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Zusammenfassung

Diese kumulative Dissertation beschäftigt sich konzeptionell als auch methodisch mit Fragestellun-
gen, die im Rahmen der Zustellung auf der letzten Meile auftreten. Auf konzeptioneller Ebene
werden innovative Ansätze für die letzte Meile vorgestellt und bewertet (Beitrag 1 und 4). Auf
methodischer Ebene wird zum einen ein etabliertes Verfahren auf eine neue Problemstellung hin
angepasst (Beitrag 4), zum anderen eine neuartige Metaheuristik vorgestellt und auf neue bzw.
mehrere bekannte Probleme angewandt (Beitrag 1, 2 und 3).

1. Voigt, S., Frank, M., Fontaine, P., Kuhn, H., 2021. The Vehicle Routing Problem with
Availability Profiles. Working Paper.

2. Voigt, S., Frank, M., Fontaine, P., Kuhn, H., 2022. Hybrid Adaptive Large Neigh-
borhood Search for Vehicle Routing Problems with Depot Location Decisions.
Computers & Operations Research, Volume 146.

3. Voigt, S., 2021. Hybrid Adaptive Large Neighborhood Search for the Traveling
Salesman Problem with Time Windows and Adjusted Costs. In Winkenbach, M.,
Parks, S., and Noszek, J. (Eds.), Technical Proceedings of the 2021 Amazon Last Mile Routing
Research Challenge, XXVI.1–XXVI.12.

4. Voigt, S., Kuhn, H., 2022. Crowdsourced Logistics: The Pickup and Delivery Prob-
lem with Transshipments and Occasional Drivers. Networks, 79: 403-426.
Die veröffentlichten bzw. eingereichten Versionen dieser Beiträge können aus Gründen der Konsistenz (z. B.
Rechtschreibung, Nomenklatur) geringfügig von den Versionen in dieser Arbeit abweichen. Dies hat keinen
Einfluss auf den Inhalt der angenommenen Beiträge. Der Inhalt von Arbeitspapieren hingegen kann sich
während des Begutachtungsprozesses noch ändern.

Der erste Beitrag entwickelt einen innovativen, datengetriebenen Ansatz zur Reduzierung fehl-
geschlagener Zustellversuche, indem das Vehicle Routing Problem (VRP) um Verfügbarkeitsprofile
erweitert wird. Außerdem wird eine neuartige Metaheuristik, die sog. Hybrid Adaptive Large
Neighborhood Search (HALNS) vorgestellt und deren Performance analysiert. Die HALNS wird
im zweiten Beitrag weiter entwickelt, sodass mehrere Varianten von VRPs mit Standortentscheidun-
gen hinsichtlich der Depots gelöst werden können. Zu diesen Varianten zählen das 2-Echelon VRP,
das Location Routing Problem sowie das Multi-Depot VRP. Der dritte Beitrag zeigt die Praxis-
tauglichkeit der HALNS im Rahmen der Amazon Routing Research Challenge. Ziel der Challenge
war es, gute Routen zu erzeugen, die außerdem der reellen Fahrweise der Fahrer möglichst nahe kom-
men. Der vierte Beitrag entwickelt einen innovativen Ansatz, basierend auf der Sharing Economy
für die Zustellung auf der letzten Meile. Hierbei besteht die Möglichkeit sog. Gelegenheitskuriere,
z.B. Pendler, für die Zustellung einzusetzen. Zur besseren Integration dieser Gelegenheitskuriere
können zusätzliche Standorte, genauer Umschlagpunkte (Transshipment Points, TPs), genutzt wer-
den. Die genannten Beiträge werden im Folgenden kurz zusammengefasst.
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Beitrag 1 - The Vehicle Routing Problem with Availability Profiles
Die Zustellung von Paketen erfordert in vielen Fällen die Anwesenheit des Kunden zum Zeit-
punkt der Lieferung. Falls sich der Kunde zu diesem Zeitpunkt nicht zuhause befindet, schlägt
der Zustellversuch fehl, wobei zusätzliche Kosten und Aufwand für den Paketdienstleister anfallen.
Kosten entstehen in Abhängigkeit der gewählten Strategie des Dienstleisters, so können beispiels-
weise weitere Zustellversuche unternommen werden oder das Paket zu einem Paketshop gebracht
werden. Zusätzlich entstehen Unannehmlichkeiten für den Kunden, da er entweder länger auf seine
Lieferung warten muss oder sie selbst bei einem Paketshop abholen muss. Paketdienstleister sind
typischerweise mit einer hohen Rate fehlgeschlagener Zustellversuche konfrontiert, da sie nur sehr
begrenzte Möglichkeiten haben mit dem Empfänger eine Zustellzeit zu vereinbaren. Selbst wenn
diese Möglichkeit besteht, werden kaum Zustellzeiten vereinbart, da harte Zeitfenster die gefahrene
Strecke beträchtlich erhöhen können.
Im Beitrag wird dem Problem fehlgeschlagener Zustellversuche bei der B2C-Paketzustellung

durch die Verwendung kundenindividueller Verfügbarkeitsprofile (engl. Availability Profiles, APs)
begegnet. Verfügbarkeitsprofile bestehen aus Zeitfenstern, denen jeweils eine Wahrscheinlichkeit
zugeordnet ist, dass die Zustellung erfolgreich ist, wenn sie in dem jeweiligen Zeitfenster erfolgt.
Die Wahrscheinlichkeiten, die den jeweiligen Zeitfenstern zugeordnet werden, lassen sich mit Hilfe
verschiedenster Datenquellen schätzen (Wasserverbrauch, Stromverbrauch, Smart Devices, etc.).
Ziel des Beitrages ist es, den Nutzen von Verfügbarkeitsprofilen für die Planung der Liefertouren

zu bewerten. Dazu wird das Vehicle Routing Problem mit Verfügbarkeitsprofilen (VRPAP) for-
muliert und ein mathematisches Modell aufgestellt, das den Tradeoff zwischen den Kosten für
Transport und fehlgeschlagener Lieferungen einschließt. Die Entscheidungen umfassen dabei drei
Fragestellungen: (1) welches Fahrzeug beliefert welchen Kunden? (Zuordnungsproblem) (2) in
welcher Reihenfolge werden die Kunden angefahren? (Reihenfolgeproblem) und zusätzlich (3) zu
welchem Zeitpunkt werden die Kunden angefahren? (Problem des Beginns der Servicezeit). Eine
untere und obere Grenze dienen als Vergleichsmaß und erlauben Aussagen zum maximal möglichen
Kosteneinsparungspotenzial des Modells. Das Modell enthält als Spezialfall das Rundreiseproblem,
welches NP-schwer ist, sodass sich größere Instanzen nicht in annehmbarer Rechenzeit lösen lassen.
Zur Lösung wird daher eine neuartige Metaheuristik, die sog. HALNS vorgeschlagen. Sie vereint
Elemente genetischer Algorithmen und der Adaptive Large Neighborhood Search.
Der Lösungsansatz wird zunächst auf verwandte Problemstellungen, namentlich das VRP mit

harten Zeitfenstern (VRPTW) und die Variante mit mehreren Zeitfenstern (VRPMTW), sowie
weichen Zeitfenstern (VRPSTW) angewandt, um dessen Leistungsfähigkeit zu untersuchen. Die
HALNS erzielt dabei 20 neue beste Lösungen für das VRPMTW bzw. VRPSTW und vergleich-
bar gute Ergebnisse wie State-of-the-Art-Verfahren für das VRPTW. Anschließend wird der Ansatz
auf synthetisch generierte Instanzen des VRPAPs angewandt und gezeigt, dass Kosteneinsparungen
möglich sind, sowie die Rate fehlgeschlagener Zustellversuche in Abhängigkeit der Struktur der Ver-
fügbarkeitsprofile und geografischen Verteilung der Kunden gesenkt werden kann. Eine Fallstudie
mit empirischen Daten zeigt, dass selbst bei Verwendung wenig ausgereifter Prognoseverfahren sig-
nifikante Kosteneinsparungen von etwa 5% möglich sind, sowie fehlgeschlagene Zustellversuche um
ca. 12% reduziert werden können.
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Beitrag 2 - Hybrid Adaptive Large Neighborhood Search for Vehicle Routing
Problems with Depot Location Decisions
Die im Beitrag The Vehicle Routing Problem with Availability Profiles vorgestellte HALNS wird nun
auf VRPs mit Standortentscheidungen hinsichtlich der Depots erweitert. Solche Probleme treten
auf der letzten Meile beispielsweise auf, falls Zustellungen von mehreren Depots aus erfüllt werden
können oder eine gestufte Auslieferung vorgenommen wird, die über ein zentrales Depot abläuft,
welches mehrere, üblicherweise kleinere Depots (sog. Satelliten) versorgt. Die HALNS wird um
problemspezifische Operatoren erweitert, sodass sie für das Two-Echelon Vehicle Routing Problem
(2E-VRP) geeignet ist. Im Beitrag wird gezeigt, dass das Location Routing Problem (LRP) und das
Multi-Depot Vehicle Routing Problem (MDVRP) als Spezialfälle des 2E-VRP angesehen werden
können und daher mit einem einzigen Verfahren gelöst werden können, statt wie in der Literatur
üblich, mit spezialisierten Verfahren.
Die genannten Tourenplanungsprobleme weisen eine spezielle zweistufige Struktur auf, die es

erschwert lokalen Minima zu entkommen. Die erste Stufe entspricht der Standortentscheidung,
die zweite Stufe der Routing-Entscheidung. Dabei beeinflusst die zweite Stufe die erste Stufe so
stark, dass eine Änderung der Standortentscheidung (erste Stufe) schwierig ist, ohne vorüberge-
hend eine wesentliche Verschlechterung der Lösung zuzulassen, sobald über das Routing (zweite
Stufe) entschieden wurde. Eine klassische ALNS arbeitet üblicherweise in einem Simulated An-
nealing Framework, sodass große Verschlechterungen nur zu Beginn möglich sind und eine breite
Erkundung des Lösungsraumes im Verlauf des Verfahrens erschwert ist. Die vorgeschlagene HALNS
nutzt die Struktur solcher zweistufigen Probleme aus. Die HALNS verwendet dabei eine Population
von Lösungen, um einen größeren Bereich des Lösungsraums, d.h. verschiedene Standortkonfigu-
rationen, zu erkunden. Die einzelnen Individuen werden durch eine effiziente ALNS generiert. Die
Individuen dieser Population werden einer simplen, aber effektiven Kreuzungs- und Selektionsphase
unterzogen.
Experimente mit diversen Instanzen aus der Literatur zeigen die Leistungsfähigkeit der HALNS.

Die HALNS erzeugt ähnlich gute Lösungen wie Heuristiken, die speziell für das 2E-VRP, LRP oder
MDVRP entwickelt wurden. Dies zeigt, dass die breitere Anwendbarkeit auf mehrere Probleme
nicht notwendigerweise die Qualität der Lösung beeinträchtigt. Im Vergleich zu klassischen, d.h.
nicht hybriden Implementierungen der ALNS, ist die HALNS diesen überlegen, was den Wert der
Hybridisierung demonstriert.

Beitrag 3 - Hybrid Adaptive Large Neighborhood Search for the Traveling Sales-
man Problem with Time Windows and Adjusted Costs
In diesem Artikel wird die HALNS auf ihre Praxistauglichkeit hin untersucht. Zu diesem Zweck
werden die Daten der Amazon/MIT Routing Research Challenge genutzt. Ziel der Challenge
ist es, Routen zu erzeugen, die kostengünstig sind und außerdem den Routen erfahrener Fahrer
möglichst nahe kommen. Das zugrunde liegende Problem wird als Traveling Salesman Problem
mit Zeitfenstern (TSPTW) modelliert, welches ein Spezialfall des Vehicle Routing Problem mit
Verfügbarkeitsprofilen (VRPAP) darstellt. Um das Verhalten der Fahrer nachzuahmen, werden
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verschiedene Strategien implementiert, die sich aus den gegebenen Daten zu qualitativ hochwerti-
gen Routen ableiten lassen. Mittels dieser Strategien werden zunächst die Kosten modifiziert, ehe
die so angepassten Instanzen des TSPTW mit der HALNS gelöst werden. Experimente zeigen eine
gute Anpassung an die tatsächlich gefahrenen Routen. Es wird ein durchschnittlicher Score von
0.0678 auf Testdaten mit allen 2718 qualitativ hochwertigen Routen erreicht. Insgesamt konnte
damit der 14. Platz von 229 teilnehmenden Teams erreicht werden.

Beitrag 4 - Crowdsourced Logistics: The Pickup and Delivery Problem with
Transshipments and Occasional Drivers
Der vierte Beitrag beschäftigt sich mit einem alternativen, innovativen Ansatz zur Reduzierung der
Kosten im Umfeld von Paketzustellungen. Es nutzt die sog. Sharing Economy, deren Grundgedanke
es ist, ungenutzte Ressourcen bzw. Kapazitäten zu teilen. Im Beitrag wird auf Pendler oder
Reisende abgestellt, die sich dazu bereiterklären, für eine gewisse Entlohnung Zustellungen zu
übernehmen, die sich in der Nähe ihrer ursprünglich geplanten Route befinden. Diese Gelegenheits-
kuriere bieten also eine Art Mitfahrgelegenheit für Pakete an. Um diese Gelegenheitskuriere (engl.
occasional drivers, ODs) besser nutzen zu können, werden Umschlagpunkte (engl. transshipment
points, TPs) eingeführt.
Ein Paketdienstleister, aus dessen Sicht das Problem betrachtet wird, möchte die Kosten mini-

mieren, die mit der Auslieferung verbunden sind. Kosten setzen sich aus der von den regulären
Fahrern zurückgelegten Strecke und die an die Gelegenheitsfahrer gezahlten Beträge zusammen.
Der Paketdienstleister nutzt sowohl eine Fahrzeugflotte bestehend aus regulären Fahrern als auch
zusätzlich eine Plattform, auf der sich ODs bereiterklären Zustellungen zu übernehmen, solange
dies für sie nur mit einem gewissen Umweg im Vergleich zur ursprünglichen Route verbunden
ist. An bereits existierenden TPs können ODs oder reguläre Fahrer die Ladung übergeben oder
übernehmen. Als TPs können dabei bspw. Paketshops oder Packstationen dienen.
Das vorliegende Problem wird als gemischt-ganzzahliges Modell formuliert und als Pickup and

Delivery Problem with Transshipments and Occasional Drivers (PDPTOD) bezeichnet. Das PDP-
TOD enthält analog zum VRPAP das Rundreiseproblem und ist damit NP-schwer. Der Lö-
sungsansatz basiert auf einer klassischen, d.h. nicht hybriden ALNS, da TPs die Komplexität
derart erhöhen, sodass mehrere Durchläufe der ALNS, die für die Erzeugung der Population nötig
wären, nicht in einem angemessenen Zeitrahmen durchgeführt werden können.
Der Fokus des Beitrags liegt in der Erzeugung von Erkenntnissen wie sich die Anzahl und die

Standorte der TPs auf die Kostenvorteile auswirken, die durch die Integration von ODs in den
Lieferprozess erzielt werden. Es zeigt sich, dass die Kosteneinsparungen in hohem Maße von der
angenommenen Flexibilität und der gewählten Entlohnung für ODs abhängig sind.
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Abstract

This cumulative dissertation addresses both conceptual and methodological issues that arise in the
context of last-mile delivery. At the conceptual level, innovative approaches to last mile delivery
are presented and evaluated (contributions 1 and 4). On the methodological level, on the one hand,
an established procedure is adapted to a new problem (contribution 4), and on the other hand, a
novel metaheuristic is presented and applied to new or several known problems (contributions 1, 2
and 3).

1. Voigt, S., Frank, M., Fontaine, P., Kuhn, H., 2021. The Vehicle Routing Problem with
Availability Profiles. Working Paper.

2. Voigt, S., Frank, M., Fontaine, P., Kuhn, H., 2022. Hybrid Adaptive Large Neigh-
borhood Search for Vehicle Routing Problems with Depot Location Decisions.
Computers & Operations Research, Volume 146.

3. Voigt, S., 2021. Hybrid Adaptive Large Neighborhood Search for the Traveling
Salesman Problem with Time Windows and Adjusted Costs. In Winkenbach, M.,
Parks, S., and Noszek, J. (Eds.), Technical Proceedings of the 2021 Amazon Last Mile Routing
Research Challenge, XXVI.1–XXVI.12.

4. Voigt, S., Kuhn, H., 2022. Crowdsourced Logistics: The Pickup and Delivery Prob-
lem with Transshipments and Occasional Drivers. Networks, 79: 403-426.

The published or submitted versions of these manuscripts may differ slightly from the versions in this thesis
for consistency (e.g., spelling, nomenclature). This does not affect the content of accepted manuscripts. In
contrast, the content of working papers is subject to changes during the review process.

The first paper develops an innovative data-driven approach to reduce failed delivery attempts
by extending the well-known vehicle routing problem (VRP) with availability profiles. A novel
metaheuristic, called hybrid adaptive large neighborhood search (HALNS), is presented for solving
the VRP with availability profiles. The HALNS is further developed in the second paper so that
several types of VRPs with location decisions regarding depots can be solved. These variants
include the two-echelon VRP, the location routing problem, and the multi-depot VRP. The third
paper shows the practicality of the HALNS in the context of the amazon routing research challenge.
The goal of the challenge was to generate good routes similar to the real-world driving behaviour of
drivers. The fourth contribution develops an innovative approach based on the sharing economy for
last mile delivery. Here, the possibility exists to use so-called occasional drivers, e.g. commuters,
for the delivery. To better integrate these occasional drivers, additional locations, more precisely
transshipment points (TPs), can be used.
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1 The Vehicle Routing Problem with Availability Profiles

Stefan Voigt, Markus Frank, Pirmin Fontaine, Heinrich Kuhn

Abstract In business-to-consumer (B2C) parcel delivery the presence of the customer at the time
of delivery is implicitly required in many cases. If the customer is not at home, the delivery fails
– causing additional costs and effort for the parcel service provider as well as inconvenience for
the customer. Parcel service providers typically report high failed-delivery rates, as they have
limited possibilities to arrange a delivery time with the recipient. We address the failed-delivery
problem in B2C parcel delivery by considering customer-individual availability profiles (APs) that
consist of a set of time windows, each associated with a probability that the delivery is successful if
conducted in the respective time window. To assess the benefit of APs for delivery tour planning,
we formulate the vehicle routing problem with availability profiles (VRPAP) as a mixed integer
program (MIP), including the tradeoff between transportation and failed-delivery costs. We provide
analytical insights concerning the model’s cost savings potential by determining lower and upper
bounds. In order to solve larger instances we develop a novel hybrid adaptive large neighborhood
search (HALNS). The HALNS is highly adaptable and also able to solve related time-constrained
vehicle routing problems, i.e., vehicle routing problems with hard, multiple and soft time windows.
We show its performance on these related benchmark instances and find a total of 20 new best-
known solutions. We additionally conduct various experiments on self-generated VRPAP instances
to generate managerial insights. In a case study using real-world data, despite little information on
the APs, we were able to reduce failed deliveries by approximately 12% and overall costs by 5%.

Minor Revision: Transportation Science
URL (Working Paper): https://doi.org/10.2139/ssrn.3793033
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1 VRP with Availability Profiles

1.1 Introduction & Motivation

In the course of digitization, e-commerce revenues have risen steadily worldwide and are expected
to increase even further. They are predicted to account for 19.6% of global retail sales in the
business-to-consumer (B2C) segment in 2021, with an annual growth rate of 25.7% (von Abrams
2021). This trend is the main reason why the number of worldwide parcel deliveries exceeded 131
billion in 2020 (Pitney Bowes 2021). The question regarding how customers receive all their online
purchases physically, widely known as the last mile problem, becomes an even greater challenge
as a result. The dominant delivery mode is home delivery due to its convenience for the customer
(Hübner et al. 2016). However, the presence of the customer at the time of delivery is often implicitly
required (e.g., for security reasons), resulting in the so-called attended home delivery problem (e.g.,
Agatz et al. 2011). If the customer is not at home, the delivery fails - causing additional costs and
effort for the courier, express and parcel service provider (CEP) as well as inconvenience for the
customer. Nowadays, several online stores allow customers a choice between alternative CEPs.
This means they have a high incentive to avoid failed deliveries since otherwise the customer might
change to a competing CEP. Reported failed-delivery rates in this sector (excluding CEPs that
practice unsecured deliveries) can surmount 50% (Okholm et al. 2013). As a possible solution,
CEPs could use customer-related data to increase the probability that a customer is at home at
the time of the delivery. Pan et al. (2017) already showed that such data can be used to minimize
failed deliveries in delivery tour planning, but use a sequential optimization approach, i.e., they
first minimize failed-delivery costs and then solve the resulting vehicle routing problem with time
windows (VRPTW). This approach neglects the potential increase in distance induced by following
time windows (TWs), as well as the potentially increasing number of vehicles. Besides this work,
the problem of unsuccessful home deliveries, let alone using customer data to reduce them, has
received little attention in research so far. To address this routing problem in the context of
B2C parcel delivery, we introduce the vehicle routing problem with availability profiles (VRPAP).
We consider customer-individual availability profiles (APs) that consist of a set of discrete, non-
overlapping TWs. Each TW is associated with a certain probability of the delivery being successful
if conducted in the respective TW. We minimize the sum of routing costs and customer-individual
expected failed-delivery costs. The VRPAP explicitly addresses the tradeoff between transportation
and failed-delivery costs in this way. The VRPAP is a generalization of the VRPTW and therefore
NP-hard. We develop the hybrid adaptive large neighborhood search (HALNS) for solving this
problem efficiently, and compare it to related benchmark algorithms from the literature. Further,
we conduct several analyses regarding the impact of failed-delivery costs on vehicle routing with
simulated and empirical data.
The contributions of our work are as follows: (1) We show how customer-related data can be

used to decrease the share of failed deliveries while considering the cost of routing. We explicitly
model the tradeoff between costs for routing and failed deliveries, and define a novel problem class
in the setting of parcel delivery, i.e., the VRPAP. (2) We model the problem as a mixed integer
program (MIP) and (3) analytically provide insights into its theoretical cost savings potential.
(4) We develop a highly adaptable metaheuristic solution framework that is suitable not only for
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solving practical-size instances of the VRPAP, but also for solving the VRPTW, the VRP with
multiple time windows (VRPMTW), and variants of the VRP with soft time windows (VRPSTW).
It produces 12 new best-known solutions for VRPMTW and 8 for VRPSTW benchmark instances.
(5) Experiments show the cost savings potential when CEPs consider APs of their customers during
the delivery process.
The remainder of this paper is structured as follows: Section 1.2 details the problem setting

considered. Section 1.3 gives an overview of research areas concerning relevant application- and
model-specific literature. Section 1.4 then presents the VRPAP model formulation. Section 1.5 out-
lines the HALNS, and Section 1.6 presents the numerical analyses. Section 1.7 finally summarizes
our work and indicates further research directions.

1.2 Problem Description

In the following we introduce the VRPAP. Section 1.2.1 describes the delivery process within this
context. Section 1.2.2 then details the failed-delivery issue and describes how APs can contribute to
increasing the rate of successful deliveries. Afterwards, Section 1.2.3 derives the problem-specific
and decision-relevant costs. Lastly, Section 1.2.4 summarizes the operational planning problem
considered.

1.2.1 Delivery Process

In e-commerce B2C sales, customers can choose between home delivery and a large set of alternative
collection points such as parcel shops, parcel stations, or parcel lockers. Nevertheless, the dominant
delivery mode remains home delivery. In this case, the CEP builds round trips from a single depot
to a number of customers’ home addresses. The tours are carried out by drivers in trucks that bring
the deliveries right up to the customer’s front door. At each customer, the driver needs to get out
of the truck, pick out the customer’s parcel, go to the customer’s door, wait for the customer to
open, hand over the parcel and return. The service time required to perform these tasks depends
on the local conditions and varies significantly. In the majority of cases, customers have to receive
their delivery in person as the customer’s signature is required as a confirmation of receipt (e.g.,
Hermes 2020). Even for CEPs that in general practice unsecured or unattended home deliveries,
the presence of the customer is mandatory for certain deliveries, e.g., for sensitive or highly valuable
goods. Unattended home delivery requires a secure place to deposit the parcel such as an accessible
storage location. Although this place may theoretically be available, the CEP may not have the
customer’s consent to deposit their parcels there. So in most cases the delivery fails if the customer
is not at home at the time of delivery.

1.2.2 Failed Deliveries & Availability Profiles

Generally, the failed-delivery rate is not a standardized performance metric in the CEP industry.
CEPs may include all possible reasons for the delivery attempt to fail in this measure, apart from
the customer being unavailable, e.g., the delivery address being wrong, not locatable or inaccessible,
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or the customer refusing to accept the delivery. At the other extreme, some CEPs count a delivery
as failed only when the parcel ends up in the depot again after the last failed delivery attempt.
At this point, several additional processes may already have been carried out, which depend on
the CEP’s general terms and conditions, and the lived practice. Amongst others, the driver would
search for a willing neighbor, bring the delivery to a parcel shop in the neighborhood or return
the package to the depot to start a new attempt on another day. That way, up to three delivery
attempts may take place until the parcel is finally returned to the sender (e.g., Hermes 2020).
In all of these cases, it is reasonable to count a delivery attempt as failed since this immediately
requires an additional effort. Edwards et al. (2009) report on failed first-time delivery attempts
in the magnitude of 10% to 50% where specific delivery times were not prearranged. More recent
numbers of Okholm et al. (2013) show an average of 12% and a maximum of more than 50% failed
first-time delivery attempts for CEP deliveries in the European Union. It is possible to reduce the
probability of failed deliveries by introducing TWs of which customers may choose an appropriate
one. However, strict TWs cause significantly higher transportation costs due to less efficient tours
(Punakivi and Saranen 2001). This and the CEP’s position between sender and receiving customer,
often without any contact data of the customer, are the main reasons why TWs are typically not
offered in parcel delivery (Wong 2008). Instead of fixed, pre-arranged TWs, customer-individual
APs that indicate the probability of a customer being at home can be considered when building
delivery schedules (Florio et al. 2018). APs can consist of discrete, non-overlapping TWs with
associated probabilities that the customer is available for receiving a delivery within the given
TW. APs can be generated in various ways, e.g., by using historical delivery data or based on
socio-economic data of the delivery area (Cardenas et al. 2016, van Duin et al. 2016), by electricity
consumption data on a household level (Pan et al. 2017) or GPS location data (Praet and Martens
2019). The TW granularity, i.e., the number of TWs within the daily delivery period, should be
chosen depending on the available data.

1.2.3 Decision-relevant Costs and Constraints

Costs Considering the distribution process described above, we identify two main cost factors
for attended home delivery with failed deliveries: transportation costs for the movement between
locations, and expected failed-delivery costs for delivery attempts that may be unsuccessful. Trans-
portation costs arise for each delivery tour to be performed and include the typical costs for traveling
between the locations as well as customer-individual service costs to hand over the delivery at the
customer’s location. Failed-delivery costs depend heavily on the CEP’s policy and practice in
dealing with failed deliveries. Possible cost-relevant scenarios include, but are not restricted to:

• Delivery to a neighbor : Additional service time for the driver.

• Delivery to a parcel shop: Time to reload the parcel into the vehicle, transportation costs to
reach the parcel shop, fixed fee per parcel when the parcel shop is a partner.

• Return to the depot & start new delivery attempt next day(s): Time to reload the parcel into
the vehicle, handling costs at the depot, transportation costs to reach the customer again on
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the next day(s), additional service time at the second attempt.

