for all i ∈ J and all other corresponding properties.
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constant on some intervals of positive length, in contradiction to h being strictly monotonically
increasing.

3. We assume that all f̃i are continuous in 0. Then (75) holds. For if F(t) = sup{r′ ∈
[0,1] | h(r′)≤ t}= 0 holds for t > 0, then

h(xN) = ∑
qk<xN

2−k ≤
∞

∑
k=N+1

2−k =
∞

∑
k=0

2−N−1−k = 2−N−1
∞

∑
k=0

2−k = 2−N ,

with xN := min(q1, . . . ,qN) > 0. For this, note that 0 6∈ D holds, since all f̃i are continuous
in 0. For sufficiently large N with 2−N < t, a contradiction would result. The assumption
F(t) = sup{r′ ∈ [0,1] | h(r′)≤ t}= 1 for some t < 1 leads directly to a contradiction.

4. If all f̃i are of bounded variation, there are non-decreasing functions g̃i1 and g̃i2 with
f̃i = g̃i1− g̃i2. The same construction as above with f̃i, but now carried out with g̃i1 and
g̃i2, leads because of f̃i(r−) = g̃i1(r−)− g̃i2(r−), f̃i(r+) = g̃i1(r+)− g̃i2(r+) and the linear
construction on Ir to non-decreasing functions gi1 and gi2, with fi = gi1−gi2. Consequently,
all fi are also of bounded variation. �

Proof of Remark 68 from page 35:

We assume f has a left limit in each x ∈ [0,1]. Let D′ := {x ∈ [0,1] | f is discontinuous in x}.
If x ∈ D′, then

∃n ∈ N≥1∀δ > 0∃x′ ∈ [0,1] such that |x− x′|< δ ∧ | f (x)− f (x′)| ≥ 1
n
.

Thus D′ =
⋃

n∈N≥1 D′n, where,

D′n := {x ∈ [0,1] | ∀δ > 0∃x′ ∈ [0,1] with |x− x′|< δ ∧ | f (x)− f (x′)| ≥ 1/n}.

Suppose D′ is uncountable. Then there exists n ∈ N≥1 such that D′n is uncountable too. We
will show

∃x0 ∈ D′n∀ε > 0 : (x0− ε,x0)∩D′n 6= /0. (108)

If (108) were false, then for every x ∈ D′n there would be an εx > 0 with (x− εx,x)∩D′n =
/0. Then (x− εx,x), x ∈ D′n would be a family of pairwise disjoint nonempty open intervals
and in particular D′n would thus be countable - a contradiction! Consequently, (108) is true.
By definition of D′n and because of (108), for every k ∈ N≥1 exists xk,x′k ∈ (x0− 1

k ,x0)∩D′n
with | f (xk)− f (x′k)| ≥

1
n . The sequence (x1,x′1,x2,x′2, . . .) converges from the left to x0 in

contradiction to the fact that ( f (x1), f (x′1), f (x2), f (x′2), . . .) does not converge at all. �

Proof of Lemma 69 from page 35:

For each i ∈ J let f̃i,1 and f̃i,2non-decreasing with f̃i = f̃i,1− f̃i,2. We first consider the case
where f̃i(0) = 0 holds for all i∈ J. Thus f̃i,1 and f̃i,2 can be chosen a priori such that f̃i,1(0) = 0
and f̃i,2(0) = 0 for all i ∈ J too. Define h : [0,1]→ [0,1] by

h(r) :=
r
L
+

1
L
·

d

∑
i=1

(
f̃i,1(r)+ f̃i,2(r)

)
with L := 1+

d

∑
i=1

(
f̃i,1(1)+ f̃i,2(1)

)
. (109)
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Obviously h is strictly monotonically increasing with h(0) = 0 and h(1) = 1. We define map-
pings gi : Image(h)→R by gi(h(x)) := f̃i(x) for every i ∈ J. Since h is strictly monotonically
increasing, all gi are well-defined with f̃i = gi ◦ h. All gi are Lipschitz continuous. To show
this, we assume x< y for x,y∈ Image(h). Then there are s, t ∈ [0,1] with x= h(s) and y= h(t).
Therefore s < t and

|gi(y)−gi(x)|= |gi(h(t))−gi(h(s))|= | f̃i(t)− f̃i(s)|

≤ t− s+
d

∑
i=1
| f̃i,1(t)− f̃i,2(t)− f̃i,1(s)+ f̃i,2(s)|

≤ t− s+
d

∑
i=1
| f̃i,1(t)− f̃i,1(s)|+

d

∑
i=1
| f̃i,2(t)− f̃i,2(s)|

= t +
d

∑
i=1

(
f̃i,1(t)+ f̃i,2(t)

)
−

(
s+

d

∑
i=1

(
f̃i,1(s)+ f̃i,2(s)

))
= L(h(t)−h(s)) = L|y− x|

Using McShane’s Lemma13 or the Kirszbraun Theorem, we extend each gi, i∈ J to a Lipschitz
continuous mapping fi : [0,1]→ R. Thus f̃i = fi ◦h, for all i ∈ J. If all f̃i are left continuous
(or right continuous), then h is also left continuous (or right continuous). We now conclude, as
in the proof of Lemma 67, that F : [0,1]→ [0,1] defined by F(t) := sup{r ∈ [0,1] | h(r)≤ t}
is a non-decreasing continuous function (in case that all f̃i are left continuous) with F(0) = 0,
F(1) = 1 and h = F−. Finally, if all f̃i are continuous in 0, then (75) follows, as in the proof
of Lemma 67, from h(0) = 0 and the fact that h is continuous in 0.

We still have to prove the general case with f̃i(0) ∈ R arbitrarily. For this we define
f̂i(t) := f̃i(t)− f̃i(0), i ∈ J. Then f̂i(0) = 0 holds and we get f̂i = fi ◦h according to what we
proved before. Then we set hi(t) := fi(t)+ f̃i(0). And it follows f̃i = f̂i + f̃i(0) = hi ◦h for all
i ∈ J. Of course, all hi, i ∈ J are also continuous. Thus the lemma is completely proved. �

Remark 81. h from (109) in the proof of Lemma 69 could also be defined by

h(x) :=
x
L
+

1
L
·

d

∑
i=1

V ( f̃i,0,x) with L := 1+
d

∑
i=1

V ( f̃i,0,1)> 0. (110)

13This is a very useful theorem. See e.g. Heinonen (2001), Theorem 6.2. Since the proof is short and relatively
simple, we give it here. We extend each gi to a Lipschitz continuous mapping fi : [0,1]→ R by fi(x) :=
inf
y∈A

(
gi(y)+L · |x− y|

)
, where A := Image(h). Since

g(y)+L · |a− y|−g(a) = g(y)−g(a)+L · |a− y| ≤ 2L · |a− y| and
g(a)− (g(y)+L · |a− y|) = g(a)−g(y)−L · |a− y| ≤ 0

fi(a) = gi(a) for all a∈ A follows. Let us now show that all fi, i∈ J are Lipschitz continuous. Let x,x′ ∈ [0,1]
and let ε > 0. Choose y0 ∈ A with g(y0)+L · |x′− y0|− ε < f (x′). Because of

f (x)− f (x′) = inf
y∈A

(
gi(y)+L · |x− y|

)
− inf

y′∈A

(
gi(y′)+L · |x′− y′|

)
< inf

y∈A

(
gi(y)+L · |x− y|

)
−
(
gi(y0)+L · |x′− y0|− ε

)
≤
(
gi(y0)+L · |x− y0|

)
−
(
gi(y0)+L · |x′− y0|

)
+ ε

= L(|x− y0|+ |x′− y0|)+ ε ≤ L · |x− x′|+ ε

and (analogously) f (x′)− f (x)< L · |x′−x|+ε , | f (x)− f (x′)| ≤ L · |x−x′| follows, since ε > 0 was arbitrary.
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Then, h is left continuous by Lemma 65.6 and strictly monotonically increasing with h(0) = 0
and h(1) = 1. We define gi : Image(h)→ R by gi(h(x)) := f̃i(x) for every i ∈ J. Since h
is strictly monotonically increasing, all gi are well-defined with f̃i = gi ◦ h. The Lipschitz
continuity of gi then follows from

|gi(y)−gi(x)|= |gi(h(t))−gi(h(s))|= | f̃i(t)− f̃i(s)|

≤ t− s+V ( f̃i,s, t)≤ t− s+
d

∑
i=1

V ( f̃i,s, t)

= t− s+
d

∑
i=1

(
V ( f̃i,0, t)−V ( f̃i,0,s)

)
= L(h(t)−h(s)) = L|y− x|

for x < y with x = h(s), y = h(t) and s < t. The rest follows as in the proof of Lemma 69.

