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die gute Arbeitsatmosphäre und ihre offenen Ohren bei Fragen und Problemen danken.

Eichstätt, im April 2022





Contents

List of figures III

List of abbreviations V

List of symbols VII

1 Introduction 1

2 Cumulated sum processes of residuals in regression models 9

2.1 Marked empirical processes and random designs . . . . . . . . . . . . . . . . 12

2.1.1 Results of Stute (1997) . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Linear regression models and arbitrary random designs . . . . . . . 19

2.1.3 Linear regression models and the uniform random design . . . . . . 21

2.2 Partial sum processes and fixed designs . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Results of Bischoff (1998) . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Linear regression models and the uniform fixed design . . . . . . . . 39

3 Commonalities of the two cumulated sum limit processes 45

3.1 Equality of the two cumulated sum limit processes . . . . . . . . . . . . . . 45

3.2 A generic linear regression model for goodness-of-fit tests . . . . . . . . . . 48

4 Projection techniques 57

4.1 Reproducing kernel Hilbert space of the Brownian motion . . . . . . . . . . 57

4.2 Structure of the residual partial sum limit process . . . . . . . . . . . . . . 64

5 Heteroscedastic linear regression models 69

6 Goodness-of-fit test in linear regression 75

6.1 A brief history of goodness-of-fit tests . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Durbin problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.2 Khmaladze transformation . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Khmaladze transformation in linear regression models . . . . . . . . . . . . 90

6.3 Khmaladze transformation as a recursive residual transformation . . . . . . 92

7 Appendix 97

7.1 Proofs for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Proofs for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Proofs for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.4 Proofs for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



7.5 Proofs for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Index XI

Bibliography XIII



List of Figures

1.1 Fictional data set of 20 braking distances and speeds as well as the graphs

of the estimated regression line or regression parabola. . . . . . . . . . . . . 3

1.2 CUSUM processes belonging to the regression functions fitted in Figure 1.1. 4

2.1 Fictional data set of 40 braking distances and speeds obtained under the

random design paradigm with a uniform design distribution. . . . . . . . . . 10

2.2 Fictional data set of 40 braking distances and speeds obtained under the

equidistant fixed design paradigm. . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Graph of R1
n(x) for the random sample X1, . . . , Xn and residuals ε̂n1, . . . , ε̂nn. 14

2.4 Example graphs of a distribution function F and its quantile function F−. . 23

2.5 Example graphs of the distribution function FU of U = F (X) and its quan-

tile function F−
U corresponding to the distribution function F of X from

Figure 2.4a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Operating principle of the partial sum operator Tn. . . . . . . . . . . . . . . 31





List of abbreviations

a.a. almost all

a.e. almost everywhere

a.s. almost surely
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1 Introduction

Collecting and analysing data plays a crucial role in almost all areas of life. In mathe-

matical statistics, mathematical models are used to deduce knowledge from the collected

data. In this thesis we shall study aspects of regression models, which are some of the

most commonly used statistical models. In particular, we will mainly deal with linear

regression models, which are widely used and popular in practice as they allow a relatively

intuitive interpretation.

We start with an introduction to what we mean by a regression model. Consider a model

of the form

Y (x) = m(x) + ε(x),

where x is called the independent or input or design variable and Y (x) is the dependent or

outcome variable. The model assumes that there is a functional deterministic relationship

x 7→ m(x) between the input x and the dependent variable Y (x). Therefore, Y is a

function of x. However, the functional deterministic relationship m(x) is unknown, since

the outcome Y (x) depends not only on m(x), but also on a random error component ε(x),

which is in general unobservable. Thus, the above model explains the outcome Y (x) as

the sum of a deterministic functional relationship m(x) and an unobservable random error

ε(x) on the basis of an explanatory variable x.

Although the deterministic functional relationship x 7→ m(x) cannot be specified according

to the model above, it is precisely this relationship that is of interest in practice because

it describes how the explanatory variable x influences the outcome Y (x) in a systematic

manner. In order to make well-founded statements about the functional relationship m(x),

data about m(x) is collected indirectly, by looking at Y (x). To be more precise, one

measures or fixes various design points x1 ≤ · · · ≤ xn and measures the corresponding

outcome values Y (x1), . . . , Y (xn). This experiment can be described as the regression

model

Yi = m(xi) + εi, i = 1, . . . , n, n ∈ N, (1.1)

where we use the notations Yi := Y (xi), εi := ε(xi), i = 1, . . . , n. In this thesis, for

simplicity, we assume that the design variable x is univariate, i.e. x ∈ R. In order to

be able to examine this regression model for the functional relationship x 7→ m(x), the

following assumptions are made:
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❼ The unknown deterministic functional relation x 7→ m(x), which is called the re-

gression function m, is assumed to belong to a given class M of functions. If one

additionally assumes that m is a linear combination of finitely many known func-

tions, i.e. M = span{f1, . . . , fp}, then one speaks of a linear regression model.

❼ The random regression errors ε1, . . . , εn are usually assumed to be independent and

identically distributed (iid). In this case, one speaks of a homoscedastic regression

model. If, in contrast, the random error component ε(x) is such thatVar(ε(x)) is not

constant, one speaks of a heteroscedastic regression model. Furthermore, we assume

without loss of generality that m is chosen such that E(ε1) = · · · = E(εn) = 0.

In this thesis, we will study regression models that are slightly generalised compared to

model (1.1). To be more specific, we will assume that the design points are indexed by

n1, . . . , nn. That is, we assume a triangular array ((xni)
n
i=1)n∈N of design points with

xn1 ≤ · · · ≤ xnn for n ∈ N. The design points x1 ≤ · · · ≤ xn of the regression model

(1.1) are thus considered to constitute the n-th row of ((xni)
n
i=1)n∈N. This notation is

convenient because in this thesis we will conduct asymptotic investigations, i.e. we will

consider sequences of designs with an increasing number of observation points. We are

therefore concerned with regression models of the form

Yni = m(xni) + εni, i = 1, . . . , n, n ∈ N, (1.2)

or, more specifically, primarily with linear regression models

Yni =

p∑

j=1

fj(xni)θj + εni, i = 1, . . . , n, n ∈ N, θ1, . . . , θp ∈ R, p ∈ N. (1.3)

Regression models (1.2) and (1.3) constitute the focus of numerous research works, both

classical and contemporary. Some of the problems considered are, for example, how to

estimate the regression function m, how accurate these estimations are, how to obtain reli-

able predictions for future observations and which designs are advantageous for answering

certain questions, to name but a few. For references and elaborations on these (and many

other) problems see, for e.g. the textbooks Searle (1971) and Hocking (2013) on linear

regression models and the literature cited there.

However, one essential question in this context is whether the assumed class of potential

regression functions M is adequately chosen, i.e. it must be checked whether m actually

belongs to the hypothesis class M. If this were not the case, all further analyses (such as

estimating the regression function m ∈ M, for example) would be error-ridden from the

very start. Stute (1997) states in this context that “... in order to prevent wrong conclu-

sions, every statistical inference that is based on a model M should be accompanied by

a proper model check, that is, by a test for H0 : m ∈ M versus H1 : m /∈ M”. Some

early research in this context includes, for example Eubank and Spiegelman (1990), Firth,

Glosup, and Hinkley (1991), Eubank and Hart (1992) and Müller (1992). Therein, such
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model checks are referred to as full model checks or goodness-of-fit tests for regression

models as they try to investigate the question whether the assumed class of potential re-

gression functions is suited to fit the data or not. This type of statistical question, in the

context of (primarily linear) regression models, is the core area of study of this thesis.

The following example gives a first glimpse of how a goodness-of-fit analysis is carried out.

Figure 1.1 illustrates a fictional scenario of an investigation of the braking distance of a

certain car dependent on the car’s speed at the moment when deceleration starts. In this

example, twenty pairs of data were collected and two different linear regression models

were fitted. In a first attempt, the blue regression function was estimated, assuming the

hypothesis class of potential regression functions to be M1 := {f(x) = ax + b | a, b ∈ R},
while in the second attempt, the red regression function was estimated using the hypothesis

class of potential regression functions M2 := {f(x) = ax2 | a ∈ R}. One notices that the

red parabola fits the given data better than the blue straight line.
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Figure 1.1: Fictional data set of 20 braking distances and speeds as well as the graphs of
the estimated regression line or regression parabola.
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A technique commonly used to investigate whether the hypothesis class of potential regres-

sion functions M is adequately specified is the examination of the so-called cumulated sum

(CUSUM) processes of regression residuals. Figure 1.2 shows such a residual CUSUM pro-

cess for each of the two models in the example above. One notices that the (blue) CUSUM

process belonging to the straight line regression model takes on more extreme values than

the (red) CUSUM process belonging to the fitted parabola.
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Figure 1.2: CUSUM processes belonging to the regression functions fitted in Figure 1.1.

In the field of artificial intelligence, machine learning has seen ever expanding use over the

last decade due to overwhelming practical success in applications. This has happened even

beyond provable theoretical expectations. Examples of this can be found in Krizhevsky,

Sutskever, and Hinton (2012), Mnih et al. (2013) and He et al. (2016).

It is worth pointing out that the theoretical expressiveness of “large” hypothesis classes M
can be inappropriate in some practical applications. Such “large” hypothesis classes can

be found, for example, in neural networks: For instance, Leshno et al. (1993) prove that a

(sufficiently large) standard feedforward network with a continuous activation function can

approximate any continuous function to any degree of accuracy (in the uniform norm on

compact sets) if and only if the network’s activation function is not a polynomial. Among

others, the following reasons are arguments why “large” hypothesis classes M may be
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inappropriate in practice.

i) A simple interpretation of the relation between independent and dependent variables

is desired.

ii) Processing power and storage space are prohibitively expensive.

iii) There is not enough training data available to successfully train such large models.

Therefore, ideally, one would like to optimize within a hypothesis class M that is relevant

from a practical perspective and that is “just large enough” for the task at hand. This

strict dependency on the concrete problem to be solved necessitates the use of simpler

models and goodness-of-fit tests to decide whether H0 : m ∈ M or H1 : m /∈ M is true.

Linear regression models in particular are a fundamental part of machine learning and

popular with practitioners as they are resource-efficient and relatively easy to interpret.

A recent review of linear regression in machine learning can be found, for example, in

Maulud and Abdulazeez (2020). For some concrete examples of the application of linear

regression models in machine learning, see e.g. Schuld, Sinayskiy, and Petruccione (2016)

or Kim et al. (2020).

We can therefore conclude that goodness-of-fit tests — especially for linear regression mod-

els — play an important role in checking machine learning algorithms for applicability or

in determining whether the structure of the data has changed.

Structure and results of this work

Chapter 2 At the beginning of Chapter 2, we address the fundamental difference be-

tween random and fixed experimental designs and illustrate this difference with a fictional

example of two linear regression models.

On the one hand, we study in Section 2.1.1 marked empirical processes of regression resid-

uals in regression models with random designs on the example of a paper by Winfried

Stute, see Stute (1997). We consider well-known results on the limit process R1
∞ of the

marked empirical process R1
n of the regression residuals with respect to goodness-of-fit

tests. Section 2.1.2 provides a formal proof of the result that linear regression models

with random designs using the least-squares estimator (LSE) are special cases of general

regression models with random designs. Finally, in Theorem 2.1.12 of Section 2.1.3, we

make precise the statement that in a linear regression model with random design, one can

assume (to a certain extent) a uniform design on [0, 1].

On the other hand, we study in Section 2.2.1 residual partial sum processes of the re-

gression residuals in regression models with fixed designs on the example of a paper by

Wolfgang Bischoff, see Bischoff (1998). We consider well-known results on the limit pro-

cess Bf,F of the residual partial sum process 1
σ
√
n
Tn(ε̂n) of the regression residuals with

respect to goodness-of-fit tests. Section 2.2.2 contains several results previously unknown.

The main result is Theorem 2.2.9, which states that when only the distribution of the
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residual partial sum limit process is of interest, one can always assume the design of a

linear regression model with fixed design to be the equidistant design on the unit interval

[0, 1]. On the way to this theorem, we state and prove the technical Lemma 2.2.7, which

provides a new characterisation of bounded variation functions. This allows us to state in

Theorem 2.2.11 a generalisation of Theorem 2.2 from Bischoff (1998).

Chapter 3 In this chapter, we examine common properties of marked empirical pro-

cesses of regression residuals in linear regression models with random designs and residual

partial sums processes in linear regression models with fixed designs, as well as differences

between them. Particular attention is paid to the limit distributions of the marked em-

pirical process R1
n as well as the residual partial sum process 1

σ
√
n
Tn(ε̂n) of the regression

residuals — both are collectively referred to as residual CUSUM processes — as it is com-

mon to base test statistics of asymptotic goodness-of-fit tests on them.

The main results of Section 3.1 are Theorem 3.1.1 and Corollary 3.1.2, which are new in

the literature and state the equality of the respective residual CUSUM processes under

certain conditions.

In Section 3.2, we then proceed by identifying the underlying common properties between

both residual CUSUM processes and their respective regression designs. From this analy-

sis, we derive the so-called generic linear regression model in Definition 3.2.1 and establish

the central statement of this work. This statement is new in the literature and reads as

follows:

When it comes to goodness-of-fit tests in linear regression models based on the

asymptotic distribution of residual CUSUM processes, one can assume without loss of

generality a generic linear regression model.

Therefore, henceforth any result about goodness-of-fit tests applicable to residual partial

sum processes in linear models with fixed designs can also be used for marked empirical

processes in linear regression models with random designs, and vice versa.

Chapter 4 This chapter is mainly concerned with a geometric interpretation of resid-

ual CUSUM limit processes as projections onto certain reproducing kernel Hilbert spaces

(RKHS). We start in Section 4.1 with some general and well-known definitions and results

on RKHS of stochastic processes. We then focus on Brownian motion RKHS. In Sec-

tion 4.2, we use these concepts to identify the residual partial sum limit processes Bf,λλ[0,1]
,

in the case of a generic linear regression model, as the orthogonal projection prW⊥
HB

(B(·))
of a standard Brownian motion onto the orthogonal complement of the space spanned by

the integrated regression functions within the RKHS associated to the standard Brownian

motion. This result is stated in Theorem 4.2.3, which is new in the literature as it gener-

alises Theorem 3.2 in Bischoff (2002).

Chapter 5 This chapter builds on the previous findings of this thesis and addresses

the work of MacNeill, Mao, and Xie (1994). It contains two theorems. In Theorem 5.0.2,

we state and prove a functional central limit theorem for the partial sum processes of
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heteroscedastic and independent regression errors. In Theorem 5.0.3, the same is done for

residual partial sum processes in heteroscedastic regression models. Although functional

central limit theorems in the given situation are already known and intuitive to some de-

gree, the proof of Theorem 5.0.2 that we present is new and utilises theorems of Prokhorov

and Rubin. Furthermore, we prove this theorem for triangular arrays of random variables

and under slightly weaker assumptions than those implicitly made in MacNeill, Mao, and

Xie (1994) about sequences of random variables. The proof of Theorem 5.0.3 generalises

Theorem 3.2 in Bischoff (2002).

Chapter 6 In this chapter, we discuss a fundamental problem of goodness-of-fit tests

when the estimation of parameters is necessary. This is often referred to as the “Durbin

problem”. This problem did not initially arise in the context of goodness-of-fit tests in re-

gression models, but in the context of testing whether or not a sample of random variables

was taken from a distribution belonging to a particular class of distribution functions. In

this context, tests based on the empirical distribution functions of random samples are

considered and therefore, empirical processes are studied.

We will start our exploration of the Durbin problem in Section 6.1.1 in the context of

empirical processes. In Section 6.1.2, we will then — also in the context of empirical

processes — briefly recall a well-known way of dealing with such problems. This method

goes back to Khmaladze (1980) and Khmaladze (1982). In Section 6.2 we show how Stute,

Thies, and Zhu (1998) have applied this solution in the context of goodness-of-fit tests in

regression models.

Finally, in Section 6.3, in the situation of linear regression models, we state and prove

a theorem that makes precise the interpretation of the Khmaladze transformation as a

continuous-time backwards recursive least-squares method. We note that, while this the-

orem and its proof are new in the literature, Bai (2003) already gives a non-rigorous

argument for this interpretation of the Khmaladze transformation in the context of time

series data.

Chapter 7 In order to facilitate the reading of this thesis, extensive or particularly

technical proofs from the above-mentioned chapters are deferred to the appendix (Chap-

ter 7). We emphasise this at the appropriate places in the respective chapters. In each

case, a reference to the corresponding place in the appendix is provided.

Used software

All graphics contained in this thesis were created by the author using the statistical pro-

gramming language R (R Core Team (2020)).





2 Cumulated sum processes of residuals in

regression models

In statistics, the study of the dependency of a variable Y on a variable X can be classified

based on the way in which the observations x1, . . . , xn of the independent variable X are

obtained.

If the observations x1, . . . , xn are realisations of iid random variables X1, . . . , Xn ∼ X,

one speaks of a random design. An example for such a design is obtained by taking

the realisations of the random variables U1, U2, . . . , Un
iid∼ U [0, 1] as observation points.

Alternatively, if the observations x1, . . . , xn are non-stochastic (deterministic), one speaks

of a fixed design. The most common example for a fixed design is the equidistant design,

in which the observations are sampled at equidistant points, for example, 1
n ,

2
n , . . . , 1 in

the experimental region [0, 1].

In particular, this fundamental distinction of study designs applies to the special case

of regression models. The literature on full model checks for regression models via analy-

sis of regression residuals distinguishes between two design types and two residual CUSUM

processes. Namely, there are

❼ regression models with random designs in which the design points themselves are sup-

posed to be realisations of independent and identically distributed random variables

of a known or unknown distribution. When collecting data, both the realisations of

the design points and the corresponding realisations of outcome values are observed

and recorded. In the dataset obtained, a regression of the outcome on the design

points is performed and the fit is analysed using marked empirical processes of the

regression residuals.

❼ regression models with fixed designs in which the design points are non-stochastic

but purposefully planned. Here, the outcome values are observed and recorded at

these fixed design points. In the obtained dataset, a regression of the outcome on

the design points is performed and the fit is analysed using residual partial sum

processes.

As a first example, we shall consider regression models with both designs in the fictional

scenario of an investigation of the braking distance of a certain car dependent on the car’s

speed at the moment when deceleration is started.
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Under the random design paradigm, a study with the aim of investigating this dependency

could be conducted as follows. A certain number of times, e.g. 40 times, the same driver

is asked to evenly accelerate in a straight line from 0 km/h onwards until he or she freely

decides to start an emergency braking. Then, the speed of the car at the moment the

deceleration begins and the braking distance (to standstill) are measured and recorded.

In the end, one gets a dataset of 40 realisations of random speeds and braking distances

and a regression of the braking distance on the speed is performed. Figure 2.1 shows a

possible data set obtained in this way.
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Figure 2.1: Fictional data set of 40 braking distances and speeds obtained under the ran-
dom design paradigm with a uniform design distribution.

Under the fixed design paradigm, a certain number of fixed speeds, e.g. 40 speeds, between

0 km/h and 200 km/h would be pre-determined in advance. Then, for each of these 40

speeds, the same driver would accelerate in a straight line from 0 km/h onwards until he

or she reaches the fixed speed and then would immediately start an emergency braking.

Again the speed of the car at the moment the car started decelerating and the braking

distance are measured and recorded and a regression of the braking distance on the speed

is performed. See Figure 2.2 for a hypothetical data set obtained in this way.
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Figure 2.2: Fictional data set of 40 braking distances and speeds obtained under the
equidistant fixed design paradigm.

Note that we assume that the repeated emergency brakings do not influence the condition

of the car or the driver and that the reaction times of the driver do not matter in this

case, since we always note the speed and the breaking distance starting with the point at

which the car starts decelerating.

Note furthermore, that since in this example only one explanatory variable (the spped of

the car) is given, a regression of the outcome (the braking distance) on this explanatory

variable is called univariate.
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2.1 Marked empirical processes and random designs

This section consists of three parts: In the first part, we study marked empirical processes

of regression residuals in regression models with random designs on the example of a paper

by Winfried Stute, see Stute (1997), and state their well known limit residual processes.

In the second part, we shall prove that linear regression by means of the LSE on a random

design is a special case of a regression model with random design. Finally, in the third

part, we specify and prove the statement that in a regression model with random design,

one can assume to a certain extent that the design is the uniform distribution on [0, 1].

2.1.1 Results of Stute (1997)

A regression model with random design has the form

Y = m(X) + ε.

Here,

m(x) := E(Y |X = x)

constitutes the true but unknown regression function that depends on the input of a

random variable X and consequently

E(ε |X) = 0 .

Since we always assume Y to be integrable,

m(x) = E(Y |X = x)

exists. The output or outcome Y is the sum of the regression functionm and the regression

error ε with

Var(ε |X = x) = σ2(x) > 0 .

To simplify the analysis, we only consider univariateX and Y . Hence, we concern ourselves

with univariate regression models.

In order to obtain full model checks it is assumed that m belongs to a function class M
whose elements are uniquely identified by a parameter θ. Hence, the model hypothesis is

H0 : m ∈ M := {m(·, θ) | θ ∈ Θ}, Θ ⊆ Rp, p ∈ N,

where Θ is a suitable set of regression parameters.
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Now, for a given data set

(x1, y1), . . . , (xn, yn) ∈ R2, n ∈ N,

the observed outcomes y1, . . . , yn are realisations of the random variables Y1, . . . , Yn which

correspond to the design variables x1, . . . , xn, which in turn are realisations of the random

variables X1, . . . , Xn. The data set (x1, y1), . . . , (xn, yn) is therefore a realisation of the

random sample

(X1, Y1), . . . , (Xn, Yn)
iid∼ (X,Y ).

Another notation is that the distribution function of the random variable X is denoted by

F , in short:

X ∼ F .

Under the model hypothesis H0 : m ∈ M = {m(·, θ) | θ ∈ Θ}, there exists a true but

unknown parameter

θ0 ∈ Θ

for which

m(x) = m(x, θ0)

holds true. Moreover, let θ̂n be any reasonable estimator for θ0 — for example, the LSE.

In the given situation the so-called marked empirical process is defined as follows:

Definition 2.1.1.

Let I be any interval containing all x ∈ R with 0 < F (x) < 1. Then, for n ∈ N, we

call

i) Rn(x) :=
1√
n

n∑

i=1

1(−∞,x](Xi) · (Yi −m(Xi)), x ∈ I,

the marked empirical process where the marks are the true but unknown

regression errors εi = Yi −m(Xi), 1 ≤ i ≤ n.

ii) R1
n(x) :=

1√
n

n∑

i=1

1(−∞,x](Xi) · (Yi −m(Xi, θ̂n)), x ∈ I,

the marked empirical process where the marks are the so-called (regression)

residuals

ε̂ni := Yi −m(Xi, θ̂n), 1 ≤ i ≤ n.

Figure 2.3 shows the graph of R1
n(x) for some random sample X1, . . . , Xn and some resid-

uals ε̂n1, . . . , ε̂nn.



14 2. Cumulated sum processes of residuals in regression models

Figure 2.3: Graph of R1
n(x) for the random sample X1, . . . , Xn and residuals ε̂n1, . . . , ε̂nn.

Remark 2.1.2. [Stute (1997)]

The paths of the processes Rn and R1
n are càdlàg (continuous on the right, limit on

the left) functions defined on R. By continuously extending the processes Rn and

R1
n to −∞ and ∞ by putting

Rn(−∞) := 0 and Rn(∞) :=
1√
n

n∑

i=1

(Yi −m(Xi))

as well as

R1
n(−∞) := 0 and R1

n(∞) :=
1√
n

n∑

i=1

(Yi −m(Xi, θ̂n)),
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both process paths become elements of D[−∞,∞]. Here, D(I) denotes the Sko-

rokhod space of càdlàg functions defined on a set I, which, unless otherwise specified,

always is endowed with the Skorokhod metric. Note that D[−∞,∞] is isometric to

D[0, 1]. Such an isometry is given, for example, by

ψ : [−∞,∞] −→ [0, 1], x 7−→





0, x = −∞,
1
2 ·

(
1 + x

1+|x|

)
, x ∈ R,

1, x = ∞.

Remark 2.1.3.

In the course of this work, we consider measure integrals of measurable functions g

defined on R with respect to the distribution function F of X. Note that here, and

throughout the remainder of this work, we shall identify the measure corresponding

to a distribution function F with the distribution function F itself. In such integrals,

and independent of g, we make the natural notations

∫

[−∞,a]

g(x) dF (x) :=

∫

(−∞,a]

g(x) dF (x), a ∈ R,

∫

[a,∞]

g(x) dF (x) :=

∫

[a,∞)

g(x) dF (x), a ∈ R,

∫

[−∞,∞]

g(x) dF (x) :=

∫

(−∞,∞)

g(x) dF (x).

Furthermore, we use the natural notations F (−∞) := 0, F (∞) := 1.

For the process Rn(x) the following limit theorem can be given:

Theorem 2.1.4. [Stute (1997), Theorem 1.1]

Let E(Y 2) < ∞. Then,

Rn(·) D−−−→
n→∞

R∞(·) in D[−∞,∞],

where the limit process R∞(·) is a centered Gaussian process with the covariance

function

K(s, t) =

∫

[−∞,min{s,t}]

Var(Y |X = x) dF (x), s, t ∈ [−∞,∞].
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Proof: We reproduce a more detailed version of the proof from Stute (1997) in Section 7.1

of the appendix, since the proof in Stute (1997) is kept very brief and some of the techniques

will be used in subsequent parts of this work. �

Remark 2.1.5.

The practical scope of the above theorem is rather limited, as it only allows one to

construct tests of simple hypotheses like

H0 : m ∈ M v.s. H1 : m /∈ M,

where the class of functions M consists of a single element, i.e.

M = {m(·, θ) | θ ∈ Θ = {θ1}}.

To see this, note that in order to test H0 with the marked empirical process Rn(·),
an explicit regression function m is needed. That is, we need an m with known

instead of estimated regression parameters. To put it differently, only for such

simple hypothesis do we know that under H0 the residuals and the regression errors

coincide.

In goodness-of-fit tests, hypotheses of the form

H0 : m ∈ M = {m(·, θ) | θ ∈ Θ}, |Θ| > 1,

are tested, which means that the regression function m is specified up to a parameter

θ ∈ Θ. Note that we always assume that m(·, θ) 6= m(·, θ̃) for all θ 6= θ̃ ∈ Θ. In this

situation, the estimation of the unknown parameter θ becomes necessary, and thus Stute

(1997) studied the marked empirical process

R1
n(·) =

1√
n

n∑

i=1

1(−∞,·](Xi) · (Yi −m(Xi, θ̂n)).

Here, the marks are the residuals

ε̂ni = Yi −m(Xi, θ̂n), 1 ≤ i ≤ n.

Note that, unlike the regression errors ε1, . . . , εn, the residuals ε̂n1, . . . , ε̂n1, n ∈ N, need

not be independent nor uncorrelated, which makes the analysis of R1
n(·) much more diffi-

cult as compared to Rn(·).

In order to be able to determine the limit process of R1
n(·), we need to assume regularity

of θ̂n and smoothness of the functions in M. More precisely, we make the following two

assumptions:
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Assumption 1

Under the model hypothesis H0, θ̂n admits the expansion

√
n (θ̂n − θ0) =

1√
n

n∑

i=1

l(Xi, Yi, θ0) + oP(1) as n → ∞,

where l denotes an Rp-valued function satisfying

i) E(l(X,Y, θ0)) = 0,

ii) Cov(l(X,Y, θ0)) exists.

Concerning Assumption 1, note the following:

i) For a series of random variables (Xn)n∈N and a sequence of real numbers

(an)n∈N, we have

(Xn)n∈N = oP(an) :⇐⇒ Xn

an

P−−−−→
n→∞

0.

ii) The multivariate central limit theorem is applicable, i.e.,

√
n (θ̂n − θ0)

D−−−−→
n→∞

Np(0, Cov(l(X,Y, θ0))). (2.1)

Assumption 2

i) The regression function m(x, θ) is continuously differentiable with respect to θ

for all θ ∈ int(Θ) and for all x ∈ R. Here int(Θ) denotes the interior of the set

Θ and it is assumed that Θ convex. Therefore, we can define

g(x, θ) := (g1(x, θ), . . . , gp(x, θ))
T

:=

(
∂m(x, θ)

∂θ1
, . . . ,

∂m(x, θ)

∂θp

)T

=
∂m(x, θ)

∂θ
. (2.2)

ii) There is an F−integrable function M such that

∀ 1 ≤ j ≤ p ∀x ∈ R ∀ θ ∈ int(Θ) : |gj(x, θ)| ≤ M(x).

Note that according to Assumption 2 the function

G(x, θ) :=




G1(x, θ)
...

Gp(x, θ)


 ,



18 2. Cumulated sum processes of residuals in regression models

with

Gi(x, θ) :=

∫

[−∞,x]

gi(u, θ) dF (u) = E
(
1[−∞,x](X) · gi(X, θ)

)
, i = 1, . . . , p, (2.3)

is well defined and continuous for θ ∈ int(Θ).

Under Assumption 1 and Assumption 2, the following holds true for the limit process

R1
∞(·) of R1

n(·).

Theorem 2.1.6. [Stute (1997), Theorem 1.2, Corollary 1.3]

In a regression model with random design as introduced in this section let

❼ E(Y 2) < ∞,

❼ Assumption 1 and Assumption 2 be fulfilled,

❼ X ∼ F .

Then, under the hypothesis

H0 : m ∈ M = {m(·, θ) | θ ∈ Θ}, Θ ⊆ Rp,

we have:

i)
sup

x∈[−∞,∞]

∣∣∣∣∣R
1
n(x)−

(
Rn(x)−

1√
n

n∑

i=1

GT (x, θ0) l(Xi, Yi, θ0)

)∣∣∣∣∣
P−−−−→

n→∞
0,

ii) R1
n(·)

D−−−→
n→∞

R1
∞(·) in D[−∞,∞],

where R1
∞(·) is a centred Gaussian process with the covariance function

K1(s, t) =

∫

[−∞,min{s,t}]

Var(Y |X = x) dF (x) +GT(s, θ0)Cov(l(X,Y, θ0))G(t, θ0)

−GT (s, θ0)E
[
1[−∞,t](X)(Y −m(X, θ0)) l(X,Y, θ0)

]

−GT (t, θ0)E
[
1[−∞,s](X)(Y −m(X, θ0)) l(X,Y, θ0)

]
, s, t ∈ [−∞,∞].

Proof: A sketch of the proof is given in Stute (1997) on page 638. Note that we could

not find a formal argument for the uniform convergence in i) in Stute (1997). Keeping

this in mind, and for the sake of clarity, we present a complete (and partially new) proof

of Theorem 2.1.6 in Section 7.1 of the appendix starting on page 102. �
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2.1.2 Linear regression models and arbitrary random designs

In order to simplify the following analysis, we restrict ourselves here to a homoscedastic

univariate linear regression model under the usage of the LSE. Specifically, we consider:

i) the univariate regression model with random design

Y = m(X) + ε,

with

m(x) = E(Y |X = x),

where

H0 : m ∈ M = {fT (·) θ | θ ∈ Rp}

and call the known function

f = (f1, . . . , fp)
T , p ∈ N,

with f1, . . . , fp : R −→ R the regression function.

ii) the LSE θ̂n for estimating the regression coefficients.

iii) homoscedastic regression errors ε. That is

Var(ε|X = x) = σ2(x) = σ2, x ∈ R.

In order to simplify the notation even further, we assume without loss of generality

that

σ2 = 1,

since one can divide Rn(·) and R1
n(·) by σ to normalise the error. If σ2 is unknown,

one can estimate it by means of a consistent estimator σ̂2
n like the one based on

the sum of squares of residuals. This procedure does, according to the continuous

mapping theorem, not alter asymptotic distributional properties of the processes

involved.

The following theorem is a version of Theorem 2.1.6 adapted to this particular scenario.
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Theorem 2.1.7. [Stute (1997)]

Consider a univariate linear regression model with random design and homoscedastic

regression errors of variance 1 under the usage of the LSE. Furthermore, let F be

the unknown distribution function of X, assume that

J :=

∫

[−∞,∞]

f(x) fT (x) dF (x)

exist, and assume that

rank(J) = p.

Then, under the hypothesis

H0 : m ∈ M = {fT (·) θ | θ ∈ Rp},

we have

R1
n(·)

D−−−→
n→∞

R1
∞(·) in D[−∞,∞],

where R1
∞(·) is a centred Gaussian process with the covariance function

K1(s, t) = F (min{s, t})−




∫

[−∞,s]

f(x) dF (x)




T

J−1

∫

[−∞,t]

f(x) dF (x), s, t ∈ [−∞,∞].

Proof: In Stute (1997) page 620 and 621, a guideline for the proof can be found. We

present a detailed proof of Theorem 2.1.7 according to this guideline starting on page 116

in Section 7.1 of the appendix onwards. �
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2.1.3 Linear regression models and the uniform random design

First, we start with the formal definition of a quantile function F− associated to a distri-

bution function F . See, for example, Chaper 21 in Vaart (1998).

Definition 2.1.8.

Let F be a distribution function on R. By

F− : (0, 1) −→ R, t 7−→ inf{x ∈ R : F (x) ≥ t},

we denote the quantile function associated to F . F− is continuous from the left and

monotonically increasing.

Remark 2.1.9.

Let F be a distribution function on R and define

a := inf{x ∈ R|F (x) > 0} ∈ [−∞,∞)

and

b := sup{x ∈ R|F (x) < 1} ∈ (−∞,∞].

If necessary, we may extend F− to [0, 1] by defining

F−(0) := a and F−(1) := b.

In Stute (1997), the approach of applying the quantile transformation X
D
= F−(U), where

X ∼ F and U ∼ U(0, 1), has been used to simplify the proofs of Theorem 2.1.4 and The-

orem 2.1.6. In this regard, it is mentioned on page 637 that “... we may and do assume

in the following that F is the uniform distribution on [0, 1]”.

In this section, however, we consider a different transformation, the so-called probability

integral transformation to transform a regression model with random design into a re-

gression model with uniform random design. To be more precise, the following theorem

specifies the statement that for a regression model with random design, there is an a.s.

equivalent corresponding regression model whose design is, to a certain extent, the uni-

form distribution on the unit interval. To our knowledge, this fact has not been stated or

proven in the literature so far.
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Theorem 2.1.10.

Consider a regression model with random design

Y = m(X) + ε,

where X ∼ F, m(x) = E(Y |X = x), E(ε |X = x) = 0 , Var(ε |X = x) = σ2(x) and

where Assumption 2 of Section 2.1.1 is satisfied.

Then, this regression model is almost surely equal to the corresponding regression

model with uniform random design on the unit interval. More precisely, this regres-

sion model has the form

Y = (m ◦ F−)(U) + ε,

where

❼ U := F (X) is a real-valued random variable with

FU (t) := P(U ≤ t) =





0, t ≤ 0,

lim
x↑F−(t)

F (x), t /∈ F (R) and t ∈ (0, 1),

t, t ∈ F (R) and t ∈ (0, 1),

1, t ≥ 1

and, in particular, PU |σ(F−) = λλ[0,1]|σ(F−),

❼ (m ◦ F−)(u) = E(Y |U = u),

❼ E(ε |U = u) = 0 and Var(ε |U = u) = σ2(F−(u)),

❼ Assumption 2 of Section 2.1.1 is satisfied.

Proof: The proof of this theorem is deferred to Section 7.1 of the appendix, starting on

page 122. �

According to Theorem 2.1.10, the distribution P
U of the design variable U of the trans-

formed model Y = (m ◦ F−)(U) + ε is the uniform distribution on the Sub-σ-Algebra

σ(F−) of the Borel-σ-Algebra B. Therefore, we refer to the transformed model as the

regression model with uniform random design. In the special situation that the distribu-

tion function F of the original design variable X is continuous, we have (0, 1) ⊆ F (R),

FU |[0,1] = id[0,1] and σ(F−) = B. Thus, PU = λλ[0,1] holds true.

As an example of a possible distribution function F of the design variable X in the original

model Y = m(X) + ε, see Figure 2.4a. The corresponding quantile function F− is given

in Figure 2.4b and for the corresponding distribution function FU of the design variable

U := F (X) in the transformed model Y = (m ◦F−)(U)+ ε, see Figure 2.5a. The quantile

function F−
U belonging to FU can be found in Figure 2.5b.
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Figure 2.4: Example graphs of a distribution function F and its quantile function F−.
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Remark 2.1.11.

Consider the transformed model

Y = (m ◦ F−)(U) + ε.

If we additionally assume E(Y 2) < ∞ and that Assumption 1 of Section 2.1.1 is

satisfied, under H0 : m ∈ M = {m(·, θ)|θ ∈ Θ}, Θ ⊆ Rp, the following convergence

of the uniform marked empirical process

R
1
n(x) :=

1√
n

n∑

i=1

1[0,x](Ui) · (Yi −m(F−(Ui), θ̂n)), x ∈ [0, 1],

holds true according to Theorem 2.1.6:

R
1
n(·)

D−−−→
n→∞

R
1
∞(·) in D[0, 1].

Here, R
1
∞(·) is a centred Gaussian process with the covariance function

K1(s, t) =

∫

[0,min{s,t}]

Var(Y |U = u) dFU (u) + G
T
(s, θ0)Cov(l(U, Y, θ0))G(t, θ0)

−G
T
(s, θ0)E

[
1[0,t](U) · (Y −m(F−(U), θ0)) l(U, Y, θ0)

]

−G
T
(t, θ0)E

[
1[0,s](U) · (Y −m(F−(U), θ0)) l(U, Y, θ0)

]
, s, t ∈ [0, 1].

For the definition of G(u, θ), see the end of the proof of Theorem 2.1.10.

In the remainder of this section, we consider the special situation of a univariate linear

regression model with random design and homoscedastic regression errors of variance 1

under the usage of the LSE θ̂n (see Section 2.1.2). Additionally, let us suppose that the

matrix

J =

∫

[−∞,∞]

f(x)fT (x) dF (x) ∈ Rp×p

of the original regression functions exists and has full rank. For the interpretation of

integrals over [−∞,∞], we refer to Remark 2.1.3. On L2([−∞,∞], F ) the inner product

is defined by

〈·, ·〉 : L2([−∞,∞], F )× L2([−∞,∞], F ) −→ R, (g, h) 7−→
∫

[−∞,∞]

g(t)h(t) dF (t),

thus J is the Gram matrix of f1, . . . , fp, which has full rank if, and only if, the functions

f1, . . . , fp are linearly independent in L2([−∞,∞], F ). Here, as usual, L2([−∞,∞], F )
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denotes the Hilbert space of square integrable functions defined on [−∞,∞] with respect

to F .

Furthermore, the regression functions f1, . . . , fp are linearly independent in L2([−∞,∞], F )

if, and only if, the transformed regression functions f1 ◦ F−, . . . , fp ◦ F− are linearly in-

dependent in L2([0, 1], λλ[0,1]). This, in turn, is precisely the case when the transformed

regression functions f1 ◦ F−, . . . , fp ◦ F− are linearly independent in L2([0, 1], FU ). The

first assertion can be verified similarly to the proof of assertion i) β) on page 149 and from

there, the second assertion is true since [0, 1] ∈ σ(F−) and P
U |σ(F−) = λλ[0,1]|σ(F−). The

following assertions are thus equivalent:

i) The Matrix J =
∫

[−∞,∞]

f(x)fT (x) dF (x) exists and has full rank.

ii) The Matrix
∫

[0,1]

(f ◦ F−)(u)(f ◦ F−)T (u) dFU (u) exists and has full rank.

iii) The Matrix
∫

[0,1]

(f ◦ F−)(u)(f ◦ F−)T (u) dλλ[0,1](u) exists and has full rank.

iv) The original regression functions f1, . . . , fp are linearly independent in L2([−∞,∞], F ).

v) The transformed regression functions f1 ◦ F−, . . . , fp ◦ F− are linearly independent

in L2([0, 1], FU ).

vi) The transformed regression functions f1 ◦ F−, . . . , fp ◦ F− are linearly independent

in L2([0, 1], λλ[0,1]).

In the present situation, Theorem 2.1.7 now yields that the uniform marked empirical

process

R
1
n(x) =

1√
n

n∑

i=1

1[0,x](Ui) · (Yi − (f ◦ F−)T (Ui) θ̂n), x ∈ [0, 1],

converges weakly, that is

R
1
n(·)

D−−−→
n→∞

R
1
∞(·) in D[0, 1].

Here, R
1
∞(·) is a centred Gaussian process with the covariance function

K1(s, t) = FU (min{s, t})−




∫

[0,s]

f(F−(x)) dFU (x)




T

× (2.4)

×




∫

[0,1]

f(F−(x))fT (F−(x)) dFU (x)




−1 ∫

[0,t]

f(F−(x)) dFU (x), s, t ∈ [0, 1].
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Since P
U |σ(F−) = λλ[0,1]|σ(F−) holds true, we have

∫

[0,1]

f(F−(x))fT (F−(x)) dFU (x) =

∫

[0,1]

f(F−(x))fT (F−(x)) dλλ[0,1](x),

but the same need not to be true for the two other integrals in (2.4), since [0, s] or [0, t]

might not be in the Sub-σ-Algebra σ(F−). Nevertheless, one can apply the change of

variables formula (see Lemma 7.1.3) to the first integral in (2.4), obtaining

∫

[0,s]

f(F−(x)) dFU (x) =

∫

[0,FU (s)]

f(F−(F−
U (x))) dλλ[0,1](x)

=

∫

[0,FU (s)]

f(F−(x)) dλλ[0,1](x) (2.5)

and proceed similarly with the last integral in (2.4). Equation (2.5) above is true, since

F−(F−
U (t)) = F−(t), t ∈ [0, 1]. (2.6)

To see this, first note that, since F−
U (0) = 0 and F−

U (1) = 1, (2.6) holds for t = 0 and t = 1.

If t ∈ (0, 1) ∩ F (R) we have F−
U (t) = t and thus, (2.6) holds as well. In the remaining

case we have t ∈ (0, 1) and t /∈ F (R). Thus, according to Theorem 2.1.10, FU takes the

constant value lim
x↑F−(t)

F (x) in the interval

[
lim

x↑F−(t)
F (x), F (F−(t))

)
, which includes t. As

a consequence, one can conclude F−
U (u) = F (F−(t)) for all u ∈

(
lim

x↑F−(t)
F (x), F (F−(t))

)

and thus

F−(F−
U (t)) = F−(F (F−(t))) = F−(t),

if t ∈
(

lim
x↑F−(t)

F (x), F (F−(t))

)
, where we used (7.39) of Lemma 7.1.1. If, in contrast,

t = lim
x↑F−(t)

F (x), we get

F−
U

(
lim

x↑F−(t)
F (x)

)
= lim

x↑F−(t)
F (x),

since F−
U is continuous from the left and F (x) ∈ F (R), for all x ∈ R, which implies

F−
U (F (x)) = F (x).

As an example of a possible distribution function FU of the design variable U in the trans-

formed model and the corresponding quantile function F−
U , see Figure 2.5a and Figure 2.5b

respectively.
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0 p3 1lim
x↑q3

F(x)

0

p3

1

lim
x↑q3

F(x)

FU(t)

t

(a) Distribution function FU of U=F (X).

0 p3 1lim
x↑q3

F(x)

0

p3

1

lim
x↑q3

F(x)

F
−(u)
U

u

(b) Quantile function F−

U
.

Figure 2.5: Example graphs of the distribution function FU of U = F (X) and its quan-
tile function F−

U corresponding to the distribution function F of X from Fig-
ure 2.4a.

Taking the above facts into consideration, we conclude the following.
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Theorem 2.1.12.

Consider a homoscedastic linear regression model with random design

Y = fT (X) θ + ε,

where f = (f1, . . . , fp)
T , p ∈ N with f1, . . . , fp : R −→ R that are linearly

independent in L2([−∞,∞], F ), X ∼ F , E(ε |X = x) = 0 and Var(ε |X = x) = 1.

Then, this regression model is almost surely equal to the corresponding linear

regression model with uniform random design on the unit interval. More precisely,

this regression model has the form

Y = (f ◦ F−)T (U) θ + ε,

❼ where U := F (X) is a real-valued random variable with

FU (t) := P(U ≤ t) =





0, t ≤ 0,

lim
x↑F−(t)

F (x), t /∈ F (R) and t ∈ (0, 1),

t, t ∈ F (R) and t ∈ (0, 1),

1, t ≥ 1

and, in particular, PU |σ(F−) = λλ[0,1]|σ(F−),

❼ where f ◦ F− = (f1 ◦ F−, . . . , fp ◦ F−)T are the regression functions with f1 ◦
F−, . . . , fp◦F− : [0, 1] −→ R that are linearly independent in L2([0, 1], λλ[0,1]),

❼ where E(ε |U) = 0 and Var(ε |U = u) = 1 for all u ∈ [0, 1].

In this model, under the usage of the LSE θ̂n, the uniform marked empirical

process reads

R
1
n(x) =

1√
n

n∑

i=1

1[0,x](Ui) · (Yi − (f ◦ F−)T (Ui) θ̂n), x ∈ [0, 1],

and the weak convergence

R
1
n(·)

D−−−→
n→∞

R
1
∞(·) in D[0, 1]

holds true. Here, R
1
∞(·) is a centred Gaussian process whose covariance function,

for s, t ∈ [0, 1], is

K1(s, t) = FU (min{s, t})−




∫

[0,FU (s)]

f(F−(x)) dλλ[0,1](x)




T

×

×




∫

[0,1]

f(F−(x))fT (F−(x)) dλλ[0,1](x)




−1 ∫

[0,FU (t)]

f(F−(x)) dλλ[0,1](x).
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2.2 Partial sum processes and fixed designs

This section consists of two parts. In the first part, we study residual partial sum processes

of regression residuals in linear regression models with fixed designs on the example of

Bischoff (1998). Furthermore, the limit process of the respective residual partial sum

processes is specified and its covariance structure is investigated. In the second part, we

prove that in the case where only the distribution of the residual partial sum limit process

is of interest in a linear regression model with a fixed design, one can always assume the

design to be the equidistant design on the unit interval [0, 1]. To our knowledge this fact

has not been explicitly stated or proven in the literature so far.

2.2.1 Results of Bischoff (1998)

A linear regression model with fixed design has the form

Yn = Xnβ + εn, n ∈ N,

where Yn is the n-dimensional output vector composed of a deterministic part Xnβ and a

vector-valued random variable εn = (εn1, . . . , εnn)
T . Here, εn1, . . . , εnn are real-valued iid

random variables with E(εn1) = 0 and Var(εn1) = σ2. Thus, we are in a non-parametric

and homoscedastic scenario.

Regarding the deterministic part of the model,

β = (β1, . . . , βp) ∈ Rp

are the unknown regression coefficients, which, in a model with n ≥ p observations, are to

be estimated via the LSE β̂n. We consider a triangular array of design points,

(
(tnj)

n
j=1

)

n∈N
⊆ [a, b] =: E , a < b ∈ R,

whose n-th row is called an (exact) design (for n observations). We refer to E as the

experimental region. Furthermore, without loss of generality, we may assume that

a ≤ tn1 ≤ tn2 ≤ · · · ≤ tnn−1 ≤ tnn ≤ b, n ∈ N.

The vector-valued regression function

f = (f1, . . . , fp)
T : [a, b] −→ Rp

consists of real valued, known and continuous functions of bounded variation and, the

design matrix reads

Xn := (fr (tns))
n p
s=1,r=1 ∈ Rn×p.

We are therefore dealing with univariate linear regression models, since there is only one

explanatory variable. Moving on, the ordinary least-squares residuals are defined as
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ε̂n := Yn −Xnβ̂n ∈ Rn,

where, if Xn has full Rank,

β̂n := (XT
nXn)

−1XT
n Yn

is the LSE approximation for β. For following applications, we define for tn1, . . . , tnn, that

is the n-th row of a given design,

Fn(x) :=
1

n

n∑

i=1

1(−∞,x](tni), x ∈ R,

as the empirical distribution function uniquely corresponding to this design.

Two additional assumptions are made in order to determine a limit process for the least

squares residual process:

Assumption 1

There is a limit design distribution function F for which

sup
t∈[a,b]

|Fn(t)− F (t)| −−−→
n→∞

0 is satisfied.

Assumption 2

The matrix

J :=

∫

[a,b]

f(t)fT (t) dF (t) ∈ Rp×p has full rank. (2.7)

As we already know (see the preliminary remarks on Theorem 2.1.12), this is equiva-

lent to the linear independence of the regression functions f1, . . . , fp in L2([a, b], F ).

For the remainder of this work, by B = (B(t))t∈[0,1], we denote a standard Brownian

motion. Furthermore, we define the following operator, which will enable us to generate

a continuous stochastic process out of the regression residuals.

Definition 2.2.1.

For a = (a1, . . . , an)
T ∈ Rn and ⌊x⌋ := max{k ∈ Z | k ≤ x}, one defines the partial

sum operator

Tn : Rn −→ C[0, 1]

by

Tn(a)(t) =





⌊nt⌋∑
i=1

ai + (nt− ⌊nt⌋) a⌊nt⌋+1 , t ∈ [0, 1),

n∑
i=1

ai , t = 1.

Figure 2.6 shows the graph of Tn(a)(t) for a = (a1, . . . , an)
T ∈ Rn, n ∈ N.
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Figure 2.6: Operating principle of the partial sum operator Tn.

Given a real-valued random variable X with distribution function F , we define

❼ for z ∈ [0, 1],

Fz(x) := min{F (x), z}, x ∈ R.

❼ the support of X respectively F by

supp(F ) := supp(X) := {x ∈ R |P(X ∈ (x− r, x+ r)) > 0, for all r > 0}.
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We finally consider the residual partial sum process of the least-squares residuals

1

σ
√
n
Tn(ε̂n)(·),

a stochastic process that — as it linearly interpolates the residuals ε̂n over the interval

[0, 1] — has paths in C[0, 1]. Functional central limit theorems for residual partial sum

processes can be found, for example, in MacNeill (1978b), MacNeill (1978a), as well as

Bischoff (1998) and read as follows:

Theorem 2.2.2. [Bischoff (1998),Theorem 2.2,Theorem 3.1]

Let the regression functions

f1, . . . , fp, p ∈ N,

be continuous, known and real-valued functions of bounded variation that are lin-

early independent in L2([a, b], F ). Furthermore, let

Fn −−−→
n→∞

F uniformly,

where F is a distribution function with supp(F ) ⊆ [a, b]. Then,

i)
1

σ
√
n
Tn(ε̂n)(·) D−−−−→

n→∞
Bf,F (·) in C[0, 1],

where Bf,F (·) is a Gaussian process that for z ∈ [0, 1] is given by

Bf,F (z) := B(z) +




∫

[a,b]

f(t) dFz(t)




T

J−1




(R)∫

[a,b]

B(F (t)) df(t)−B(1)f(F−(1))


 .

ii)
1

σ
√
n
(Tn(ε̂n)◦Fn)(·) D−−−→

n→∞
(Bf,F ◦F )(·) in (D[a, b], ‖·‖∞),

where (Bf,F ◦ F )(·) is a Gaussian process that, for s ∈ [a, b], is given by

(Bf,F ◦ F )(s) = B(F (s)) +




∫

[a,s]

f(t) dF (t)




T

J−1




(R)∫

[a,b]

B(F (t)) df(t)−B(1)f(F−(1))


.

With regard to Theorem 2.2.2, note the following:

❼ In i), as usual, we consider the uniform topology on C[0, 1].

❼ The residual partial sum limit process Bf,F does depend on the experimental region

[a, b], the regression functions f1, . . . , fp and the limit distribution F of the design

points. However, it does not depend on the choice of the design distributions Fn, n ∈
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N, converging uniformly to F . Therefore, Theorem 2.2.2 constitutes an “invariance

principle”.

❼ Up to this theorem, all integrals considered are measure integrals. However, the

integral
(R)∫

[a,b]

B(F (t)) df(t) is obtained as the limit of Riemann-Stieltjes sums. In

general, we denote the Riemann-Stieltjes integral of a function f over an interval I

with respect to a function g by
(R)∫
I

f(x) dg(x). For some theory on Riemann-Stieltjes

integrals see, for example, Strook (1994).