Additionally, a second delivery attempt on the same day either within the original tour or per-
formed by another driver who takes over the delivery of failed parcels would be conceivable, but
is not a common practice. In all cases, the driver has to leave a notification in the customer’s
mailbox or trigger an electronic notification for the customer (Hermes 2020). A higher setting of
failed-delivery costs may also reflect the increasing importance of CEP’s customer satisfaction, as
in e-commerce, customers increasingly have the option of selecting the CEP of their choice. As a
consequence, failed-delivery costs may include opportunity costs incurred when a customer is lost.
The actual costs may further differ between customers due to the availability or unavailability of a
parcel shop in the neighborhood of the customer or simply because of greater or less service time
required due to local circumstances.

Constraints Various constraints have to be considered within delivery planning of packages to
customers’ homes. The number of customers on a single delivery tour is restricted by the capacity
of the vehicle as well as the length of the delivery period. In the classical VRPTW, waiting
times between customers are often necessary to reach all customers within their individual TWs.
The problem setting considered here, however, induces waiting times not only to obtain feasible
solutions, but also to reduce total costs. The waiting times for all drivers are implicitly limited by
the maximum number of vehicles available and the length of the delivery period, as all customers
have to be visited within this period by one of the vehicles.

1.2.4 Operational Planning Problem

CEPs engaged in an attended home delivery B2C setting seek to minimize expected costs for the
last mile delivery. We consider the single-day operational problem where costs arise from traveling
to the customer, serving the customer, and additional costs if the delivery fails. These costs are
influenced by decisions regarding (1) the clustering of customers to tours, (2) the delivery sequence
on each tour and (3) the selection of delivery TWs. The expected failed-delivery costs depend
on the customer’s availability within the TW chosen by (3). Service has to start within this
chosen TW. In contrast to the VRPTW, the CEP does not have to arrange the tour such that
the driver arrives at a specific TW. Instead, arrival is possible throughout the planning horizon,
but the customer’s availability depends on the TW. Allowing deliveries within the entire delivery
period and quantifying the customer’s availability via APs enables the CEP to balance between
transportation and expected failed-delivery costs.

1.3 Related Literature

The decision problem considered belongs to the class of time-constrained VRPs, in particular
VRPs with single or multiple time windows. Section 1.3.1 therefore reviews corresponding time-
constrained VRPs first, and Section 1.3.2 the literature that explicitly considers failed deliveries in
the context of attended home delivery second. Section 1.3.3 summarizes our findings and specifies
the research gap.
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1.3.1 Time-constrained Vehicle Routing Literature

The literature on time-constrained VRPs contains models that can be categorized by their assump-
tions related to the availability of customers within the delivery horizon. With reference to Vidal
et al. (2015), we distinguish four problem classes with increasing complexity: the VRP with time
windows (VRPTW), the VRP with multiple time windows (VRPMTW), the VRP with soft time
windows (VRPSTW) and the VRP with general time windows (VRPGTW). Figure 1.1 visualizes
the respective model assumptions of TW constellations and customer availability across the delivery
horizon.
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Figure 1.1: Alternative constellations of customer availability across the delivery horizon

The upper branch of Figure 1.1 shows the relation of VRPGTW, VRPAP, VRPMTW, and
VRPTW. The VRPAP defines a special case of the VRPGTW with multiple TWs covering the
complete delivery horizon and constant failed-delivery costs in every TW. The VRPAP equals the
VRPMTW if costs for a failed delivery are infinitely high and TWs are either associated with 0% or
100% customer availability. The VRPAP becomes the VRPTW if there is only one TW with 100%
customer availability and all other TWs are associated with 0% customer availability, i.e., there
are infinitely high failed-delivery costs for all but one TW. The lower branch of Figure 1.1 shows
that the VRPSTW defines another special case of the VRPGTW with a single TW and linearly
increasing penalties.

1.3.1.1 VRPTW

Vidal et al. (2013a) present an in-depth review on the diverse set of problem cases discussed in the
literature. We however focus on VRPTW publications that present state-of-the-art algorithms and
results, which can be used as benchmark for our solution framework proposed. Pisinger and Ropke
(2007) present a general heuristic based on the adaptive large neighborhood search (ALNS) for a
large class of vehicle routing problems, including the VRPTW. Nagata et al. (2010) present a rather
specialized memetic algorithm for the VRPTW. The authors use the Edge Assembly Crossover from
Nagata (1997) together with a new penalty function which allows for time warps, i.e., if the vehicle
arrives too late at the customer it may use a penalized time warp. Vidal et al. (2013b) build upon
the time warp concept and introduce the hybrid genetic search with adaptive diversity control for

7



1 VRP with Availability Profiles

VRPs with time features. In contrast to Nagata et al. (2010), their approach works on a large class
of time-constrained problems.

1.3.1.2 VRPMTW

De Jong et al. (1996) are the first to formalize the VRPMTW as an MIP. Their objective min-
imizes total costs, consisting of transportation costs and cost of waiting time. Favaretto et al.
(2007) formulate the VRPMTW with periodic constraints. An ant colony optimization algorithm
is implemented to solve benchmark instances generated based on VRP instances from the litera-
ture, but without considering periodic visits. For the same setting, Belhaiza et al. (2014) develop a
hybridized variable neighborhood tabu search heuristic with adaptive memory and solve instances
from Favaretto et al. (2007) and newly generated instances based on the VRPTW instances of
Solomon (1987), minimizing either travel time or route duration. The latter instances serve as a
benchmark for future work. Belhaiza et al. (2017) introduce a hybrid genetic variable neighbor-
hood search for both objectives. Larsen and Pacino (2019) also consider the VRPMTW where the
total duration is minimized, as well as a variant where the total travel time is minimized. They
implement an ALNS using operators adapted from Ropke and Pisinger (2006) and focus on fast
solution evaluations. Belhaiza et al. (2019) present a framework with three different multi-start
strategies where they treat solutions as individuals of a genetic population and enhance their VNS
with typical destroy-and-repair procedures known from LNS. Hoogeboom et al. (2020) solve the
VRPMTW with an adaptive VNS including an exact polynomial time algorithm to determine the
optimal service start times of customers in a given route sequence. We refer to this subproblem
hereinafter as the optimal start time problem (OSTP). In a similar manner, Schaap et al. (2019)
use a LNS with a dynamic programming approach to optimally select a TW for each customer on
a route.

1.3.1.3 VRPSTW

Fu et al. (2008) define six different types of soft TWs. Most relevant for and closest to our appli-
cation are types 1 and 2, where either only late (type 1) or early and late customer visits (type
2) are possible but incur a penalty that is linear to the TW violation. The type 1 variant was
first introduced by Taillard et al. (1997) and solved by a tabu search heuristic. The type 2 variant
was first considered by Koskosidis et al. (1992) and addressed by solving the clustering problem
and the resulting TSPs with soft TWs separately. Like Taillard et al. (1997) they minimize total
distance and total penalties simultaneously. Later works on the VRPSTW however use lexico-
graphic objectives. Figliozzi (2010), for instance, first minimizes the number of vehicles, then the
number of TWs violated and after that the total distance. The best solution approaches on the
commonly used (adapted) Solomon benchmarks for types 1 and 2 that are available currently are
Mouthuy et al. (2015), Vidal et al. (2014b) and Kritzinger et al. (2017). Mouthuy et al. (2015)
use a multistage very large-scale neighborhood search where neighboring solutions are reached not
by a single local move but by a sequence of moves in order to achieve better local optima. They
also develop a specialized heuristic for the OSTP arising in the VRPSTW. Vidal et al. (2014b)
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propose a hybrid genetic search with an efficient local search. Kritzinger et al. (2017) adapt the
variable neighborhood search method with numerous shaking operators. The latter two approaches
are developed to solve a large number of VRP variants including the VRPSTW.

1.3.1.4 VRPGTW

The VRPGTW further extends the VRPMTW and the VRPSTW. It allows customer visits at all
times, but at a time-dependent cost defined by a penalty function. In contrast to the typically
linear penalties in the case of soft TWs, the penalty functions in the VRPGTW can take any form
and also be of a non-convex and discontinuous nature. Nevertheless, piece-wise linearity is assumed
in all approaches dealing with the VRPGTW described in literature. Ibaraki et al. (2005) are the
first authors who explicitly consider the VRPGTW. They minimize distance costs and penalty
costs for TWs used and exceeding vehicle capacity. The problem of determining service start times
with minimal penalties for a given route, the OSTP, is identified as a critical subproblem in the
VRPGTW since customers can be visited at any time and waiting times between the customers are
allowed. They are the first to propose a dynamic programming approach to compute the OSTP.
Ibaraki et al. (2008) improve the dynamic programming algorithm of Ibaraki et al. (2005) for the
OSTP assuming that the piece-wise linear penalty functions are also convex. Hashimoto et al.
(2006) extend the VRPGTW by treating the travel times as time-dependent penalty functions,
too, and adapt the dynamic programming algorithm from Ibaraki et al. (2005) to their problem
setting.

1.3.2 Failed Delivery Literature

The literature has so far scarcely treated the possibility of a failed delivery in the course of tour
planning of attended home deliveries. Pan et al. (2017) use electricity consumption data of cus-
tomers to reduce failed deliveries in the context of e-groceries. They follow a sequential optimization
approach where they first minimize failed-delivery costs by delivering to all customers within their
TW with the highest availability and then solving the resulting VRPTW. They show that the
approach can decrease the first-time failed-delivery rate by up to 26% in an experiment with 15
customers. However, their approach neglects the potential increase in distance induced by prede-
fined TWs, as well as the potential increasing number of vehicles needed to serve all customers.
This so-called ping-pong effect can lead to a significant increase in transportation costs (see, for
example, Punakivi et al. 2001). Florio et al. (2018) formulate a delivery problem that also uses
APs. In contrast to the VRPAP, they use continuous APs. The model defined minimizes failed
deliveries where route duration is restricted. They solve the delivery problem with a branch-and-
price algorithm for up to 100 customers. The algorithm leads to optimal solutions if revisits are not
allowed and provides a heuristic solution for instances where revisits are possible. They find that
using APs for designing routes may result in an average reduction of 34% of failed deliveries. The
modeling approach of Florio et al. (2018), however, neglects to include the simultaneous optimiza-
tion of transportation costs and expected failed-delivery costs. Their modeling approach requires
artificial constraints on the additional distance tolerable that have to be defined in advance. Özarık
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et al. (2021) present a VRP with discrete customer availability profiles and time-dependent penalty
costs, where transportation and expected failed-delivery costs are simultaneously minimized. In
contrast to the VRPAP, they neglect vehicle capacities and set the failed-delivery costs to the back
and forth distance between the depot and the respective customer instead of a more flexible policy-
dependent parameter. The authors propose an ALNS to solve the model formulated, and include
a local search procedure to optimize the service start times for given customer sequences, which is
similar to the approach of Ibaraki et al. (2005). In their experiments they find that incorporating
APs in tour planning reduces total costs by up to 40%.

1.3.3 Summary and Research Gap

To sum up, the problem of failed deliveries in attended home delivery has only rarely been studied
in the literature. Existing approaches neglect the effect of increasing distances and the increasing
number of vehicles required when introducing TWs or miss features of the operational planning
problem, e.g., policy-dependent failed delivery costs and vehicle capacities. An exhaustive mod-
eling approach is needed to conduct research towards numerous open research questions, e.g., the
importance of the number of available vehicles, the influence of customer-individual failed-delivery
costs and the effects of differently structured APs. Also, the benefit of using the VRPAP instead
of existing modeling approaches needs to be clarified. We use our VRPAP modeling approach
presented below to address these questions. The VRPAP extends the VRPMTW literature by
introducing a valuation of all defined TWs. VRPMTW models assume that the selected TW does
not directly affect the objective function. In the VRPAP TWs are valued by availability profiles.
The VRPGTW has received only scant attention in the literature so far because it lacks convincing
applications. The VRPAP can be seen as a special case of the VRPGTW with constant costs for
TWs and has a convincing application in attended home parcel delivery. Our proposed HALNS
framework is developed to specifically solve the VRPAP, but is also suitable for solving related
time-constrained problem settings.
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1.4 Decision Model for Vehicle Routing with Availability Profiles

The VRPAP is defined on a directed graph G(N,A) with node set N and arc set A. Node set N
consists of the depot 0 and customers j ∈ C. The arc set is defined as A = {(i, j) : i 6= j, i, j ∈ N}.
ctrans
ij denotes the associated transportation costs with each arc. The depot serves as start and end
point of all delivery tours. We assume a given fleet of K delivery trucks that states the maximum
number of tours. All trucks have the same restricted vehicle capacity Q, while the customer’s j ∈ C
demands dj may be different. Split deliveries are not allowed. The time of a tour consists of the
traveling time tij for driving from one node to the next, of the customer-individual service time Sj ,
and possibly the waiting time. The maximum route duration is restricted by the delivery period’s
length D. We divide the delivery period for each customer into |W | discrete, non-overlapping
TWs with lower and upper limits ejw and ljw with associated probabilities pjw that customer j is
available for receiving a delivery within the given TW w. The customer’s individual failed-delivery
cost parameter cfailed

j denotes the costs that occur if a delivery attempt fails. We are able to
represent different policies in dealing with failing deliveries with the same model by setting cfailed

j

as policy-dependent. The binary decision variable xij indicates whether arc (i, j) is used. The
binary decision variable yjw becomes 1 if TW w is chosen for delivering to customer j. Table 1.1
summarizes the notation.

Table 1.1: Notation
Sets
C Set of customers, C = {1, ..., |C|}
N Set of nodes, N = {0} ∪ C = {0, ..., |C|}
W Set of TWs, W = {1, ..., |W |}

Parameters
ctrans
ij Transportation cost from i to j, i, j ∈ N
tij Traveling time from i to j, i, j ∈ N
dj Demand of customer j, j ∈ C
Sj Service duration at customer j, j ∈ C
pjw Availability probability of customer j during TW w, j ∈ C, w ∈W
cfailed
j Cost of failed delivery attempt for customer j, j ∈ C
ejw Earliest start of service of TW w for customer j, j ∈ C, w ∈W
ljw Latest start of service of TW w for customer j, j ∈ C, w ∈W
K Maximum number of vehicles
Q Maximum capacity of a vehicle
D Length of delivery period

Decision Variables
xij Binary variable indicating whether arc (i, j) is used, (i, j) ∈ A
yjw Binary variable indicating whether TW w is chosen for customer j, j ∈ C, w ∈W
si Start time of service at node i, i ∈ N
qi Accumulated load until node i, i ∈ N
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Model VRPAP

Minimize Ctotal
VRPAP =

∑
i∈N

∑
j∈N

ctrans
ij xij +

∑
j∈C

∑
w∈W

cfailed
j (1− pjw)yjw (1.1)

s.t.∑
j∈C

x0j ≤ K (1.2)

∑
j∈N

xij = 1 ∀i ∈ C (1.3)

∑
j∈N

xij =
∑
j∈N

xji ∀i ∈ N (1.4)

qj − qi ≥ dj −Q(1− xij) ∀i, j ∈ C, i 6= j (1.5)

dj ≤ qj ≤ Q ∀j ∈ C (1.6)

sj + Sj + tj0 ≤ D ∀j ∈ C (1.7)

sj − si ≥ (tij + Si)xij −D(1− xij) ∀i, j ∈ C, i 6= j (1.8)∑
w∈W

ejwyjw ≤ sj ≤
∑
w∈W

ljwyjw ∀j ∈ C (1.9)

∑
w∈W

yjw = 1 ∀j ∈ C (1.10)

xij ∈ {0, 1} ∀i, j ∈ N (1.11)

yjw ∈ {0, 1} ∀j ∈ C, w ∈W (1.12)

si, qi ∈ R+
0 ∀i ∈ N (1.13)

The objective function (1.1) minimizes the total expected costs, which consist of total trans-
portation costs and expected costs of failed delivery attempts. Costs for a delivery that failed
arise with the absence probability multiplied by the cost of failed deliveries if the respective TW is
chosen. Constraint (1.2) restricts the number of vehicles used. Constraints (1.3) ensure that each
customer is visited exactly once. Constraints (1.4) conserve flow. Constraints (1.5) and (1.6) ensure
feasibility of loads. Constraints (1.7) ensure that vehicles arrive back at the depot again before the
end of the delivery period. Constraints (1.8) guarantee that the service of an immediate successor
starts only after traveling and service time starting from the predecessor. Constraints (1.9) ensure
that the service must start within the chosen TW. Constraints (1.10) ensure that exactly one TW
is chosen for each customer. Constraints (1.11) - (1.13) define the domains of the variables.
The VRPAP generalizes the VRPTW (see Section 1.3.1). This means it is also NP-hard. Only

small instances can be solved by exact approaches. Heuristics are required to solve larger instances.
In the following we derive a lower and upper bound to benchmark solutions achieved by our heuristic
approach.

Theorem 1. Let Ctrans
VRP denote the resulting costs, when solving the VRPAP ignoring failed-delivery

costs, i.e., cfailed
j = 0, ∀j ∈ C. These costs equal the transportation costs when solving the corre-
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sponding VRP. Then, a lower bound for the VRPAP is denoted as follows.

C lower
VRPAP = Ctrans

VRP +
∑
j∈C

cfailed
j (1−max(pj1, ..., pj|W |)) (1.14)

Proof.

Ctotal
VRPAP =

∑
i∈N

∑
j∈N

ctrans
ij xij +

∑
j∈C

∑
w∈W

cfailed
j (1− pjw)yjw

(a)
≥

∑
i∈N

∑
j∈N

ctrans
ij xij +

∑
j∈C

cfailed
j (1−max(pj1, ..., pj|W |))

(b)
≥ Ctrans

VRP +
∑
j∈C

cfailed
j (1−max(pj1, ..., pj|W |)) = C lower

VRPAP (1.15)

Inequality (a) states that the TWs with the highest availability probability result in lower or equal
costs than the selected TWs in any VRPAP solution. Inequality (b) results from the definition of
Ctrans

VRP as the the lowest transportation costs, determined by solving the corresponding VRP.

An upper bound Cupper
VRPAP for the VRPAP can be derived as follows. We can quantify the sum

Ctotal
VRP consisting of the minimum transportation costs Ctrans

VRP and the expected failed-delivery costs
for each customer using the associated TWs resulting from solving the VRP. Furthermore, we
calculate total costs Ctotal

VRPTW with the minimum possible failed-delivery costs by solving a VRPTW
assuming that the respective TWs with maximum availability apply to each customer. Obviously,
min(Ctotal

VRP, C
total
VRPTW) represents an upper bound Cupper

VRPAP for the VRPAP.

1.5 Hybrid Adaptive Large Neighborhood Search

This section presents a novel hybrid adaptive large neighborhood search (HALNS) for solving the
VRPAP. Our HALNS combines elements of an adaptive large neighborhood search (ALNS) as
introduced by Ropke and Pisinger (2006) and Pisinger and Ropke (2007), the parallelized ALNS
(Mühlbauer and Fontaine 2021) and elements of genetic algorithms, i.e., a population management
of individuals (also called solutions), and a crossover phase. The general idea is to maintain a
population of individuals that are improved via several ALNSs. Compared to classical ALNSs, these
ALNSs use the information available within the population during its optimization procedure. The
HALNS relies on this feature as the inner ALNS is optimized for finding reasonably good solutions
within very short runtimes as the ALNS is run multiple times. In doing so, we pursue two goals.
First, the population-based approach expands the search space, and second, the neighborhood-
centred ALNS intensifies the search around promising solutions. Both approaches in combination
increase the chance to escape local optima.

Algorithm 1 describes the general structure of the HALNS proposed. We consider an initial
population P of size nP . The initial population of individuals is generated by executing an ALNS
nP times, resulting in potentially several different reasonably good solutions (lines 1-3). The
ALNS is then used to crossover individuals (line 6-9), while the number of generations without
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Algorithm 1: Hybrid Adaptive Large Neighborhood Search
1 while |P | < nP do // Generation of Initial Population
2 s← ALNS()
3 P ← P ∪ {s}
4 while gens without Improvement < genstop ∧ gens < genmax do // GA Generations
5 ŝ← DetermineBestSolution(P )
6 while i < nP do // Crossover Phase
7 s← P [i]
8 s← ALNS(s, ŝ)
9 P ← P ∪ {s}

10 P ← SelectSurvivors(P ) // Select surviving individuals

improvement is lower than genstop or the number of generations has not reached its limit, genmax

(line 4). The individuals of a population that are used within the next generation (survivors) are
chosen according to their solution quality and their contribution to the diversity of the population
(line 10). The proposed ALNS is described in Section 1.5.2. Section 1.5.3 then details the crossover
phase. Section 1.5.4 describes the selection logic of survivors.

1.5.1 Solution Representation and Penalized Costs

A solution is represented by a set of routes R, where every customer is covered exactly once by
exactly one route. Let r be a route in R, i.e., a sequence of |r| − 1 customer visits, which starts at
the depot (r0 = 0), ends at the depot (r|r| = 0) and covers customers in between (r(1,...,|r|−1) 6= 0).
Following the idea of Vidal et al. (2013b), we allow non-feasible solutions in the search space by
penalizing the degree of infeasibility with an additional weight ω, i.e., a penalty cost factor, in the
cost function. We then combine the costs for transportation Ctrans

r and failed delivery C failed
r with

possible penalty costs for an overloaded vehicle PLoad
r and TW violations PTW

r . The adapted entire
costs of a route r, f(r), are hereafter denoted as penalized costs.

f(r) = Ctrans
r + C failed

r + ω(PLoad
r + PTW

r ) (1.16)

Let pavailable
j be the availability probability resulting from choosing a TW for customer j in r.

Furthermore, let Pir be the lateness resulting from being too late for the designated TW w, or
being too late back at the depot for node i in r, which is defined as follows.

Pir =

 max{si − liw, 0} i ∈ r, i 6= 0

max{sr|r|−1 + Sr|r|−1 + tr|r|−1,i −D, 0} i = 0
(1.17)

The individual terms of route r are then calculated as follows:

• Transportation costs: Ctrans
r =

∑|r|−1
i=0 ctransri,r(i+1)

• Failed-delivery costs: C failed
r =

∑|r|−1
j=1 cfailed

j (1− pavailable
j )

• Excess truck load: PLoad
r = max{0,

∑|r|−1
j=1 dj −Q}
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• TW lateness: PTW
ir =

∑|r|
i=0 Pir

The penalized cost f(s) of a solution s is then the sum of the penalized costs of all routes in R,
i.e., f(s) =

∑
r∈R f(r).

1.5.2 ALNS Algorithm

Algorithm 2: ALNS algorithm in simulated annealing framework
Input : Starting solution s, global best solution ŝ, temperature γ
Output: best solution s∗

1 s∗ ← s

2 while Iterations without improvement < itlimit do
3 ChooseOperators()
4 CCR ← getRemovalCandidates(s, ŝ )
5 (snew, CR)← Remove(s, CCR )
6 CR ← sort(CR )
7 snew ← Insert(snew, CR )
8 if f(snew) < f(s∗) then
9 (s, s∗)← snew

10 if f(s∗) < f(ŝ) then
11 ŝ← s∗

12 else if accept(f(snew), f(s∗), T emp) then
13 s← snew

14 γ ← β · γ
15 UpdateWeights()

The ALNS takes the current solution s, the global best solution ŝ and the starting temperature
γ as input. Initially, the local best solution s∗ is set, and the ALNS generates new solutions by
iteratively removing and then inserting customers from and into the current solution. In each
iteration, a removal operator (see Section 1.5.2.3) and an insertion operator (see Section 1.5.2.5)
are randomly chosen (line 3). Hereby, the selection probability depends on the historic performance
of the respective operator. Different from classical ALNS implementations, a set of customers that
are candidates for removal CCR is generated by comparing the current solution s and the global
best solution ŝ (line 4, see Section 1.5.2.2). The removal operator chosen then removes some or
all customers of set CCR from the solution (line 5). Additionally, data collected during the search
determines the order in which the removed customers CR are inserted (line 6). The determination
of the insertion order (see Section 1.5.2.4) is an extension to existing ALNS implementations that
either randomly insert customers or determine the order during the insertion process (e.g., regret-
insertion Ropke and Pisinger 2006). Afterwards, the insertion operator chosen inserts the set of
previously removed and sorted customers into the solution (line 7). We use a simulated annealing
acceptance criterion (see Section 1.5.2.6) with cooling rate β to avoid getting stuck in a local
optimum (lines 8-14), like other ALNS implementations (e.g., Ropke and Pisinger 2006, Larsen and
Pacino 2019). Finally, the weights are updated (see Section 1.5.2.7) according to the performance
of the operators (line 15). The ALNS ends after a predefined number of iterations without any
improvements, itlimit.

Note that the HALNS generates the initial solution in the first generation by iteratively applying
the Best Route Insertion Operator (see Section 1.5.2.5) until every customer is served. In the
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following generations, the initial solution of an ALNS phase is chosen from the population of
solutions.

1.5.2.1 Information Collection

The insertion operators collect three types of information when inserting customers. This informa-
tion is used during the subsequent removal and insertion operations.

• The historic penalized cost Chist
j is increased on every insertion of customer j by ∆j =

f(s1)− f(s0), where s1 represents the solution after inserting customer j and s0 the solution
directly before, i.e., without customer j. Chist

j measures the accumulated increase in costs
when inserting customer j. These costs approximate the additional cost effort when inserting
customer j into a given solution.

• Cmin
j quantifies the minimum insertion costs of customer j found so far. It is updated every

time a new insertion position with lower costs is found, i.e., every time ∆j < Cmin
j .

• nj counts the number of times customer j is reinserted.

1.5.2.2 Determination of Removal Candidates

The set of candidates to be removed, CCR , defines a newly designed feature in the ALNS proposed.
The set is determined by comparing the current solution s with the global best solution ŝ. We use
two variants for selecting which customers are added to set CCR . One of these two alternatives is
randomly chosen in every iteration. The probability depends on the performance and is adapted
during the search (see Section 1.5.2.7).

Sequence Comparison A customer is added to CCR if its successor in s differs from its successor
in ŝ. This indicates that the customer is oddly placed compared to the position in the best solution
found so far. Customers who do not differ from their successors in ŝ are nevertheless added to set
CCR with a probability pbinom for diversification purposes. We use this procedure since we expect
that a certain number of edges in the best solution found so far will be similar to the optimal
solution. We therefore combine the information from different solutions in a less random fashion
than in a crossover but still include the information of the whole population.

Time Window Comparison A second variant of the procedure to determine CCR is implemented
where the TW assignment of s and ŝ is compared instead of the immediate successor. To be more
specific, a customer will be added to CCR if the customer has a different TW assigned in s and ŝ.

1.5.2.3 Removal Operators

The maximum number of customers to be removed, qbinom, is sampled from a binomial distribution
in every iteration (Voigt and Kuhn 2022). The binomial distribution takes two parameters, namely
the sample size that we set to |C| and the probability pbinom that is adapted during one ALNS
run. The dynamic adaptation of this parameter is a new component that we use to cope with
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different instance characteristics (e.g., APs, geographical distributions, vehicle capacities). In some
instances only a few customers should be removed, reducing the ALNS to a more local search. In
other instances, a high number of customers have to be removed in order to change the solution. The
number of customers that are actually removed is expressed by qr = min{qbinom, |CCR |}. The ALNS
uses four known removal operators (Ropke and Pisinger 2006), which we adapt to our problem
setting. We have chosen simple yet efficient operators and further optimize them to find reasonable
solutions within short runtimes.

Random Removal The Random Removal Operator randomly selects qr customers out of set CCR
and removes these customers from the current solution. This operator is fast and fosters diversifi-
cation.