Proof of Lemma 70 from page 35:

Since (tn,bsnc)n∈N is bounded, it has cluster points. Assume there is a cluster point x′ with

x′ < x := F−(s). We choose a subsequence (tnk,bsnkc)k∈N of (tn,bsnc)n∈N with tnk,bsnkc
k→∞−→ x′.

Since every real sequence contains a monotone subsequence, we can assume without loss of
generality that the subsequence is already monotone. Then F(x′)< s≤ F(x) holds by Lemma
57. Let ε := s−F(x′)> 0.

1st case (tnk,bsnkc)k∈N is non decreasing. Because of Fnk(tnk,bsnkc))≥
bsnkc

nk

k→∞−→ s there is a k0 with

Fnk(tnk,bsnkc)≥ s−ε/3 for all k≥ k0. Due to sup
x∈[a,b]

|Fn(x)−F(x)| n→∞−→ 0 there is a k1≥ k0

with |Fnk(x)−F(x)|< ε/3 for all k ≥ k1 and all x ∈ [a,b]. Thus F(tnk,bsnkc)≥ s−2ε/3
for all k ≥ k1. This is a contradiction to tnk,bsnkc ≤ x′ and F(tnk,bsnkc)≤ F(x′) = s− ε .

2nd case (tnk,bsnkc)k∈N is non increasing. As just shown F(tnk,bsnkc)≥
bsnkc

nk
≥ s−2ε/3 for all suffi-

ciently large k, contradicting F(tnk,bsnkc)
k→∞−→ F(x′) = s−ε , since F is right continuous.

To show the second assertion, we assume that F− is continuous in s. Let x0 be the smallest
cluster point of (tn,bsnc)k∈N. Let ε > 0 be arbitrary. Thus there exists n0 ∈N with x0−ε < tn,bsnc
for all n≥ n0. Consequently

∀n≥ n0 : F−(s)− ε ≤ x0− ε < tn,bsnc. (111)

Because of sup
x∈[a,b]

|Fn(x)−F(x)| n→∞−→ 0 it follows F−n (s)→ F−(s) by Lemma 62, i.e.

∃n1 ≥ n0∀n≥ n1 : F−(s)≥ F−n (s)− ε ≥ F−n (bsnc/n)− ε = tn,bsnc− ε. (112)

Thus tn,bsnc
n→∞−→ F−(s) by (111) and (112). �

Proof of Lemma 72 from page 36

Our proof based on the proof of Lemma A.1 in Bischoff (1998). Let D := support(F)⊆ [a,b].
First we show ∫ (R)

[a,F−(s)]
(u◦F) d f exists. (113)
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Proof of (113): First, note that the integral
∫ (R)
[a,F−(s)](u◦F) d f exists if and only if both integrals∫ (R)

[a,F−(s)](u◦F) dg as well as
∫ (R)
[a,F−(s)](u◦F) dh exist, where f = g−h is the canonical Jordan

decomposition (cf. Lojasiewicz (1988), Theorem 1.5.3 and Lemma 65 in this thesis). The rest
follows with Theorem 5.1.2 from Stroock (1994) because u ◦F has at most countably many
discontinuity points and consequently the set of discontinuity points is a null set with respect
to the measures µg and µh generated by f , resp. g and h (because f is continuous by premise,
so g and h are continuous too, see Lemma 65).

We will now show that the difference
∣∣∣∑bsnc

i=2 ( f (tn,i)− f (tn,i−1))u
( i−1

n

)
−
∫ (R)
[a,F−(s)](u◦F) d f

∣∣∣
becomes arbitrarily small for sufficiently large n. To this end, let ε > 0. Since f ∈C[a,b], f is
uniformly continuous on [a,b], i.e. there exists δ0 with 0 < δ0 ≤ ε and

|x− x′|< δ0 ⇒ | f (x)− f (x′)|< ε (114)

for all x,x′ ∈ [a,b]. Since (113), there exists δ1 with 0 < δ1 ≤ δ0 and∣∣∣∣∣ k

∑
i=1

( f (vi)− f (vi−1))u(F(vi−1))−
∫ (R)

[a,F−(s)]
(u◦F) d f

∣∣∣∣∣< ε (115)

for all k ∈ N≥1 and a = v0 ≤ v1 ≤ . . . ≤ vk−1 ≤ vk = F−(s) with vi− vi−1 < δ1 for all i ∈
{1, . . . ,k}. Since the variation (cf. Definition 64) x 7→V ( f ,a,x) of f is uniformly continuous
on [a,b] (because f is continuous, cf. Lemma 65.6) there exists δ with 0 < δ ≤ δ0 and

x′−δ < x≤ x′ ⇒ V ( f ,x,x′)< ε (116)

for all x,x′ ∈ [a,b]. Because of Lemma 70, there is n0 ∈ N with

|tn,bsnc−F−(s)|< δ/2 for all n≥ n0. (117)

Since u is also uniformly continuous on [0,1] and because of supx∈[a,b] |Fn(x)−F(x)| n→∞−→ 0,
there exists an n1 ≥ n0 with∣∣u(Fn(x))−u(F(x))

∣∣≤ ε for all n≥ n1 and all x ∈ [a,b]. (118)

Because of supx∈[a,b] |Fn(x)−F(x)| → 0 and (117) there exists an n2 ≥ n1 such that

∀n≥ n2∀d ∈ D∩ [a,F−(s)] ∃ j ∈ {1, . . . ,bsnc} : |d− tn, j|< δ/2.

Thus

tn,1−a≥ δ ⇒
(

a+
δ

2
, tn,1−

δ

2

)
∩D = /0,

tn,i− tn,i−1 ≥ δ ⇒
(

tn,i−1 +
δ

2
, tn,i−

δ

2

)
∩D = /0,

F−(s)− tn,i ≥ δ ⇒
(

tn,i +
δ

2
,F−(s)− δ

2

)
∩D = /0,

tn,i−F−(s)≥ δ ⇒
(

F−(s)+
δ

2
, tn,i−

δ

2

)
∩D = /0
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holds for all n ≥ n2 and i ≤ bsnc. Consequently s1, . . . ,sr ∈ [a,F−(s)] \D can be found with
s1 < .. . < sr such that

vn,1−a < δ and vn,i− vn,i−1 < δ for all i ∈ {1, . . . , `(n,s)} (119)

where vn,1 < .. . < vn,`(n,s) with {vn,1, . . . ,vn,`(n,s)}= {tn,1, . . . , tn,bsnc}∪{s1, . . . ,sr}. Thus

A(n,s) :=
bsnc

∑
i=2

( f (tn,i)− f (tn,i−1))u
(

i−1
n

)
=

`(n,s)

∑
i=2

( f (vn,i)− f (vn,i−1))u(Fn(vn,i−1)) .

Note for this that for tn,i = . . .= tn, j the corresponding summands on the left-hand side are = 0
and for tn,i < sn,p < .. . < sn,q < tn, j a finite telescoping series results on the right-hand side.
Let `′(n,s) := max{i ∈ {1, . . . , `(n,s)} | vn,i ≤ F−(s)} and

I(n,s) :=
`′(n,s)

∑
i=2

( f (vn,i)− f (vn,i−1))u(F(vn,i−1)) .