❼ The residual partial sum limit process Bf,F (·) has paths in C[0, 1], but since the

experimental region was given as the interval [a, b], it seems more natural to consider

stochastic processes with paths defined on this interval rather than on [0, 1]. Part ii)

of Theorem 2.2.2 provides a process with this convenient property. Note that here

weak convergence takes place in D[a, b], rather than in C[a, b], since the distribution

functions Fn, n ∈ N, and F need not be continuous and therefore are generally

elements of D[a, b]. We emphasise that here, in contrast to Section 2.1, we endow

D[a, b] with the uniform topology, i.e., the topology given by the uniform metric

̺(x, y) := ‖x− y‖∞ = sup{t ∈ [a, b]| |x(t)− y(t)|}, x, y ∈ D[a, b].

That is, we consider weak convergence in (D[a, b], ‖ · ‖∞).

Remark 2.2.3.

Note that in Theorem 2.2.2 a mass point is permitted at the left endpoint of the

experimental region [a, b]. That is, it is possible that F (a) =: c > 0. In this case,

this mass point is noticed by measure integrals like
∫

[a,s]

f(t) dF (t), since it holds true

that ∫

[a,s]

f(t) dF (t) = c · f(a) +
∫

(a,s]

f(t) dF (t), s ∈ (a, b].

However, such a mass point at the left endpoint of the area of integration is not

noticed by a Riemann-Stieltjes integral as

(R)∫

[a,b]

B(F (t)) df(t) =

∫

(a,b]

B(F (t)) dµf (t). (2.8)

For a proof of equation (2.8), see Theorem 5.1.2 in Strook (1994). Note that here,

µf refers to the signed measure associated to f by the following procedure: Since

f = (f1, . . . , fp)
T and fi : [a, b] → R, i = 1, . . . , p, are continuous functions of

bounded variation for i ∈ {1, . . . , p}, there is a pair of continuous and monotonically

increasing functions f+
i and f−

i such that fi(x) = f+
i (x) − f−

i (x), x ∈ [a, b] (see
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for example Aufgabe 1.10 of Kapitel VII in Elstrodt (2009)). Therefore, for i =

1, . . . , p, and ∗ ∈ {+,−} there is a finite Borel measure µf∗
i
on ((a, b],B(a,b]) with

µf∗
i
((l,m]) = f∗

i (m) − f∗
i (l), l ≤ m ∈ [a, b] (see for example Bauer (1992), p. 36).

Hence, we define µfi = µf+
i
− µf−

i
, i = 1, . . . , p and µf = (µf1 , . . . , µfp)

T .

The above theorem is therefore adequate for a fixed design linear regression model

with the experimental region [a, b] without a mass point at the left endpoint (i.e.

F (a) = 0). In this regard, see part i) of Corollary 3.2 in Bischoff (1998) and note

that there is a typographical error (there should be a − instead of a + before the

integral) and that in addition it is implicitly assumed that there is no mass point

at the left end point of the experimental region.

The aim now is to state a theorem that is suitable for a fixed-design linear model

that can also have a mass point at the left endpoint of [a, b], i.e. that perceives it.

For this purpose, we make the following definition of the Riemann-Stieltjes integral,

that deviates sightly from the original definition in the sense that it recognizes mass

points at the left endpoint of the area of integration: Let f : [a, b] → R be continuous

and g : R → R be of bounded variation and right continuous. Let µg denote the

signed measure associated to g and let supp(µg) ⊆ [a, b]. In this situation,

supp(g) := supp(µg)

:= {x ∈ R |µg+((x− r, x+ r]) > 0 or µg−((x− r, x+ r]) > 0, for all r > 0}

denotes the support of g or µg respectively. Furthermore, assume that the Riemann-

Stieltjes integral
(R)∫

[a,b]

f(t) dg(t) exists. We then define

g̃(x) :=

{
g(x), x ∈ [a, b],

0, x ∈ [−∞, a)
and f(x) :=

{
f(x), x ∈ [a, b],

f(a), x ∈ [−∞, a)

and set
(R∗)∫

[a,b]

f(x) dg(x) :=

(R)∫

[−∞,b]

f(x) dg̃(x).

If we denote with µg̃ the measure associated to g̃, similar to (2.8), it follows that

∫

[a,b]

f(x) dµg(x) =

∫

(−∞,b]

f(x) dµg̃(x) =

(R)∫

[−∞,b]

f(x) dg̃(x) =

(R∗)∫

[a,b]

f(x) dg(x) (2.9)

holds true. The above equations are true, since f(x) = f(x), x ∈ [a, b], g̃(x) =

0, x ∈ [−∞, a) and supp(µg̃) = supp(µg) ⊆ [a, b].
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The following theorem is strongly based on Theorem 2.2.2, but is new in the literature.

Note that Theorem 3.1 in Bischoff and Miller (2000) is very similar to the following theo-

rem, however no proof is given there.

Theorem 2.2.4.

Let the regression functions f1, . . . , fp, p ∈ N, be continuous, real-valued and known

functions of bounded variation that are linearly independent in L2([a, b], F ). Fur-

thermore, let

Fn −−−→
n→∞

F uniformly,

where F is a distribution function with supp(F ) ⊆ [a, b] and F−(1) = b. Then,

i)
1

σ
√
n
Tn(ε̂n)(·) D−−−−→

n→∞
Bf,F (·) in C[0, 1],

where Bf,F (·) is a Gaussian process that is given by

Bf,F (z) = B(z) −




∫

[a,b]

f(t) dFz(t)




T

J−1

∫

[a,b]

f(t) dB(F (t)), z ∈ [0, 1].

ii)
1

σ
√
n
(Tn(ε̂n)◦Fn)(·) D−−−→

n→∞
(Bf,F ◦F )(·) in (D[a, b], ‖·‖∞),

where (Bf,F ◦ F )(·) is a Gaussian process that is given by

(Bf,F ◦ F )(s) = B(F (s))−




∫

[a,s]

f(t) dF (t)




T

J−1

∫

[a,b]

f(t) dB(F (t)), s ∈ [a, b].

With regard to the above theorem, the following two facts should be noted.

❼ Although the last integrals in i) and ii) look as if they should be Riemann-Stieltjes

integrals, we can consider them to be measure integrals. See the explanation of

equation (2.15) in the proof of Theorem 2.2.4 in this regard.

❼ The prerequisite, F−(1) = b, is a purely formal one. Since we are in the situation of

a linear regression model with fixed design, the distribution function F of the limit

design is known. Therefore any experimental region [a, b] that includes supp(F )

is sufficient for our analysis. Consequently, we can chose the “non-superfluous”

experimental region where F−(1) = b. Therefore, in the further course of this work,

whenever Theorem 2.2.4 is applied, we will not explicitly address the condition

F−(1) = b, but implicitly assume that the experimental region [a, b] was chosen such

that the condition is satisfied.
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Proof: Since the difference between Theorem 2.2.2 and Theorem 2.2.4 consists exclusively

in the representation of the last factor of the residual partial sum limit processes, it is

sufficient to prove only statement ii). The proof of statement i) is exactly the same.

Let ε > 0. Consider the fixed-design linear regression model that can be associated to the

given model by enlarging the experimental region by ε to the left. To be more specific,

we consider the linear regression model with the experimental region [a − ε, b] together

with the empirical distribution functions Fn, n ∈ N, that were originally given. That is,

supp(Fn) ⊆ [a, b] for all n ∈ N. Furthermore, in the new model, we consider the regression

functions f∗ := (f∗
1 , . . . , f

∗
p )

T , p ∈ N, where

f∗
i (x) :=

{
fi(x), x ∈ [a, b],

fi(a), x ∈ [a− ε, a)
, i = 1, . . . , p.

It holds true that Fn −−−→
n→∞

F uniformly and supp(F ) ⊆ [a−ε, b]. Furthermore, f∗
1 , . . . , f

∗
p

are continuous, real-valued and known functions of bounded variation that are linearly

independent in L2([a− ε, b], F ). Thus, Theorem 2.2.2 is applicable and states that

1

σ
√
n
(Tn(ε̂n) ◦ Fn)(·) D−−−→

n→∞
(Bf∗,F ◦ F )(·) in (D[a− ε, b], ‖ · ‖∞).

Here, (Bf∗,F ◦ F )(·) is a Gaussian process that for s ∈ [a− ε, b] is given by

(Bf∗,F ◦ F )(s)=B(F (s)) + (2.10)

+




∫

[a−ε,s]

f∗(t) dF (t)




T

J−1




(R)∫

[a−ε,b]

B(F (t)) df∗(t)−B(1)f∗(F−(1))


.

(2.11)

Since supp(F ) ⊆ [a, b] and F (t) = 0 for t ∈ [a− ε, a) it holds true that

∫

[a−ε,s]

f∗(t) dF (t) =

∫

[a,s]

f∗(t) dF (t) =

∫

[a,s]

f(t) dF (t), s ∈ [a, b]. (2.12)

Furthermore,

(R)∫

[a−ε,b]

B(F (t)) df∗(t)−B(1)f∗(F−(1))

= −f∗(b)B(F (b)) + f∗(a− ε)B(F (a− ε)) +

(R)∫

[a−ε,b]

B(F (t)) df∗(t) (2.13)

= −
(R)∫

[a−ε,b]

f∗(t) dB(F (t)) = −
(R∗)∫

[a,b]

f(t) dB(F (t)) (2.14)
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= −
∫

[a,b]

f(t) dB(F (t)). (2.15)

The following should be noted with regard to the above equations:

Regarding (2.13) This equation holds true because of the following two facts. Firstly, B(F (a− ε)) =

B(0) = 0, as supp(F ) ⊆ [a, b], and secondly, we assumed that F−(1) = b and thus

F (b) = 1 (see Lemma 7.1.1).

Regarding (2.14) First, integration by parts was used. See for example Theorem 1.2.7 in Strook (1994).

Then, since supp(F ) ⊆ [a, b] and f̄(x) = f̃(x) for all x ∈ [a− ε, b], it holds true that

(R)∫

[a−ε,b]

f∗(t) dB(F (t)) =

(R)∫

[−∞,b]

f(t) d(B̃ ◦ F )(t) =

(R∗)∫

[a,b]

f(t) dB(F (t)).

Regarding (2.15) To see that this equation is valid, see equation (2.9) in Remark 2.2.3. It should be

noted that writing
∫

[a,b]

f(t) dB(F (t)) — i.e. considering it a measure integral — is a

slight abuse of notation that will simplify many of the notations that follow. That

is, at first glance
∫

[a,b]

f(t) dB(F (t)) can only be understood as a Riemann-Stieltjes

integral, since B(F (t)) might not be of bounded variation and therefore no measure

must exist that can be associated to it. But, since

∫

[a,b]

f(t) dB(F (t)) =

(R∗)∫

[a,b]

f(t) dB(F (t)) =

(R)∫

[−∞,b]

f(t) d(B̃ ◦ F )(t)

= f(a)B(F (a)) +

(R)∫

[a,b]

f(t) dB(F (t))

= f(a)B(F (a)) + f(b)B(F (b))− f(a)B(F (a))−
(R)∫

[a,b]

B(F (t)) df(t)

= f(b)B(F (b))−
∫

[a,b]

B(F (t)) dµf (t)

holds true, where µf denotes the measure associated to f ,
∫

[a,b]

f(t) dB(F (t)) can be

considered as a measure Integral.
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Finally, by inserting (2.12) and (2.15) in (2.10), we get

(Bf,F ◦ F )(s) = B(F (s))−




∫

[a,s]

f(t) dF (t)




T

J−1

∫

[a,b]

f(t) dB(F (t)), s ∈ [a, b],

which completes the proof. �

In the next corollary, we compute the mean and covariance function of (Bf,F ◦ F )(·)
in the situation of Theorem 2.2.4.

Corollary 2.2.5.

Retain the assumptions of Theorem 2.2.4. Then the mean functionm and the covari-

ance function K of the stochastic process (Bf,F ◦F )(·) introduced in Theorem 2.2.4

are given by

m(s) = 0, s ∈ [a, b],

and, for s, t ∈ [a, b], by

K(s, t) = F (min{s, t})−




∫

[a,s]

f(x) dF (x)




T


∫

[a,b]

f(t)fT (t) dF (t)




−1∫

[a,t]

f(x) dF (x).

Proof: This corollary is similar to Lemma 3.1. in Bischoff and Miller (2000) and its proof

therefore is similar to the one stated therein on pages 674 and 675. Nevertheless, since the

present situation is not exactly the same, we will give a detailed proof for Corollary 2.2.5

on page 129 and the following pages in Section 7.1 of the appendix. �
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2.2.2 Linear regression models and the uniform fixed design

The main result of this section is Theorem 2.2.9, which states that when only the dis-

tribution of the residual partial sum limit process is of interest, one can always assume

the design of a linear regression model with fixed design to be the equidistant design on

the unit interval [0, 1]. We start our way to this theorem with the definition of so-called

generalised inverse functions.

Definition 2.2.6.

A function G : R → R is called a measure generating function if it is monotonically

increasing and continuous from the right. For a given measure generating function

G with values in [c, d], c ≤ d ∈ [−∞,∞],

G− : (c, d) −→ R, u 7−→ inf{x ∈ R|G(x) ≥ u}

denotes the generalised inverse function associated toG. If necessary, we may extend

G− to [c, d] by defining

G−(c) := inf{x ∈ R|G(x) > c} ∈ [−∞,∞)

and

G−(d) := sup{x ∈ R|G(x) < d} ∈ (−∞,∞].

The following lemma provides a characterization of bounded variation functions and con-

stitutes an important ingredient for proving the main result of this section. However, the

lemma is an interesting result in itself that, to our knowledge, does not appear in the

literature so far.

Lemma 2.2.7.

Let F be a distribution function with supp(F ) ⊆ [c, d], c < d, and let f1, . . . , fp :

[c, d] −→ R, p ∈ N, be functions of bounded variation that are continuous from the

left and right continuous in c. Furthermore, let a < b be real numbers.

Then, there is a measure generating function G : R −→ [c, d] with supp(G) ⊆ [a, b]

and functions g1, . . . , gp : [a, b] −→ R that are Lipschitz continuous, such that

fi = gi ◦G−, i = 1, . . . , p.

Furthermore, if the functions f1, . . . , fp are linearly independent in L2([c, d], F ), then

the functions g1, . . . , gp are linearly independent in L2([a, b], F ◦G).

If, in particular, c = 0 and d = 1, G is a distribution function andG− is its associated

quantile function.

Proof: The proof of this Lemma is deferred to Section 7.1 of the appendix, starting with

page 135. �
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The following theorem is new in the literature and describes a simple way of transforming

a linear regression model with fixed design, as introduced in Section 2.2.1, into a linear

regression model that has an equidistant design on the unit interval. However, the applica-

bility of the theorem is somewhat limited, since the regression functions in the transformed

model depend on the dimension n ∈ N of the outcome vector Yn, i.e. the number of design

points tn1, . . . , tnn.

Theorem 2.2.8.

Consider a linear regression model with fixed design

Yn = Xnβ + εn, β ∈ Rp, p ∈ N, n ∈ N, (2.16)

where [a, b], a < b, is the experimental region, ((tni)
n
i=1)n∈N ⊆ [a, b] is the tri-

angular array of design points whose corresponding sequence of empirical dis-

tribution functions (Fn)n∈N converges uniformly to a distribution function F ,

Xn = (fr (tni))
n p
i=1,r=1 is the design matrix where the regression functions f1, . . . , fp :

[a, b] → R are continuous, of bounded variation and linearly independent in

L2([a, b], F ) and εn = (εn1, . . . , εnn)
T are the real-valued iid regression errors with

E(εn1) = 0 and Var(εn1) = 1.

Then, this regression model is equal to the regression model

Yn =

(
(fr ◦ F−

n )

(
i

n

))n p

i=1,r=1

β + εn, n ∈ N, (2.17)

where [0, 1] is the experimental region,
((

i
n

)n
i=1

)
n∈N is the triangular array of equidis-

tant design points, F−
n denotes the quantile function corresponding to the empirical

distribution function Fn, which in turn corresponds to the n-th row of the triangular

array ((tni)
n
i=1) of original design points, and f1◦F−

n , . . . , fp◦F−
n : [0, 1] → R are the

regression functions that are of bounded variation and, for n large enough, linearly

independent in L2([0, 1], λλ[0,1]).

For the residual partial sum process of model (2.17), the weak convergence

1

σ
√
n
Tn(ε̂n)(·) D−−−−→

n→∞
Bf,F (·) in C[0, 1]

holds true.

Proof:

For n ∈ N and i = 1, . . . , n, we have F−
n

(
i
n

)
= tni, since

F−
n

(
i

n

)
= inf



x ∈ R

∣∣∣∣∣
1

n

n∑

j=1

1(−∞,x](tnj) ≥
i

n



 = tni

holds true, as we have assumed that without loss of generality tn1 ≤ tn2 ≤ · · · ≤ tnn holds.

Therefore, models (2.16) and (2.17) are equal.
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Regarding the properties of the regression functions in the transformed regression model,

we know that, since the regression functions f1, . . . , fp in model (2.16) are of bounded

variation and F−
n are monotonically increasing for all n ∈ N, the transformed regression

functions f1 ◦F−
n , . . . , fp ◦F−

n in model (2.17) are of bounded variation, too. Note that un-

like all the regression models considered so far, the regression functions f1◦F−
n , . . . , fp◦F−

n

in model (2.17) depend on n ∈ N. Furthermore, since the regression functions f1, . . . , fp

in model (2.16) are linearly independent in L2([a, b], F ), we can conclude, as we will es-

tablish thoroughly in the proof of Theorem 2.2.9, that the functions f1 ◦ F−, . . . , fp ◦ F−

are linearly independent in L2([0, 1], λλ[0,1]).

From this, we can infer that the transformed regression functions f1 ◦ F−
n , . . . , fp ◦ F−

n

in model (2.17) are linearly independent in L2([0, 1], λλ[0,1]) for n ∈ N large enough, too.

This is indeed the case, since we assumed that Fn converges to F uniformly, which implies

that Fn(t) converges to F (t) at every t at which F is continuous, and this in turn implies,

according to Lemma 21.2 in Vaart (1998), that F−
n (u) converges to F−(u) at every u in

which F− is continuous. This holds everywhere, except on an at most countable set.

Finally, since the models (2.16) and (2.17) are equal, their respective residual partial sum

processes coincide and, according to Theorem 2.2.2, converge weakly to Bf,F in C[0, 1].

�

Similar to the case of a linear regression model with random design, it is now our aim to

prove that in the situation of linear regression models with fixed designs one can assume

a more specific situation. To be more precise, we are going to investigate the relation

between a linear regression model with fixed design

Yn = Xnβ + εn, n ∈ N, (2.18)

where

❼ [a, b], a < b, is the experimental region,

❼ β = (β1, . . . , βp)
T ∈ Rp, p ∈ N, are the unknown regression coefficients,

❼ ((tni)
n
i=1)n∈N ⊆ [a, b] is the triangular array of design points whose corresponding

sequence of empirical distribution functions (Fn)n∈N converges uniformly to a dis-

tribution function F ,

❼ Xn = (fr (tni))
n p
i=1,r=1 is the design matrix where the regression functions f1, . . . , fp :

[a, b] → R are continuous, of bounded variation and linearly independent in L2([a, b], F ),

❼ εn = (εn1, . . . , εnn)
T are the real-valued iid regression errors with E(εn1) = 0 and

Var(εn1) = 1,

and a corresponding linear regression model with uniform fixed design

Ỹn = X̃nβ + εn, n ∈ N, (2.19)
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where

❼ [0, 1] is the experimental region,

❼ β = (β1, . . . , βp)
T ∈ Rp, p ∈ N, are the unknown regression coefficients (exactly

those of model (2.18)),

❼ (( i
n)

n
i=1)n∈N ⊆ [0, 1] is the triangular array of equidistant design points whose cor-

responding sequence of empirical distribution functions converges uniformly to the

distribution function of the uniform distribution on the unit interval, i.e. the identity

function on [0, 1],

❼ X̃n := (f̃r
(
i
n

)
)n p
i=1,r=1 :=

(
(fr ◦ F−)

(
i
n

))n p

i=1,r=1
is the design matrix where the re-

gression functions f̃1 := f1 ◦ F−, . . . , f̃p := fp ◦ F− : [0, 1] → R are of bounded

variation and linearly independent in L2([0, 1], λλ[0,1]),

❼ εn = (εn1, . . . , εnn)
T are the real-valued iid regression errors (exactly those of model

(2.18)) with E(εn1) = 0 and Var(εn1) = 1.

The following assertion is the main theorem of this section and, to our knowledge, new in

the literature.

Theorem 2.2.9.

Let a linear regression model with fixed design be given (cf. model (2.18)). Then,

the distribution of the residual partial sum limit processes of this model is equal

to that of the corresponding linear regression model with uniform fixed design (cf.

model (2.19)). In particular, in model both models, the weak convergence

1√
n
Tn(ε̂n)(z)

D−−−→
n→∞

Bf,F (z) in C[0, 1]

holds true.

Proof: The proof of this theorem is deferred to the pages 148 to 151 in Section 7.1 of the

appendix. �

Note that without loss of generality we assume in the above theorem that the regression

errors εni, i ∈ {1, . . . , n}, n ∈ N, are of variance 1. Therefore, the normalizing factor 1
σ in

front of the partial sum operator 1
σ
√
n
Tn(ε̂n)(·) is not needed in this case.

Observe, furthermore, the following subtle but crucial difference to Theorem 2.2.8. A

linear regression model with fixed design and the corresponding model with uniform fixed

design are not entirely equal because their design matrices Xn and X̃n may differ. More

precisely, a design point tni in the general case need not be equal to F−( i
n

)
in the uniform

case, since F is already the limit design distribution, whereas the sequence of empirical

distribution functions (Fn)n∈N corresponding to the triangular array ((tni)
n
i=1)n∈N in the
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general fixed design setup converges uniformly to F . Therefore, in a certain sense, the

equality of both models only holds in the limit.

The following lemma contains a transformation of the residual partial sum limit process

Bf,F , which will be of importance for the subsequent theorem.

Lemma 2.2.10.

Let the residual partial sum process Bf,F (·) of a linear regression model with fixed

design or uniformly fixed design be given. Then, it holds true that

Bf,F (z) = Bf◦F−,λλ[0,1]
(z), z ∈ [0, 1].

Proof: The proof of this Lemma is deferred to Section 7.1 of the appendix, starting with

page 152. �

In Theorem 2.2.2, the weak convergence of the residual partial sum process to the limit

process Bf,F was stated for a linear regression model with fixed design. In particular, it

was assumed that the regression functions f1, . . . , fp : [a, b] −→ R are continuous and of

bounded variation. Lemma 2.2.7 now gives us the possibility to drop the assumption of

continuity of the regression functions. To our knowledge, this result is new in the literature.

Theorem 2.2.11.

Consider a linear regression model with fixed design

Yn = Xnβ + εn, β ∈ Rp, p ∈ N, n ∈ N, (2.20)

where [a, b], a < b, is the experimental region, ((tni)
n
i=1)n∈N ⊆ [a, b] is the tri-

angular array of design points whose corresponding sequence of empirical dis-

tribution functions (Fn)n∈N converges uniformly to a distribution function F ,

Xn = (fr (tni))
n p
i=1,r=1 is the design matrix where the regression functions f1, . . . , fp :

[a, b] → R are of bounded variation and linearly independent in L2([a, b], F ) and

εn = (εn1, . . . , εnn)
T are the real-valued iid regression errors with E(εn1) = 0 and

Var(εn1) = 1. Then,

1

σ
√
n
Tn(ε̂n)(·) D−−−−→

n→∞
Bf,F (·) in C[0, 1]

holds true.

Proof: The proof of this theorem is deferred to Section 7.1 of the appendix, starting with

page 156. �





3 Commonalities of the two cumulated sum

limit processes

In this chapter, we will investigate commonalities and disparities between random design

and fixed design linear regression models as introduced in Section 2.1 and Section 2.2

respectively, with regard to their residual CUSUM processes.

In the first section we will have a closer look at Theorem 2.1.7 on page 20 as well as

Theorem 2.2.4 on page 35, and give a theorem which states the equality of distributions

of the limit of the marked empirical process and the residual partial process under certain

circumstances. This result can be seen as the intuitive building block for discussing the

similarities between random and fixed design linear regression models when it comes to

their respective residual CUSUM limit processes.

In the second section, we identify the underlying common properties between random

design and fixed design linear regression models that account for their similarities. Finally,

we state a generic linear regression model under which both linear regression models with

random and fixed designs can be subsumed and give a functional central limit theorem for

the CUSUM process of regression residuals in this generic situation.

3.1 Equality of the two cumulated sum limit processes

In this section, we prove a theorem which, simply put, states that in the situation of a

univariate linear regression model, the CUSUM limit process of the regression residuals in

the case of a model with random design has the same distribution as the one we obtain

under a model with fixed design. Thus, results about the structure of such a limit process

based on one of the two designs will always apply to the other.

Note that in the context of a linear model with random design the CUSUM process of the

regression residuals has been referred to as the marked empirical process and in case of a

model with fixed design the CUSUM process of the regression residuals was referred to as

the residual partial sum process.

The announced theorem is new in the literature to our knowledge and reads as follows.
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Theorem 3.1.1.

Let the assumptions of Theorem 2.1.7 and Theorem 2.2.4 be satisfied. Therefore,

in particular, we are given the regression functions

f = (f1, . . . , fp)
T , p ∈ N,

that are continuous, of bounded variation, real-valued and known functions on the

experimental region [a, b] ⊆ R that are linearly independent in L2([a, b], F ).

Then it holds true, that

(Bf,F ◦ F )(·) ∼ R1
∞(·).

Proof: If the conditions of both Theorem 2.1.7 and Theorem 2.2.4 are satisfied, the

following holds true:

i) According to Theorem 2.1.7 from page 20, R1
∞(·) is a Gaussian process with the

mean function

m(s) = 0, s ∈ R,

and the covariance function

K1(s, t) = F (min{s, t})−




∫

[−∞,s]

f(x) dF (x)




T

J−1

∫

[−∞,t]

f(x) dF (x), s, t ∈ [−∞,∞].

(3.1)

Since, in the present theorem, the experimental region is given as the compact in-

terval [a, b], which means that the design distribution function F has its support in

[a, b] and the regression functions f1, . . . , fn are functions with domain [a, b], equation

(3.1), for s, t ∈ [a, b], reduces to

K1(s, t) = F (min{s, t})−




∫

[a,s]

f(x) dF (x)




T


∫

[a,b]

f(x)fT (x) dF (x)




−1 ∫

[a,t]

f(x) dF (x).

ii) According to Corollary 2.2.5 on page 38, (Bf,F ◦ F )(·) is a Gaussian process with

the mean function

m(s) = 0, s ∈ [a, b].

Furthermore, for s, t ∈ [a, b], the covariance function reads

K(s, t) = F (min{s, t})−




∫

[a,s]

f(x) dF (x)




T


∫

[a,b]

f(x)fT (x) dF (x)




−1 ∫

[a,t]

f(x) dF (x)
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To sum up, we therefore know that both processes are centred Gaussian processes with

the same covariance function. Since it is well-known that the distribution of a Gaussian

process is uniquely identified through its mean function and its covariance function (see

for example Kapitel 7.6 in Gänsler and Stute (1977)), we can conclude that

(Bf,F ◦ F )(·) ∼ R1
∞(·).

as Gaussian processes. �

Note that in the situation of a linear regression model with random design, no analyt-

ical formula for the limit process R1
∞(·) of the marked empirical process R1

n(·) is available
in the literature. In contrast, in a linear regression model with fixed design, there is an

analytical formula for the residual partial sum limit process Bf,F .

The result below is a corollary to Theorem 3.1.1 in the special situation that a linear

regression model with uniform random design (see Theorem 2.1.12) as well as a linear

regression model with uniform fixed design (as introduced directly before Theorem 2.2.9)

with the same regression functions are given.

Corollary 3.1.2.

Let a linear regression model with uniform random design as well as a linear regres-

sion model with uniform fixed design with the same regression functions be given.

Thus, in particular, λλ[0,1] is the design distribution on the unit interval and

f = (f1, . . . , fp)
T : [0, 1] −→ Rp, p ∈ N,

are the regression functions that are of bounded variation and linearly independent

in L2([0, 1], λλ[0,1]).

Then it holds true that

Bf,λλ[0,1]
(·) ∼ R̄1

∞(·).
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3.2 A generic linear regression model for goodness-of-fit tests

It is a standard approach in the literature to base analyses of the goodness-of-fit of regres-

sion models on their residual CUSUM processes. See for example Stute, Thies, and Zhu

(1998), who stated that “there is good reason to base model diagnostics on the CUSUM

process of the residuals [...]”.

Therefore, although linear regression models with random designs and linear regression

models with fixed designs, as well as their respective residual processes, appear to be dif-

ferent, Theorem 3.1.1 and Corollary 3.1.2 are arguments in favour of the viewpoint that

CUSUM based model diagnostics do not differ for them. The three facts below shed light

on this in more detail.

i) Based on the result of Theorem 2.1.12, we can restrict our analysis of marked empir-

ical processes of regression residuals in linear regression models with random designs

to their corresponding uniform marked empirical process in the linear regression

model with uniform random design. Such a corresponding linear regression model

with uniform random design has the form

Y = (f ◦ F−)T (U)θ + ε,

where

❼ F is a distribution function, f1, . . . , fp are known real-valued functions that are

linearly independent in L2([−∞,∞], F ) and therefore the regression functions

(f ◦ F−) = (f1 ◦ F−, ..., fp ◦ F−)T : [0, 1] −→ Rp are linearly independent in

L2([0, 1], λλ[0,1]),

❼ the design is sampled according to a random variable U with the distribution

function

FU (t) =





0, t ≤ 0,

lim
x↑F−(t)

F (x), t /∈ F (R) and t ∈ (0, 1),

t, t ∈ F (R) and t ∈ (0, 1),

1, t ≥ 1

and, in particular, PU |σ(F−) = λλ[0,1]|σ(F−),

❼ θ ∈ Rp are the regression coefficients estimated using the LSE,

❼ E(ε|U) = 0 and Var(ε|U = u) = 1 for all u ∈ [0, 1].

In this situation, the CUSUM process of the regression residuals converges weakly

to R
1
∞(·) in D[0, 1]. Here, R

1
∞(·) is a centred Gaussian process whose covariance

function, for s, t ∈ [0, 1], is
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K1(s, t) =FU (min{s, t})−




∫

[0,FU (s)]

(f ◦ F−)(x) dλλ[0,1](x)




T

× (3.2)

×




∫

[0,1]

(f ◦ F−)(x)(f ◦ F−)T (x) dλλ [0,1](x)




−1 ∫

[0,FU (t)]

(f ◦ F−)(x) dλλ[0,1](x).

ii) Based on the result of Theorem 2.2.9, we can restrict our analysis of residual partial

sum processes of regression residuals in linear regression models with fixed designs to

the case of their corresponding linear regression model with uniform fixed design and

the respective residual partial sum process. Such a corresponding linear regression

model with uniform fixed design has the form

Yn =

(
(fr ◦ F−)

(
i

n

))n p

i=1,r=1

β + εn, n ∈ N,

where

❼ F is a distribution function, f1, . . . , fp are known real-valued functions that are

continuous, of bounded variation and linear independent in L2([a, b], F ) and

therefore the regression functions f ◦F− = (f1 ◦F−, . . . , fp ◦F−)T : [0, 1] → Rp

are of bounded variation and linearly independent in L2([0, 1], λλ[0,1]),

❼ β ∈ Rp are the regression coefficients estimated using the LSE,

❼

((
i
n

)n
i=1

)
n∈N ⊆ [0, 1] is the triangular array of equidistant design points,

❼ εn1, . . . , εnn are iid random variables with E(εn1) = 0 and Var(εn1) = 1.

In this situation, the CUSUM process of the regression residuals converges in dis-

tribution to Bf,F in C[0, 1]. Furthermore, according to Lemma 2.2.10, Bf,F (z) =

Bf◦F−,λλ[0,1]
(z) for all z ∈ [0, 1] and thus, according to Corollary 2.2.5, the residual

CUSUM limit process is a centred Gaussian process whose covariance function, for

s, t ∈ [0, 1], is

K(s, t) = min{s, t} −




∫

[0,s]

(f ◦ F−)(x) dλλ[0,1](x)




T

× (3.3)

×




∫

[0,1]

(f ◦ F−)(x) (f ◦ F−)T (x) dλλ[0,1](x)




−1∫

[0,t]

(f ◦ F−)(x) dλλ[0,1](x).
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iii) According to Corollary 3.1.2, we know that if λλ[0,1] is the design distribution, the

distribution of the limit process R
1
∞(·) of the marked empirical process in the sit-

uation of a linear regression model with uniform random design coincides with the

distribution of the residual partial sum limit process Bf,λλ[0,1]
(·) in the situation of

the same linear regression model, but with a uniform fixed design.

For general linear regression models with random design and fixed design that have

the same regression functions f1, . . . , fp and the same design distribution F , we con-

sidered their respective corresponding uniform designs in points i) and ii) of this

enumeration. In particular, we noted that under both designs the respective resid-

ual CUSUM limit processes are centred Gaussian processes with the covariance func-

tions given in (3.2) and (3.3). Therefore, the distributions of their respective residual

CUSUM limit processes R
1
∞(u) and Bf,F (u) coincide for all u ∈ F (R)∪ {0, 1}, since

in this case FU (u) = u holds true.

Otherwise, if u ∈ (0, 1) is not in F (R) (that is, F has a jump at F−(u)), R
1
∞ has the

constant value

R
1
∞

(
lim

x↑F−(u)
F (x)

)
in the interval

[
lim

x↑F−(u)
F (x), F (F−(u))

)

and then jumps to the value R
1
∞ (F (F−(u))). In contrast, since the function f ◦F−

is constant in the intervals that are not in F (R), Bf,F = Bf◦F−,λλ[0,1]
interpolates

these two values linearly. These jumps of F originate in design points with positive

probability. The magnitude of such a jump’s probability determines the size of the

interval on which the residual CUSUM limit processes differ. It can thus be noted

that R
1
∞ and Bf,F differ only in the representation of those intervals of their domain

belonging to design points with positive probabilities. See Figure 2.4 and Figure 2.5

and in particular the discrepancy between the graph of FU (see Figure 2.5a) and

the distribution function of λλ[0,1], which originates from the jump of F at q3 (see

Figure 2.4a).

To summarize, the distributions of residual CUSUM limit processes of linear regres-

sion models with the same regression functions f1, . . . , fp and the same design distri-

bution F coincide under uniform fixed and uniform random designs on F (R)∪{0, 1}.
For this reason, test statistics in goodness-of-fit tests based on R

1
n in the random de-

sign case and 1√
n
Tn(ε̂n) in the fixed design case agree on σ(F−), as their asymptotic

distributions are equal.

Note that the difference between R
1
∞ and Bf,F is not in content but only in the rep-

resentation of design points with positive probability. In the literature on random

designs, this discreteness is passed from the design to the marked empirical process

and, from there, to limit process R
1
∞. In contrast, in the literature on fixed designs,

the residual partial sum process is continuous, piecewise linear and equidistantly

embedded in [0, 1]. Thus, in the limit process Bf,F , the positive probability of such

a design point is uniformly distributed over the corresponding interval that is not in

F (R) and therefore, Bf,F linearly interpolates the jump in R
1
∞.
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The three facts outlined above therefore justify the following concluding statement:

When it comes to goodness-of-fit tests in linear regression models based on the

asymptotic distribution of residual CUSUM processes, one can assume without loss of

generality the following generic linear regression model.

Definition 3.2.1.

A generic linear regression model has the form




Yn1
...

Ynn


 =




f1
(
1
n

)
. . . fp

(
1
n

)

...
. . .

...

f1(1) . . . fp(1)







β1
...

βp


+




εn1
...

εnn


 , n ∈ N,

where

❼ f = (f1, . . . , fp)
T : [0, 1] → Rp, p ∈ N are regression functions that are of

bounded variation and linearly independent in L2([0, 1], λλ[0,1]),

❼ Xn :=
(
fr

(
i
n

))n p

i=1,r=1
is refereed to as the n-th design matrix,

❼ β ∈ Rp are the regression coefficients,

❼
1
n ,

2
n , . . . , 1 is the n-th row of the triangular array

((
i
n

)n
i=1

)
n∈N of equidistant

design points,

❼ εn1, . . . , εnn are iid random variables with E(εn1) = 0 and Var(εn1) = 1,

❼ Yn = (Yn1, . . . , Ynn)
T is the vector of outcomes.

With regard to the generic linear regression model and the fact that one can assume

a generic linear regression model when it comes to goodness-of-fit tests in linear regression

models based on the asymptotic distribution of residual CUSUM processes is should be

noted that henceforth, any result about goodness-of-fit tests applicable to residual partial

sum processes in linear models with fixed designs can also be used for marked empirical

processes in linear regression models with random designs, and vice versa.

In the situation of a generic linear regression model, we can immediately state the fol-

lowing corollary about the convergence of the residual CUSUM processes.



52 3. Commonalities of the two cumulated sum limit processes

Corollary 3.2.2.

Let a generic linear regression according to Definition 3.2.1 be given. Then, the

marked empirical process

R1
n(x) =

1√
n

n∑

i=1

1(−∞,x]

(
i

n

)
ε̂ni

as well as the partial sum process

1√
n
Tn(ε̂n)(x) =

1√
n

⌊nx⌋∑

i=1

ε̂ni + (nx− ⌊nx⌋) ε̂n,⌊nx⌋+1

of the least-squares residuals converge to the limit process

Bf,λλ[0,1]
(s) = B(s) −




∫

[0,s]

f(t) dλλ[0,1](t)




T


∫

[0,1]

f(t) fT (t) dλλ[0,1](t)




−1 ∫

[0,1]

f(t) dB(t),

s ∈ [0, 1], weakly in C[0, 1] as n → ∞.

From another point of view, this means that both random design models and fixed design

models can be interpreted as examples of a generic linear regression model. Thus, only the

following two disparities between linear regression models with random and fixed designs

remain.

Disparity i) Given a linear regression model with random design, the corresponding linear re-

gression model with uniform random design reads

Y = (f ◦ F−)T (U)θ + ε

where U is a uniformly distributed random variable on σ(F−). In contrast, in a

linear regression model with fixed design, the corresponding linear regression model

with uniform fixed design reads

Yn =

(
(fr ◦ F−)

(
i

n

))n p

i=1,r=1

β + εn, n ∈ N,

where
((

i
n

)n
i=1

)
n∈N is the triangular array of equidistant design points.

Similarly, in the uniform random case, the regression error is conditionally centred

and standardised with respect to the design variable U , i.e. E(ε|U = u) = 0, and

Var(ε|U = u) = 1 for all u ∈ [0, 1], whereas, in the uniform fixed design case,

the regression errors εn1, . . . , εnn are iid random variables with E(εn1) = 0 and

Var(εn1) = 1.
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Explanation :

In the corresponding linear regression model with uniform random design, one

considers an n-sample of random variables U1, . . . , Un
iid∼ U where P

U |σ(F−) =

λλ[0,1]|σ(F−) and the model in detail then reads




Yn1
...

Ynn


 =




(f1 ◦ F−)(U1) . . . (fp ◦ F−)(U1)
...

. . .
...

(f1 ◦ F−)(Un) . . . (fp ◦ F−)(Un)







θ1
...

θp


+




εn1
...

εnp


 , n ∈ N.

In contrast, in the corresponding linear model with uniform fixed design one considers

an n-sample of equidistant design points 1
n ,

2
n , . . . , 1 and the model in detail reads




Yn1
...

Ynn


 =




(f1 ◦ F−)( 1n) . . . (fp ◦ F−)( 1n)
...

. . .
...

(f1 ◦ F−)(1) . . . (fp ◦ F−)(1)







β1
...

βp


+




εn1
...

εnp


 , n ∈ N.

The difference between both scenarios is that a uniform random design consists of

an iid sample of random variables whose distribution is the uniform distribution on

σ(F−), whereas in a uniform fixed design, the design consists of a concrete array of

data points that are row wise equidistant in [0, 1]. Therefore, we can see that the

two designs are structurally identical with the only difference being the sampling

points where the regression functions are computed.

To be more specific, under a uniform random design the model is applied to an

n-sample of design variables U1, . . . , Un
iid∼ U with U ∼ λλ[0,1]|σ(F−) — or a sequence

of design variables U1, U2, . . .
iid∼ U respectively. In contrast, under a uniform fixed

design the model is applied to the “typical” realisation 1
n ,

2
n , . . . , 1 of design vari-

ables U1, . . . , Un
iid∼ U [0, 1] — or to the triangular array of “typical” realisations((

i
n

)n
i=1

)
n∈N of the sequence of design variables U1, U2, . . .

iid∼ U [0, 1] respectively.

Note that if F has no jumps U ∼ U [0, 1]. If F has a jump, σ(F−) 6= B[0,1] and thus

in the uniform random design case, U1, . . . , Un
iid∼ U [0, 1] does not hold true. In con-

trast, in the uniform fixed design case the triangular array of “typical” realisations

still is
((

i
n

)n
i=1

)
n∈N. This is merely a difference in presentation and not in content,

since, if F indeed has such a jump, the regression functions f1 ◦F−, . . . , fp ◦F− are

constant in the corresponding interval that is not in F (R). Thus, the design matrices




(f1 ◦ F−)(U1) . . . (fp ◦ F−)(U1)
...

. . .
...

(f1 ◦ F−)(Un) . . . (fp ◦ F−)(Un)


 and




(f1 ◦ F−)( 1n) . . . (fp ◦ F−)( 1n)
...

. . .
...

(f1 ◦ F−)(1) . . . (fp ◦ F−)(1)




do not differ.

In the above paragraph, we used the word “typical” in quotation marks since the

probability for U1, . . . , Un
iid∼ U or even U1:n, . . . , Un:n, where Ui:n denotes the i-th

order statistic of the sample, to realise as 1
n ,

2
n , . . . , 1 is zero for a non-discrete design
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distribution. However, the sequence of distribution functions

(
1

n

n∑

i=1

1(−∞,t]

(
i

n

))

n∈N
, t ∈ [0, 1],

related to the triangular array ((tni)
n
i=1)n∈N =

((
i
n

)n
i=1

)
n∈N of this design points,

converges to the distribution function of U [0, 1] which, on σ(F−), coincides with the

distribution function FU of U , from which the iid sample U1, . . . , Un was taken. Thus,

taking the design points 1
n ,

2
n , . . . , 1 or the triangular array

((
i
n

)n
i=1

)
n∈N respectively

can simply be understood as a generic way to simulate the realisation of the n-sample

U1, . . . , Un
iid∼ U or the sequence of design variables U1, U2, . . .

iid∼ U respectively.

From another point of view, according to the Glivenko-Cantelli theorem (see page

158 in Section 7.2 of the appendix for the formulation of the theorem and its proof),

sampling iid variables U1, U2, . . . according to a random variable U with PU |σ(F−) =

λλ[0,1]|σ(F−) is one way to get a sequence of empirical distribution functions

Fn(t) =
1

n

n∑

i=1

1(−∞,t](Ui), n ∈ N, t ∈ [0, 1],

that converges uniformly a.s. to the given limit distribution function FU .

Note that choosing the triangular array

((tni)
n
i=1)n∈N =

((
i

n

)n

i=1

)

n∈N

as design points is just one way of getting a sequence of distribution functions

(
1

n

n∑

i=1

1(−∞,t]

(
i

n

))

n∈N
, t ∈ [0, 1],

that converges uniformly to the distribution function of U [0, 1]. Every other choice

of the triangular array ((tni)
n
i=1)n∈N as design points which fulfills

1

n

n∑

i=1

1(−∞,t] (tni) −−−→
n→∞

id[0,1](t), t ∈ [0, 1], (3.4)

uniformly is fine, too, as the residual partial sum limit process B(f◦F−),F (see The-

orem 2.2.2 or Theorem 2.2.4) does depend on the limit distribution function F , but

does not depend on the choice of the design distributions Fn converging uniformly

to F . Therefore, without loss of generality, the triangular array of design points

can be chosen to be
((

i
n

)n
i=1

)
n∈N, as in our case FU (t) = id[0,1](t) holds true for all

t ∈ F (R) ∪ {0, 1}.
Thus, the uniform random design and the uniform fixed design start at different

places (that are closely related with each other). However, their asymptotic proper-

ties regarding the distribution of the limit process of the residual CUSUM precesses

do not depend on this disparity (as Corollary 3.1.2 shows), but only depends on the
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(limit) distribution function of the design. This, in both cases, is the identity on the

unit interval.

Similarly, in the uniform random design case, the error variable ε is conditionally

standardised, i.e, E(ε|U = u) = 0 and Var(ε|U = u) = 1 for all u ∈ [0, 1] with

respect to the design variable U ∼ U [0, 1], of which the design random variables

U1, . . . , Un are iid samples. Thus, if we pick the n-th row of the triangular array

of design points
((

i
n

)n
i=1

)
n∈N as the realisation of the n-th sample of these random

variables — as it is done in a uniform fixed design — we end up with iid regression

errors εn1, . . . , εnn with E(εn1) = 0 and Var(εn1) = 1.

Disparity ii) In both, a corresponding linear regression model with uniform random design and

in a corresponding linear regression model with uniform fixed design, the regres-

sion functions (f1 ◦ F−), . . . , (fp ◦ F−) are supposed to be linearly independent in

L2([0, 1], λλ[0,1]). However, in the uniform fixed design case, the regression functions

are additionally assumed to be of bounded variation.

Explanation :

Note that a function of bounded variation is bounded and therefore square Lebesgue

integrable on the unit interval. Therefore, assuming that the regression functions

are of bounded variation is one way of ensuring their square integrability. However,

not all functions in L2([0, 1], λλ[0,1]) are necessarily of bounded variation, for example

Brownian motion paths. Thus, the conditions on the regression functions in a linear

regression model with uniform fixed design are stricter than the conditions on the

regression functions in a linear model with uniform random design.

However, if we take a closer look at the results on linear regression models with fixed

designs (see Section 2.2) and their proofs, it becomes obvious, that the assumption

of bounded variation of the regression functions in a linear regression model with

fixed design is a proof artefact. To be more precise, it is a technical requirement nec-

essary to guarantee the existence of certain Riemann-Stieltjes integrals. In practice,

regression functions can only be evaluated at finitely many design points and there-

fore, one only chooses regression functions whose variability between two such design

points is limited. This means that one can restrict oneself to regression functions

that are of bounded variation.





4 Projection techniques

The main point of this chapter is a geometric interpretation of residual CUSUM limit

processes as projections onto certain reproducing kernel Hilbert spaces (RKHS). We start

with some general definitions and some theory on RKHS of stochastic processes with co-

variance function R and then focus on Brownian motion RKHS.

We emphasise that, with the exception of Theorem 4.2.3, the results of this chapter are

well known in the literature (see for example Aronszajn (1950), Parzen (1959) and Bischoff

(2002). So, it is the aim of this chapter to succinctly present and prove these results in

order to make them available for later use in this work.

4.1 Reproducing kernel Hilbert space of the Brownian motion

In this section we are going to define, in analogy to Parzen (1959) and Adler (1990), what

a RKHS of a stochastic process with covariance function R is and what the RKHS of a

Brownian motion looks like. First, however, the following definitions shall be given:

Definition 4.1.1.

Let T ⊆ R and Xt := (X(t))t∈T be a stochastic process with E(XsXt) < ∞ for all

s, t ∈ T .

i) With

R : T × T −→ R, (s, t) 7−→ Cov(Xs, Xt),

we denote the covariance kernel or covariance function of the stochastic process

Xt.

ii) We denote with

S(R) :=

{
f : T → R

∣∣∣∣∣ f(·)=
n∑

i=1

aiR(si, ·), n ∈ N, ai ∈ R, si ∈ T, i ∈ {1, . . . , n}
}

the space of finite linear combinations of the covariance kernel.
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Note that since the covariance kernel is the covariance function of a stochastic process, it

is symmetric and positive semidefinite and that S(R) is a subspace of {f : T → R}. We

now proceed with the definition of a RKHS with respect to the reproducing kernel of a

covariance function of a stochastic process.

Definition 4.1.2.

Let T ⊆ R and Xt := (X(t))t∈T be a stochastic process with covariance kernel R.

By H(R) we denote the RKHS (of the stochastic process Xt) with respect to the

reproducing kernel R. H(R) is defined by the following three properties:

i) H(R) ⊆ {f : T → R} endowed with some inner product 〈·, ·〉H(R) is a Hilbert

space with the induced norm ‖ · ‖H(R),

ii) R(·, t) ∈ H(R) for every t ∈ T,

iii) 〈g(·), R(·, t)〉H(R) = g(t) for all t ∈ T and all g ∈ H(R).

Note that property iii) of Definition 4.1.2 is often referred to as the “reproducing kernel”

property.

We now proceed in five steps, to construct the RKHS H(R) with respect to the repro-

ducing kernel R of a stochastic process Xt as the completion of the space S(R) under a

natural inner product.

Step 1

We define a bilinear form 〈·, ·〉S(R) on S(R) via

〈·, ·〉S(R) : S(R)× S(R) −→ R, (f, g) 7−→ 〈f, g〉S(R) =

n∑

i=1

m∑

j=1

ai bj R(si, tj).

Here, since f and g are functions in S(R), there are n,m ∈ N, a1, . . . , an, b1, . . . , bm ∈
R and s1, . . . , sn, t1, . . . , tm ∈ T such that f and g admit the representations

f(·) =
n∑

i=1

aiR(si, ·) and g(·) =
m∑

j=1

bj R(tj , ·).

Note that this mapping is well-defined, as the value of the mapping 〈f, g〉S(R) does

not depend on the representations of the functions f, g ∈ S(R). To demonstrate

this, let different representations for f and g be given, for example

n∑

i=1

aiR(si, ·) = f(·) =
ñ∑

i=1

ãiR(s̃i, ·)

and
m∑

j=1

bj R(tj , ·) = g(·) =
m̃∑

j=1

b̃j R(t̃j , ·).
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Then, the following equation holds true:

〈f, g〉S(R) =

〈 n∑

i=1

aiR(si, ·),
m∑

j=1

bj R(tj , ·)
〉

S(R)

=

n∑

i=1

m∑

j=1

ai bj R(si, tj) =

n∑

i=1

ai

m∑

j=1

bj R(si, tj)

=
n∑

i=1

ai g(si) =
n∑

i=1

ai

m̃∑

j=1

b̃j R(t̃j , si)

=
m̃∑

j=1

b̃j

n∑

i=1

aiR(si, t̃j) =
m̃∑

j=1

b̃j f(t̃j)

=
m̃∑

j=1

b̃j

ñ∑

i=1

ãiR(s̃i, t̃j) =
m̃∑

j=1

ñ∑

i=1

ãib̃j R(s̃i, t̃j)

=

〈 ñ∑

i=1

ãiR(s̃i, ·),
m̃∑

j=1

b̃jR(t̃j , ·)
〉

S(R)

.

Step 2

The bilinear form 〈·, ·〉S(R) satisfies the reproducing kernel property, since for all

f ∈ S(R) and t ∈ T , we have

〈f(·), R(t, ·)〉S(R) =

〈 n∑

i=1

aiR(si, ·), R(t, ·)
〉

S(R)

=

n∑

i=1

aiR(si, t)

= f(t).

Step 3

The bilinear form 〈·, ·〉S(R) defines an inner product on S(R), since

❼ firstly 〈·, ·〉S(R) is positive semidefinite because R(·, ·) is a covariance kernel and

therefore

〈f, f〉S(R) =

n∑

i=1

n∑

j=1

ai aj R(si, sj) = (a1, . . . , an) (R(si, sj))
n
i,j=1 (a1, . . . , an)

T ≥ 0,

holds true. Note that, since 〈·, ·〉S(R) is a non-negative bilinear form, the

Cauchy-Schwarz inequality holds, stating that

〈f, g〉2 ≤ 〈f, f〉 · 〈g, g〉 for all f, g ∈ S(R).