Historic Cost Removal The Historic Cost Removal Operator uses the historic information gained
during the insertion procedures (see Section 1.5.2.1) and removes qr customers from set CCR in
decreasing order of average historic penalized costs, i.e., in decreasing order of C

hist
j

nj
. The operator

thus uses average historic penalized cost rather than just the costs encountered during the previous
insertion phase. Otherwise the operator would show the tendency of removing the customers who
have been inserted at the end of the previous insertion step, because these customers are constrained
most concerning available insertion possibilities and therefore naturally show higher costs.

Worst Cost Removal The Worst Cost Removal Operator uses the historic information collected
during insertion, too. The operator calculates the change in transportation costs, ∆j , if customer
j is removed from the current solution. It then compares this cost difference to the minimum
encountered penalized cost during the search Cmin

j . Customers are removed in descending order of
∆j −Cmin

j , i.e., customers with a high difference in costs, who therefore seem to be oddly placed in
the solution, are removed. The operator is similar to the well-known Worst Removal Operator, but
overcomes the tendency of removing the same customer all over again only because the customer
is for example far away from every other customer and therefore naturally increases the costs the
most.

Shaw Removal The Shaw Removal Operator removes customers from the solution that are similar
to each other. The first customer is removed with the Random Removal Operator. The following
requests are chosen from CCR in increasing order of relatedness. The relatedness Rel(c1, c2) of two
customers c1 and c2 is measured by the distance of both customers and the similarity of their
earliest completion times E(j) in s. The lower the Rel(c1, c2), the more related are customers c1

and c2.
Rel(c1, c2) = cc1,c2

max
i,j∈N

cij
+ |E(c1)− E(c2)|

l0
(1.18)

Customers with a lower Rel(c1, c2) are removed first.
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1.5.2.4 Determination of Insertion Order

At the beginning of the insertion process, the set of removed customers, CR is sorted in descending
order of average historic costs Chist

j

nj
. Customers who are hard to insert without incurring high

penalized costs are inserted earlier and therefore have a greater chance of being inserted at an
appropriate position. The later a customer is inserted into a tour, the more difficult it is to find
a position that will increase the total costs at a moderate level only. Customers with low average
historic costs should therefore be inserted at a later stage.

1.5.2.5 Insertion Operators

Two decisions have to be made when inserting a customer into a route: the position within the
sequence of already assigned customers and the TW when the customer should be served. The
selection of an appropriate TW can however influence the sequence and the TWs of already as-
signed customers. Within the ALNS, we therefore restrict the insertion operators to only allow the
insertion of customers if TWs and sequences of customers on the route are not shifted. Based on
this general strategy we define two variants of the Best Insertion Operator. Both variants iterate
across all routes to find the insertion position that increases the cost least. Note that we again
avoid the use of computationally intensive operators such as k-regret that are otherwise widely used
in the ALNS literature (e.g., Larsen and Pacino 2019).

Best Insertion: First Feasible TW. For a given insertion position in a route, the Best Insertion:
First Feasible TW Operator uses the earliest feasible TW. The feasibility of a selected TW can
easily be checked in constant time by using the concept of reoptimization by concatenation of
sequences (Vidal et al. 2013b). In the worst case, each and every TW has to be checked for every
insertion position on a route, resulting in a worst-case complexity for the insertion of one customer
of O(n|TW |). Here, n denotes the current number of customers on a route and |TW | indicates the
number of TWs.

Best Insertion: Best Feasible TW. The Best Insertion: Best Feasible TW Operator uses the
TW that leads to the lowest penalized costs (compared to the first feasible TW) without shifting
the sequence or the TW assignment of all other customers on that route. This operator has an
average and worst-case complexity of O(n|TW |).

1.5.2.6 Simulated Annealing

The initial temperature is determined for every instance with γ = − ∆E
ln(χ0) using the formula from

Johnson et al. (1989) as cited in Ben-Ameur (2004). ∆E estimates strictly positive cost increases
and χ0 expresses the probability of accepting a worse solution. We execute n0 iterations of the
ALNS to generate the transitions. The temperature γ thus determined is reduced by β after each
iteration.
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1.5.2.7 Adaptivity

The score of an operator is increased by either σ1, σ2 or σ3. It is increased by σ1 if a new best
solution is found, by σ2 if a previously unknown solution with lower costs than the current solution
is found, or by σ3 if the solution has higher costs but is accepted through the simulated annealing
procedure. The probability of choosing removal and insertion operators depends on the scores and
is calculated as in Ropke and Pisinger (2006).

1.5.3 Crossover Phase

The crossover phase uses the ALNS described in the previous section. In each generation, the
ALNSs use the individuals in the current population one by one as a starting solution. The
determination of the removal candidates is influenced by the global best solution (see Section
1.5.2.2). In a genetic algorithm, the idea of a crossover is to combine two individuals hoping to
maintain good segments of a solution. In contrast, we try to achieve the same effect by reducing
the probability of replacing well-placed customers. This procedure is based on the consideration
that the optimal solution is likely to have some similarities with the solutions generated by ALNS
and even more similarities with the best solution of the population.

1.5.4 Selection of Survivors

Surviving individuals are determined on the basis of total costs and the contribution of each indi-
vidual to the diversity of the population similar to the diversity management of Vidal et al. (2012).
All individuals of population P are placed in increasing order of total costs and a rank is assigned
to the individual i, RankCosts

i , e.g., the individual with the lowest cost gets RankCosts
i = 0, the

individual with the highest cost RankCosts
i = |P | − 1.

The diversity of an individual i is calculated by the hamming distance to all other individuals in
the population based on the successor of nodes, Succi .

Hammingind =
∑

i∈Population

∑
j∈C

Succind
j 6= Succij (1.19)

The population is placed in decreasing order of the hamming distance and a diversity rank is
assigned to the individual RankDiversity

i . The overall rank is calculated by summing up the cost and
diversity rank, RankTotal

i = RankCosts
i + RankDiversity

i . Individuals with the nP lowest total ranks
are chosen for the next generation. Individuals with the 4 · nP lowest total ranks survive, meaning
that an individual can be used in later generations, even if not used during previous generations.
Lastly, after each fifth generation new individuals are generated in the same manner as the first
generation to further enhance diversity.

1.6 Numerical Experiments

This section presents our numerical experiments based on simulated and empirical data. The
HALNS is implemented in C++ and run on an AMD Ryzen 9 3900X with 32GB RAM. Sec-
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tion 1.6.1 details how we generated VRPAP instances. Section 1.6.2 evaluates the performance of
the HALNS on related time-constrained VRP instances from literature and VRPAP instances gen-
erated, and additionally analyzes HALNS components. Section 1.6.3 generates managerial insights.
Section 1.6.4 presents a case study with real APs. Table 1.2 gives an overview of experiments and
data sets.

Table 1.2: Experiments and data sets
Section Experiments and purpose Data set used

1.6.1 VRPAP Instance Generation Solomon (1987),
Florio et al. (2018)

1.6.2 Performance Evaluation
1.6.2.1 Benchmark for Time-Constrained VRPs Solomon (1987), Belhaiza et al. (2014)
1.6.2.2 Benchmark for VRPAP Instances Synthetic VRPAP instances generated in 1.6.1
1.6.2.3 Analysis of Algorithmic Components Synthetic VRPAP instances generated in 1.6.1
1.6.3 Sensitivity Analysis and Managerial Insights Synthetic VRPAP instances generated in 1.6.1
1.6.4 Case Study with Empirical Availability Profiles Solomon (1987),

Time Use Survey Data (Gershuny and Sullivan 2017)

1.6.1 VRPAP Instance Generation

We use instances for the VRPTW by Solomon (1987) and replace the TWs by different APs derived
from Florio et al. (2018). Every profile consists of 10 TWs and has an average availability of 50%
(see Table 1.3). The A-profile has a peak during midday. The V-profile has two peaks, one in the
morning and one in the evening. The W-profile has an additional peak during midday and can
therefore be considered a combination of A and V profiles. The M-profile is the opposite of the
W-profile, i.e., when the availability of the W-profile is high, the availability of the M-profile is low.
We generate instances based on these profiles where all customers of one instance have the same
profile (A, V, W or M), and instances with a combination of profiles (AV, WM, and AVWM). In
the latter case, customers of one instance are randomly assigned one of the respective profiles in
equal proportions. We combine the seven different pure and mixed APs (A, V, W, M, AW, WM
and AVWM) with six geographical distributions (R1, R2, C1, C2, RC1 and RC2) of customers
from Solomon (1987), resulting in 42 instances.

1.6.2 Performance Evaluation

Section 1.6.2.1 evaluates the performance of the HALNS on special cases of the VRPAP, namely
the VRPTW and the VRPMTW, as well as the more complex VRPSTW. Section 1.6.2.2 compares

Table 1.3: Availability profiles
1 2 3 4 5 6 7 8 9 10

A 0.1 0.3 0.5 0.7 0.9 0.9 0.7 0.5 0.3 0.1
V 0.9 0.7 0.5 0.3 0.1 0.1 0.3 0.5 0.7 0.9
W 0.8 0.4 0.1 0.4 0.8 0.8 0.4 0.1 0.4 0.8
M 0.2 0.6 0.9 0.6 0.2 0.2 0.6 0.9 0.6 0.2
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the HALNS solution for VRPAP instances to a lower and upper bound. Section 1.6.2.3 evaluates
the importance of specific algorithmic components of the HALNS. We use the identical set of
algorithmic parameters (see Appendix A.1) that has been selected after preliminary testing for all
experiments.

1.6.2.1 Benchmark for Time-Constrained VRPs

Tables 1.4 to 1.7 summarize the results. Column BKS shows the (previous) best-known solution
averaged over distribution types, column Best X shows the averaged best results obtained during
5 or 10 runs, and column Avg X demonstrates the arithmetic mean over 5 or 10 runs (combined by
Best/Avg if only one run has been executed). Row Σ presents the cumulated objective values over
the whole instance set, row Avg gap represents the average gap compared to the (previous) BKS,
and row #BKS the number of BKS found. Furthermore, row Avg T shows the arithmetic mean
of the runtime over 5 or 10 runs. We also specify the processors used and their passmark single
thread rating (https://www.cpubenchmark.net/) in order to make the runtimes comparable.

VRPTW Benchmark Table 1.4 shows that the performance of the HALNS is comparable to well-
performing algorithms for the VRPTW from Nagata et al. (2010) and Vidal et al. (2013b). Figure
A.1 in Appendix A.2.1 additionally demonstrates that the HALNS also clearly outperforms the sole
implementation of the ALNS by Pisinger and Ropke (2007) for smaller runtimes. This indicates
the value of the hybridization of the ALNS.

Table 1.4: Summarized results for Solomon (1987) VRPTW instances
BKS Pisinger Nagata Vidal HALNS

Best 10 Best 5 Best 5 Avg 5 Best 5 Avg 5

R1 1210.34 1212.39 1210.34 1210.69 1211.49 1210.35 1210.93
R2 951.03 957.72 951.03 951.51 952.05 951.03 951.77
C1 828.38 828.38 828.38 828.38 828.38 828.38 828.38
C2 589.86 589.86 589.86 589.86 589.86 589.86 589.86
RC1 1384.17 1385.78 1384.17 1384.17 1384.81 1384.17 1384.18
RC2 1119.24 1123.49 1119.24 1119.24 1119.4 1119.34 1119.43

Σ 57187 57332 57187 57196 57218 57188 57204

Avg T 150s 300s 161s 155s
CPU Pentium 4 3GHz Opteron 2.4GHz Xeon 2.93GHz Ryzen 9 3900X

Passmark 561 430 1418 2731

VRPMTW Benchmark Table 1.5 shows that the HALNS achieves a similar best gap to that of
the ALNS of Larsen and Pacino (2019), which is the state-of-the-art approach for the VRPMTW.
However, the HALNS outperforms the ALNS in terms of average performance. The HALNS pro-
duces 28 BKS out of 48 instances, including 12 newly found BKS. Note that the HALNS already
produces reasonably good solutions at much shorter runtimes, as shown in Figure A.2 in Appendix
A.2.2.
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Table 1.5: Summarized results for Belhaiza et al. (2014) VRPMTW instances
BKS Belhaiza 2014 Belhaiza 2017 Larsen Schaap Hoogeboom HALNS

Best 10 Avg 10 Best/Avg Best 10 Avg 10 Best 10 Avg 10 Best/Avg Best 10 Avg 10

R1 2727.8 2740.8 2755.1 2732.3 2728.9 2731.1 2738.6 2773.3 2738.1 2729.5 2731.3
R2 2674.3 2810.7 2826.4 2793.9 2684.7 2687.3 2691 2702.1 2679.4 2683.5 2683.9
C1 3217.6 3297.3 3315.4 3278.2 3227.6 3256.7 3243.4 3266.3 3254.5 3231.1 3257.3
C2 4156.2 4192.7 4216.5 4169 4156.2 4166.7 4163.9 4182 4177.8 4158 4162.9
RC1 3218.4 3244.4 3258 3229.3 3218.4 3220.7 3222.6 3241 3235.1 3218.2 3219.3
RC2 2730 2899.7 2919.2 2879 2731.8 2789.1 2732.6 2845.4 2875.5 2727.7 2728.4

Σ 149795 153484 154324 152653 149981 150812 150337 152082 151683 149983 150265
Avg gap 0.00% 2.60% 3.16% 2.04% 0.13% 0.70% 0.37% 1.60% 1.33% 0.13% 0.31%
# BKS 36/48 2 8 27 5 5 28 (12 new)

Avg T 64s 81s 600s 185s 113s 629s
CPU i5 3.3GHz i5 3.3GHz i7-4790K i7 3.7GHz i7 4GHz Ryzen 9 3900X

Passmark 1704 1704 2469 2776 2469 2731

VRPSTW Benchmark For the VRPSTW, we focus on the type 1 (only lateness considered) and
type 2 (earliness and lateness considered) variants of the VRPSTW with α = 1 (see, Fu et al. 2008).
The parameter α sets the amount of linear penalty depending on the earliness/lateness. Setting
α = 1 means that one time unit of earliness/lateness equals one unit of transportation costs. While
the VRPTW and the VRPMTW are special cases of the VRPAP and can be directly solved by the
HALNS, the VRPSTW constitutes an extension to the VRPAP. The HALNS therefore needs some
adaptations for solving VRPSTW variants. For the case of type 1 we need to adapt the objective
function and allow solutions where customers are delivered after their desired TW. For type 2 we
additionally need to adapt how operators determine the start of service for customers on a route.
We replace every TW by two artificial TWs (with the same earliest and latest start times as the
original single one), from which the HALNS may choose one. The first TW only allows earliness,
the second TW only allows lateness. If the first TW is chosen, the customer will be served as early
as possible even if this results in an earliness penalty. In contrast, if the second TW is chosen,
the service does not start before the earliest start time of the TW, which means the vehicle has to
wait if it arrives too early. This allows the use of the same operators as before to approximate the
earliness/lateness. Note that penalties for earliness/lateness during the insertion phase are only
valid for the customer, not for the overall route. The overall route is only evaluated after every
customer is inserted.

Tables 1.6 and 1.7 show the summarized results. For type 1 instances, the HALNS achieves
results similar to the currently best approach from Vidal et al. (2014b). For type 2 instances, the
HALNS reveals a better average gap and finds 8 new BKS. This demonstrates the flexibility of the
HALNS. Detailed results may be found in Appendix A.2.3.

1.6.2.2 Benchmark for VRPAP Instances

Table 1.8 shows summarized results of the HALNS algorithm when solving the 42 VRPAP instances
generated (see Section 1.6.1). As a comparison we use the lower and upper bound described in
Section 1.4 as benchmark. Column Instance Group aggregates the results by APs, as there are no
significant differences between geographical distributions (see Table A.6 in Appendix A.2.4). The
next three columns show the lowest possible distances costs, achieved by solving a VRP denoted
by Ctrans

VRP , the lowest possible failed-delivery costs C failed
VRPTW, and the lower bound, derived by the

summation of both terms before, denoted by C lower
VRPAP. Column Best 10 and Avg 10, show the best
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Table 1.6: Summarized results for VRPSTW instances type 1 (only lateness), α = 1
BKS Kritzinger Vidal HALNS

Best 10 Avg 10 Best 10 Avg 10 Best 10 Avg 10

C1 828.38 828.38 828.38 828.38 828.38 828.38 828.38
C2 589.86 589.86 589.86 589.86 589.86 589.86 589.86
R1 1170.11 1171.37 1174.9 1170.16 1171.11 1170.35 1170.73
R2 946.17 952.39 972.44 946.17 947.35 946.68 946.82
RC1 1313.9 1313.9 1315.34 1313.9 1314.04 1314.26 1314.94
RC2 1106.61 1108.26 1114.89 1106.61 1107.37 1106.61 1106.8

Σ 55987.56 56084.33 56411.68 55988.16 56019.79 55999.01 56012.04
Avg gap 0.00% 0.19% 0.81% 0.00% 0.06% 0.02% 0.04%
# BKS 56/56 36 55 50

Avg T 600s 349s 156s
CPU Xeon E7-8837 Opteron 2.2GHz Ryzen 9 3900X

Passmark 1124 445 2731

Table 1.7: Summarized results for VRPSTW instances type 2 (earliness and lateness), α = 1
BKS Vidal HALNS

Best 10 Avg 10 Best 10 Avg 10

C1 828.38 828.38 828.38 828.38 828.38
C2 589.86 589.86 589.86 589.86 589.86
R1 1164.86 1164.86 1167.73 1167.38 1169.66
R2 949.87 949.87 957.44 945.99 946.78
RC1 1304.23 1304.23 1304.41 1309.14 1310.21
RC2 1106.43 1106.43 1108.42 1105.98 1106.09

Σ 55886.4 55886.4 56021.42 55909.8 55955.17
Avg gap 0.00% 0.00% 0.26% 0.00% 0.07%
# BKS 48/56 48 31 (8 new)

Avg T 1797s 159s
CPU Opteron 2.2GHz Ryzen 9 3900X

Passmark 445 2731

and average result of ten HALNS runs. Column Cupper
VRPAP signifies the upper bound. The next two

columns ∆lb and ∆ub represent the percentage gaps to the lower and upper bound, respectively.
Lastly, column Avg T [s] shows the average runtime of ten runs in seconds.

Compared to the upper bound procedure, the HALNS systematically makes use of APs and
therefore finds a balance between transportation and expected failed-delivery costs. This means
the HALNS is able to reduce expected costs if information on the AP is at hand. The lower bound
is quite weak if the APs are homogenous and only few peaks exist (A, V, M), but becomes slightly
better if the APs are more diverse or more peaks exist, i.e., the gap between the objective value
obtained by the HALNS and the lower bound becomes smaller. This result is intuitive, because
diverse APs (AV, WM, AVWM) and profiles with more peaks (W) offer more flexibility for altering
the service time and thereby reducing expected failed-delivery costs without increasing the distance
costs.
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Table 1.8: Summarized results for VRPAP instances
Instance Group Ctrans

VRP Cfailed
VRPTW C lower

VRPAP Best 10 Avg 10 Cupper
VRPAP ∆lb ∆ub Avg T [s]

(R101, ..., RC201)

A 762.88 76.29 839.16 1070.67 1074.72 1094.74 28% -2% 955
V 762.88 76.29 839.16 1115.71 1118.6 1192.98 33% -7% 908
W 762.88 152.58 915.45 1090.45 1094.82 1157.51 19% -6% 973
M 762.88 76.29 839.16 1068.39 1071.04 1130.45 28% -5% 891
AV 762.88 76.29 839.16 1064.36 1067.56 1134.55 27% -6% 982
WM 762.88 114.43 877.31 1028.71 1031.23 1140.28 18% -10% 947
AVWM 762.88 95.36 858.23 1049.22 1052.68 1140.41 23% -8% 943

Avg 762.88 95.36 858.23 1069.64 1072.95 1141.56 25% -6% 943

1.6.2.3 Analysis of Algorithmic Components

In order to gain insights into the importance of algorithmic components, we analyze the perfor-
mance change of the HALNS when selected components are deactivated (−) or activated (+). The
following configurations are tested.

HALNS: The baseline HALNS as described in Section 1.5.

(−) Simulated annealing: No simulated annealing within the ALNS (see Section 1.5.2).

(−) Crossover: No crossover (see Section 1.5.3).

(−) Removal candidates: No preselection of customers to be removed (see Section 1.5.2.2).

(−) Insertion order: No ordering of customers before inserting (see Section 1.5.2.4).

(+) Local improvement: Additional improvement procedure executed on the TW assignment of
every new best solution found during the search based on the dynamic programming approach
of Ibaraki et al. (2005) for solving the OSTP. The approach allows the determination of the
optimal (i.e., penalty- and failed-delivery cost-minimal) service start times and respective TWs
for a given sequence of customers on a route. Note that this sequence is retained throughout
the algorithm and service start times are only altered by making use of the available waiting
time in the tour.

We use the VRPAP instances from Table 1.8 and run each configuration ten times. Table 1.9
shows the average of the best of ten runs in Column Best 10, the average in Column Avg 10
and the average runtime in seconds in Column Avg T [s]. All components, except insertion order
and local improvement improve the best gap significantly. Also, all components (again, except
for local improvement) further stabilize the average gap, resulting in a robust solution approach
and additionally reduce the average runtime significantly. The findings are consistent over runtime
(see Figure A.3 in Appendix A.3). To summarize, only the component local improvement is not
beneficial for solving VRPAP instances, which means that the HALNS finds the optimal TW
assignment without a dedicated algorithmic component. The slightly worse average performance
indicates that results can even get worse when the TW assignment is optimized prematurely and
the search gets stuck in a local optimum.
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Table 1.9: Influence of specific components on HALNS performance
Algorithm Best 10 Avg 10 Avg T [s]

HALNS 1069.64 1072.95 943

(−) Simulated annealing 1083.94 1101.33 1520
(−) Crossover 1073.73 1080.06 1227
(−) Removal candidates 1072.34 1079.04 1107
(−) Insertion order 1069.05 1073.53 1008
(+) Local Improvement 1069.41 1073.63 972

1.6.3 Sensitivity Analysis and Managerial Insights

In the following we generate insights into the benefits and implications of the VRPAP. Sec-
tion 1.6.3.1 evaluates the cost savings potential of the VRPAP against current approaches. Sec-
tion 1.6.3.2 analyzes which APs promise the highest cost reductions. Section 1.6.3.3 demonstrates
the influence of cfailed on the solution structure. Section 1.6.3.4 analyzes the tradeoff between dis-
tance costs and failed-delivery rate. Section 1.6.3.5 examines the effect of applying a back-up policy
when a delivery fails.

1.6.3.1 Cost Savings Potential

This section determines the cost savings achievable when using the VRPAP compared to applying
myopic VRPMTWs with varying numbers of the most likely TWs. The VRPMTW includes the
VRP (all TWs allowed) and the VRPTW (one most likely TW allowed) as special cases. This
analysis quantifies the failed-delivery cost parameter cfailed as a multiple of CVRP. The cost value
CVRP denotes the average transportation costs per customer neglecting TWs, i.e., the cost resulting
from solving the VRP divided by the number of customers served. This assumes that the CEP
follows a policy in which customers whose delivery has failed are served at average delivery costs
the next day.
We recalculate a reduced set of 32 instances from Table 1.8 for this experiment, as the approach

with the most likely TW (i.e., the VRPTW) has no feasible solution for ten instances because this
specific TW cannot be reached in time when originating from the depot. The upper section of
Table 1.10 shows the average results when solved as VRPAP and as VRPMTW with 1, 3, 5, or
10 hard TWs that are chosen based on the highest customer availabilities. For cfailed = 1 · CVRP,
the results show that the VRPMTW approaches with the most likely TWs need considerably more
vehicles compared to the VRPAP. Only the VRP solution uses the same number of vehicles as the
VRPAP solution. The total costs of the VRP solution can be reduced by about 6% when solved
as VRPAP. In this case, a slight increase of 2% of the transportation costs Ctrans (from 710.41
to 725.32) is compensated by a reduction of failed delivery costs C failed of 23% (from 347.26 to
267.00). This suggests that introducing a single or few multiple hard TWs in parcel delivery may
only be worthwhile if the costs of failed deliveries are very high (e.g., for perishable goods). To
confirm this conclusion, we reproduce the same experiment with more emphasis on failed delivery
costs, i.e., cfailed = 3 · CVRP in the bottom section of Table 1.10. In terms of total costs Ctotal, the
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Table 1.10: VRPAP vs. VRPMTW
cfailed Approach K Ctrans Cfailed Ctotal

1 · CVRP

VRPAP 4.84 725.32 267 992.32
VRPMTW (1 most likely TW) =̂ VRPTW 27.38 2009.39 85.89 2095.28
VRPMTW (3 most likely TWs) 10 1045.58 129.59 1175.17
VRPMTW (5 most likely TWs) 7.06 853.4 196.44 1049.84
VRPMTW (10 most likely TWs) =̂ VRP 4.84 710.41 347.26 1057.67

3 · CVRP

VRPAP (K = KVRP) 4.84 763.96 733.46 1497.42
VRPAP (K ≤ KVRPMTW 5TWs) 6.78 819.06 501.81 1320.88
VRPMTW (1 most likely TW) =̂ VRPTW 27.38 2009.39 257.68 2267.07
VRPMTW (3 most likely TWs) 10 1045.58 388.78 1434.36
VRPMTW (5 most likely TWs) 7.06 853.4 589.33 1442.73
VRPMTW (10 most likely TWs) =̂ VRP 4.84 710.41 1041.79 1752.2

results look more favorable for the VRPMTW approach with the 3 or 5 most likely TWs, but at
the cost of significantly more vehicles needed. When allowing the VRPAP to use the same number
of vehicles as in the VRPMTW scenario with 5 TWs, the total costs are considerably lower and the
VRPAP does not even use the maximum number of vehicles allowed (K = 6.78 against K = 7.06).
To further investigate the influence of the number of vehicles on the cost savings potential, we

compare the VRPAP with the VRP approach as it is the only one to achieve the same number
of vehicles. Figure 1.2 shows three different vehicle scenarios: (0) KVRPAP = KVRP, i.e., the
VRPAP limits the number of available vehicles to the minimum number of vehicles required in the
VRP cases, (1) one additional vehicle is available, and (2) two additional vehicles are available.
Naturally, the VRPAP modeling approach becomes more important than the VRP approach when
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Figure 1.2: Total costs depending on cfailed and the number of vehicles used

the cost of failed-delivery increases. The cost differences are low assuming moderate failed-delivery
costs (cfailed ≤ CVRP, i.e., x ∈ [0, 1]), but become significant if a failed delivery becomes more
costly than the average transportation costs per customer in a VRP solution (cfailed > CVRP, i.e.,
x ∈ [2, ..., 10]). Considering the case with an identical number of vehicles (KVRPAP = KVRP,
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solid line), then at a certain point an increasing failed-delivery cost rate induces limited effects on
the solution structure. At this point it becomes much harder to reach TWs with higher customer
availability without inducing infeasibility. Thus, if CEPs want to increase their delivery fulfilment
even more they have to increase the number of vehicles used (see dashed and dotted lines). The
previous experiments have also shown, that in most cases it is not possible to reach all TWs with
high or even highest customer availability without increasing the number of vehicles used. Only in
an extreme case (i.e., with unlimited vehicles and high cfailed) the results achieved by the VRPAP
modeling approach become equivalent to those achieved by an approach that first minimizes failed-
delivery rates and then solves the resulting VRPTW.