Let u0 := supr∈[0,1] |u(r)|. Thus∣∣∣∣I(n,s)−∫ (R)

[a,F−(s)]
(u◦F) d f

∣∣∣∣< ε + | f (vn,1)− f (a)| ·u0 + | f (F−(s))− f (vn,`′(n,s))| ·u0

< ε(1+2u0) (120)

for all n≥ n2 by (114), (115) and (119) and

|A(n,s)− I(n,s)| ≤
`′(n,s)

∑
i=2
| f (vn,i)− f (vn,i−1)| · |u(Fn(vn,i−1))−u(F(vn,i−1))|

+∑
i∈J
| f (vn,i)− f (vn,i−1)| ·2 ·u0

≤V ( f ,a,b) · ε +V ( f ,F−(s)−δ/2,F−(s)+δ/2) ·2u0

< ε(V ( f ,a,b)+2u0) (121)

for all n≥ n2 by (116), (118) and (119), where J := {i ∈ N | `′(n,s)< i≤ `(n,s)}. Finally∣∣∣∣A(n,s)−∫ (R)

[a,F−(s)]
(u◦F) d f

∣∣∣∣< ε(1+V ( f ,a,b)+4u0)

for all n≥ n2. Thus (76). �

Proof of Lemma 73 from page 36:

As hi, j(s) :=
∫
(0,s)( fi f j) ◦F−0 dλ is continuous with respect to s ∈ [F(c),F(b)], the minimal

eigenvalue χmin(H(s)) and the maximal eigenvalue χmax(H(s)) of H(s) are continuous as
well14. Since [F(c),F(b)] is compact smin,smax ∈ [F(c),F(b)] exist with

χmin := χmin(H(smin))≤ χmin(H(s))≤ χmax(H(s))≤ χmax(H(smax)) =: χmax

14All eigenvalues λ1(s) to λd(s) of the matrix H(s) are continuous functions λi : [F(c),F(b)]→R, if s 7→H(s) is
continuous (and that is the case here). This is proven, for example, in Bhatia (1997), Corollary VI.1.6. Thus
χmin(H(s)) = min(λ1(s), . . . ,λd(s)) and χmax(H(s)) = max(λ1(s), . . . ,λd(s)) are also continuous functions.
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for all s ∈ [F(c),F(b)]. Moreover, if (A2) holds,

f1 ·1[a,c], ..., fd ·1[a,c] are l.i. in L2(F)

⇔
∫
R

(
d

∑
i=1

αi fi ·1[a,c]

)2

dµF > 0 , ∀α ∈ Rd \{0}

⇔
∫
R

(
d

∑
i=1

αi fi ·1(a,c]

)2

dµF +

(
d

∑
i=1

αi fi(a)

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

(74)⇔
∫
(F(a),F(c))

(
d

∑
i=1

αi fi ◦ (F−)|(0,1)

)2

dλ +

(
d

∑
i=1

αi fi(a)

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

⇔
∫
(F(a),F(c))

(
d

∑
i=1

αi fi ◦ (F−)|(0,1)

)2

dλ +
∫
(0,F(a))

(
d

∑
i=1

αi fi ◦ (F−)|(0,1)

)2

dλ > 0,∀α ∈ Rd \{0}

⇔
∫
(0,F(c))

(
d

∑
i=1

αi fi ◦ (F−)|(0,1)

)2

dλ > 0 , ∀α ∈ Rd \{0}

If (A1) holds, one can omit the additional summand
(
∑

d
i=1 αi fi(a)

)2 ·F(a) in the above equiv-
alence sequence and the chain shortens accordingly, but one comes to the same conclusion∫
(0,s)

(
d

∑
i=1

αi fi ◦ (F−)|(0,1)

)2

dλ > 0 for all α ∈ Rd \{0} and all s ∈ [F(c),F(b)].

Since α
>H(s)α =

d

∑
i, j=1

∫
(0,s)

(αiα j fi f j)◦ (F−)|(0,1) dλ =
∫
(0,s)

(
d

∑
i=1

αi fi ◦ (F−)|(0,1)

)2

dλ ,

H(s) is positive definite for each s ∈ [F(c),F(b)] and χmin(H(smin))> 0. Thus (77). �

Proof of Lemma 74 from page 37:

g(F−n (s)) n→∞−→ g(F−(s)), for λ−a.a. s ∈ [0,1], since Lemma 62 and g is continuous λ–
a.e. F−n , F− and g are λ -measurable, since they are λ -a.e. continuous. Thus, it follows by
Egorov’s theorem, cf. Kallenberg (2002), Lemma 1.36 or Bauer (2001), §20, exercise 7. �

Proof of Lemma 75 from page 37:

Let 1 ≤ i, j ≤ d, and ε > 0. Note that fi f j is of bounded variation, since both fi and f j are
(this follows from Lemma 65.4). By Lemma 74 it holds true

∃Kε = K(i, j)
ε ⊆ (0,1)∃n0 ∈ N∀n≥ n0 :

λ (Kε)> 1− ε and sup
s∈Kε

| fi(F−n (s)) f j(F−n (s))− fi(F−(s)) f j(F−(s))| ≤ ε.
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Moreover, let mi, j := sup
t∈[a,b]

| fi(t) f j(t)| and n1 > max(n0,
K+1
F(c) ,

K+1
ε

). Thus K
n ≤ t− btnc−K

n ≤

K+1
n for all n≥ n1 and for all n≥ n1

=

∣∣∣∣∣
∫
(0,t)

( fi f j)◦ (F−)|(0,1) dλ −
∫(

0, btnc−K
n

)( fi f j)◦F−n dλ

∣∣∣∣∣
≤

∣∣∣∣∣
∫(

0, btnc−K
n

)( fi f j)◦ (F−)|(0,1) dλ −
∫(

0, btnc−K
n

)( fi f j)◦F−n dλ

∣∣∣∣∣+
(

t− btnc−K
n

)
·mi, j

≤

∣∣∣∣∣
∫(

0, btnc−K
n

) ∣∣( fi f j)◦ (F−)|(0,1)− ( fi f j)◦F−n
∣∣ dλ

∣∣∣∣∣+ ε ·mi, j

≤
∫
(0,1)
|( fi f j)◦ (F−)|(0,1)− ( fi f j)◦F−n |dλ + ε ·mi, j

≤λ (Kε) · ε +2λ (KC
ε ) ·mi, j + ε ·mi, j ≤ ε(1+3mi, j) (122)

follows (note that all integrals are well defined). So, we have

sup
t∈(0,1)

∣∣∣∣∣1n btnc−K

∑
k=1

fi(tn,k) f j(tn,k)−Hi, j(t)

∣∣∣∣∣→ 0 , Hi, j(t) :=
∫
(0,t)

( fi f j)◦ (F−)|(0,1) dλ (123)

for all 1 ≤ i, j ≤ d, since 1
n ∑
btnc−K
k=1 fi(tn,k) f j(tn,k) =

∫
[0, btnc−K

n ]
( fi f j) ◦ F−n dλ . Thus ∀ε >

0 ∃n1 ∈ N ∀n ≥ n1 ∀t ∈ (0,1): −ε1d1>d ≤
1
nX>n,btnc−KXn,btnc−K −H(t) ≤ ε1d1>d , where 1d =

(1, . . . ,1)>, H(t) = (Hi, j(t))d
i, j=1 and “≤” holds componentwise. Let ζn(t) be a normalized

eigenvector belonging to the smallest eigenvalue of 1
nX>n,btnc−KXn,btnc−K . Then ∀ε > 0 ∃n1 ∈

N ∀n≥ n1 ∀t ∈ [F(c),F(b)): (A≤ B componentwise, implies x>Ax≤ x>Bx)