60 4. Projection techniques

❼ secondly we have

〈f, f〉S(R) = 0 ⇐⇒ f ≡ 0,

since the necessary condition is trivially satisfied and the inequality

f2(t) = 〈f(·), R(t, ·)〉2S(R) ≤ 〈f, f〉S(R) 〈R(t, ·), R(t, ·)〉S(R) ∀ f ∈ S(R) ∀ t ∈ T,

which holds true due to the reproducing kernel property and the applicability

of the Cauchy-Schwarz inequality, implies sufficiency.

Step 4

By means of the inner product 〈·, ·〉S(R), we are now able to define a norm on S(R)

via

||f ||S(R) :=
√
〈f, f〉S(R), f ∈ S(R).

As a consequence, for a given Cauchy sequence (fn)n∈N ⊆ S(R) we can conclude

that (fn)n∈N is pointwise Cauchy since, for all t ∈ T ,

|fn(t)− fm(t)|2 = 〈fn(·)− fm(·), R(t, ·)〉2S(R)

≤ 〈fn − fm, fn − fm〉S(R) 〈R(t, ·), R(t, ·)〉S(R)

= ||fn − fm||2S(R) 〈R(·, t), R(t, ·)〉S(R)

= ||fn − fm||2S(R) R(t, t)

holds true and therefore, (fn)n∈N is pointwise convergent. In the equation above,

the first and the last equality are true because of the reproducing kernel property

and the inequality is the Cauchy-Schwarz inequality.

Step 5

Define H(R), that is, the RKHS with respect to the kernel R, as the completion of

S(R). To be more specific, define

H(R) := S(R)

=
{
f :T → R

∣∣∣ ∃ (fn(·))n∈N ⊆ S(R) Cauchy sequencewith f(·)= lim
n→∞

fn(·) pointwise
}
.

This means that H(R) contains all functions in S(R) as well as all functions which

are pointwise limits of Cauchy sequences in S(R).

Note that S(R) does not have to be complete with respect to the norm || · ||S(R). In

order to see this, we consider the process

(Xt)t∈R =

(
∑

i∈Z
εi · 1[i,i+1)(t)

)

t∈R

,
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where ε1, ε2, . . . are iid random variables with P(ε1 = −1) = 1
2 = P(ε1 = 1). Then

R(s, t) = Cov(Xs, Xt) = 1[⌊s⌋,⌊s⌋+1)(t), s, t ∈ R.

and thus R(s, ·) = 1[⌊s⌋,⌊s⌋+1)(·) holds true. Therefore,

S(R) =

{
n∑

i=1

aiR(si, ·)
∣∣∣∣n ∈ N, ai, si ∈ R, i ∈ {1, . . . , n}

}
= span

{
1[i,i+1) | i ∈ Z

}

with 〈1[n,n+1),1[m,m+1)〉S(R) = 1{m}(n), n,m ∈ Z. Now consider

fn(x) :=
n∑

i=1

1

i
1[i,i+1)(x), n ∈ N, and f∞(x) :=

∞∑

i=1

1

i
1[i,i+1)(x), x ∈ R.

Obviously, fn ∈ S(R), n ∈ N and f∞ /∈ S(R), but f∞ ∈ S(R) holds true, since

‖f∞ − fn‖S(R) =

∥∥∥∥∥

∞∑

i=n+1

1

i
1[i,i+1)

∥∥∥∥∥
S(R)

=

√√√√
∞∑

i=n+1

1

i2
−−−−→
n→∞

0.

Hence, S(R) is not complete in this example.

In many text books containing RKHS techniques, the inner product space S(R)

is constructed, then it is shown that S(R) fullfills properties ii) and iii) of a RKHS

space, and lastly it is claimed that the completion H(R) of S(R) is the RKHS with

respect to the kernel R. This is usually done in a similar manner to what we have

done in our construction in Step 1 through Step 5. To conclude Step 5, we now prove

that the completion of S(R) is an inner product space. We will do this thoroughly

in the proof of the theorem below which is based on Aronszajn (1950):

Theorem 4.1.3. [Aronszajn (1950)]

Let T ⊆ R, Xt := (X(t))t∈T be a stochastic process with covariance kernel

R and let H(R) := S(R) be as constructed above. Then H(R) is the RKHS

with respect to the reproducing kernel R.

Proof: We present a full proof based on Aronszajn (1950) starting from page 160

in Section 7.3 of the appendix. �

In the remainder of this section, we consider the RKHS with respect to the reproducing

covariance kernel R of the standard Brownian motion — or the RKHS of the standard

Brownian motion for short — as an example.
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Example 4.1.4.

Let T = [0, 1] and B = Bt = (Bt)t∈[0,1] be the standard Brownian motion on the

unit interval. Then

i) R(s, t) = Cov(Bs, Bt) = min(s, t), s, t ∈ [0, 1].

ii) R(s, ·) : [0, 1] → R, t 7→ min(s, t) = t · 1[0,s[(t) + s · 1[s,1](t), s ∈ [0, 1].

iii) S(R) :=

=

{
f : [0, 1] → R

∣∣∣∣ f(t) =
n∑

i=1

aimin(si, t), n ∈ N, ai ∈ R, si ∈ [0, 1], i ∈ {1, . . . , n}
}

=

{
f : [0, 1] → R

∣∣∣∣ f(t) =
n∑

i=1

ai t · 1[0,si[(t) + ai si · 1[si,1](t), n ∈ N, ai ∈ R, si ∈ [0, 1]

}
.

iv) for f, g ∈ S(R) with

f(·) =
n∑

i=1

ai min(si, ·) and g(·) =
m∑

j=1

bj min(tj , ·)

we have

〈f, g〉S(R) =
n∑

i=1

m∑

j=1

ai bj min(si, tj)

=

n∑

i=1

m∑

j=1

ai bj

∫

[0,1]

1[0,min(si,tj)](t) dλλ[0,1](t)

=

∫

[0,1]

n∑

i=1

ai · 1[0,si](t)

m∑

j=1

bj · 1[0,tj ](t) dλλ[0,1](t)

=

∫

[0,1]

f ′(t)g′(t) dλλ[0,1](t)

= 〈f ′, g′〉L2([0,1],λλ[0,1])
,

since for f in S(R)

f ′(t) =
d

dt

n∑

i=1

ai min(si, t) =
n∑

i=1

ai
d

dt
min(si, t) =

n∑

i=1

ai ·1[0,si](t) λλ[0,1]-a.s.

We now introduce the RKHS of the standard Brownian motion. This theorem and its

proof are well-known in the literature and stated here for the sake of completeness.
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Theorem 4.1.5.

Let B = (Bt)t∈[0,1] be the standard Brownian motion and define

HB :=




f : [0, 1] → R

∣∣∣ f(t) =
∫

[0,t]

f ′(s) dλλ(s), f ′ ∈ L2([0, 1], λλ)





as well as the bilinear mapping

〈·, ·〉HB
: HB×HB −→ R, (f, g) 7−→

∫

[0,1]

f ′ g′ dλλ .

Then,

HB = H(R)

holds true, where H(R) is the RKHS with respect to the reproducing kernel R of

the standard Brownian motion.

Note that all functions f ∈ HB are absolutely continuous functions.

Proof: We have to prove that HB satisfies all three conditions from Definition 4.1.2.

Firstly, due to Theorem 4.1.3, we know that H(R) = S(R) is a Hilbert space of functions

f : [0, 1] → R. Here, S(R) is the space we considered in Example 4.1.4. Moreover, since{
a · 1[0,s] | a ∈ R, s ∈ [0, 1]

}
is dense in {f ′ | f ∈ HB} it follows that S(R) is dense in HB

and therefore, HB is a Hilbert space of functions f : [0, 1] → R.

Secondly, since for all t ∈ [0, 1]

R(·, t) = min(·, t) =
∫

[0,·]

1[0,t](x) dλλ(x) =

∫

[0,·]

∂

∂x
min(t, x) dλλ(x) ∈ HB

holds true, property ii) is satisfied since, furthermore,

∫

[0,1]

(
∂

∂x
min(t, x)

)2

dλλ(x) =

∫

[0,1]

1[0,t](x) dλλ(x) = t < ∞.

Thirdly, because for all t ∈ [0, 1] and f ∈ HB

〈f(·), R(·, t)〉HB
=

∫

[0,1]

f ′(x) · ∂

∂x
min(t, x) dλλ(x) =

∫

[0,t]

f ′(x) dλλ(x) = f(t)

is valid, the reproducing kernel property is satisfied, which completes the proof. �
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4.2 Structure of the residual partial sum limit process

The main result of this chapter is Theorem 4.2.3, which sheds some light on the geometric

structure of the residual partial sum limit process of a generic linear regression model.

Before stating the theorem, we need the following definition.

Definition 4.2.1.

Consider a generic linear regression according to Definition 3.2.1. We then define

i) fi,n =
(
fi
(
1
n

)
, fi

(
2
n

)
, . . . , fi (1)

)T
, i = 1, . . . , p, n ∈ N,

ii) Wn := Im(Xn) = span {f1,n, . . . , fp,n} , n ∈ N,

iii) hfi(u) :=
∫

[0,u]

fi(t) dλλ[0,1](t), u ∈ [0, 1], i = 1, . . . , p,

iv) WHB
:= span{hf1(·), . . . , hfp(·)}.

Note that for n ∈ N, Wn is a subspace of Rn and WHB
is a subspace of HB. Furthermore,

as usual, we denote by W⊥
n the orthogonal complement of Wn with respect to the Eu-

clidean inner product, and by W⊥
HB

, we denote the orthogonal complement of WHB
with

respect to the inner product 〈·, ·〉HB
.

The following lemma is easy to verify and gives a representation of projections onto finite

dimensional subspaces of HB.

Lemma 4.2.2.

Let g1, . . . , gp, p ∈ N, be linearly independent functions in HB. For i ∈ {1, . . . , p},
let g′i be a function in L2([0, 1], λλ[0,1]) that satisfies

gi(t) =

∫

[0,t]

g′i(s) dλλ[0,1](s), t ∈ [0, 1].

Then the mapping

prspan{g1,...,gp} : HB −→ HB,

defined by

prspan{g1,...,gp}(h)(·) = (g1, . . . , gp)(·)




∫

[0,1]




g′1
...

g′p


(g′1, . . . , g

′
p) dλλ[0,1]




−1 (R)∫

[0,1]




g′1
...

g′p


 dh,

is the orthogonal projection onto span{g1, . . . , gp} in HB.
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As a consequence of the lemma above, the orthogonal projection prWHB
(h) of a function

h ∈ HB onto WHB
can be represented as

prWHB
(h)(·) = (hf1 , . . . , hfp)(·)




∫

[0,1]




f1
...

fp


(f1, . . . , fp) dλλ[0,1]




−1 (R)∫

[0,1]




f1
...

fp


 dh

=




∫

[0,·]

f(t) dλλ[0,1](t)




T 


∫

[0,1]

f(t) fT (t) dλλ[0,1](t)




−1
(R)∫

[0,1]

f(t) dh(t).

Based on this, we now extend prWHB
: HB −→ WHB

to prWHB
: C[0, 1] −→ WHB

,

according to the construction by Bischoff (2002), by extending the inner product 〈·, ·〉HB

of HB to a bilinear mapping

〈·, ·〉BVD(HB)×C[0,1] : BVD(HB)× C[0, 1] −→ R, (h, u) 7−→
(R)∫

[0,1]

h′ du.

Here,

BVD(HB) := {h ∈ HB|h′ is of bounded variation}

and due to partial integration (see for example Satz 6.3 in Walter (2002))

(R)∫

[0,1]

h′du = u(1)h′(1)− u(0)h′(0)−
(R)∫

[0,1]

u dh′

holds true. Thus, one obtains

|〈h, u〉BVD(HB)×C[0,1]| ≤ ‖u‖∞(|h′(1)|+ |h′(0)|+ ‖h′‖V ) < ∞,

where ‖h′‖V denotes the total variation of h′, which is finite as h ∈ BVD(HB).

Due to the technicality that WHB
= span{hf1(·), . . . , hfp(·)} and hfi ∈ BVD(HB), i =

1, . . . , p (since the regression functions f1, . . . , fp are of bounded variation), it suffices to

show that

〈·, ·〉BVD(HB)×C[0,1] : BVD(HB)× C[0, 1] −→ R

is an extension of the original inner product

〈·, ·〉HB
: HB ×HB −→ R,

restricted to BVD(HB) × HB in order to extend the domain of the projection prWHB
:

HB −→ WHB
to C[0, 1]. We thus only have to show that

〈·, ·〉HB
|BVD(HB)×HB

= 〈·, ·〉BVD(HB)×C[0,1]|BVD(HB)×HB



66 4. Projection techniques

holds true. The above equation indeed holds true, since for h ∈ BVD(HB) and u ∈ HB

one gets

〈h, u〉HB
=

∫

[0,1]

h′(t)u′(t) dλλ[0,1](t) =

∫

(0,1]

h′(t)u′(t) dλλ[0,1](t)

=

(R)∫

[0,1]

h′(t)u′(t) dt =

(R)∫

[0,1]

h′(t) du(t) = 〈h, u〉BVD(HB)×C[0,1].

Note that in the above chain of equations, we used Theorem 5.1.2 from Strook (1994) to

prove the equality between the Riemann-Stieltjes integral and the measure integral and

then, we applied Theorem 6.4 from Walter (2002).

Now, using the bilinear mapping 〈·, ·〉BVD(HB)×C[0,1] instead of 〈·, ·〉HB
enables us to define

the operation prWHB
: C[0, 1] −→ WHB

similarly to Lemma 4.2.2.

We can now identify the residual partial sum limit processes, in a generic linear regression

model, with the orthogonal projection of a standard Brownian motion onto the orthogonal

complement of the space spanned by the integrated regression functions within the RKHS

associated to the standard Brownian motion. This limit process, for n → ∞, is obtained

as the weak limit of the partial sum operator evaluated at the orthogonal projection of

the regression outcome onto the orthogonal complement of the space which is spanned by

the columns of the design matrix.

The following theorem makes this statement mathematically precise:

Theorem 4.2.3.

Let a generic linear regression model according to Definition 3.2.1 be given. Then,

for the residual partial sum process, it holds true, that

1√
n
Tn(ε̂n)(·) =

1√
n
Tn(prW⊥

n
(Yn))(·) D−−−−→

n→∞
prW⊥

HB

(B(·)) in C[0, 1].

Proof: As usual, prW⊥
n

= id− prWn and prW⊥
HB

= id− prWHB
Thus, 1√

n
Tn(prW⊥

n
(Yn))(·)

is in fact the residual partial sum process 1√
n
Tn(ε̂n)(·), which has been introduced in

Section 2.2.1, since

ε̂n = Yn −Xnβ̂n = Yn −Xn(X
T
nXn)

−1XT
n Yn = Yn − prWn(Yn) = prW⊥

n
(Yn)

holds true. Therefore, Corollary 3.2.2 applies and yields the convergence

1√
n
Tn(ε̂n)(·) D−−−→

n→∞
Bf,λλ[0,1]

(·) in C[0, 1].
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Furthermore, the equation

prW⊥
HB

(B(·))

= B(s) −




∫

[0,s]

f(t) dλλ[0,1](t)




T


∫

[0,1]

f(t) fT (t) dλλ[0,1](t)




−1
(R)∫

[0,1]

f(t) dB(t) (4.1)

= B(s) −




∫

[0,s]

f(t) dλλ[0,1](t)




T


∫

[0,1]

f(t) fT (t) dλλ[0,1](t)




−1 ∫

[0,1]

f(t) dB(t) (4.2)

= Bf,λλ[0,1]
(·)

is satisfied. Here, equation (4.1) is valid, according to Lemma 4.2.2 and the extension of

the projection prWHB
from HB to C[0, 1]. To see that equation (4.2) is satisfied, we refer

to equation (2.15) in Section 2.2.1 and the fact that

∫

[0,1]

f(t) dB(t) = f(0)B(0)︸ ︷︷ ︸
=0

+

(R)∫

[0,1]

f(t) dB(t)

holds true. This completes the proof. �

Note that although Theorem 4.2.3 looks similar to Theorem 3.2 in Bischoff (2002), they

differ in their assumptions. To be more specific, in Theorem 3.2 in Bischoff (2002), in ad-

dition to a generic linear regression model (that is a linear regression model with uniform

fixed design), it is assumed that the regression functions are continuous.





5 Heteroscedastic linear regression models

The effects on residual CUSUM processes and goodness-of-fit tests of heteroscedastic er-

rors in linear regression models have already been studied in the literature.

The main results in the literature show that CUSUM processes of heteroscedastic re-

gression errors converge in distribution to time-transformed Brownian motions and that

residual CUSUM processes of heteroscedastic linear regression models converge to projec-

tions of time-transformed Brownian motions onto RKHS. See for example Remark 4.5 in

Bischoff and Miller (2000) or MacNeill, Mao, and Xie (1994), where limit processes for in-

dependent heteroscedastic errors are given in one-dimensional and spatial regression time

series models and limits of residual partial sum processes are computed in some special

cases. More recently, in heteroscedastic spatial regression models, limit processes have

been determined for partial sum processes of independent errors as well as for residual

partial sum processes in Somayasa (2011).

This chapter builds on the previous findings of this thesis and addresses the work of

MacNeill, Mao, and Xie (1994). We will state and prove functional central limit theorems

for the partial sum processes of heteroscedastic and independent regression errors (see

Theorem 5.0.2) as well as for residual partial sum processes of heteroscedastic regression

models (see Theorem 5.0.3). Although functional central limit theorems in the given sit-

uation are already known and intuitive to some extent, the proof of Theorem 5.0.2 that

we give in this chapter is novel and utilises theorems of Prokhorov and Rubin. Further-

more, we prove Theorem 5.0.2 for triangular arrays of random variables and under slightly

weaker assumptions than those implicitly made in MacNeill, Mao, and Xie (1994) about

sequences of random variables. See Remark 5.0.1 in this regard. On the one hand, the

proof of Theorem 5.0.3 relies on Theorem 5.0.2. On the other hand, it generalises Theorem

3.2 and its proof in Bischoff (2002).

To be more specific, we consider a heteroscedastic generic linear regression model. This

model has the form

Yn = Xnβ + εn, n ∈ N, (5.1)

where

i) [0, 1] is the experimental region,

ii) β = (β1, . . . , βp)
T are the unknown regression coefficients,

iii) (( i
n)

n
i=1)n∈N ⊆ [0, 1] is the triangular array of equidistant design points whose cor-



70 5. Heteroscedastic linear regression models

responding sequence of empirical distribution functions converges uniformly to the

distribution function of the uniform distribution on the unit interval, i.e., the identity

function on [0, 1],

iv) Xn =
(
fr

(
i
n

))n p

i=1,r=1
is the design matrix where the regression functions f1, . . . , fp :

[0, 1] → R are of bounded variation and linearly independent in L2([0, 1], λλ[0,1]),

v) (ε(t))t∈[0,1] is the random process of regression errors with E(ε(t)) = 0 and Var(ε(t)) =

σ2(t) for all t ∈ [0, 1]. Here, σ : [0, 1] → (0,∞) is a function of bounded variation.

Furthermore, for all n ∈ N and i = 1, . . . , n, the regression errors ε
(
1
n

)
, ε

(
2
n

)
, . . . , ε (1)

are assumed to be independent and we define εn :=
(
ε
(
1
n

)
, ε

(
2
n

)
, . . . , ε (1)

)T
,

vi) we additionally suppose that for some δ > 0 there is a C > 0 with E(|ε (t) |2+δ) ≤ C

for all t ∈ [0, 1]. This additional assumption is further discussed in the following

remark and is needed to ensure that the Lindeberg condition is satisfied.

Remark 5.0.1.

In Chapter 3 of MacNeill, Mao, and Xie (1994), the following assumptions are made:

For X1, X2, . . . , Xn a sequence of independent observations with

E(Xi) = µ ∈ R and Var(Xi) = σ2
i ∈ (0,∞),

the partial sums are defined as

Sk =
k∑

i=1

(Xi − µ), k = 1, 2, . . . , n,

and heteroscedasticity is characterized via

σ2
i = h

(
i

n

)
,

where the positive function h(·) is of bounded variation on the interval [0, 1]. Under

these assumptions, Theorem 1 of MacNeill, Mao, and Xie (1994) claims that the

partial sum process {Θhn(t), t ∈ [0, 1]}, whose paths for k ∈ 0, 1, . . . , n have the

values 1√
n
Sk at the point k

n and are linear in between these points, converges weakly

to a time-transformed centred Brownian motion


B




(R)∫

[0,t]

h(x) dx







t∈[0,1]

.
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To prove this theorem, it is argued that

❼ firstly, the Lindeberg theorem and the Cramer-Wold device can

(5.2)be used to demonstrate asymptotic multivariate normality of the

finite-dimensional distributions (fidis) of Θhn,

❼ secondly, if one lets K ∈ R be a bound for h(·), then one can show that

E

(
1√
nσ

{S(k)− S(j)}
)4

≤ K2
∣∣∣
k

n
− j

n

∣∣∣
2

(5.3)

holds true for k, j ∈ {0, 1, . . . , n}, which implies that the partial-sum process

is tight.

Ultimately, this proves weak convergence.

In contrast to MacNeill’s assumptions, we additionally supposed for model (5.1)

in Assumption vi) that for some δ > 0 there is a C > 0 with E(|ε(t)|2+δ) ≤ C for

all t ∈ [0, 1]. Therefore, at first glance, it seems that the assumptions we made in

model (5.1) are stronger than the ones made in MacNeill, Mao, and Xie (1994)

or Somayasa (2011) (who, for the proof of Theorem 2.1, refers to the proof of

MacNeill, Mao, and Xie (1994).

However, we will now argue that the implicit conditions of MacNeill, Mao, and Xie

(1994) are in fact more stringent.

❼ Concerning (5.2), the Lindeberg theorem does not have to apply:

The Lindeberg theorem states that the central limit theorem applies to a

sequence of independent random variables (Xn)n∈N (see for example Satz

4.1.8 in Gänsler and Stute (1977)) or a triangular array of random variables

((Xni)
n
i=1)n∈N (see for example Satz 15.43 in Klenke (2013)) that are centred

and normalised, if the condition

1

s2n

n∑

i=1

∫
1[εsn,∞)(|Xi|) · X2

i dP −−−−→
n→∞

0,

known as Lindeberg’s condition, is satisfied for every ε > 0.

So let h ≡ 1, n ∈ N, n ≥ 2 and U1, . . . , Un, V1, . . . , Vn be stochastically

independent with

U1, V1 ∼ Ber

(
1

2

)
and Ui, Vi ∼ Ber

(
1

i

)
, i = 2, . . . , n.
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For i = 2, . . . , n, we then define

Xi := λi (Ui − Vi),

where

λ1 :=
√
2 and λi :=

(
2 · 1

i
·
(
1− 1

i

))−1/2

.

It now holds true that E(Xi) = 0, i ∈ {1, . . . , n},

Var(X1) = 2 · 2 ·
(
1

2

)2

= 1 = h(1),

and due to independence

Var(Xi) = λ2
i ·Var (Ui − Vi) = λ2

i · 2 ·Var (Ui)

=

(
2 · 1

i
·
(
1− 1

i

))−1

· 2 ·
(
1

i

(
1− 1

i

))

= 1 = h

(
i

n

)
, i = 2, . . . , n.

We thus have

s2n :=
n∑

i=1

Var(Xi) = n

and therefore, the random variables X1, X2, . . . , Xn satisfy the conditions

MacNeill, Mao, and Xie (1994) made. However, if we define for n ∈ N and

ε > 0

In,ε := {i ∈ {1, . . . , n} : X2
i · 1[εsn,∞)(|Xi|) = X2

i }

and pick ε ∈
(
0, 12

]
, it holds true that, since |Xi| = 0 or |Xi| = λi, λi ≥ εsn is

sufficient for i ∈ In,ε. Therefore, for n ≥ 2 and ε ∈
(
0, 12

]
,

|In,ε| ≥ |{i ∈ {1, . . . , n} : λi ≥ εsn}|

≥
∣∣∣∣∣

{
i ∈ {1, . . . , n} :

(
2 · 1

i
·
(
1− 1

i

))−1/2

≥
√
n

2

}∣∣∣∣∣

=

∣∣∣∣∣

{
i ∈ {1, . . . , n} : i ≥ n− 1

2

}∣∣∣∣∣

≥ n

2

is valid. We thus get

1

s2n

n∑

i=1

∫
X2

i · 1[ 1
2
sn,∞)(|Xi|) dP =
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=
1

s2n

∑

i∈In,ε

∫
X2

i · 1[ 1
2
sn,∞)(|Xi|) dP +

1

s2n

n∑

i/∈In,ε

∫
X2

i · 1[ 1
2
sn,∞)(|Xi|) dP

≥ 1

s2n

∑

i∈In,ε

∫
X2

i dP =
1

s2n

∑

i∈In,ε

Var(Xi)

≥ 1

n
· n
2
· 1 =

1

2
6−−−−→

n→∞
0,

which means that Lindeberg’s condition is not satisfied.

Note that, since Feller’s condition

max
i∈{1,...,n}

Var(Xi)

s2n
=

1

n
−−−−→
n→∞

0

(see for example Satz 4.1.20 in Gänsler and Stute (1977)) is satisfied,

Lindeberg’s condition is sufficient and necessary for the applicability of the

central limit theorem. Hence we know that in this situation, the central limit

theorem also does not apply.

❼ Concerning (5.3), at least E(X4
i ) < ∞ for all i ∈ N was assumed implicitly:

For n ≥ 2 and j < k ∈ {1, . . . , n},

E

(
1√
nσ

{S(k)− S(j)}
)4

= E


 1

n2σ2




k∑

l=j+1

Xl



4


=
1

n2σ2
E




k∑

l=j+1

X4
l +

k∑

l=j+1

k∑

m=j+1

m 6=l

X2
l X

2
m




=
1

n2σ2

k∑

l=j+1

E
(
X4

l

)
+

1

n2σ2

k∑

l=j+1

k∑

m=j+1

m 6=l

E
(
X2

l

)
E
(
X2

m

)

holds true. Thus, for (5.3) to be satisfied — as stated in MacNeill, Mao,

and Xie (1994) — it at least has to be assumed that E(X4
i ) < ∞ for all

i = 1, . . . , n. This condition is obviously stronger than our Assumption vi) in

model (5.1). As we will see in (7.92) each of these additional assumptions will

lead to the fulfilment of the Lindeberg condition.

The following theorem is an invariance principle for the partial sum processes of inde-

pendent heteroscedastic regression errors. We present a new proof based on results of

Prokhorov and Rubin.
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Theorem 5.0.2.

Let a heteroscedastic generic linear regression model as described in (5.1) be given.

Then,

1√
n
Tn (εn) (·) D−−−−→

n→∞
B




∫

[0,·]

σ2(t) dλλ[0,1](t)


 in C[0, 1].

Proof: The proof of this theorem is deferred to Section 7.4 of the appendix starting at

page 164. �

The following theorem is a functional central limit theorem for the residual partial sum

processes in a heteroscedastic generic linear regression model. The theorem is new in the

literature, as it generalises Theorem 3.2 of Bischoff (2002) for regression functions that no

longer have to be continuous.

Theorem 5.0.3.

Let a heteroscedastic generic linear regression model as described in (5.1) be given.

Let WHB
be as defined in Definition 4.2.1. Then,

1√
n
Tn(ε̂n)(·) D−−−−→

n→∞
prW⊥

HB


B




∫

[0,·]

σ2(t) dλλ[0,1](t)







= B




∫

[0,·]

σ2(t) dλλ[0,1](t)


−




∫

[0,·]

f(t)dλλ[0,1](t)




T


∫

[0,1]

f(t)fT (t)dλλ[0,1](t)




−1

×

×
∫

[0,1]

f(t)dB




∫

[0,t]

σ2(u) dλλ[0,1](u)


 in C[0, 1].

Proof: The proof of this theorem is deferred to Section 7.4 of the appendix starting at

page 173. �



6 Goodness-of-fit test in linear regression

So far, we have mainly occupied ourselves with the task of determining residual CUSUM

limit processes in regression models with either fixed or random designs. However, lit-

tle has been said about the application for this work, which is the desire to construct

goodness-of-fit tests for linear regression models in order to decide whether a given family

of functions is appropriate to model the relation between the covariables and an outcome.

In this chapter, we are going to discuss a fundamental problem of such goodness-of-fit tests

when the estimation of parameters is necessary. This is often referred to as the “Durbin

problem” (see for example Koenker and Xiao (2002)). This problem did not initially arise

in the context of goodness-of-fit tests in regression models, but in the context of testing

whether or not a sample of random variables was taken from a distribution belonging to

a particular class of distribution functions.

In the later context, tests based on the empirical distribution functions of random samples

are considered and therefore, empirical processes are studied. As a consequence, we will

start our exploration of the Durbin problem in Section 6.1.1 in the context of empirical

processes. We will then — also in the context of empirical processes — briefly introduce

a well-known way of dealing with such problems that goes back to Khmaladze (1980) and

Khmaladze (1982) (see Section 6.1.2) before, in Section 6.2, we show how Stute, Thies, and

Zhu (1998) have applied this solution to the context of goodness-of-fit tests in regression

models. Finally, in Section 6.3, in the situation of linear regression models, we state and

prove a theorem that specifies the interpretation of the Khmaladze transformation as a

continuous-time backwards recursive least-squares method.

6.1 A brief history of goodness-of-fit tests

The task of conducting goodness-of-fit tests initially arose in the context of testing whether

or not a sample of random variables was taken from a distribution belonging to a particu-

lar class of distribution functions. In this context, tests are usually based on the empirical

distribution function of a random sample and empirical processes are therefore examined.

Consequently, we will begin our exploration of goodness-of-fit tests in the situation de-

scribed above by drawing attention to a classical problem in goodness-of-fit tests, the

so-called “Durbin problem”, before introducing a famous solution to this problem, the

Khmaladze transformation.
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6.1.1 Durbin problem

Consider the following problem. We are given a random sample

X1, . . . , Xn
iid∼ F, n ∈ N,

where F is an unknown distribution function. The task is to construct a distribution free

test statistic in order to perform a goodness-of-fit test for the hypothesis

H0 : F ∈ F v.s. H1 : F /∈ F .

Here,

F := {F (·, θ) : R → [0, 1] | θ ∈ Θ}, Θ ⊆ Rp open,

is a family of distribution functions, where F (·, θ) is a distribution function that is indexed

and uniquely identified by a parameter θ ∈ Θ.

Test statistics used to perform the above test require an estimation of the unknown pa-

rameter θ. See for example the test statistic Vn,θ̂n
(x) in equation (6.4) on page 78. It is

therefore natural that the distribution of the test statistic may depend on true parameter

θ0 ∈ Θ (which exists under H0). Furthermore, although only of minor consequence for

certain practitioners, test statistics may also depend on model characteristics, namely the

family of distribution functions F .

Nevertheless, it is desirable that the distribution of the test statistic (or at least its asymp-

totic distribution) does not depend on θ0 or, depending on the concrete application, does

not depend on model characteristics. If this were not the case, critical values would not

be calculable or would vary from one concrete test to another and therefore would have to

be computed separately for each concrete test, which is rather impractical. Tests or test

statistics are referred to as “distribution free” — or asymptotically “distribution free”

— if estimated parameters or model characteristics do not influence the test statistics

(asymptotic) distribution.

Throughout Section 6.1 we assume that the following regularity condition on F holds:

F (·, θ) is absolutely continuous with respect to the Lebesgue-measure for all θ ∈ Θ

(A1) and

F (·, θ1) and F (·, θ2) are mutually absolutely continuous for all θ1, θ2 ∈ Θ.

Example 6.1.1.

Let us consider the most simple special case of the test scenario from above. That

is, let X1, . . . , Xn
iid∼ F, n ∈ N, and F = {F0}, where F0 : R → [0, 1] is a known

distribution function. We call such a hypothesis as a “simple” hypothesis, as in this

case F = {F0} for a known distribution function F0. We want a vehicle to decide
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whether

H0 : F = F0 or H1 : F 6= F0 .

In order to quantify a deviation from H0, we consider the empirical process

Vn(x) :=
√
n (Fn(x)− F0(x)) , x ∈ R, (6.1)

where Fn is the empirical distribution function of the random sample X1, . . . , Xn

and use functionals of it to generate test statistics. According to Assumption (A1),

F0 is absolutely continuous. Thus, by carrying out the substitution

t = F0(x), x ∈ R,

we obtain on the one hand, under H0, i.e., under F = F0, the transformed sample

U1, . . . , Un
iid∼ U [0, 1]

belonging to the initial sample X1, . . . , Xn
iid∼ F0 by the relation

Ui := F0(Xi), i = 1, . . . , n,

(see Lemma 7.1.2 in this regard) and, on the other hand, the relation F0(F
−
0 (t)) = t

holds true for all t ∈ (0, 1), according to (7.40) of Lemma 7.1.1. We can thus define

the uniform empirical process

V n(t) =
√
n
(
Fn(t)− t

)
, t ∈ [0, 1], (6.2)

where Fn(x) := 1
n

n∑
i=1

1(−∞,x](Ui), x ∈ R, is the empirical distribution function

corresponding to the random sample U1, . . . , Un. Note that under H0, we have

V n(t) =
√
n

(
1

n

n∑

i=1

1(−∞,t](Ui)− t

)
=

√
n

(
1

n

n∑

i=1

1(−∞,t](F0(Xi))− t

)

=
√
n

(
1

n

n∑

i=1

1(−∞,F−
0 (t)](Xi)− t

)
(6.3)

=
√
n
(
Fn(F

−
0 (t))− F0(F

−
0 (t))

)
= Vn(F

−
0 (t))

= Vn(x),

where x = F−
0 (t) ∈ R. Therefore, V n is suitable to detect deviations from H0.

Note furthermore, that the distribution of V n(·) does no longer depend on the

hypothesised distribution function F0, that is, on the model, since F0 is not a part

of V n any more. As a consequence, V n is suitable to construct distribution free test



78 6. Goodness-of-fit test in linear regression

statistics like

TKS := sup
t∈[0,1]

∣∣V n(t)
∣∣,

used in the Kolmgorow-Smirnov test or

TCvM :=

(R)∫

[0,1]

(
V n(t)

)2
dt,

used in the Cramer-von Mieses test. To see how such a test is constructed, remember

that the uniform empirical process V n converges on C[0, 1] in distribution to a

Brownian bridge B0 (see for example Billingsley (1968) Theorem 13.1, p. 105).

Thus, continuous functionals of V n converge to the corresponding functionals of

B0 due to the continuous mapping theorem. Therefore,

TKS
C[0,1]−−−→
n→∞

sup
t∈[0,1]

∣∣B0(t)
∣∣

as well as

TCvM
C[0,1]−−−→
n→∞

(R)∫

[0,1]

(
B0(t)

)2
dt,

and since both limit distributions are well-known, critical values are already

available.

In the general case, the class of hypothesised distribution functions was F := {F (·, θ) : R →
[0, 1] | θ ∈ Θ}. Thus, given the hypothesis being true, there is a parameter θ0 ∈ Θ ⊆ Rp

with F (x) = F (x, θ0). Since the value of θ0 is unknown, it has to be estimated from the

given data, which complicates the investigation substantially.

In order to quantify a deviation from H0, empirical processes are again considered. How-

ever, now there is no hypothesised distribution function F0 to compare with the empirical

distribution function Fn of the random sample X1, . . . , Xn. Thus, within F we estimate

a distribution function F (x, θ̂n) and compare it with the empirical distribution function

Fn. In doing so, we get the so-called parametric empirical process

Vn,θ̂n
(x) :=

√
n
(
Fn(x)− F (x, θ̂n)

)
, x ∈ R, (6.4)

where θ̂n is an estimator with values in Θ, which we are going to specify in Assump-

tion (A2) in a moment and again use functionals of this empirical process to generate

test statistics. Analogously to the simple hypothesis case, it would be convenient to

have a uniform version of the parametric empirical process (see equation (6.2)), which is

defined on [0, 1] and whose distribution does not depend on the hypothesised family of

distribution functions F . To achieve this, in the simple hypothesis case, the substitution

t = F0(x), x ∈ R, was performed, but now there is no hypothesised distribution function
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F0, but a whole hypothesised family of distribution functions F . Therefore, we take the

estimated distribution function F (x, θ̂n) and conduct the substitution

t = F (x, θ̂n), x ∈ R.

In doing so, we define the uniform parametric empirical process

V n,θ̂n
(t) :=

√
n
(
F̂n(t)− t

)
, t ∈ [0, 1], (6.5)

where F̂n(x) :=
1
n

n∑
i=1

1(−∞,x](F (Xi, θ̂n)), x ∈ R, is the empirical distribution function of

the random sample

F (X1, θ̂n), . . . , F (Xn, θ̂n).

Note that different to the simple hypothesis case, where the distribution of the uniform em-

pirical process V n(t) did not depend on model characteristics, the distribution of V n,θ̂n
(·)

depends on the distribution of the random sample F (X1, θ̂n), . . . , F (Xn, θ̂n). Similar to

equation (6.3), we again have for t ∈ [0, 1] and x = F−(t, θ̂n)

V n,θ̂n
(t) =

√
n

(
1

n

n∑

i=1

1(−∞,t](F (Xi, θ̂n))− t

)

=
√
n

(
1

n

n∑

i=1

1(−∞,F−(t,θ̂n)]
(Xi)− F (F−(t, θ̂n), θ̂n)

)

=
√
n
(
Fn(x)− F (x, θ̂n)

)

= Vn,θ̂n
(x).

In order to determine the asymptotic distribution of V n,θ̂n
, the following two assumptions

are made:

(A2)

Under the model hypothesis H0, an estimator θ̂n exists for the true but unknown

θ0, which, for n → ∞, admits the expansion

√
n (θ̂n − θ0) =

1√
n

n∑

i=1

h(Xi, θ0) + oP(1).

Here, h(x, θ) is an Rp-valued function with

i) E(h(X, θ0)) = 0,

ii) Cov(h(X, θ0)) is existent,

wherein X ∼ F.
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(A3)

F (x, θ) is differentiable with respect to θ for all x for all θ ∈ K and the vector-valued

function

f(t, θ) :=
∂F (x, θ)

∂θ

∣∣
x=F−(t,θ)

is continuous in (t, θ) for all θ ∈ K and all t ∈ [0, 1], where K ⊆ Θ is the closure of

a neighbourhood of θ0 ∈ Θ. Note that it was assumed that Θ ⊆ Rp is an open set.

Under the Assumptions (A1) - (A3), it can be shown that under H0,

V n,θ̂n
(·) D−−−→

n→∞
V f,θ0(·) in D[0, 1], (6.6)

where V f,θ0 is a zero-mean Gaussian process with covariance function

Cov(V f,θ0(t1), V f,θ0(t2)) = min(t1, t2)− t1t2 − fT (t1, θ0)

(R)∫

[0,t2]

h(F−(s, θ0), θ0)ds

− fT (t2, θ0)

(R)∫

[0,t1]

h(F−(s, θ0), θ0) ds+ fT (t1, θ0)Cov(l(X, θ0)) f(t2, θ0) . (6.7)

A first proof of (6.6) and (6.7) is due to James Durbin, see Durbin (1973b) Theorem 1,

page 281, and the following corollaries on page 282.

Considering the limit process
(
V f,θ0(t)

)
t∈[0,1] in (6.6) and in particular its covariance

structure (see (6.7)), it becomes apparent that its distribution depends on the family of

hypothesized distribution functions F . Furthermore, the true but unknown parameter θ0

also occurs in (6.7). It follows that
(
V f,θ0(t)

)
t∈[0,1], and functionals thereof that may be

used as test statistics are not asymptotically distribution free. This leads to the already

mentioned problems in testing such parametric hypothesis, which we referred to as the

“Durbin problem”.

Remark 6.1.2.

Note that Assumption 1 and Assumption 2 from Section 2.1 are very similar

to Assumptions (A1) and (A2) from above. From a historical perspective, this is

not at all surprising, since the goodness-of-fit tests for regression models developed

by Stute, Thies, and Zhu (1998) were derived from the goodness-of-fit tests for the

distribution function of random samples.
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6.1.2 Khmaladze transformation

A first proposal to get around the Durbin problem was made by Durbin (1973a), see p.

59, who suggested to randomly split the sample in halves and take one half to estimate

the unknown parameter θ0 and, then use this estimate — which now is handled as if it

were known — together with the second half to construct a then distribution free test for

H0. Apart from the loss of power, the downside to this procedure is the fact that test

results will rely on which particular half of the sample was used for estimation.

In order to find a way to circumvent the Durbin problem, in a far-reaching paper, Khmal-

adze (1982) suggested a martingale transformation of a slightly different time-transformation

of the parametric empirical process

Vn,θ̂n
(x) =

√
n
(
Fn(x)− F (x, θ̂n)

)
, x ∈ R,

which he had already examined in a preceding paper. To be more precise, in Khmaladze

(1980), he investigated the process

Un,θ̂n
(t) :=

√
n
(
Fn(t)− F (F−(t, θ0), θ̂n)

)
, t ∈ [0, 1], (6.8)

arising from Vn,θ̂n
(x) by inserting t = F (x, θ0) under the assumption that H0 holds true,

since then there is θ0 ∈ Θ such that F (x) = F (x, θ0) holds true. See Example 6.1.1 for

the definition of Fn.

In contrast, Durbin (1973b) investigated the uniform parametric empirical process

V n,θ̂n
(t) =

√
n
(
F̂n(t)− t

)
, t ∈ [0, 1],

which originates from Vn,θ̂n
(x) and the substitution t = F (x, θ̂n). Note that again, and

similar to (6.3), there is

Un,θ̂n
(t) = Vn,θ̂n

(x), for x = F−(t, θ0) and t ∈ [0, 1].

Therefore, Un,θ̂n
is suitable to detect deviations from H0, too. Note furthermore that,

though Un,θ̂n
is, like V n,θ̂n

, a uniform parametric empirical process originating from

Vn,θ̂n
(x) via a substitution, Un,θ̂n

is not (in practice) computable, unlike Vn,θ̂n
(x), since θ0

is unknown.

Making the Assumptions (A1) - (A3) (see Section 6.1.1), Khmaladze then shows that

under H0

Un,θ̂n
(·) D−−−→

n→∞
B0(·)− fT (·, θ0)

1∫

0

h(s, θ0) dB
0(s) =: Uf,θ0(·) in L2([0, 1], λλ), (6.9)



82 6. Goodness-of-fit test in linear regression

where

❼ θ0 ∈ Θ is the true but unknown parameter for which F (x, θ0) = F (x) holds true,

❼ θ̂n is an estimator for θ0 satisfying (A2) from Section 6.1.1,

❼ B0 = (B0(t))t∈[0,1] is the Brownian bridge on [0, 1],

❼ f(t, θ) := ∂F (F−(t,θ0),θ)
∂θ is a continuous vector-valued function (see (A3) in Sec-

tion 6.1.1),

❼ h(x, θ) is vector-valued function (see (A2) in Section 6.1.1),

❼

1∫
0

h(s, θ0) dB
0(s) denotes the stochastic integral with respect to the Brownian bridge

B0.

Additionally, Khmaladze shows that Uf,θ0 is a zero-mean Gaussian process with covariance

function

Cov(Uf,θ0(t1), Uf,θ0(t2)) = min(t1, t2)− t1t2 − fT (t1, θ0)

(R)∫

[0,t2]

h(F−(s, θ0), θ0) ds

− fT (t2, θ0)×
(R)∫

[0,t1]

h(F−(s, θ0), θ0) ds+ fT (t1, θ0)Cov(l(X, θ0)) f(t2, θ0) . (6.10)

For proofs of (6.9) and (6.10), see Khmaladze (1980), pages 287 to 289.

Considering (6.6), (6.7), (6.9) and (6.10), it becomes apparent that

V f,θ0(·) = Uf,θ0(·) = B0(·)− fT (·, θ0)
1∫

0

h(s, θ0) dB
0(s) (6.11)

holds true, since both are zero-mean Gaussian processes with the same covariance function.

We thus have

Un,θ̂n
(·) D−−−→

n→∞
V f,θ0(·) in D[0, 1], (6.12)

too. Test statistics based on Un,θ̂n
are not asymptotically distribution free, as the distri-

bution of Uf,θ0 depends on model characteristics. Note that unlike Khmaladze states in

Khmaladze (1980), page 288, Durbin (1973b) has not shown (6.12) but has shown (6.6),

which initially is a different statement.
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Khmaladze (1982) proposed to transform the uniform parametric empirical process Un,θ̂n

into a martingale in such a way that (underH0) the distribution of the resulting martingale

converges weakly to the distribution of a standard Brownian motion and thus does not de-

pend on these model characteristics. This transformation therefore is called “Khmaladze

martingale transformation” — or briefly just “Khmaladze transformation”— and denoted

by K in this section.

On the following pages, we will approach the Khmaladze transformation in two major steps

and a variety of smaller steps, where, for the sake of brevity, we mostly give references to

proofs. In the first step, the Doob-Meyer-Decomposition of the uniform empirical process

V n(t) in the simple hypothesis scenario (see Example 6.1.1) will be given and used as a

blueprint to determine the martingale part of the uniform parametric empirical process

Un,θ̂n
in the general situation in Step 2.

Step 1

i) The paths of the empirical distribution function Fn are bounded and monotonically

increasing. Consequently,
(
Fn(t)

)
t∈[0,1] is a submartingale with respect to the nat-

ural flow of σ−algebras
(
AFn,t

)

t∈[0,1]
, where AFn,t

:= σ
(
Fn(s)| s ≤ t

)
. Therefore,

the Doob-Meyer decomposition yields a representation

Fn(t) = An(t) +Mn(t),

whereMn is a martingale and An(t) is a predictable (i.e., in our case left-continuous),

monotonically increasing process starting at 0 and often referred to as the compen-

sator. See for example Beiglboeck, Schachermayer, and Veliyev (2012). To be more

specific, Fn admits the following representation:

Fn(t) =

(R)∫

[0,t]

1− Fn(s)

1− s
ds+Mn(t), t ∈ [0, 1],

where 


(R)∫

[0,t]

1− Fn(s)

1− s
ds




t∈[0,1]

is the left continuous increasing compensator and

Mn(t) := Fn(t)−
(R)∫

[0,t]

1− Fn(s)

1− s
ds

is a martingale with respect to
(
AFn,t

)

t∈[0,1]
. See Khmaladze (1982), p. 242 for a

proof.
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ii) As Khmaladze (1982), p. 243, has shown, the uniform empirical process V n(t) (see

(6.2)) admits the representation

V n(t) = −
(R)∫

[0,t]

V n(s)

1− s
ds+Wn(t), (6.13)

where Wn(t) :=
√
nMn(t) is a martingale with respect to the filtration

(
AV n,t

)

t∈[0,1]

with AV n,t
:= σ

(
V n(s)| s ≤ t

)
= σ

(
Fn(s)| s ≤ t

)
. Therefore,

(
AV n,t

)

t∈[0,1]
=

(
AFn,t

)

t∈[0,1]
.

iii) For B = (B(t))t∈[0,1], a standard Brownian motion, the process

B0(t) := (1− t)

t∫

0

1

1− s
dB(s), t ∈ [0, 1)

is a Brownian bridge. Here,
t∫
0

1
1−s dB(s) denotes the stochastic integral with respect

to the standard Brownian motion B. Moreover, B0 is the solution of the stochastic

differential equation

dXt = − Xt

1− t
dt+ dB(t), t ∈ [0, 1) with X0 = 0.

Thus,

B0(t) = −
(R)∫

[0,t]

B0(s)

1− s
ds+B(t), t ∈ [0, 1), (6.14)

is satisfied, which is the Doob-Meyer decomposition of the Brownian bridge with the

predictable compensator A(t) = −
(R)∫

[0,t]

B0(s)
1−s ds and the Brownian motion B(t) as the

martingale part.

iv) Comparing equation (6.13) and equation (6.14) and taking into account that V n con-

verges in C[0, 1] (and therefore also in D[0, 1]) in distribution to B0 (see Billingsley

(1968) Theorem 13.1, p. 105) it is natural to guess that

Wn(t)
D−−−→

n→∞
B(t) in D[0, 1]. (6.15)

Indeed, equation (6.15) holds true, which has been proven, for example, by Aki

(1986), pages 2 - 5.

Using this knowledge in the situation of Example 6.1.1, page 76, we now know that



6.1. A brief history of goodness-of-fit tests 85

under H0 : F = F0,

(
K̃(V n)

)
(t) := V n(t) +

(R)∫

[0,t]

V n(s)

1− s
ds = Wn(t)

D−−−→
n→∞

B(t) in D[0, 1].

Therefore, using the continuous mapping theorem, test statistics based on K̃(V n) can

be generated which are asymptotically distribution free and of known distribution

in order to test the simple hypothesis

H0 : F ∈ F v.s. H1 : F /∈ F .

Step 2

i) In the general situation, it would be desirable to find a decomposition for the limit

process V f,θ0(t) of the uniform parametric empirical process Un,θ̂n
(t) similar to the

decomposition we found in Step 1, equation (6.14) for the Brownian bridge B0, which

is the limit process of uniform empirical process V n(t). Khmaladze (1982), p. 250

f., showed that under (A1) - (A3) from Section 6.1.1 with

h(t, θ0) = f ′(t, θ0) :=
∂f(t, θ0)

∂t
and

(R)∫

[0,1]

f ′(t, θ0) f
′T (t, θ0) dt = Ip, (6.16)

where Ip is the p× p unit matrix and under the additional assumption

The functions f ′
1(t, θ0), . . . , f

′
p(t, θ0) ∈ L2([0, 1]λλ[0,1]) exist and

(A4)
are linearly independent in a neighbourhood of t = 1.

the decomposition

V f,θ0(t) = B(t) +

(R)∫

[0,t]

f ′T (s, θ0)

s∫

0




(R)∫

[τ,1]

f ′(v, θ0) f
′T (v, θ0) dv




−1

f ′(τ, θ0) dB(τ) ds,

holds true for t ∈ [0, 1). Thus, V f,θ0(·) has the martingale part

M(t) = B(t)

and the compensator

A(t) =

(R)∫

[0,t]

f ′T (s, θ0)

s∫

0




(R)∫

[τ,1]

f ′(v, θ0) f
′T (v, θ0) dv




−1

f ′(τ, θ0) dB(τ) ds.
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In the same theorem, Khmaladze states that this relation is invertible, so that for

t ∈ [0, 1), also

B(t) = V f,θ0(t) +

(R)∫

[0,t]

f ′T (s, θ0)




(R)∫

[s,1]

f ′(v, θ0) f
′T (v, θ0) dv




−1
s∫

0

f ′(τ, θ0) dV f,θ0(τ) ds,

(6.17)

is valid. Here,
s∫
0

f ′(τ, θ0) dV f,θ0(τ) is a stochastic integral and B ≡ (B(t))t∈[0,1] is

a Brownian motion with respect to the filtration
(
AV f,θ0

,t

)

t∈[0,1]
, where AV f,θ0

,t :=

σ
(
V f,θ0(s)| s ≤ t

)
.

ii) Because of the identity (6.11) and the addition of (6.16) to (A3) in Step 2 part i),

we have

1∫

0

f ′(t, θ0) dV f,θ0(t) =

1∫

0

f ′(t, θ0) d


B0(·)− fT (·, θ0)

1∫

0

f ′(s, θ0) dB
0(s)


 (t)

=

1∫

0

f ′(t, θ0) dB
0(t)−

(R)∫

[0,1]

f ′(t, θ0) d


fT (·, θ0)

1∫

0

f ′(s, θ0) dB
0(s)


(t)

=

1∫

0

f ′(t, θ0) dB
0(t)− Ip

1∫

0

f ′(t, θ0) dB
0(t)

= 0.

Therefore,

s∫

0

f ′(t, θ0) dV f,θ0(t) = −
1∫

s

f ′(t, θ0) dV f,θ0(t), s ∈ [0, 1],

holds true. As a consequence, for t ∈ [0, 1), equation (6.17) is equivalent to

B(t) = V f,θ0(t)−
(R)∫

[0,t]

f ′T (s, θ0)




(R)∫

[s,1]

f ′(v, θ0) f
′T (v, θ0) dv




−1
1∫

s

f ′(τ, θ0) dV f,θ0(τ) ds.