1.6.3.2 Analysis of Availability Profiles

APs may be diverse in reality. It is therefore of interest how the different APs influence the potential
cost savings achievable when these are explicitly considered in delivery planning. Figure 1.3 shows
the cost savings and the cost distributions of the HALNS results from Table 1.8 compared to the
respective upper bounds depending on the type of APs assumed. The lowest cost savings are
possible for the A-profiles and the highest for the combination of W- and M-profiles. The share of
distance costs increases when the APs are more diverse (AV, AVWM, WM) because in these cases it
is worthwhile accepting additional distance in order to reach TWs with higher customer availability,
which reduces expected costs for failed delivery. Interestingly, the V-profile also considerably saves
costs but does not increase the share of distance costs significantly. This is a promising result since
it can be assumed that many customers in reality show a V-profile.
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Figure 1.3: Cost savings and cost distributions in delivery planning depending on APs

1.6.3.3 Analysis of Solution Structure

In practice, drivers may change predefined routes on their own initiative if routes seem unreasonable
to them. The question therefore arises when tours become apparently too long and drivers have
to be motivated to follow the routes suggested even if these look unreasonable at first glance. To
obtain an answer to this question, we analyze how the level of the failed-delivery cost parameter
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cfailed affects the solution structure (see Figure 1.4). Equivalent to the above (see Section 1.6.3.1),
we quantify the failed-delivery cost parameter cfailed as a multiple of CVRP.
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Figure 1.4: Solution structure depending on failed-delivery cost parameter cfailed for C101-WM

The routes appear quite reasonable if cfailed is low (see Figure 1.4a). The routes only show few
crossings and customer clusters are mostly served by the same vehicle. The tours however become
less intuitive as cfailed increases (see Figures 1.4b and 1.4c)). In these cases it is more important to
reach a TW with higher customer availability than to save transportation costs. This also affects
how customers are combined to tours. A single customer cluster is then even served by several
vehicles.

1.6.3.4 Distance Costs vs. Failed-Delivery Rate

In the following we analyze the tradeoff between distance costs and failed-delivery rate. CEPs
may be interested in the question regarding to what extent failed-delivery rates can be reduced
in exchange for accepting higher transportation costs. To answer this question, we use all in-
stances from Table 1.8. As in Section 1.6.3.1 we apply increasing failed-delivery cost rates (cfailed =
0 · CVRP, 1 · CVRP, · · · , 10 · CVRP). In addition, we limit the number of available vehicles to the
minimum number of vehicles required in the corresponding VRP cases (KVRPAP = KVRP).
The lowest possible distance costs are achieved when we neglect failed-delivery costs, i.e., cfailed =

0. The average failed-delivery rate then results in a figure above 48%. This case equals the VRP
modeling assumptions. Increasing the failed-delivery cost rate cfailed to 1 ·CVRP, distance costs rise
by about 3%, while the failed-delivery rate is brought down to 38%. The failed-delivery rate can
be reduced to a minimum of approx. 34% if we put more emphasis on avoiding failed deliveries
by increasing cfailed. Distance costs increase simultaneously. The failed-delivery rate improvement
however becomes marginal, as it becomes increasingly difficult to reach TWs with higher customer
availability without invoking infeasibility. More vehicles would be necessary, as mentioned in Section
1.6.3.1, to further improve the failed-delivery rate.
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Figure 1.5: Failed-delivery rate vs. increase distance cost

1.6.3.5 Effect of Policies for Failed Deliveries

In this section, we analyze the effect on the subsequent day when the CEP applies the policy to
deliver to a neighbor (if available) in the case of a first delivery attempt failing. We randomly decide
for each customer if a neighbor is available with 50% probability. We assume that delivery to the
neighbor is always successful and therefore no subsequent delivery attempt takes place after the first
has failed. To reflect this we assume lower failed-delivery costs of cfailed = 1 · CVRP for customers
with a neighbor compared to customers without a neighbor, where we assume cfailed = 3 · CVRP

in a first, and cfailed = 10 · CVRP in a second experiment. This results in a ratio of failed-delivery
costs for customers with and without a neighbor of either 1:3 or 1:10. We adapt the 42 instances
from Table 1.8 and solve them either as VRP or VRPAP with the same maximum number of
vehicles. Table 1.11 shows the average results. Columns Ctrans, C failed and Ctotal represent the
transportation, failed and total costs. Column Failed [%] shows the failed-delivery rate, i.e., the
share of first delivery attempts failing before the neighbor backup option is considered. Column
Neighbor[%] shows the share of all parcels delivered to a neighbor and Column Remaining [%] the
deliveries that remain for the delivery on the next day because no neighbor was available. The
rows ∆ [%] calculate the change in costs or shares, respectively, when comparing the VRP solution
with the VRPAP solution.

Table 1.11: Results on VRPAP instances with neighbor delivery for failed deliveries
Ctrans Cfailed Ctotal Failed [%] Neighbor [%] Remaining [%]

Neighbor 1:3
VRP 762.87 765.73 1528.61 49.97 24.82 25.15
VRPAP 808.90 511.16 1320.06 36.91 21.82 15.09
∆ [%] 6.03 -33.25 -13.64 -26.14 -12.09 -40.00

Neighbor 1:10
VRP 762.87 2111.64 2874.51 49.97 24.82 25.15
VRPAP 870.51 1132.18 2002.69 37.27 25.12 12.15
∆ [%] 14.11 -46.38 -30.33 -25.42 1.21 -51.69
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While the transportation costs Ctrans increase by around 6% (14%), the failed-delivery costs
C failed are brought down by 33% (46%), which leads to a reduction of total costs by around 13%
(30%) for a failed-delivery cost ratio of 1:3 (1:10) when using the VRPAP approach. Obviously,
the reduction of total costs becomes higher if the cost for a failed-delivery attempt becomes higher.
The share of failing deliveries is reduced by around 25%, independent of the failed-delivery cost
ratio. While the VRP approach only makes arbitrary use of the neighbor option (for about 50%
of failed deliveries), the VRPAP successfully identifies which customers have a neighbor and which
do not. In the case of a cost ratio of 1:10, it allows more deliveries to be handed over to a neighbor
in order to reach good TWs at customers without a neighbor and achieves more than 50% fewer
remaining deliveries, compared to 40% fewer with the cost ratio 1:3. Only 12.15% compared to
15.09% of deliveries remain for the next day. However at higher cost ratios, customers who allow
the delivery to a neighbor are increasingly discriminated against. This can be seen in the increasing
number of deliveries taken to a neighbor (21% to 25%). This discrimination could dissatisfy these
customers in the long run. To prevent this, cfailed

j for the customers whose previous delivery has
been taken to a neighbor should be adapted for the following periods.
This experiment demonstrates that CEPs benefit in the long run (i.e., for subsequent days) if

they use the VRPAP because remaining deliveries can be reduced significantly. Additionally, with
the help of the VRPAP and appropriately set cfailed

j , CEPs can benefit even more from backup
policies. Also, if the maximum number of failed parcels that could be delivered a second time on
the next day due to capacity restrictions is known, the VRPAP can be used to respect this limit by
setting cfailed

j accordingly on each day. We found similar results when considering a parcel shop as
backup option instead of a neighbor where failed deliveries are taken to the parcel shop if available.

1.6.4 Case Study with Empirical Availability Profiles

We use the United Kingdom Time Use Survey (UKTUS) 2014-2015 (Gershuny and Sullivan (2017))
to generate realistic APs. The UKTUS is a large-scale survey that provides data on how people in
the UK spend their time. Participants of the survey usually record events for a single day. Over a
period of 24 hours on a weekday and a day at the weekend, participants indicate their main activity
every 10 minutes and specify secondary activities as well as the place where the activity took place
and with whom the respondent was together. The location and activity details are used to derive the
daily routines of the residents and to identify whether a participant is at home. UKTUS data also
makes it possible to discover correlations between this behavior and socio-economic characteristics
that are representative for a large population. The UKTUS data set contains information on a
total of 4,733 households. This corresponds to 11,422 individuals. We only consider weekdays from
Monday to Friday and focus on times from 8-18 o’clock as these represent the main delivery days
and periods of parcel service providers. In order to investigate attendance behavior, all persons
are removed from the data record who have not provided information on location and activity and
are therefore not useful for the creation of APs. The remaining data set contains 7,986 persons
aged between 8 and 99 years. It should be noted here that some households may no longer be fully
represented with all persons surveyed. In the following, we primarily consider people older than 15,
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since it is assumed that younger children generally do not stay at home alone without older siblings
or parents or are not allowed to accept parcels. A random sample of 7,221 persons remains. We
distinguish between employed (employees and self-employed) and unemployed (including parental
leave and the long-term sick) and different age classes. We choose these features as they seem
to have the most effect on APs. Appendix A.4 shows ten different APs depending on age and
employment status that we derived from UKTUS data and used to generate APs for Solomon
instances (R1, R2, C1, C2, RC1 and RC2). We randomly sample from these APs and allocate each
customer one of these ten APs in the Solomon instances. The probability of assigning a specific
AP to a customer depends on the relative frequency of this profile, e.g., the relative frequency
is calculated by 675

7221 = 0.0935 for employed people between 15 and below 30. The sampling is
repeated 30 times, resulting in 30 AP distributions for each of the six geographical distributions of
customers from Solomon, leading to 180 instances overall.
We solve all instances ten times with HALNS with cfailed = 3 · CVRP and present the average

(over 30 instances per geographical distribution) of the best result encountered during these 10
runs in Table 1.12. On average the distance cost increases from 762.88 to 805.45 whereas the rate
of failed deliveries decreases from 0.585 to 0.5156. This corresponds to 5.58% rise in distance costs
in order to decrease the failed-delivery rate by 11.86%. Total expected costs decrease by 4.82%
from 2103.56 to 2002.15. A Wilcoxon test confirmed that all differences in total costs and in the
share of failed deliveries are highly significant (p < 0.001). To summarize, costs are reduced by
about 5% by only using information on the age and employment status. This confirms the value
of the VRPAP even without using sophisticated methods to determine customer individual APs.

Table 1.12: Average Results on Solomon Instances with UK TUS APs
Instance CDist

VRP PFailed
VRP CFailed

VRP CTotal
VRP CDist

VRPAP PFailed
VRPAP CFailed

VRPAP CTotal
VRPAP

R101-TUS 865.95 0.5873 1525.72 2391.67 872.49 0.5597 1453.92 2326.41
R201-TUS 651.3 0.5873 1147.53 1798.83 725.03 0.4519 882.89 1607.92
C101-TUS 824.78 0.5796 1434.13 2258.91 830.49 0.5384 1332.24 2162.73
C201-TUS 584.28 0.5745 1007.01 1591.29 667.11 0.5049 885.08 1552.19
RC101-TUS 995.59 0.5949 1776.83 2772.42 1008.37 0.5719 1708.04 2716.41
RC201-TUS 655.35 0.5864 1152.89 1808.24 729.19 0.467 918.06 1647.24

Average 762.88 0.585 1340.69 2103.56 805.45 0.5156 1196.71 2002.15

1.7 Conclusions and Future Areas of Research

Conclusions In this paper we present a time-constrained vehicle routing problem, the vehicle
routing problem with availability profiles that addresses the tradeoff between routing and expected
failed-delivery costs. We use so-called availability profiles that indicate the probability of successful
delivery for a set of potential delivery TWs. We show how these APs can be integrated into an
optimization model for delivery route planning such that routing and expected failed-delivery costs
are considered simultaneously. We propose a novel hybrid adaptive large neighborhood search
solution framework for the VRPAP and related time-constrained VRPs. The HALNS embeds an
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ALNS into a population-based metaheuristic. The HALNS shows results on a par with the best-
performing algorithms from the literature. For the VRPMTW it finds 12 and for the VRPSTW
8 new BKS. The hybrid approach shows superiority to sole ALNS implementations. We also
undertake diverse numerical studies on newly generated VRPAP instances based on simulated and
real-world data that confirm the value of integrated planning of delivery tours and delivery TWs.
These studies additionally reveal several managerial insights:

(a) The VRPAP improves the total cost by 6% on average compared to the best-performing
benchmark approaches that are potentially applied in practice. The number of vehicles may
have to be increased to exhaust all cost benefits when tours and TWs are planned simulta-
neously.

(b) More peaks within APs lead to higher cost savings. An A-profile thus offers fewer opportuni-
ties for cost improvement than W- and M-profiles or a combination of these. V-profiles that
can frequently be observed in reality considerably save total costs without increasing distance
costs significantly.

(c) In cases where delivery fulfilment has a high priority, overall transportation costs can sub-
stantially increase. Customers in the same region could even be served by several vehicles
in such instances. Drivers must then be motivated to follow their routes, even if the tours
created seem unreasonable at first glance.

(d) A small increase in transportation costs may noticeably increase delivery fulfilment. Above
a certain level, however, a further increase in delivery fulfilment leads to disproportionately
high additional transportation costs.

(e) CEPs may benefit from using the VRPAP on subsequent days because the number of remain-
ing deliveries can be reduced significantly, especially if there are additional backup options
available.

(f) Generally available socio-economic data are already sufficient to define APs of customers. In
an experiment close to reality the failed-delivery rate is reduced by about 12% while overall
costs decrease by about 5%.

Outlook on Future Research There are several opportunities for improvement and extension
based on the proposed modeling and solution approach. The determination of APs could be further
developed, e.g., by focusing more intensively on individual customer behaviors. Also, customer
presence is becoming a critical success factor for new delivery technologies, such as drone parcel
delivery or mobile parcel lockers (see, e.g., Schwerdfeger and Boysen 2020). The VRPAP modeling
and solution approach could be extended in these directions. Finally, as the HALNS framework
mostly uses simple operators, it could be easily adapted to solve related routing problems, while
the benefits from hybridization would be retained.
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2 Hybrid Adaptive Large Neighborhood Search for Vehicle
Routing Problems with Depot Location Decisions

Stefan Voigt, Markus Frank, Pirmin Fontaine, Heinrich Kuhn

Abstract This article considers three variants of the vehicle routing problem (VRP). These vari-
ants determine the respective depot locations from which customers are supplied, i.e., the two-
echelon VRP (2E-VRP), the location routing problem (LRP), and the multi-depot VRP (MD-
VRP). Both the LRP and the MDVRP can be formulated as special cases of the 2E-VRP, so that
all three problem classes can be readily solved via a single solution approach. We develop such a
unified solution approach for all three problem classes based on the recently proposed hybrid adap-
tive large neighborhood search (HALNS). The HALNS uses a population of solutions generated by
an efficient ALNS. Individuals of this population are subject to a crossover and selection phase,
using elements of genetic algorithms resulting in a hybrid heuristic. Computational experiments on
several sets of instances from literature demonstrate the competitive performance of the HALNS.
The HALNS outperforms all approaches for solving the 2E-VRP and is on par with heuristics that
are dedicated either to the LRP or the MDVRP. Furthermore, the HALNS shows superior robust-
ness, i.e., the variance of results from several runs is comparatively low. The HALNS especially
outperforms all existing pure ALNS implementations on these problem classes, demonstrating the
value of hybridization. Additionally, the HALNS finds three new best-known solutions for LRP
instances.
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2 HALNS for VRPs with Depot Location Decisions

2.1 Introduction

The multi-depot vehicle routing problem (MDVRP) can be formulated as a special case of the
location routing problem (LRP), and the LRP in turn as a two-echelon vehicle routing problem
(2E-VRP) (Hemmelmayr et al. 2012). We classify these problems as Vehicle Routing Problems
with Depot Location Decisions. Besides the clustering and sequencing as essential decisions in any
vehicle routing problem (VRP), problem settings in this class are characterized by decisions about
which of multiple depots to open and which customers to serve from each depot opened.
The most generic problem in this class is the 2E-VRP. The 2E-VRP arises for example in city

logistics where goods are transported from a main depot outside the city to several satellites within
the city, from where the goods are finally distributed to customers (e.g., Crainic et al. 2011). Two
interdependent decisions have to be made in order to solve the 2E-VRP. First, we have to cluster
customers to satellites and decide about the routing from the main depot to satellites (first level).
Not all potential satellites necessarily have to be used. Second, we need to decide about the routing
from satellites to customers (second level). We call the first decision Depot Location Decision, which
includes the first-level routing, and the second decision Routing Decision. The MDVRP and LRP
share these decisions with the 2E-VRP and can be interpreted as special cases of the 2E-VRP. The
Routing Decision covers a classical VRP that is already NP-hard (e.g., Vidal et al. 2013a). The
2E-VRP, LRP, and MDVRP themselves are therefore NP-hard.
This paper, develops a unified heuristic solution approach to solve all three problems. Based on

recent work by Voigt et al. (2021), we adapt and enhance the concept of a hybrid adaptive large
neighborhood search (HALNS) that uses multiple solutions generated by an efficient ALNS as a
population of individuals within a genetic algorithm framework. Numerical experiments based on
established benchmark data sets for the 2E-VRP, LRP, and MDVRP show the robustness and good
performance of the HALNS.
Our research contributes to the existing literature as follows. (1) We propose a novel solution

approach that hybridizes an ALNS with elements of genetic algorithms for solving these prob-
lems. (2) We present a performance ranking of all heuristics reviewed from the literature for the
problems named and compare their solution quality and scaled computation times. (3) We show
that the HALNS outperforms approaches for the 2E-VRP and is on par with problem-specifically
designed solution approaches for the LRP and MDVRP. Furthermore, the HALNS outperforms
sole implementations of state-of-the-art ALNSs, making hybridization an interesting option to im-
prove existing ALNS implementations. (4) We present insights on the components of the HALNS,
showing the importance of using these components.
The remainder of this paper is structured as follows: Section 2.2 describes the vehicle routing

problems with depot location decisions that we address with our heuristic and their relationships.
In Section 2.3, we cluster previous heuristic solution approaches for these problems and analyze the
frequency of heuristic components. We present the HALNS developed in Section 2.4 and conduct
computational experiments in Section 2.5, including the evaluation of previous approaches and
their comparison with the HALNS based on established benchmark sets. Finally, we conclude our
work and indicate further directions for research in Section 2.6.
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2.2 Vehicle Routing with Depot Location Decisions

We consider three VRP classes that determine the depot locations, namely the 2E-VRP, as well as
the LRP and MDVRP as special cases of the 2E-VRP. These problems have in common the decision
from which location, i.e., satellite, facility or depot, customers are served. We will henceforth use
the term depot except when referring to the specific problem class, i.e., we use satellite when
referring to 2E-VRP, facility for LRP, and depot for MDVRP. We first explain the 2E-VRP in
detail in Section 2.2.1. Afterwards, we show how the LRP and MDVRP can be interpreted as
special cases of the 2E-VRP in Section 2.2.2.

2.2.1 2-Echelon VRP

The 2E-VRP is a two-level routing problem with two fleets of vehicles, which minimizes costs
arising from servicing customers via given satellites from a single main depot. First-level vehicles
start from the main depot to satellite locations. Freight is then transferred from first-level vehicles
at the satellite to second-level vehicles. The first-level routing problem constitutes a VRP with
split deliveries, as it is possible that more than one vehicle delivers to a single satellite because of
capacity restrictions. Second-level vehicles start from satellites to customers and execute the final
delivery. Note that split deliveries are not allowed on the second level. The second level therefore
represents a MDVRP, which is explained in more detail in Section 2.2.2.
The 2E-VRP is defined on a directed graph G = (V,A). V is the set of nodes, consisting of

the main depot subset V0, V0 = {v0}, the satellite subset VS with ns satellites s, and the customer
subset VC with nc customers i. Each customer node has an associated demand di. The arc set A
consists of one set A1 = {(i, j) : i, j ∈ V0, VS} with arcs connecting the depot node with satellite
nodes and the satellite nodes amongst each other, and a second set A2 = {(i, j) : i, j ∈ VS , VC} with
arcs connecting satellite nodes with customer nodes and customer nodes amongst each other. This
means that direct deliveries from the depot to customers are not possible. We assume a positive
weight of arc (i, j), cij , that reflects the distance, traveling times or transportation costs between
nodes i and j. Vehicles are limited in their number and have limited capacity on both levels.
m1 identical vehicles are available at the main depot for the first level and have a capacity of K1

each. m2 identical vehicles with capacity K2 each are available in total for the second level. The
satellites are implicitly capacitated by constraining the number of second-level vehicles ms allowed
to start from the satellite s, or explicitly by a capacity limit ws. The flow of demand to and from
each satellite must be balanced. Figure 2.1 illustrates an example for a 2E-VRP instance, with
customers receiving their deliveries via satellites s1, s2, s3 out of four possible satellites, which are
in turn supplied by depot v0, applying weights cij on the first level.
The objective in the 2E-VRP is to minimize the routing costs arising from the vehicle fleets

traveling on the first and the second level by 1) assigning customers to satellites, 2) deciding on
the clustering of customers to tours and their sequence on each tour for each satellite, and 3) the
routing from the main depot to satellites, respecting the flow of demand. Perboli et al. (2011)
present a corresponding MIP model.

36



2 HALNS for VRPs with Depot Location Decisions

𝑣𝑣0

2E-VRP

𝑐𝑐03

𝑐𝑐32

𝑐𝑐20𝑐𝑐21

𝑐𝑐10

depot
satellite
customer

𝑐𝑐02

𝑠𝑠3

𝑠𝑠2

𝑠𝑠1
𝑠𝑠4

Figure 2.1: Exemplary 2E-VRP instance

2.2.2 Location Routing Problem and Multi-Depot VRP as Special Cases of the
2E-VRP

Location Routing Problem The LRP can be described as a strategic problem that consists of
the facility location problem and the (multi-depot) vehicle routing problem. The LRP aims for
the cost optimal locations of multiple facilities while considering the resulting routing of vehicles.
Obviously these decisions interact with each other. In the following we consider the standard LRP,
defined as a deterministic, static, discrete, single-echelon problem that minimizes costs arising from
fixed costs fs for opening (capacitated) facilities and travel costs in order to serve customers exactly
once via one vehicle (Schneider and Drexl 2017). Figure 2.2 shows how an LRP instance can be
formulated as a special case of the 2E-VRP presented above. The following adaptations must be
made (see, Hemmelmayr et al. 2012):

• Facilities in the LRP correspond to satellites Vs in the 2E-VRP.

• A dummy main depot v0 is created. Edges from the main depot to facilities VS are respectively
valued with fixed costs c0s = fs for opening the facility s ∈ VS . Edges from one facility to
another are valued with a sufficiently large number. There is no cost on the return trip to
the main depot v0, i.e., cs0 = 0. A facility is thus opened when a first level vehicle visits that
facility.

• m1 is set to the number of facilities available.

• K1 is set to the maximum capacity of all facilities to choose from. This ensures that split
deliveries are not necessary and every facility can be served by exactly one vehicle, so the
opening costs are only charged once.
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LRP
𝑣𝑣0

𝑐𝑐03 = 𝑓𝑓3

𝑐𝑐30 = 0

𝑐𝑐02 = 𝑓𝑓2

𝑐𝑐20 = 0𝑐𝑐10 = 0𝑐𝑐01 = 𝑓𝑓1

depot
satellite
customer

𝑠𝑠3

𝑠𝑠2

𝑠𝑠1
𝑠𝑠4

Figure 2.2: Exemplary LRP instance as special case of the 2E-VRP

Multi-Depot VRP In the MDVRP each customer is served exactly once from one of several
available depots. Vehicles are assigned to a depot and must therefore start and end at the same
depot. Depots do not have opening costs. Renaud et al. (1996), for example, present a mathematical
model of the MDVRP. The MDVRP can be formulated as 2E-VRP by introducing a dummy main
depot and treating all other depots as satellites. All travel costs on the first level are set to zero,
i.e., cs,0 = c0,s = cst = 0 ∀s, t ∈ Vs, see also Figure 2.3. As mentioned in Section 2.2.1, the second
level of the 2E-VRP is an MDVRP, making it obvious that the MDVRP is a special case of the
2E-VRP without considering the first-level routing.

𝑣𝑣0

𝑠𝑠3

𝑠𝑠2

𝑠𝑠1
𝑠𝑠4

MDVRP depot
satellite
customer

𝑐𝑐10 = 0
𝑐𝑐02 = 0

𝑐𝑐21 = 0
𝑐𝑐20 = 0 𝑐𝑐03 = 0

𝑐𝑐32 = 0

Figure 2.3: Exemplary MDVRP instance as special case of the 2E-VRP
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2.3 Overview of Related Heuristics

All three problem classes considered in this study, the 2E-VRP, LRP and MDVRP, are known to be
NP-hard problems. The literature therefore suggests a diverse set of heuristic solution approaches.
In this section we categorize and discuss the available approaches, focusing on those that have
been applied to at least one of the commonly known benchmark instances (see Section 2.5.1). The
review of solution approaches for each problem class is mainly structured according to the dominant
solution approach, i.e., matheuristic or metaheuristic. Furthermore, we distinguish metaheuristic
approaches with respect to their search space, i.e., neighborhood-based, population-based, or hybrid
search space. In the following, we briefly clarify our understanding of these distinctions.

• Heuristic approach
– Matheuristic: Combines exact and (meta)heuristic components.
– Metaheuristic: Uses strategies to guide other heuristic components.

• Search space of metaheuristics
– Neighborhood-based: Focuses on one incumbent solution.
– Population-based: Uses a population of several solutions, so-called individuals.
– Hybrid: Traverses the search space by using neighborhood-based and population-based

means. Please note that merely combining local search with other approaches does not
qualify for our classification as hybrid.

We focus on heuristic approaches for the standard versions of the respective problems. Exact
approaches are out of scope for this review. We refer to the contributions of Marques et al. (2020)
for the 2E-VRP, to Contardo et al. (2014) for the LRP and to Sadykov et al. (2021) for the MDVRP.
For additional in-depth investigations and complete literature reviews we refer to Sluijk et al. (2022)
for the 2E-VRP, to Schneider and Drexl (2017) for the LRP, to Drexl and Schneider (2015) and
Prodhon and Prins (2014) for LRP variants and to Montoya-Torres et al. (2015) for the MDVRP.

2.3.1 2-Echelon VRP

Matheuristics Perboli et al. (2011) introduce a mathematical model for the 2E-VRP and streng-
then their formulation with valid inequalities. They also develop two matheuristics based on the
mathematical model and the observation that the 2E-VRP can be split into nk + 1 VRPs, which
in turn can be solved by any exact method or heuristic for the VRP. The authors therefore focus
on finding near-optimal assignments for customers to satellites. Wang et al. (2017) propose a
variable neighborhood search (VNS) and a post-optimization step based on integer programming
to solve the 2E-VRP with environmental considerations. Amarouche et al. (2018) combine two
components to solve the classical 2E-VRP. The first component generates a set of routes by a
large neighborhood search (LNS). The second component uses integer programming to recombine
the routes. Jie et al. (2019) decompose the problem by solving the first echelon with an exact
column generation approach and the computationally more demanding second echelon with an
ALNS largely based on Hemmelmayr et al. (2012) and Ropke and Pisinger (2006).
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Neighborhood-based Metaheuristics Neighborhood-based approaches for the 2E-VRP usually
tackle the first- and second-level routing separately. Crainic et al. (2011) present a multi-start
heuristic based on this two-level approach. The approach iteratively solves the two subproblems
by applying a local search, perturbing the solution and applying a feasibility search, if necessary.
Hemmelmayr et al. (2012) develop an ALNS with specially designed operators for the 2E-VRP
and the LRP. The heuristic works in a sequential manner like the approach presented previously.
The authors distinguish between operators with large and small impact on the solution structure.
Operators with a large impact open or close satellites, while operators with a small impact only
execute minor changes. Solutions destroyed by operators with a large impact are accepted as a new
incumbent solution, even if the solution is worse. In contrast, solutions destroyed by operators with
a small impact must be better in order to be accepted. Hence, the solution space is explored by the
large-impact operators, and the search intensifies by applying small-impact operators. Enthoven
et al. (2020) and Yu et al. (2021) present similar ALNSs for variants of the 2E-VRP with a large
set of small- and large impact operators. Compared to the rather sophisticated ALNSs, Breunig
et al. (2016) implement a simplistic LNS with only few operators. They also provide consistent
benchmark instances, resolving some confusion with previously existing instances.