− ε(1>d ζn(t))>(1>d ζn(t))≤ χmin(
1
n

X>n,btnc−KXn,btnc−K)−ζn(t)>H(t)ζn(t)

⇒ − εd +ζn(t)>H(t)ζn(t)
(1)
≤ −ε

(
∑

i
(ζn(t))i

)2

+ζn(t)>H(t)ζn(t)≤ χmin(
1
n

X>n,btnc−KXn,btnc−K)

⇒ − εd +χmin
(2)
≤ −εd +ζn(t)>H(t)ζn(t)≤ χmin(

1
n

X>n,btnc−KXn,btnc−K), (124)

where χmin is defined in Lemma 73 and in (1) we used |1>d · x|2 ≤ ‖1d‖2 · ‖x‖2 and in (2) we
used the following argumentation: Let λ1≤ ...≤ λn be the eigenvalues of H(t) and {x1, ...,xd}
an orthonormal basis of corresponding eigenvectors. Let x = ∑αixi with |x|= 1. Then

x>H(t)x=(∑αixi)
>H(t)(∑αixi)= (∑αixi)

>(∑αiλixi)=∑α
2
i λi≥ λ1 ∑α

2
i = λ1x>x= λ1.

The assertion for χmin(
1
nX>n,btnc−KXn,btnc−K) thus follows from (124), since ε > 0 is arbitrarily

small. The result for χmax(
1
nX>n,btnc−KXn,btnc−K) can be shown analogously. �

Proof of Lemma 77 from page 37:

(78) follows from (123). For the proof of (79) let V := GL(d,R) := {M ∈Rd2 | det(M) 6= 0}.
V is open in Rd2

. Let i : V →V , i(M) := M−1. Since det : Rd2 → R is continuous and M−1 =

69



1
det(M)Adj(M) holds, i is continuous. Let An,B be defined by An(t) := 1

nX>n,btnc−KXn,btnc−K and

B(t) :=
∫
[0,t]( f f>)◦F− dλ for t ∈ [F(c),1]. Obviously B is continuous, W :=B([F(c),1])⊆V ,

since α>
(∫ t

0( f f>)◦F− dλ
)

α =
∫ t

0

(
∑

d
i, j=1 αiα j( fi f j)◦F−

)
dλ =

∫ t
0
(
∑

d
i=1 αi fi ◦F−

)2
dλ ≥∫ F(c)

F(a)

(
∑

d
i=1 αi fi ◦F−

)2
dλ =

∫ c
a
(
∑

d
i=1 αi fi

)2
dF > 0 for all t ≥ F(c),α ∈ Rd \ {0} and W is

compact in V (and compact in Rd2
). For any t ∈ [F(c),1], let εt > 0 with K(B(t),2εt) ⊆ V ,

where K(M,r) := {M′ ∈ Rd2 | ‖M−M′‖ < r}. Since W is compact, there exists t1, . . . , tr
with W ⊆

⋃r
k=1 K(B(tk),

εtk
2 ). Hence W ⊆

⋃r
k=1 K(B(tk),

εtk
2 )⊆

⋃r
k=1 K(B(tk),εtk) =: P⊆ P⊆⋃r

k=1 K(B(tk),2εtk) ⊆ V . Since P is closed and bounded, P is also compact. Consequently,
i : P→V is uniformly continuous (Heine-Cantor theorem). Let ε > 0 be arbitrary. Then there
is δ > 0 with δ < min{εtk/2 | 1≤ k ≤ r} such that ‖M1−M2‖< δ ⇒ ‖i(M1)− i(M2)‖< ε

holds for all M1,M2 ∈ P. By (78) ∃n0 ∈ N∀n ≥ n0∀ t ∈ [F(c),1]: ‖An(t)−B(t)‖ < δ . Thus
An(t) ∈ P follows for any n ≥ n0 and t ∈ [F(c),1] and hence also ‖i(An(t))− i(B(t))‖ < ε .
Since ε > 0 was arbitrary, supt∈[F(c),1] ‖i(An(t))− i(B(t))‖ n→∞−→ 0 follows. �

Proof of Lemma 78 from page 37:

0≤ ‖an,btnc−K‖2 =
1
n

f (tn,btnc−K)
>(

1
n

X>n,btnc−1−KXn,btnc−1−K)
−1 f (tn,btnc−K)

≤ 1
n
·
‖ f (tn,btnc−K)‖2

χmin(n, t)
≤ 1

n
·

∑
d
i=1 maxt∈[0,1] fi(t)2

χmin
,

where χmin(n, t) = χmin((
1
nX>n,btnc−1−KXn,btnc−1−K), χmin is defined in Lemma 75 and the last

inequality holds true by Lemma 75. Thus the assertion follows. �

Proof of Theorem 79 from page 38:

We divide the proof into two steps. For the proof note that all integrals are Lebesgue-Stieltjes
ones, except those denoted by

∫ (R) which are obtained as the limit of Riemann-Stieltjes sums.
Note that a≤ inf(support(F)), since (tn,1, . . . , tn,n) is an asymptotic F-design.

Step 1, all fi are assumed to be continuous. Let ξn−d := M>n,n ◦Vn(u) ∈Rn−d . Thus for x≥ δ ,
φn(u)(x) = Tn−d ◦g(M>n,n ◦Vn(u))(x) = Tn−d ◦g(ξn−d)(x)

=Tn−d ◦g


 1√

1+‖an,d+i‖2

u(d+i
n )−u(d+i−1

n )−a>n,d+i

 u(1
n)−u(0)

...
u(d+i−1

n )−u(d+i−2
n )





n−d

i=1

(x)

=
(
(n−d)x−b(n−d)xc

)
· (ξn−d)b(n−d)xc+1︸ ︷︷ ︸

=:z

+
b(n−d)xc

∑
i=b(n−d)δc+1

(ξn−d)i by (24)

= z+
i1

∑
i=i0

1
√cn,d+i

[
u(

d + i
n

)−u(
d + i−1

n
)

]

−
i1

∑
i=i0

1
√cn,d+i

 f (tn,d+i)
>
(

X>n,d+i−1Xn,d+i−1

)−1
X>n,d+i−1 ·

 u(1/n)−u(0)
...

u(d+i−1
n )−u(d+i−2

n )
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(
with cn,d+i := 1+‖an,d+i‖2, i0 := b(n−d)δc+1 and i1 := b(n−d)xc

)

= z−
i1−1

∑
i=i0

[
1

√cn,d+i+1
− 1
√cn,d+i

]
u(

d + i
n

)+
u(d+i1

n )
√cn,d+i1

−
u(d+i0−1

n )
√cn,d+i0

+
i1

∑
i=i0

1
n
· 1
√cn,d+i

f (tn,d+i)
>
(

1
n

X>n,d+i−1Xn,d+i−1

)−1

(∆Xn,d+i−1)
> ·

 u(1/n)
...

u(d+i−2
n )

+ z∗i


 where (∆Xn,d+i−1)

> :=

 f1(tn,2)− f1(tn,1) . . . f1(tn,d+i−1)− f1(tn,d+i−2)
... . . . ...

fd(tn,2)− fd(tn,1) . . . fd(tn,d+i−1)− fd(tn,d+i−2)

 ∈ Rd×(d+i−2)

and z∗i := f (tn,1)u(0)− f (tn,d+i−1)u(d+i−1
n )


= z−

∫
[δ ,1]

u(t)dGn +
u(d+i1

n )
√cn,d+i1

−
u(d+i0−1

n )
√cn,d+i0

+
∫ d+i1

n

d+i0−1
n

Θn(t)dt

n→∞−→ 0−0+u(x)−u(δ )+
∫ x

δ

Θ(t)dt,

by Lebesgue’s dominated convergence theorem, since Θn(t)→ Θ(t) holds for all t outside a
Lebesgue null set. Below follow the details of the last two steps.