(6.18)

iii) Considering equation (6.18), the right hand side can be interpreted as a transfor-

mation of V f,θ0(t), which is the limit process of the uniform parametric empirical

process Un,θ̂n
(t). It is natural to guess that the same kind of transformation applied

to the uniform parametric empirical process Un,θ̂n
(t) itself is also (asymptotically)

distributed like a Brownian motion. To investigate this closer, Khmaladze (1982),
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page 253, defined for t ∈ [0, 1),

Wn(t) := Un,θ̂n
(t)−

(R)∫

[0,t]

g′T (s, θ0)




(R)∫

[s,1]

g′(v, θ0)g
′T (v, θ0) dv




−1
1∫

s

g′(τ, θ0) dUn,θ̂n
(τ) ds.

(6.19)

Here,
1∫
s
g′(τ, θ0) dUn,θ̂n

(τ) is a stochastic integral, g(t, θ0) := Γ−1/2

(
t

f(t, θ0)

)
with

Γ :=

(
1 0

0 γ

)
, γ := (γi,j)

p
i,j=1 and γi,j :=

1∫
0

f ′
i(t, θ0) f

′T
j (t, θ0) dt, i, j = 1, . . . , p.

Furthermore, the following additional assumptions are made:

(A4’) The functions f ′
i(t, θ0) :=

∂fi(t,θ0)
∂t , i = 1, . . . , p, exist, are elements of L2([0, 1], λλ[0,1])

and 1, f1(t, θ0), . . . , fp(t, θ0) are linearly independent in the neighbourhood of

t = 1.

(A5)
(R)∫

[0,1]

sup
{
|f ′(t, θ)− f ′(t, θ0)|2

∣∣∣ θ ∈ Θ,
∑m

i=1 |θi − θ0,i|2 < ε
}
dt −−−−→

ε→ 0
0.

(A2’) The estimator is square root consistent, which means that
√
n(θ̂n−θ0) = OP(1)

for n → ∞. This is a weaker assumption than (A2) from Section 6.1.1, but

strong enough to ensure — together with (A5) — that

Un,θ̂n
(t) = V n(t)− fT (t, θ0)

√
n (θ̂n − θ0) + rn(t),

with
1∫
0

r′
2

n (t) dt = oP(1), holds true for n → ∞.

Note that due to

f ′(t, θ0) =

(
∂

∂θ
log

∂

∂t
F

)
(F−(t, θ0), θ0), (6.20)

f ′(t, θ0) is the score function of the model family F . Thus γ is an augmented version

of the Fisher-information matrix of the model family F . For a proof of (6.20), see

Lemma 7.5.1 in Section 7.5 of the appendix. For some theory on score functions and

the Fisher-information matrix, see for example Ly et al. (2017). Note further that

Wn(t) as defined above is different from the Wn(t) defined in Step 1. Nevertheless,

we use the same notation to emphasise the analogy between the two.
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iv) In the present situation it can be shown that under H0 and the Assumptions (A1),

(A2’), (A3), (A4’) and (A5)

Wn(t) = (6.21)

=
√
n


Fn(t)−

∫

[0,1]

(R)∫

[0,min{t,τ}]

g′T(s, θ̂n)




(R)∫

[s,1]

g′(v, θ̂n)g
′T(v, θ̂n) dv




−1

ds g′(τ, θ̂n) dFn(τ)




︸ ︷︷ ︸
=:(K(Fn))(t)

+oP(1)

for n → ∞ and t ∈ [0, 1) as well as

Wn(·) D−−−−→
n→∞

B(·) in L2([0, 1], λλ)

hold true, meaning that Wn(·) is asymptotically distributed like a standard Brow-

nian motion. Thus, Wn(·) is asymptotically distribution free. Again, appropriate

functionals of Wn and therefore K(Fn) respectively can be used to generate asymp-

totically distribution free test statistics of a known distribution.

Note that K is essentially the same transformation as the one conducted on the right

hand side of equation (6.19), but with the estimate θ̂n instead of θ0, and applied to

Fn instead of Un,θ̂n
. Both changes are asymptotically negligible. For a proof of the

first statement, see Khmaladze (1982) pages 253 f., 255 and 257. For a proof of the

second one, see Khmaladze (1982) pages 256 f.

v) Considering equation (6.21), it becomes apparent that for t ∈ [0, 1)

An(t, Fn, θ̂n) :=

∫

[0,1]

(R)∫

[0,min{t,τ}]

g′T(s, θ̂n)




(R)∫

[s,1]

g′(v, θ̂n) g
′T(v, θ̂n) dv




−1

ds g′(τ, θ̂n) dFn(τ)

manipulates Fn(t) in such a way that the (appropriately scaled) result

√
n
(
Fn(·)−An(·, Fn, θ̂n)

)

is asymptotically a martingale. Therefore, An(t, Fn, θ̂n) is called the compensator

of Fn(t). Utilising Fubini’s theorem, we additionally see that

An(t, Fn, θ̂n) =

∫

[0,1]

(R)∫

[0,min{t,τ}]

g′T(s, θ̂n)




(R)∫

[s,1]

g′(v, θ̂n) g
′T(v, θ̂n) dv




−1

ds g′(τ, θ̂n) dFn(τ)

=

(R)∫

[0,t]

g′T (s, θ̂n)




(R)∫

[s,1]

g′(v, θ̂n) g
′T (v, θ̂n) dv




−1 ∫

[s,1]

g′(τ, θ̂n) dFn(τ) ds

(6.22)
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holds true, which opens the door for geometrical interpretations of the compensator

as a projection operator. The discussion of such interpretations takes place in the

next two sections in the situation of Khmaladze transformations in goodness-of-fit

tests for linear regression models.
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6.2 Khmaladze transformation in linear regression models

Returning to the main subject of study in this work, we will again consider regression

models, their respective CUSUM processes and goodness-of-fit tests based on them.

The Khmaladze transformation was proposed in Khmaladze (1982) as a remedy to the

Durbin problem in a different scenario of goodness-of-fit tests — see Section 6.1.2. Stute,

Thies, and Zhu (1998) have adapted the Khmaladze transformation to the context of

goodness-of-fit tests via marked empirical processes of regression residuals in (not neces-

sary linear) regression models with random designs. The result of this adaptation is shown

in the following theorem.

Theorem 6.2.1. [Stute, Thies, and Zhu (1998), Theorem 1.2]

Let the prerequisites of a regression model with random design (see Theorem 2.1.6)

be fulfilled and assume homoscedastic regression errors with variance σ2 = 1. Fur-

thermore, let ∫

(y,∞)

g(u) gT (u) dF (u)

be invertible for all y ∈ R and define the so-called Khmaladze transformation T ∗ by

(T ∗(h))(x) := h(x)−
∫

(−∞,x]

gT (y)




∫

(y,∞)

g(u) gT (u) dF (u)




−1


∫

(y,∞)

g(z) dh(z)


 dF (y)

for functions h either of bounded variation or time-transformed Brownian motions

B ◦ F . Then, under H0,

(
T ∗ ◦R1

n

)
(·) D−−−→

n→∞
(B ◦ F ) (·) in D[−∞,∞).

With regard to the above theorem, note the following.

❼ In the case that T ∗ is applied to a function h that is of bounded variation, the integral∫

(y,∞)

g(z) dh(z) can be understood as a measure integral. Whereas in the case that

h is a time-transformed Brownian motion B ◦ F , the integral
∫

(y,∞)

g(z) dh(z) must

be understood as a stochastic integral.

❼ The fact that T ∗ is a direct adaptation of the Khmaladze transformation K from

Section 6.1.2 to the situation of a linear regression model with random design be-

comes apparent when looking at equation (6.21) on page 88 and equation (6.22) on

page 88.

Considering the limit process (B ◦F )(·) in the above theorem, it is striking that this pro-

cess still depends on model characteristics, namely the distribution F of the design. In
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the special case of linear regression models, it is possible to overcome this dependency as

follows: According to Section 3.2, in goodness-of-fit tests in linear regression models based

on the asymptotic distribution of residual CUSUM processes, one can assume without loss

of generality a generic linear regression model. Therefore, in the following corollary, we

can specify a version of Theorem 6.2.1 in this scenario.

Corollary 6.2.2.

Let a generic linear regression model (see Definition 3.2.1) be given. Additionally

assume that ∫

[y,1]

f(u) fT (u) dλλ[0,1](u)

is invertible for all y ∈ [0, 1). Define the Khmaladze transformation T ∗ via

(T ∗(h))(x) := h(x)−
∫

[0,x]

fT (y)




∫

[y,1]

f(t) fT (t) dλλ[0,1](t)




−1


∫

[y,1]

f(t) dh(t)


 dλλ[0,1](y)

for x ∈ [0, 1) and functions h that are either of bounded variation or a Brownian

motion. Then, under H0, it holds true that

(
T ∗ ◦ 1√

n
Tn(ε̂n)

)
(·) D−−−→

n→∞
B(·) in C[0, 1)

and (
T ∗ ◦R1

n

)
(·) D−−−→

n→∞
B(·) in C[0, 1).

Remark 6.2.3.

In the above corollary, for suitable functions g, the Khmaladze transformation

(T ∗(g))(x)=g(x)−
∫

[0,x]

fT (y)




∫

[y,1]

f(t)fT(t) dλλ[0,1](t)




−1


∫

[y,1]

f(t) dg(t)


 dλλ[0,1](y)

of g looks similar to the orthogonal projection

prW⊥
HB

(g)(x)=g(x)−




∫

[0,x]

f(t) dλλ[0,1](t)




T


∫

[0,1]

f(t)fT(t) dλλ[0,1](t)




−1 ∫

[0,1]

f(t) dg(t)

of g onto the orthogonal complement of WHB
= span{hf1 . . . , hfp}, which we dis-

cussed in Section 4.2. This similarity motivates a further analysis of the connection

between the Khmaladze transformation and projections onto RKHS of integrated

regression functions and thus residual CUSUM processes. This analysis will be the

main topic of the next section.
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6.3 Khmaladze transformation as a recursive residual

transformation

Recursive (least-squares) residuals have already been used in a landmark paper by Brown,

Durbin, and Evans (1975) to investigate the stability over time of regression relationships

using CUSUM processes. Therein, recursive residuals are defined as standardised differ-

ences between current observations and their forecasts that were made with the previously

sampled observations. We note that the notion of recursive residuals has been in use since

1891, as Farebrother (1978) points out.

Brown, Durbin, and Evans (1975) develop their results on recursive residuals for time

series and Sen (1982) provides an invariance principle for CUSUM processes of recursive

residuals in this setting. Investigations of the CUSUM tests of Brown, Durbin, and Evans

(1975) under more general conditions can be found in Krämer, Ploberger, and Alt (1988).

Evers (2022) proves a result similar to that in Sen (1982) in the situation of linear regres-

sion models with triangular arrays of design points and uses this result to calculate the

limit under local alternatives in a simple manner.

In this work, however, we consider so-called backwards recursive (least-squares) residu-

als (see Definition 6.3.2). Although it is already remarked in Brown, Durbin, and Evans

(1975) on page 155 that “it is often informative to look at the set of plots [of the CUSUM

processes] which are obtained by running the analysis backwards through time as well as

forwards”, no specific definitions or results are given regarding backwards recursive resid-

uals. In the context of ordinary least-squares residuals, Bischoff et al. (2005) have already

shown that tests based on partial sums can have a larger power when the partial sums are

taken from the time reversed data.

Explicit definitions of backwards recursive residuals as well as examples of their use in

change point analysis can be found in Hawkins (1987), Pesaran and Timmermann (2002)

and more recently in Otto and Breitung (2020).

Let us consider the univariate linear regression model with random design

Y = (f1, . . . , fp)(X)β + ε,

where X ∼ F , F is a distribution function with supp(F ) ⊆ [a, b], a < b ∈ R, f1, . . . , fp, p ∈
N, are the regression functions that are of bounded variation, β = (β1, . . . , βp)

T are the

regression coefficients and ε is the regression error with E(ε |X) = 0 and Var(ε |X) ≡ 1.

Moreover, suppose that there is a c ∈ [a, b) with F (c) < 1 and such that f1 · 1(c,b], . . . , fp ·
1(c,b] are linearly independent in L2([a, b], F ).

Consider an n-sample (Ỹn1, X̃n1, ε̃n1), . . . , (Ỹnn, X̃nn, ε̃nn)
iid∼ (Y,X, ε), n ∈ N. We denote

with Xni := Xi:n, i ∈ {1, . . . , n}, the i-th order statistic of {X̃n1, . . . , X̃nn} and with

Yni := Y[i:n] and εni := ε[i:n], i = 1, . . . , n,
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we denote the associated concomitants. Then, the above model has the form




Yn1
...

Ynn


 =




f1(Xn1) . . . fp(Xn1)
...

. . .
...

f1(Xnn) . . . fp(Xnn)







β1
...

βp


+




εn1
...

εnn


 , n ∈ N.

Let a realisation ((tni)
n
i=1)n∈N of ((Xni)

n
i=1)n∈N be given. We thus consider the linear

regression model with fixed design




Yn1
...

Ynn


 =




f1(tn1) . . . fp(tn1)
...

. . .
...

f1(tnn) . . . fp(tnn)







β1
...

βp


+




εn1
...

εnn


 , n ∈ N, (6.23)

where

❼ Yn = (Yn1, . . . , Ynn)
T is the vector of outcomes,

❼ [a, b], a < b, is the experimental region,

❼ ((tni)
n
i=1)n∈N ⊆ [a, b] with tn1 ≤ · · · ≤ tnn, n ∈ N, is the triangular array of design

points. Note that for almost all realisations ((tni)
n
i=1)n∈N of ((Xni)

n
i=1)n∈N, the cor-

responding sequence of empirical distribution functions (Fn)n∈N converges uniformly

to the distribution function F with supp(F ) ⊆ [a, b],

❼ f = (f1, . . . , fp)
T : [a, b] → Rp, p ∈ N, are the regression functions that are of

bounded variation and there is a c ∈ [a, b) with F (c) < 1 and such that f1 ·
1(c,b], . . . , fp · 1(c,b] are linearly independent in L2([a, b], F ),

❼ β = (β1, . . . , βp)
T are the regression coefficients,

❼ εn1, . . . , εnn are the iid regression errors with E(εn1) = 0, and Var(εn1) = 1.

In order to proceed, we need the following designations.

❼ For n ∈ N and i ∈ {1, 2, . . . , n}, we define the notations




Yni
...

Ynn




︸ ︷︷ ︸
=:Y

(i)
n ∈Rn−i+1

=




f1(tni) . . . fp(tni)
...

. . .
...

f1(tnn) . . . fp(tnn)




︸ ︷︷ ︸
=:X

(i)
n ∈R(n−i+1)×p




β1
...

βp




︸ ︷︷ ︸
=β∈Rp

+




εni
...

εnn




︸ ︷︷ ︸
=:ε

(i)
n

,

referring to the regression model (6.23) excluding the first i− 1 rows.

❼ For all i ∈ {1, . . . , n− p+ 1} such that X
(i)
n has full rank, we denote with

β̂(i)
n :=((X(i)

n )TX(i)
n )︸ ︷︷ ︸

∈Rp×p

−1
(X(i)

n )T Y (i)
n
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the ordinary least-squares estimates for β, using the last n − i + 1 observations

Yni, Yni+1, . . . , Ynn corresponding to the design points tni, tni+1, . . . , tnn.

❼ As usual, for i ∈ {1, . . . , n}, the ordinary least-squares residuals are denoted by

ε̂ni = Yni − fT (tni)β̂n, where β̂n := β̂
(1)
n . We denote the vector of the last n− i+ 1

ordinary least-squares residuals by ε̂
(i)
n := (ε̂ni, . . . , ε̂nn)

T and ε̂n := ε̂
(1)
n .

❼ For tn1 ≤ · · · ≤ tnn, n ∈ N, we define

jn : R −→ {0, 1, . . . , n}, y 7−→ max{0, sup{i ∈ {1, . . . , n} | tni ≤ y}}.

For the remainder of this section, we will only consider triangular arrays ((tni)
n
i=1)n∈N that

satisfy the following assumption.

The triangular array ((tni)
n
i=1)n∈N is such that there exists an n0 ∈ N such

(6.24)
that for all n ≥ n0, rank

(
(X(i+1)

n )TX(i+1)
n

)
= p, i = 0, . . . , jn(c), is satisfied.

Remark 6.3.1.

The above assumption about the triangular array ((tni)
n
i=1)n∈N is quite natural, as

it describes a generic realisation of ((Xni)
n
i=1)n∈N. It can be verified that almost

all realisations ((tni)
n
i=1)n∈N of ((Xni)

n
i=1)n∈N satisfy Assumption (6.24). A proof of

this assertion can be found on page 184 of the appendix.

We can now proceed to define the backwards recursive residuals.

Definition 6.3.2.

Consider the linear regression model (6.23). Let Assumption (6.24) be satisfied and

let n ≥ n0. Then the backwards recursive (least-squares) residuals rni are defined

by

rni :=
Yni − fT (tni)β̂

(i+1)
n√

1 + fT (tni)
(
(X

(i+1)
n )TX

(i+1)
n

)−1
f(tni)

, i = 1, . . . , jn(c).

Furthermore, we denote the vector of backwards recursive residuals by rn :=(
rn1, rn2, . . . , rnjn(c)

)T ∈ Rjn(c).

Note that the above definition is only one of many ways to define recursive residuals. We

have chosen this particular definition in order to make the most suggestive connection to

the Khmaladze transformation (see Theorem 6.3.3).

In general, in a regression model with n ∈ N observations and p regression functions, n!
p!

different sets of recursive residuals can be defined (given that all data is already available
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and assuming that each submatrix of the design matrix with p rows has full rank). For

example, on page 151 Brown, Durbin, and Evans (1975) define recursive residuals ordered

by time, taking the first p observations to compute an initial estimate for β, and pro-

ceeding stepwise from there to compute one recursive residual at a time. In contrast, it

is only possible to compute the i-th backwards recursive residuum rni if all the outcomes

Yni, . . . , Ynn have been observed. This is the case, since for the computation of rni the

estimate β̂i+1 has to be calculated, which requires the knowledge of Yni+1, . . . , Ynn.

Backwards recursive residuals, similar to “normal” ones, i.e. non-backwards recursive

residuals as defined, for example, in Brown, Durbin, and Evans (1975), have some conve-

nient properties. For example, they are homoscedastic and uncorrelated and can be con-

sidered as the transformation of the heteroscedastic and correlated ordinary least squares

residuals. See Lemma 7.5.2 and Lemma 7.5.3 in the appendix for these and other proper-

ties of backwards recursive residuals.

We now move on to the main theorem of this section. To our knowledge this theorem

is new in the literature.

Theorem 6.3.3.

Consider the linear regression model (6.23). Let Assumption (6.24) be satisfied and

let n ≥ n0. Furthermore, let

❼ T ∗ be the Khmaladze transformation introduced in Theorem 6.2.1,

❼ R1
n := 1

σ
√
n

n∑
i=1

1(−∞,x](tni) · ε̂ni be the marked empirical process of the vector

of ordinary least-squares residuals ε̂n,

❼ R̃1
n(x) := 1

σ
√
n

jn(c)∑
i=1

1(−∞,x](tni) · rni be the marked empirical process of the

vector of backwards recursive residuals rn.

Then, the statement

(T ∗(R1
n))(x) = R̃1

n(x) + oP(1)

holds true uniformly in x ∈ (−∞, c] for n −→ ∞.

Note that, in view of Section 3.2, if we wanted to show a distributional result in The-

orem 6.3.3, it would have sufficed to only consider the generic linear regression model.

However, since the result addresses equality in probability, and is thus more general, we

cannot without loss of generality make additional assumptions on the design.

Proof of Theorem 6.3.3: See the pages 187 and the following pages in Section 7.5 of

the appendix. �
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The proof of the above theorem shows that for x ∈ (−∞, c], T ∗(R1
n) and R̃1

n can be

represented as follows:

(T ∗(R1
n))(x)=

1

σ
√
n

jn(x)∑

i=1

ε̂ni −
∫

(−∞,x]

fT(y)




∫

(y,∞)

f(u)fT(u)dF (u)




−1


∫

(y,∞)

f(z)dR1
n(z)


dF (y)

and

R̃1
n(x) =

1

σ
√
n

jn(x)∑

i=1

ε̂ni −
1

σ
√
n

jn(x)∑

i=1

fT (tni)
(
(X(i+1)

n )T X(i+1)
n

)−1
(X(i+1)

n )T ε̂(i+1)
n + oP(1).

Comparing these two representations, it becomes apparent that the application of the

Khmaladze transformation to the marked empirical process R1
n of the least-squares residu-

als is quite similar to the marked empirical process R̃1
n of the backwards recursive residuals.

In fact, the only difference is that

1

σ
√
n

jn(x)∑

i=1

fT (tni)
(
(X(i+1)

n )T X(i+1)
n

)−1
(X(i+1)

n )T ε̂(i+1)
n

is the discrete time approximation for

∫

(−∞,x]

fT (y)




∫

(y,∞)

f(u)fT (u)dF (u)




−1


∫

(y,∞)

f(z)dR1
n(z)


dF (y).

Note that in the proof of Theorem 6.3.3 and the integrals above, we slightly abuse notation

because the function f is only defined on [a, b] and not on (−∞,∞). However, this is not

problematic here, since supp(F ) ⊆ [a, b] holds true.

The Khmaladze transformation thus is a continuous-time backwards recursive least-squares

method that, as we know from Theorem 6.2.1, asymptotically leads to Brownian motion

processes. In the context of time series data, this interpretation has already been made

by Bai (2003) p. 544. Therein, it is also mentioned that in the context of time series,

partial sums of recursive residuals lead to Brownian motion processes — a result that can

be traced back to Sen (1982). According to the results of Evers (2022), this also applies

to recursive residuals in linear regression models with triangular arrays of designs. Note

that the interpretation of the Khmaladze transformation as a continuous-time recursive

least-squares method is far from formally proved in Bai (2003). In fact, only an intuitive

argument is given. Moreover, this intuitive argument is valid only up to a normalizing

constant (as Bai mentions) and it only covers the case of time series data.



7 Appendix

7.1 Proofs for Chapter 2

Proof of Theorem 2.1.4

We divide the proof into two steps:

Step I : Let n ∈ N, i ∈ {1, . . . , n} and x ∈ [−∞,∞] be given. Then

E
(
1[−∞,∞](Xi) · (Yi −m(Xi)) |Xi

)

= E
(
1[−∞,∞](Xi) · Yi |Xi

)
− E

(
1[−∞,∞](Xi) ·m(Xi) |Xi

)

= 1[−∞,∞](Xi) · E (Yi |Xi)− E
(
1[−∞,∞](Xi) · E(Yi |Xi) |Xi

)

= 1[−∞,∞](Xi) · E (Yi |Xi)− 1[−∞,∞](Xi) · E(Yi |Xi)

= 0

holds true. Thus, the i-th summand of Rn(x) is conditionally centred and therefore the

whole process Rn(·) is centred. Furthermore, for n ∈ N and s, t ∈ [−∞,∞], the covariance

function of Rn(·) can be calculated in the following way:

K(s, t) := Cov(Rn(s), Rn(t))

= E(Rn(s) ·Rn(t))− E(Rn(s))E(Rn(t))

= E



(

1√
n

n∑

i=1

1[−∞,s](Xi) · (Yi −m(Xi))

)
·


 1√

n

n∑

j=1

1[−∞,t](Xj) · (Yj −m(Xj))






=
1

n

n∑

i=1

n∑

j=1

E
[
1[−∞,s](Xi) · (Yi −m(Xi)) · 1[−∞,t](Xj) · (Yj −m(Xj))

]

=
1

n

n∑

i=1

E
[
1[−∞,min{s,t}](Xi) · (Yi −m(Xi))

2
]
+

+
1

n

n∑

i=1

n∑

j=1
j 6=i

E
[
1[−∞,s](Xi) · (Yi −m(Xi))

]
E
[
1[−∞,t](Xj) · (Yj −m(Xj))

]
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= E
(
1[−∞,min{s,t}](X) · (Y −m(X))2

)

= E
[
E
(
1[−∞,min{s,t}](X) · (Y −m(X))2 |X

)]

= E
[
1[−∞,min{s,t}](X) · E

(
(Y −m(X))2 |X

)]

=

∫

[−∞,min{s,t}]

E((Y − E(Y |X))2|X = u) dF (u)

=

∫

[−∞,min{s,t}]

Var(Y |X = u) dF (u).

Note, that in the given situation (X,Y ) is the random vector whose iid realisations form

the random sample (X1, Y1), . . . , (Xn, Yn).

Therefore, since for n ∈ N and all x, x1, x2 ∈ [−∞,∞] the summands 1[−∞,x](Xi) · (Yi −
m(Xi)) of Rn(x) are conditionally centred and

K(x1, x2) = Cov(Rn(x1), Rn(x2)) =

∫

[−∞,min{x1,x2}]

Var(Y |X = u) dF (u),

the multivariate central limit theorem yields for all −∞ ≤ x1 ≤ · · · ≤ xk ≤ ∞ and k ∈ N




Rn(x1)
...

Rn(xk)




D−−−−→
n→∞

Nk







0
...

0


 ,




K(x1, x1) . . . K(x1, xk)
...

. . .
...

K(xk, x1) . . . K(xk, xk)





 .

We thus define

R∞(x) := N(0,K(x, x)), x ∈ [−∞,∞], (7.1)

with the covariance function

Cov(R∞(x1), R∞(x2)) := K(x1, x2), x1, x2 ∈ [−∞,∞]. (7.2)

Note that (7.1) and (7.2) define R∞ on D[−∞,∞], since Gaussian processes are uniquely

determined by their mean function and covariance function. Note, furthermore, that the

sequence of random processes (Rn(·))n∈N has at most the accumulation point R∞(·) and
no other, since the distribution of a random process is uniquely determined by its fidis.

Step II : In order to prove the weak convergence of Rn(·), it remains to show the tightness

of the process Rn(·). To achieve this, Stute (1997) proposes to use Theorem 15.6 from

Billingsley (1968) and a quantile transformation (see for example Chapter 21 in Vaart

(1998)). That is, for the random sample

X1, . . . , Xn
iid∼ F
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there is a random sample

U1, . . . , Un
iid∼ U(0, 1),

such that

Xi
D
= F−(Ui), i = 1, . . . , n,

holds true. Here, F− denotes the quantile function associated to F (see Def. 2.1.8).

For this uniformly distributed random sample we define the uniform empirical process

Rn(u) :=
1√
n

n∑

i=1

1[0,u](Ui) · (Yi − (m ◦ F−)(Ui)),

which has paths in D[0, 1] and note that in this situation

Rn(x) = Rn(F (x)), x ∈ [−∞,∞],

holds true. As Stute (1997) notes, it can be observed that

E(Yi |U = u) = (m ◦ F−)(u), u ∈ [0, 1], (7.3)

so one can, without loss of generality, assume that F is the uniform distribution on [0, 1].

With regard to (7.3), the following should be noted:

i) U should be replaced by Ui.

ii) Stute (1997) does not contain a proof of equation (7.3) and, contrary to the idea

of conducting a quantile transformation, we get a similar result in Section 2.1.3 by

means of a probability integral transformation.

Considering the above statements and our finding in Section 2.1.3, we can assume a re-

gression on Y according to the design U1, . . . , Un
iid∼ U(0, 1) instead of X1, . . . , Xn

iid∼ F ,

where the regression functions are now not m but m ◦F− in the case where only distribu-

tional properties of the model matter. Theorem 15.6 from Billingsley (1968) now states

that Rn(·) is tight if

E
[
|Rn(u2)−Rn(u)|γ |Rn(u)−Rn(u1)|γ

]
≤ [H(u2)−H(u1)]

2α (7.4)

holds true for 0 ≤ u1 ≤ u ≤ u2 ≤ 1 and n ≥ 1 for some γ ≥ 0, α > 1
2 and H a

non-decreasing continuous function on [0, 1]. We choose γ = 2 and α = 1 and obtain

E

[(
Rn(u2)−Rn(u)

)2 (
Rn(u)−Rn(u1)

)2]
=

1

n2
E



[

n∑

i=1

αi

]2



n∑

j=1

βj



2
 (7.5)

=
1

n2

[
nE

(
α2
1β

2
1

)
+ n(n− 1)E

(
α2
1

)
E
(
β2
1

)]
(7.6)

≤ E(α2
1)E(β

2
1) (7.7)
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=

∫

(u1,u]

Var(Y1|U1 = v) dλλ[0,1](v)

∫

(u,u2]

Var(Y1|U1 = v) dλλ[0,1](v) (7.8)

≤




∫

(u1,u2]

Var(Y1|U1 = v) dλλ[0,1](v)




2

= (H(u2)−H(u1))
2 ,

where

H(u) :=

∫

[0,u]

Var(Y |U = v) dλλ[0,1](v)

is a non-decreasing continuous function. Therefore, condition (7.4) is satisfied and thus

Rn(·) is tight. Note that Var(Y |U = v) need not be continuous, but since it is integrated

with respect to the Lebesgue-measure,H is continuous. In the equation above the following

relations were used:

(7.5) We define

αi := 1(u1,u](Ui) · (Yi − (m ◦ F−)(Ui))

and

βi := 1(u,u2](Ui) · (Yi − (m ◦ F−)(Ui))

and therefore we have

Rn(u)−Rn(u1) =
1√
n

n∑

i=1

1(u1,u](Ui) · (Yi − (m ◦ F−)(Ui))

=
1√
n

n∑

i=1

αi,

as well as

Rn(u2)−Rn(u) =
1√
n

n∑

i=1

βi.

(7.6) (αi, βi), i = 1, . . . , n, are square integrable bivariate random vectors that are inde-

pendent and identically distributed with

E(αi) = 0 = E(βi),

as can be verified similarly to the beginning of Step I. We first determine

[
n∑

i=1

αi

]2



n∑

j=1

βj



2

=

[
n∑

i1=1

n∑

i2=1

αi1αi2

]


n∑

j1=1

n∑

j2=1

βj1βj2



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=




n∑

i=1

α2
i +

n∑

i1=1

n∑

i2=1
i2 6=i1

αi1αi2







n∑

j=1

β2
j +

n∑

j1=1

n∑

j2=1
j2 6=j1

βj1βj2




=

[
n∑

i=1

α2
i

]


n∑

j=1

β2
j


+

[
n∑

i=1

α2
i

]



n∑

j1=1

n∑

j2=1
j2 6=j1

βj1βj2


+

+




n∑

i1=1

n∑

i2=1
i2 6=i1

αi1αi2







n∑

j=1

β2
j


+




n∑

i1=1

n∑

i2=1
i2 6=i1

αi1αi2







n∑

j1=1

n∑

j2=1
j2 6=j1

βj1βj2




and then calculate the expectation of each of the four summands individually:

First summand:

E



[

n∑

i=1

α2
i

]


n∑

j=1

β2
j




 =

n∑

i=1

n∑

j=1

E
(
α2
i β

2
j

)

=
n∑

i=1

E
(
α2
i β

2
i

)
+

n∑

i=1

n∑

j=1
j 6=i

E
(
α2
i β

2
j

)

= nE
(
α2
1β

2
1

)
+ n(n− 1)E

(
α2
1

)
E
(
β2
1

)
.

Second summand:

E




[
n∑

i=1

α2
i

]



n∑

j1=1

n∑

j2=1
j2 6=j1

βj1βj2





 =

n∑

i=1

n∑

j1=1

n∑

j2=1
j2 6=j2

E(α2
i βj1βj2) = 0.

Third summand:

E







n∑

i1=1

n∑

i2=1
i2 6=i1

αi1αi2







n∑

j=1

β2
j





 =

n∑

j=1

n∑

i1=1

n∑

i2=1
i2 6=i1

E
(
β2
jαi1αi2

)
= 0.

Forth summand:

E







n∑

i1=1

n∑

i2=1
i2 6=i1

αi1αi2







n∑

j1=1

n∑

j2=1
j2 6=j1

βj1βj2





 =

n∑

i1=1

n∑

i2=1
i2 6=i1

n∑

j1=1

n∑

j2=1
j2 6=j1

E(αi1αi2βj1βj2)

=
n∑

i1=1

n∑

i2=1
i2 6=i1

n∑

j2=1
j2 6=i1

E(αi1αi2βi1βj2) +
n∑

i1=1

n∑

i2=1
i2 6=i1

n∑

j1=1
j1 6=i1

n∑

j2=1
j2 6=j1

E(αi1αi2βj1βj2)
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=
n∑

i=1

n∑

i2=1
i2 6=i

n∑

j2=1
j2 6=i

E((αiβi)︸ ︷︷ ︸
=0

αi2βj2) +

n∑

i1=1

E(αi1)︸ ︷︷ ︸
=0

n∑

i2=1
i2 6=i1

n∑

j1=1
j1 6=i1

n∑

j2=1
j2 6=j1

E(αi2βj1βj2)

= 0.

(7.7) α2
i · β2

i ≡ (αiβi)(αiβi) ≡ 0.

(7.8) E(α2
i ) = E

[
1(u1,u](Ui) · (Yi − (m ◦ F−)(Ui))

2
]

= E
[
E
(
1(u1,u](Ui) · (Yi − (m ◦ F−)(Ui))

2|Ui

)]

= E
[
1(u1,u](Ui)E

(
(Yi − (m ◦ F−)(Ui))

2|Ui

)]

= E
[
1(u1,u](Ui) · E

(
(Yi − E(Yi|Ui))

2|Ui

)]

= E
[
1(u1,u](Ui) ·Var(Yi|Ui)

]

=

∫

(u1,u]

Var(Yi|Ui = u) dλλ[0,1](u)

and similarly it can be shown that

E(β2
i ) =

∫

(u,u2]

Var(Yi|Ui = u) dλλ[0,1](u).

Altogether, since the relation

Rn(x) = Rn(F (x))

holds true, we know that the process Rn(·) is also tight, which completes the proof. �

Proof of Theorem 2.1.6

Proof of i) Since we operate under H0, for x ∈ [−∞,∞], we have

R1
n(x) =

1√
n

n∑

i=1

1[−∞,x](Xi) · (Yi −m(Xi, θ̂n))

=
1√
n

n∑

i=1

1[−∞,x](Xi) · (Yi −m(Xi, θ0))−
1√
n

n∑

i=1

1[−∞,x](Xi) · (m(Xi, θ̂n)−m(Xi, θ0))

=
1√
n

n∑

i=1

1[−∞,x](Xi) · (Yi −m(Xi))−
1√
n

n∑

i=1

1[−∞,x](Xi) · (m(Xi, θ̂n)−m(Xi, θ0))
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= Rn(x)−
1√
n

n∑

i=1

1[−∞,x](Xi) · (m(Xi, θ̂n)−m(Xi, θ0)).

Now, because of part i) of Assumption 2, the multivariate mean value theorem is applica-

ble, which means that for θ̂n, θ0 ∈ Rp and every i ∈ {1, . . . , n} there is a θni ∈ Rp on the

line between θ̂n and θ0 for which

m(Xi, θ̂n)−m(Xi, θ0) = (θ̂n − θ0)
T g(Xi, θni)

holds true. We therefore can conclude that

sup
x∈[−∞,∞]

∣∣∣∣∣R
1
n(x)−

(
Rn(x)−

1√
n

n∑

i=1

GT (x, θ0) l(Xi, Yi, θ0)

)∣∣∣∣∣

= sup
x∈[−∞,∞]

∣∣∣∣∣
1√
n

n∑

i=1

GT (x, θ0) l(Xi, Yi, θ0)−
1√
n

n∑

i=1

1[−∞,x](Xi) · (θ̂n − θ0)
T g(Xi, θni)

∣∣∣∣∣

= sup
x∈[−∞,∞]

∣∣∣∣∣
1√
n

n∑

i=1

GT(x, θ0) l(Xi, Yi, θ0)−
√
n (θ̂n − θ0)

TG(x, θ0) +
√
n (θ̂n − θ0)

TG(x, θ0)

− 1√
n

n∑

i=1

1[−∞,x](Xi) · (θ̂n − θ0)
T [g(Xi, θni)− g(Xi, θ0) + g(Xi, θ0)]

∣∣∣∣∣

≤ sup
x∈[−∞,∞]

∣∣∣∣∣
1√
n

n∑

i=1

GT (x, θ0) l(Xi, Yi, θ0)−GT (x, θ0)
√
n(θ̂n − θ0)

∣∣∣∣∣
︸ ︷︷ ︸

=:I

+ sup
x∈[−∞,∞]

∣∣∣∣∣
√
n (θ̂n − θ0)

T 1

n

n∑

i=1

1[−∞,x](Xi) · [g(Xi, θni)− g(Xi, θ0)]

∣∣∣∣∣
︸ ︷︷ ︸

=:II

+ sup
x∈[−∞,∞]

∣∣∣∣∣
√
n (θ̂n − θ0)

T

[(
1

n

n∑

i=1

1[−∞,x](Xi) · g(Xi, θ0)

)
− G(x, θ0)

]∣∣∣∣∣
︸ ︷︷ ︸

=:III

.

For the proof of part i), it is therefore sufficient to verify that the summands I, II and III

converge stochastically towards zero.

Convergence of summand I

According to Assumption 1, we have

∥∥∥∥∥
1√
n

n∑

i=1

l(Xi, Yi, θ0)−
√
n(θ̂n − θ0)

∥∥∥∥∥
P−−−−−→

n→∞
0.
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Furthermore, according to Assumption 2, for i = 1, . . . , p,

|Gi(x, θ0)| =
∣∣∣∣∣

∫

[−∞,x]

gi(t, θ0) dF (t)

∣∣∣∣∣ ≤
∫

[−∞,∞]

|gi(t, θ0)| dF (t) ≤
∫

[−∞,∞]

M(t) dF (t)

holds true and thus

sup
x∈[−∞,∞]

|Gi(x, θ0)| ≤
∫

[−∞,∞]

M(t) dF (t) < ∞, i = 1, . . . , p.

Hence, we can infer that

I = sup
x∈[−∞,∞]

∣∣∣∣∣G
T (x, θ0)

[
1√
n

n∑

i=1

l(Xi, Yi, θ0)−
√
n(θ̂n − θ0)

] ∣∣∣∣∣

≤
(

sup
x∈[−∞,∞]

|G1(x, θ0)|, . . . , sup
x∈[−∞,∞]

|Gp(x, θ0)|
)∣∣∣∣∣

1√
n

n∑

i=1

l(Xi, Yi, θ0)−
√
n(θ̂n − θ0)

∣∣∣∣∣

P−−−−−→
n→∞

0

is satisfied.

Convergence of summand II

According to Assumption 1 it holds true that

√
n (θ̂n − θ0)

D−−−−→
n→∞

Np(0, Cov(l(X,Y, θ0))).

Thus, according to the theorem of Prohorov (see for example Satz 13.29 in Klenke (2013)),

we can infer that
(√

n(θ̂n − θ0)
)

n∈N
is tight. That is,

(√
n(θ̂n − θ0)

)

n∈N
is bounded stochastically as a sequence of random vectors in Rp,

(7.9)

which means that, for every δ > 0 there is an n0 ∈ N and a K ∈ R such that P(‖√n(θ̂n −
θ0)‖ > K) < δ holds true for all n ≥ n0. Note that, as a consequence, for every δ > 0 and

every ε > 0 there is an n0 ∈ N and a K ∈ R such that

P(‖θ̂n − θ0‖ ≥ ε) ≤ P

(
‖θ̂n − θ0‖ ≥ K√

n

)
= P(‖√n(θ̂n − θ0)‖ ≥ K) < δ

holds true for all n ≥ n0. Hence,

θ̂n
P−−−−→

n→∞
θ0 (7.10)
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holds true. Moving on, since

II ≤ |√n (θ̂n − θ0)
T |




sup
x∈[−∞,∞]

∣∣∣∣∣
1
n

n∑
i=1

1[−∞,x](Xi) · [g1(Xi, θni)− g1(Xi, θ0)]

∣∣∣∣∣
...

sup
x∈[−∞,∞]

∣∣∣∣∣
1
n

n∑
i=1

1[−∞,x](Xi) · [gp(Xi, θni)− gp(Xi, θ0)]

∣∣∣∣∣




and (7.9) hold true, it is sufficient to prove that

sup
x∈[−∞,∞]

∣∣∣∣∣
1

n

n∑

i=1

1[−∞,x](Xi) · [gj(Xi, θni)− gj(Xi, θ0)]

∣∣∣∣∣
P−−−−−→

n→∞
0, j = 1, . . . , p, (7.11)

is satisfied. Let j ∈ {1, . . . , p} be fixed. Since θni is on the line between θ̂n and θ0, it holds

true that

sup
x∈[−∞,∞]

∣∣∣∣∣
1

n

n∑

i=1

1[−∞,x](Xi) · [gj(Xi, θni)− gj(Xi, θ0)]

∣∣∣∣∣

≤ 1

n

n∑

i=1

sup
||θ−θ0||≤||θ̂n−θ0||

θ∈int(Θ)

|gj(Xi, θ)− gj(Xi, θ0)|

=
1

n

n∑

i=1

h||θ̂n−θ0||(Xi) (7.12)

where

hδ : R −→ R, t 7−→ sup
||θ−θ0||≤δ
θ∈int(Θ)

|gj(t, θ)− gj(t, θ0)|.

Regarding hδ(t), note the following two facts.

❼ hδ(t) −−−→
δ↓0

0 for all t ∈ R, since g(t, θ) is continuous in θ for all t ∈ R and thus, for

all ε > 0 there is a δ0 > 0 such that |gj(t, θ) − gj(t, θ0)| < ε
2 for all ||θ − θ0|| < δ0.

Therefore, if 0 < δ < δ0,

hδ(t) = sup
||θ−θ0||≤δ
θ∈int(Θ)

|gj(t, θ)− gj(t, θ0)| ≤
ε

2
≤ ε.

❼ 0 ≤ hδ(t) ≤ 2 ·M(t) ∈ L([−∞,∞], F ) since, according to Assumption 2, |gj(t, θ)| ≤
M(t) for all j = 1 . . . , p, all t ∈ R and all θ ∈ int(Θ).

We can therefore infer, that
∫

[−∞,∞]

hδ(t) dF (t) −−−→
δ↓0

0 holds true, due to the theorem of

Lebesgue.
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Now, let ε > 0 be given. Since
∫

[−∞,∞]

hδ(t) dF (t) −−−→
δ↓0

0, there is a δ0 > 0 such that

∫

[−∞,∞]

hδ(t) dF (t) <
ε

2
for all 0 ≤ δ ≤ δ0.

First, the strong law of large numbers yields that

1

n

n∑

i=1

hδ0(Xi)
f.s.−−−−→

n→∞
E(hδ0(X1)) =

∫

[−∞,∞]

hδ0(t) dF (t) <
ε

2
.

Then, restricting to the event where ||θ̂n − θ0|| ≤ δ0, we see by (7.12) that

sup
x∈[−∞,∞]

∣∣∣∣∣
1

n

n∑

i=1

1[−∞,x](Xi) · [gj(Xi, θni)− gj(Xi, θ0)]

∣∣∣∣∣

≤ 1

n

n∑

i=1

hδ0(Xi)
f.s.−−−−→

n→∞

∫

[−∞,∞]

hδ0(t) dF (t) <
ε

2

is satisfied. Since almost sure convergence implies convergence in probability and since∫

[−∞,∞]

hδ0(t) dF (t) < ε
2 , we have

P

(
1

n

n∑

i=1

hδ0(Xi) < ε

)
≥ P




∣∣∣∣∣
1

n

n∑

i=1

hδ0(Xi)−
∫

[−∞,∞]

hδ0(t) dF (t)

∣∣∣∣∣ <
ε

2


 −−−−→

n→∞
1.

(7.13)

Thus,

P

(
sup

x∈[−∞,∞]

∣∣∣∣∣
1

n

n∑

i=1

1[−∞,x](Xi) · [gj(Xi, θni)− gj(Xi, θ0)]

∣∣∣∣∣ ≥ ε

)

≤ P

({
1

n

n∑

i=1

hδ0(Xi) ≥ ε

}
∪

{
||θ̂n − θ0|| > δ0

})

≤ P

({
1

n

n∑

i=1

hδ0(Xi) ≥ ε

})
+ P

({
||θ̂n − θ0|| > δ0

})
−−−−→
n→∞

0

thanks to (7.13) and (7.10). Since j ∈ {1, . . . , p} was arbitrary, we thus have proven (7.11).
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Convergence of summand III

Since

III ≤ |√n (θ̂n − θ0)
T |




sup
x∈[−∞,∞]

∣∣∣∣∣

(
1
n

n∑
i=1

1[−∞,x](Xi) · g1(Xi, θ0)

)
−G1(x, θ0)

∣∣∣∣∣
...

sup
x∈[−∞,∞]

∣∣∣∣∣

(
1
n

n∑
i=1

1[−∞,x](Xi) · gp(Xi, θ0)

)
−Gp(x, θ0)

∣∣∣∣∣




and (7.9) hold true, it is sufficient to prove that

sup
x∈[−∞,∞]

∣∣∣∣∣

(
1

n

n∑

i=1

1[−∞,x](Xi) · gj(Xi, θ0)

)
−Gj(x, θ0)

∣∣∣∣∣
P−−−−−→

n→∞
0, j = 1, . . . , p, (7.14)

is satisfied. So let j ∈ {1, . . . , p} and

M := {fx : R −→ R, t 7−→ 1[−∞,x](t) · gj(t, θ0) |x ∈ [−∞,∞]}.

Then

sup
x∈[−∞,∞]

∣∣∣∣∣

(
1

n

n∑

i=1

1[−∞,x](Xi) · gj(Xi, θ0)

)
−Gj(x, θ0)

∣∣∣∣∣

= sup
x∈[−∞,∞]

∣∣∣∣∣
1

n

n∑

i=1

1[−∞,x](Xi) · gj(Xi, θ0) −
∫

[−∞,∞]

1[−∞,x](t) · gj(t, θ0) dF (t)

∣∣∣∣∣

= sup
f∈M

∣∣∣∣∣
1

n

n∑

i=1

f(Xi) −
∫

[−∞,∞]

f(t) dF (t)

∣∣∣∣∣

holds true. According to Lemma 1 in Dehardt (1971),

sup
f∈M

∣∣∣∣∣
1

n

n∑

i=1

f(Xi) −
∫

[−∞,∞]

f(t) dF (t)

∣∣∣∣∣
a.s.−−−−−→

n→∞
0

holds true, if for every ε > 0 there is a finite class of functions Mε such that for each

f ∈ M there are f1, f2 in Mε with f1 ≤ f ≤ f2 and
∫
f2 dF −

∫
f1 dF < ε. Furthermore,

since almost sure convergence implies stochastic convergence, for (7.14) to be true, it is

thus sufficient to find for any ε > 0 a suitable class of functions Mε with these desired

properties. The remaining proof of the convergence of summand III consists in the con-

struction of Mε and the proof of the required properties.

So let ε > 0 be given. Then the following assertions are satisfied:

❼ Due to the theorem of Lebesgue

∃x ∈ R such that 2 ·
∫

[−∞,x]

|gj(t, θ0)| dF (t) <
ε

3
, (7.15)
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since 2 · 1[−∞,−n](t) · |gj(t, θ0)| a.s.−−−→
n→∞

0, |2 · 1[−∞,−n](t) · |gj(t, θ0)|| ≤ 2 ·M(t), and

M ∈ L1([−∞,∞], F ).

❼ Due to the theorem of Lebesgue

∃ y ∈ R such that 2 ·
∫

(y,∞]

|gj(t, θ0)| dF (t) <
ε

3
, (7.16)

since 2 · 1(m,∞](t) · |gj(t, θ0)| a.s.−−−−→
m→∞

0, |2 · 1(m,∞](t) · |gj(t, θ0)|| ≤ 2 · M(t), and

M ∈ L1([−∞,∞], F ). Without loss of generality, we assume that y > x.

❼ Let D := {x ∈ R |F (x)− F (x−) > 0}, where F (x−) := lim
yn↑x

(yn)n∈N⊆R

F (yn). Then, since

∑

x∈D
M(x) · (F (x)− F (x−)) ≤

∫

[−∞,∞]

M(t) dF (t) < ∞,

we can infer that

∃Dε ⊆ D with |Dε| < ∞ and 2 ·
∑

x∈D\Dε

M(x) · (F (x)− F (x−)) <
ε

3
. (7.17)

❼ Let µF denote the measure associated to F . For E ∈ B define µF,d(E) := µF (M∩D)

and µF,c(E) := µF (E ∩ (R \ D)). Now consider ϕc(t) :=
∫

[−∞,t)

M(t) dµF,c(t), t ∈

[−∞,∞]. Since ϕc is continuous, monotonically increasing and the limits lim
t→±∞

ϕc(t)

do exist, ϕc is uniformly continuous. Therefore,

∃ δ > 0 such that for all x < y ∈ R with |x− y| < δ

(7.18)
2 ·

∫

[x,y)

M(t) dµF,c(t) = ϕc(y)− ϕc(x) <
ε

3
.

Moving on, according to (7.17), there is an ñ ∈ N and x̃1 < · · · < x̃ñ ∈ R such that

Dε = {x̃1, . . . , x̃ñ}. Next, choose x according to (7.15) and y according to (7.16). Then,

for ⌈·⌉ : R → {1, 2, . . . }, x 7→ min{k ∈ {1, 2, . . . } | k ≥ x} and given the choice of δ in

(7.18), we define

ti := x+ i · y − x

⌈y−x
δ ⌉

, i = 1, 2, . . . ,
⌈y − x

δ

⌉
− 1.

We thus have constructed the set

{
x, x̃1, . . . , x̃ñ, t1, . . . , t⌈ y−x

δ

⌉
−1

, y

}
. Therefore, there is

an n ∈ N and x1 < x2 < · · · < xn such that

{x1, . . . , xn} =

{
x, x̃1, . . . , x̃ñ, t1, . . . , t⌈ y−x

δ

⌉
−1

, y

}
.
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Note that by the construction of {x1, . . . , xn},

2 ·
∫

[−∞,x1]

|gj(t, θ0)| dF (t) <
ε

3
and 2 ·

∫

(xn,∞]

|gj(t, θ0)| dF (t) <
ε

3
(7.19)

as well as

2 ·
∫

(xi,xi+1)

M(t) dµF,d(t) ≤ 2 ·
∑

x∈D\Dε

M(x) · (F (x)− F (x−)) <
ε

3
, i = 1, . . . , n− 1, (7.20)

and moreover xi+1 − xi < δ and thus

2 ·
∫

(xi,xi+1)

M(t) dµF,c(t) <
ε

3
, i = 1, . . . , n− 1, (7.21)

hold true. We then proceed defining

Mε :=
{
1[−∞,x1](·) · |gj(·, θ0)| , 1[−∞,x1](·) · (−|gj(·, θ0)|) ,

1[−∞,x1](·) · |gj(·, θ0)|+ 1(x1,xn](·) · gj(·, θ0) + 1(xn,∞](·) · |gj(·, θ0)|,

1[−∞,x1](·) · (−|gj(·, θ0)|) + 1(x1,xn](·) · gj(·, θ0) + 1(xn,∞](·) · (−|gj(·, θ0)|)
}

∪
{
1[−∞,x1](·) · |gj(·, θ0)|+ 1(x1,xi](·) · gj(·, θ0) + 1(xi,xi+1)(·) · |gj(·, θ0)|,

1[−∞,x1](·) ·(−|gj(·, θ0)|)+1(x1,xi](·) ·gj(·, θ0)+1(xi,xi+1)(·) ·(−|gj(·, θ0)|) | i = 1, . . . , n− 1
}
.

Now let fx(·) = 1[−∞,x](·) · gj(·, θ0) ∈ M be given. We distinguish the following three

cases.

Case 1 : x < x1.

In this case, for f1(·) := 1[−∞,x1](·)·(−|gj(·, θ0)|) ∈ Mε and f2(·) := 1[−∞,x1](·)·|gj(·, θ0)| ∈
Mε, f1(t) ≤ fx(t) ≤ f2(t), t ∈ [−∞,∞], holds true and

∫

[−∞,∞]

f2(t) dF (t) −
∫

[−∞,∞]

f1(t) dF (t) = 2 ·
∫

[−∞,x1]

|gj(t, θ0)| dF (t) <
ε

3
< ε

is satisfied according to (7.19).