Hybrid Metaheuristics The parallelized LNS (PLNS) of Mühlbauer and Fontaine (2021) is cur-
rently the only approach for the 2E-VRP hybridizing an LNS with a population of solutions. The
authors develop the PLNS for solving a problem arising in city logistics when using cargo bicycles
with swap containers, which can be modeled as a 2E-VRP. The authors suggest a new first-level
heuristics and show the value of incorporating first-level costs when making decisions at the second
level.

2.3.2 Location Routing Poblem

A large variety of heuristics for the LRP exist. Many of these approaches rely on a sophisticated
combination of solution approaches; only few approaches like the tabu search of Tuzun and Burke
(1999) or the simulated annealing (SA) of Yu et al. (2010) are straightforward implementations.
Combinations of approaches are often based on a greedy randomized adaptive search procedure
(GRASP) (Prins et al. (2006b), Duhamel et al. (2010), Contardo et al. (2013)) or a granular tabu
search (GTS) (Prins et al. (2007), Escobar et al. (2013), Escobar et al. (2014a) and Schneider and
Löffler (2019)).

Matheuristics Prins et al. (2007) implement a heuristic based on a GTS and a lagrangean relax-
ation to solve the LRP. Pirkwieser and Raidl (2010) tackle the LRP and periodic LRP (PLRP) with
a VNS combined with three very large neighborhood searches based on integer linear programming
(ILP) similar to Prins et al. (2007). Contardo et al. (2013) present a three-phase heuristic that (1)
applies a GRASP based on Prins et al. (2006b) to construct initial solutions, (2) solves an ILP in
order to recombine routes from the set of initial solutions similar to Pirkwieser and Raidl (2010),
and (3) solves the same ILP to improve the solution.
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Neighborhood-based Metaheuristics The tabu search of Tuzun and Burke (1999) works in two
phases. First the location phase tries to find a good location configuration, and second the routing
phase minimizes routing costs. The authors propose a set of benchmark instances that laid the
foundation for comparing heuristics for the LRP. Yu et al. (2010) use a simplistic SA metaheuristic
based on a special solution representation, encoding the solution in only one string. The problem
is then solved by common neighborhood operators in an integrated manner compared to previous
publications that tackled the problem by separating the location and routing decisions.
Escobar et al. (2013) propose a two-phase heuristic using a construction phase and as second

phase a GTS with different diversification strategies. The heuristic uses a software library contain-
ing fast local search heuristics for the VRP, and works especially well on larger instances. A similar
team of authors present a granular variable tabu neighborhood search, that combines a GTS with
a VNS (Escobar et al. 2014a). Schneider and Löffler (2019) present a tree-based search algorithm.
The algorithm uses a location phase that searches for a good set of facilities in a tree-like fashion
and a routing phase that solves the resulting MDVRP by a GTS. The GTS is composed of a large
set of 14 neighborhood operators. In contrast to that, the approach of Arnold and Sörensen (2021)
uses only few operators based on the knowledge-guided local search (Arnold and Sörensen 2019). In
addition, a progressive filtering technique significantly reduces the computational effort wasted on
calculating routing solutions on unpromising depot configurations by estimating an upper bound
of the number of open depots.

Population-based Metaheuristics Population-based approaches are again rarely used for the LRP,
although the approaches of Ting and Chen (2013) and Lopes et al. (2016) show good results on
benchmark instances. Prodhon and Prins (2008) implement a memetic algorithm, i.e., a genetic
algorithm with local search, with population management for the PLRP and for the LRP (Prins
et al. 2006a). Ting and Chen (2013) implement a multiple ant colony optimization algorithm (ACO)
with two hierarchical ant colonies. The first colony solves the facility location problem, the second
colony the MDVRP. Both colonies exchange information through a global pheromone updating
rule. Lopes et al. (2016) propose a genetic algorithm with local search procedures as mutation
operators and a so-called route copy crossover operator, which always maintains feasibility.

Hybrid Metaheuristics Prins et al. (2006b) propose a GRASP combined with a learning process,
and a post-optimization step using path relinking. The authors were to the best of our knowledge
the first to test the performance on three sets of instances from Tuzun and Burke (1999), Prins
et al. (2004) and Barreto et al. (2007). Duhamel et al. (2010) propose a GRASP that uses an
evolutionary local search within two solution spaces.

2.3.3 Multi-Depot VRPs

Matheuristics Subramanian et al. (2013) develop a matheuristic based on a set partitioning for-
mulation and an iterated local search (ILS) for a large class of VRPs, including the MDVRP. The
MIP solver and the ILS cooperate while solving the set partitioning problem.
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Neighborhood-based Metaheuristics The concept of tabu search has also been frequently applied
to the MDVRP. Early approaches are from Renaud et al. (1996) and Cordeau et al. (1997). Renaud
et al. (1996) first construct an initial solution similar to the approach of Chao et al. (1993), except
that they use a petal heuristic for solving the VRPs instead of the savings algorithm. Second,
the initial solution is improved by applying a tabu search. The tabu search of Cordeau et al.
(1997) is developed for solving the PVRP. They show that the periodic traveling salesman problem
and the MDVRP can be seen as special cases of the PVRP and therefore readily solved with the
same tabu search. More recently Escobar et al. (2014b) adapt the hybrid granular tabu search
from Escobar et al. (2013) to solve the MDVRP. Cordeau and Maischberger (2012) implement a
parallel iterated tabu search for solving the VRP, the PVRP, MDVRP, and the site-dependent
VRP. The heuristic combines ILS with tabu search. The authors show that the implementation
can be readily implemented in parallel. Sadati et al. (2021) implement a granular tabu search
combined with a VNS for solving a class of MDVRPs. The approach uses a shaking phase with
a large set of neighborhood structures. As another neighborhood-based approach, Pisinger and
Ropke (2007) use the ALNS for solving five different VRP variants, including the MDVRP. All
problems are transformed to a pickup and delivery problem and solved with the ALNS presented
in Ropke and Pisinger (2006). The ALNS adaptively chooses removal and insertion operators to
build new solutions. In contrast to the rather sophisticated metaheuristic approaches described
above, Arnold and Sörensen (2019) propose a knowledge-guided local search with few efficiently
pruned local search operators. The local search uses only a simple perturbation of the cost matrix
to escape local optima.

Population-based Metaheuristics The ACO of Yu et al. (2011) uses an ant-weight strategy and
mutation operators. The approach adds a virtual central depot as the origin to make the MDVRP
similar to a classical VRP. Luo and Chen (2014) present a nature-inspired algorithm, which can
be classified as a particle swarm optimization algorithm (PSO). The HGSADC from Vidal et al.
(2012) is also able to solve the multi-depot periodic VRP, which includes the MDVRP and PVRP
as special cases. The metaheuristic uses two populations of individuals, one for feasible and one
for infeasible solutions. Individuals are educated, i.e., a local search is applied on offsprings. The
diversity of the population is maintained by evaluating the fitness from a cost perspective and a
distance measure to every other individual. Vidal et al. (2014a) combine sequence-based moves with
an optimal choice of vehicle, depot and of the first customer to be visited in the route. They present
a dynamic programming approach for the evaluation of these neighborhoods. The authors integrate
this approach into an ILS and into the HGSADC based on Vidal et al. (2012), demonstrating the
value of the proposed concept.

2.3.4 Summary

Numerous heuristic approaches can be found in the literature for the interrelated problem settings
of 2E-VRP, LRP and MDVRP. Mostly, they are specifically developed for a single problem class
without considering the related problem settings. We give an overview of solution approaches
suggested and their respective components applied in Table 2.1. As already mentioned, we classify
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the approaches as matheuristic or metaheuristic and denote the respective search space used in a
metaheuristic, either neighborhood-based, population-based or both, i.e., hybrid search space. In
addition, Table 2.1 denotes various heuristic components that are used in the respective solution
approaches. The latter classification scheme is similar to Vidal et al. (2013a).

• Local improvement: Solutions are improved by local search procedures, e.g., 2-opt.

• SA: Simulated annealing accepts deteriorating solutions with a probability controlled by a
gradually decreasing temperature parameter.

• Tabu search: Some elements/moves are set tabu for a certain period.

• Granularity: The arc set is reduced, e.g., a certain percentage of the longest arcs are
excluded.

• Indirect representations: The solution is not directly represented, but must be extracted
from the indirect representation by applying a decoding procedure, e.g., by applying a split
procedure on a giant tour representation.

• Infeasible solutions: During the search, infeasible solutions may occur (e.g., if the capacity
of vehicles is violated) and be accepted as an incumbent solution. Infeasible solutions are
usually penalized by a cost factor or kept in a different population.

• Diversity management: The diversity of a population is managed by introducing a distance
measure between individuals and using this measure for selection purposes.

• Parameter adaptation: Parameters are adapted during the search, e.g., weights for oper-
ators (ALNS) or the penalty factor in the presence of infeasible solutions.

Table 2.1 shows that hybrid approaches and also approaches that include multiple components
were rarely studied. Almost all publications present results and runtimes on established benchmark
instances that we detail in Section 2.5.1. This facilitates a detailed comparison of the performance of
these approaches in Section 2.5.3, where we determine state-of-the-art heuristics for benchmarking
the HALNS. The HALNS uses a unique mix of components that has not been considered before.
We evaluate the impact of single HALNS components in Section 2.5.4.
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2.4 Hybrid Adaptive Large Neighborhood Search for VRPs with Depot
Location Decisions

Despite the existence of numerous specialized approaches for solving the 2E-VRP, LRP and MD-
VRP, there is no method proven to be capable of solving all three problem classes equally efficiently
and effectively. We develop a new solution approach, the hybrid adaptive large neighborhood search
(HALNS) based on the solution framework proposed by Voigt et al. (2021) that can be used for
all three problem classes. Algorithm 3 depicts the general scheme of the HALNS. The HALNS
uses multiple solutions, i.e., individuals, generated by an ALNS, called population P , and executes
crossover steps within that population. The initial population consists of nP individuals, each
generated by executing an ALNS run (lines 1-3 of Alg. 3). In further generations, the ALNS is
used to crossover and educate individuals (line 6-9 of Alg. 3). Surviving individuals are chosen
according to solution quality and contribution to the diversity of the population (line 10 of Alg. 3).
Depot locations can be set tabu for the next generation if they are not used within at least one
of the individuals or selected by chance (line 11 of Alg. 3). Figure 2.4 additionally illustrates such
a single HALNS generation. The procedure ends when genstop generations without finding a new
best solution have been executed (line 4 of Alg. 3) or the maximum number of generations genmax

is reached. The following sections explain the components of the HALNS in more detail and show
the problem-specific adaptations.

Algorithm 3: Hybrid adaptive large neighborhood search
1 while |P | < nP do // Initial population (2.4.1)
2 s← ALNS()
3 P ← P ∪ {s}
4 while gens without Improvement < genstop ∧ gens < genmax do // GA generations
5 ŝ← DetermineBestSolution(P )
6 while i < nP do // Crossover and education phase (2.4.2)
7 s← P [i]
8 s← ALNS(s, ŝ)
9 P ← P ∪ {s}

10 P ← DiversityManagement(P ) // Select survivors and manage diversity (2.4.3)
11 SetDepotLocationsTabu(P) // Set depot locations tabu for next generation (2.4.4)

Population 

P of
Solutions

Global best
solution ො𝒔

ALNS  1

ALNS 2

ALNS …

ALNS 𝑛𝑃

Population 

P of
Solutions

ALNS

Additional individuals
for diversity

Total cost & 
diversity ranking

Provide starting solutions for next generation

Provide guidance for ALNS removal process

Setting 
depot
locations
tabu

Selection of Survivors
& Diversity Mgmt.

Figure 2.4: Schematic overview of a single HALNS iteration
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2.4.1 ALNS Algorithm

Algorithm 4: ALNS algorithm in simulated annealing framework
Input : Starting solution s, global best solution ŝ
Output: best solution s∗

1 s∗ ← s
2 while Iterations without improvement < itstop do
3 ChooseOperators()
4 CCR ← getRemovalCandidates(s, ŝ ) // Removal candidates (2.4.1.2)
5 (snew, CR)← Remove(s, CCR ) // Removal operators (2.4.1.3)
6 CR ← sort(CR ) // Insertion order (2.4.1.4)
7 snew ← Insert(snew, CR ) // Insertion operators (2.4.1.5)
8 snew ← FirstLevelHeuristic(snew ) // Determine first-level solution (2.4.1.6)
9 if f(snew) < f(s∗) then

10 snew ← LocalSearch(snew ) // Local search (2.4.1.7)
11 (s, s∗)← Symmetries(snew ) // Account for symmetries (2.4.1.8)
12 if f(s∗) < f(ŝ) then
13 ŝ← s∗

14 else if accept(f(snew), f(s∗), τ) then
15 s← Symmetries(snew) // Simulated annealing (2.4.1.9)
16 τ ← τ · α
17 UpdateParameters() // Adaptive parameters (2.4.1.10)

Algorithm 4 describes the ALNS algorithm used in the HALNS. First, the ALNS requires a
starting solution s. s is either obtained by randomly applying insertion operators until every
customer is served (first generation) or simply obtained from the population (further generations).
The local best solution s∗ is set to s (line 1 of Alg. 4). The ALNS makes use of the global best
solution ŝ. Note that there is no global best solution in the first generation. This means that all
solutions are equivalent at the beginning of the first generation, i.e., ŝ = s∗ = s.

The ALNS generates a new solution snew by iteratively removing and then inserting customers.
The search proceeds while the number of iterations without finding a new best solution is lower
than itstop (line 2 of Alg. 4). At the beginning of every iteration, removal and insertion operators
are chosen (line 3 of Alg. 4). The probability of choosing removal and insertion operators depends
on the historic performance of operators. Next, a set of customers who are candidates for removal,
CCR is generated by comparing the current solution s and the global best solution ŝ (line 4 of
Alg. 4). The basic idea results from the observation that a certain number of edges in a good
solution is similar to an even better solution. Customers are therefore to be added to CCR if they
seem oddly placed in s compared to ŝ. The removal operator chosen then removes some or all
customers from the solution who are included in set CCR (line 5 of Alg. 4). Data collected during
the search determines the order in which the removed customers CR are inserted (line 6 of Alg. 4).
Next, the chosen insertion operator inserts all customers from the sorted set of previously removed
customers CR into the solution (line 7 of Alg. 4). After inserting all customers, the first-level costs
have to be determined via a first-level heuristic (line 8 of Alg. 4).

Whenever a new best solution is found, a local search procedure is used to improve the routes
(line 10 of Alg. 4). Before a solution is accepted, it must be checked for symmetries (lines 11 and
15 of Alg. 4)). The ALNS uses simulated annealing to escape local optima (lines 9-15 of Alg. 4).
Please note that determination of the initial temperature is instance-specific. At the end of every
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iteration the temperature τ is multiplied by the cool rate α (line 16 of Alg. 4) and the parameters
are updated (line 17 of Alg. 4).
Before we detail the parts of the ALNS in Subsections 2.4.1.2 - 2.4.1.10, we introduce the infor-

mation collection via insertion operators.

2.4.1.1 Information Collection

The insertion operators collect data when inserting customers which is then used during the sub-
sequent removal and insertion operations. These are

• the historic penalized costs Chist
j ,

• the minimal encountered costs Cmin
j ,

• and the number of times customer j has been reinserted, nj .

Chist
j is increased on every insertion of customer j by ∆j = f(s1) − f(s0), where s1 represents

the solution after inserting customer j and s0 the solution before inserting customer j. Thus, Chist
j

measures the accumulated increase in costs when inserting customer j. Similarly, Cmin
j quantifies

the minimum insertion costs of customer j found so far. nj is simply increased by one if customer
j has been reinserted.

2.4.1.2 Determination of Removal Candidates

Before applying one of the removal operators the set of removal candidates is determined by com-
paring the current solution s with the global best solution ŝ. We implement two variants for
selecting which customers are added to set CCR corresponding to the location and the routing deci-
sions considered. The first variant uses the routing decision, more specifically a customer is added
to CCR if its successor in s differs from its successor in ŝ. Customers who do not fulfill this criterion
may still be added to the set with probability pbinom. The second variant compares the location
decision of customers. A customer who is served from a different location in s compared to ŝ will be
added to CCR . The same probability-based approach as for the first variant is used. Furthermore,
we use a third alternative to foster diversification, where CCR = C, i.e., there exists no pre-selection
of customers. One of the three alternatives is randomly chosen in every iteration. The probability
depends on the performance and is adapted during the search (see Section 2.4.1.10).

2.4.1.3 Removal Operators

The maximum number of customers to be removed in one iteration qbinom is sampled from a
binomial distribution with sample size |C| and probability pbinom. The number of customers that
are actually removed by one of the removal operators below is expressed by qr = min{qbinom, |CCR |}.
Thus, removal operators select qr customers from set CCR according to the criterion specific to the
removal operator used (e.g., randomly or according to costs), and then remove these customers
from the current solution. The customers removed are added to set CR.

Random Removal The operator selects and removes customers randomly.
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Historic Cost Removal The operator selects customers in decreasing order of average historic
penalized costs, i.e., in decreasing order of C

hist
j

nj
.

Worst Cost Removal The operator calculates the change in costs ∆j if customer j is removed
from the current solution. Customers are selected in descending order of ∆j − Cmin

j .

Shaw Removal The operator selects customers similar to each other. The first customer is re-
moved with the Random Removal Operator. The following requests are chosen from CCR in increas-
ing order of relatedness. The relatedness Rel(c1, c2) of two customers c1 and c2 is measured by the
distance and demand of both customers. Customers with a lower Rel(c1, c2) are more related and
removed first.

Rel(c1, c2) = cc1,c2
max
i,j∈N

cij
+ |dc1 − dc2 |max

j∈C
dj

(2.1)

Depot Removal The operator randomly selects a depot and removes either all customers who
are served via this depot or randomly up to qbinom customers. Note that for this and the following
operator, we set CCR = C, i.e., all customers are available for removal. This operator helps to close
a depot if only few customers are served via this depot.

Least Efficient Vehicle Removal This operator uses the whole customer set for removal similar to
the Depot Removal Operator. The operator identifies the least efficient vehicles. The least efficient
vehicle has the highest ratio of tour costs compared to the number of customers on the tour, i.e., the
highest cost per customer. The operator then removes customers who are served via this vehicle.
The operator repeats the process until qbinom customers have been removed. If qbinom exceeds the
number of customers served via the least efficient vehicle, for example, customers from the second
least efficient vehicle are removed, and so on, until the total number of customers removed exceeds
qbinom.

2.4.1.4 Determination of Insertion Order

The set of removed customers, CR is sorted in descending order of average historic costs Chist
j

nj
. This

means that customers with high historic costs are inserted earlier, and there are therefore more
options to insert them at a low-cost position. Customers with low average historic costs can be
inserted later as they supposedly have more options to be inserted at an appropriate position with
low costs.

2.4.1.5 Insertion Operators

After sorting CR, the customers are inserted using one of the operators described in the following.
The operators have to decide which depot the customer is to be served from and at which position
in a route the customer is placed. Obviously both decisions influence not only each other but
also the decisions taken for customers inserted later. For example, if a depot is opened because a
customer is inserted, the customers to be inserted in the following will more likely be assigned to
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that depot, instead of a new depot being opened. We therefore use variants of the Best Insertion
Operator that neglect specific cost components. The total costs consist of costs when opening a
depot (called depot costs), vehicle costs when using a previously unused vehicle, and distance costs
when traveling from one node to the next. All operators include distance costs. Please note that
the depot costs can be determined accurately for the LRP. In contrast, for the 2E-VRP we can only
approximate depot costs as it would be extremely time-consuming to solve the first level-routing
every time a customer is inserted. The depot (satellite) costs are approximated for the 2E-VRP
using the approach of Mühlbauer and Fontaine (2021).

Best Insertion Operator The operator iterates across all depots and vehicles to find the position
where the customer can be inserted with lowest total cost, i.e., the sum of depot costs, vehicle costs
and distance costs. This operator favors positions in depots and vehicles that have already been
opened.

Best Insertion Operator - without Vehicle Costs This operator neglects vehicle costs, so new
vehicles may be used when the distance costs are lower in a new vehicle compared to vehicles
already in use. When respecting vehicle costs, the difference in distance cost must be at least as
high as the cost of using a vehicle, otherwise we have to accept high distance costs in favor of not
using a new vehicle. This operator still favors depots that have already been opened.

Best Insertion Operator - without Depot Costs This operator neglects depot costs. A depot
may be opened if the distance costs plus vehicle costs at the unopened depot are lower compared
to a position within a used/unused vehicle at a depot that is already open. This operator favors
the opening of additional depots and therefore helps to investigate further depot configurations.

2.4.1.6 First-Level Heuristic

The first-level problem is solved from scratch after all customers have been inserted in the second
level, i.e., once the assignment of customers to satellites is known. The first-level heuristic is
inspired by Hemmelmayr et al. (2012) and Mühlbauer and Fontaine (2021). The heuristic works
in three steps. 1) If the demand of a satellite exceeds the capacity of the first-level vehicle, the
heuristic creates back-and-forth trips until the remaining demand fits into one truck. 2) The
heuristic generates an initial solution by inserting all open satellites (with their respective remaining
demands) at its best position in a giant tour and then splitting the giant tour. We follow the giant
tour as long as the capacity of the vehicle suffices. As soon as the capacity limit is reached we
randomly decide with probability psplit whether we either split the demand (generating a split
satellite) and return to the main depot or return directly to the main depot without the demand of
the satellite that caused the capacity to be exceeded. 3) An improvement phase searches for better
solutions, stopping when no more improvements can be found. Let ri and rj be a pair of first-level
routes. The improvement phase uses a relocate and a swap operator to find improvements for all
pairs of first-level routes. The relocate operator relocates a satellite in ri to a different position in
the same route. The swap operator swaps two satellites s1 in ri and s2 in rj . The swap operator
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checks whether the capacity of the first-level vehicles suffices. If the capacity suffices on both first-
level vehicles, both satellites are swapped. If the capacity only suffices for s1 on rj , s1 is moved
to rj and s2 is moved to an empty route, and vice versa. Steps 2) and 3) are repeated 10 · nopen

s ,
whereas nopen

s is the number of satellites in use. Please note that the heuristic is not needed if
nopen
s ≤ 2, as the optimal solution can easily be obtained. We randomly set psplit = unif(0, 1) for

each iteration. To speedup the procedure, a hash table keeps track of satellite configurations already
examined. The first-level problem consists of only few satellites, so that this simple heuristic finds
good solutions within reasonable runtimes.

2.4.1.7 Local Improvement of Routes

The local search procedure is used every time a new best solution is found to further enhance the
quality of that solution. The local search procedure consists of simple insertion and swap operators
working on the established routes of a solution. The local search maintains the location decision
and route assignment of customers, resulting in pure intra-route improvement. We use the following
operators, whereas c1 denotes a customer, c2 its successor and c a customer on the same route. The
local search iterates in that order of operators across each customer c1 and c in that route until no
more improvement can be found. The first improving move is accepted.

• Insertion 1: Remove c1, then insert it after c.

• Insertion 2a: Remove c1 and c2, then insert c1 and c2 after c.

• Insertion 2b: Remove c1 and c2, then insert c2 and c1 after c.

• Swap 1: Swap c1 with c.

• Swap 2: Swap c1 and c2 with c.

2.4.1.8 Accounting for Symmetries

After inserting every customer and executing the local search in case of a new best solution,
the routes have to be aligned to account for symmetrical solutions. This is important as the
determination of removal candidates (Section 2.4.1.2) and the diversity measure (Section 2.4.3)
both rely on the successor relation of nodes. The direction of the route does not alter the cost,
but a different direction is represented by a completely different successor vector. Same solutions
would be identified as completely different. Consider an example with depot 0, customers 1 and
2 and two solutions A and B, solution A with route (0-1-2-0) and solution B with route (0-2-1-0).
We can simply change the direction of the solution B and see that it is the same as solution A. The
successor vector of the two customers 1 and 2 of solution A, however, is (2,0), and for solution B
(0,1). A simple way to remove this kind of symmetrical solutions is to allow only routes where the
first customer has a lower index than the last customer on that route (or the same index if there is
only one customer on the route). This means the route of solution A is aligned correctly, whereas
the route of solution B has to be inverted.
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2.4.1.9 Simulated Annealing

Simulated annealing is used as an acceptance criterion. Deteriorating solutions are accepted with
a probability depending on the difference in costs of the candidate solution f(snew), the cost of the
best solution obtained during the run of the ALNS f(s∗) and the current temperature τ . A worse
solution is accepted if e

−(f(snew)−f(s∗))
τ > unif(0, 1).

The temperature τ is determined for every instance with τ = − ∆E
ln(χ0) using the formula from

Johnson et al. (1989) at the beginning of each ALNS run. ∆E estimates the cost increase of
strictly positive transitions and χ0 expresses the probability of accepting a deteriorating solution.
We execute n0 iterations of the ALNS in order to generate the transitions. The temperature is
reduced by α after each iteration.

2.4.1.10 Adaptive Parameters

The HALNS adaptively changes three kinds of parameters, which are (1) the probability of choosing
operators (determining the removal candidates, removal and insertion operators), (2) the probability
of the binomial distribution pbinom determining the number of requests to be removed, and (3) the
weight ω for penalties.

Operators The probability of an operator depends on the historic performance, expressed by a
score that is increased by either σ1, σ2 or σ3 (Ropke and Pisinger 2006). If a new best solution
is found, the score is increased by σ1. If a previously unknown solution with lower costs than
the current solution is found, the score is increased by σ2. If the solution has higher costs but is
accepted through the simulated annealing procedure, the score is increased by σ3.

Probability of Binomial Distribution The probability of binomial distribution is adapted in a
similar manner with pbinom = γ · pbinom + (1− γ) · pbinom. Parameter γ denotes the reaction factor
and pbinom the average of the share of actual removed customers weighted by σ1, σ2 or σ3. If in
iteration A, for example, 20% of customers were removed and a new best solution is generated,
and in iteration B 40% of customer were removed and the solution was accepted via simulated
annealing, then pbinom = σ1·0.2+σ3·0.4

σ1+σ3
.

Weight for Penalties The weight for penalties is adapted after each generation depending on the
number of infeasible solutions in the population. If the number of infeasible solutions within the
generation is smaller than np

3 the weight is divided by five or if the number of infeasible solutions

exceeds 2np
3 the weight is multiplied by five.

2.4.2 Crossover and Education Phase

The crossover and education phase tries to combine two individuals by using the ALNS described
previously instead of using an explicit crossover operator, which usually tries to combine individuals
by maintaining good parts of these solutions. The ALNS uses solutions of the population one by
one as a starting solution and the global best solution to guide the removal process. Customers are
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removed if they differ in both solutions with respect to location assignment or successor assignment,
as described in Section 2.4.1.2. This means the probability of removing customers who are already
well placed decreases.

2.4.3 Selection of Survivors and Diversity Management

The selection of individuals is based on total costs and a diversity measure. We assign a cost
rank RankCosts

i to each individual i. Similarly, a diversity rank is assigned to each individual
RankDiversity

i . The cost rank is determined from sorting the population in increasing order of total
costs. The diversity rank is determined by sorting the population based on the hamming distance
to all other individuals. The hamming distance is calculated by comparing the successor of nodes,
Succind against the Succi of all other individuals i ∈ P .