• z =
(n−d)x− k+1√

1+‖an,d+k‖2

[
u(

d + k
n

)−u(
d + k−1

n
)+

1
n
·A(n,x)

]
with k := b(n−d)xc+1 and

A(n,x) :=−n ·a>n,d+k

 u( 1
n )−u(0)

...
u( d+k−1

n )−u( d+k−2
n )


= f (tn,d+k)

>
(

1
n X>n,d+k−1Xn,d+k−1

)−1

(∆Xn,d+k−1)
>

 u(1/n)
...

u( d+k−2
n )

+ f (tn,1)u(0)− f (tn,d+k−1)u( d+k−1
n )

.

By Lemmas 75 and 78 and since all fk are continuous and of bounded variation there is s ∈ R with

|A(n,x)| ≤ sup
∣∣ f ∣∣ ·∥∥(1

n
X>n,d+k−1Xn,d+k−1

)−1∥∥
2

·

[(
d

∑
k=1

d+k−1

∑
j=2

∣∣ fk(tn, j)− fk(tn, j−1)
∣∣) · sup |u|+2sup | f | · sup |u|

]
≤ s

for all x and all sufficiently large n (note of course that u is also continuous). Thus z n→∞−→ 0.

•
∫
[δ ,1] u(t)dGn =

i1−1
∑

i=i0

[
1√cn,d+i+1

− 1√cn,d+i

]
u( d+i

n ), where the discrete signed measure Gn is given by the

measure generating function gn : [δ ,1]→ R, defined by gn(t) :=


1√

cn,d+i0
for t ∈

[
δ , d+i0

n

)
1√cn,btnc+1

for t ∈
[ d+i0

n , d+i1
n

]
1√

cn,d+i1
for t ∈

( d+i1
n ,1

]
Note that δ < d+i0

n and gn is a step function and thus of bounded variation. Since gn(t) converges to 1
uniformly for all t ∈ [δ ,1] and x ∈ [0,1] by Lemma 78, Gn converges weakly to the zero-measure (i.e.
the measure given by the measure generating function 1[δ ,1], see Bogachev (2018), Theorem 1.4.7) thus∫
[δ ,1] u(t) dGn

n→∞−→ 0 independently of x.

• Θn(t) :=
f (tn,btnc+1)

>
√cn,btnc+1

(
1
n X>n,btncXn,btnc

)−1
·

(∆Xn,btnc)
> ·

 u(1/n)
...

u( btnc−1
n )

+ f (tn,1)u(0)− f (tn,btnc)u(
btnc

n )
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for t ∈
[

d+i0−1
n , d+i1

n

)
and Θn(t) := 0 for t ∈ [0,1]\

[
d+i0−1

n , d+i1
n

)
. Because of Lemmas 75 and 78 and

because all fk are bounded and of bounded variation and

|Θn(t)| ≤

∣∣∣∣∣ 1
√cn,btnc+1

∣∣∣∣∣ · sup
∣∣ f ∣∣ ·∥∥(1

n
X>n,btncXn,btnc

)−1∥∥
2

·

[(
d

∑
k=1

btnc

∑
j=2

∣∣ fk(tn, j)− fk(tn, j−1)
∣∣) · sup |u|+2sup | f | · sup |u|

]

for all t ∈
[

d+i0−1
n , d+i1

n

)
, there is s ∈ R with |Θn(t)| ≤ s for all t ∈ [0,1]. Furthermore

Θn(t)
n→∞−→ Θ(t) := f (h(t))>

(∫
[0,t]

( f f>)◦hdλ

)−1 [∫ (R)

[a,h(t)]
(u◦F) d f + f (h(0))u(0)− f (h(t))u(t)

]
holds for all t ∈ [δ ,1] where h := F− is continuous (by Lemma 77 and Lemma 72). Also in this case the
convergence is independent of x, in the sense that

sup
x∈[δ ,1]

∣∣∣∣∣
∫ d+i1

n

d+i0−1
n

Θn(t)dt−
∫ x

δ

Θ(t)dt

∣∣∣∣∣ n→∞−→ 0 (125)

holds. To any ε > 0, according to Egorov’s theorem, there exists an Aε ⊆ [δ ,1] with supt∈Aε
|Θn(t)−

Θ(t)| n→∞−→ 0 and λ ([δ ,1]\Aε)< ε . To show (125), we now proceed in the same way as for (122).

Hence sup
x∈[δ ,1]

|φ(u)(x)−φn(u)(x)|
n→∞−→ 0 holds true. Note that φ and φn are linear and ‖φ‖ <

∞. Thus we conclude ‖φ(u)− φn(un)‖ ≤ ‖φ(u)− φn(u)‖+ ‖φn‖ · ‖u− un‖
n→∞−→ 0 and the

assertions of the Theorem are proved in case of step 1.

Step 2, the regression functions are left continuous. Let α : [0,1]→ [a,b], α(x) :=(b−a)x+a.
By Lemma 67 there exists continuous g̃i : [0,1]→ R, i ∈ J, all of bounded variation and a
continuous distribution function F̃ : [0,1]→ [0,1] such that fi ◦α = g̃i ◦ F̃− for all i ∈ J and
F̃(0) = 0, F̃(1) = 1. Thus we conclude with β : [a,b]→ [0,1], β (x) := x−a

b−a and by means of
Theorem 57.10 (note α−1 = α−, β−1 = β− and β = α−1),

fi = g̃i ◦ F̃− ◦α
−1 = g̃i ◦β ◦β

−1 ◦ F̃− ◦α
−1 = (g̃i ◦β )◦ (α ◦ F̃ ◦β )− = gi ◦G−0 ,

where gi := g̃i ◦β : [a,b]→R, i∈ J are continuous and of bounded variation and G0 := α ◦ F̃ ◦
β : [a,b]→ [a,b] is non-decreasing and continuous (note that G0(a) = a and G0(b) = b). We
define G : R→ [a,b] by G(x) := G0(x) for x ∈ [a,b], G(x) := G(a) for x < a and G(x) = G(b)
for x > b. Since all fi are continuous in a, fi ◦α is continuous in 0 and therefore F̃(t)> 0 for
all t ∈ (0,1] and F̃(t)< 1 for all t ∈ [0,1) by Lemma 67. Thus, by definition of G,

G(t)> a for all t > a and G(t)< b for all t < b. (126)

Due to fk(tn,i) = gk(G−0 (tn,i)) for all i ∈ {1, . . . ,d}, we consider the design (sn,1, . . . ,sn,n) in
[a,b], where sn,i := G−0 (tn,i). Next, we prove that (sn,1, . . . ,sn,n) is an asymptotic H-design,
where H := F ◦G. Let Hn : R→ [0,1] be the empirical distribution function corresponding
to (sn,1, . . . ,sn,n) with Hn(s) = 0 for all s < a and Hn(s) = 1 for all s ≥ b and let Fn be the
empirical distribution function corresponding to (tn,1, . . . , tn,n), both according to (26). Then
Hn(s) = Fn(G(s)) holds for all s ∈ [a,b], because for all s ∈ [a,b] and all tn,i, G−0 (tn,i) ≤ s⇔
tn,i ≤ G(s) holds. Thus it follows

sup
s∈[a,b]

|Hn(s)−H(s)|= sup
s∈[a,b]

|Fn(G(s))−F(G(s))| n→∞−→ 0, (127)
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because (tn,1, . . . , tn,n) is an asymptotic F-design by assumption and the assertion is proven. To
apply the previously proved step 1, it remains to show the linear independence of gi ·1[a,c′], i ∈
{1, . . . ,d} in L2([a,b],F ◦G) for some c′ > a. Let c′ := G−0 (c). Note that a≤ inf(support(F)).

g1 ·1[a,c′], . . . ,gd ·1[a,c′] are l.i. in L2([a,b],F ◦G)