Case 2 : x ∈ [xi, xi+1) for some i ∈ {1, . . . , n− 1}.
In this case, for f1(·) := 1[−∞,x1](·) · (−|gj(·, θ0)|) + 1(x1,xi](·) · gj(·, θ0) + 1(xi,xi+1)(·) ·
(−|gj(·, θ0)|) ∈ Mε and f2(·) := 1[−∞,x1](·) · |gj(·, θ0)|+ 1(x1,xi](·) · gj(·, θ0) + 1(xi,xi+1)(·) ·
|gj(·, θ0)| ∈ Mε, f1(t) ≤ fx(t) ≤ f2(t), t ∈ [−∞,∞], holds true and

∫

[−∞,∞]

f2(t) dF (t) −
∫

[−∞,∞]

f1(t) dF (t) = 2 ·
∫

[−∞,x1]

|gj(t, θ0)| dF (t) + 2 ·
∫

(xi,xi+1)

|gj(t, θ0)| dF (t)
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= 2 ·
∫

[−∞,x1]

|gj(t, θ0)| dF (t) + 2 ·
∫

(xi,xi+1)

|gj(t, θ0)| dµF,d(t) + 2 ·
∫

(xi,xi+1)

|gj(t, θ0)| dµF,c(t)

<
ε

3
+

ε

3
+

ε

3
= ε

is satisfied according to (7.19), (7.20) and (7.21).

Case 3 : x ≥ xn.

In this case, for f1(·) := 1[−∞,x1](·) · (−|gj(·, θ0)|) + 1(x1,xn](·) · gj(·, θ0) + 1(xn,∞](·) ·
(−|gj(·, θ0)|) ∈ Mε and f2(·) := 1[−∞,x1](·) · |gj(·, θ0)| + 1(x1,xn](·) · gj(·, θ0) + 1(xn,∞](·) ·
|gj(·, θ0)| ∈ Mε, f1(t) ≤ fx(t) ≤ f2(t), t ∈ [−∞,∞], holds true and

∫

[−∞,∞]

f2(t) dF (t) −
∫

[−∞,∞]

f1(t) dF (t) = 2 ·
∫

[−∞,x1]

|gj(t, θ0)| dF (t) + 2 ·
∫

(xn,∞]

|gj(t, θ0)| dF (t)

<
ε

3
+

ε

3
< ε

is satisfied according to (7.19). This completes the proof.

Proof of ii) According i)

R1
n(x) = Rn(x)−

1√
n

n∑

i=1

GT (x, θ0) l(Xi, Yi, θ0) + oP(1)

=
1√
n

n∑

i=1

1[−∞,x](Xi) · (Yi −m(Xi))−
1√
n

n∑

i=1

GT (x, θ0) l(Xi, Yi, θ0) + oP(1)

=
1√
n

n∑

i=1

[
1[−∞,x](Xi) · (Yi −m(Xi))−GT (x, θ0) l(Xi, Yi, θ0)

]

︸ ︷︷ ︸
=:R̃1

n(x)

+oP(1). (7.22)

In the remainder of this proof, we show that

R̃1
n(·)

D−−−→
n→∞

R1
∞(·) in D[−∞,∞].

This would indeed complete the proof, since in this case,

R1
n(x) = R̃1

n(·) + oP(1)
D−−−→

n→∞
R1

∞(·) in D[−∞,∞] (7.23)

could be inferred. Equation (7.23) holds true, since for random elements Xn and X

with Xn
D−−−→

n→∞
X and a random element Yn with Yn

P−−−→
n→∞

c, where c is a constant,

Xn + Yn
D−−−→

n→∞
X + c holds. See, for example, Theorem 2.7 and Lemma 2.8 in Vaart

(1998) for a prove of this statement.
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Moving on, for x ∈ [−∞,∞],

E

(
R̃1

n(x)
)
= E (Rn(x))−

1√
n

n∑

i=1

GT (x, θ0)E (l(Xi, Yi, θ0)) = 0 (7.24)

holds true, hence R̃1
n(·) is a centred process. Because of Assumption 1 and the indepen-

dence and identical distribution of (X1, Y1), . . . , (Xn, Yn), we can calculate the covariance

function K̃1(·, ·) of R̃1
n under H0 for s, t ∈ [−∞,∞] as follows:

K̃1(s, t) = Cov(R̃1
n(s), R̃

1
n(t))

= E(R̃1
n(s)R̃

1
n(t))− E(R̃1

n(s))E(R̃
1
n(t))

= E

[(
1√
n

n∑

i=1

[
1[−∞,s](Xi) · (Yi −m(Xi))−GT (s, θ0) l(Xi, Yi, θ0)

]
+ oP(1)

)
×

×
(

1√
n

n∑

i=1

[
1[−∞,t](Xi) · (Yi −m(Xi))−GT (t, θ0) l(Xi, Yi, θ0)

]
+ oP(1)

)]

=
1

n

n∑

i=1

n∑

j=1

E
[
1[−∞,s](Xi) · (Yi −m(Xi))1[−∞,t](Xj)(Yj −m(Xj))

]
−

− 1

n

n∑

i=1

n∑

j=1

E
[
1[−∞,s](Xi) · (Yi −m(Xi))G

T (t, θ0) l(Xj , Yj , θ0)
]

− 1

n

n∑

i=1

n∑

j=1

E
[
GT (s, θ0) l(Xi, Yi, θ0)1[−∞,t](Xj) · (Yj −m(Xj))

]

+
1

n

n∑

i=1

n∑

j=1

E
[(
GT (s, θ0) l(Xi, Yi, θ0)

) (
GT (t, θ0) l(Xj , Yj , θ0)

)]

= E

[
1[−∞,min{s,t}](X) · (Y −m(X))2

]
− E

[
1[−∞,s](X) · (Y −m(X))GT(t, θ0) l(X,Y, θ0)

]

− E
[
GT (s, θ0) l(X,Y, θ0)1[−∞,t](X) (Y −m(X))

]

+ E
[(
GT (s, θ0) l(X,Y, θ0)

) (
GT (t, θ0) l(X,Y, θ0)

)]

=

∫

[−∞,min{s,t}]

Var(Y |X = x) dF (x)−GT (t, θ0)E
[
1[−∞,s](X) · (Y −m(X)) l(X,Y, θ0)

]
−

−GT(s, θ0)E
[
1[−∞,t](X) · (Y −m(X)) l(X,Y, θ0)

]
+GT(s, θ0)Cov(l(X,Y, θ0))G(t, θ0)

= K1(s, t).

We now proceed with the actual proof of the invariance principle. The multivariate central

limit theorem applies to the fidis of R̃1
n(·) and states that for k ∈ N and −∞ ≤ x1 ≤ · · · ≤
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xk ≤ ∞



R̃1
n(x1)
...

R̃1
n(xk)




D−−−−→
n→∞

Nk







0
...

0


 ,




K1(x1, x1) . . . K1(x1, xk)
...

. . .
...

K1(xk, x1) . . . K1(xk, xk)







holds true. Therefore, we define

R1
∞(x) := N(0,K1(x, x)), x ∈ [−∞,∞],

with the covariance function

Cov(R1
∞(x1), R

1
∞(x2)) := K1(x1, x2), x ∈ [−∞,∞].

In order to complete the proof, it remains to prove the tightness of R̃1
n(·). To this regard,

as proposed in Stute (1997), we shall use Theorem 15.6 from Billingsley (1968) again, but

before this, we perform the standard quantile transformation as it has been done in the

proof of Theorem 2.1.4. To be more specific, to the random sample X1, . . . , Xn
iid∼ F a

random sample U1, . . . , Un
iid∼ U(0, 1) with Xi

D
= F−(Ui), i = 1, . . . , n, can be associated.

Then, for u ∈ (0, 1) we define

g(u, θ) :=
∂m(u, θ)

∂θ
∈ Rp,

where

m(u, θ) := m(F−(u), θ).

Note that because g is F−integrable, g is λλ[0,1]−integrable and therefore

∀u ∈ [0, 1] ∀ i ∈ {1, . . . , p} : Gi(u, θ) :=

∫

[0,u]

gi(v, θ) dλλ[0,1](v)

exists and is continuous. For the uniform random sample U1, . . . , Un we define the uniform

marked empirical process

R
1
n(u) :=

1√
n

n∑

i=1

1[0,u](Ui) · (Yi −m(F−(Ui), θ̂n))

that has paths in D[0, 1]. Due to part i), we get

R
1
n(u) = Rn(u)−

1√
n

n∑

i=1

G
T
(u, θ0) l(F

−(Ui), Yi, θ0)+oP(1) for n → ∞, uniformly in u ∈ [0, 1],

and note that in this situation

R̃1
n(x) = R

1
n(F (x)), x ∈ [−∞,∞], (7.25)



7.1. Proofs for Chapter 2 113

holds true. Thus, again, we can assume a regression of Y on the design U1, . . . , Un
iid∼

U(0, 1) instead of X1, . . . , Xn
iid∼ F , where the regression function is now not

m : [−∞,∞]×Θ → R, (x, θ) 7→ m(x, θ),

but

m : (0, 1)×Θ → R, (u, θ) 7→ m(u, θ) := m(F−(u), θ),

since for proving Part ii) of Theorem 2.1.6, only distributional properties matter. Theorem

15.6 from Billingsley (1968) now states that R
1
n(·) is tight if

E

[
|R1

n(u2)−R
1
n(u)|γ |R

1
n(u)−R

1
n(u1)|γ

]
≤ [H(u2)−H(u1)]

2α (7.26)

holds true for 0 ≤ u1 ≤ u ≤ u2 ≤ 1, n ≥ 1 for some γ ≥ 0, α > 1
2 and H a non-decreasing

continuous function on [0, 1]. Because of

R
1
n(u2)−R

1
n(u) = Rn(u2)−

1√
n

n∑

i=1

G
T
(u2, θ0) l(F

−(Ui), Yi, θ0) + oP(1)

−Rn(u) +
1√
n

n∑

i=1

G
T
(u, θ0) l(F

−(Ui), Yi, θ0) + oP(1)

= Rn(u2)−Rn(u)−
[
G

T
(u2, θ0)−G

T
(u, θ0)

] 1√
n

n∑

i=1

l(F−(Ui), Yi, θ0) + oP(1)

and the fact that (similar to our reasoning regarding equation (7.23)) we can drop the

oP(1) term, we can conclude that for γ = 1,

E

[
|R1

n(u2)−R
1
n(u)|γ |R

1
n(u)−R

1
n(u1)|γ

]
= E

[
|R1

n(u2)−R
1
n(u)||R

1
n(u)−R

1
n(u1)|

]

≤ E
[
|Rn(u2)−Rn(u)||Rn(u)−Rn(u1)|

]
+ (7.27)

+ E

[
|Rn(u2)−Rn(u)|

∣∣∣∣∣
[
G

T
(u, θ0)−G

T
(u1, θ0)

] 1√
n

n∑

i=1

l(F−(Ui), Yi, θ0)

∣∣∣∣∣

]
+

(7.28)

+ E

[∣∣∣∣∣
[
G

T
(u2, θ0)−G

T
(u, θ0)

] 1√
n

n∑

i=1

l(F−(Ui), Yi, θ0)

∣∣∣∣∣ |Rn(u)−Rn(u1)|γ
]
+

(7.29)

+ E

[∣∣∣∣∣
[
G

T
(u2, θ0)−G

T
(u, θ0)

] 1√
n

n∑

i=1

l(F−(Ui), Yi, θ0)

∣∣∣∣∣ × (7.30)

×
∣∣∣∣∣
[
G

T
(u, θ0)−G

T
(u1, θ0)

] 1√
n

n∑

i=1

l(F−(Ui), Yi, θ0)

∣∣∣∣∣

]

holds true.
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In order to prove tightness of R
1
n(·), it therefore suffices to prove tightness of the four

summands from above independently with the help of Theorem 15.6 from Billingsley

(1968). Regarding the first summand (7.27), the first factor in the expectation (7.28)

and the last factor in the expectation (7.29), we have already shown that Rn(·) is tight

in Step II of the proof of Theorem 2.1.4 and therefore the fluctuation of the differences

Rn(k) − Rn(l), 0 ≤ k ≤ l ≤ 1, is under control. Regarding the remaining factors in the

three summands (7.28), (7.29) and (7.30), we note that their fluctuation is determined by

the fluctuation of the deterministic function G, whereas the only stochastic part is in the

function l, whose expectation is controllable due to Assumption 1. To be more specific,

we will analyse the fourth summand (7.30) in detail. The calculations for the second and

third summands are similar. For the fourth summand (7.30), we consider at one of the p

summands of the scalar product. So let 1 ≤ j, k ≤ p. We get

E

[∣∣∣∣∣
[
Gj(u2, θ0)−Gj(u, θ0)

] 1√
n

n∑

i=1

lj(F
−(Ui), Yi, θ0)

∣∣∣∣∣ ×

×
∣∣∣∣∣
[
Gk(u, θ0)−Gk(u1, θ0)

] 1√
n

n∑

i=1

lk(F
−(Ui), Yi, θ0)

∣∣∣∣∣

]

=

∣∣∣∣∣

∫

(u,u2]

gj(v, θ0) dλλ[0,1](v)

∣∣∣∣∣ ·
∣∣∣∣∣

∫

(u1,u]

gk(v, θ0) dλλ[0,1](v)

∣∣∣∣∣ ×

× E

[∣∣∣∣∣
1√
n

n∑

i=1

lj(F
−(Ui), Yi, θ0)

∣∣∣∣∣ ·
∣∣∣∣∣
1√
n

n∑

i=1

lk(F
−(Ui), Yi, θ0)

∣∣∣∣∣

]

≤
∫

(u,u2]

|gj(v, θ0)| dλλ[0,1](v) ·
∫

(u1,u]

|gk(v, θ0)| dλλ[0,1](v) ×

× E

[∣∣∣∣∣
1√
n

n∑

i=1

lj(F
−(Ui), Yi, θ0)

∣∣∣∣∣ ·
∣∣∣∣∣
1√
n

n∑

i=1

lk(F
−(Ui), Yi, θ0)

∣∣∣∣∣

]

i)

≤
∫

(u,u2]

|gj(v, θ0)| dλλ[0,1](v)

∫

(u1,u]

|gk(v, θ0)| dλλ[0,1](v) ×

×

√√√√
E

[
1√
n

n∑

i=1

lj(F−(Ui), Yi, θ0)

]2

·

√√√√
E

[
1√
n

n∑

i=1

lk(F−(Ui), Yi, θ0)

]2

ii)
=

∫

(u,u2]

|gj(v, θ0)| dλλ[0,1](v) ·
∫

(u1,u]

|gk(v, θ0)| dλλ[0,1](v) ×

×

√√√√ 1

n

n∑

i=1

E [lj(F−(Ui), Yi, θ0)]
2 ·

√√√√ 1

n

n∑

i=1

E [lk(F−(Ui), Yi, θ0)]
2
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iii)
=

∫

(u,u2]

|gj(v, θ0)| dλλ[0,1](v) ·
∫

(u1,u]

|gk(v, θ0)| dλλ[0,1](v) ×

×
√
E [lj(F−(Ui), Yi, θ0)]

2 ·
√
E [lk(F−(Ui), Yi, θ0)]

2

=

∫

(u,u2]

|gj(v, θ0)| dλλ[0,1](v) ·
∫

(u1,u])

|gk(v, θ0)| dλλ[0,1](v) ×

×
√
Cov(l(X,Y, θ0))jj · Cov(l(X,Y, θ0))kk

iv)

≤




∫

(u1,u2]

M
(
F−(v)

)
dλλ[0,1](v)




2

·
√

Cov(l(X,Y, θ0))jj · Cov(l(X,Y, θ0))kk

v)
= [J(u2)− J(u1)]

2 ·
√

Cov(l(X,Y, θ0))jj · Cov(l(X,Y, θ0))kk.

In the sequence of equations above

i) is true due to the Cauchy-Schwarz inequality,

ii) is true due to E(lj(F
−(Ui), Yi, θ0)) = 0 and the independence of (U1, Y1), . . . , (Un, Yn),

iii) is true because (U1, Y1), . . . , (Un, Yn) are identically distributed,

iv) can be deduced from Assumption 2 part ii) and

v) is true for

J(u) :=

∫

[0,u]

M(F−(v)) dλλ[0,1](v),

which is a non-decreasing and continuous function on [0, 1].

As a consequence of the boundedness of the fluctuation of the summands

∣∣∣∣∣
[
Gj(u2, θ0)−Gj(u, θ0)

] 1√
n

n∑

i=1

lj(F
−(Ui), Yi, θ0)

∣∣∣∣∣ , 1 ≤ j ≤ p,

the criterion of Theorem 15.6 from Billingsley (1968) applies and therefore the boundedness

of their sum, i.e., the scalar product

1√
n

n∑

i=1

[
G

T
(u2, θ0)−G

T
(u, θ0)

]
l(F−(Ui), Yi, θ0)

(see (7.30)) follows. Altogether, we have proven that R
1
n(·) is tight and since the relation

R̃1
n(x) = R

1
n(F (x))

holds true, we know that the process R̃1
n(·) is tight, too, which completes the proof. �
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Proof of Theorem 2.1.7

The proof is divided in two parts.

Part 1

We are in the situation of a univariate linear regression model

❼ with the design variable X, which has the distribution function F ,

❼ where the regression errors are assumed to be homoscedastic with variance 1,

❼ where parameter estimation is performed using the LSE.

In this situation, we are going to show that all conditions under which Theorem 2.1.6

provides a limit process for the marked empirical process of the residuals are fulfilled. For

that, we have to prove that

1) E(Y 2) < ∞,

2) Assumption 1 is satisfied,

3) Assumption 2 is satisfied.

As to 1:
E(Y 2) = E((m(X) + ε)2)

= E(m(X)2) + 2E(m(X))E(ε) + E(ε2)

= E(m(X)2) + 2E(m(X))E(E(ε|X = x)) + E(E(ε2|X = x))

= E(m(X)2) + E(Var(ε|X = x))

= E((fT (X)θ)2) + 1

=

∫

[−∞,∞]

(
p∑

i=1

fi(x)θi

)2

dF (x) + 1

=

p∑

i=1

p∑

j=1

θiθj

∫

[−∞,∞]

fi(x)fj(x) dF (x) + 1

< ∞,

as it is assumed that the matrix J exists. Thus,

∫

[−∞,∞]

fi(x)fj(x) dF (x) < ∞, i, j ∈ {1, . . . , p}.
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As to 2: For n ∈ N, we denote by

Y (n) := (Y1, . . . , Yn)
T

the outcome vector to the random sample X1, . . . , Xn
iid∼ X and by

X(n) :=




f1(X1) · · · fp(X1)
...

. . .
...

f1(Xn) · · · fp(Xn)


 ∈ Rn×p

the associated random design matrix. We assume that there exists n0 ∈ N such that

rank(X(n)) = p for all n ≥ n0 and in the sequel, we only consider the case n ≥ n0.

Hence, the LSE θ̂n equals

θ̂n = (XT (n)X(n))−1XT (n)Y (n).

This assumption is no restriction as in the theorem rank(J) = p is assumed, which is

equivalent to the linear independence of f1, . . . , fp in L2([−∞,∞], F ) and thus such a n0

exists (a.s.) and, since we consider an asymptotic result, for n → ∞, we can assume that

n ≥ n0. Note, that n0 is the realisation of a random variable. For

Jn :=
1

n
XT (n)X(n) =

1

n




f1(X1) · · · f1(Xn)
...

. . .
...

fp(X1) · · · fp(Xn)







f1(X1) · · · fp(X1)
...

. . .
...

f1(Xn) · · · fp(Xn)




=

(
1

n

n∑

i=1

fl(Xi)fm(Xi)

)

1≤l,m≤p

∈ Rp×p,

we again only consider n ≥ n0 such that

rank(Jn) = p. (7.31)

Then, under H0 : m(·) = fT (·)θ0, the following equations holds true:

J−1
n

1√
n

n∑

i=1

f(Xi)εi = J−1
n

1√
n

n∑

i=1

f(Xi)(Yi −m(Xi))

=

(
1

n
XT (n)X(n)

)−1 1√
n

n∑

i=1

f(Xi)(Yi − fT (Xi)θ0)

=
√
n(XT (n)X(n))−1

n∑

i=1

f(Xi)Yi −
√
n(XT (n)X(n))−1

n∑

i=1

f(Xi) f
T (Xi)θ0

=
√
n(XT (n)X(n))−1XT (n)Y (n)−√

n(XT (n)X(n))−1XT (n)X(n)θ0

=
√
n
(
θ̂n − θ0

)
.
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Hence, under H0, we have

√
n
(
θ̂n − θ0

)
= J−1

n

1√
n

n∑

i=1

f(Xi) εi. (7.32)

Because of

X1, . . . , Xn
iid∼ X ∼ F,

Xn =
1

n

n∑

i=1

Xi
a.s.−−−→

n→∞
E(X) =

∫
X dP =

∫

[−∞,∞]

x dF (x)

results from the strong law of large numbers. By applying the strong low of large numbers

again, for 1 ≤ l,m ≤ p,

(Jn)lm =
1

n

n∑

i=1

fl(Xi)fm(Xi)
a.s.−−−→

n→∞
E(fl(X)fm(X)) =

∫

[−∞,∞]

fl(x)fm(x) dF (x) = Jlm

can be concluded and therefore, we finally get

Jn
a.s.−−−→

n→∞
J.

Note that it was assumed in the present theorem that rank(J) = p, hence the result from

above justifies our assumption in (7.31).

Under the assumption that J is regular and for n large enough such that Jn is regular and

because of the continuity of matrix inversion

·−1 : GL(n,R) → GL(n,R), A 7→ A−1

we can conclude

J−1
n

a.s.−−−→
n→∞

J−1.

By further taking (7.32) into account, we get

√
n
(
θ̂n − θ0

)
= J−1

n

1√
n

n∑

i=1

f(Xi)εi

= J−1
n

1√
n

n∑

i=1

f(Xi)εi + J−1 1√
n

n∑

i=1

f(Xi)εi − J−1 1√
n

n∑

i=1

f(Xi)εi

= J−1 1√
n

n∑

i=1

f(Xi)εi +
1√
n

(
J−1
n − J−1

) n∑

i=1

f(Xi)εi

= J−1 1√
n

n∑

i=1

f(Xi)εi + oP(1),

since J−1
n − J−1 converges to zero a.s. and 1√

n

n∑
i=1

f(Xi)εi converges in distribution and is

hence a.s. bounded.
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In order to satisfy Assumption 1, the following equality must hold

J−1 1√
n

n∑

i=1

f(Xi)εi + oP(1) =
1√
n

n∑

i=1

l(Xi, Yi, θ0) + oP(1),

where E(l(X,Y, θ0)) = 0 and Cov(l(X,Y, θ0)) exists. So we simply define

l(Xi, Yi, θ0) := J−1f(Xi)εi = J−1f(Xi)(Yi −m(Xi, θ0)). (7.33)

As a consequence, the first part of Assumption 1 is satisfied. It remains to prove properties

i) and ii) of Assumption 1.

i) E(l(X,Y, θ0)) = E
(
J−1 f(X)(Y −m(X, θ0)

)

= J−1 (E(f(X)Y )− E(f(X)m(X, θ0)))

= J−1 (E(f(X)Y )− E(f(X)E(Y |X)))

= J−1 (E(f(X)Y )− E(E(f(X)Y |X)))

= J−1 (E(f(X)Y )− E(f(X)Y ))

= 0.

ii) Cov(l(X,Y, θ0)) = E(l(X,Y, θ0) l
T (X,Y, θ0))

= E

(
J−1 f(X)(Y −m(X, θ0))

[
J−1 f(X)(Y −m(X, θ0))

]T)

= E
(
J−1 f(X)(Y −m(X, θ0)) (Y −m(X, θ0))f

T (X)J−1
)

=

∫

[−∞,∞]

J−1 f(x)E
[
(Y −m(X, θ0))

2
∣∣X = x

]
fT (x)J−1 dF (x)

under
=
H0

∫

[−∞,∞]

J−1 f(x)E
[
(m(X, θ0) + ε−m(X, θ0))

2|X = x
]
fT (x)J−1 dF (x)

=

∫

[−∞,∞]

J−1 f(x)E
[
ε2
∣∣X = x

]
fT (x)J−1 dF (x)

=

∫

[−∞,∞]

J−1 f(x)E




ε− E(ε|X = x)︸ ︷︷ ︸

=0




2 ∣∣∣∣∣X = x


 fT (x)J−1 dF (x)

=

∫

[−∞,∞]

J−1 f(x)Var(ε|X = x)fT (x)J−1 dF (x)

=

∫

[−∞,∞]

J−1 f(x)σ2(x)fT (x)J−1 dF (x)
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= J−1

∫

[−∞,∞]

f(x)fT (x) dF (x) J−1

= J−1 J J−1

= J−1 (7.34)

and thus, Cov(l(X,Y, θ0)) exists.

As to 3:

As we are in a linear regression scenario, under H0, we have

m(x) = m(x, θ) = fT (x) θ

and therefore

g(x, θ) =
∂m(x, θ)

∂θ
=

∂ fT (x) θ

∂θ
= f(x) = (f1(x), . . . , fp(x))

T

holds true. Thus, m(x, θ) is continuously differentiable in θ for all θ ∈ Rp and all x ∈ R.

Hence,

Gi(x, θ) =

∫

[−∞,x]

gi(u, θ) dF (u) =

∫

[−∞,x]

fi(u) dF (u), 1 ≤ i ≤ p,

exists, since fi, . . . , fp are supposed to be (square) integrable with respect to F . Thus,

ii) of Assumption 2 holds. Note that in a general regression model with random design,

g (and therefore also G) may depend on θ (see Section 2.1.1), whereas in the present

situation of a linear regression model with random design, g (and therefore also G) do not

depend on θ any more.

Part 2

Due to Theorem 2.1.6, we already know the mean function and the covariance function of

the process R1
∞(·) in the general situation of a regression model with random design:

m(s) := E(R1
∞(s)) = 0, s ∈ [−∞,∞],

and

K1(s, t) = Cov(R1
∞(s), R1

∞(t)) (7.35)

=

∫

[−∞,min{s,t}]

Var(Y |X = u) dF (u) +GT(s, θ0)Cov(l(X,Y, θ0))G(t, θ0)

−GT (s, θ0)E
[
1[−∞,t](X) · (Y −m(X, θ0)) l(X,Y, θ0)

]
(7.36)

−GT (t, θ0)E
[
1[−∞,s](X) · (Y −m(X, θ0)) l(X,Y, θ0)

]
, s, t ∈ [−∞,∞].
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In the present situation of Theorem 2.1.7, we obtain for the first summand

∫

[−∞,min{s,t}]

Var(Y |X = u) dF (u) =

∫

[−∞,min{s,t}]

σ2 dF (u)

=

∫

[−∞,min{s,t}]

1 dF (u)

= F (min{s, t}) .

Because of the representation in equation (7.34), we have Cov(l(X,Y, θ0)) = J−1. Thus,

for the second summand, we get

GT (s, θ0)Cov(l(X,Y, θ0)) G(t, θ0) = GT (s, θ0) J
−1 G(t, θ0)

H0= GT (s) J−1 G(t) .

For the third summand, we get with (7.33)

GT (s, θ0)E
[
1[−∞,t](X) · (Y −m(X, θ0)) l(X,Y, θ0)

]

= GT (s, θ0) J
−1

∫

[−∞,t]

E

[
(Y −m(X, θ0))

2f(X)
∣∣∣X = x

]
dF (x)

= GT (s, θ0) J
−1

∫

[−∞,t]

E
[
(Y −m(x, θ0))

2 |X = x
]
f(x) dF (x)

= GT (s, θ0) J
−1

∫

[−∞,t]

Var (Y |X = x) f(x) dF (x)

= GT (s, θ0) J
−1

∫

[−∞,t]

σ2(x)f(x) dF (x)

= GT (s, θ0) J
−1

∫

[−∞,t]

f(x) dF (x)

= GT (s, θ0) J
−1G(t, θ0)

H0= GT (s) J−1G(t)

and similarly for the fourth summand, we obtain

GT (t, θ0)E
[
1[−∞,s](X) · (Y −m(X, θ0)) l(X,Y, θ0)

]
= GT (t) J−1G(s) .
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Inserting all four summands in the covariance function from equation (7.36), for s, t ∈
[−∞,∞], we get

K1(s, t) = F (min{s, t}) +GT (s) J−1 G(t)−GT (s) J−1G(t)−GT (t) J−1G(s)

= F (min{s, t})−GT (t) J−1G(s)

= F (min{s, t})−




∫

[−∞,s]

f(x) dF (x)




T


∫

[−∞,∞]

f(x) fT (x) dF (x)




−1 ∫

[−∞,t]

f(x) dF (x),

which was what had to be proven. �

Proof of Theorem 2.1.10

We begin the proof with two technical lemmas, the first of which is well known and

addresses general observations regarding quantile functions.

Lemma 7.1.1.

Let F be a distribution function and F− be the associated quantile function. Let

a, b, F−(0) and F−(1) be defined as in Remark 2.1.9. Then, for all t ∈ (0, 1) and all

x ∈ (a, b), the following relations hold true:

i) F (F−(t)) ≥ t and F−(F (x)) ≤ x. (7.37)

ii) F (x) ≥ t ⇐⇒ F−(t) ≤ x. (7.38)

iii) F (F−(F (x))) = F (x) and F−(F (F−(t))) = F−(t). (7.39)

iv) F (F−(t)) = t ⇐⇒ t ∈ F ((a, b] ∩ R). (7.40)

Note that, if 0 < F (x) < 1 for all x ∈ R, we have (a, b) = R and note that it can

happen that (a, b) = ∅.

Proof of Lemma 7.1.1 : Since the distribution function F is right-continuous,

F−(t) = min{x ∈ R : F (x) ≥ t}, t ∈ (0, 1),

holds true. Therefore, for all t ∈ (0, 1) and x ∈ (a, b),

F (F−(t)) = F (min{x ∈ R : F (x) ≥ t}) ≥ t

and

F−(F (x)) = min{s ∈ R : F (s) ≥ F (x)} ≤ x

can be deduced. This proves (7.37).
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Regarding the second assertion, if F (x) ≥ t holds true, due to the fact that F− is mono-

tonically increasing and (7.37) holds true, we can infer that F−(t) ≤ F−(F (x)) ≤ x.

Otherwise, if F−(t) ≤ x holds true, since F is monotonically increasing and (7.37) holds

true, F (x) ≥ F (F−(t)) ≥ t can be inferred, which proves the other implication.

Regarding (7.39), the first part of (7.37) (with t = F (x)) shows that F (F−(F (x))) ≥
F (x), and applying F to the second part of (7.37) yields F (F−(F (x))) ≤ F (x). Hence,

F (F−(F (x))) = F (x) for all x ∈ (a, b). Similarly, the second part of (7.37) applied to x =

F−(t) shows that F−(F (F−(t))) ≤ F−(t), while applying F− to the first property yields

F−(F (F−(t))) ≥ F−(t), and hence, we have F−(F (F−(t))) = F−(t) for all t ∈ (0, 1). We

have thus shown (7.39).

Regarding the fourth assertion, since F−(t) ∈ (a, b] ∩ R for all t ∈ (0, 1), we can infer

from t = F (F−(t)) that t ∈ F ((a, b] ∩ R) holds true. To see the reverse implication, let

t ∈ F ((a, b] ∩ R) be true. Then, there is an x0 ∈ (a, b] ∩ R with F (x0) = t and thus

{x ∈ (a, b]∩R |F (x) = t} is not empty. Therefore, because F is monotonically increasing,

we can conclude that

F (F−(t)) = F (min{x ∈ (a, b] ∩ R|F (x) ≥ t}) = t

holds true. �

The second lemma is concerned with the main technical identities necessary for the proof

of Theorem 2.1.10.

Lemma 7.1.2.

Let X be a random variable with distribution function F . Let F− denote the

quantile function associated to F . Define

U := F (X) and X̃ := F−(U).

Then, the following assertions hold true:

i) P
U |σ(F−) = λλ|σ(F−).

ii)

FU (t) = P(U ≤ t) =





0, t ≤ 0,

lim
x↑F−(t)

F (x), t /∈ F (R) and t ∈ (0, 1),

t, t ∈ F (R) and t ∈ (0, 1),

1, t ≥ 1.

iii) X = X̃ a.s.

iv) F (X̃) = U.
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Proof of Lemma 7.1.2

We claim that in the given situation

P
(
F−(F (X)) ∈ (−∞, d]

)
= F (d), d ∈ (a, b). (7.41)

Here, as defined in 2.1.9, a = inf{x ∈ R|F (x) > 0} , b = sup{x ∈ R|F (x) < 1} and

F−(1) = b. Note that X > a a.s. and therefore, in this proof, we can assume X > a.

To see that equation (7.41) holds true, first note that if X ≤ d, then F−(F (X)) ≤
F−(F (d)) ≤ d due to (7.37). This proves

P
(
F−(F (X)) ∈ (−∞, d]

)
≥ P(X ≤ d) = F (d).

To prove the converse inequality, define c := sup{y ∈ R|F (y) ≤ F (d)} and note that

c ∈ [d, b) ⊂ (a, b) ⊆ R is well defined, since F (d) < 1. Now, there are two cases:

Case 1; F (c) ≤ F (d):

In this case, if F−(F (X)) ≤ d, (7.39) shows that F (X) = F (F−(F (X))) ≤ F (d)

and hence X ≤ c. Therefore,

P
(
F−(F (X)) ∈ (−∞, d]

)
≤ P(X ≤ c) = F (c) ≤ F (d).

Case 2; F (c) > F (d):

In this case, if F−(F (X)) ≤ d, then (7.39) shows F (X) = F (F−(F (X))) ≤ F (d)

and hence X < c by the definition of c and because F (c) > F (d). Therefore,

P(F−(F (X)) ∈ (−∞, d]) ≤ P(X < c)

= lim
n→∞

P

(
X ≤ c− 1

n

)

= lim
n→∞

F

(
c− 1

n

)

≤ F (d)

holds true by the definition of c and the fact that F is monotonically increasing.

Altogether, (7.41) is proved.

To complete the proof of Lemma 7.1.2, we shall use the probability space ((0, 1),B, λλ[0,1]),

on which we define the random variable V (x) = x, meaning that V ∼ U(0, 1). It is well

known that F−(V ) ∼ F ∼ X. Furthermore, we define

P := {(F−)−1((−∞, d]) | d ∈ (a, b)}

and note that σ(F−) = σ(P ) and that P is closed under non-empty finite intersections.

We will now prove the assertions i) - iv) of Lemma 7.1.2 one by one.
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Regarding i): It is sufficient to prove that P(U ∈ M) = λλ(M) for all M ∈ P . But with M =

(F−)−1((−∞, d]) for some d ∈ (a, b), we see in view of (7.41) and because of F−(V ) ∼
X, that

λλ[0,1](M) = λλ[0,1]((F
−)−1((−∞, d])) = λλ[0,1](F

−(V ) ∈ (−∞, d])

= P(X ∈ (−∞, d]) = F (d)

= P(F−(F (X)) ∈ (−∞, d]) = P(U ∈ (F−)−1((−∞, d]))

= P(U ∈ M).

Regarding ii): According to the definition of U := F (X), U takes values in [0, 1]. Therefore,

FU (t) = 0 for t < 0, FU (t) = 1 for t ≥ 1. For t = 0, we get

FU (0) = P(F (X) ≤ 0) = P(F (X) = 0) = 0, (7.42)

since, either F (x) > 0 for all x ∈ R, or there is an x0 ∈ R such that F (x) > 0 for all

x > x0 and F (x) = 0 for all x < x0. In the first case, the last equation in (7.42) is

obviously valid, and in the second case

P(F (X) = 0) = P(X < x0) = lim
n→∞

F

(
x0 −

1

n

)
= 0

holds, stating that the last equation in (7.42) is valid, too. The following two cases

remain:

Case 1; t ∈ (0, 1) and t ∈ F (R):

Since t ∈ F (R), there is an x ∈ R with F (x) = t and therefore, according to

(7.38),

(0, t] = (0, F (x)] = {s ∈ (0, 1)|s ≤ F (x)} = {s ∈ (0, 1)|F−(s) ≤ x}

= (F−)−1((−∞, x]) ∈ σ(F−)

holds true. Thus, since we have P
U |σ(F−) = λλ|σ(F−), we can conclude

FU (t) = P(U ≤ t) = P(U ∈ (0, t]) = λλ[0,1]((0, t]) = t.

Case 2; t ∈ (0, 1) and t /∈ F (R):

In this case, as claimed,

P(F (X) ≤ t) = P(X < F−(t)) (7.43)

= P
X

( ∞⋃

n=1

(
−∞, F−(t)− 1

n

])
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= lim
n→∞

P
X

((
−∞, F−(t)− 1

n

])

= lim
n→∞

F

(
F−(t)− 1

n

)

= lim
x↑F−(t)

F (x).

is valid. In the above equation, (7.43) holdes true, since for x ∈ R and t ∈ (0, 1)

the following equivalences apply:

F (x) ≤ t and t /∈ F (R) ⇐⇒ F (x) < t

⇐⇒ ¬ (F (x) ≥ t)

(7.38)⇐⇒ ¬
(
F−(t) ≤ x

)

⇐⇒ x < F−(t).

Here ¬P denotes the negation of a proposition P .

Regarding iii): (7.37) implies that X̃ = F−(U) = F−(F (X)) ≤ X. Assertion i), however, implies

that for any Borel set M ⊆ R,

P(X̃ ∈ M) = P
(
U ∈ (F−)−1(M)

)
= λλ[0,1]

(
(F−)−1(M)

)

= λλ[0,1]

(
V ∈ (F−)−1(M)

)
= λλ[0,1]

(
F−(V ) ∈ M

)
(7.44)

= P(X ∈ M),

holds true, since F−(V ) ∼ F ∼ X. Hence, X̃ ∼ X and X̃ ≤ X almost surely,

which is only possible if X̃ = X a.s. To see this, consider Y = arctan(X) and

Ỹ = arctan(X̃). Then, Ỹ ≤ Y and Ỹ ∼ Y hold true and thus

E

(
|Y − Ỹ |

)
= E

(
Y − Ỹ

)
= E(Y )− E(Ỹ ) = 0.

Thus, |Y − Ỹ | = 0 a.s., hence Y = Ỹ a.s. and therefore X = X̃ a.s. Note that we

have used the arctan transformation to ensure that E(Y ) exists.

Regarding iv): From (7.39), we can infer that

F (X̃) = F (F−(U)) = F (F−(F (X))) = F (X) = U.

�
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We can now proceed with the actual proof of Theorem 2.1.10. The application of Lemma

7.1.2 now guarantees the existence of a random variable U that has the desired distribu-

tional properties and which we use as the design variable of the transformed regression

model with random design

Y = (m ◦ F−)(U) + ε.

It remains to prove the following assertions:

i) In the transformed model, the relation

(m ◦ F−)(u) = E(Y |U = u), u ∈ (0, 1),

holds true, which states that m ◦ F− is indeed the new regression function.

ii) The relations E(ε |U = u) = 0 and Var(ε |U = u) = σ2(F−(u)) hold true in the

transformed model.

iii) Assumption 2 of Section 2.1.1 is satisfied in the situation of the transformed model.

In the following, we prove these assertions one by one.

Regarding i) Since U = F (X̃) and X̃ = F−(U), we have σ(X̃) = σ(U) and therefore

E(Y |X̃) = E(Y |U) a.s.

holds true. Furthermore, we already know that X̃ = X a.s. and, since σ(X̃) =

σ(U) ⊆ σ(X), we additionally know that E(Y |X̃) is σ(X) measurable. We therefore

get for all B ∈ B

E(E(Y |X̃) · 1B(X)) = E(E(Y |X̃) · 1B(X̃)) = E(Y · 1B(X̃)) = E(Y · 1B(X)) a.s.,

(7.45)

which means that E(Y |X̃) = E(Y |X) a.s. Altogether, we have

E(Y |X) = E(Y |U) a.s.

Now, since in the original model the factorisation m(x) = E(Y |X = x) of the

conditional expectation E(Y |X) was given as the regression function and

(m ◦ F−)(U) = m(F−(U)) = m(X̃) = m(X) = E(Y |X) = E(Y |U) a.s.

holds, we know that m ◦ F− is a factorisation of E(Y |U) and thus get

(m ◦ F−)(u) = E(Y |U = u) P
U -a.e. for u ∈ (0, 1).

Regarding ii) According to assertion i), in the transformed model we have

E(ε|U) = E(Y −m(F−(U))|U) = E(Y |U)−m(F−(U)) = 0
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and therefore

E(ε|U = u) = 0 P
U -a.e. for u ∈ (0, 1).

With the same arguments as used in the proof of (7.45), one can see that E(Z|X̃) =

E(Z|X) a.s. for every integrable random variable Z and therefore one has E(Y 2|X̃) =

E(Y 2|X). Again, since σ(X̃) = σ(U), we can infer that E(Y 2|U) = E(Y 2|X) holds

true a.s. for a square integrable Y and thus, we have

E(Y 2|X = F−(u)) = E(Y 2|U = u) P
U -a.e. for u ∈ (0, 1).

Using this, we conclude that for PU -a.a. u ∈ (0, 1),

σ2(F−(u)) = Var(ε |X = F−(u))

= Var(Y |X = F−(u))

= E(Y 2 |X = F−(u))− [E(Y |X = F−(u))]2

= E(Y 2 |U = u)− [E(Y |U = u)]2

= Var(Y |U = u)

= Var(ε |U = u)

holds true.

Regarding iii) Under the null hypothesis H0 : m ∈ M := {m(·, θ)|θ ∈ Θ}, Θ ⊆ Rp, for u ∈ (0, 1),

similar to the proof of Theorem 2.1.6, we define

g(u, θ) := (g1(u, θ), . . . , gp(u, θ))
T

:=

(
∂m(F−(u), θ)

∂θ1
, . . . ,

∂m(F−(u), θ)
∂θp

)T

=
∂m(F−(u), θ)

∂θ
,

which is well defined since Assumption 2 is satisfied in the original model. Note that,

since Assumption 2 in the original model is satisfied, there is the λλ[0,1]−integrable

function M(x) := (M ◦ F−)(x), x ∈ R, such that

∀ 1 ≤ j ≤ p ∀x ∈ R ∀ θ ∈ int(Θ) : |gi(x, θ)| ≤ M(x).

Therefore, Assumption 2 is also fulfilled in the transformed model. In particular,

gi(·, θ) is λλ[0,1]−integrable for every i = 1, . . . , p and therefore,

G(u, θ) := (G1(u, θ), . . . , Gp(u, θ))
T
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:=




∫

[0,u]

g1(v, θ) dλλ[0,1](v), . . . ,

∫

[0,u]

gp(v, θ) dλλ[0,1](v)




T

, u ∈ (0, 1),

exists and its components are continuous functions with respect to θ. �

Proof of Corollary 2.2.5

First, we compute the mean function m(s) for s ∈ [a, b].

m(s) = E((Bf,F ◦ F )(s))

= E


B(F (s)) −




∫

[a,s]

f(t) dF (t)




T

J−1

∫

[a,b]

f(t) dB(F )(t)




= E(B(F (s)))︸ ︷︷ ︸
=0

−E







∫

[a,s]

f(t) dF (t)




T

J−1

∫

[a,b]

f(t) dB(F )(t)




= −




∫

[a,s]

f(t) dF (t)




T

J−1
E




∫

[a,b]

f(t) dB(F )(t)


 , s ∈ [a, b]. (7.46)

According to Theorem 2.2.4 and its proof

∫

[a,b]

f(t) dB(F (t)) =

(R∗)∫

[a,b]

f(t) dB(F (t)) =

(R)∫

[a−ε,b]

f(t) d(B̃ ◦ F )(t) =

(R)∫

[a−ε,b]

f(t) dB(F (t))

(7.47)

holds true for every ε > 0, where f(x) = f(x), x ∈ [a, b], f(x) = f(a), x ∈ [−∞, a)

and (B̃ ◦ F )(t) = B(0) = 0 = B(0) = B(F (t)), t ∈ [a − ε, a). Let ε > 0 be given. For

m ∈ N, let a − ε = xm1 ≤ · · · ≤ xmm = b be a partition of the interval [a − ε, b] with

sup
j=2,...,m

|xmj − xmj−1| −−−−→
m→∞

0. Due to the theorem of Lebesgue, we get

E



∫

[a,b]

f(t) dB(F )(t)


 = E




(R)∫

[a−ε,b]

f(t) dB(F (t))




= E

[
lim

m→∞

m∑

i=2

f(xmi) (B(F (xmi))−B(F (xmi−1)))

]
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= lim
m→∞

m∑

i=2

f(xmi) [E (B(F (xmi)))︸ ︷︷ ︸
=0

−E (B(F (xmi−1)))︸ ︷︷ ︸
=0

]

= 0.

Inserting this in equation (7.46) yields

m(s) = 0, s ∈ [a, b],

which had to be proven. Secondly, we have to show that for s, t ∈ [a, b],

K(s, t) = F (min{s, t})−




∫

[a,s]

f(x) dF (x)




T


∫

[a,b]

f(t)fT (t) dF (t)




−1 ∫

[a,t]

f(x) dF (x)

is valid. Therefore, for s, t ∈ [a, b], we calculate

K(s, t) = Cov [(Bf,F ◦ F )(s), (Bf,F ◦ F )(t)]

= Cov


B(F (s))−




∫

[a,s]

f(x)dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x), (7.48)

B(F (t))−




∫

[a,t]

f(x)dF (x)




T

J−1

∫

[a,b]

f(x)dB(F )(x)




= Cov(B(F (s)), B(F (t)))︸ ︷︷ ︸
=: I

−Cov


B(F (s)),




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x)




︸ ︷︷ ︸
=: II

− Cov


B(F (t)),




∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x)




︸ ︷︷ ︸
=: III

+Cov







∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x),




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x)




︸ ︷︷ ︸
=: IV

.

(7.49)
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Now, the task is to compute the terms I to IV.

As for I:

Cov(B(F (s)), B(F (t))) = min{F (s), F (t)} = F (min{s, t}), s, t ∈ [a, b],

since B is a standard Brownian motion.

As for II: Let ε > 0 be given. For m ∈ N, let a − ε = xm1 ≤ · · · ≤ xmm = b be a

partition of the interval [a− ε, b] with sup
j=2,...,m

|xmj −xmj−1| −−−−→
m→∞

0. According to (7.47),

we then obtain

Cov


B(F (s)),

∫

[a,b]

f(x) dB(F )(x)


 = Cov


B(F (s)),

(R)∫

[a−ε,b]

f(x) dB(F )(x)




= Cov

(
B(F (s)), lim

m→∞

m∑

i=2

f(xmi) (B(F (xmi))−B(F (xmi−1)))

)

= E

(
B(F (s)) · lim

m→∞

m∑

i=2

f(xmi) (B(F (xmi))−B(F (xmi−1)))

)
, s ∈ [a, b],

as the expected value of both summands is zero. Due to the theorem of Lebesgue, we get

E

(
B(F (s)) · lim

m→∞

m∑

i=2

f(xmi) (B(F (xmi))−B(F (xmi−1)))

)

= lim
m→∞

m∑

i=2

f(xmi)E (B(F (s)) · (B(F (xmi))−B(F (xmi−1))))

= lim
m→∞

m∑

i=2

f(xmi) Cov (B(F (s)), (B(F (xmi))−B(F (xmi−1))))

= lim
m→∞

m∑

i=2

f(xmi) (min{F (s), F (xmi)} −min{F (s), F (xmi−1)})

= lim
m→∞

m∑

i=2

f(xmi)
(
FF (s)(xmi)− FF (s)(xmi−1)

)

=

(R)∫

[a−ε,b]

f(x) dFF (s)(x) =

∫

[a,b]

f(x) dFF (s)(x)

=

∫

[a,s]

f(x) dF (x), s ∈ [a, b]. (7.50)



132 7. Appendix

Note that equation (7.50) holds true, since the signed measure µFF (s)
associated to FF (s)

has its support in [a, s] and µFF (s)
= µF |[a,s], where, as usual, µF denotes the measure

associated to F . Taking the above into account, we obtain

Cov


B(F (s)),




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x)




=




∫

[a,t]

f(x) dF (x)




T

J−1Cov


B(F (s)),

∫

[a,b]

f(x) dB(F )(x)




=




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,s]

f(x) dF (x), s, t ∈ [a, b].

As for III: Similar to II, we obtain

Cov


B(F (t)),




∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x)




=




∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,t]

f(x) dF (x), s, t ∈ [a, b].

As for IV: Again, let ε > 0. For m ∈ N let a − ε = xm1 ≤ · · · ≤ xmm = b be a

partition of the interval [a− ε, b] with sup
j=2,...,m

|xmj − xmj−1| −−−−→
m→∞

0. Thus, we obtain

Cov







∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x),




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x)




= Cov







∫

[a,s]

f(x) dF (x)




T

J−1

(R)∫

[a−ε,b]

f(x) dB(F )(x),




∫

[a,t]

f(x) dF (x)




T

J−1

(R)∫

[a−ε,b]

f(x) dB(F )(x)






7.1. Proofs for Chapter 2 133

=




∫

[a,s]

f(x) dF (x)




T

J−1Cov




(R)∫

[a−ε,b]

f(x) dB(F )(x),

(R)∫

[a−ε,b]

f(x) dB(F )(x)


 ×

× J−1

∫

[a,t]

f(x) dF (x)

=




∫

[a,s]

f(x) dF (x)




T

J−1 ×

× Cov

(
lim

m→∞

m∑

i=2

f(xmi)(B(F (xmi))−B(F (xmi−1))),

lim
m→∞

m∑

j=2

f(xmj)(B(F (xmj))−B(F (xmj−1)))


 ×

× J−1

∫

[a,t]

f(x) dF (x), s, t ∈ [a, b]. (7.51)

Due to the theorem of Lebesgue, we can reshape the covariance from the term above as

follows:

Cov

(
lim

m→∞

m∑

i=2

f(xmi) (B(F (xmi))−B(F (xmi−1))),

lim
m→∞

m∑

j=2

f(xmj)(B(F (xmj))−B(F (xmj−1)))




= lim
m→∞

m∑

i=2

m∑

j=2

f(xmi)f
T
(xmj) [Cov(B(F (xmi)), B(F (xmj)))−

Cov(B(F (xmi−1)), B(F (xmj)))−

Cov(B(F (xmi)), B(F (xmj−1)))+

Cov(B(F (xmi−1)), B(F (xmj−1)))]

= lim
m→∞




m∑

i=2

i−1∑

j=2

f(xmi)f
T
(xmj) (F (xmj)− F (xmj)− F (xmj−1) + F (xmj−1))+

m∑

i=2

m∑

j=i+1

f(xmi)f
T
(xmj) (F (xmi)− F (xmi−1)− F (xmi) + F (xmi−1))

m∑

i=2

f(xmi)f
T
(xmi) (F (xmi)− F (xmi−1)− F (xmi−1) + F (xmi−1))

]
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= lim
m→∞

m∑

i=2

f(xmi)f
T
(xmi) (F (xmi)− F (xmi−1))

=

(R)∫

[a−ε,b]

f(x)f
T
(x) dF

=

∫

[a,b]

f(x)fT (x) dF

= J. (7.52)

The last equation holds true, due to the definition of J in (2.7) on page 30. Finally,

inserting (7.52) in (7.51) leads to

Cov







∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x),




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,b]

f(x) dB(F )(x)




=




∫

[a,s]

f(x) dF (x)




T

J−1×

× Cov

(
lim

m→∞

m∑

i=2

f(xmi)(B(F (xmi))−B(F (xmi−1))),

lim
m→∞

m∑

j=2

f(xmj)(B(F (xmj))−B(F (xmj−1)))


 ×

× J−1

∫

[a,t]

f(x) dF (x)

=




∫

[a,s]

f(x) dF (x)




T

J−1 J J−1

∫

[a,t]

f(x) dF (x)

=




∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,t]

f(x) dF (x), s, t ∈ [a, b].