Hammingind =
∑
i∈P

∑
j∈C

Succind
j 6= Succij (2.2)

Finally, the population is ordered in increasing order of the overall rank (RankOverall
i = RankCosts

i +
RankDiversity

i ).
Individuals with the nP lowest overall ranks are used in the next generation. The population

may grow until |P | = 4nP. After reaching this point, excess individuals with the highest overall
rank are removed from the population. New individuals are generated to foster diversification after
each fifth generation.

2.4.4 Setting Depot Locations Tabu

After every generation, depot locations may be set tabu for the following generation. The procedure
sets all depot locations tabu and then iterates across all individuals to check which depot locations
are in use for that specific individual. As soon as a depot location is used for at least one individual,
its use is permitted in the next generation. To further explore depot location configurations, depot
locations may be set as non-tabu with a 30% probability. Similarly, depot locations may be set tabu
with a 10% probability as long as the remaining total capacity suffices to accommodate the demand.
This search strategy significantly reduces runtime and intensifies the search around promising depot
location configurations.

2.5 Numerical Experiments

In this section we introduce the instances used and our experimental setting (Section 2.5.1), state
the parameter tuning (Section 2.5.2), evaluate the performance of the HALNS on benchmark in-
stances against approaches from literature (Section 2.5.3), and lastly evaluate the various compo-
nents of the HALNS (Section 2.5.4).
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2.5.1 Instances and Experimental Setting

Table 2.2 shows the instances used for the problem classes 2E-VRP, LRP and MDVRP and
the respective sources for obtaining the instances. Please note that we use the MDVRP in-
stances with a tight fleet size limit as given in https://neo.lcc.uma.es/vrp/vrp-instances/

multiple-depot-vrp-instances/. As pointed out by Sadati et al. (2021) there also exists a
variant with a higher fleet size limit corresponding to the original values given by Cordeau et al.
(1997).

Table 2.2: Instances
Problem Instances Exemplary Source

2E-VRP (n = 207) Set 2a, 2b, 2c Breunig et al. (2016)
http://www.univie.ac.at/prolog/research/TwoEVRP

Set 3a, 3b, 3c
Set 4a, 4b
Set 5
Set 6a

LRP (n = 79) Prodhon Prins et al. (2004)
http://prodhonc.free.fr/Instances/instances_us.htm

Tuzun Tuzun and Burke (1999)
http://prodhonc.free.fr/Instances/instances_us.htm

Barreto Barreto et al. (2007)
http://sweet.ua.pt/sbarreto/

MDVRP (n = 33) Cordeau Cordeau et al. (1997)
https://neo.lcc.uma.es/vrp/vrp-instances/
multiple-depot-vrp-instances/

The HALNS is coded in C++. Experiments in Section 2.5.2 and 2.5.4 are conducted on an AMD
Ryzen 7 2700X CPU with eight cores and 16 GB of RAM and in Section 2.5.3 on an AMD Ryzen 9
3900X CPU with twelve cores and 32 GB of RAM. All experiments use one thread. We use the same
parameter setting for all experiments and problem classes after extensive preliminary parameter
testing (see Section 2.5.2). We only vary the maximum number of generations, genmax, which is
increased from genmax = 10 in Section 2.5.2 to genmax = 100 in Section 2.5.3 and genmax = 50 in
Section 2.5.4. All parameters can be found in B.1.
To make the runtimes comparable we standardize runtimes by the passmark single thread rating

of the CPUs used. The AMD Ryzen 9 3900X has a passmark single thread rating of 2731, while the
AMD Ryzen 7 2700X has a rating of 2439. We can thus expect a runtime of the HALNS of 89.3%
when running on 3900X, instead of running on 2700X. This approximation is reasonably accurate,
as we show in B.2. In the following, all runtimes are standardized as if run on the AMD Ryzen 9
3900X. The respective passmark single thread ratings for all CPUs used in the relevant benchmark
literature can be found in Table B.3.
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2.5.2 Parameter Tuning

We tune a set of parameters that showed a relevant impact in the numerical study of Voigt et al.
(2021) (see Table 2.3). These parameters are quantified as follows. First, we randomly select 30
instances from the total set of 2E-VRP instances. Starting from the initial parameter setting as
given in Voigt et al. (2021), we alter the parameters one by one in the sequence and the range listed
in Table 2.3. The initial values are marked with a superscript i.

Table 2.3: Parameter tuning for HALNS on 2E-VRP instances
Parameter Values Chosen

nP size of the initial population 4, 12, 24, 36, 48i 12
itstop number of ALNS iterations without im-

provement
1000, 10000, 20000, 30000i, 40000 10,000

pbinom probability for binomial distribution
drawn at the beginning of every ALNS
run

unif(0.12, 0.24)i, unif(0.10, 0.35),
unif(0.24, 0.48)

unif(0.10, 0.35)

α cool rate in SA 0.9991, 0.9993, 0.9995, 0.9997, 0.9999i 0.9997
χ0 acceptance probability in SA 0.01, 0.10, 0.15, 0.25i, 0.35 0.10

We run the HALNS five times for every parameter setting on the subset selected and set the
number of generations to genmax = 10 to reduce the computational effort. We plot the average
search trajectory, i.e., the average gap achieved after each generation (with its corresponding av-
erage runtime) to assess the trade-off between runtime and solution quality. Lastly, upon visually
inspection, we chose the value with the lowest curve, where the HALNS produces the same results
within shorter runtime or better results within the same runtime. In other words, a parameter
setting dominates, if the area under the respective search trajectory is the smallest.
As an example, Figure 2.5 illustrates the procedure for parameter α. The figure shows the search

trajectories for the five tested values. Setting α = 0.9997 yields the best result for longer runtimes.
For shorter runtimes there is no clear best parameter. Similar results are found for the other
parameters. The HALNS is therefore robust and not very dependent on parameters as long as the
chosen values are within a reasonable range.

2.5.3 Benchmarks

We evaluate the performance of approaches on benchmark instances and average the results over
all benchmark instances of one problem class. In the following tables, the first column shows the
Authors, while the second column shows the Approach used. The Best Gap column represents
the gap of the best run compared to the (previous) BKS, whereas column Avg. Gap represents
the average gap over n runs. Most authors use five runs for 2E-VRP and LRP (n = 5), and ten
(n = 10) for MDVRP. As a result, the HALNS is run five and ten times. The column T̄scaled [s]
represents the average standardized runtimes across n runs in seconds, as if run on the AMD Ryzen
9 3900X using the passmark single thread ratings, as described previously. The last column n rep-
resents the number of runs. The approaches are sorted according to their Best Gap performance.
Furthermore, Figure 2.6-2.8 illustrate the average gaps for standardized runtimes to facilitate an
easier comparison of approaches. The graphs of the HALNS are generated by varying the stopping
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Figure 2.5: Search trajectories for different α on subset of 2E-VRP instances

condition, genstop = [1, . . . , 50]. In contrast to these figures, Table 2.4-2.6 show only the results
when genstop = 2, 10, or 50. For example, HALNS 2 means that the HALNS stops after two gen-
erations without improvement, i.e., genstop = 2. Please note that the figures show only approaches
with an average gap lower than 0.5%.

2.5.3.1 2E-VRP Benchmark

Table 2.4 shows the results for the 2E-VRP. Figure 2.6 additionally illustrates the trade-off between
solution quality and computation time. The HALNS forms the efficient boundary, i.e., the HALNS
dominates all other approaches both in terms of solution quality and computation time. The
HALNS 2 already generates good results with a best gap of 0.05% and an average gap of 0.16%
within a short runtime of 27s. Only the approaches of Wang et al. (2017) and Amarouche et al.
(2018) achieve a similar best gap, and while their average gap is lower, T̄scaled is considerably higher.
The HALNS’s best gap can be further reduced to 0.03% by increasing genstop to 10. Additional
generations do not further improve the best gap. However, the average gap decreases to 0.04% for
the HALNS 50 and approaches the best gap, showing that additional generations stabilize results.
The same pattern can also be observed for the LRP and MDVRP. The HALNS outperforms all pure
ALNS implementations, showing the value of hybridizing the ALNS. Note that several approaches
omit some of the benchmark sets. We therefore additionally give the HALNS’s average gap for the
considered subsets. The detailed results for the HALNS 50 can be found in B.3, Table B.4, where
it is shown that the HALNS 50 finds 190 of 207 BKS.
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Table 2.4: Heuristics for 2E-VRP
Authors Approach Best Gap Avg. Gap T̄scaled [s] n

Voigt et al. HALNS 50 0.03% 0.04% 286 5
Voigt et al. HALNS 10 0.03% 0.07% 83 5
Wang et al. (2017) VNS + Math 0.04% 0.08% 126 5
Amarouche et al. (2018) LNS + Math 0.05% 0.10% 65 5
Voigt et al. HALNS 2 0.05% 0.16% 27 5
Mühlbauer and Fontaine (2021) Hybrid LNS 0.07% 0.19% 49 5
Breunig et al. (2016) LNS 0.09% 0.17% 118 5
Yu et al. (2021)1 ALNS 0.16% 0.32% 156 5
Hemmelmayr et al. (2012)2 ALNS 0.24% 0.48% 34 5
Jie et al. (2019)3 ALNS + Math 0.60% 0.82% 552 5
Enthoven et al. (2020)4 ALNS 0.61% 0.97% 63 5

1 Set 6 not included. Avg. gap of HALNS 50 on the subset: 0.04%.
2 Sets 2c, 3c, 4a and 6 not included. Avg. gap of HALNS 50 on the subset: 0.06%.
3 No CPU indicated. We assume a passmark score of 1500, similar to publications from the same year.
4 Sets 4a, 4b and 6 not included. Avg. gap of HALNS 50 on the subset: 0.08%.
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Figure 2.6: Performance chart 2E-VRP

2.5.3.2 LRP Benchmark

Table 2.5 and Figure 2.7 show the results for the LRP. Again, the HALNS 2 already yields a
good best gap of 0.16% at a low T̄scaled of 40s. Both best and average gap can be significantly
improved by additional generations, up to 0.02% and 0.07%, respectively, which are the best results
of all approaches considered. Again, additional generations reduce the difference between best
and average gap and make the approach more robust. In total, we find 62 of 79 BKS (see B.3,
Table B.5), including three newly found BKS, which are shown in detail in B.3, Tables B.7 -
B.9. However, as easily seen in Figure 2.7, the approach of Schneider and Löffler (2019) with its
different configurations achieves similar results as the HALNS. It dominates the HALNS for shorter
runtimes. It is reasonable to assume that the approach of Schneider and Löffler (2019) shows a
similar behavior as HALNS in the brackets between the given values, but for longer runtimes, the
HALNS yields slightly better results.
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Table 2.5: Heuristics for LRP
Authors Approach Best Gap Avg. Gap T̄scaled [s] n

Voigt et al. HALNS 50 0.02% 0.07% 389 5
Schneider and Löffler (2019) Tree + GTS (Quality) 0.02% 0.08% 387 5
Schneider and Löffler (2019) Tree + GTS (Basic) 0.04% 0.16% 109 5
Voigt et al. HALNS 10 0.05% 0.15% 121 5
Voigt et al. HALNS 2 0.16% 0.37% 40 5
Schneider and Löffler (2019) Tree + GTS (Speed) 0.18% 0.35% 23 5
Arnold and Sörensen (2021) Progressive Filtering 0.21% 0.21% 97 1
Contardo et al. (2013) GRASP + Math 0.22% 0.53% 741 10
Hemmelmayr et al. (2012) ALNS 0.45% 0.79% 94 5
Lopes et al. (2016) GA 0.50% 0.77% 209 10
Escobar et al. (2014a) GTS + VNS 0.66% 0.66% 40 1
Ting and Chen (2013) ACO 0.79% 0.79% 22 10
Escobar et al. (2013) GTS 0.93% 0.93% 77 1
Yu et al. (2010) SA 0.96% 0.96% 237 1
Duhamel et al. (2010) GRASP + ELS 1.09% 1.09% 182 5
Prins et al. (2007) GTS + Math 1.47% 1.47% 3 1
Prins et al. (2006a) GA 1.79% 1.79% 18 1
Prins et al. (2006b) GRASP + Path Relinking 3.31% 3.31% 15 1
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Figure 2.7: Performance chart LRP

2.5.3.3 MDVRP Benchmark

Table 2.6 and Figure 2.8 show the results for the MDVRP, detailed results are to be found in B.3,
Table B.6. Overall, we find 27 of 33 BKS. Several approaches from literature deliver similar best
gaps as the HALNS. The lowest best gap is achieved by the genetic algorithm of Vidal et al. (2012).
The HALNS needs considerably more runtime to reach similar results compared to their approach
and still produces a slightly worse best gap. However, the average gap is better. In contrast to that,
Luo and Chen (2014) produce a slightly worse average gap than the HALNS, but a similar best
gap at even lower runtimes than Vidal et al. (2012). Furthermore, the approach of Subramanian
et al. (2013) delivers results similar to those of the HALNS, but within shorter runtimes. This
slightly worse performance of the HALNS compared to the previous results on 2E-VRP and LRP
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instances can be expected since the MDVRP differs most from the 2E-VRP. There is effectively
only one insertion operator for the MDVRP. Furthermore, we expect that a stronger local search
may be beneficial for solving the MDVRP, as used by Vidal et al. (2012).

Table 2.6: Heuristics for MDVRP
Authors Approach Best Gap Avg. Gap T̄scaled [s] n

Vidal et al. (2012) GA 0.00% 0.09% 52 10
Voigt et al. HALNS 50 0.01% 0.05% 695 10
Luo and Chen (2014) PSO 0.01% 0.3% 17 10
Subramanian et al. (2013) ILS + Math 0.02% 0.08% 364 10
Voigt et al. HALNS 10 0.03% 0.12% 187 10
Voigt et al. HALNS 2 0.06% 0.22% 63 10
Arnold and Sörensen (2019)1 Guided Local Search 0.09% 0.09% 34 1
Pisinger and Ropke (2007) ALNS 0.11% 0.44% 49 10
Sadati et al. (2021) TS + VNS 0.2% 0.3% 297 25
Cordeau and Maischberger (2012) TS + ILS 0.11% 0.29% 476 10
Escobar et al. (2014b) GTS 0.19% 0.19% 41 1
Renaud et al. (1996) TS 0.92% 0.92% 42 1
Cordeau et al. (1997) TS 1.06% 1.06% 41 1
Chao et al. (1993)1 no classification 2.74% 2.74% 37 1

1 pr instances from Cordeau et al. (1997) not included. Avg. gap of HALNS 50 on the subset: 0.03%.
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Figure 2.8: Performance chart MDVRP
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2.5.4 Analysis of Algorithm Components

The HALNS combines a number of different heuristic components. The question therefore arises
what influence each of these components has on the overall performance of the HALNS. We indi-
vidually and independently disable the features and components listed below (see also Table 2.1)
and compare the resulting performance to the performance of the full version of HALNS.

Hybridization: We disable the hybrid approach, i.e., neglecting the extended search of a popu-
lation-based approach. In this case, the HALNS is reduced to a multi-start ALNS. The ALNS
repeats nP · genmax times without using information from previous generations (line 8 of Alg.
3). The procedure disables the diversity management (line 10 of Alg. 3). The weights for
penalties for infeasible solutions are not adapted. The depot locations are set tabu without
considering information on depots that have already been used (line 11 of Alg. 3), which
means the depot locations are just randomly set tabu.

Local improvement: We disable the additional local search procedure in case a new best solution
is found during an ALNS run (line 10 of Alg. 4).

Simulated annealing: We exclude the diversification function within the ALNS. The ALNS
then accepts only improved solutions (line 15 of Alg. 4).

Tabu search: We set depot locations within the search space never tabu (line 11 of Alg. 3).

Infeasible solutions: We increase the weight for penalties to a sufficiently high number, such
that infeasible solutions are not accepted if the ALNS has already found a feasible solution.

Diversity management: We limit the diversity of the search space so that the surviving individ-
uals are only selected according to their cost rank, RankCosts

i . Additionally, new individuals
are not generated after each fifth generation (line 10 of Alg. 3).

Parameter adaptation: We disable the dynamic adaptation process of search space parameters.
The probabilities for the choice of operators, the probability for the binomial distribution,
pbinom, and the weight of penalties, ω, remain unchanged during the search (line 17 of Alg.
4).

Table 2.7 presents the results for all 2E-VRP instances when applying the HALNS algorithm
with a certain configuration and when applying the HALNS disabling one mentioned component
at a time.

Column Best Gap respective Avg. Gap shows the best and average gap from five runs. Column
T̄scaled [s] shows the average standardized runtime as if run on the AMD Ryzen 9 3900X. The first
section of the table (HALNS) shows the results of the HALNS with genmax = 50, nP = 12 (full),
genmax = 1, nP = 12 (one generation) and genmax = 1, nP = 1 (one individual). The experiment
with only one individual demonstrates that the ALNS on its own already generates reasonably good
results with an average gap of 1.27% in under 1s of runtime. Executing just one generation with
12 individuals improves the average gap to 0.44%. The execution of the complete HALNS with
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Table 2.7: Analysis of HALNS solutions of 2E-VRP when disabling one component at a time
Configuration Best Gap Avg. Gap T̄scaled [s]
HALNS
genmax = 50, nP = 12 (full) 0.03% 0.04% 204
genmax = 1, nP = 12 (one generation) 0.21% 0.44% 5
genmax = 1, nP = 1 (one individual) 0.47% 1.27% 1
High-impact components
Simulated annealing 0.06% 0.12% 305
Diversity management 0.04% 0.10% 195
Hybridization 0.04% 0.07% 216
Medium-impact components
Tabu search 0.03% 0.06% 224
Parameter adaptation 0.03% 0.05% 311
Low-impact components
Local improvement 0.02% 0.04% 204
Infeasible solutions 0.02% 0.04% 205

50 generations further stabilizes the results to an average gap of 0.04%, but increases the average
runtime to 204s.
The following experiments apply the HALNS in the full configuration (genmax = 50, nP =

12), and individually and independently disable one component. The second, third and fourth
section of Table 2.7 (high-/medium-/low-impact components) show the respective results. The
best and average gap deteriorates when high impact components are disabled compared to the
full configuration. Simulated annealing, diversity management and hybridization highly impact the
solution quality. Medium-impact components do not deteriorate the best gap when disabled, but
deteriorate the average gap. Tabu search and parameter adaptation have a medium impact on
the solution quality. Lastly, disabling local improvement and the absence of infeasible solutions
do not affect the average gap and even slightly improve the best gap, while the effect on runtime
is negligible. Note that multiple components not only improve solution quality, but also reduce
runtime, e.g., simulated annealing and parameter adaptation.
Figures 2.9a, 2.9b and 2.9c show the solution gap as a function of scaled runtime for high-,

medium-, and low-impact components, respectively. The graphs are generated by varying the stop-
ping condition, just as in the previous section. The graphs are largely consistent across runtimes,
i.e., a disabled component deteriorates the solution quality for high- and medium-impact compo-
nents at all runtimes tested. The component local improvement (see Figure 2.9c), however, has a
slightly different pattern. It seems to improve the performance for medium runtimes, but has no
effect at long runtimes. The local search only improves routes (see Section 2.4.1.7). Its contribution
to solution improvements is therefore rather limited at long runtimes.
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(b) Medium-impact components - 2E-VRP
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Figure 2.9: Analysis of components of HALNS for 2E-VRP

In light of the even slightly worse results when including local improvement and infeasible solu-
tions, we reconduct the experiment with MDVRP instances. Contrary to the results when solving
the 2E-VRP, we find that the two components significantly impact the solution quality when solving
the MDVRP (see Figure 2.10). The presence of infeasible solutions seems to be especially important
when solving MDVRP instances, which include additional restrictions on the route length. This
may be due to a well-fitting penalty weight ω for MDVRP instances or to characteristics of the
instances, so that good solutions are close to infeasible solutions.
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Figure 2.10: 2E-VRP low-impact components are high-impact components for MDVRP

In summary, the simulated annealing, diversity management and hybridization components str-
ongly influence the solution quality when solving 2E-VRP instances. Tabu search and parameter
adaptation, on the other hand, only have a medium influence on solution quality. However, our
objective is a single solution approach for all the three problem classes and even components that
have little effect on solution quality when solving 2E-VRP instances have a positive effect when
solving other problem classes, i.e., LRP or MDVRP. All in all, we can conclude that a sophisticated
combination of components is needed to improve solution quality at competitive runtimes for several
problem classes of the 2E-VRP.

2.6 Summary and Further Areas of Research

Summary The design and operation of delivery systems also requires the determination of depots
from which to deliver to customers. This general problem can be referred to as VRP with depot
location decisions. We distinguish three variants of this problem class, the two-echelon VRP (2E-
VRP), the location routing problem (LRP), and the multi-depot VRP (MDVRP). The literature
offers a huge variety of quite specialized approaches for solving each of these problems.

We reviewed and classified these approaches and present a performance ranking. All three
problems, however, can be solved with a single solution approach, since both the LRP and the
MDVRP are special cases of the 2E-VRP. We developed a new metaheuristic method, the hybrid
adaptive large neighborhood search (HALNS) based on the solution framework proposed by Voigt
et al. (2021) that can solve all three problem classes. Computational experiments on benchmark
sets from the literature demonstrate that the HALNS outperforms all approaches for the 2E-VRP
and performs equally well with heuristics that are dedicated either to the LRP or the MDVRP.
Furthermore, the HALNS shows robust results for all benchmarks, i.e., the differences between best
and average runs are remarkably small. Additionally, the HALNS achieves three new best solutions
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for LRP instances. Further, we have identified that different heuristic components of the HALNS
with low performance impact when solving the 2E-VRP become relevant when solving LRP and
MDVRP.

Further Areas of Research One main difficulty when inserting or removing customers during the
search procedure is to approximate the impact of opening or closing a depot. Machine learning
approaches could be used to approximate the resulting cost changes. Furthermore, the HALNS
uses multiple ALNS runs to generate the population-based solution space. This structure offers
the possibility of easy parallelization. The HALNS especially outperforms all pure ALNS imple-
mentations on these problem classes, demonstrating the value of an enlarged search space by using
neighborhood- and population-based approaches. An interesting avenue for future research could
therefore be the hybridization of existing and forthcoming ALNS approaches for other variants.
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3 Hybrid Adaptive Large Neighborhood Search for the
Traveling Salesman Problem with Time Windows and
Adjusted Costs

Stefan Voigt

Abstract This article models the underlying problem of the Amazon/MIT last mile routing re-
search challenge as Traveling Salesman Problem with Time Windows (TSPTW). It uses an efficient
heuristic based on the recently proposed Hybrid Adaptive Large Neighborhood Search (HALNS)
to solve the TSPTW. Furthermore, the approach leverages information on high-quality routes to
adjust the traveling costs and therefore guide the HALNS to mimic the behavior of drivers. Thus,
the overall approach follows a classical Operations Research paradigm without using sophisticated
Machine Learning (ML) techniques. Nevertheless, the HALNS generates a population of individu-
als, which may be used as additional features in an ML approach. We achieve an average score of
0.0678 on test data consisting of all 2718 high-quality routes.

Published: Last Mile Routing Research Challenge Proceedings
URL: https://hdl.handle.net/1721.1/131235

65

https://hdl.handle.net/1721.1/131235


3 HALNS for TSPTW with Adjusted Costs

3.1 Introduction

The Amazon/MIT last mile routing research challenge (Amazon Challenge1) covers a routing prob-
lem, where routes with few hundreds of customers have to be constructed route by route, i.e.,
independently. Some customers have time windows during which the delivery must be completed.
Additionally, servicing a customer takes time. The problem is similar to a Traveling Salesman Prob-
lem with Time Windows (TSPTW). The Traveling Salesman Problem (TSP) is a routing problem
where one salesman (delivery vehicle) is required to visit each location (customer) once, starting
at and returning to the same location (depot). However, the goal of the Amazon Challenge differs
from the goal of the classical TSP, as not only the traveling costs are to be minimized, but the
route should be similar to a high-quality route realized by an actual driver. The driver may visit
customers in a different sequence as in the route suggested, for a couple of reasons, like avoiding
traffic jams, lack of parking spaces, more convenient roads, avoiding left-turns, and so on. The
data provided by the Amazon Challenge can be leveraged to identify and include such strategies
into constructing solutions. Considering the size of the problem with a few hundred customers
and the structure of the problem, both Machine Learning (ML) and Operations Research (OR)
approaches seem to be well-suited to the problem. This article however, follows a classical OR
process, consisting of the phases problem definition, formulation of a mathematical model, devel-
opment of a solution procedure, testing and refinement (see e.g., Hillier and Lieberman (1995)). It
is the author’s belief that the performance of any ML approach used in the field of optimization
must be compared to a state-of-the-art OR approach. The lack of an OR based benchmark is a
shortcoming often found in ML literature applied to classical optimization problems, like the TSP
(see Section 3.2).
The problem is modeled as TSPTW and solved with a metaheuristic solution approach based on

the recently proposed Hybrid Adaptive Large Neighborhood Search (HALNS) by Voigt et al. (2021).
The HALNS generates a population of solutions with an efficient ALNS, which are then improved
by a crossover phase. Before the HALNS is applied, the cost matrix (costs for traveling from node
to node) is adjusted to capture some of the behavior of drivers. Additionally, we tested different
strategies, e.g., violating time windows, and tried to predict which cost adjustment/strategy should
be applied depending on instance features. Unfortunately, the prediction accuracy was not good
enough. Henceforth, we simply use the cost adjustment/strategy with the lowest average score.
This article makes several contributions: (1) The approach suggested can serve as a baseline for

comparing ML approaches. (2) Information gathered within the population may be included as
additional features in ML approaches. (3) An ML model (with sufficient accuracy) may leverage
the proposed strategies.
The remainder of this paper is structured as follows: Section 3.2 shows related literature. Section

3.3 models the problem as TSPTW, introduces the cost adjustments, and presents the HALNS.
Section 3.4 experiments with different adjustments of the cost matrix and strategies drivers may
follow. Finally, Section 3.5 concludes the work and indicates avenues for further research.

1Please refer to https://github.com/MIT-CAVE/rc-cli for details on the scoring process and to access the data.
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3.2 Literature Review

The TSP is one of the most studied NP-hard optimization problems in the field of OR with many
scientific papers and books published (e.g., Applegate et al. (2007), Cook (2012)). There exist many
approaches to solve the TSP heuristically. A very well-performing heuristic is the implementation
of the Lin-Kernighan heuristic by Helsgaun (2000) (LKH)2. Approaches for solving large-scale
instances with millions of cities include POPMUSIC (Taillard and Helsgaun 2019). The method
of choice for exactly solving TSPs is the Concorde solver, which is able to solve instances with
thousands of cities (Applegate et al. 2006)3. Despite the NP-hardness, both heuristic and exact
approaches can solve instances with few hundreds of customers within reasonable runtime, as
demanded in the Amazon Challenge. This review neglects the time window component since it can
efficiently be integrated into heuristic approaches (Vidal et al. 2015).

Mainly in the last decade, researchers developed ML approaches for graph problems and use the
TSP as testing ground for their models. ML approaches either construct the solution directly or
use ML together with classical optimization techniques.

ML combined with optimization techniques Arnold and Sörensen (2021) use ML within a meta-
heuristic solution approach to identify high-order moves and improve the performance of state-of-
the-art heuristics for the Vehicle Routing Problem. For a general overview of ML at the service of
metaheuristics please refer to Karimi-Mamaghan et al. (2021). Instead of integrating ML within
the metaheuristic, Hutter et al. (2014) use ML to predict the performance of algorithms depending
on instance characteristics. This approach is similar to our idea of solving the TSPTW with differ-
ent cost adjustments/strategies and trying to predict which strategy should be applied for solving
the instance. Closely related is ML-based hyperparameter tuning, where an ML model tunes the
parameters of heuristics depending on instance characteristics (e.g., irace package by López-Ibáñez
et al. (2016)).