⇔
∫
R

(
d

∑
i=1

αigi ·1[a,c′]

)2

dµF◦G > 0 , ∀α ∈ Rd \{0}

⇔
∫
R

(
d

∑
i=1

αigi ·1(a,c′]

)2

dµF◦G +

(
d

∑
i=1

αigi(a)

)2

·F(G(a))> 0 , ∀α ∈ Rd \{0}

(73)⇔
∫
[F(G(a)),F(G(c′))]

(
d

∑
i=1

αigi ◦ (F ◦G)−0

)2

dλ +

(
d

∑
i=1

αigi(G−0 (a))

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

⇔
∫
[F(a),F(G(c′))]

(
d

∑
i=1

αigi ◦G−0 ◦F−0

)2

dλ +

(
d

∑
i=1

αi fi(a)

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

(73)⇔
∫
R

(
d

∑
i=1

αi fi ·1(a,G(c′)]

)2

dµF +

(
d

∑
i=1

αi fi(a)

)2

·F(a)> 0 , ∀α ∈ Rd \{0}

⇔
∫
R

(
d

∑
i=1

αi fi ·1[a,G(c′)]

)2

dµF > 0 , ∀α ∈ Rd \{0}

⇔ f1 ·1[a,G(c′)], . . . , fd ·1[a,G(c′)] are l.i. in L2([a,b],F),

with (F ◦G)0 := (F ◦G)|[F(a),G(b)] and F0 := F|[a,b]. Note that G−0 (a) = a. Since G(c′)≥ c > a,
the last equivalence is satisfied by assumption. Now we apply the previously proven step 1
and thus immediately obtain φn(u)→ φ(u) regarding sup-norm, where

φ(u)(x) := u(x)−u(H0(c′))

+

x∫
H0(c′)

g(H−0 (t))>
(∫

[0,t]
(gg>)◦H−0 dλ

)−1[∫ (R)

[a,H−0 (t)]
(u◦H0) dg+g(H−0 (0))u(0)−g(H−0 (t))u(t)

]
dt ,

with H0 := H|[a,b] = F0 ◦G0. Finally we use g ◦H−0 = f ◦F−0 , H0(c′) = F0(G0(G−0 (c))) =
F0(c) = δ (because G0 is continuous with G0(a) = a, G0(b) = b, thus c ∈ [a,b] = G0([a,b]),
cf. Lemma 57.7) and ∫ (R)

[a,H−0 (t)]
(u◦H0) dg =

∫
(a,F−0 (t))

(u◦F0) dµ f , (128)

where µ f is the Lebesgue-Stieltjes measure generated by f . It remains to prove (128). To
do so, we use the change-of-variables formula

∫
Ω′ κ dµT =

∫
Ω
(κ ◦T )dµ for κ : Ω′→ R and

T : Ω→Ω′, see e.g. Stroock (1994), Lemma 5.0.1, where in our case κ := u◦F0 and T (x) :=
G0(x), x ∈ Ω holds with Ω =

(
a,G−0 (F

−
0 (t))

)
and Ω′ =

(
a,G0(G−0 (F

−
0 (t)))

)
. First, we note
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that G0(G−0 (F
−
0 (t))) = F−0 (t) holds (same argument as above with G0(G−0 (c)) = c). Next, we

show that T (Ω) = Ω′ holds. For this, let a < x < G−0 (F
−
0 (t)). Then G0(x) > a by (126) and

G0(x)< F−0 (t) by Lemma 57.5. Thus T (Ω) = Ω′= (a,F−(t)) holds. Now we show µ
G0
g = µ f

on B((a,F−0 (t))). For this it is enough to show the equality on E := {E∩(a,F−0 (t)) | E ∈ E0},
where E0 := {[x,y) | x≤ y} is a generator of B(R). Since

E = {[x,y) | a < x≤ y≤ F−0 (t)}∪{(a,y)} | a < y≤ F−0 (t)},

µ
G0
g ([x,y)) = µg(G−1

0 ([x,y))) = µg([G−0 (x),G
−
0 (y))) = g(G−0 (y))−g(G−0 (x))

= f (y−)− f (x−)
(
since f is left continuous

)
= µ f ([x,y))

(
cf. Theorem 63

)
and

µ
G0
g ((a,y)) = lim

n→∞
µ

G0
g ([a+1/n,y)) = lim

n→∞
µ f ([a+1/n,y)) = µ f ((a,y)),

µ
G0
g = µ f holds on B((a,F−0 (t))). Thus

∫ (R)

[a,H−0 (t)]
(u◦H0) dg

(∗)
=
∫
(a,G−0 (F

−
0 (t)))

(u◦F0 ◦G0) dµg
(
note that g is continuous

)
=
∫
(a,G0(G−0 (F

−
0 (t))))

(u◦F0) dµ
G0
g =

∫
(a,F−0 (t))

(u◦F0) dµ f .

For (∗) note that the Riemann-Stieltjes integral is equal to the Lebesgue-Stieltjes integral (cf.
Kirillov and Gvishiani (1982), Theorem 14, p. 29 or Stroock (1994), Theorem 5.1.2). �.
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Part D. Appendices

1 List of figures and tables and R scripts generating
them

R script to generate Figure 1 from page 10.

1 delta = 0.001
2 q0 = 30 # number of simulations
3 d = 3 # regression functions f_1, f_2, ..., f_d
4 # in this example f_1(t)=1, f_2(t)=t, f_3(t)=t^2 and t_ni=i/n
5 n = 10000 # d<n
6 betaH0 = c(1,1,1)
7 betaH1 = c(1,1,1,1)
8 for (q in 1:q0) {
9 epsilon = c(runif(1)-0.5) # error

10 for (i in 2:n) {
11 epsilon = c(epsilon,runif(1)-0.5)
12 }
13 vH0 = c((sign(1/n -0.25)+3)/4,1/n,(1/n)^2)
14 XH0 = rbind(vH0) # design matrix under H0
15 for (i in 2:n) {
16 if (i/n <= 0.5) {
17 vH0 = c((sign(i/n -0.25)+3)/4,i/n,(i/n)^2) # v_i = (f_1(t_ni),...,f_d(t_ni))
18 } else {
19 vH0 = c((sign(i/n -0.25)+3)/4,i/n,(i/n -3/2)^2)
20 }
21 XH0 = rbind(XH0,vH0)
22 }
23 vH1 = c((sign(1/n -0.25)+3)/4,1/n,(1/n)^2,(1/n)^3)
24 XH1 = rbind(vH1) # design matrix under H1
25 for (i in 2:n) {
26 if (i/n <= 0.5) {
27 vH0 = c((sign(i/n -0.25)+3)/4,i/n,(i/n)^2,(i/n)^3) # v_i = (f_1(t_ni),...,f_d(t_ni))
28 } else {
29 vH0 = c((sign(i/n -0.25)+3)/4,i/n,(i/n -3/2)^2,(i/n)^3)
30 }
31 XH0 = rbind(XH0,vH0)
32 }
33 YH0 = XH0 %*% betaH0 + epsilon # observations under H0
34 YH1 = XH1 %*% betaH1 + epsilon # observations under H1
35 # the following function "recresid" requires R package "strucchange"
36 # library(strucchange)
37 rr = recresid(XH0,YH0) # B_n under H_0 resp. H_1
38 z1 = NULL;
39 for (i in 1:(n-d)) {
40 z1[i] = i/(n-d)
41 }
42 z2 = NULL;
43 i1 = floor((n-d)*delta)
44 for (i in 1:i1) {
45 z2[i] = 0
46 }
47 for (i in (i1+1):(n-d)) {
48 z2[i] = sum(rr[i1+1:i])
49 }
50 z2 = 2*sqrt(3)*z2/sqrt(n-d)
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51 plot(z1,z2,type="l",ylim =c( -3 ,3),main = "Recursive residual partial sum
process",xlab="t (time)")

52 par(new=T)
53 }
54 # text(x=1,y=1.5,paste("n=100"))

R script to generate Figure 2 from page 12.