We insert I, II, III and IV in equation (7.49) on page 130 to determine the covariance

function of Bf,F ◦ F , for s, t ∈ [a, b], as follows:

K(s, t) = F (min{s, t})−




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,s]

f(x) dF (x)
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−




∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,t]

f(x) dF (x) +




∫

[a,s]

f(x) dF (x)




T

J−1

∫

[a,t]

f(x) dF (x)

= F (min{s, t})−




∫

[a,t]

f(x) dF (x)




T

J−1

∫

[a,s]

f(x) dF (x)

= F (min{s, t})−




∫

[a,s]

f(x) dF (x)




T 


∫

[a,b]

f(t)fT (t) dF (t)




−1 ∫

[a,t]

f(x) dF (x).

This completes the proof. �

Proof of Lemma 2.2.7

The proof is divided into four lemmas and one corollary, which together proof Lemma 2.2.7.

These are:

Lemma 7.1.3: This lemma states a variant of the well-known change of variables formula for inte-

grals in the situation of an integral with respect to a distribution function. Since

this transformation is used in a number of places in this work, we state a proof here

for the sake of completeness.

Lemma 7.1.4: This lemma addresses a duality between distribution functions and quantile func-

tions.

Lemma 7.1.5: This lemma deals with the special case of Lemma 2.2.7 in which the distribution

function F has support in [0, 1] (i.e. c = 0 and d = 1) and a = 0 and b = 1 hold

true. Note that Evers (2022) contains a different proof of a result that is quite

similar to Lemma 7.1.5. The difference is that the proof in Evers (2022) works

for infinitely many functions fi, but yields only continuous functions gi, instead of

Lipschitz continuous functions.

Corollary 7.1.6: This corollary contains the main assertion of Lemma 2.2.7 and is a generalisation of

Lemma 7.1.5. This corollary can also be found in Evers (2022), as it was developed

together with the author.

Lemma 7.1.7: This lemma proves the additional assertion made in Lemma 2.2.7, according to which

the linear independence of the functions f1, . . . , fp and g1, . . . , gp is equivalent.
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Lemma 7.1.3.

Let F : R −→ R be a distribution function, let a ≤ b ∈ R and let g : R → R be

measurable and F -integrable. Then

∫

(a,b]

g(x) dF (x) =

∫

(F (a),F (b)]

(g ◦ F−)(u)) dλλ[0,1](u)

holds true. If, in addition a ≤ inf(supp(F )) is valid, it holds true that

∫

[a,b]

g(x) dF (x) =

∫

[0,F (b)]

(g ◦ F−)(u)) dλλ[0,1](u).

Proof of Lemma 7.1.3:

First, note that 1(a,b](x) · g(x) is measurable and F -integrable, since g is and that the

quantile function F− : (0, 1) → R is continuous from the left and therefore measurable,

hence g ◦ F− is measurable. Additionally, we already know from equation (7.44), page

126, that λλF−

[0,1] ∼ X ∼ F . That is, PX for X ∼ F is the pushforward measure of λλ[0,1]

with respect to the measurable mapping F−. We will use this fact in equation (7.53) of

the following series of equations. Thus,

∫

(a,b]

g(x) dF (x) =

∫

(a,b]

g(x) dλλF−

[0,1](x) (7.53)

=

∫

R

1(a,b](x) · g(x) dλλF−

[0,1](x)

=

∫

(F−)−1(R)

(
(g · 1(a,b]

)
◦ F−)(u) dλλ[0,1](u) (7.54)

=

∫

[0,1]

1(a,b](F
−(u)) · g(F−(u)) dλλ[0,1](u)

=

∫

[0,1]

1(F (a),F (b)](u) · (g ◦ F−)(u) dλλ[0,1](u) (7.55)

=

∫

(F (a),F (b)]

(g ◦ F−)(u) dλλ[0,1](u).

holds true.



7.1. Proofs for Chapter 2 137

In the equations above, (7.54) holds true, according to the standard change of variables

formula for pushforward measures (see for example Paragraph 19 in Bauer (1992) in this

regard). Furthermore, in equation (7.55) we used the equivalence

a < F−(u) ≤ b ⇐⇒ F (a) < u ≤ F (b), u ∈ [0, 1],

which holds true according to (7.38) of Lemma 7.1.1 and the fact that

a < F−(u) ⇐⇒ ¬(a ≥ F−(u)) ⇐⇒ ¬(F (a) ≥ u) ⇐⇒ F (a) < u.

If, in addition a ≤ inf(supp(F )) is valid, then either F (a) = 0 and F is continuous in a or

F (x) = 0 for all x ∈ (−∞, a) and F has a jump at a. In the first case,

∫

[a,b]

g(x) dF (x) =

=0︷ ︸︸ ︷∫

{a}

g(x) dF (x)+

∫

(a,b]

g(x) dF (x)

=

=0︷ ︸︸ ︷∫

[0,F (a)]

(g ◦ F−)(u))λλ[0,1](u)+

∫

(F (a),F (b)]

(g ◦ F−)(u))λλ[0,1](u)

=

∫

[0,F (b)]

(g ◦ F−)(u))λλ[0,1](u)

holds true. In the second case F−(u) = a holds true for all u ∈ [0, F (a)]. Thus,

∫

[a,b]

g(x) dF (x) =

∫

{a}

g(x) dF (x) +

∫

(a,b]

g(x) dF (x)

= F (a) · g(a) +
∫

(F (a),F (b)]

(g ◦ F−)(u))λλ[0,1](u)

=

∫

[0,F (a)]

(g ◦ F−)(u)λλ[0,1](u) +

∫

(F (a),F (b)]

(g ◦ F−)(u))λλ[0,1](u)

=

∫

[0,F (b)]

(g ◦ F−)(u))λλ[0,1](u).

is satisfied. �
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Lemma 7.1.4.

i) Let Q : [0, 1] −→ [Q(0), Q(1)] be a quantile function, i.e. Q is continuous from

the left and monotonically increasing. Define Q+ : R −→ [0, 1] by

Q+(x) :=





0, x < Q(0),

sup{u ∈ [0, 1] |Q(u) ≤ x}, x ∈ [Q(0), Q(1)),

1, x ≥ Q(1).

Then Q+ is a distribution function and (Q+)−(u) = Q(u), u ∈ (0, 1]. Further-

more, if Q is right continuous in zero, then (Q+)−(0) = Q(0) holds true, too

and therefore (Q+)− = Q is satisfied.

ii) Let F : R → [0, 1] be a distribution function with supp(F ) ⊆ [c, d], c < d ∈ R.

Then F− is a quantile function and (F−)+ = F.

Proof of Lemma 7.1.4

Part i): From the definition it is clear that Q+ is monotonically increasing. Note that,

since Q is continuous from the left, it is valid that

Q+(x) = sup{u ∈ [0, 1] |Q(u) ≤ x} = max{u ∈ [0, 1] |Q(u) ≤ x} for x ∈ [Q(0), Q(1)).

Next, we show that Q+ is continuous from the right. To see this, let x0 ∈ [Q(0), Q(1))

and (xn)n∈N ⊆ [Q(0), Q(1)) with xn ↓ x0 be given. Due to xn+1 ≤ xn, n ∈ N, and the fact

that Q+ is monotonically increasing, it can be deduced that (Q+(xn))n∈N is monotonically

decreasing. Since, furthermore, (Q+(xn))n∈N is bounded from below by zero, there is a

lower bound u0 ∈ [0, 1] with Q+(xn) ↓ u0. Furthermore, due to Q+(x0) ≤ Q+(xn) for

all n ∈ N, we have Q+(x0) ≤ u0. Now let us suppose towards a contradiction that

Q+(x0) < u0. Then, we could infer that

Q(u0) ≤ Q(Q+(xn)) = Q(max{u ∈ [0, 1] |Q(u) ≤ xn}) ≤ xn holds true for all n ∈ N.

Hence, Q(u0) ≤ x0, respectively u0 ∈ {u ∈ [0, 1] |Q(u) ≤ x0} could be deduced. But this

is a contradiction to the fact that Q+(x0) = max{u ∈ [0, 1] |Q(u) ≤ x0} is the biggest

number for which Q(Q+(x0)) ≤ x0 holds true. Thus Q+(x0) = u0 has to be true and

therefore, we have Q+(x0) = u0 = lim
n→∞

Q+(xn), that is, Q
+ is continuous from the right.

Together with the fact that Q+ is monotonically increasing, we thus know that Q+ is a

distribution function.

It remains to prove that (Q+)−(u) = Q(u) for all u ∈ (0, 1]. We first notice that for

t ∈ (0, 1),

Q+(Q(t)) = max{u ∈ [0, 1] |Q(u) ≤ Q(t)} ≥ t

is satisfied and thus, Q(t) ∈ {x ∈ R | t ≤ Q+(x)}. It can be inferred that

(Q+)−(t) = inf{x ∈ R | t ≤ Q+(x)} ≤ Q(t).
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Let us suppose towards a contradiction that x := (Q+)−(t) < Q(t). Then, since Q+ is a

distribution function, we can infer from equation (7.38) in Lemma 7.1.1 that

x < Q(t) ⇐⇒ ¬(x ≥ Q(t)) ⇐⇒ ¬(Q+(x) ≥ t) ⇐⇒ Q+(x) < t

is satisfied, i.e. it holds true that Q+((Q+)−(t)) < t. This contradicts the fact that

the distribution function Q+, according to equation (7.37) in Lemma 7.1.1, satisfies the

inequality Q+((Q+)−(t)) ≥ t. Therefore, the assumption (Q+)−(t) < Q(t) was false and

due to (Q+)−(t) ≤ Q(t), it follows that (Q+)−(t) = Q(t). Since t ∈ (0, 1) was arbitrary,

(Q+)−(u) = Q(u) is satisfied for all u ∈ (0, 1). Furthermore, since Q and (Q+)− are

quantile functions, they are continuous from the left and thus

(Q+)−(1) = lim
t↑1

t∈(0,1)

(Q+)−(t) = lim
t↑1

t∈(0,1)

Q(t) = Q(1)

is satisfied, too.

If, in addition, Q is right continuous in zero, then

Q(0) = lim
t↓0

t∈(0,1)

Q(t) = lim
t↓0

t∈(0,1)

(Q+)−(t) = lim
t↓0

t∈(0,1)

inf{x ∈ R |Q+(x) ≥ t}

= inf{x ∈ R |Q+(x) > 0} (7.56)

= (Q+)−(0) (7.57)

can be inferred. Here, equation (7.57) is true by the definition of the quantile function,

see Remark 2.1.9. It remains to prove that equation (7.56) is satisfied. For this, we define

Mt := {x ∈ R |Q+(x) ≥ t}, t ∈ (0, 1] and M := {x ∈ R |Q+(x) > 0}.

Note that M is bounded below, since Q+(x) = 0 for all x < Q(0). We prove that

infM = lim
t↓0

t∈(0,1)

infMt

is satisfied. First, we note that for t ≥ t′ ∈ (0, 1], Mt ⊆ Mt′ can be inferred and hence

infMt ≥ infMt′ ≥ infM > ∞ holds true. Therefore, lim
t↓0

infMt ≥ infM exists. Next,

given any x ∈ M, there is a tx ∈ (0, 1] such that x ∈ Mtx . Thus, for 0 < t ≤ tx, we can

infer that infMt ≤ infMtx ≤ x holds true. Hence, lim
t↓0

infMt ≤ x is satisfied for all x ∈ M

and therefore, lim
t↓0

infMt ≤ infM is satisfied, too.

Part ii): According to Definition 2.1.8, F− is the quantile function associated to F . Fur-

thermore, since

(F−)+(x) = sup{u ∈ [0, 1] |F−(u) ≤ x} (7.38)
= sup{u ∈ [0, 1] |F (x) ≥ u} = F (x), x ∈ (a, b),
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holds true, (F−)+|(a,b) = F |(a,b) is satisfied. Here, a, b, F−(0) and F−(1) are defined as in

Remark 2.1.9. It remains to prove (F−)+(x) = F (x) for x ∈ (−∞, a] ∪ [b,∞). For x < a,

we have F (x) = 0 = (F−)+(x), since F−(0) = a. Moreover, for x ≥ b, it holds true that

F (x) = 1 and, since F−(1) = b, (F−)+(x) = 1 holds true, too. Finally, if a < b, since F

and (F−)+ are continuous from the right,

F (a) = lim
x↓a

x∈(a,b)

F (x) = lim
x↓a

x∈(a,b)

(F−)+(x) = (F−)+(a)

is satisfied and if a = b, than F (a) = 1 = (F−)+(a) is true by definition. This completes

the proof. �

Lemma 7.1.5.

Let F be a distribution function with supp(F ) ⊆ [0, 1] and f1, . . . , fp : [0, 1] −→
R, p ∈ N, be functions that are of bounded variation, continuous from the left and

right continuous in zero.

Then, there is a distribution function G with supp(G) ⊆ [0, 1] and functions

g1, . . . , gp : [0, 1] −→ R that are Lipschitz continuous, such that

fi = gi ◦G−, i = 1, . . . , p.

Proof of Lemma 7.1.5 The proof will be divided into the following steps:

Step 1: Definition of a quantile function Q:

Without loss of generality, we suppose fi(0) = 0 for i = 1, . . . , p. This is no limitation

since for fi(0) 6= 0 for some i ∈ {1, . . . , p}, we can consider f̂i(·) = fi(·)− fi(0). We then

have f̂i(0) = 0 and f̂i is continuous from the left, right continuous in zero and of bounded

variation, since fi is. Moreover, if f̂i = g̃i ◦ G− holds true for a distribution function G

and some Lipschitz continuous g̃i, we then have fi = gi ◦ G− with gi(·) := g̃i(·) + fi(0)

and gi Lipschitz continuous holds true, too.

Moving on, since f1, . . . , fp are continuous from the left, right continuous in zero and

of bounded variation, there are monotonically increasing functions f
(1)
i , f

(2)
i : [0, 1] −→

R, i = 1, . . . , p, that are continuous from the left and right continuous in zero with

fi = f
(1)
i − f

(2)
i , i = 1, . . . , p. This follows from the Jordan decomposition of bounded

variation functions (see for example Aufgabe 1.10 of Kapitel VII in Elstrodt (2009)).

Without loss of generality, we further suppose that

f
(1)
i (0) = 0 = f

(2)
i (0), i = 1, . . . , p.

This is not a limitation, since we already know that 0 = fi(0) = f
(1)
i (0) − f

(2)
i (0) and
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therefore, f
(1)
i (0) = f

(2)
i (0) holds true. Now, if f

(1)
i (0) = f

(2)
i (0) 6= 0, we simply look at

f̂
(1)
i := f

(1)
i − f

(1)
i (0) and f̂

(2)
i = f

(2)
i − f

(2)
i (0),

which satisfy f̂
(1)
i (0) = 0 = f̂

(2)
i (0), are monotonically increasing, right continuous in

zero and fi = f̂
(1)
i − f̂

(2)
i still holds true. Because f

(1)
i , f

(2)
i are monotonically increasing,

their left sided limits exist on (0, 1] and since fi is continuous from the left hand side, for

x ∈ (0, 1],

fi(x) = fi(x−) = lim
xn↑x

fi(xn) = lim
xn↑x

f
(1)
i (xn)− lim

xn↑x
f
(2)
i (xn) = f

(1)
i (x−)− f

(2)
i (x−)

holds true. Here, as usual, h(x−) denotes the left sided limit lim
xn↑x

h(xn) of a function

h. Therefore, without loss of generality, we can assume that the functions f
(1)
i , f

(2)
i are

continuous from the left.

Furthermore, since for i = 1, . . . , p, the functions f
(1)
i , f

(2)
i : [0, 1] → R are monotonically

increasing and are continuous from the left, there are finite Borel measures µ
(1)
i , µ

(2)
i on

([0, 1],B[0,1]) with

f
(1)
i (x) = µ

(1)
i ([0, x)) and f

(2)
i (x) = µ

(2)
i ([0, x)), x ∈ [0, 1], i = 1, . . . , p,

(see for example Bauer (1992), p. 36). Hence, we define

µi := µ
(1)
i + µ

(2)
i , i = 1, . . . , p, as well as µ :=

p∑

i=1

µi.

Note that

µ
(j)
i ([0, t)) = f

(j)
i (t) ≥ 0, i = 1, . . . , p, j = 1, 2, t ∈ [0, 1],

since f
(j)
i (0) = 0 and f

(j)
i is monotonically increasing and thus, µ([0, t)) ≥ 0 holds true for

t ∈ [0, 1].

Now, if µ([0, 1)) = 0, it follows that µ
(j)
i ([0, 1)) = 0 and thus f

(j)
i (1) = 0 for all i = 1, . . . , p

and j = 1, 2. Since, furthermore, f
(j)
i (0) = 0 and f

(j)
i is monotonically increasing for all

i = 1, . . . , p and j = 1, 2, it can be deduced that the initial functions f1, . . . , fp are all

constant functions and thus Lipschitz continuous. Thus, fi = gi ◦G−, i = 1, . . . , p, holds

true for gi = fi, i = 1, . . . , p, and G(x) = x·1[0,1)(x)+1[1,∞)(x) and therefore Lemma 7.1.5

is proved in this case.

If, in contrast, µ([0, 1)) > 0 holds, we proceed as follows. Define

Q : [0, 1] → [0, 1], t 7→ µ([0, t))

µ([0, 1))

and note that

i) Q is monotonically increasing,

ii) Q is continuous from the left. To see this, consider t ∈ (0, 1] and any sequence
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(tn)n∈N ⊆ [0, t) with tn ↑ t. Then [0, t) =
∞⋃
n=1

[0, tn) and thus µ([0, t)) = lim
n→∞

µ([0, tn))

is satisfied, since µ as a measure is continuous form below. We thus can infer that

lim
n→∞

Q(tn) =
1

µ([0, 1))
lim
n→∞

µ([0, tn)) =
1

µ([0, 1))
· µ([0, t)) = Q(t)

is satisfied.

iii) Q(0) = 0 and Q(1) = 1,

iv) Q is right continuous in zero, since for any sequence (tn)n∈N ⊆ (0, 1] with tn ↓ 0, we

have

lim
n→∞

Q(tn) = lim
n→∞

µ([0, tn))

µ([0, 1))
=

1

µ([0, 1))
lim
n→∞

p∑

i=1

µi([0, tn))

=
1

µ([0, 1))
lim
n→∞

p∑

i=1

(
µ
(1)
i ([0, tn)) + µ

(2)
i ([0, tn))

)

=
1

µ([0, 1))

p∑

i=1

lim
n→∞

(
f
(1)
i (tn) + f

(2)
i (tn)

)
=

1

µ([0, 1))

p∑

i=1

(
f
(1)
i (0)︸ ︷︷ ︸
=0

+ f
(2)
i (0)︸ ︷︷ ︸
=0

)

= 0 = Q(0).

Parts i) - iv) prove that Q is a quantile function that is right continuous in zero.

Step 2: Definition of a distribution function G corresponding to Q.

We define

G : R −→ [0, 1], x 7−→ Q+(x).

Then, according to Lemma 7.1.4, G is a distribution function and G− = (Q+)− = Q holds

true. Thus, Q is the quantile function corresponding to G. We henceforth will use the

notation G− for Q.

Furthermore, because G is a distribution function and G− is the respective quantile func-

tion

G−(G(x)) ≤ x, x ∈ [0, 1], (7.58)

holds true (see Lemma 7.1.1). Together with the fact that G and G− are monotonically

increasing, we can infer that

t ≤ G(G−(t)) ⇒ G−(t) ≤ G−(G(G−(t)))
(7.58)

≤ G−(t)

as well as

G−(G(x))
(7.58)

≤ x ⇒ G(x) ≤ G(G−(G(x))) ≤ G(x)
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are satisfied and therefore

G(G−(G(x))) = G(x) ∀x ∈ [0, 1] and G−(G(G−(t))) = G−(t) ∀ t ∈ [0, 1] (7.59)

hold true.

Step 3: Construction of the functions g1, . . . , gp:

For i = 1, . . . , p, we define the functions

gi,0 : Im(G−) −→ R, x 7−→ fi(G(x)). (7.60)

Then, for x < y ∈ Im(G−) there are s, t ∈ [0, 1] such that

x = G−(s) and y = G−(t)

and it follows that for i = 1, . . . , p,

|gi,0(x)− gi,0(y)|

= |fi(G(x))− fi(G(y))| = |(f (1)
i (G(x))− f

(2)
i (G(x)))− (f

(1)
i (G(y))− f

(2)
i (G(y)))|

≤ |f (1)
i (G(x))− f

(1)
i (G(y))|+ |f (2)

i (G(x))− f
(2)
i (G(y))|

= |µ(1)
i ([0, G(x)))− µ

(1)
i ([0, G(y)))|+ |µ(2)

i ([0, G(x)))− µ
(2)
i ([0, G(y)))|

≤
p∑

j=1

|µ(1)
j ([0, G(x)))− µ

(1)
j ([0, G(y)))|+ |µ(2)

j ([0, G(x)))− µ
(2)
j ([0, G(y)))|

=

p∑

j=1

µ
(1)
j ([G(x), G(y))) + µ

(2)
j ([G(x), G(y))) =

p∑

j=1

µj([G(x), G(y)))

= µ([G(x), G(y))) = µ([0, 1)) · µ([G(x), G(y)))

µ([0, 1))

= µ([0, 1)) ·
(
µ([0, G(y)))

µ([0, 1))
− µ([0, G(x)))

µ([0, 1))

)
= µ([0, 1)) ·

(
G−(G(y))−G−(G(x))

)

= µ([0, 1)) ·
(
G−(G(G−(t)))−G−(G(G−(s)))

) (7.59)
= µ([0, 1)) ·

(
G−(t)−G−(s)

)

= µ([0, 1)) · (y − x) = µ([0, 1)) · |y − x|

holds true. Thus, g1,0, . . . , gp,0 : Im(G−) → R are Lipschitz continuous with Lipschitz-

constant µ([0, 1)).

According to Kirszbraun’s theorem (see for example Federer (1969), Theorem 2.10.43 on

page 201 and the note after that) by defining

gi : [0, 1] −→ R, x 7−→ inf{gi,0(y) + µ([0, 1)) · |x− y| | y ∈ Im(G−)}, i = 1 . . . , p,
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it is possible to extend the real-valued and Lipschitz continuous functions g1,0, . . . , gp,0

from their domain Im(G−) ⊆ [0, 1] to Lipschitz continuous functions g1, . . . , gp on the

domain [0, 1] in such a way that gi|Im(G−) = gi,0 holds true for i = 1, . . . , p and such that

each pair of these functions has the same Lipschitz-constant.

Step 4: Proof of fi = gi ◦G−:

By definition (7.60), for t ∈ [0, 1] and i = 1, . . . , p,

gi(G
−(t)) = gi,0(G

−(t)) = fi(G(G−(t)))

holds true,.It thus remains to show that

fi(t) = fi(G(G−(t))), t ∈ [0, 1]

is valid. If a t ∈ [0, 1] with G(G−(t)) = t is given, then nothing is left to prove. Otherwise,

according to equation (7.37), G(G−(t)) ≥ t has to be true and due to equation (7.59) for

s := G(G−(t)), we have

G−(s) = G−(G(G−(t))) = G−(t),

and hence
(µ([0, s))

µ[0, 1))
= G−(s) = G−(t) =

µ([0, t))

(µ[0, 1))

is valid. Therefore, µ([t, s)) = 0. Because of the definitions of µ and µ1, . . . , µp, we then

have

0 = µ([t, s)) =

p∑

i=1

µi([t, s)) =

p∑

i=1

(
µ
(1)
i ([t, s)) + µ

(2)
i ([t, s))

)

and due to the non-negativity and monotony of the measures

µ
(1)
1 , µ

(2)
1 , µ

(1)
2 , µ

(2)
2 , . . . , µ(1)

p , µ(2)
p

it follows that

µ
(j)
i ([t, s)) = 0, i = 1, . . . , p, j = 1, 2.

Because of

fi(s)− fi(t) = (f
(1)
i (s)− f

(2)
i (s))− (f

(1)
i (t)− f

(2)
i (t))

= µ
(1)
i ([0, s))− µ

(2)
i ([0, s))− µ

(1)
i ([0, t)) + µ

(2)
i ([0, t))

= µ
(1)
i ([0, s))− µ

(1)
i ([0, t))−

(
µ
(2)
i ([0, s))− µ

(2)
i ([0, t))

)

= µ
(1)
i ([t, s))− µ

(2)
i ([t, s))

= 0
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it follows that fi(s) = fi(t) and thus

fi(G(G−(t))) = fi(t)

holds true, which completes the proof. �

Corollary 7.1.6.

Let F be a distribution function with supp(F ) ⊆ [c, d], c < d, and let f1, . . . , fp :

[c, d] −→ R, p ∈ N, be functions of bounded variation that are continuous from the

left and right continuous in c. Furthermore, let a < b be real numbers.

Then, there is a measure generating function G : R −→ [c, d] with supp(G) ⊆ [a, b]

and functions g1, . . . , gp : [a, b] −→ R that are Lipschitz continuous, such that

fi = gi ◦G−, i = 1, . . . , p.

Proof of Corollary 7.1.6: We consider the mappings

ϕ : [0, 1] −→ [c, d], x 7−→ (d− c)x+ c

and

ψ : [a, b] −→ [0, 1], x 7−→ x− a

b− a

and note that ϕ and ψ are continuous, strictly monotonically increasing and therefore are

invertible with the inverse functions ϕ−1 and ψ−1. Hence, Lemma 7.1.5 applies to the

functions f1 ◦ ϕ, . . . , fp ◦ ϕ : [0, 1] −→ R that are of bounded variation, continuous from

the left and right continuous in zero and yields the existence of a distribution function G̃

with support in [0, 1] and functions g̃1, . . . , g̃p : [0, 1] −→ R that are Lipschitz continuous

such that

fi ◦ ϕ = g̃i ◦ G̃−, i = 1, . . . , p,

holds true. We thus can infer that

fi = g̃i ◦ G̃− ◦ ϕ−1 = g̃i ◦ ψ ◦ ψ−1 ◦ G̃− ◦ ϕ−1 = (gi ◦ ψ) ◦ (ϕ ◦ G̃ ◦ ψ)−, i = 1, . . . , p,

holds true, since

(ϕ ◦ G̃ ◦ ψ)−(y) = inf{x ∈ [a, b] |ϕ(G̃(ψ(x))) ≥ y}

= inf{x ∈ [a, b] | G̃(ψ(x)) ≥ ϕ−1(y)) (7.61)

= ψ−1
(
inf{x ∈ R | G̃(x) ≥ ϕ−1(y))

)
(7.62)

= ψ−1(G−(ϕ−1(y))), y ∈ [c, d],
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is satisfied. Note that equation (7.61) is true, as ϕ is invertible and equation (7.62) holds

true, since the mapping ψ is strictly increasing and continuous. Hence, we have

fi = gi ◦G−, i = 1, . . . , p,

where g1 := g̃1 ◦ ψ, . . . , gp := g̃p ◦ ψ : [a, b] −→ R are Lipschitz continuous and where

G(x) := ϕ(G̃(ψ(a)))1(−∞,a)(x) + ϕ(G̃(ψ(x)))1[a,b](x) + ϕ(G̃(ψ(b)))1(b,∞)(x) : R −→ [c, d]

is monotonically increasing and continuous from the right and therefore a measure gener-

ating function with supp(G) ⊆ [a, b]. �

Lemma 7.1.7.

In the situation of Corollary 7.1.6 the following two assertion are equivalent:

i) The functions f1, . . . , fp are linearly independent in L2([c, d], F ).

ii) The functions g1, . . . , gp are linearly independent in L2([a, b], F ◦G).

Proof of Lemma 7.1.7 Note that in this proof, we use objects that are defined in the proof

of Corollary 7.1.6. The proof consists in verifying the following chain of equivalences.

f1, . . . , fp are linearly independent in L2([c, d], F ).

⇐⇒ f1 ◦ ϕ, . . . , fp ◦ ϕ are linearly independent in L2([0, 1], F ◦ ϕ). (7.63)

⇐⇒ g̃1 ◦ G̃−, . . . , g̃p ◦ G̃− are linearly independent in L2([0, 1], F ◦ ϕ). (7.64)

⇐⇒ g̃1, . . . , g̃p are linearly independent in L2([0, 1], F ◦ ϕ ◦ G̃). (7.65)

⇐⇒ g̃1 ◦ ψ, . . . , g̃p ◦ ψ are linearly independent in L2([a, b], F ◦ ϕ ◦ G̃ ◦ ψ). (7.66)

⇐⇒ g̃1 ◦ ψ, . . . , g̃p ◦ ψ are linearly independent in L2([a, b], F ◦G). (7.67)

⇐⇒ g1, . . . , gp are linearly independent in L2([a, b], F ◦G). (7.68)

Here, the equivalences (7.63) and (7.66) are satisfied, since ϕ and ψ are bijective. equiv-

alence (7.64) holds true, since fi ◦ ϕ = g̃i ◦ G̃−, i = 1, . . . , p, and equivalence (7.67) is

satisfied, since G|[a,b] = ϕ ◦ G̃ ◦ ψ. Furthermore, equivalence (7.68) holds true, since

gi := g̃i ◦ ψ, i = 1, . . . , p. It thus remains to prove equivalence (7.65). Indeed, equivalence

(7.65) holds true, since
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g̃1 ◦ G̃−, . . . , g̃p ◦ G̃− are linearly independent in L2([0, 1], F ◦ ϕ).

⇐⇒
∫

[0,1]

(
p∑

i=1

αi(g̃i ◦ G̃−)

)2

dF ◦ ϕ > 0 ∀α ∈ Rp \ {0}.

⇐⇒
∫

[0,1]

(
p∑

i=1

αig̃i

)2

dF ◦ ϕ ◦ G̃ > 0 ∀α ∈ Rp \ {0}. (7.69)

⇐⇒ g̃1, . . . , g̃p are linearly independent in L2([0, 1], F ◦ ϕ ◦ G̃).

Note that because of

∫

[0,1]

(
p∑

i=1

αig̃i

)2

dF ◦ ϕ ◦ G̃ =

∫

[0,1]

(
p∑

i=1

αi(g̃i ◦ (F ◦ ϕ ◦ G̃)−)

)2

dλλ[0,1] (7.70)

=

∫

[0,1]

(
p∑

i=1

αi(g̃i ◦ G̃− ◦ (F ◦ ϕ)−)
)2

dλλ[0,1] (7.71)

=

∫

[0,1]

(
p∑

i=1

αi(g̃i ◦ G̃−)

)2

dF ◦ ϕ, (7.72)

equivalence (7.69) holds true. Here, the equalities (7.70) and (7.72) hold true, according

to Lemma 7.1.3, since all integrals exist, F ◦ϕ◦G̃ and F ◦ϕ are distribution functions with

support in [0, 1] and

(
p∑

i=1
αig̃i

)2

as well as

(
p∑

i=1
αi(g̃i ◦ G̃−)

)2

are measurable functions.

Furthermore, equality (7.71) is satisfied, since

(F ◦ ϕ ◦ G̃)−(t) = inf{x ∈ R |F (ϕ(G̃(x))) ≥ t} = inf{x ∈ R |ϕ(G̃(x)) ≥ F−(t)}

= inf{x ∈ R | G̃(x) ≥ ϕ−(F−(t))} = G̃−(ϕ−(F−(t)))

= (G̃− ◦ (F ◦ ϕ)−)(t)

(which follows using equation (7.38) from Lemma 7.1.1) holds true for all t ∈ (0, 1). �
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Proof of Theorem 2.2.9

The proof will be divided into the following two steps:

Step 1 :

Let a linear regression model with fixed design be given. Then, we define the corresponding

linear regression model with uniform fixed design by

Ỹn = X̃nβ + εn, n ∈ N,

where

i)
((

i
n

)n
i=1

)
n∈N is the new triangular array of equidistant design points,

ii) X̃n :=
(
f̃r

(
i
n

))n p

i=1,r=1
:=

(
(fr ◦ F−)

(
i
n

))n p

i=1,r=1
is the new design matrix, wherein

the transformed regression functions are

f̃1 := f1 ◦ F−, . . . , f̃p := fp ◦ F− : [0, 1] −→ R.

Now, the proof consists in verifying the following assertions:

i) The transformed regression functions f̃1, . . . , f̃p : [0, 1] −→ R are

α) of bounded variation,

β) linear independent in L2([0, 1], λλ[0,1]).

ii) The sequence (Fn)n∈N of empirical distribution functions in the new design of

equidistant design points converges uniformly to the distribution function of the

uniform distribution on the unit interval, i.e. the distribution function correspond-

ing to the probability measure λλ[0,1].

iii) The residual partial sum process in the linear regression model with uniform fixed

design admits a weak limit that is identical to the residual partial sum limit processes

in the original model. That is, in a linear regression model with uniform fixed design,

the weak convergence

1√
n
Tn(ε̂n)(z)

D−−−→
n→∞

Bf,F (z) in C[0, 1]

holds true.

As to i) α): Since the regression functions f1, . . . , fp are of bounded variation and the quan-

tile function F− is monotonically increasing, the variation of fi ◦ F− is bounded

from above by the variation of fi, i = 1, . . . , p. Therefore, because f1, . . . , fp are of

bounded variation, the transformed regression functions f̃1, . . . , f̃p are of bounded

variation, too. To this regard note that
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‖f̃i‖V = ‖f ◦ F−‖V

= sup
{0≤x1≤···≤xn≤1, n∈N}

n−1∑

i=1

|f(F−(xi+1))− f(F−(xi))|

≤ sup
{a≤t1≤···≤tn≤b, n∈N}

n−1∑

i=1

|f(ti+1)− f(ti)|

= ‖fi‖V , i = 1, . . . , p.

As to i) β) We are given an arbitrary design distribution function F on the experimental region

[a, b], the original regression functions f1, . . . , fp that are linearly independent in

L2([a, b], F ) and α ∈ Rp. In this situation due to the change of variables formula

introduced in Lemma 7.1.3, we know that

∫

[a,b]

(
p∑

i=1

αifi(t)

)2

dF (t) =

∫

[0,1]

(
p∑

i=1

αi

(
fi ◦ F−) (x)

)2

dλλ[0,1](x)

and therefore, the the following chain of equivalences holds:

f1, . . . , fp are linearly independent in L2([a, b], F ).

⇐⇒
∫

[a,b]

(
p∑

i=1

αifi

)2

dF > 0 ∀α ∈ Rp \ {0}.

⇐⇒
∫

[0,1]

(
p∑

i=1

αi

(
fi ◦ F−)

)2

dλλ[0,1] > 0 ∀α ∈ Rp \ {0}.

⇐⇒ f̃1, . . . , f̃p are linearly independent in L2([0, 1], λλ[0,1]).

As to ii) In the given situation, for n ∈ N, the empirical distribution function is given by

Fn(x) =
1

n

n∑

i=1

1(−∞,x]

(
i

n

)
, x ∈ R,

and for the new limit distribution function we define

F (u) = u · 1[0,1](u) + 1(1,∞)(u), u ∈ R.

Note, that the measure which uniquely corresponds to the distribution function F

is the Lebesgue-measure on the unit interval λλ[0,1]. A straight forward calculation

shows that
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sup
x∈R

|Fn(x)− F (x)| ≤ 1

n
−−−−−→
n→∞

0

and thus

Fn(·) −−−−→
n→∞

F (·) uniformly.

As to iii) We defined the linear regression model with uniform fixed design corresponding to

the given linear regression model with fixed design to be

Ỹn =

(
(fr ◦ F−)

(
i

n

))n p

i=1,r=1

β + εn, n ∈ N.

We can rewrite this as the regression model

Ỹn =

(
fr

(
F−

(
i

n

)))n p

i=1,r=1

β + εn, n ∈ N, (7.73)

where f1, . . . , fp : [a, b] → R are the regression functions of the original linear regres-

sion model with fixed design and where

(
F−

(
i

n

))n

i=1

⊆ [a, b]

is the triangular array of design points. Note the following two things:

❼ The triangular array
(
F− (

i
n

))n
i=1

of design points in model (7.73) does not

have to be the same as the triangular array ((tni)
n
i=1)n∈N of the original linear

regression model with fixed design (see model (2.18)).

❼ The sequence of empirical distribution functions (F̃n)n∈N corresponding to the

triangular array
(
F− (

i
n

))n
i=1

converges uniformly to the distribution function

F . This can be verified considering the following straight forward calculation.

sup
x∈R

|F̃n(x)− F (x)| = sup
x∈R

∣∣∣∣∣
1

n

n∑

i=1

1(−∞,x]

(
F−1

(
i

n

))
− F (x)

∣∣∣∣∣

= sup
x∈R

∣∣∣∣∣
1

n

n∑

i=1

1(−∞,nF (x)](i)− F (x)

∣∣∣∣∣ = sup
x∈R

∣∣∣∣∣
1

n
( ⌊nF (x)⌋ − nF (x))

∣∣∣∣∣

≤ sup
x∈R

∣∣∣∣∣
1

n

∣∣∣∣∣ =
1

n
−−−−−→
n→∞

0. (7.74)

Thus, model (7.73) is a linear regression model with fixed design. Therefore, The-

orem 2.2.4 is applicable, stating that the residual partial sum limit process of the

regression residuals of model (7.73) converges weakly to Bf,F in C[0, 1]. Hence, the

residual partial sum limit process is the same as in the original model (i.e. model

(2.18)). This completes Step 1 of the proof.
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Step 2 : Let a linear regression model

Ỹn =

(
f̃r

(
i

n

))n p

i=1,r=1

β + εn, n ∈ N, (7.75)

with uniform fixed design be given. Note that this means in particular that the regression

functions f̃1, . . . , f̃p : [0, 1] → R are of bounded variation and linearly independent in

L2([0, 1], λλ[0,1]).

Without loss of generality we can assume that the functions f̃1, . . . , f̃p are continuous

from the left and right continuous in zero. This is indeed possible, since it is assumed

that f̃1, . . . , f̃p are of bounded variation. Therefore, f̃1, . . . , f̃p can have at most countably

many discontinuity points, and moreover, limits from the left and limits from the right

do always exist. As a reference for this, see Korollar 4.6 or Aufgabe 1.10 in Kapitel VII

of Elstrodt (2009). Hence, we can change each of the functions f̃1, . . . , f̃p on a measure

zero set such that the values at the discontinuity points in (0, 1] always agree with the left

hand limit and such that the value at zero agrees with the right hand limit. This has no

influence on the distribution of the residual partial sum limit processes.

Therefore, according to Lemma 2.2.7, there is a distribution function F with supp(F ) ⊆
[a, b] and functions f1, . . . , fp : [a, b] −→ R that are Lipschitz continuous and linearly

independent in L2([a, b], F ) such that

f̃i = fi ◦ F−, i = 1, . . . , p,

holds true. We can thus define a corresponding linear regression model with fixed design

Ỹn =

(
fr

(
F−

(
i

n

)))n p

i=1,r=1

β + εn, n ∈ N, (7.76)

that is equal to the given linear regression model with uniform fixed design, see model

(7.75). Note that in model (7.76)

((tni)
n
i=1)n∈N :=

((
F−

(
i

n

))n

i=1

)

n∈N

is the triangular array of design points. Furthermore, similarly to (7.74), one can verify

that the corresponding sequence of empirical distribution functions

Fn(x) :=
1

n

n∑

i=1

1(−∞,x](tni), x ∈ R, n ∈ N,

satisfies the condition

Fn −−−→
n→∞

F uniformly.

Therefore Theorem 2.2.4 is applicable, stating that the residual partial sum limit process of

the regression residuals of model (7.76) converges weakly to Bf,F in C[0, 1]. Furthermore,

since we know that the regression models (7.75) and (7.74) are equal, their residual partial

limit processes coincide. This completes the proof of Theorem 2.2.9. �
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Proof of Lemma 2.2.10

The proof consists in verifying the following chain of equations:

Bf◦F−,λλ[0,1]
(z) = B(z)−




∫

[0,z]

f(F−(t)) dλλ[0,1](t)




T


∫

[0,1]

f(F−(t))fT (F−(t)) dλλ[0,1](t)




−1

×

×
∫

[0,1]

f(F−(t)) dB(t)

= B(z)−




∫

[a,b]

f(t) dFz(t)




T


∫

[a,b]

f(t)fT (t) dF (t)




−1 ∫

[0,1]

f(F−(t)) dB(t) (7.77)

= B(z)−




∫

[a,b]

f(t) dFz(t)




T


∫

[a,b]

f(t)fT (t) dF (t)




−1 ∫

[a,b]

f(t) dB(F (t)) (7.78)

= Bf,F (z), z ∈ [0, 1].

Here, (7.77) is true, since, according to Lemma 7.1.3

∫

[0,1]

f(F−(t))fT (F−(t)) dλλ[0,1](t) =

∫

[a,b]

f(t)fT (t) dF (t)

is satisfied and furthermore,

∫

[a,b]

f(t) dFz(t) = lim
x↑F−(z)

∫

[a,x]

f(t) dF (t) + f(F−(z)) ·
(
z − lim

x↑F−(z)
F (x)

)

= lim
x↑F−(z)

∫

[0,F (x)]

f(F−(t)) dλλ[0,1](t) + f(F−(z))

(
z − lim

x↑F−(z)
F (x)

)
(7.79)

=

∫

[0,z]

f(F−(t)) dλλ[0,1](t) (7.80)

holds true. Here, we again used Lemma 7.1.3 in equation (7.79), which is applicable since

the regression functions f = (f1, . . . , fp) are measurable. To see that (7.80) holds true,

we first consider the case that F is continuous at F−(z). We thus have z ∈ Im(F ) and

lim
x↑F−(z)

F (x) = F (F−(z)) = z holds true. Hence, we can conclude

lim
x↑F−(z)

∫

[0,F (x)]

f(F−(t)) dλλ[0,1](t) + f(F−(z))

(
z − lim

x↑F−(z)
F (x)

)
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=

∫

[0,z]

f(F−(t)) dλλ[0,1](t) + 0

=

∫

[0,z]

f(F−(t)) dλλ[0,1](t).

In the case that F is discontinuous at F−(z), we can infer that F− is constant in the

interval

(
lim

x↑F−(z)
F (x), F (F−(z))

]
and thus

lim
x↑F−(z)

∫

[0,F (x)]

f(F−(t)) dλλ[0,1](t) + f(F−(z))

(
z − lim

x↑F−(z)
F (x)

)

=

∫

[
0, lim

x↑F−(z)
F (x)

)
f(F−(t)) dλλ[0,1](t) +

∫

[
lim

x↑F−(z)
F (x),z

]
f(F−(t)) dλλ[0,1](t)

=

∫

[0,z]

f(F−(t)) dλλ[0,1](t)

holds true.

It remains to show that equation (7.78) is satisfied, which amounts to checking

∫

[0,1]

f(F−(t)) dB(t) =

∫

[a,b]

f(t) dB(F (t)).

Transforming the measure integral into a Riemann-Stieltjes integral using the construc-

tion in Remark 2.2.3 (see equation (2.9)) and then applying integration by parts to the

Riemann-Stieltjes integral on the left hand side, we obtain

∫

[0,1]

f(F−(t)) dB(t) =

(R∗)∫

[0,1]

f(F−(t)) dB(t) =

(R)∫

[−∞,1]

(f ◦ F−)(t) dB̃(t) =

(R)∫

[0,1]

(f ◦ F−)(t) dB(t)

= f(F−(1))B(1)− f(F−(0))B(0)−
(R)∫

[0,1]

B(t) d(f ◦ F−)(t)

= f(F−(1))B(1)−
(R)∫

[0,1]

B(t) d(f ◦ F−)(t). (7.81)
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Performing the same operations on the right hand side, we get

∫

[a,b]

f(t) dB(F (t)) =

(R∗)∫

[a,b]

f(t) dB(F (t)) =

(R)∫

[−∞,b]

f(t) d(B̃ ◦ F )(t)

= f(a)B(F (a)) +

(R)∫

[a,b]

f(t) d(B ◦ F )(t)

= f(a)B(F (a)) + f(b)B(F (b))− f(a)B(F (a))−
(R)∫

[a,b]

B(F (t)) df(t)

= f(b)B(1)−
(R)∫

[a,b]

B(F (t)) df(t). (7.82)

Considering (7.81) and (7.82), two differences seem to be noticeable:

The first difference seems to be between f(F−(1)) and f(b). In practice, this difference

does not exist, since, as already noted after Theorem 2.2.4, the experimental region [a, b]

can always be chosen in such a way that the last design point is b and therefore, F−(1) = b

follows. The second difference seems to be between the integrals

(R)∫

[0,1]

B(t) d(f ◦ F−)(t) and

(R)∫

[a,b]

B(F (t)) df(t). (7.83)

We are going to prove their equality by first noticing that f is continuous and of bounded

variation and therefore according to the Jordan decomposition there are functions f+, f− :

[a, b] −→ R that are continuous and monotonically increasing such that f = f+ − f−.

Therefore, we have

(R)∫

[a,b]

B(F (t)) df(t) =

(R)∫

[a,b]

B(F (t)) df+(t)−
(R)∫

[a,b]

B(F (t)) df−(t)

and, since f+ and f− are continuous and monotonically increasing, one can define unique

measures µf+ and µf− on
(
[a, b],B[a,b]

)
(see for instance Bauer (1992) on page 36) such

that

(R)∫

[a,b]

B(F (t)) df+(t) =

∫

(a,b]

B(F (t)) dµf+(t) and

(R)∫

[a,b]

B(F (t)) df−(t) =
∫

(a,b]

B(F (t)) dµf−(t).
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Altogether, we therefore have

(R)∫

[a,b]

B(F (t)) df(t) =

∫

(a,b]

B(F (t)) dµf (t), (7.84)

where µf is a signed measure with the Jordan decomposition µf := µf+ − µf− . For some

theory on the Jordan decomposition of measures see Kapitel VII in Elstrodt (2009) and

especially Theorem 1.12. To the integral on the right hand side of (7.84) the change of

variables formula for measure integrals applies and we therefore can infer that

∫

(a,b]

B(F (t)) dµf (t) =

∫

(0,1]

B(t) dµF
f (t)

holds true. Here, µF
f denotes the pushforward measure of µf with respect to the measurable

mapping F .

Similar to the above, when considering the left integral in (7.83) it becomes apparent that

(R)∫

[0,1]

B(t) d(f ◦ F−)(t) =
∫

(0,1]

B(t) dµ(f◦F−)(t)

holds true. Here, µ(f◦F−) denotes the unique signed measure on
(
[0, 1],B[0,1]

)
correspond-

ing to (f ◦ F−)+ − (f ◦ F−)−. Note that the Riemann-Stieltjes integral on the left hand

side exists, since the paths of B(·) are continuous and f ◦ F− is of bounded variation and

that it coincides with the measure integral on the right hand side according to Theorem

5.1.2 in Strook (1994). Furthermore, since for 0 ≤ c < d ≤ 1,

µ(f◦F−)([c, d)) = (f ◦ F−)(d)− (f ◦ F−)(c)

= µf ([F
−(c), F−(d)))

= µf

(
F−1([c, d))

)
(7.85)

= µF
f ([c, d))

holds true, we know that µ(f◦F−) = µF
f . Here, in (7.85) we used equivalence (7.38) of

Lemma 7.1.1.

Combining the above facts, we thus have

(R)∫

[0,1]

B(t) df(F−(t)) =

∫

(0,1]

B(t) dµ(f◦F−)(t)

=

∫

(0,1]

B(t) dµ
F

f (t)
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=

∫

(a,b]

B(F (t)) dµf (t)

(7.84)
=

(R)∫

[a,b]

B(F (t)) df(t).

This completes the proof. �

Proof of Theorem 2.2.11

Without loss of generality, we can assume that the functions f1, . . . , fp are continuous

from the left and right continuous in a. This is indeed possible, since it is assumed that

f1, . . . , fp are of bounded variation. Therefore, f1, . . . , fp can have at most countably many

discontinuity points, and moreover, limits from the left and limits from the right do always

exist. As a reference for this, see Korollar 4.6 or Aufgabe 1.10 in Kapitel VII of Elstrodt

(2009). Hence, we can change each of the functions f1, . . . , fp on a measure zero set such

that the values at the discontinuity points in (a, b] always agree with the left hand limit

and such that the value at a agrees with the right hand limit. This has no influence on

the distribution of the residual partial sum limit processes.

Therefore, according to Lemma 2.2.7, in the situation of model (2.20), there is a mea-

sure generating function G : R −→ [a, b] with supp(G) ⊆ [a, b] and functions g1, . . . , gp :

[a, b] −→ R that are Lipschitz continuous and linearly independent in L2([a, b], F ◦G) such

that

fi = gi ◦G−, i = 1, . . . , p,

holds true. Thus, the regression model (2.20) is equal to the regression model

Yn = X̃nβ + εn, n ∈ N, (7.86)

where the design matrix reads X̃n =
(
gr

(
t̃ni

))n p

i=1,r=1
, t̃ni := G−(tni), i = 1, . . . , n, and

g1, . . . , gp are known and real-valued regression functions that are Lipschitz continuous

and linearly independent in L2([a, b], F ◦G). Note that X̃n and Xn are different notations

for the same design matrix. Furthermore,

F̃n(·) :=
1

n

n∑

i=1

1(−∞,·](t̃ni) =
1

n

n∑

i=1

1(−∞,·](G
−(tni))

=
1

n

n∑

i=1

1(−∞,G(·)](tni) −−−→
n→∞

F (G(·)) uniformly,

where F ◦ G is the distribution function of the design in the transformed model. Now,
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according to Theorem 2.2.2, in model (7.86) the weak convergence

1

σ
√
n
Tn(ε̂n)(·) D−−−−→

n→∞
Bg,F◦G(·) in C[0, 1]

holds true. Here, Bg,F◦G(·) is a Gaussian process that is given by

Bg,F◦G(z) = B(z) +




∫

[a,b]

g(t) d(F ◦G)z(t)




T 


∫

[a,b]

g(t)gT (t) d(F ◦G)(t)




−1

×

×




(R)∫

[a,b]

B(F (G(t))) dg(t)−B(1)g((F ◦G)−(1))


 , z ∈ [0, 1].

Finally, we can conclude that

Bg,F◦G(·) = Bg◦(F◦G)−,λλ[0,1]
(·) (7.87)

= Bg◦G−◦F−,λλ[0,1]
(·) (7.88)

= Bf◦F−,λλ[0,1]
(·) (7.89)

= Bf,F (·) (7.90)

holds true. In this chain of equations, equation (7.87) is satisfied, since F ◦G is a distri-

bution function and thus Lemma 2.2.10 is applicable. Equation (7.88) holds true, since

(F ◦G)−(t) = inf{x ∈ R : F (G(x)) ≥ t}

= inf{x ∈ R : G(x) ≥ F−(t)}

= G−(F−(t))

holds true for all t ∈ (0, 1). Here, we used equation (7.38) from Lemma 7.1.1. Finally,

equation (7.89) is satisfied, since fi = gi ◦ G−, i = 1, . . . , p, and equation (7.90) holds

true, according to Lemma 2.2.10. This completes the proof. �
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7.2 Proofs for Chapter 3

The Glivenko-Cantelli theorem is a classical result in the theory of probability. We present

a proof of it here for the sake of completeness.

Theorem 7.2.1. Glivenko-Cantelli

Let F be a distribution function and X1, X2, . . . be a sequence of random variables

with

X1, X2, . . .
iid∼ F.

Then the sequence of empirical distribution functions (Fn)n∈N, with

Fn(x) :=
1

n

n∑

i=1

1(−∞,x](Xi), x ∈ R, n ∈ N,

converges uniformly to F almost surely, that is

sup
x∈R

|Fn(x)− F (x)| a.s.−−−−−→
n→∞

0 .

Proof: The proof of this theorem is going to be separated in three parts.

Part 1: Because the sequence (Xi)i∈N is an iid sequence of random variables, we can

conclude that for x ∈ R, (
1(−∞,x](Xi)

)
i∈N

is a iid sequence of random variables, too. Furthermore, we have

E
(
1(−∞,x](X1)

)
= P(X1 ≤ x) = F (x)

and therefore, the strong law of large numbers yields

Fn(x) =
1

n

n∑

i=1

1(−∞,x](Xi)
a.s.−−−−→

n→∞
E
(
1(−∞,x](X1)

)
= F (x), x ∈ R.