ML models constructing solutions directly There exists a variety of ML models that try to solve
the TSP directly. Bello et al. (2017) use neural networks with reinforcement learning and negative
tour lengths as reward signal. They solve instances with up to 100 cities and use LKH, Google
OR-Tools and Concorde as benchmark. They achieve near-optimal results but are outperformed
by LKH, which finds optimal results in similar runtime. Dai et al. (2018) propose a combination of
reinforcement learning and deep graph embedding. The authors train their model with instances
ranging from 50-100 cities and apply the trained model on instances with up to 1,200 cities achieving
a rather high optimality gap. The approach is compared to simple heuristics. However, a benchmark
against state-of-the-art heuristics is missing. Kool et al. (2019) present a model with attention
layers, solving instances with up to 100 cities and outperform simple heuristics. Dwivedi et al. (2020)
present a framework for benchmarking graph neural nets, showing that Gated-Graph Convolutional
Networks achieve promising results for solving the TSP.

2http://akira.ruc.dk/~keld/research/LKH-3/
3https://www.math.uwaterloo.ca/tsp/concorde.html
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To summarize, models that directly construct solutions fall short compared to the performance
reached by state-of-the-art heuristics/solvers and work only for instances with few hundreds of
customers. Furthermore, most approaches generalize poorly on larger instances (Joshi et al. 2020)
and have issues with additional constraints, e.g., time windows. It remains to be seen if these issues
can be solved in the future - maybe the Amazon Challenge stimulates research in this direction.
Right now, classical optimization techniques together with ML seem to be more suitable than ML
models that directly construct solutions.

3.3 Methodology

Section 3.3.1 models the problem as TSPTW. Section 3.3.2 details strategies and cost adjustments.
Section 3.3.3 presents the HALNS to solve the TSPTW with then adjusted costs. Lastly, Section
3.3.4 introduces the data-driven approach for leveraging the given data.

3.3.1 Model for the traveling salesman problem with time windows

The TSPTW can be defined on a directed graph G(N,A) with node set N , consisting of the depot
0 and customers j ∈ C, and arc set A. The arc set is defined as A = {(i, j) : i 6= j, i, j ∈ N}. cij
denotes the associated transportation costs. The vehicle starts and ends at the depot. Customers
must be visited within their time window defined by lower limit ej and upper limit lj . The duration
of a tour is determined by the traveling times denoted by tij , by the service time Sj , and eventually
waiting times between customers. The duration may not exceed the delivery period’s length D.
Table 3.1 summarizes the notation.

Table 3.1: Notation
Sets
C Set of customers, C = {1, ..., |C|}
N Set of nodes, N = {0} ∪ C = {0, ..., |C|}

Parameters
cij Traveling cost from i to j, i, j ∈ N
tij Traveling time from i to j, i, j ∈ N
Sj Service duration at customer j, j ∈ C
ej Earliest start of service for customer j, j ∈ C
lj Latest start of service for customer j, j ∈ C
D Length of delivery period

Decision Variables
xij Binary variable indicating whether arc (i, j) is used, (i, j) ∈ A
si Start time of service at node i, i ∈ N

Model TSPTW

Minimize CTSPTW =
∑
i∈N

∑
j∈N

cijxij (3.1)

s.t.
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∑
j∈N

xij = 1 ∀i ∈ C (3.2)

∑
j∈N

xij =
∑
j∈N

xji ∀i ∈ N (3.3)

sj + Sj + tj0 ≤ D ∀j ∈ C (3.4)

sj − si ≥ (tij + Si)xij −D(1− xij) ∀i, j ∈ C, i 6= j (3.5)

ej ≤ sj ≤ lj − Sj ∀j ∈ C (3.6)

xij ∈ {0, 1} ∀i, j ∈ N (3.7)

si ∈ R+
0 ∀i ∈ N (3.8)

The objective function (3.1) minimizes traveling costs. Constraints (3.2) ensure that each cus-
tomer is visited exactly once. Constraints (3.3) conserve flow. Constraints (3.4) ensure that the
vehicle returns in time. Constraints (3.5) guarantee that the service starts after traveling time plus
service time starting from its predecessor. Constraints (3.6) ensure that service starts and ends
within the time window. Please note, that this restriction is more restrictive than usual assumed,
as the service must generally only start before the upper limit of the TW. Constraints (3.7) and
(3.8) define the domains of the variables.

3.3.2 Strategies and adjustments of cost matrix

Before applying the HALNS for solving the TSPTW, the given traveling cost matrix is adjusted
to mimic the behavior of the driver. This subsection details the strategies and cost adjustments.
Please note, that traveling costs are originally equivalent to traveling times, i.e., cij = tij ∀i, j ∈ N .
However, after adjusting the cost matrix, traveling costs will in general differ from traveling times.

Triangle inequality This adjustment simply checks if the triangle inequality holds for all arcs.
The triangle inequality holds, if it is impossible to achieve lower costs by traveling via another
node, k, instead of traveling directly from node i to j. The traveling costs of arcs are adjusted until
the triangle inequality holds for all arcs. Costs are adjusted by finding the shortest paths for all
nodes as follows.

cij =
{
cij , if cij ≤ cik + ckj (3.9)

cik + ckj , else (3.10)

Unreasonable expensive arcs This adjustment checks if the costs given for an arc are unreasonably
high compared to the great-circle distance (gcd) of node i and node j with corresponding coordinates
coordi and coordj . Costs are adjusted as follows. The factor 1.3 is chosen after preliminary testing.

cij =
{ min(cij , cji), if cij > 1.3 · gcd(coordi, coordj) (3.11)

cij , else (3.12)

The reasoning behind this adjustment is that drivers may use the arc if the arc has a small gcd
and the difference between the way from i to j and back (j to i) are different, as this may indicate
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an error in the data. The minimum of cij and cji can be interpreted as the best guess for correcting
the data.

Depot arcs The depot is usually located outside the city and therefore connected by a highway
with the delivery area. Drivers may accept higher traveling costs (longer traveling time) on high-
ways, if this means, that they can in turn reduce the distance traveled within the delivery area -
assuming that the highway is more convenient to drive. Costs are adjusted as follows. The factor
0.1 is chosen after preliminary testing.

c0j = 0.1 · c0j ∀j ∈ N (3.13)
cj0 = 0.1 · cj0 ∀j ∈ N (3.14)

Time windows The last strategy disregards all time windows, resulting in solving a classical TSP.
Drivers may disregard time windows of some or of all customers, because they are for example
short on time.

3.3.3 Hybrid adaptive large neighborhood search for solving TSPTW

This subsection briefly introduces the Hybrid Adaptive Large Neighborhood Search (HALNS) which
is used to solve the TSPTW. The metaheuristic is derived from the recently proposed HALNS for
the Vehicle Routing Problem with Availability Profiles. For a detailed explanation, please refer to
Voigt et al. (2021). Algorithm 5 describes the HALNS. The HALNS generates an initial population,
P of nP solutions by iteratively applying an efficient ALNS (lines 1-3). Afterward, the HALNS
executes crossovers within that population (line 6-9) During crossover, two individuals - one solution
from the population, s and the global best solution, ŝ - are combined by using the ALNS, instead
of using an explicit crossover operator. The global best solution guides the removal procedure.
Customers are removed if their successors differ in both solutions, i.e., if they are placed differently
in both solutions. After crossover, the procedure selects surviving individuals (line 10) according
to objective value and diversity. The procedure ends after genmax generations.

Algorithm 5: Hybrid Adaptive Large Neighborhood Search
1 while |P | < nP do // Initial Population
2 s← ALNS()
3 P ← P ∪ {s}
4 while gens < genmax do // Generations
5 ŝ← DetermineBestSolution(P )
6 while i < nP do // Crossover and Education Phase
7 s← P [i]
8 s← ALNS(s, ŝ)
9 P ← P ∪ {s}

10 P ← DiversityManagement(P ) // Select survivors and manage diversity

Algorithm 6 describes the ALNS algorithm. The ALNS was proposed by Ropke and Pisinger
(2006) and has been applied to a variety of routing problems (Pisinger and Ropke 2007, Hemmel-
mayr et al. 2012, Voigt and Kuhn 2022). The algorithm begins with setting the local best solution
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Algorithm 6: Adaptive Large Neighborhood Search used within HALNS
Input : Starting solution s, global best solution ŝ
Output: best solution s∗

1 s∗ ← s
2 while Iterations without improvement < itstop do
3 ChooseOperators()
4 CCR ← getRemovalCandidates(s, ŝ ) // Determine Removal Candidates
5 (snew, CR)← Remove(s, CCR ) // Remove Customers
6 CR ← sort(CR ) // Determine Insertion Order
7 snew ← Insert(snew, CR ) // Insert Customers
8 if f(snew) < f(s∗) then
9 if f(s∗) < f(ŝ) then

10 ŝ← s∗

11 else if accept(f(snew), f(s∗), τ) then
12 s← snew // Simulated Annealing
13 τ ← τ · α
14 UpdateParameters()

s∗ to the starting solution, s (line 1). The ALNS uses the global best solution ŝ, as soon as it exists,
i.e., in all but the first generation. After initialization, the ALNS generates a new solution snew

by removing and inserting customers with randomly chosen removal operators and a deterministic
insertion operator, as there is only one insertion operator (line 3). The probability of choosing
removal operators depends on their performance during previous iterations. By comparing the
current solution s and the global best solution ŝ, a set of customers which are candidates for re-
moval, CCR is generated (line 4). The removal operator chosen then removes some or all customers
from the solution which are included in set CCR (line 5). The maximum number of customers to
be removed in one iteration, qbinom, is sampled from a binomial distribution with sample size |C|
and probability pbinom. The number of customers that are actually removed by one of the below
removal operators is expressed by qr = min{qbinom, |CCR |}. The ALNS uses four removal operators:
Random Removal, Historic Cost Removal, Worst Cost Removal, and Shaw Removal (for details,
see Voigt et al. (2021)). The removed customers are added to set CR. After sorting CR according
to data collected during the search (line 6), the customers are inserted using the Best Insertion
Operator (line 7). This operator simply finds the position, where the customer can be inserted with
the lowest total cost while respecting time windows. The ALNS uses simulated annealing to escape
local optima (lines 8-12). Deteriorating solutions are accepted with a probability depending on the
difference in costs of the candidate solution f(snew), the cost of the best solution obtained during
the run of the ALNS f(s∗) and the current temperature τ . The initial temperature is determined
instance-specific with τ = − ∆E

ln(χ0) using the formula from Johnson et al. (1989). At the end of
every iteration the temperature τ is multiplied with the cool rate α (line 13) and the parameters
are updated (line 14).
The determination of removal candidates, adaptivity of parameters, and diversity management

are equivalent to the HALNS originally proposed (Voigt et al. 2021).
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3 HALNS for TSPTW with Adjusted Costs

3.3.4 Data-driven approach

This subsection presents the planned and then realized approach to leverage the data. During
training, the planned approach (top of Figure 3.1a) solves instances using different strategies with
the HALNS. The solutions are evaluated, resulting in instance-specific scores of strategies. An ML
model is then trained to predict which strategy should be applied depending on instance features to
achieve the lowest score. Unfortunately, the prediction accuracy of several tested ML models was
not good enough during application (bottom of Figure 3.1a) to justify the additional complexity.
Therefore, the final approach simply uses the cost adjustment/strategy with the lowest average
score (Best Strategy) identified during experiments in Section 3.4 independent of instance features
(see Figure 3.1b).
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Figure 3.1: Planned vs. realized approach

3.4 Experiments and Results

All experiments were conducted in parallel on an AMD Ryzen 7 2700X CPU with eight cores and
32 GB of RAM. Data and instances are prepared in Python, the HALNS is coded in C++. The
test data set contains all 2718 high-quality routes given in the Amazon Challenge. The delivery
period’s length D is set to 9.5 hours for all experiments.
In addition to the strategies mentioned in Section 3.3.2, a combination of strategies and the

influence of the number of generations were tested. All but the last two strategies use ten HALNS
generations, genmax = 10.

• TSPTW: Solve TSPTW without adjustments.

• TSP: Solve TSP, i.e., disregard time windows.

• TSPTW-tri: Solve TSPTW with triangle inequality adjustment.

• TSPTW-gcd: Solve TSPTW with adjustment of unreasonable expensive arcs.

• TSPTW-depot: Solve TSPTW with adjustment of depot traveling costs.

• TSPTW-tri-gcd-depot: Combination of cost adjustments.

• TSPTW-tri-gcd-depot-1: Combination of cost adjustments, genmax = 1.

• TSPTW-tri-gcd-depot-50: Combination of cost adjustments, genmax = 50.
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Table 3.2 shows the average score and standard deviation for the different strategies. Inter-
estingly, the scores of TSPTW and TSP are similar. This may indicate, that time windows are
often not restrictive. All other cost adjustments reduce the average score compared to strategy
TSPTW. The combination of strategies further reduces the score. Rows TSPTW-tri-gcd-depot-1
and TSPTW-tri-gcd-depot-50 show, that the score is only slightly affected by the number of gener-
ations, indicating that already good solutions are found in just one generation. The second-last row
shows the theoretical performance of combining all strategies, assuming a perfect prediction model.
Unfortunately, the ML model constructed was not able to predict the strategies with sufficient ac-
curacy. Henceforth, the final approach uses simply the best strategy, i.e., TSPTW-tri-gcd-depot-12.
As mentioned before, increasing the number of generations does not necessarily improve the score.
Therefore, the number of generations is only slightly increased to genmax = 12, also to remain well
within the time limit of 240 minutes.

Table 3.2: Results
Strategy Average Score Standard Deviation Total Runtime [min]

TSPTW 0.0754 0.0512 104
TSP 0.0758 0.0512 103
TSPTW-tri 0.0748 0.0508 104
TSPTW-gcd 0.0721 0.0499 117
TSPTW-depot 0.0708 0.0522 103
TSPTW-tri-gcd-depot 0.0683 0.0513 120
TSPTW-tri-gcd-depot-1 0.0698 0.0517 38
TSPTW-tri-gcd-depot-50 0.0679 0.0510 461

Result assuming perfect prediction 0.0467 0.040 NA
Instead, chosen strategy: TSPTW-tri-gcd-depot-12 0.0678 0.0520 138

Figure 3.2 shows the distribution of scores for the chosen strategy, TSPTW-tri-gcd-depot-12 for
all 2718 high-quality routes tested. The majority of routes has a score ranging from 0.0 to 0.25.
Only few routes have scores above 0.30. For these high-scoring routes, drivers may have followed
other strategies.

3.5 Conclusion

Summary This paper models the Amazon Challenge as Traveling Salesman Problem with Time
Windows and uses the Hybrid Adaptive Large Neighborhood Search as solution approach. The
cost matrix is adjusted to mimic the behavior of drivers. The results show, that there exist arcs
with an unreasonably high difference in the way to and from a customer/depot, resulting in the
tendency of drivers to still use these arcs even if the costs are supposedly high. Additionally, the
costs resulting from traveling from the depot to the delivery area (and back) are less important,
meaning that drivers tend to accept a long distance on their way to the delivery area (and back)
if this results in short distances within the delivery area. This can be explained by the availability
and convenience of highways to get from the depot to the delivery area (and back). Furthermore,
the combination of different strategies results in a good score. A model that predicts which strategy
should be used depending on the instance with sufficient accuracy has yet to be developed.
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Figure 3.2: Histogram of scores for chosen strategy TSPTW-tri-gcd-depot-12

Avenues for further research There exist three avenues for further research, building on this
work:

• OR: Interview drivers to get insights into strategies they may follow, e.g., avoiding left-turns,
respecting breaks and customer-availability. Construct optimization models that include such
strategies.

• ML combined with optimization techniques: Implement a model with higher prediction
accuracy for predicting which strategy should be used depending on instance characteristics.
Additionally, ML-based insertion operators could be integrated into the HALNS.

• ML models directly constructing solutions: Predict the sequence directly by using
Gated-Graph Convolutional Neural Networks, complemented with features from the HALNS
population.
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Problem with Transshipments and Occasional Drivers

Stefan Voigt, Heinrich Kuhn

Abstract This article considers a setting in which a courier, express, and parcel service provider
operates a fleet of vehicles with regular drivers (RDs) to ship parcels from pickup to delivery
points. Additionally, the company uses a platform where occasional drivers (ODs) offer their
willingness to take on requests that are on or near the route they had originally planned. There
exist transshipment points (TPs) to better integrate these ODs. ODs or RDs may transfer load
at these predetermined TPs. The problem is modeled as a mixed-integer programming model
and called pickup and delivery problem with transshipments and occasional drivers (PDPTOD).
We develop a solution approach based on an adaptive large neighborhood search. The article
provides insights on how the number and location of TPs impact the cost advantages achieved by
integrating ODs. It also shows that the cost savings are highly sensitive to the assumed flexibility
and compensation scheme.
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4 PDP with Transshipments and Occasional Drivers

4.1 Introduction

The growth in online sales during recent decades combined with consumer expectations of a fast,
cheap and on-time delivery service necessitates the development of new and more cost-efficient
delivery concepts. The global share of e-commerce in retail sales is predicted to more than double
from 7.4% in 2015 to 15.5% in 2021 (Sampaio Oliveira et al. 2019). At the same time, consumer
expectations are rising. According to a study conducted by McKinsey on the future of last-mile
delivery, same-day delivery will grow to 25% of B2C and C2C (business-to-consumer and consumer-
to-consumer) volume (Joerss et al. 2016). Nevertheless, they find that only a fraction of customers
is willing to pay an appropriate premium for this kind of service. Traditional grocery retailers
recognize the growing importance of online sales and have accepted the challenge of creating a fast
and inexpensive delivery service for their customers by introducing crowdshipping (Hübner et al.
2019, Hübner et al. 2016), among other measures.
Crowdshipping applies the concept of crowdsourcing to logistics. Participants are people who

become couriers, so-called occasional drivers (ODs). ODs can be commuters or travelers who
are already traveling or dedicated non-professional or professional drivers (McKinnon 2016). If
commuters or travelers offer their services on a crowdshipping platform, the marginal costs, in
economic and environmental terms, will be very low. Crowdshipping therefore offers a chance
of reducing costs, increasing the speed of delivery and at the same time reducing environmental
impact. This makes it a promising concept for mastering some of the challenges that will arise in
last-mile logistics.
Crowdsourcing is a participative online activity in which an individual, institution, non-profit

organization, or company proposes to a group of individuals that they voluntarily undertake a task
via a flexible, open call. The undertaking of the task should entail mutual benefit (Estellés-Arolas
and de Guevara 2012). This definition of crowdsourcing implies several characteristics that apply
to crowdshipping to the same extent. First, a crowdshipping platform operates in digital form
and all participants need access to mobile technology. Furthermore, the undertaking of the task
is voluntary and flexible, which leads to challenges for the platform provider in sustaining and
guaranteeing a certain level of service quality. As ODs are not obliged to accept requests, solutions
may not be robust if many ODs decline the fulfillment of requests. Mechanisms to minimize the
number of declined requests are for example scores and reviews for ODs that exclude unreliable ODs
from the platform, or bonuses that promote reliable ODs. The platform provider supposedly cuts
costs, customers may benefit from increasing delivery service, and ODs from an additional source of
income. In addition to monetary compensation for ODs, a variety of possible incentives exists, e.g.,
some ODs are motivated by social or moral considerations, some just want to pass the time (Devari
et al. 2017). The crowd consists of a group of individuals and is therefore diverse. The platform
needs to consider this diversity by offering a certain flexibility in respect of compensation, the
number of pickups and dropoffs per trip, the time windows for service, and permitting detouring in
order to reach a critical mass of ODs. If the platform wants to allow multiple pickups and dropoffs
in a single trip, the routing has to be considered, which makes the problem even more challenging
(Arslan et al. 2018). In addition, it is crucial to generate trust between the participants. Trust-
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generating mechanisms include for example background checks, reviews and testimonials (Einav
et al. 2016). Another challenge, yet unsolved, is the possible exploitation of ODs. ODs have the
tendency to under-estimate the value of their time and the vehicle operating costs (McKinnon
2016). A possible solution is a platform that only allows cost-efficient matchings for both sender
and courier by providing fair compensation.
We consider a setting in which a distributor (e.g., a courier, express and parcel service provider

or an omnichannel retailer) operates a fleet of vehicles with regular drivers (RDs) to ship parcels
from pickup to delivery points, e.g., from retailer to online-customers or from one individual to
another. Additionally, the distributor uses a platform where ODs offer their willingness to fulfill
pickup/delivery tasks. We assume that the platform uses trust-generating mechanisms, scoring and
bonus systems to increase the reliability of ODs. ODs are therefore highly motivated to fulfill the
pickup/delivery tasks that have been assigned to them. As a result, the solutions generated are sta-
ble, i.e., routes for RDs and ODs are likely to be realized. In order to increase flexibility we consider
the possibility of transshipments between couriers at certain locations called transshipment points
(TPs), multiple tasks in a single trip for ODs and flexible compensation. At these predetermined
TPs, drivers (ODs or RDs) can hand over or take on their freight. Several planning problems arise
in this context. On a strategic level the distributor, for example, has to determine the location and
capacity of the TPs based on aggregated and estimated demand. On an operational planning level
the distributor has to decide which tasks are assigned to RDs, which to ODs, in which sequence
the drivers attend to the customers, and whether TPs are used. The present paper focuses on the
daily operational planning of routes and assumes that TPs are used on a flexible basis depending
on demand structure. The distributor aims to minimize the overall costs arising from the distance
traveled by RDs and the compensation paid to ODs. ODs receive compensation or payment de-
pending on the additional effort required to fulfill their task(s), i.e., their compensation or payment
depends on the length of the detour and the number of additional stops. Furthermore, we assume
a static setting where requests and offers from ODs are known in advance and are not time critical.
This assumption renders the system impractical for same-day delivery, but is reasonable due to
the increasing number of possible matches. As mentioned before, the platform needs to reach a
critical mass to sustain a certain service level. Especially in the early phase of a platform where
the number of couriers is insufficient, i.e., critical mass is not reached, lesser limitations regarding
time restrictions will produce more matches and hence lead to a better service level and higher
utilization of ODs. The lack of time windows for ODs is admittedly a simplifying assumption, but
it is nevertheless reasonable to investigate the effects of TPs and the spatial flexibility of ODs on
solutions.
This paper makes several contributions to the field of research. We introduce a new and chal-

lenging routing problem with regular drivers (RDs), occasional drivers (ODs) and transshipment
points (TPs). We term this problem “Pickup and Delivery Problem with Transshipments and
Occasional Drivers” (PDPTOD). The problem differs from existing modeling approaches in the
following respects. (1) The PDPTOD focuses on ODs, i.e., drivers who already have an origin and
destination. (2) ODs have realistic spatial limitations as their flexibility is expressed by the number
of stops and their willingness to make a detour. (3) RDs are employed alongside ODs. (4) TPs are
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integrated in the delivery process. Additionally, we develop a heuristic solution approach based on
an adaptive large neighborhood search (ALNS) in a simulated annealing framework. Furthermore,
we conduct extensive numerical experiments, providing insights on how the number and location
of TPs impact the cost advantages achieved when ODs are integrated into the delivery process.
We show that the cost advantages depend not only on the location and number of TPs but also on
the flexibility of ODs, the compensation scheme and the interaction between the aforementioned
aspects. On a more practical note, the model can be used for platforms that have not reached a
critical mass of ODs and therefore cannot guarantee to serve all customers with ODs only.
The remainder of the paper is organized as follows. Section 4.2 describes the problem in detail.

Section 4.3 discusses the related literature. Section 4.4 formulates the associated mixed-integer
programming (MIP) model. Section 4.5 presents the solution approach suggested that is used in
Section 4.6 for numerical experiments. Section 4.7 summarizes the fundamental findings of the
paper and provides directions for future research.

4.2 Problem Description

We focus on a local distributor (e.g., a courier, express and parcel (CEP) service provider or an
omnichannel retailer) operating its own fleet of vehicles with regular drivers (RDs) k̄ ∈ K̄ to ship
requests r ∈ R from pickup o(r) to delivery points d(r), e.g., from retailer to online customers or
from one individual to another. Every request has to be satisfied. The RDs can execute pickup
and delivery tasks when there are not sufficient occasional drivers (ODs) available or if it is cheaper
to use RDs, thus enabling the distributor to guarantee a certain service level. RDs start and end
at the same depot and cause costs depending on the distance traveled. Besides RDs, the company
uses an online crowdsourcing platform to obtain ODs for pickup and delivery tasks. Every OD
k̃ ∈ K̃ starts at its origin o(k̃) and end at its destination d(k̃). The distributor knows the pickup
and delivery tasks in advance, e.g., one day before the start of the tour. The same holds for ODs,
i.e., ODs express their willingness to participate the day before. This assumption is reasonable
for trips well known in advance or regular trips, e.g., daily trips to work and back home. The
platform mainly aims at commuters where the origin and destination are the same every working
day. Professional drivers with spare capacity and fixed routes can also participate on the platform.
ODs specify the maximum number of stops αk̃, maximum length of detours βk̃, and the origins
o(k̃) as well as the destinations d(k̃) of the respective trips originally planned. This gives ODs a
reasonable amount of control over their tasks while not overtaxing them with too much information.
In addition we assume that ODs have sufficient temporal flexibility, i.e., ODs are not obliged to
indicate time windows, as we assume that all requests can be fulfilled in a reasonable amount of
time. Of course, this is a simplifying assumption and may be critical if ODs have no temporal
flexibility. However, hard time windows would decrease the number of possible matchings, which is
especially unfavorable for platforms in their early stages. ODs and RDs are not obliged to deliver
parcels directly, they can transfer parcels at predetermined transshipment points (TPs) t ∈ T to
another OD or RD. A TP can be any suitable location with sufficient capacity, for example shops
or gas stations with a backroom, large parcel lockers or intermediate depots. We assume that these
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Figure4.1showsanillustrativeexamplewithtworequestsr=1andr=2. WithoutODs,

therequestshavetobeservedbyoneRD.TheRD(̄k=1̄)startsatthedepoto(̄1),picksupthe

requestsato(1)ando(2),deliversthefirstrequest1tod(1)andthenrequest2tod(2).Finally,

theRDreturnstothedepotd(̄1).TherouteoftheRDisdepictedwithblackarrowsontheleftof

Figure4.1.ThesolutionchangesifODsandTPsareusedasdisplayedontherightofFigure4.1.

AnODk̃=1̃startsather/hisorigino(̃1)(forexampleher/hisworkplace),picksupbothrequests,

dropsofftheloadatthetransshipmentpointTPandreachesher/hisdestinationd(̃1)(greyroute).

TheRDstartsatthedepoto(̄1),picksupthedroppedloadfrom̃1atTP,deliversrequest2,then

request1,andreturnstothedepotd(̄1).