1 delta = 0.001
2 x = 2.573253
3 y = -2.573253
4 z = 2.8042267
5 numSim = 30 # number of simulations
6 N = 10000 # number of endpoints of the decomposition, including T
7 T = 1 # end point of the interval [0,T]
8 D = T/N # time unit (time step)
9 B = NULL # Initialization of the vector B

10 B[1]=0; B[2]=0; B[3]=0; B[4]=0; B[5]=0; B[6]=0; B[7]=0; B[8]=0; B[9]=0; B[10]=0;
11 for (i in 11:(N+1)) {
12 B[i] = B[i-1] + rnorm(1)*sqrt(D)
13 }
14 t = seq(0,T,length=length(B))
15 plot(t,B,type ="l",main = "Brownian Motion",xlab="t (time)",ylim =c( -3 ,3))
16 for (i in 1:(numSim - 1)) {
17 par(new=T)
18 B = NULL; B[1]=0 # Initialization of the vector B
19 for (i in 2:(N+1)) {
20 B[i] = B[i-1] + rnorm(1)*sqrt(D)
21 }
22 plot(t,B,type ="l",ylim =c( -3 ,3))
23 }
24 abline(h=c(x,y,z,-z), col=c("green","blue","red","red"))
25 legend(0, 3, legend=c("+-2.8042267", "-2.573253", "2.573253"),
26 col=c("red", "blue", "green"), lty=1, cex=1)

R script to compute the bounds in Remark 12 from page 12.

1 alpha = 0.05
2 z = 2.24140277
3 x = qnorm(p=1-alpha/2,mean=0,sd=1)
4 y = qnorm(p=alpha/2,mean=0,sd=1)
5 summe = 0
6 m = 10000 # summation from -m to m
7 for (n in (-m):m) {
8 A1 = pnorm((4*n+1)*z,mean=0,sd=1)
9 A2 = pnorm((4*n-1)*z,mean=0,sd=1)

10 A3 = pnorm(-(4*n-3)*z,mean=0,sd=1)
11 A4 = pnorm(-(4*n-1)*z,mean=0,sd=1)
12 summe = summe + A1 - A2 - A3 + A4
13 }
14 x;y;1-summe

R script to generate Figure 3 from page 13.
See R-script from page 75 for Figure 1.
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R script to generate Figure 4 from page 14.
See R-script from page 75 for Figure 1.

R script to generate Figure 5 from page 15.

1 delta = 0.001
2 q0 = 1 # number of sample paths
3 d = 1
4 # in this example f_1(t)=1 and t_ni=i/n
5 n = 10000 # d<n
6 betaH0 = c(0.5)
7 # betaH1 = c(0.5,1)
8 betaH1 = c(0.5,sqrt(n-d)/n)
9 for (q in 1:q0) {

10 epsilon = c(runif(1)-0.5) # error
11 for (i in 2:n) {
12 epsilon = c(epsilon,runif(1)-0.5)
13 }
14 vH0 = c(1)
15 XH0 = rbind(vH0) # design matrix under H0
16 for (i in 2:n) {
17 vH0 = c(1)
18 XH0 = rbind(XH0,vH0)
19 }
20 vH1 = c(1,1/n)
21 XH1 = rbind(vH1) # design matrix under H1
22 for (i in 2:n) {
23 vH1 = c(1,i/n) # v_i = (f_1(t_ni),...,f_d(t_ni))
24 XH1 = rbind(XH1,vH1)
25 }
26 YH0 = XH0 %*% betaH0 + epsilon # observations under H0
27 YH1 = XH1 %*% betaH1 + epsilon # observations under H1
28 # the following function "recresid" requires R package "strucchange"
29 rr0 = recresid(XH0,YH0) # recursive residuals under H_0
30 rr1 = recresid(XH0,YH1) # recursive residuals under H_1
31 z1 = NULL;
32 for (i in 1:(n-d)) {
33 z1[i] = i/(n-d)
34 }
35 z20 = NULL;
36 i1 = floor((n-d)*delta)
37 for (i in 1:i1) {
38 z20[i] = 0
39 }
40 for (i in (i1+1):(n-d)) {
41 z20[i] = sum(rr0[(i1+1):i])
42 }
43 z20 = 2*sqrt(3)*z20/sqrt(n-d)
44 z21 = NULL;
45 i1 = floor((n-d)*delta)
46 for (i in 1:i1) {
47 z21[i] = 0
48 }
49 for (i in (i1+1):(n-d)) {
50 z21[i] = sum(rr1[(i1+1):i])
51 }
52 z21 = 2*sqrt(3)*z21/sqrt(n-d)
53 plot(z1,z21-z20,type="l",ylim =c( -3 ,3),main = "Recursive residual partial sum
54 process under H0 and H1",xlab="t (time)")
55 par(new=T)
56 plot(z1,z20,type="l",col="blue",ylim =c( -3 ,3),xlab="t (time)")
57 par(new=T)
58 plot(z1,z21,type="l",col="red",ylim =c( -3 ,3),xlab="t (time)")
59 if (q==q0) {
60 break
61 }
62 par(new=T)
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63 }
64 N = 10000 # number of points of the decomposition, including T
65 T = 1 # end point of the interval [0,T]
66 D = T/N # time unit (time step)
67 shift = NULL
68 for (i in 1:(delta*N)) {
69 shift[i] = 0
70 }
71 for (i in (delta*N+1):(N+1)) {
72 shift[i] = 0.25*sqrt(12)*(((i-1)/N)^2 - delta^2)
73 }
74 for (q in 1:q0) {
75 B = NULL # Initialization of the vector B
76 for (i in 1:(delta*N)) {
77 B[i] = 0
78 }
79 for (i in (delta*N+1):(N+1)) {
80 B[i] = B[i-1] + rnorm(1)*sqrt(D)
81 }
82 t = seq(0,T,length=length(B))
83 B0 = B + shift
84 plot(t,B0,type ="l",col="red",main = "Brownian motion with and without trend",xlab="t

(time)",ylim =c( -3 ,3))
85 par(new=T)
86 plot(t,B,type ="l",col="blue",ylim =c( -3 ,3),xlab="t (time)")
87 par(new=T)
88 plot(t,shift,type ="l",ylim =c( -3 ,3),xlab="t (time)")
89 if (q==q0) {
90 break
91 }
92 par(new=T)
93 }
94 text(x=0.98,y=2,paste("H0/H1/difference")) # Labeling of the paths

R script to generate Figure 6 from page 18.
See R-script from page 77 for Figure 4, noting the following minor changes. Line 41 must
be replaced by “z20[i] = sum(rr0[(n-d):(n-d-i+i1+1)])”, line 50 must be replaced by “z21[i] =

sum(rr1[(n-d):(n-d-i+i1+1)])” and line 72 must be replaced by “shift[i] = 0. 25*sqrt(12)*((i-1)/N

- delta)*(2 + delta - (i-1)/N)”.

R script to generate Figure 7 from page 30.

1 N = 100000 # number of points of the decomposition, including T
2 T = 1 # end point of the interval [0,T]
3 D = T/N # time unit (time step)
4 B = NULL; B[1]=0 # Initialization of the vector B
5 for (i in 2:(N+1)) {
6 B[i] = B[i-1] + rnorm(1)*sqrt(D)
7 }
8 t = seq(0,T,length=length(B))
9 plot(t,B,type ="l",main = "Brownian Motion",xlab="t (time)",ylim =c( -1 ,1))

Figure from page 62
Created by the author with Microsoft Paint.
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2 New results

(“Thesen zur Dissertation”)
Unless stated otherwise, the following statements and their proofs are new and cannot be found
in the literature so far.