Part 2: For

U1, U2, . . .
iid∼ U([0, 1])

and

Fn(x) :=
1

n

n∑

i=1

1(−∞,x](Ui), x ∈ (−∞,∞), n ∈ N,

the following statement holds true: For all m ∈ N and for all t ∈ [0, 1) there is a k ∈
{1, . . . ,m} such that

Fn(t)− t ≤ Fn

(
k

m

)
− k

m
+

1

m
or t− Fn(t) ≤ k − 1

m
− Fn

(
k − 1

m

)
+

1

m
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are satisfied. As a consequence,

sup
t∈[0,1]

|Fn(t)− t| ≤ max
0≤k≤m

∣∣∣∣∣Fn

(
k

m

)
− k

m

∣∣∣∣∣+
1

m
, m ∈ N,

is satisfied and because of Part 1, for n −→ ∞ and subsequently m −→ ∞,

sup
t∈[0,1]

|Fn(t)− t| a.s.−−−→
n→∞

0 .

holds true.

Part 3: Since X1, X2, . . .
iid∼ F and due to the quantile transformation (see for exam-

ple Chapter 21 in Vaart (1998)), we know that there is a sequence of random variables

U1, U2, . . .
iid∼ U([0, 1]) with

Xi ∼ F−(Ui), i ∈ N.

Therefore, for x ∈ R, we have

Fn(x) =
1

n

n∑

i=1

1(−∞,x](Xi)

D
=

1

n

n∑

i=1

1(−∞,x](F
−(Ui))

=
1

n

n∑

i=1

1(−∞,F (x)](Ui)

= Fn(F (x))

and thus

sup
x∈R

|Fn(x)− F (x)| D
= sup

x∈R
|Fn(F (x))− F (x)|.

Due to Part 2 we can conclude that

sup
x∈R

|Fn(F (x))− F (x)| ≤ sup
t∈[0,1]

|Fn(t)− t| a.s.−−−−−→
n→∞

0

holds true and thus,

sup
x∈R

|Fn(x)− F (x)| a.s.−−−−−→
n→∞

0.

This completes the proof. �

Note that the fact that the statement of the Glivenko-Cantelli theorem holds true “only”

almost surely does not imply any restrictions to statements or analyses about distributional

properties like weak convergence, since zero sets are irrelevant in statistical applications

and weak limits of stochastic processes are only almost surely unique.
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7.3 Proofs for Chapter 4

Proof of Theorem 4.1.3

Obviously, H(R) is a vector space of functions f : T → R and S(R) ⊆ H(R), because

for f ∈ S(R), we can choose the constant sequence (fn(·))n∈N := (f)n∈N which is Cauchy

in S(R) and converges pointwise to f . We now define a form denoted by 〈·, ·〉H(R) on

H(R)×H(R) via

〈·, ·〉H(R) : H(R)×H(R) −→ R, (f, g) 7−→ 〈f, g〉H(R) = lim
n→∞

〈fn, gn〉S(R)

for Cauchy sequences (fn(·))n∈N and (gn(·))n∈N in S(R) with

f(t) = lim
n→∞

fn(t) pointwise for all t ∈ T

and

g(t) = lim
n→∞

gn(t) pointwise for all t ∈ T.

In order to proof that 〈·, ·〉H(R) is well defined, we have to show that
(
〈fn, gn〉S(R)

)
n∈N

converges and that 〈f, g〉H(R) is independent of the Cauchy sequences converging pointwise

to f and g respectively.

Proving the first assertion, we begin by noting that (fn)n∈N and (gn)n∈N are Cauchy

sequences and therefore bounded, thus there is a C > 0 such that ‖fn‖S(R) < C and

‖gn‖S(R) < C for all n ∈ N. Hence,

|〈fm, gm〉S(R) − 〈fn, gn〉S(R)| = |〈fm − fn, gm〉S(R) + 〈fn, gm − gn〉S(R)|

≤ ‖gm‖S(R) · ‖fm − fn‖S(R) + ‖fn‖S(R) · ‖gm − gn‖S(R)

≤ C ·
(
‖fm − fn‖S(R) + ‖gm − gn‖S(R)

)

−−−−−−→
m,n→∞

0,

which means that
(
〈fn, gn〉S(R)

)
is a Cauchy sequence in R and therefore convergent, since

R is complete. Note that in the inequality above the Cauchy-Schwarz inequality was used,

which has been proven for the inner product 〈·, ·〉S(R) in Step 3 of Section 4.1.

To prove the second assertion, let (f̃n))n∈N and (g̃n)n∈N be another — possibly different

— pair of Cauchy sequences in S(R) with

f(t) = lim
n→∞

f̃n(t) pointwise for all t ∈ T

and

g(t) = lim
n→∞

g̃n(t) pointwise for all t ∈ T.
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We then have to show that

lim
n→∞

〈fn(·), gn(·)〉S(R) = lim
n→∞

〈f̃n(·), g̃n(·)〉S(R).

Because (fn)n∈N and (f̃n)n∈N are Cauchy sequences in S(R), (fn − f̃n)n∈N is a Cauchy

sequence in S(R), which, for t ∈ T , converges to zero pointwise. The same is true for

(gn − g̃n)n∈N. Since (fn − f̃n)n∈N is a Cauchy sequence, it is bounded and therefore there

is a C > 0 such that ‖fn − f̃n‖S(R) ≤ C for all n ∈ N. Hence, for an arbitrary ε > 0 there

is a N ∈ N such that

‖(fn − f̃n)− (fm − f̃m)‖S(R) ≤
ε

2C
∀n,m ≥ N.

Furthermore, since fN − f̃N ∈ S(R), there is a representation

(fN − f̃N )(·) =
l∑

i=1

aiR(si, ·) with l ∈ N, a1, . . . , al ∈ R and s1, . . . , sl ∈ T.

Because we know that (fn − f̃n)(t) −−−→
n→∞

0 is satisfied for all t ∈ T there is a N ′ ∈ N such

that
∣∣∣

l∑
i=1

ai(fn − f̃n)(si)
∣∣∣ ≤ ε

2 for all n ≥ N ′. For n ≥ max{N,N ′}, we now can conclude

that

‖fn − f̃n‖2S(R) = 〈fn − f̃n, fn − f̃n〉S(R)

= 〈(fn − f̃n)− (fN − f̃N ), fn − f̃n〉S(R) + 〈(fN − f̃N ), fn − f̃n〉S(R)

≤ ‖(fn − f̃n)− (fN − f̃N )‖2S(R) · ‖fn − f̃n‖S(R) +

〈 l∑

i=1

aiR(si, ·), (fn − f̃n)(·)
〉

S(R)

≤ ε

2C
· C +

l∑

i=1

ai (fn − f̃n)(si)

≤ ε

holds true, due to the Cauchy-Schwarz inequality and the reproducing kernel property.

Thus, ‖fn − f̃n‖S(R) −−−→
n→∞

0 and the same applies for ‖gn − g̃n‖S(R). Therefore,

|〈fn, gn〉S(R) − 〈f̃n, g̃n〉S(R)| = |〈fn, gn − g̃n〉S(R) + 〈fn − f̃n, g̃n〉S(R)|

≤ ‖fn‖S(R) · ‖fn − g̃n‖S(R) + ‖g̃n‖S(R) · ‖fn − f̃n‖S(R)

−−−−→
n→∞

0

follows, since again ‖fn‖S(R) and ‖g̃n‖S(R) are bounded, as (fn)n∈N and (gn)n∈N are Cauchy

sequences in S(R). Thus, the value of 〈f, g〉H(R) does not depend on the choice of the

pointwise convergent Cauchy sequences. Since we now know that 〈·, ·〉H(R) is well-defined
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the following properties are easy to be verify:

i) 〈·, ·〉H(R) is biliniar.

ii) 〈·, ·〉H(R)

∣∣
S(R)

= 〈·, ·〉S(R) .

iii) The reproducing kernel property on H(R) with respect to 〈·, ·〉H(R) holds true. This

holds true, since for f ∈ H(R)

〈f(·), R(t, ·)〉H(R) = lim
n→∞

〈fn(·), R(t, ·)〉S(R)

= lim
n→∞

fn(t) = f(t) ∀ t ∈ T .

iv) For f ∈ H(R), we have

〈f, f〉H(R) = lim
n→∞

〈fn, fn〉S(R) ≥ 0

and therefore 〈·, ·〉H(R) is non-negative definite. Thus, the Cauchy-Schwarz inequality

holds true for 〈·, ·〉H(R) and ||f ||H(R) :=
√

〈f, f〉H(R) for all f ∈ H(R). Hence, due

to

|f(t)| = |〈f(·), R(t, ·)〉H(R)| ≤ ‖f‖H(R) · ‖R(t, ·)‖H(R) ∀ t ∈ T,

we see that

‖f‖H(R) = 0 ⇐⇒ f ≡ 0 .

Taking the above considerations together, we know that 〈·, ·〉H(R) is an inner product on

H(R). It remains to show that H(R) is complete to finish the proof of Theorem 4.1.3. We

start with a function f ∈ H(R) and a Cauchy sequence (fn)n∈N ⊆ S(R) with f = lim
n→∞

fn

pointwise on T . For an arbitrary ε > 0, we choose N ∈ N big enough such that for all

n,m ≥ N, ‖fn − fm‖S(R) ≤ ε. Thus,

‖f − fN‖H(R) = lim
n→∞

‖fn − fN‖S(R) ≤ ε,

since (fn−fN )n∈N is a Cauchy sequence in S(R) that converges pointwise to f−fN ∈ H(R)

on T . As a consequence,

‖f − fn‖H(R) −−−−→
n→∞

0

holds. We have thus shown that S(R) is dense in H(R). To prove completeness of H(R),

let (fn)n∈N be a Cauchy sequence in H(R). We have to show that there is a f ∈ H(R)

with ‖f −fn‖H(R) −−−→
n→∞

0 . In order to do so, and because S(R) is dense in H(R) for each

n ∈ N, we choose gn ∈ S(R) with ‖fn − gn‖H(R) ≤ 1
n . Thus,

‖gn − gm‖S(R) = ‖gn − gm‖H(R)

≤ ‖gn − fn‖H(R) + ‖fn − fm‖H(R) + ‖fm − gm‖H(R)

≤ 1

n
+ ‖fn − fm‖H(R) +

1

m
−−−−−−→
n,m→∞

0
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can be inferred, which shows that (gn)n∈N is a Cauchy sequence in S(R) and due to Step

4 of Section 4.1, we therefore know that (gn)n∈N is pointwise convergent on T . Finally, let

f denote the pointwise limit of (gn)n∈N. Due to the definition of H(R), we have f ∈ H(R)

and due to the definition of ‖ · ‖H(R) and 〈·, ·〉H(R), we have

‖f − gn‖H(R) =
√

〈f, gn〉H(R) = lim
n→∞

√
〈gn, gn〉S(R) = 0.

We therefore conclude

‖f − fn‖H(R) ≤ ‖f − gn‖H(R) + ‖gn − fn‖H(R) ≤ ‖f − gn‖H(R) +
1

n
−−−−→
n→∞

0 ,

which means that for a Cauchy sequence (fn)n∈N ⊆ H(R) we have found a limit f ∈ H(R)

with fn → f in H(R) for n → ∞ . Altogether, H(R) satisfies all properties demanded by

Definition 4.1.2 and therefore is the RKHS with respect to the reproducing kernel R. �
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7.4 Proofs for Chapter 5

Proof of Theorem 5.0.2

Without loss of generality we can assume that

∫

[0,1]

σ2(t) dλλ[0,1](t) = 1,

since, if

Ỹ = f̃T(t)β + ε̃(t)

is a heteroscedastic generic linear model like the model (5.1) with

∫

[0,1]

σ̃2(t) dλλ[0,1](t) = c 6= 1,

we define

Y (t) :=
Ỹ (t)√

c
, f(t) :=

f̃(t)√
c

and ε(t) :=
ε̃(t)√

c
.

Then

∫

[0,1]

σ2(t) dλλ[0,1](t) =

∫

[0,1]

Var(ε(t)) dλλ[0,1](t)

=

∫

[0,1]

Var

(
ε̃(t)√

c

)
dλλ[0,1](t)

=
1

c

∫

[0,1]

Var
(
σ̃2(t)

)
dλλ[0,1](t)

= 1

holds true and we get the heteroscedastic generic linear regression model

Y = fT (t)β + ε(t)

where
∫ 1
0 σ2(t) dλλ[0,1](t) = 1 is valid. This model is equivalent to the non-normalized model

Ỹ = f̃T(t)β + ε̃(t) we started with, since the regression coefficients β = (β1, . . . , βp)
T did

not change and β is the quantity the practitioner usually wants to study via estimation

or hypothesis testing.

The following Lemma is a well-known invariance principle of Prokhorov (see Theorem 3.1

in Prokhorov (1956) page 190) which can also be found in Billingsley (1968) (see Problem

1 on page 77). We will use it in the context of this proof.
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Lemma 7.4.1. [Prokhorov (1956), Billingsley (1968)]

Let a triangular array ((ξni)i=1,...,n)n∈N of line by line independent random variables

with E(ξni) = 0 and Var(ξni) = σ2
ni ∈ (0,∞), i = 1, . . . , n, n ∈ N, be given. We

use the notations

s2ni :=

i∑

j=1

σ2
nj , s2n := s2nn and zni :=

s2ni
s2n

for simplification. Then, the random process which is linear on each interval

[zni−1, zni], i = 1, . . . , n and for i = 0, 1, . . . , n, has the value 1
sn

i∑
j=1

ξnj at zni

converges for n → ∞ in distribution to a standard Brownian motion B(·) if Linde-
berg’s condition

1

s2n

n∑

j=1

∫
1[εsn,∞)(|ξnj |) · ξ2nj dP −−−−→

n→∞
0

is fulfilled for every ε > 0.

In the present situation of the heteroscedastic linear regression model (5.1), we define

ξni := ε
(
i
n

)
so that E

(
ε
(
i
n

))
= 0 and Var

(
ε
(
i
n

))
= σ2

(
i
n

)
=: σ2

ni hold true and that

ε
(
1
n

)
, ε

(
2
n

)
, . . . , ε (1) are stochastically independent for n ∈ N. Therefore, according to

Lemma 7.4.1, we can infer that for the random process Vn ≡ (Vn(t))t∈[0,1], which is linear

on each interval [zni−1, zni], i = 1, . . . , n and takes the value 1
sn

i∑
j=1

ε
(
i
n

)
at zni, the

convergence

Vn(·) D−−−−→
n→∞

B(·) in C[0, 1], (7.91)

holds true. Note that Lindeberg’s condition is satisfied in this situation due to Assumption

vi) of model (5.1), since

1

s2n

n∑

j=1

∫
1[εsn,∞)

(∣∣ε
(
j

n

) ∣∣
)
· ε2

(
j

n

)
dP

≤ 1

s2n

n∑

j=1

∫
1[εsn,∞)

(∣∣ε
(
j

n

) ∣∣
)
·

∣∣∣ε
(

j
n

) ∣∣∣
2+δ

(εsn)δ
dP

≤ 1

εδs2+δ
n

n∑

j=1

E



∣∣∣∣∣ε
(
j

n

) ∣∣∣∣∣

2+δ



≤ n

s2n
· C

εδsδn
−−−−→
n→∞

0 (7.92)
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holds true, since we have

E



∣∣∣∣∣ε
(
j

n

) ∣∣∣∣∣

2+δ

 ≤ C

and according to Assumption vi) of (5.1),

n

s2n
=


1

n

n∑

j=1

σ2
nj



−1

=




∫

[0,1]

σ2(t) d


1

n

n∑

j=1

1(−∞,·]

(
j

n

)
(t)




−1

−−−−→
n→∞




∫

[0,1]

σ2(t) dλλ[0,1](t)


= 1 (7.93)

is satisfied and the fact that

sδn =

(
n∑

i=1

σ2
ni

) δ
2

=


n ·

∫

[0,1]

σ2(t) d


1

n

n∑

j=1

1(−∞,·]

(
j

n

)
(t)




δ
2

−−−−→
n→∞

∞

holds true, as δ > 0 and

∫
[0,1]

σ2(t) d

(
1
n

n∑
j=1

1(−∞,·]
(

j
n

)
(t) −−−−→

n→∞
1.

The central idea for the remainder of the proof is to find a transformation

Φn : C[0, 1] → C[0, 1], n ∈ N,

with the following two properties:

❼ (Φn(Vn))(·) =
1√
n
Tn (εn) (·) on [0, 1]. (7.94)

❼ (Φn(Vn))(·) D−−−−→
n→∞

(Φ(Vn))(·) = B




∫

[0,·]

σ2(t) dλλ[0,1](t)


 in C[0, 1]

(7.95)

for an appropriate Φ : C[0, 1] → C[0, 1].

Proof of (7.94):

Since for all n ∈ N the random process 1√
n
Tn (εn) (·) takes the value 1√

n

i∑
j=1

ε
(

j
n

)
at the

point i
n , i = 0, . . . , n, and is piecewise linear in between the points 1

n ,
2
n , . . . , 1, for (7.94)

to be true it suffices to define Φn in such a way that (Φn(Vn))(·) is piecewise linear in

between the points 1
n ,

2
n , . . . , 1 and that

(Φn(Vn))

(
i

n

)
=

1√
n
Tn (εn)

(
i

n

)
, i = 0, 1, . . . , n.
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To achieve this we define

i) the mapping pn : [0, 1] → {0, 1, . . . , n} with pn(t) := max{i ∈ 1, . . . , n | i
n ≤ t}.

ii) the mapping φn : [0, 1] → [0, 1] with

φn(t) := zn,pn(t) + (zn,pn(t)+1 − zn,pn(t)) · (nt− pn(t)).

iii) the operator Φn : C[0, 1] → C[0, 1] with

(Φn(x))(t) :=
sn√
n
· x(φn(t)) =

sn√
n
· x

(
zn,pn(t) + (zn,pn(t)+1 − zn,pn(t)) · (nt− pn(t))

)
.

Then, for i ∈ 0, 1, . . . , n, we have

(Φn(Vn))

(
i

n

)
=

sn√
n
· Vn

(
φn

(
i

n

))

=
sn√
n
· Vn

(
zn,pn(i/n) + (zn,pn(i/n)+1 − zn,pn(i/n)) · (n · i/n− pn(i/n))

)

=
sn√
n
· Vn (zni + (zn,i+1 − zn,i) · (i− i))

=
sn√
n
· Vn (zni)

=
1√
n

i∑

j=1

ε

(
i

n

)

=
1√
n
Tn (εn)

(
i

n

)
.

Furthermore, for i = 1, . . . , n and t ∈
[
i−1
n , i

n

]

(Φn(Vn))(t) =
sn√
n
· Vn (zn,i−1 + (zn,i − zn,i−1) · (n · t− (i− 1)))

is linear since Vn is linear in [zni−1, zni].

Proof of (7.95):

For t ∈ [0, 1], we have

pn(t)

n
= max{i = 0, 1/n, . . . , 1 | i ≤ t} −−−−→

n→∞
t

and thus,

φn(t) = zn,pn(t) + (zn,pn(t)+1 − zn,pn(t)) · (nt− pn(t))

=
s2npn(t)

s2n
+

σ2
(
pn(t)+1

n

)

s2n
· (nt− pn(t))
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=

1
n

pn(t)∑
i=1

σ2
(
i
n

)

1
n

n∑
i=1

σ2
(
i
n

) +
σ2

(
pn(t)+1

n

)

n∑
i=1

σ2
(
i
n

) · n ·
(
t− pn(t)

n

)

=

pn(t)
n∫
0

σ2(x) dFn(x)

1∫
0

σ2(x) dFn(x)

+
σ2

(
pn(t)+1

n

)

1
n

n∑
i=1

σ2
(
i
n

) ·
(
t− pn(t)

n

)

−−−−→
n→∞

∫

[0,t]

σ2(x) dλλ[0,1](x) =: φ(t) , (7.96)

holds true. Here, Fn denotes the empirical distribution function corresponding to the

design points 1
n ,

2
n , . . . , 1. The above convergence holds true, since due to

∫

[0,1]

σ2(x) dFn(x) −−−→
n→∞

∫

[0,1]

σ2(x) dλλ[0,1](x) = 1

and pn(t)/n −−−→
n→∞

t the first summand converges as asserted and the second summand

converges to zero because σ2
(
pn(t)+1

n

)
is bounded for t ∈ [0, 1] and n → ∞ since σ :

[0, 1] → (0,∞) is of bounded variation, hence bounded and

t− pn(t)

n
−−−−→
n→∞

0.

Therefore, for x(·) ∈ C[0, 1] and t ∈ [0, 1],

lim
n→∞

(Φn(x))(t) = lim
n→∞

sn√
n
· x(φn(t))

= x




∫

[0,t]

σ2(x) dλλ[0,1](x)




= x (φ(t))

=: (Φ(x))(t)

holds true, since (7.93) implies that sn√
n
−−−→
n→∞

1.

In the sequel of this proof we use the following Lemma. We point out that we could

not find the lemma in the literature, which is surprising because it can be of interests on

its own in the context of approximation theory.
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Lemma 7.4.2.

Let I ⊂ R be a compact interval and f : I −→ R continuous. For n ∈ N let

Tn = {tn1, . . . , tnin}, in ∈ N with min(I) ≤ tn1 ≤ · · · ≤ tnin ≤ max(I) be a

partition of I and fn : I −→ R be the piecewise linear interpolation of f with

respect to the partition Tn. That is, fn is the continuous and piecewise linear

function with the fraction points (tn1, f(tn1)) , . . . , (tnin , f(tnin)), the starting point

(min(I), f(min(I))) and the endpoint (max(I), f(max(I))).

Then the sequence (fn)n∈N is equicontinuous.

Proof of Lemma 7.4.2 :

Since f is a continuous function on a compact interval max(f(I)) and min(f(I)) exist and

therefore, without loss of generality, we can assume

max(f(I))−min(f(I)) = 1

since, if otherwise, either f is constant or max(f(I))−min(f(I)) = k 6= 1. In the first case

fn would be constant for all n ∈ N and therefore (fn)n∈N would be equicontinuous. In the

latter case, we consider f̃ : I → R with f̃(x) = 1
k ·f(x) so that max(f̃(x))−min(f̃(x)) = 1.

Here, for every piecewise linear interpolation fn of f and f̃n on f̃ , relative to the same

partition tn1, . . . , tnin ,

f̃n =
1

k
fn

holds true. Thus, it suffices to show that (f̃n)n∈N is equicontinuous in order to prove that

(fn)n∈N = (k · f)n∈N is equicontinuous, too.

Because f is continuous on the compact interval I and f is uniformly continuous, for every

ε > 0 there exists a δ > 0 such that for all |x− y| < δ,

|f(x)− f(y)| < ε

3

holds true. Now, let ε > 0 be given. In order to prove that (fn)n∈N is equicontinuous,

we have to prove that there is a δ̃ > 0 such that for all n ∈ N, all min(I) ≤ tn1 ≤, . . . ,≤
tnin ≤ max(I) arbitrary partitions of I and all |x− y| < δ̃,

|fn(x)− fn(y)| ≤ ε

holds true. We therefore define

δ̃ = min(δ,
ε δ

3
),

where δ is the positive number for which according to the uniformly continuity of f ,

|x− y| < δ ⇒ |f(x)− f(y)| < ε

3

holds. Furthermore, let tn0 = min(I), tnin+1 = max(I), fn be the piecewise linear inter-
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polation of f corresponding to the given partition and x ≤ y ∈ I with |x− y| ≤ δ̃. Then,

in the cases we will list down below the following assertions about

|fn(x)− fn(y)|

hold true:

Case 1: tnk ≤ x ≤ y ≤ tnk+1 for a k ∈ {0, . . . , in}.

Subcase a: tnk+1 − tnk < δ holds true and therefore

|fn(x)− fn(y)| ≤ |fn(tnk)− fn(tnk+1)| = |f(tnk)− f(tnk+1)| <
ε

3
< ε,

since fn is linear on [tnk, tnk+1], [x, y] ⊆ [tnk, tnk+1] and fn(tnj) = f(tnj) for

j = 0, . . . , in + 1.

Subcase b: tnk+1 − tnk ≥ δ holds true and therefore

∆1b :=

∣∣∣∣
f(tnk+1)− f(tnk)

tnk+1 − tnk

∣∣∣∣ ≤
1

δ
,

since max(f(I))−min(f(I)) = 1 holds true and as a consequence we can infer,

that

|fn(x)− fn(y)| = ∆1b · (y − x) ≤ y − x

δ
≤ δ̃

δ
= min(1,

ε

3
) ≤ ε

3

holds true, since fn is linear on [tnk, tnk+1] and [x, y] ⊆ [tnk, tnk+1].

Case 2: For a k ∈ {0, . . . , in − 1} there is a l ≥ 1 such that tnk ≤ x ≤ tnk+1 ≤ · · · ≤ tnk+l ≤
y ≤ tnk+l+1 holds true. In this case we have

|fn(x)− fn(y)| = |fn(x)− fn(tnk+1) + fn(tnk+1)− fn(tnk+l) + fn(tnk+l)− fn(y)|

≤ |fn(x)− fn(tnk+1)|+ |fn(tnk+1)− fn(tnk+l)|+ |fn(tnk+l)− fn(y)|.
(7.97)

❼ Concerning the summand |fn(tnk+1)− fn(tnk+l)|:

|fn(tnk+1)− fn(tnk+l)| = |f(tnk+1)− f(tnk+l)| <
ε

3
,

since fn(tnj) = f(tnj) for j = 0, . . . , in + 1 and |tnk+1 − tnk+l| ≤ |x− y| ≤ δ.

❼ Concerning the summand |fn(tnk+l)− fn(y)|:

Subcase a: If tnk+l+1 − tnk+l < δ holds true, we have

|fn(tnk+l)−fn(y)| ≤ |fn(tnk+l)−fn(k+l+1)| = |f(tnk+l)−f(k+l+1)| < ε

3
,

since fn is linear on [tnk+l, tnk+l+1], [tnk+l, y] ⊆ [tnk+l, tnk+l+1], fn(tnj) =

f(tnj) for j = 0, . . . , in + 1 and tnk+l+1 − tnk+l < δ.
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Subcase b: If tnk+l+1 − tnk+l ≥ δ holds true, we have

∆2b :=

∣∣∣∣
f(tnk+l+1)− f(tnk+l)

tnk+l+1 − tnk+l

∣∣∣∣ ≤
1

δ
,

since max(f(I))−min(f(I)) = 1 and therefore

|fn(tnk+l)− fn(y)| = ∆2b · (y − tnk+l) ≤
y − tnk+l

δ
≤ δ̃

δ
= min(1,

ε

3
) ≤ ε

3
,

since fn is linear on [tnk+l, tnk+l+1] and [tnk+l, y] ⊆ [tnk+l, tnk+1].

❼ Concerning the summand |fn(x)− fn(tnk+1)|:
Subcase a: In the case tnk+1− tnk < δ we can show similarly to Subcase a) from above

that |fn(x)− fn(tnk+1)| < ε
3 holds true.

Subcase b: In the case tnk+1 − tnk ≥ δ we can show analogously to Subcase b) from

above that |fn(x)− fn(tnk+1)| ≤ ε
3 holds true.

Taking the above together, we know that in Case 2 for equation (7.97) we have

|fn(x)− fn(y)| <
ε

3
+

ε

3
+

ε

3
= ε.

Taking our findings in Case 1 and Case 2 together, we have shown that

|fn(x)− fn(y)| ≤ ε

holds true independent of n ∈ N and the partition tn1 ≤, . . . ,≤ tnin . Consequently, we

have shown that (fn)n∈N is equicontinuous. �

Moving on, considering (xn)n∈N ⊆ C[0, 1] and x ∈ C[0, 1] such that ||xn − x||∞ −−−−→
n→∞

0,

we have

‖(Φn(xn))(·)−(Φ(x))(·)‖∞ ≤ ‖ (Φn(xn))(·)− (Φn(x))(·) ‖∞+ ‖ (Φn(x))(·)− (Φ(x))(·) ‖∞

=

∥∥∥∥
sn√
n
xn(φn(·))−

sn√
n
x(φn(·))

∥∥∥∥
∞

+

∥∥∥∥
sn√
n
x(φn(·))− x(φ(·))

∥∥∥∥
∞

≤ sn√
n
‖xn(·)− x(·)‖∞+

∥∥∥∥
sn√
n
x(φn(·))− x(φn(·))

∥∥∥∥
∞

+ ‖x(φn(·))− x(φ(·))‖∞

≤ sn√
n
‖xn(·)− x(·)‖∞+

∣∣∣∣
sn√
n
− 1

∣∣∣∣ · ‖x(·)‖∞+ ‖x(φn(·))− x(φ(·))‖∞ .

For n → ∞ all three summands converge to zero. The first summand converges to zero

due to (7.93) and the uniform convergence of xn to x. The second summand converges

to zero because of (7.93) and the fact that x(·) is a continuous function on [0, 1], hence

bounded. Concerning the third summand, since x is continuous on [0, 1] it is uniformly
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continuous. Hence for convergence to zero it would suffice to show that φn converges to

φ uniformly. To see this, note that (φn)n∈N is the piecewise linear interpolation of the

continuous function φ(·) =
·∫
0

σ2(x) dλλ[0,1](x) with respect to the partition points

0,
s2n1
s2n

,
s2n2
s2n

, . . . ,
s2n
s2n

= 1

on [0, 1]. Due to Lemma 7.4.2 we therefore know that (φn)n∈N is equicontinuous on the

compact set [0, 1] and due to (7.96) we already know that φn converges to φ pointwise,

hence

φn −−−→
n→∞

φ uniformly.

Taking everything together according to (7.91) we have

Vn(·) D−−−→
n→∞

B(·) in C[0, 1]

and due to Rubin‘s theorem (see Anderson (1963) page 140 and pages 146 ff., Topsoe

(1967) and Theorem 5.5 in Billingsley (1968)) and the uniform convergence of φn to φ, we

can conclude that

(Vn(φn))(·) D−−−→
n→∞

(B(φ))(·) in C[0, 1].

We thus have proven assertion (7.95) since

(Φn(Vn))(·) =
sn√
n
· Vn(φn)(·)

D−−−−→
n→∞

B(φ)(·)

= B




∫

[0,·]

σ2(t) dλλ[0,1](t)


 .

Note that in the equation above

sn√
n
=

√√√√ 1

n

n∑

i=1

σ2
ni =

√√√√
∫

[0,1]

σ2(x) dFn(x) −−−−→
n→∞

√√√√
∫

[0,1]

σ2(x) dλλ[0,1](x) = 1

is satisfied.

The now proven assertions (7.94) and (7.95) prove Theorem 5.0.2. �
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Proof of Theorem 5.0.3

According to Lemma 4.2.2 and the linearity of the partial sum operator Tn we can infer

1√
n
Tn(ε̂n)(·) =

1√
n
Tn(prWn

⊥(Yn))(·)

=
1√
n
Tn(prWn

⊥(Xnβ + εn))(·)

=
1√
n
Tn(prWn

⊥(εn))(·)

=
1√
n
Tn(εn)(·)−

1√
n
Tn(prWn(εn))(·).

As we already know from Theorem 5.0.2

1√
n
Tn(εn)(·) D−−−−→

n→∞
B




∫

[0,·]

σ2(t) dλλ[0,1](t)


 in C[0, 1]

holds true and thus it remains to prove that

1√
n
Tn(prWn(εn))(·)

D−−−−−→
n→∞




∫

[0,·]

f(t) dλλ[0,1](t)




T 


∫

[0,1]

f(t)fT (t) dλλ[0,1](t)




−1

×

(7.98)

×
∫

[0,1]

f(t) dB




∫

[0,1]

σ2(u) dλλ[0,1](u)


 in C[0, 1].

According to Lemma 3.1 in Bischoff (2002) for a ∈ Rn we have

Tn(prWn(a)) = prWnHB
(Tn(a)).

Here, prWnHB
denotes the orthogonal projection on WnHB

= span{hf1,n , . . . , hfp,n}, where

hfi,n : [0, 1] −→ R, x 7−→ 1

n
Tn(fi,n)(x), i = 1, . . . , p.

Therefore, for the left hand side of (7.98)

1√
n
Tn(prWn(εn))(·) =

1√
n
prWnHB

(Tn(εn)(·))(·) = prWnHB

(
1√
n
Tn(εn)(·)

)
(·)

holds true.
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We will show below that if (un)n∈N ⊆ C[0, 1] satisfies un −−−→
n→∞

u ∈ C[0, 1] uniformly,

sup
z∈[0,1]

|prWnHB
(un)(z)− prWHB

(u)(z)| −−−−→
n→∞

0. (7.99)

Thus, similarly to the end of the proof of Theorem 5.0.2, we deduce due to Rubin’s theorem

and Theorem 5.0.2 the convergence

1√
n
Tn(prWn(εn))(·)= prWn,HB

(
1√
n
Tn(εn)(·)

)
(·) D−−−→

n→∞
prWHB


B




∫

[0,·]

σ2(t) dλλ[0,1](t)





(·)

=




∫

[0,·]

f(t)dλλ[0,1](t)




T


∫

[0,1]

f(t)fT (t)dλλ[0,1](t)




−1∫

[0,1]

f(t)dB




∫

[0,t]

σ2(u) dλλ[0,1](u)


,

i.e., (7.98), completing the proof. Note that the last equality follows from what we have

already seen in Section 4.2, namely in Lemma 4.2.2, the extension of prWHB
: HB −→ WHB

to prWHB
: C[0, 1] −→ WHB

after that and Theorem 4.2.3. Therefore, it is sufficient to

prove (7.99) in order to complete the proof of Theorem 5.0.3.

The prove of (7.99) is divided into the following six parts.

Part 1:

Let i ∈ {1, . . . , p} and define

h′fi,n : [0, 1] −→ R, x 7−→
n∑

j=1

fi

(
j

n

)
1[ j−1

n
, j
n)
(x) + fi(1)1{1}(x).

Then,

∫

[0,x]

h′fi,n(u) dλλ[0,1](u) =

∫

[0,x]

n∑

j=1

fi

(
j

n

)
1[ j−1

n
, j
n)
(u) dλλ[0,1](u)

=
1

n



⌊nx⌋∑

j=1

fi

(
j

n

)
+ (nx− ⌊nx⌋) fi

(⌊nx⌋+ 1

n

)


=
1

n
Tn(fi,n)(x)

= hfi,n(x), x ∈ [0, 1),

holds true and due to

∫

[0,1]

h′fi,n(u) dλλ[0,1](u) =
1

n

n∑

j=1

fi

(
j

n

)
=

1

n
Tn(fi,n)(1) = hfi,n(1),
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we thus have

hfi,n(x) =

∫

[0,x]

h′fi,n(u) dλλ[0,1](u), x ∈ [0, 1]. (7.100)

Furthermore, we have

h′fi(x) =
d

dx

∫

[0,x]

fi(u) dλλ[0,1](u) = fi(x), x ∈ [0, 1],

up to a zero set with respect to the Lebesgue-measure.

We are going to prove that

‖h′fi,n − h′fi‖L1([0,1],λλ[0,1])
−−−−→
n→∞

0, i = 1, . . . , p. (7.101)

Since fi : [0, 1] → R is a function of bounded variation, it is bounded and has at most

countably many discontinuities. In particular, the set of discontinuities is a zero set with

respect to the Lebesgue-measure. By a well-known characterization of Riemann-integrable

functions (see for example the end of Kapitel 3 in Deiser (2015)) this implies that fi is

Riemann-integrable. Therefore, we have

lim
∆(P )→0

(U(fi, P )− L(fi, P )) = 0,

where

❼ P : a0 = 0 < a1 < · · · < an = 1 denotes a partition of [0, 1] and ∆(P ) := max
1≤j≤n

|aj −
aj−1| denotes the maximal width of the partition P ,

❼ U(fi, P ) :=
n∑

j=1
(aj−aj−1) sup

aj−1≤x≤aj

fi(x) denotes the upper integral of fi with respect

to the partition P ,

❼ L(fi, P ) :=
n∑

j=1
(aj−aj−1) inf

aj−1≤x≤aj
fi(x) denotes the lower integral of fi with respect

to the partition P .

Thus, let ε > 0 be given. Then there is a δ > 0 such that

U(fi, P )− L(fi, P ) < ε

holds true for ∆(P ) ≤ δ. As a consequence, for n ≥ 1
δ , n ∈ N and P =(aj)

n
j=0=

(
j
n

)n

j=0
,

we have ∆(P ) = 1
n ≤ δ and hence,

ε > U(fi, P )− L(fi, P ) =

n∑

j=1

(aj − aj−1)

(
sup

aj−1≤x≤aj

fi(x)− inf
aj−1≤x≤aj

fi(x)

)



176 7. Appendix

=
1

n

n∑

j=1

(
sup

j−1
n

≤x≤ j
n

fi(x)− inf
j−1
n

≤x≤ j
n

fi(x)

)

holds true. Note that (fi,n)j = fi

(
j
n

)
and therefore

inf
j−1
n

≤x≤ j
n

fi(x) ≤ fi

(
j

n

)
≤ sup

j−1
n

≤x≤ j
n

fi(x)

holds true. We can thus infer for x ∈ [0, 1),

|h′fi,n(x)− fi(x)| =
∣∣∣∣∣

n∑

j=1

1[ j−1
n

, j
n)
(x)

(
fi

(
j

n

)
− fi(x)

)∣∣∣∣∣ ≤
n∑

j=1

1[ j−1
n

, j
n)
(x)

∣∣∣∣fi(x)− fi

(
j

n

)∣∣∣∣

≤
n∑

j=1

1[ j−1
n

, j
n)
(x)


 sup

j−1
n

≤t≤ j
n

fi(t)− inf
j−1
n

≤t≤ j
n

fi(t)


 ,

which leads us to conclude

‖h′fi,n − h′fi‖L1([0,1],λλ[0,1])
=

∫

[0,1]

|h′fi,n(x)− fi(x)| dλλ[0,1](x)

≤
∫

[0,1]

n∑

j=1

1[ j−1
n

, j
n)
(x)


 sup

j−1
n

≤t≤ j
n

fi(t)− inf
j−1
n

≤t≤ j
n

fi(t)


 dλλ[0,1](x)

=
1

n

n∑

j=1


 sup

j−1
n

≤t≤ j
n

fi(t)− inf
j−1
n

≤t≤ j
n

fi(t)


 < ε

for all n ≥ 1
δ . This completes the proof of (7.101).

Part 2:

Let (H, 〈·, ·〉) be an inner product space, v1, . . . , vp ∈ H be linearly independent and

(v
(n)
i )n∈N ⊂ H with v

(n)
i −−−→

n→∞
vi, i = 1, . . . , p, be given. We additionally denote by

ṽ
(n)
1 , . . . , ṽ

(n)
p the output of the Gram-Schmidt orthonormalization of v

(n)
1 , . . . , v

(n)
p and by

ṽ1, . . . , ṽp, we denote the output of the Gram-Schmidt orthonormalization of v1, . . . , vp.

Then the following assertions hold true:

i) v
(n)
1 , . . . , v

(n)
p are linearly independent for n ≥ n0 for a suitable n0 ∈ N.

ii) ṽi =
i∑

j=1
αijvj for some αi1, . . . , αii ∈ R for all i = 1, . . . , p.

iii) ṽ
(n)
i =

i∑
j=1

α
(n)
ij v

(n)
j for some α

(n)
i1 , . . . , α

(n)
ii ∈ R for all i = 1, . . . , p and n ≥ n0.

iv) α
(n)
ij −−−−→

n→∞
αij , j = 1, . . . , i, and ṽ

(n)
i −−−−→

n→∞
ṽi for all i = 1, . . . , p.
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Proof: Consider the Gram matrix G := (〈vi, vj〉)pi,j=1 ∈ Rp×p as well as the Gram matrices

G(n) := (〈v(n)i , v
(n)
j 〉)pi,j=1 ∈ Rp×p, n ∈ N.

Then, for all c ∈ Rp,

〈G(n)c, c〉 =
p∑

i=1

(G(n)c)i ci =

p∑

i=1

p∑

j=1

(G(n))i,j cj ci

=

〈 p∑

i=1

civ
(n)
i ,

p∑

j=1

cjv
(n)
j

〉
=

∥∥∥∥∥

p∑

i=1

civ
(n)
i

∥∥∥∥∥

2

≥ 0

holds true, showing thatG(n) is symmetric and positive-semidefinite, and that v
(n)
1 , . . . , v

(n)
p

are linearly independent if and only if G(n) is positive definite, i.e. invertible. By the same

arguments, it follows that G is invertible. Since G(n) −−−→
n→∞

G, we see that G(n) is invert-

ible for n ≥ n0 for some n0 ∈ N. This proves assertion i).

We now prove assertions ii) and iii) by induction over i ∈ {1, . . . , p} for n ≥ n0.

For i = 1, we have

ṽ1 =
1

‖v1‖
v1 and ṽ

(n)
1 =

1

‖v(n)1 ‖
v
(n)
1

so that the claims hold true in this case. If ii) and iii) hold true for all i ≤ i0 ≤ p− 1, then

ṽi0+1 =
1

‖wi0+1‖
wi0+1 with wi0+1 = vi0+1 −

i0∑

j=1

〈vi0+1, ṽj〉ṽj

and

ṽ
(n)
i0+1 =

1

‖w(n)
i0+1‖

w
(n)
i0+1 with w

(n)
i0+1 = v

(n)
i0+1 −

i0∑

j=1

〈v(n)i0+1, ṽ
(n)
j 〉ṽ(n)j

hold true. Hence, ii) and iii) hold true for i = i0 + 1 with

αi0+1,j =





1
‖wi0+1‖ , j = i0 + 1

− 〈vi0+1,ṽj〉
‖wi0+1‖ , j ≤ i0

and

α
(n)
i0+1,i =





1

‖w(n)
i0+1‖

, j = i0 + 1

− 〈v(n)
i0+1,ṽ

(n)
j 〉

‖w(n)
i0+1‖

, j ≤ i0.

Note that as v
(n)
i −−−→

n→∞
vi, i = 1, . . . , p, according to the above construction α

(n)
ij −−−→

n→∞
αij , j = 1, . . . , i, and ṽ

(n)
i −−−→

n→∞
ṽi for all i = 1, . . . , p, which proves assertion iv).
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Part 3:

For i = 1, . . . , p,

‖hfi,n − hfi‖HB
= ‖h′fi,n − h′fi‖L2([0,1],λλ[0,1])

= ‖h′fi,n − fi‖L2([0,1],λλ[0,1])

=

√√√√
∫

[0,1]

|h′fi,n(x)− fi(x)| · |h′fi,n(x)− fi(x)| dλλ[0,1](x)

≤
√√√√‖h′fi,n − fi‖∞ ·

∫

[0,1]

|h′fi,n − fi|(x) dλλ[0,1](x)

= ‖h′fi,n − fi‖
1
2∞ · ‖h′fi,n − h′fi‖

1
2

L1([0,1],λλ[0,1])

−−−→
n→∞

0

holds true, since ‖h′fi,n‖∞ ≤ ‖fi‖∞, fi is bounded and assertion (7.101) holds true.

In view of Part 2, since for i = 1, . . . , p, h̃fi,n is a linear combination of hf1,n , . . . , hfi,n
with convergent and thus bounded coefficients, this implies h̃fi,n −−−−→

n→∞
h̃fi in HB for

i ∈ {1, . . . , p}.

Part 4:

Let BVD(HB) = {h ∈ HB|h′ is of bounded variation} and

〈·, ·〉BVD(HB)×C[0,1] : BVD(HB)× C[0, 1] −→ R, (h, u) 7−→
(R)∫

[0,1]

h′du

be as defined in Section 4.2. Thus, for the extension prWnHB
of the orthogonal projection

onto WnHB
with respect to the bilinear mapping 〈·, ·〉BVD(HB)×C[0,1] we have

prWnHB
: C[0, 1] −→ C[0, 1], u 7−→

p∑

i=1

〈h̃fi,n , u〉BVD(HB)×C[0,1] h̃fi,n ,

where, for n ∈ N, h̃f1,n , . . . , h̃fp,n is the output of the Gram-Schmidt orthonormalization

of hf1,n , . . . , hfp,n and therefore an orthonormal basis of WnHB
.

Then, there is a K > 0 such that

‖prWnHB
‖C[0,1]→C[0,1] ≤ K (7.102)

holds true for all n ≥ n0 with n0 as in Part 2. Here ‖ · ‖C[0,1]→C[0,1] denotes the operator

norm on the space of linear operators C[0, 1] → C[0, 1], thus for g ∈ C[0, 1] and a linear

φ : C[0, 1] → C[0, 1], we have ‖φ‖C[0,1]→C[0,1] := sup
‖g‖∞=1

‖φ(g)‖∞.

Note, that it is not immediate that ‖prWnHB
‖C[0,1]→C[0,1] ≤ K holds true for all n ∈ N even

though prWnHB
is the extension of an orthogonal projection, since prWnHB

is a projection
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with respect to the bilinear mapping 〈·, ·〉BVD(HB)×C[0,1] and therefore bounded regarding

to the norm induced by 〈·, ·〉BVD(HB)×C[0,1], but not necessary with respect to the norm

on C[0, 1] (which does not come from an inner product).

Proof of (7.102): For i ∈ {1, . . . , p}, with the help of (7.100), we get

|hfi,n(x)| =
∣∣∣∣∣

∫

[0,x]

h′fi,n(u) dλλ[0,1](u)

∣∣∣∣∣ ≤
∫

[0,x]

|h′fi,n(u)| dλλ[0,1](u)

=

∫

[0,x]

∣∣∣∣∣

n∑

j=1

fi

(
j

n

)
1[ j−1

n
, j
n)
(u)

∣∣∣∣∣ dλλ[0,1](u) ≤ ‖fi‖∞.

In combination with Part 2 and Part 3, this shows that

‖h̃fi,n‖∞ ≤ K1

for all n ≥ n0 with n0 as in Part 2 for K1 > 0 suitable, since h̃fi,n is a linear combination of

hf1,n , . . . , hfi,n with convergent and thus bounded coefficients. Furthermore, for u ∈ C[0, 1]

due to partial integration (see for example Satz 6.3 in Walter (2002))

|〈hfi,n , u〉BVD(HB)×C[0,1]| =
∣∣∣∣∣

(R)∫

[0,1]

h′fi,n(t) du(t)

∣∣∣∣∣

=

∣∣∣∣∣h
′
fi,n

(1)u(1)− h′fi,n(0)u(0)−
(R)∫

[0,1]

u(t) dh′fi,n(t)

∣∣∣∣∣

=

∣∣∣∣∣fi(1)u(1)− fi

(
1

n

)
u(0)−

∫

[0,1]

u(t) d




n∑

j=1

(
fi

(
j

n

)
− fi

(
j − 1

n

))
δ j−1

n


 (t)

∣∣∣∣∣

≤ |fi(1)| · |u(1)|+
∣∣∣∣∣fi

(
1

n

) ∣∣∣∣∣ · |u(0)|+ ‖u‖∞




n∑

j=2

∣∣∣∣∣fi
(
j

n

)
− fi

(
j − 1

n

) ∣∣∣∣∣+
∣∣∣∣∣fi

(
1

n

) ∣∣∣∣∣




≤ [‖fi‖∞ + ‖fi‖V ] · ‖u‖∞

≤ K2 · ‖u‖∞

holds true for some K2 > 0, since fi is of bounded variation. Note that K2 is independent

of n and note furthermore, that we interpreted fi

(
j−1
n

)
as zero for j = 1. Again, by Part

2 and Part 3, this implies the existence of K3 > 0 satisfying

|〈h̃fi,n , u〉BVD(HB)×C[0,1]| ≤ K3 · ‖u‖∞

for all n ≥ n0, i ∈ {1, . . . , p} and u ∈ C[0, 1].
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Taking the above facts together, we can infer:

‖prWnHB
(u)‖∞ ≤

p∑

i=1

|〈h̃fi,n , u〉BVD(HB)×C[0,1]| · ‖h̃fi,n‖∞

≤ p ·K3 · ‖u‖∞ ·K1

holds true for all n ≥ n0 with n0 as in Part 2 and all u ∈ C[0, 1]. This proves (7.102).

Part 5:

The extension prWHB
of orthogonal projection onto WHB

with respect to the bilinear

mapping 〈·, ·〉BVD(HB)×C[0,1] has the form

prWHB
: C[0, 1] −→ C[0, 1], u 7−→

p∑

i=1

〈h̃fi , u〉BVD(HB)×C[0,1] h̃fi ,

where h̃f1 , . . . , h̃fp is the output of the Gram-Schmidt orthonormalization of hf1 , . . . , hfp

and therefore an orthonormal basis of WHB
.

Then, there is a dense subspace V ⊂ C[0, 1], such that

‖prWnHB
(u)− prWHB

(u)‖∞ −−−−→
n→∞

0, u ∈ V.

Proof: Note that {u ∈ C1([0, 1]) |u(0) = 0} ⊆ HB and that

span{1[0,1]}+ {u ∈ C1([0, 1]) |u(0) = 0} = C1([0, 1])

is dense in C([0, 1]). It is thus sufficient to show

‖prWnHB
(u)− prWHB

(u)‖∞ −−−→
n→∞

0

for u = 1[0,1] and for u ∈ HB. First, for u = 1[0,1] and f ∈ BVD(HB) we have

〈f, u〉BVD(HB)×C[0,1] =

(R)∫

[0,1]

f ′ du = 0,

which implies prWnHB
(1[0,1]) = 0 −−−−→

n→∞
0 = prWHB

(u). Furthermore, for u ∈ HB and

f ∈ BVD(HB) we have

〈f, u〉BVD(HB)×C[0,1] =

(R)∫

[0,1]

f ′(x) du(x) =
∫

[0,1]

f ′(x)u′(x) dλλ[0,1](x) = 〈f, u〉HB
.

Therefore, together with Part 3, we can infer that for u ∈ HB
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‖prWnHB
(u)− prWHB

(u)‖HB

=

∣∣∣∣∣

∣∣∣∣∣

p∑

i=1

〈h̃fi,n , u〉BVD(HB)×C[0,1] h̃fi,n −
p∑

i=1

〈h̃fi , u〉BVD(HB)×C[0,1] h̃fi

∣∣∣∣∣

∣∣∣∣∣
HB

≤
p∑

i=1

‖〈h̃fi,n , u〉BVD(HB)×C[0,1] h̃fi,n − 〈h̃fi , u〉BVD(HB)×C[0,1] h̃fi‖HB

=

p∑

i=1

‖〈h̃fi,n , u〉HB
h̃fi,n − 〈h̃fi , u〉HB

h̃fi‖HB

≤
p∑

i=1

‖〈h̃fi,n − h̃fi , u〉HB
h̃fi,n‖HB

+ ‖〈h̃fi , u〉HB
(h̃fi,n − h̃fi)‖HB

−−−→
n→∞

p∑

i=1

‖〈h̃fi − h̃fi , u〉HB
h̃fi‖HB

+ ‖〈h̃fi , u〉HB
(h̃fi − h̃fi)‖HB

= 0

holds true.

Now, for g ∈ HB, ‖g‖∞ ≤ ‖g‖HB
holds true, which can be seen in the following way:

According to the Cauchy-Schwarz inequality for all t ∈ (0, 1]

|〈k, l〉L2([0,t],λλ[0,t])
| ≤ ‖k‖L2([0,t],λλ[0,t])

· ‖l‖L2([0,t],λλ[0,t])

holds true. If we set k = g′ and l ≡ 1, we thus get

∣∣∣∣∣

∫

[0,t]

g′(x) dλλ[0,t](x)

∣∣∣∣∣ ≤
√√√√

∫

[0,t]

g′(x)2 dλλ[0,t](x) ·
√∫

[0,t]
1 dλλ[0,t](x)

≤
√√√√

∫

[0,1]

g′(x)g′(x) dλλ[0,1](x)

and therefore

|g(t)| = |g(t)− g(0)| ≤
√√√√

∫

[0,1]

g′(x)g′(x) dλλ[0,1](x) = ‖g‖HB
, t ∈ (0, 1],

holds true, since g(0) = 0. As a consequence, sup
t∈[0,1]

|g(t)| ≤ ‖g‖HB
follows.

We thus conclude that,

‖prWnHB
(u)− prWHB

(u)‖∞ −−−−→
n→∞

0

holds true for u ∈ HB, which, as seen above, completes the proof of Part 4.
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Part 6:

According to Part 4 there is a K > 0 such that

‖prWnHB
‖C[0,1]→C[0,1] ≤ K

and according to Part 5 there is a dense subspace V ⊂ C[0, 1] such that

‖prWnHB
(u)− prWHB

(u)‖∞ −−−−→
n→∞

0, u ∈ V,

holds true. Therefore, since ‖prWHB
‖C[0,1]→C[0,1] < ∞, which can be shown similar to

‖prWnHB
‖C[0,1]→C[0,1] < ∞, by enlarging K, we can assume that

‖prWHB
‖C[0,1]→C[0,1] ≤ K̃

holds true as well and then denote K̃ by K. We can then infer that

‖prWnHB
(u)− prWHB

(u)‖∞ −−−→
n→∞

0, u ∈ C[0, 1],

holds true, since given such an u ∈ C[0, 1] and ε > 0, one can choose v ∈ V such that

‖u− v‖∞ ≤ ε
3K and n0 ∈ N such that ‖prWnHB

(v)− prWHB
(v)‖∞ ≤ ε

3 for all n ≥ n0 and

thus

‖prWnHB
(u)− prWHB

(u)‖∞

≤ ‖prWnHB
(u)− prWnHB

(v)‖∞ + ‖prWnHB
(v)− prWHB

(v)‖∞ + ‖prWHB
(v)− prWHB

(u)‖∞

≤ ‖prWnHB
‖C[0,1]→C[0,1] · ‖u− v‖∞ +

ε

3
+ ‖prWHB

‖C[0,1]→C[0,1] · ‖v − u‖∞

≤ K · ε

3K
+

ε

3
+K · ε

3K

= ε, n ≥ n0.

Finally, if (un)n∈N ⊂ C[0, 1] with un −−−→
n→∞

u ∈ C[0, 1] then, as desired,

‖prWnHB
(un)− prWHB

(u)‖∞ ≤ ‖prWnHB
(un)− prWnHB

(u)‖∞+ ‖prWnHB
(u)− prWHB

(u)‖∞

≤ K · ‖un − u‖∞ + ‖prWnHB
(u)− prWHB

(u)‖∞

−−−−→
n→∞

0

holds true, which proves (7.99). �
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7.5 Proofs for Chapter 6

The following lemma is the result of a strict forward computation, for which we provide

an explicit proof for the convenience of the reader.

Lemma 7.5.1.

Let the presumptions and notations of Section 6.1.1 and Section 6.1.2 be given. In

particular, F := {F (·, θ) : R → [0, 1] | θ ∈ Θ} is the hypothesised model family of

absolutely continuous distribution functions F (·, θ), parametrised by a parameter θ

from an open set Θ ⊆ Rp, θ0 ∈ Θ, f(t, θ) = ∂F (F−(t,θ0),θ)
∂θ and f ′(t, θ0) = ∂f(t,θ0)

∂t .

Then

f ′(t, θ0) =

(
∂

∂θ
log

∂

∂t
F

)
(F−(t, θ0), θ0)

holds true.

Proof: It holds true that

f ′(t, θ0) =
∂

∂t

∂

∂θ

[
F (F−(t, θ0), θ)

] ∣∣∣
θ=θ0

=
∂

∂t

[(
∂

∂θ
F

)
(F−(t, θ0), θ)

] ∣∣∣∣
θ=θ0

· ∂

∂θ
θ

=

(
∂

∂t

∂

∂θ
F

)
(F−(t, θ0), θ)

∣∣∣∣
θ=θ0

·
(

∂

∂t
F−

)
(t, θ0)

=

(
∂
∂t

∂
∂θF

)
(F−(t, θ0), θ0)(

∂
∂tF

)
(F−(t, θ0), θ0)

(7.103)

=

(
∂
∂θ

∂
∂tF

)
(F−(t, θ0), θ0)(

∂
∂tF

)
(F−(t, θ0), θ0)

(7.104)

=

(
∂
∂θ

∂
∂tF

)
(F−(t, θ0), θ0) · ∂

∂θθ(
∂
∂tF

)
(F−(t, θ0), θ0)

=

∂
∂θ

[(
∂
∂tF

)
(F−(t, θ0), θ)

] ∣∣
θ=θ0(

∂
∂tF

)
(F−(t, θ0), θ0)

=
∂

∂θ

[
log

((
∂

∂t
F

)
(F−(t, θ0), θ)

)] ∣∣∣∣
θ=θ0

=

(
∂

∂θ
log

∂

∂t
F

)
(F−(t, θ0), θ0).

Note that we could change the order of derivatives in equation (7.104) since, according to

our assumptions, F (F−(t, θ0), θ) is continuously differentiable in t and θ. Furthermore,

equation (7.103) holds true, since F (F−(t, θ0), θ0) = t is fulfilled, from which

∂

∂t

[
F (F−(t, θ0), θ)

] ∣∣∣
θ=θ0

=

(
∂

∂t
F

)
(F−(t, θ0), θ0) ·

(
∂

∂t
F−

)
(t, θ0) =

∂

∂t
t
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can be inferred by derivation on both sides, which in turn is equivalent to

(
∂

∂t
F−

)
(t, θ0) =

1(
∂
∂tF

)
(F−(t, θ0), θ0)

.

�

Proof of the two assertions in Remark 6.3.1

It holds true that




1

n




(f1 · 1(c,b])(Xn1) . . . (f1 · 1(c,b])(Xnn)
...

. . .
...

(fp · 1(c,b])(Xn1) . . . (fp · 1(c,b])(Xnn)







(f1 · 1(c,b])(Xn1) . . . (fp · 1(c,b])(Xn1)
...

. . .
...

(f1 · 1(c,b])(Xnn) . . . (fp · 1(c,b])(Xnn)




︸ ︷︷ ︸
=:An




k,l

=

(
1

n

n∑

i=1

(fk · fl · 1(c,b])(Xni)

)

k,l

a.s.−−−−→
n→∞




∫

[−∞,∞]

(
fk · fl · 1(c,b]

)
(x) dF (x)


 , 1 ≤ k, l ≤ p,

and thus,

1

n
AT

nAn
a.s.−−−−→

n→∞

∫

[−∞,∞]




f1 · 1(c,b]

...

fp · 1(c,b]


(x)

(
f1 · 1(c,b], . . . , fp · 1(c,b]

)
(x) dF (x). (7.105)

Since the matrix on the right hand side of (7.105) is invertible (as f1 · 1(c,b], . . . , fp · 1(c,b]

are linearly independent in L2([a, b], F )) and since det : Rp×p −→ R is continuous, for

almost all realisations ((tni)
n
i=1)n∈N of ((Xni)

n
i=1)n∈N there exists an n0 ∈ N such that




(f1 · 1(c,b])(tn1) . . . (f1 · 1(c,b])(tnn)
...

. . .
...

(fp · 1(c,b])(tn1) . . . (fp · 1(c,b])(tnn)







(f1 · 1(c,b])(tn1) . . . (fp · 1(c,b])(tn1)
...

. . .
...

(f1 · 1(c,b])(tnn) . . . (fp · 1(c,b])(tnn)




︸ ︷︷ ︸
=:Bn

is invertible for all n ≥ n0 and thus BT
nBn has rank p for all n ≥ n0. Furthermore, since

rank(BT
nBn) = rank(Bn) = rank







f1(tnjn(c)+1) . . . fp(tnjn(c)+1)
...

. . .
...

f1(tnn) . . . fp(tnn)







= rank
(
X(jn(c)+1)

n

)
= rank

(
(X(jn(c)+1)

n )TX(jn(c)+1)
n

)
,

we can conclude that for almost all realisations ((tni)
n
i=1)n∈N of ((Xni)

n
i=1)n∈N there exists
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an n0 ∈ N such that for all n ≥ n0, (X
(jn(c)+1)
n )TX

(jn(c)+1)
n ∈ Rp×p has rank p. Note that

then, of course, X
(1)
n , . . . , X

(jn(c))
n have full rank, too.

Therefore, we have show that almost all realisations ((tni)
n
i=1)n∈N of ((Xni)

n
i=1)n∈N satisfy

Assumption (6.24). �

Lemma 7.5.2.

The following statements about the backwards recursive residuals, defined in Defi-

nition 6.3.2, are true:

i) E(rni) = 0 and Var(rni) = σ2, i = 1, . . . , jn(c).

ii) The i-th backwards recursive residual rni, i = 1, . . . , jn(c), is a linear combi-

nation of the last n− i+ 1 regression errors εni, . . . , εnn. To be more specific,

rni =
1

cni
(1, bni) ε

(i)
n

with

bni := −fT (tni)
(
(X(i+1)

n )TX(i+1)
n

)−1
(X(i+1)

n )T ∈ R1×(n−i)

and

cni :=

√
1 + fT (tni)

(
(X

(i+1)
n )TX

(i+1)
n

)−1
f(tni).

iii) The backwards recursive residual vector rn can be computed at once, using a

linear transformation of the regression error vector ε1. To be more specific,

rn = Mn ε
(1)
n

holds true with

Mn :=




1
cn1

0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 1
cnjn(c)







1 bn1

0 1 bn2
...

. . .
. . .

. . .

0 . . . 0 1 bnjn(c)




∈ Rjn(c)×n.

iv) The rows of Mn are orthogonal to the columns of X
(1)
n , i.e.

MnX
(1)
n = 0 ∈ Rjn(c)×p.

v) The rows of Mn are an orthonormal system and thus Cov(rn) = σ2Ijn(c)

holds true. In particular, for ε
(1)
n ∼ Nn(0, σ

2In), the random variables

rn1, . . . , rnjn(c) are stochastically independent.

vi) The relation MT
n Mn = pr

X
(1)
n

⊥ holds true. Therefore, we have ε̂n =

MT
n Mn ε

(1)
n . As a consequence, rn = Mn ε̂n holds true.
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Lemma 7.5.3.

Let the prerequisites of Section 6.3 be given. Let Xmin(A) and Xmax(A) denote

the minimal and maximal eigenvalue of a symmetric matrix A. Then the following

statements hold true:

i) Let H(t) :=
∫

[t,1]

(ffT ) ◦ F− dλλ[0,1], t ∈ [0, F (c)]. Then there are Xmin,Xmax ∈

(0,∞) such that

Xmin ≤ Xmin(H(t)) ≤ Xmax(H(t)) ≤ Xmax

holds true for all t ∈ [0, F (c)].

ii) For all m ∈ N0

sup
t∈[0,1]

∥∥∥∥∥∥∥

1

n
(X(⌈tn⌉+m)

n )TX(⌈tn⌉+m)
n −

∫

[t,1]

(ffT ) ◦ F− dλλ[0,1]

∥∥∥∥∥∥∥
−−−−→
n→∞

0

and

sup
t∈[0,F (c)]

∥∥∥∥∥∥∥

(
1

n
(X(⌈tn⌉+m)

n )TX(⌈tn⌉+m)
n

)−1

−




∫

[t,1]

(ffT ) ◦ F− dλλ[0,1]




−1∥∥∥∥∥∥∥
−−−−→
n→∞

0

hold true for all matrix norms (since matrix norms are equivalent in finite

dimensional vector spaces).

iii) There are X̃min, X̃max ∈ (0,∞) such that for any fixedm ∈ N0 there is a n0 ∈ N

such that

X̃min ≤ Xmin

(
1

n
(X(⌈tn⌉+m)

n )TX(⌈tn⌉+m)
n

)

≤ Xmax

(
1

n
(X(⌈tn⌉+m)

n )TX(⌈tn⌉+m)
n

)
≤ X̃max

holds true for all t ∈ [0, F (c)] and all n ≥ n0.

iv) There are r > 0 and n0 ∈ N such that 1 ≤ c2n⌈tn⌉ ≤ 1 + r
n holds true for all

t ∈ [0, F (c)] and n ≥ n0. Therefore,

sup
i∈{1,...,jn(c)}

cni −−−−−→
n → ∞

1

is satisfied.
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Proofs: The proofs of Lemma 7.5.2 and Lemma 7.5.3 are similar to those in Brown,

Durbin, and Evans (1975) and Evers (2022) for “normal” (i.e. non backwards) recursive

residuals and are therefore omitted here. The only difference is that in the case of back-

wards recursive residuals, we have to apply the proofs given therein to the time inverted

data. �

Proof of Theorem 6.3.3

For x ∈ (−∞, c] the equations

(T ∗(R1
n))(x) = R1

n(x)−
∫

(−∞,x]

fT (y)




∫

(y,∞)

f(u)fT (u) dF (u)




−1


∫

(y,∞)

f(z) dR1
n(z)


 dF (y)

(7.106)

=
1

σ
√
n

n∑

i=1

1(−∞,x](tni) ε̂ni −
∫

(−∞,x]

fT (y)




∫

(y,∞)

f(u) fT (u) dF (u)




−1

×

× 1

σ
√
n
(X(jn(y)+1)

n )T ε̂(jn(y)+1)
n dF (y)

=
1

σ
√
n

jn(x)∑

i=1

ε̂ni −
1

σ
√
n

∫

(−∞,x]

fT (y)




∫

(y,∞)

f(u) fT (u) dF (u)




−1

×

× (X(jn(y)+1)
n )T ε̂(jn(y)+1)

n dF (y)

(7.107)

=
1

σ
√
n

jn(x)∑

i=1

ε̂ni −
1

σ
√
n

∫

(−∞,x]

fT (y)




∫

(y,∞)

f(u) fT (u) d

(
1

n

n∑

i=1

δ{tni}

)
(u)




−1

×

× (X(jn(y)+1)
n )T ε̂(jn(y)+1)

n d

(
1

n

n∑

i=1

δ{tni}

)
(y) + oP(1)

(7.108)

=
1

σ
√
n

jn(x)∑

i=1

ε̂ni −
1

σ
√
n

jn(x)∑

i=1

fT (tni)
(
(X(i+1)

n )TX(i+1)
n

)−1
(X(i+1)

n )T ε̂(i+1)
n + oP(1)

=
1

σ
√
n

jn(x)∑

i=1

(
ε̂ni − fT (tni)

(
(X(i+1)

n )T X(i+1)
n

)−1
(X(i+1)

n )T ε̂(i+1)
n

)
+ oP(1)

(7.109)
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=
1

σ
√
n

jn(x)∑

i=1

rni + oP(1)

=
1

σ
√
n

jn(c)∑

i=1

1(−∞,x](tni) · rni + oP(1)

= R̃1
n(x) + oP(1).

are satisfied for n → ∞. Here, as defined in Remark 6.3.1, jn : R −→ {0, 1, . . . , n}, y 7−→
max{0, sup{i ∈ {1, . . . , n} | tni ≤ y}} and δ{tni} denotes the one point measure in tni.

In order to thoroughly prove the above equations, we take a closer look at the enumer-

ated equalities (7.106) - (7.109). Note that in the context of this proof, we denote by

‖M‖ = sup
‖x‖2=1

‖Mx‖2 the operator norm on the space Rm×n of m× n matrices.

Regarding equation (7.106): Since

∫

(y,∞)

f(z) dR1
n(z) =

∫

(y,∞)

f(z) d

(
1

σ
√
n

n∑

i=1

1(−∞,·](tni) · ε̂ni
)
(z)

=
1

σ
√
n

n∑

i=1

ε̂ni

∫

(y,∞)

f(z) dδ{tni}(z)

=
1

σ
√
n

n∑

i=jn(y)+1

ε̂ni f(tni)

=
1

σ
√
n
(X(jn(y)+1)

n )T ε̂(jn(y)+1)
n .

is valid, the equation in question holds true.

Regarding equation (7.107): It has to be verified that

1

σ
√
n

∫

(−∞,x]

fT (y)




∫

(y,∞)

f(u) fT (u) dF (u)




−1

(X(jn(y)+1)
n )T ε̂(jn(y)+1)

n dF (y)

=
1

σ
√
n

∫

(−∞,x]

fT(y)




∫

(y,∞)

f(u)fT(u)d

(
1

n

n∑

i=1

δ{tni}

)
(u)




−1

(X(jn(y)+1)
n )T ε̂(jn(y)+1)

n d

(
1

n

n∑

i=1

δ{tni}

)
(y)+oP(1)

holds true for x ∈ (−∞, c] and n → ∞. By using the notations

kn(y) := fT (y)




∫

(y,∞)

f(u) fT (u) dF (u)




−1

(X(jn(y)+1)
n )T ε̂(jn(y)+1)

n ,



7.5. Proofs for Chapter 6 189

ln(y) := fT (y)




∫

(y,∞)

f(u) fT (u) d

(
1

n

n∑

i=1

δ{tni}

)
(u)




−1

(X(jn(y)+1)
n )T ε̂(jn(y)+1)

n ,

m̂n(y) := (X(jn(y)+1)
n )T ε̂(jn(y)+1)

n ,

µn :=
1

n

n∑

i=1

δ{tni}

and identifying the distribution function F with the unique probability measure µ corre-

sponding to it, equation (7.107) reads as follows:

1

σ
√
n

∫

(−∞,x]

kn(y) dµ(y) =
1

σ
√
n

∫

(−∞,x]

ln(y) dµn(y) + oP(1)

holds true for x ∈ (−∞, c] and n → ∞. By definition of the oP (P) notation, proving this

is equivalent to proving

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµ(y) −
∫

(−∞,x]

ln(y) dµn(y)




∣∣∣∣∣∣∣

P−−−−−→
n→∞

0 . (7.110)

By using the triangle inequality, we get

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµ(y) −
∫

(−∞,x]

ln(y) dµn(y)




∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµ(y)−
∫

(−∞,x]

kn(y) dµn(y)




∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµn(y)−
∫

(−∞,x]

ln(y) dµn(y)




∣∣∣∣∣∣∣
.

Thus, for (7.110) to be satisfied, it suffices to show that both

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµ(y) −
∫

(−∞,x]

kn(y) dµn(y)




∣∣∣∣∣∣∣

P−−−−−→
n→∞

0 (7.111)

and

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµn(y) −
∫

(−∞,x]

ln(y) dµn(y)




∣∣∣∣∣∣∣

P−−−−−→
n→∞

0 (7.112)

are true. Therefore, in Step I, (7.111) will be proven and in Step II, we will prove
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(7.112), which together completes the proof of equation (7.107).

Step I:

By identifying the probability measures µ and µn with their corresponding distribution

functions F and Fn, we can rewrite (7.111) into

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµ(y) −
∫

(−∞,x]

kn(y) dµn(y)




∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1

σ
√
n

∫

(−∞,x]

kn(y) d(F − Fn)(y)

∣∣∣∣∣∣∣
.

(7.113)

The integrand kn can be divided in a deterministic and a random part in the following

way:

kn(y) = fT (y)




∫

(y,∞)

f(u) fT (u) dF (u)




−1

(X(jn(y)+1)
n )T ε̂(jn(y)+1)

n

=




p∑

i=1

fi(y)







∫

(y,∞)

f(u)fT (u) dF (u)




−1


i1

, . . .

. . . ,

p∑

i=1

fi(y)







∫

(y,∞)

f(u)fT (u) dF (u)




−1


ip


 (X(jn(y)+1)

n )T ε̂(jn(y)+1)
n

=




p∑

q=1




p∑

i=1

fi(y)







∫

(y,∞)

f(u)fT (u) dF (u)




−1


iq


 fq(tnjn(y)+1) , . . .

. . . ,

p∑

q=1




p∑

i=1

fi(y)







∫

(y,∞)

f(u)fT (u) dF (u)




−1


iq


 fq(tnn)


 ε̂(jn(y)+1)

n

=

n−jn(y)∑

r=1




p∑

q=1




p∑

i=1

fi(y)







∫

(y,∞)

f(u)fT (u) dF (u)




−1


iq


 fq(tnjn(y)+r)


 ε̂(jn(y)+1)

n

=
n∑

r=1


1(y,∞)(tnr) ·

p∑

q=1




p∑

i=1

fi(y)







∫

(y,∞)

f(u)fT (u) dF (u)




−1


iq


 fq(tnr)




︸ ︷︷ ︸
=:F

(n)
r (y)

· ε̂nr .
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Thus, together with (7.113), we have

∣∣∣∣∣∣∣

1

σ
√
n




∫

(−∞,x]

kn(y) dµ(y)−
∫

(−∞,x]

kn(y) dµn(y)




∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1

σ
√
n

∫

(−∞,x]

n∑

r=1

F (n)
r (y) ε̂nr d(F − Fn)(y)

∣∣∣∣∣∣∣

=

∣∣∣∣∣
1

σ
√
n

n∑

r=1

ε̂nr

∫

(−∞,x]

F (n)
r (y) d(F − Fn)(y)

︸ ︷︷ ︸
=:dnr(x)

∣∣∣∣∣

=

∣∣∣∣∣
1

σ
√
n

n∑

r=1

ε̂nr dnr(x)

∣∣∣∣∣.

Therefore, for (7.111) to be true, it suffices to show that

∣∣∣∣∣
1

σ
√
n

n∑

r=1

ε̂nr dnr(x)

∣∣∣∣∣
P−−−−→

n→∞
0, x ∈ (−∞, c]. (7.114)

To do so, first note that

E

(
1

σ
√
n

n∑

r=1

ε̂nr dnr(x)

)
=

1

σ
√
n

n∑

r=1

dnr(x)E (ε̂nr)

=
1

σ
√
n

n∑

r=1

dnr(x)f
T (tnr)

[
β −

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )TE
(
(X(1)

n )Tβ + ε(1)n

)]

= 0 .

In the remainder of Step I, we are going to show that for all x ∈ (−∞, c],

Var

(
1

σ
√
n

n∑

r=1

ε̂nr dnr(x)

)
−−−−→
n→∞

0 (7.115)

is satisfied. Therefore, because 1
σ
√
n

n∑
r=1

ε̂nr dnr(x) is centred and due to Chebyshev’s in-

equality, (7.114) holds true, completing the proof. We thus assess

Var

(
1

σ
√
n

n∑

r=1

ε̂nr dnr(x)

)
=

1

σ2n
Var

(
dTn (x)ε̂

(1)
n

)

=
1

σ2n
dTn (x)Var

(
ε̂(1)n

)
dn(x)

=
1

σ2n
dTn (x) · σ2

(
In −X(1)

n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T
)

dn(x)

=
1

n
‖dn(x)‖22 −

1

n
dTn (x)

(
X(1)

n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T
)

dn(x)
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≤ 1

n
‖dn(x)‖22 +

1

n
‖dn(x)‖22

∥∥∥∥X
(1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T
∥∥∥∥

=
1

n
‖dn(x)‖22

(
1 +

∥∥∥X(1)
n

(
(X(1)

n )TX(1)
n

)
−1(X(1)

n )T
∥∥∥
)

≤ 2

n
‖dn(x)‖22

=
2

n

n∑

l=1

d2nl(x), (7.116)

wherein In denotes the unity matrix in Rn×n, dn(x) := (dn1(x), . . . , dnn(x))
T and the last

inequality is true due to the following lemma.

Lemma 7.5.4.

In the situation of Definition 6.3.2, page 94, it holds true that

∥∥∥∥X
(1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T
∥∥∥∥ ≤ 1 .

Proof: Let

X(1)
n = UΣV T

be the singular value decomposition of X
(1)
n ∈ Rn×p with U ∈ Rn×n and V ∈ Rp×p

orthonormal matrices and

Σ =




σ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 σp

0 . . . . . . 0
...

...
...

...

0 . . . . . . 0




∈ Rn×p,

where

σ1 ≥ · · · ≥ σp > 0

are the p strictly positive singular values (since rank(X1) = p). Note that because Σ has

linear independent columns, there is a Moore-Penrose inverse

Σ† =




1
σ1

0 . . . 0 0 . . . 0

0
. . .

. . .
...

... . . .
...

...
. . .

. . . 0
... . . .

...

0 . . . 0 1
σp

0 . . . 0




∈ Rp×n,
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since

Σ†Σ = Ip.

Furthermore, since X
(1)
n has linear independent columns, there is the Moore-Penrose in-

verse

(X(1)
n )† =

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T

of X
(1)
n , which is a left inverse. Thus,

(X(1)
n )† =

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T = (V ΣTUTUΣV T )−1V ΣTUT = V Σ†UT .

As a consequence,

X(1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T = X(1)
n (X(1)

n )† = UΣV TV Σ†UT

= UΣΣ†UT = U

(
Ip 0

0 0

)

︸ ︷︷ ︸
∈Rn×n

UT.

Hence, for all vectors v ∈ Rn

∥∥∥∥X
(1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T v

∥∥∥∥
2

=

∥∥∥∥∥U
(

Ip 0

0 0

)
UT v

∥∥∥∥∥
2

=

∥∥∥∥∥

(
Ip 0

0 0

)
v

∥∥∥∥∥
2

≤ ‖v ‖2

holds true, thus ∥∥∥∥X
(1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T
∥∥∥∥ ≤ 1,

which had to be proved. �

For (7.115) to be true, due to (7.116), it suffices to show that for all x ∈ (−∞, c]

2

n

n∑

r=1

d2nr(x) −−−−→
n→∞

0. (7.117)

By the definition of dnr(x) and integration by parts, for x ∈ (−∞, c], we can infer

dnr(x) =

∫

(−∞,x]

F (n)
r (y) d(F − Fn)(y)

= F (n)
r (x) (F − Fn)(x)− F (n)

r (−∞) (F − Fn)(−∞)−
∫

(−∞,x]

(F − Fn)(y) dF
(n)
r (y).

(7.118)

F
(n)
r (x) is bounded and F

(n)
r (−∞) is finite, because f = (f1, . . . , fp) is bounded and
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(
∫

(x,∞)

f(u)fT (u) dF (u)

)−1

is bounded, since, according to Assertion 1 of the proof of

Lemma 7.5.2, part iii), the eigenvalues of
∫

(x,∞)

f(u)fT (u) dF (u) are bounded away from

zero for all x ∈ (−∞, c]. Furthermore, since

Fn −−−−→
n→∞

F uniformly, (7.119)

we have (F − Fn)(x) −−−−→
n→∞

0 for all x ∈ (−∞, c] and

(F − Fn)(−∞) = F (−∞)− Fn(−∞) = 0, (7.120)

since both are distribution functions. Therefore,

F (n)
r (x) (F − Fn)(x) −−−−→

n→∞
0

as well as

F (n)
r (−∞)(F − Fn)(−∞) = 0 .

It remains to show that the last term in (7.118) is bounded for x ∈ (−∞, c]. First, the

inequality

∣∣∣∣∣

∫

(−∞,x]

(F − Fn)(y) dF
(n)
l (y)

∣∣∣∣∣ ≤ ‖F − Fn‖∞ · ‖F (n)
l ‖V (7.121)

holds true. We already know that ‖F − Fn‖∞ −−−−→
n→∞

0 as Fn converges to F uniformly.

Therefore, if we were able to show that

sup
n∈N

max
r=1,...,n

‖F (n)
r ‖V < ∞ (7.122)

is true, we can conclude that

max
r=1,...,n

dnr(x) −−−−→
n→∞

0 . (7.123)

With this in mind, we start our examination of ‖F (n)
r ‖V . Firstly, ‖fj‖V < ∞ for j =

1, . . . , p by assumption. Since the product of any two functions of bounded variation is

again of bounded variation, we have ‖fi · fj‖V < ∞ for 1 ≤ i, j ≤ p, hence

‖(f fT )i,j‖V < ∞, 1 ≤ i, j ≤ p.

Now, denote by g+ij and g−ij the positive part and the negative part of fi · fj respectively.
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Then,
(
f fT

)
i,j

= g+ij − g−ij thus




∫

(y,∞)

f(u)fT (u) dF (u)




ij

=

∫

(y,∞)

g+ij dF (u)−
∫

(y,∞)

g−ij dF (u) .

Both integrals on the right hand side of the equation above are monotonically decreasing

in y, are bounded below by zero and bounded above by ‖g+ij‖∞ and ‖g−ij‖∞ respectively.

Thus, ∥∥∥∥∥∥∥

∫

(y,∞)

g+ij dF (u)

∥∥∥∥∥∥∥
V

≤ ‖g+ij‖∞ and

∥∥∥∥∥∥∥

∫

(y,∞)

g−ij dF (u)

∥∥∥∥∥∥∥
V

≤ ‖g−ij‖∞

hold true and hence, for 1 ≤ i, j ≤ p,

∥∥∥∥∥∥∥




∫

(y,∞)

f(u)fT (u) dF (u)




ij

∥∥∥∥∥∥∥
V

≤ ‖g+ij‖∞ + ‖g−ij‖∞ ≤ 2 · ‖(f fT )ij‖∞ < ∞

holds true. Since
∫

(y,∞)

f(u)fT (u) dF (u) is invertible for all y ∈ (−∞, c], by using Cramer’s

rule for computing inverse matrices, we get




∫

(y,∞)

f(u)fT (u) dF (u)




−1

=
1

det

(
∫

(y,∞)

f(u)fT (u) dF (u)

) · adj




∫

(y,∞)

f(u)fT (u) dF (u)


,

where for a square matrixM , adj(M) denotes the adjugate matrix toM . As a consequence,

we can compute the ij-th component of
∫

(y,∞)

f(u)fT (u) dF (u) ∈ Rp×p in the following way:







∫

(y,∞)

f(u)fT (u) dF (u)




−1


ij

=
(−1)i+j

det

(
∫

(y,∞)

f(u)fT (u) dF (u)

) · det







∫

(y,∞)

f(u)fT (u) dF (u)




p

k,l=1
k 6=i,j 6=l




=

(−1)i+j · ∑
ν∈Sp−1


sgn(ν) ·

p−1∏
s=1




(
∫

(y,∞)

f(u)fT (u) dF (u)

)p

k,l=1
k 6=i,j 6=l




sν(s)




∑
ν∈Sp


sgn(ν) ·

p∏
i=1

(
∫

(y,∞)

f(u)fT (u) dF (u)

)

iν(i)




.
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Here, in the first equation the component in the i-th row and the j-th column of the

adjugate matrix is computed and in the second equation the Leibniz-formula is used to

compute the determinants. Furthermore, Sp denotes the symmetric group of permutations

of the elements of the set S = {1, . . . , p} and sgn(ν) denotes the signature of a permutation

ν ∈ Sp. Considering the equation above, it becomes obvious that







∫

(y,∞)

f(u)fT (u) dF (u)




−1


ij

is a concatenation of Lipschitz continuous functions of sums and products of the functions

in the set 






∫

(y,∞)

f(u)fT (u) dF (u)




ij

∣∣∣∣∣ 1 ≤ i, j ≤ p





,

which are all of bounded variation. Therefore, since Lipschiz continuous functions, sums

and products of functions of bounded variation are of bounded variation,

∥∥∥∥∥∥∥







∫

(y,∞)

f(u)fT (u) dF (u)




−1


ij

∥∥∥∥∥∥∥
V

< ∞, 1 ≤ i, j ≤ p

is satisfied. Following this argument,

∥∥∥∥∥∥∥

p∑

i=1

fi(y)







∫

(y,∞)

f(u)fT (u) dF (u)




−1


ij

∥∥∥∥∥∥∥
V

< ∞, 1 ≤ j ≤ p,

and consequently, since fj is of bounded variation for all j = 1, . . . , p,

∥∥∥∥∥∥∥

p∑

j=1




p∑

i=1

fi(y)






∞∫

y

f(u)fT (u) dF (u)



−1



ij


 fj(tnl)

∥∥∥∥∥∥∥
V

< ∞

uniformly in l ∈ {1, . . . , n} and n ∈ N.v This completes the proof of (7.122). As already

mentioned, we now know that (7.123) is true and therefore,

max
l=1,...,n

d2nl(x) −−−−→
n→∞

0

holds true, too. Hence, for ε > 0 there is a n ∈ N for which max
l=1,...,n

d2nl(x) ≤ ε for all n ≥ N .

Therefore, for all n ≥ N

1

n

n∑

r=1

d2nr(x) ≤
1

n

n∑

r=1

max
l=1,...,n

d2nl(x) ≤
1

n

n∑

r=1

ε = ε
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holds true and thus,

2

n

n∑

r=1

d2nr(x) −−−−→
n→∞

0

holds true, too, which in view of (7.117), (7.116) and (7.115) completes the proof.

Remark 7.5.5.

The stochastic convergence asserted in (7.111) is true even uniformly on (−∞, c]. To

prove this, it suffices to show that the convergence in (7.115) holds true uniformly

in x ∈ (−∞, c] and due to (7.116) it therefore suffices to show that

sup
x∈(−∞,c]

2

n

n∑

r=1

d2nr(x) −−−−→
n→∞

0 . (7.124)

By performing partial integration (see (7.118)) it becomes evident that for the

validity of (7.124) it is sufficient to show that the three summands

F (n)
r (x) (F − Fn)(x), F (n)

r (−∞) (F − Fn)(−∞),

∫

(−∞,x]

(F − Fn)(y) dF
(n)
r (y)

converge to zero uniformly in x ∈ (−∞, c]. Because of (7.120), the second summand

is equal to zero. Furthermore, F
(n)
r (x) is bounded uniformly in r and x and there-

fore, we have the uniform convergence of the first summand. Concerning the third

summand, it’s uniform convergence to zero can be seen from inequality (7.121), the

uniform convergence of Fn to F and the bound in (7.122).

Step II:

Using the definitions for kn(y), ln(y) and µn, we define for x ∈ (−∞, c] and n ∈ N

Z(x)
n :=

1

σ
√
n

∫

(−∞,x]

(kn(y)− ln(y)) dµn(y).

In the following, we are going to show that

‖Z(x)
n ‖L2(P) −−−−→

n→∞
0 (7.125)

is satisfied. This means that Z
(x)
n

L2(P)−−−−→
n→∞

0 and thus, Z
(x)
n

P−−−−→
n→∞

0 could be inferred,

meaning that (7.112) is satisfied. In order to prove (7.125), we first use the Minkowski-

inequality for integrals which implies that

‖Z(x)
n ‖L2(P) =

∥∥∥∥∥

∫

(−∞,x]

1

σ
√
n
(kn(y)− ln(y)) dµn(y)

∥∥∥∥∥
L2(P)

≤
∫

(−∞,x]

1

σ
√
n
‖kn(y)− ln(y)‖L2(P) dµn(y) . (7.126)



198 7. Appendix

Furthermore, it holds true, that for all n ∈ N and y ∈ (−∞, c],

1

σ
√
n
|kn(y)− ln(y)|

=
1

σ
√
n

∣∣∣∣∣∣∣
fT (y)







∫

(y,∞)

f(u) fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u) fT (u) dµn(u)




−1
 m̂n(y)

∣∣∣∣∣∣∣

≤

∥∥∥∥∥∥∥
fT (y)







∫

(y,∞)

f(u) fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u) fT (u) dµn(u)




−1


∥∥∥∥∥∥∥
2

· 1

σ
√
n
‖m̂n(y)‖2

≤ sup
y∈(−∞,c]

‖fT (y)‖2 · sup
y∈(−∞,c]

∥∥∥∥∥∥∥




∫

(y,∞)

f(u)fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u)fT (u) dµn(u)




−1∥∥∥∥∥∥∥
×

× 1

σ
√
n

√√√√
p∑

j=1

(m̂n(y))
2
j

≤ sup
y∈(−∞,c]

‖fT (y)‖2 · sup
y∈(−∞,c]

∥∥∥∥∥∥∥




∫

(y,∞)

f(u)fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u)fT (u) dµn(u)




−1∥∥∥∥∥∥∥
×

× 1

σ
√
n

p∑

j=1

∣∣∣(m̂n(y))j

∣∣∣

and therefore,

1

σ
√
n
‖kn(y)− ln(y)‖L2(P)

≤ sup
y∈(−∞,c]

‖fT (y)‖2 · sup
y∈(−∞,c]

∥∥∥∥∥∥∥




∫

(y,∞)

f(u)fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u)fT (u) dµn(u)




−1∥∥∥∥∥∥∥
×

× 1

σ
√
n

∥∥∥∥∥∥

p∑

j=1

∣∣∣(m̂n(y))j

∣∣∣

∥∥∥∥∥∥
L2(P)

≤ sup
y∈(−∞,c]

‖fT (y)‖2 · sup
y∈(−∞,c]

∥∥∥∥∥∥∥




∫

(y,∞)

f(u)fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u)fT (u) dµn(u)




−1∥∥∥∥∥∥∥
×

×
p∑

j=1

∥∥∥∥
1

σ
√
n
(m̂n(y))j

∥∥∥∥
L2(P)

(7.127)
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is satisfied. Taking together (7.126) and (7.127), we get

‖Z(x)
n ‖L2(P) ≤ sup

y∈(−∞,c]
‖fT (y)‖2 ×

× sup
y∈(−∞,c]

∥∥∥∥∥∥∥




∫

(y,∞)

f(u)fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u)fT (u) dµn(u)




−1∥∥∥∥∥∥∥
×

×
x∫

−∞

p∑

j=1

∥∥∥∥
1

σ
√
n
(m̂n(y))j

∥∥∥∥
L2(P)

dµn(y) .

Therein

sup
y∈(−∞,c]

‖fT (y)‖2 ≤

√√√√
p∑

j=1

(
sup

y∈(−∞,c]
fj(y)

)2

< ∞,

since fj(y) is of bounded variation and therefore bounded for 1 ≤ j ≤ m and

sup
y∈(−∞,c]

∥∥∥∥∥∥∥




∫

(y,∞)

f(u) fT (u) dµ(u)




−1

−




∫

(y,∞)

f(u) fT (u) dµn(u)




−1∥∥∥∥∥∥∥

= sup
y∈(−∞,c]

∥∥∥∥∥∥∥

(
1

n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

)−1

−




∫

(y,∞)

f(u) fT (u) dµ(u)




−1∥∥∥∥∥∥∥

−−−−−→
n→∞

0

holds true, which up to a change of variables (see Lemma 7.1.3) has been stated in

Lemma 7.5.3. Thus, for (7.125) to be true, it suffices to show that for all n ∈ N and

y ∈ (−∞, c] there is a C ∈ R such that

x∫

−∞

p∑

i=1

∥∥∥
1

σ
√
n
(m̂n(y))i

∥∥∥
L2(P)

dµn(y) ≤ C (7.128)

holds true. The remainder of Step II deals with the proof of (7.128). Note that

E

(
1

σ
√
n
(m̂n(y))j

)
= 0

holds true for all i = 1, . . . , p, n ∈ N and y ∈ (−∞, c], as can be seen in the following way:
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Since

m̂n(y) = (X(jn(y)+1)
n )T ε̂(jn(y)+1)

n = (X(jn(y)+1)
n )T (Yjn(y)+1 −X(jn(y)+1)

n β̂(1)
n )

= (X(jn(y)+1)
n )T

(
X(jn(y)+1)

n β + ε(jn(y)+1)
n

)
−

− (X(jn(y)+1)
n )T

(
X(jn(y)+1)

n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T (X1
nβ + ε(1)n )

)

= (X(jn(y)+1)
n )T ε(jn(y)+1)

n − (X(jn(y)+1)
n )TX(jn(y)+1)

n

(
(X(1)

n )TX1
n

)−1
(X(1)

n )T ε(1)n

(7.129)

and because of E(ε
(i)
n ) = 0 ∈ Rn−i+1, i ∈ {1, . . . , n}, we conclude that

E

(
(X(jn(y)+1)

n )T ε(jn(y)+1)
n

)
= 0 (7.130)

and

E

(
(X(jn(y)+1)

n )TX(jn(y)+1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T ε(1)n

)
= 0 (7.131)

and therefore,

E (m̂n(y)) = 0 ∈ Rp

for all n ∈ N and y ∈ (−∞, c]. Due to equations (7.129), (7.130) and (7.131), for i =

1, . . . , p, we obtain

∥∥∥∥
1

σ
√
n
(m̂n(y))i

∥∥∥∥
L2(P)

=

∥∥∥∥
1

σ
√
n

[
(X(jn(y)+1)

n )Tε(jn(y)+1)
n −(X(jn(y)+1)

n )TX(jn(y)+1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )Tε(1)n

]

i

∥∥∥∥
L2(P)

≤
∥∥∥

1

σ
√
n

(
(X(jn(y)+1)

n )T ε(jn(y)+1)
n

)

i

∥∥∥
L2(P)

+

+
∥∥∥

1

σ
√
n

(
(X(jn(y)+1)

n )TX(jn(y)+1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T ε(1)n

)

i

∥∥∥
L2(P)

=

√
Var

(
1

σ
√
n

(
(X

(jn(y)+1)
n )T ε

(jn(y)+1)
n

)

i

)
+

+

√
Var

(
1

σ
√
n

(
(X

jn(y)+1)
n )TX

(jn(y)+1)
n

(
(X

(1)
n )TX

(1)
n

)−1
(X

(1)
n )T ε

(1)
n

)

i

)

=

√(
Var

(
1

σ
√
n
(X

(jn(y)+1)
n )T ε

(jn(y)+1)
n

))

ii

+

+

√(
Var

(
1

σ
√
n
(X

(jn(y)+1)
n )TX

(jn(y)+1)
n

(
(X

(1)
n )TX

(1)
n

)−1
(X

(1)
n )T ε

(1)
n

))

ii

.
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In what fallows, we are going to show that the covariances in both of the above summands

are bounded independent of n ∈ N and y ∈ (−∞, c] so that there is a C̃ ∈ R with

∥∥∥
1

σ
√
n
(m̂n(y))i

∥∥∥
L2(P)

≤ C̃, i = 1, . . . , p,

independent of n ∈ N and y ∈ (−∞, c]. Hence, in (7.128) we would get

∫

(−∞,x]

p∑

i=1

∥∥∥
1

σ
√
n
(m̂n(y))i

∥∥∥
L2(P)

dµn(y) ≤
∫

(−∞,x]

p∑

i=1

C̃ dµn(y) ≤ pC̃ =: C,

which would complete the proof of (7.112). To prove this boundedness of the covariances,

we first note that

Var

(
1

σ
√
n
(X(jn(y)+1)

n )T ε(jn(y)+1)
n

)
=

1

n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

−−−−→
n→∞

∫

(y,∞)

f(u) fT (u) dµ(u)

holds true. The convergence, up to a change of variables (see Lemma 7.1.3), has been sub-

ject of Lemma 7.5.3. Thus, the covariance matrix of 1
σ
√
n
(X

(jn(y)+1)
n )T ε

(jn(y)+1)
n is bounded

independent of n ∈ N and y ∈ (−∞, c].

In the further on, we need the following lemma about the Loewner order of matrices. Here

“≺” denotes smaller with respect to the Loewner order and for A,B ∈ Rp×p, A ≺ B holds

by definition if and only if B − A is positive definite. The lemma is a folklore result for

which, for the reader’s convenience, we provide a proof.

Lemma 7.5.6.

Let A,B ∈ Rp×p, p ∈ N be positive definite matrices with A ≺ B, C ∈ Rp×p

invertible and Ip the p× p unit matrix. Then the following assertions hold true:

i) CTAC ≺ CTBC .

ii) For Ip ≺ B it follows that B is regular and B−1≺ Ip .

iii) B−1≺ A−1.

Proof:

i) For v ∈ Rp \ {0},

vTCT (B −A)Cv = (Cv)T (B −A)Cv > 0
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holds true since A ≺ B and Cv ∈ Rp \ {0} thus

CTAC ≺ CTBC .

ii) Let Ip be the p× p unit matrix and Ip ≺ B. Since the matrix B is symmetrical with

real values it admits a decomposition

B = EDET ,

where E is an orthogonal matrix and D is a diagonal matrix. As a consequence of

this and part i),

Ip = ET IpE ≺ ETBE = ETEDETE = D

holds true and thus all eigenvalues of B are bigger that 1. As a consequence, B−1

exists and

B−1 = B− 1
2 IpB

− 1
2 ≺ B− 1

2BB− 1
2 = Ip

where B− 1
2 = ED− 1

2ET .

iii) Since A ≺ B and A,B positive definite, we know that A and B are regular and

B −A ≻ 0. Thus, because of part i)

A− 1
2 (B −A)A− 1

2 ≻ 0

and therefore

A− 1
2BA− 1

2 ≻ Ip

are satisfied. Now, because of part ii), we get

A
1
2B−1A

1
2 ≺ Ip

and due to part i)

B−1 = A− 1
2 (A

1
2B−1A

1
2 )A− 1

2 ≺ A− 1
2 IpA

− 1
2 = A−1.

is satiated. �

Concerning the variance of the second random vector

1

σ
√
n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T ε(1)n ,

we know that for

X̃n :=




fT (tn1)
...

fT (tnjn(y))


 ∈ Rjn(y)×p,
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we have

X̃T
n X̃n ≻ 0

for n ∈ N large enough and jn(y) ≥ p due to the linear independence of f1, . . . , fp. Thus,

(X(1)
n )TX(1)

n =
(
X̃T

n (X(jn(y)+1)
n )T

)(
X̃n

X
(jn(y)+1)
n

)
= X̃T

n X̃n + (X(jn(y)+1)
n )TX(jn(y)+1)

n

≻ (X(jn(y)+1)
n )TX(jn(y)+1)

n ≻ 0

holds true, since

X̃T
n X̃n + (X(jn(y)+1)

n )TX(jn(y)+1)
n − (X(jn(y)+1)

n )TX(jn(y)+1)
n = X̃T

n X̃n

is positive definite. Therefore, according to Lemma 7.5.6 part iii), we have

(XT
1 X1)

−1 ≺
(
(X(jn(y)+1)

n )TX(jn(y)+1)
n

)−1

and again due to Lemma 7.5.6 part i),

(X(jn(y)+1)
n )TX(jn(y)+1)

n

(
(X(1)

n )TX(1)
n

)−1
(X(jn(y)+1)

n )TX(jn(y)+1)
n

≺ (X(jn(y)+1)
n )TX(jn(y)+1)

n

(
(X(jn(y)+1)

n )TX(jn(y)+1)
n

)−1
(X(jn(y)+1)

n )TX(jn(y)+1)
n

= (X(jn(y)+1)
n )TX(jn(y)+1)

n

holds true. Hence,

Var

(
1

σ
√
n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T ε(1)n

)

=
1

n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(jn(y)+1)

n )TX(jn(y)+1)
n

≺ 1

n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

−−−−−→
n→∞

∫

(y,∞)

f(u) fT (u) dµ(u) .

Note that the convergence in the last step of the above inequality chain has been proved

in Lemma 7.5.3, up to a change of variables, see Lemma 7.1.3. We therefore can conclude

that the covariance matrix of

1

σ
√
n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

(
(X(1)

n )TX(1)
n

)−1
(X(1)

n )T ε(1)n

is bounded independent of n ∈ N and y ∈ (−∞, c].
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Remark 7.5.7.

Since for x ∈ (−∞, c]

∣∣Z(x)
n

∣∣ =
∣∣∣∣∣

1

σ
√
n

∫

(−∞,x]

kn(y)− ln(y) dµn(y)

∣∣∣∣∣ ≤
1

σ
√
n

∫

(−∞,x]

|kn(y)− ln(y)| dµn(y)

≤ 1

σ
√
n

∫

(−∞,c]

|kn(y)− ln(y)| dµn(y) =: Z̃n

holds true and according to our findings in Step II, we can follow:

‖Z̃n‖L2(P) =

∥∥∥∥∥

∫

(−∞,c]

1

σ
√
n
|kn(y)− ln(y)| dµn(y)

∥∥∥∥∥
L2(P)

≤
∫

(−∞,c]

1

σ
√
n
‖kn(y)− ln(y)‖L2(P) dµn(y)

−−−−→
n→∞

0.

Thus,

sup
x∈]−∞,xmax]

∣∣Z(x)
n

∣∣ ≤ Z̃n
P−−−−→

n→∞
0

and therefore, we have (7.112) uniformly in x ∈ (−∞, c].

Regarding equation (7.108): For 1 ≤ l,m ≤ p, the l,m-th component of the matrix

n∑

i=jn(y)+1

f(tni)f
T (tni) ∈ Rp×p

can be represented as




n∑

i=jn(y)+1

f(tni) f
T (tni)




l,m

=
n∑

i=jn(y)+1

fl(tni)fm(tni) =
(
(X(jn(y)+1)

n )TX(in(y)+1)
n

)

l,m
.

It is therefore true that

∫

(−∞,x]

fT(y)




∫

(y,∞)

f(u)fT(u) d

(
1

n

n∑

i=1

δ{tni}

)
(u)




−1

(X(in(y)+1)
n )T ε̂(jn(y)+1)

n d

(
1

n

n∑

i=1

δ{tni}

)
(y)

=

∫

(−∞,x]

fT (y)


 1

n

n∑

i=jn(y)+1

f(tni)f
T (tni)



−1

(X(jn(y)+1)
n )T ε̂(jn(y)+1)

n d

(
1

n

n∑

i=1

δ{tni}

)
(y)
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=

∫

(−∞,x]

fT (y)

(
1

n
(X(jn(y)+1)

n )TX(jn(y)+1)
n

)−1

(X(jn(y)+1)
n )T ε̂(jn(y)+1)

n d

(
1

n

n∑

i=1

δ{tni}

)
(y)

=

jn(x)∑

i=1

fT (tni)
(
(X(jn(tni)+1)

n )TX(jn(tni)+1)
n

)−1
(X(jn(tni)+1)

n )T ε̂(jn(tni)+1)
n

=

jn(x)∑

i=1

fT (tni)
(
(X(i+1)

n )TX(i+1)
n

)−1
(X(i+1)

n )T ε̂(i+1)
n .

Regarding equation (7.109): According to Lemma 7.5.2, part ii),

cni rni = ε̂ni − fT (tni)
(
(X(i+1)

n )TX(i+1)
n

)−1
(X(i+1)

n )T ε̂(i+1)
n

holds true. Thus,

∣∣∣∣∣
1

σ
√
n

jn(x)∑

i=1

(
ε̂ni − fT (tni)

(
(X(i+1)

n )TX(i+1)
n

)−1
(Xi+1

n )T ε̂(i+1)
n

)
− 1

σ
√
n

jn(x)∑

i=1

rni

∣∣∣∣∣

=

∣∣∣∣∣
1

σ
√
n

jn(x)∑

i=1

[(
ε̂ni − fT (tni)

(
(X(i+1)

n )TX(i+1)
n

)−1
(X(i+1)

n )T ε̂(i+1)
n

)
− rni

] ∣∣∣∣∣

=

∣∣∣∣∣
1

σ
√
n

jn(x)∑

i=1

[cni rni − rni]

∣∣∣∣∣

=

∣∣∣∣∣
1

σ
√
n

jn(x)∑

i=1

rni · (cni − 1)

∣∣∣∣∣

P−−−−−→
n→∞

0 (7.132)

is satisfied. Here, the stochastic convergence can be justified as follows. According to

Lemma 7.5.2,

E


 1

σ
√
n

jn(x)∑

i=1

rni · (cni − 1)


 =

1

σ
√
n

jn(x)∑

i=1

(cni − 1)E (rni) = 0,

Cov(rni, rnj) = 0, i 6= j, Var(rni) = σ2 and sup
i∈{1,...,in(c)}

cni −−−−→
n→∞

1 are satisfied. As a

consequence,

Var


 1

σ
√
n

jn(x)∑

i=1

rni · (cni − 1)


 =

1

n

jn(x)∑

i=1

(cni − 1)2 ≤ 1

n
· n · sup

i∈{1,...,in(c)}
(cni − 1)2

−−−−→
n→∞

0 (7.133)
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holds true. Therefore, (7.132) can be deduced, according to Chebyshev’s inequality. This

proofs equation (7.109).

So far we have proved the assertion (T ∗(R1
n))(x) = R̃1

n(x)+oP (1) pointwise for x ∈ (−∞, c].

However, the assertion holds true uniformly in x ∈ (−∞, c], as Theorem 6.3.3 asserts. To

see this, note first that it is obvious that the equations (7.106),(7.108) and (7.109) hold

uniformly in x, note secondly that equation (7.107) is true, uniformly in x ∈ (−∞, c], ac-

cording to Remarks 7.5.5 and 7.5.7 and that finally equation (7.109) holds true uniformly

in x because, due to (7.133), the variance of 1
σ
√
n

jn(x)∑
i=1

rni · (cni − 1) converges to zero

uniformly in (−∞, c]. �
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Rubin’s theorem, 69, 172

score function, 87

Skorokhod

metric, 15
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empirical process, 77

fixed design, 41

marked empirical process, 24

parametric empirical process, 79

random design, 28

univariate regression model, 12
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