• Computation of the limit process under the null hypothesis in Theorem 10 and Theorem
21 and under a local alternative in Lemma 14, Theorem 15 and Theorem 23, where the
technical basis for the computation under the null hypothesis and also under the local
alternative is given in Theorem 79.

• The tests in Theorem 11, Theorem 22, and Theorem 28.

• Generalization of some classical results on weak convergence of measures to filter of
measures: Lemma 38, Theorem 40, Theorem 41, Theorem 42 and Theorem 46

• Lemma 67 on the factorization of functions with existing left and right limits.

• Lemma 70 and Lemma 72 on asymptotic F-designs and Example 71 motivating the
need for certain assumptions.

• Lemma 77 on the uniform convergence of certain matrices.

• In direct collaboration with Wolfgang Bischoff:

Lemma 73, Lemma 74, Lemma 75 and Lemma 78 to estimate the eigenvalues of certain
matrices. The authors contribution is to adapt the original lemmas (which were commu-
nicated to the author in private correspondence) to the situation given here and modify
the proofs accordingly.

• In direct collaboration with Thomas Heindl15:

Theorem 19 about the least squares residual partial sum limit process was developed
jointly by Heindl and Evers.

Lemma 60.1 about the probability integral transformation was first discovered and proved
by Thomas Heindl. The authors contribution is an alternative and slightly shorter proof.

Lemma 66, as a more or less direct application of the change of variable formula, seems
to be known at least in a similar form in the literature, cf. e.g. Shorack (2017), Exercise
3.3 or Bogachev (2007), Example 3.6.2, but was jointly developed and proved in this
concrete formulation by Heindl and Evers.

Lemma 69 on the simultaneous factorization of finitely many functions of bounded vari-
ation is also from Heindl (2022). The authors contribution consists in two improved and
shortened proofs for this Lemma, both based on the measure-theoretic approach given
in Heindl (2022).

15It should be noted here that our two dissertations were written at the same time and we regularly discussed
new results. Some references to Heindl (2022) might therefore be (slightly) inaccurate, since the final results
and their proofs might still have been changed by Heindl without the author’s awareness.

79



3 List of abbreviations and symbols
We follow the generally known notation as far as possible. In particular, this applies to all basic
operations on sets and numbers. To accommodate the reader, some more special notations are
listed below. In some cases, a reference to the first occurrence is given. In the case of symbols
with multiple meanings, their meaning is always clear from the respective context.

Abbreviations:
a.a., a.e. almost all, almost everywhere
iff if and only if
l.i. linear independent
r.v. random variable
Set theory:
N, Z, Q, R sets of natural, integer, rational, real numbers (0 ∈ N)
bxc, dxe greatest integer less than or equal to x, least integer greater than or equal to x
N≥1 set of positiv natural numbers
P(X) powerset of X
•
x filter generated by x, cf. Definition 29
BA set of all functions f : A→ B, A,B sets
id identity function id(x) = x
f−1(B) preimage or inverse image of a set B under a mapping f
f ◦g composition of the mappings f and g
f|A restriction of the mapping f to A∩dom( f ), where dom( f ) is the domain of f
1A indicator function, 1A(x) = 1 for x ∈ A and 1A(x) = 0 for x 6∈ A
F (X), FU(X) set of all filter/ultrafilter on X
[α], α ⊆P(X) filter generated by α , if A1∩ . . .∩An 6= /0 for all A1, . . . ,An ∈ α

[α] := {P⊆ X | ∃ /0 6= α ′ ⊆ α,α ′ : finite, with
⋂

A∈α ′ A⊆ P}
Topology:
(X ,τ) topological space (set X with topology τ)
A, A◦, ∂A closure, interior and boundary of a subset A of a topological space
(E,d) metric space (set E with metric d)
d(A,B), d(x,A) distance from A to B with respect to some metric space (X ,d), A,B⊆ X ,

d(A,B) := inf{d(a,b) | (a,b) ∈ A×B} and d(x,A) := d({x},A)
K(x,ε), Kd(x,ε) open ball centered at x with radius ε , K(x,ε) = Kd(x,ε) = {y ∈ E | d(x,y)< ε)
τR, τRn Topology on R and Rn, respectively, induced by Euclidean metric
φ

τ→ a, an
τ→ a convergence with respect to a topology τ , cf. Definition 30

an→ a, an
n→∞−→ a convergence of a sequence (in the given context)

f (r−), f (r+) left and right limit f (r−) = lim
rn↗r

f (rn) and f (r+) = lim
rn↘r

f (rn), cf. Def. 54

I−, I+ left resp. right endpoint of a (bounded or unbounded) interval I ⊆ R
C(X ,Y ) set of all continuous functions f : X → Y , for topological spaces X ,Y
C[a,b] set of all continuous functions f : [a,b]→ R
B(X ,E) set of all bounded functions f : X → E, X set, E metric space
BV [a,b] set of all functions f : [a,b]→ R of bounded variation
V ( f ,a,b) variation of f on [a,b], cf. Definition 64
c( f ) set of points of continuity of the function f
Tn partial sum operator, cf. Definition 3
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Linear algebra:
Km×n vector space of m×n matrices with entries from the field K
ker(α) kernel of the linear map α

im(α) image of the map α

dim(U) dimension of the linear space U
rank(A) rank of the matrix A
In n dimensional dentity matrix In = (ei, j)

n
i, j=1, ei, j = 1 if i = j, ei, j = 0 if i 6= j

A> transpose of the matrix A
A−1 inverse of the matrix A
det(A) determinant of the matrix A
U⊥ orthogonal complement of a subspace U with respect to a scalar product
prU,V projection on the first summand of a direct sum prU,V : U⊕V →U , u+ v 7→ u
prU prU := prU,U⊥

rn (rn,d+1, . . . ,rn,n)
> vector of recursive residuals, cf. (15)

Mn,k cf. (15)
〈·, ·〉, ‖ · ‖ general scalar product and norm on some linear space

‖a‖2, ‖A‖2 Euclidean norm on Rn, ‖a‖2 =
√

∑
n
i=1 a2

i and matrix norm ‖A‖2 := sup
x 6=0

‖Ax‖2
‖x‖2

Measure Theory:
(Ω,A ,µ) measure space (set Ω with sigma-algebra A and measure µ)
µ f or f (µ) image measure (also known as pushforward measure), µ f (A) := µ( f−1(A))
σ(α) sigma-algebra generated by α , cf. (63)
B(E) Borel sigma-algebra of E, generated by open sets in E
λ Lebesgue measure, unless defined otherwise
M(E) M(E) := {p : B(E)→ R | p is a finite measure}, cf. p. 25∫

E f dψ if ψ is a filter, see Definition 37 and the passage directly above it
ψ

w→ p, pn
w→ p weak convergence of measures, cf. Definition 37

φ
D→ X , Xn

D→ X weak convergence of r. v. (convergence in distribution), cf. Definition 43
B, (Bt)t∈[0,1] Brownian motion, cf. Definition 49
B′, (B′t)t∈[0,1] shifted Brownian motion, B′t(ω) = 0 for all t ∈ [0,δ ) and B′t(ω) = Bt−δ (ω)

for t ∈ [δ ,1], cf. Theorem 10
X• Definition 26
F−, F+ generalized inverse of monotone function, cf. Definition 56 and Remark 58

V ( f ,a,b) variation of f on [a,b], cf. Definition 64
E(X) expected value of a random variable X
Var(X) variance of a random variable X
Cov(X ,Y ) covariance of two random variables X , Y
Bn, Bn,δ , B(b)

n , B(b)
n,δ recursive residual partial sum process, resp. reversed residual partial sum

process, cf. (21) resp. (45)
support(P) support of a measure (resp. a measure defining function), cf. Definition 6
L2([a,b],F) space of square-integrable functions on [a,b] with respect to the measure

defining function F∫ (R)
I f dg integrals marked by (R) are obtained as the limit of Riemann-Stieltjes sums

all other integrals are are understood as general measure integrals
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