4.3RelatedLiterature

Thepresentsectionreviewsrelevantliterature.First,Subsection4.3.1brieflypresentsliterature

thatdiscussesgeneralaspectsofcrowdshipping.Subsection4.3.2thengivesanoverviewonmodel-

ingapproachesthatarecloselyrelatedtoourproblemsetting.Afterwards,Subsection4.3.3reviews

exactandheuristicsolutionapproachesforthepickupanddeliveryproblem(PDP)sinceourmod-

elingandsolutionapproacharebasedontheseapproaches.Finally,Subsection4.3.4summarizes

thefindingsfromliteratureandidentifiesthespecificcontributionofourwork.
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4.3.1 Crowdshipping: Definition, challenges and opportunities

Many authors deal with fundamental questions of how crowdshipping can be used in practice, what
challenges and opportunities arise, or how to define crowdshipping. Sampaio Oliveira et al. (2019)
and Buldeo Rai et al. (2017) consider crowdshipping as an opportunity for city logistics, especially
for the last mile. Doerrzapf et al. (2016) see crowdshipping as a chance to strengthen local shops in
the competition with online retailers. McKinnon (2016) stresses the possible positive environmental
impact by cutting down urban traffic levels and therefore emissions. In contrast, Qi et al. (2018) find
that crowdshipping may increase emissions because occasional drivers (ODs) routes are prolonged
and that most cost savings are due to the reducing of the fleet of regular drivers (RDs) rather than
cutting operating costs directly. Le et al. (2019) present a review of current practice, research and
case studies from a demand, supply and operations point of view, coming to the conclusion that a
functioning crowdshipping system has to be fairly complex and needs features such as sophisticated
pricing and matching procedures. Similarly, Rouges and Montreuil (2014) suggest using automated
matching algorithms to increase the efficiency of crowdshipping platforms.

4.3.2 Crowdshipping problems

This subsection reviews publications that are directly related to our problem setting as all of them
consider ODs within the delivery process of parcels and goods. These papers present modeling and
solution approaches that match delivery requests and offers from ODs in a crowdshipping setting.
Table 4.1 lists and classifies these approaches. Approximately half of these approaches consider
transshipment points (TPs). Note that we omit literature related to other shared mobility concepts.
Interested readers are referred to, e.g., Mourad et al. (2019).

Table 4.1: Literature overview of crowdshipping approaches
Author RDs1 R2 All3 TP4 C5 S6

Soto Setzke et al. (2017) n 1 n n v s
Wang et al. (2016) n ≥ 1 y n v s
Archetti et al. (2016) y 1 y n f s
Macrina et al. (2017) y ≥ 1 y n f s
Dayarian and Savelsbergh (2020) y 1 y n - d
Arslan et al. (2018) y ≥ 1 y n f, v d

Kafle et al. (2017) y ≥ 1 y y bids s
Chen et al. (2017) (y) ≥ 1 y y f, v s
Raviv and Tenzer (2018) n ≥ 1 y y v d
Sampaio Oliveira et al. (2020) n ≥ 1 y y v s
Own Approach y ≥ 1 y y f, v s
1 Regular drivers: y/n.
2 Number of requests one OD can serve on a single trip: 1 or ≥ 1.
3 All requests have to be served: y/n.
4 Transshipment points: y/n.
5 Compensation: Fixed per request (f), variable depending on detour (v),
bids or none (-).

6 Setting: static (s) or dynamic (d).
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Crowdshipping without transshipments The following publications consider ODs fulfilling de-
livery requests but omit the option of using TPs. Soto Setzke et al. (2017) propose a matching
algorithm based on routes and time feasibility modeled as min-cost max-flow model. Wang et al.
(2016) provide a similar approach with the difference that all parcels have to be delivered and each
OD is allowed to make multiple deliveries. Both models are suitable for large-scale datasets, but as
a drawback require highly simplifying assumptions and lack the ability to integrate RDs in order
to guarantee a certain service level. Archetti et al. (2016) develop the vehicle routing problem with
occasional drivers (VRPOD) based on the classical capacitated vehicle routing problem (VRP),
and propose a multi-start heuristic for the solution. In contrast to both modeling approaches
mentioned previously, the VRPOD uses one RD as a backup option if no suitable OD is found.
The OD can handle only one request per trip and in turn receives compensation depending on the
distance between depot and customer, independent of the detour. The contribution of Archetti
et al. (2016) shows the potential benefits of employing ODs and the importance of choosing an
appropriate compensation scheme for ODs. Macrina et al. (2017) extend the VRPOD by allowing
multiple deliveries, split deliveries and integrating time windows. Allowing multiple deliveries is
one promising possibility to reduce the need for RDs and increase the use of ODs instead. Dayarian
and Savelsbergh (2020) also set up on the VRPOD. They assume that demand and capacity, i.e.,
the number of ODs, changes over time. ODs are in-store customers willing to deliver at most one
online order. They assume in contrast to Archetti et al. (2016) that ODs are always cheaper than
RDs because their compensation is in the form of store credits rather than actual payments. They
point out that a higher number of ODs with higher flexibility has the potential to decrease costs
and at the same time improve service quality. Arslan et al. (2018) consider a peer-to-peer platform
that uses foremost ODs and RDs only as a backup option, similar to Dayarian and Savelsbergh
(2020). They assume that ODs can deliver more than one request per job. This means routing is
necessary. They show that the use of ODs reduces costs and system-wide distance traveled.

Crowdshipping with transshipments All publications mentioned so far come without the possi-
bility of transferring load at TPs and make simplifying assumptions in some cases, such as only
one request per OD trip. The following publications are more closely related to our work as they
integrate TPs and allow multiple deliveries per OD. Kafle et al. (2017) suggest using cyclists and
pedestrians as ODs who are close to customers. In the first step, ODs submit bids to a truck carrier
and relay parcels at TPs if they win the bid. The ODs can take on several requests and have to
make sure that they are able to fulfill these requests on time and therefore organize their routes
independently. This assumption leads to high transactional costs for ODs, reducing the attractive-
ness of offering their services on the platform. The approach reduces the distance the truck travels
and cuts costs compared to pure truck delivery. Chen et al. (2017) develop the multi-hop driver-
parcel matching problem. This problem is characterized by the possibility of transferring parcels
multiple times between ODs. They assume that there is a shipping company with RDs that takes
on tasks that cannot be served by ODs at additional cost. However, compared to our setting, they
do not consider the routing of these RDs. Raviv and Tenzer (2018) develop an innovative approach
based on a connected network of automatic service points similar to the approach of Chen et al.
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(2017). Their work however considers the compensation scheme of ODs and incorporates service
level considerations, i.e., parcels that are in the system longer are prioritized. ODs may pick up,
drop off or transfer parcels at service points (SPs) that are along their original route. The ODs are
compensated for stopping by these SPs. Similar to our work, ODs are compensated per stop and
are allowed to make multiple stops at SPs, as long as they are on their route. In contrast to our
work, there are no RDs as backup option, and the routes of ODs are predetermined.
A very closely related problem to our problem setting is developed by Sampaio Oliveira et al.

(2020). Similar to our approach, they model the problem as a pickup and delivery problem (PDP)
with TPs based on the model of Rais et al. (2014), and develop an ALNS to solve it with reasonable
computation times. Our problem setting is different in the following respects. Sampaio Oliveira
et al. (2020) assume that crowdshippers work for a given period of time and are paid on an hourly
basis. Note that we particularly use the term “occasional drivers” to distinguish these types of
drivers from crowdshippers who work part-time and would otherwise not be traveling. ODs, in
contrast, are traveling anyway. In addition, the authors do not incorporate RDs as alternative
option to serve requests. The crowdshippers are only constrained by the time window in which
they want to work. Their model is therefore fitting for settings in which the crowdshipper works
part-time for the service provider. This is the case for companies such as Amazon Flex or Uber-
Freight, where crowdshippers indicate the period they are willing to work, but are not limited in
any other way. We focus on a courier express and parcel provider that uses fairly constrained
ODs (instead of part-time working crowdshippers) as an option, together with RDs. These RDs
guarantee to serve all requests, as long as their capacity suffices.

4.3.3 Pickup and delivery problem

Pickup and delivery problems (PDPs) describe a class of VRPs, in which vehicles not only deliver
goods, but also pick up goods. Some PDPs also permit transshipments within the delivery and/or
pickup tours. We briefly review the available modeling and solution approaches for PDP with and
without transshipments since the PDPTOD extends these problem classes.
A promising solution approach for the PDP with time windows (PDPTW) is the ALNS developed

by Ropke and Pisinger (2006). They applied the heuristic to more than 350 benchmark instances
and were able to provide new best solutions for more than 50% of them. More recently, the Lin-
Kernighan-Helsgaun (LKH) heuristic that is well-known for its good performance on the traveling
salesman problem (Helsgaun 2000) is extended to deal with many variants of VRPs by introducing
penalties for constraints (Helsgaun 2017). The LKH is able to further improve best-known solutions
of instances from the literature.
The literature on PDP with transshipments (PDPT) is rather limited. Drexl (2012, 2013)

presents some practical applications where transshipments are involved. Cortés et al. (2010) give
a new strict arc-based formulation for the PDPT and present a branch-and-cut solution approach
that decreases computation time by approximately 90% compared to a standard branch-and-bound
solver. Nevertheless, the instances for which they obtained solutions are remarkably small with
six requests, two vehicles and just one TP. Rais et al. (2014) present a mixed integer formulation
for the PDPT with a polynomial bounded number of constraints and variables. The MIP uses
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two distinct flows, i.e., (1) the vehicle flow and (2) the request flow, which are matched by linking
constraints. The proposed MIP formulation can be extended by simple modifications in order to
represent several variants of the problem. The authors prove this capability by showing how to
integrate time windows, split deliveries, heterogeneous vehicles with a flexible fleet size and flexible
vehicle stops, i.e., a vehicle may end its route at a node differing from its original depot. However,
their model does not cover the integration of constrained ODs, which can be used alongside RDs.
Numerical results are based on small instances with up to 14 nodes and are therefore rather limited,
as in Cortés et al. (2010).
The publications attempting to solve the PDPT exactly show that exact approaches are only

able to solve small instances, so heuristic solution approaches are necessary. A promising heuristic
solution approach for the PDPT developed by Masson et al. (2013) is an extension of the ALNS
for the PDP by Ropke and Pisinger (2006). The publication of Masson et al. (2013) is motivated
by an application where people with disabilities require transport, e.g., from their home to schools.
Similar to our work, transfers are possible at designated transfer points, but only RDs starting from
a set of depots are considered. They first implement an ALNS for the PDPTW without transfers
based on four destroy and two repair operators. This method is then extended by three destroy
operators, two repair operators and heuristics to choose appropriate transfer points to cope with
the PDPT. The ALNS is tested on instances from the literature and also on a case study concerning
the transport of disabled persons with a maximum of 193 requests and a maximum of 24 transfer
points. The authors are able to show that the introduction of transshipments has the potential to
reduce costs. However, the cost advantages greatly depend on the geographical characteristics of
the instances.

4.3.4 Summary

Many publications focus on crowdshipping in general, but few papers deal with optimization models
for matching ODs and demand. Early papers make highly simplifying assumptions, e.g., one request
per trip (Soto Setzke et al. 2017, Wang et al. 2016). Archetti et al. (2016) were the first to model the
problem as VRP, but still allow only one request per OD trip. The following publications extend
the ideas of Archetti et al. (2016) by allowing multiple deliveries, split deliveries and imposing
time windows (Macrina et al. 2017), covering the stochastic and dynamic aspects of the problem
(Dayarian and Savelsbergh 2020) or turning the problem into a PDP (Arslan et al. 2018). These
publications however neglect the possibility of using TPs to increase the flexibility of the system.
Kafle et al. (2017) use TPs, but do not cover the routing aspect of the ODs. In contrast, Chen
et al. (2017) neglect the routing of RDs. The setting of Sampaio Oliveira et al. (2020) is the most
related to our work, but focuses on crowdshippers instead of ODs, as previously explained.
To sum up, the problem setting considered in our paper has not yet been addressed in the

literature. We consider ODs who can serve multiple requests, alongside RDs and both type of
drivers have the possibility to transfer loads at TPs. The problem enriches the literature on PDPs
and crowdshipping by presenting a PDP variant with ODs and TPs. In the course of this we focus
on drivers who already have an origin and destination, termed ODs. These ODs have realistic
spatial limitations. Additionally, RDs are employed alongside ODs and TPs are integrated into
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the delivery process to increase the use of ODs and further reduce costs. The combination of
these aspects is unique in literature. From the methodological point of view, we present a MIP
formulation and an extension of the ALNS, which underlines the wide applicability of the ALNS.

4.4 The Pickup and Delivery Problem with Transshipments and
Occasional Drivers

The Pickup and Delivery Problem with Transshipments and Occasional Drivers (PDPTOD) is
defined on a directed graph G(N,A) with node set N and arc set A. The node set N consists of the
origins o(k̃) and destinations d(k̃) of occasional drivers (ODs), k̃ ∈ K̃, the starting o(k̄) and ending
depots d(k̄) of regular drivers (RDs), k̄ ∈ K̄, the locations of pickup o(r) and delivery requests d(r)
and transshipment points (TPs) t ∈ T . For i, j ∈ N , we denote the arc from i to j as (i, j) ∈ A
and the associated costs using cij . The arc set consists only of reasonable arcs, for example there
are no outgoing arcs from a destination depot. The model PDPTOD is based on the PDPT model
suggested by Rais et al. (2014). Table 4.2 summarizes the sets, parameters, and decision variables
defined. The PDPTOD is modeled afterwards.

Table 4.2: Notation used to formulate model PDPTOD
Sets
K Set of vehicles, K = K̄ ∪ K̃, K = {1, . . . , k, . . . , |K̄|+ |K̃|}
K̄ Set of regular drivers, start at origin o(k̄) and end at destination d(k̄), K̄ = {1, . . . , k̄, . . . , |K̄|}
K̃ Set of occasional drivers, start at origin o(k̃) and end at destination d(k̃), K̃ = {|K̄| +

1, . . . , k̃, . . . , |K̄|+ |K̃|}
R Set of requests with origin o(r) and destination d(r), R = {1, . . . , r, . . . , |R|}
T Set of transshipment points, T = {1, . . . , t, . . . , |T |}

Parameters
αk̃ Maximum number of stops, k̃ ∈ K̃
βk̃ Factor limiting the length of tour, k̃ ∈ K̃
γk̄ Maximum duration of tour, k̄ ∈ K̄
cij Traveling costs from node i to j, (i, j) ∈ A
M Sufficiently large number
pdetour Compensation depending on length of detour for ODs
pstop Compensation per stop for ODs
τij Traveling time from node i to j, (i, j) ∈ A

Decision Variables
sjrkl Binary variable indicating whether request r is transferred from vehicle k to vehicle l at node

j, sjrkl = 1 or not sjrkl = 0, j ∈ N , r ∈ R, k, l ∈ K, l 6= k

tarr
jk Time of arrival of vehicle k at node j, j ∈ N and k ∈ K
tdep
jk Time of departure of vehicle k at node j, j ∈ N and k ∈ K
xijk Binary variable indicating whether vehicle k uses arc (i, j), xijk = 1 or not xijk = 0, (i, j) ∈ A,

k ∈ K
yijkr Binary variable indicating whether vehicle k carries request r on arc (i, j), yijkr = 1 or not

yijkr = 0, (i, j) ∈ A, k ∈ K, r ∈ R
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Model PDPTOD

Minimize
∑
k∈K̄

∑
(i,j)∈A

cijxijk +
∑
k∈K̃

∑
(i,j)∈A

(pdetourcij + pstop)xijk− (4.1)

∑
k∈K̃

∑
(o(k),j)∈A

(pdetourco(k)d(k) + pstop)xo(k)jk

s.t.

∑
(i,j)∈A

xijk ≤ 1 ∀k ∈ K, i = o(k) (4.2)

∑
(i,j)∈A

xijk =
∑

(j,l)∈A
xjlk ∀k ∈ K, i = o(k), l = d(k) (4.3)

∑
(i,j)∈A

xijk −
∑

(j,i)∈A
xjik = 0 ∀k ∈ K, ∀i ∈ N \ {o(k), d(k)} (4.4)

tdep
ik + τij − tarr

jk ≤M(1− xijk) ∀(i, j) ∈ A, ∀k ∈ K (4.5)

tarr
jk ≤ t

dep
jk ∀j ∈ N, ∀k ∈ K (4.6)

yijkr ≤ xijk ∀(i, j) ∈ A,∀k ∈ K, ∀r ∈ R (4.7)∑
k∈K

∑
(i,j)∈A

yijkr = 1 ∀r ∈ R, i = o(r) (4.8)

∑
k∈K

∑
(i,j)∈A

yijkr = 1 ∀r ∈ R, i = d(r) (4.9)

∑
k∈K

∑
(i,j)∈A

yijkr −
∑
k∈K

∑
(j,i)∈A

yjikr = 0 ∀r ∈ R, ∀i ∈ T (4.10)

∑
(i,j)∈A

yijkr −
∑

(j,i)∈A
yjikr = 0 ∀k ∈ K, ∀r ∈ R, ∀i ∈ N \ (T ∪ {o(r), d(r)}) (4.11)

∑
(j,i)∈A

yjikr +
∑

(i,j)∈A
yijlr ≤ sjrkl + 1 ∀r ∈ R, ∀i ∈ T, ∀k ∈ K, ∀l ∈ K, k 6= l (4.12)

tarr
jk − t

dep
jl ≤M(1− sjrkl) ∀r ∈ R, ∀j ∈ T, ∀k ∈ K, ∀l ∈ K, k 6= l (4.13)∑

(i,j)∈A
xijk̃ ≤ αk̃ ∀k̃ ∈ K̃ (4.14)

∑
(i,j)∈A

cijxijk̃ ≤ βk̃co(k̃)d(k̃) ∀k̃ ∈ K̃ (4.15)

∑
(i,j)∈A

τijxijk̄ ≤ γk̄ ∀k̄ ∈ K̄ (4.16)

xijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K (4.17)

yijkr ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K, ∀r ∈ R (4.18)

sjrkl ∈ {0, 1} ∀j ∈ N, ∀r ∈ R, ∀k ∈ K, ∀l ∈ K (4.19)

tdep
jk ∈ R+

0 ∀j ∈ N, ∀k ∈ K (4.20)

tarr
jk ∈ R+

0 ∀j ∈ N, ∀k ∈ K (4.21)
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The objective function (4.1) quantifies the costs incurred in fulfilling all requests. The costs
consist of three terms. The first term quantifies the costs incurred by RDs. The second term
quantifies the detour costs and the compensation per stop for ODs. The third term reduces the
costs by the length of the route of the OD originally planned and by one stop, because the ODs are
only compensated according to the length of their respective detour and the number of additional
stops. Therefore, the last two terms reflect the overall compensation for ODs. Note that ODs can
go directly to their destination without affecting the objective, because the second and third term
cancel each other out.
Constraints (4.2) - (4.6) model the vehicle flow, whereas Constraints (4.8) - (4.13) model the

request flow, and Constraints (4.7) connect both flows. The following passage describes these
constraints in detail. Constraints (4.2) and (4.3) ensure that each vehicle starts at most one route
from its origin and ends at its destination depot, if it has left its origin depot. Constraints (4.4)
conserve vehicle flows. If a vehicle k uses arc (i, j), Constraints (4.5) ensure that the arrival time
at node j is greater than the departure time at node i plus the traveling time τij from node i to j.
Constraints (4.6) ensure that vehicle k does not depart at node j before it has arrived at the same
node. Constraints (4.5) and (4.6) prevent subtours. Constraints (4.7) guarantee the connection
of the vehicle flow and the request flow. Constraints (4.8) and (4.9) ensure that requests are
picked up and delivered. Constraints (4.10) conserve request flow at TPs where requests have to
be transported by any one vehicle. Constraints (4.11) conserve request flow at every other node.
In contrast to TPs, the same vehicle bringing the request to that node has to leave with that exact
same request. Constraints (4.12) enforce sjrkl to 1 if there is a transfer between vehicle k and l.
Constraints (4.13) ensure that the vehicle k transferring load to vehicle l arrives before vehicle l
departs. Constraints (4.14) restrict the number of stops of ODs. Constraints (4.15) limit the length
of the detour of ODs, Constraints (4.16) the duration of the RDs routes. Constraints (4.17), (4.18)
and (4.19) define the binary decision variables. Constraints (4.20) and (4.21) define the domains
of the continuous variables.

The model PDPTOD contains the traveling salesman problem as a special case that is known to
be NP-hard. Therefore, the PDPTOD is NP-hard as well. The MIP can only be solved for small
instances with a commercial MIP solver, as will be shown in Section 4.6. Consequently, we suggest
developing heuristic solution approaches.

4.5 Solution Approach

We propose an adaptive large neighborhood search (ALNS) embedded in a simulated annealing
framework for the solution of the PDPTOD. As mentioned before, the ALNS has been applied
to many variants of the VRP, including the PDPTW (Ropke and Pisinger 2006) and the PDPT
(Masson et al. 2013), which is closely related to our problem. Compared to the ALNS of Masson
et al. (2013), we do not use operators that directly remove transshipment points (TPs) and therefore
requests routed through this TP. Instead, TPs are only removed from a solution if no request is
served via this TP. Our ALNS uses no additional heuristic to select a subset of TPs during insertion.
The two insertion operators working with TPs may evaluate either all TPs or just one TP at random.
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Furthermore, operators are adapted to capture and utilize the characteristics of occasional drivers
(ODs). The proposed ALNS differs from existing approaches in three further major respects: (1)
we suggest using combined operators, i.e., different operators could be used during one iteration,
(2) the number of requests is sampled from a binomial and not from a uniform distribution, and (3)
the initial temperature of the simulated annealing approach is obtained via a sampling procedure.
In the following section, we give a high level introduction to the ALNS scheme. Next, we describe
the destroy and repair operators that are specially designed for the PDPTOD in detail.

4.5.1 Adaptive large neighborhood search

Figure 4.2 depicts the general scheme of the ALNS proposed. The ALNS extends the large neigh-
borhood search by choosing each destroy and repair operator depending on its past performance
during the search. The initial solution required is obtained by randomly applying repair operators
until every request is served, i.e., until the solution is complete and feasible. We use a simulated
annealing acceptance criterion to diversify the search. The probability of accepting a deteriorating
solution depends on the difference in costs of the candidate solution f(Solution) and the cost of
the best solution obtained so far f(BestSolution), as well as the current temperature Temp. The
temperature Temp is used as stopping criterion (line 4 of Figure 4.2) and is determined for every
instance with Temp = − ∆E

ln(χ0) using the formula from (Johnson et al. 1989) cited in (Ben-Ameur
2004), where ∆E is an estimation of the cost increase of strictly positive transitions and χ0 a pa-
rameter expressing the probability of accepting a deteriorating solution. We execute n0 iterations
of the ALNS in order to generate the transitions. The temperature is reduced by CoolRate after
each iteration (line 14). As long as the temperature is above the minimum temperature, TempLow
another iteration is executed. At the end of every iteration, the weights are updated according to
the performance of the operator. The score of an operator is increased by σ1 if the operator was
involved in producing a new global best solution, σ2, if a new solution is found that has lower costs
than the current solution, or σ3, if the new solution has higher costs but is accepted. The proba-
bility of choosing an operator depends on the scores obtained during the search and is calculated
in the same way as in Ropke and Pisinger (2006).

1 CurrentSolution← InitialSolution
2 BestSolution← CurrentSolution
3 Temp← GetInitialTemp()
4 while Temp > TempLow do
5 Choose Repair and Destroy Operator
6 Solution← Repair(Destroy(CurrentSolution))
7 if f(Solution) < f(BestSolution) then
8 CurrentSolution← Solution
9 BestSolution← CurrentSolution

10 else if accept(f(Solution), f(BestSolution), T emp) then
11 CurrentSolution← Solution
12 Update Operator Weights
13 Temp← CoolRate · Temp

Figure 4.2: ALNS algorithm in simulated annealing framework
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In the following Subsections 4.5.2 and 4.5.3, we give a brief overview of the operators imple-
mented. The first three destroy operators as well as the first three repair operators are adapted
from Ropke and Pisinger (2006) to match our problem setting. If there are no TPs and no ODs,
the problem is reduced to a classical PDP and can be solved while using only the first three destroy
and repair operators. If there are additionally ODs available, but no TPs, the scenario is denoted
as Pickup and Delivery Problem with Occasional Drivers (PDPOD) and can be solved without
both insertion operators for TPs. Table 4.3 presents an overview of the operators used for solving
the three models, i.e., PDP, PDPOD and PDPTOD.

Table 4.3: Overview of operators used
Operator ALNS-PDP ALNS-PDPOD ALNS-PDPTOD
Random removal X X X
Worst removal X X X
Shaw removal X X X
Least efficient removal X X
Combined removal X X X

Random insertion X X X
Best insertion X X X
Regret-3 insertion X X X
Best-with-random TP insertion X
Best-with-best TP insertion X
Combined insertion X X X

4.5.2 Destroy operators

We use five destroy operators that remove q requests (pickup and delivery nodes) from the current
solution. The number of requests q to be removed is determined in every iteration and sampled
from a binomial distribution with sample size |R| and probability pbinom. The idea is to introduce a
bias for lower q, but still maintain the possibility of removing a high number of requests. Uniformly
distributed q usually focuses on a narrow range and therefore limits the diversification.

Random removal The random removal operator is the simplest and fastest one. It randomly
removes q requests from the solution. If the pickup and delivery of a request are served by two
vehicles (i.e., a TP was used), it will be checked whether the TP is used by other requests on the
same two routes. If the TP is not used any more, it will be removed from both routes. The same
check is implemented for every other destroy operator.

Worst removal The worst removal operator iterates across all routes of ODs and regular drivers
(RDs) to find the request that increases the cost the most and removes this request.

Shaw removal The shaw removal operator removes requests that are similar to each other. The
similarity Rel(r1, r2) is measured by the distance D of pickup o(r1) to o(r2) and D of delivery
d(r1) to d(r2) and the number of common ODs that are able to serve both requests. The reasoning
behind this is that these requests can potentially be handled by the same OD, leading to reduced
detours. The lower the Rel(r1, r2), the more related are requests r1 and r2.
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Rel(r1, r2) = Do(r1),o(r2) +Dd(r1),d(r2) + (1− |K̃r1 ∩ K̃r2 |
min(|K̃r1 |, |K̃r2 |)

) (4.22)

The shaw removal operator chooses the first request to be removed with the random removal
operator. The following requests are chosen from a sorted array of all remaining requests, whereas
the array RRe is sorted by increasing Rel(r1, r2). uniform(0, 1)pShaw |RRe| determines the index
of the request to be removed from the array. pShaw ≥ 1 introduces randomness in selecting the
requests.

Least efficient removal It is only worthwhile using RDs and ODs when they fulfill requests in
an efficient way, i.e., without long detours. The least efficient removal operator removes a request
from the route with the lowest efficiency. The cost per request, costr is used as proxy for efficiency.
It measures the relative cost by dividing the total cost, costk of a route k by the number of requests
|Rk| served via this specific route. Rk defines the requests served via route k. The higher the cost
per request, the lower the efficiency.

costr = costk
|Rk|

∀r ∈ Rk, k ∈ K (4.23)

Combined removal The combined removal operator removes a request by randomly applying one
of the aforementioned operators. The probability depends on the operator weights and is selected by
a roulette wheel selection approach. The operator is chosen for every request and therefore may be
different for requests in the same iteration. The combined removal operator fosters diversification.

4.5.3 Repair operators

Repair operators insert requests that have previously been removed into the solution. We use six
operators to build a new solution, three of which are relatively standard and do not use TPs. The
fourth and fifth operator ensure the use of TPs. In some cases these two operators are not able to
insert a request while using a TP because for example no OD is able to serve the request without
exceeding the maximum detour they are willing to make. If the request cannot be inserted using a
TP the request is inserted via the best insertion operator.

Random insertion The random insertion operator inserts a request randomly into the current
solution without using a TP. This means the pickup and delivery of one request has to be served
by exactly one vehicle. The operator may use both types of drivers, RDs or ODs. The route in
which the request is to be inserted is chosen randomly from the set of possible drivers. The set
of possible drivers contains only RDs and ODs for which the request is in reach, i.e., pickup and
delivery can be served without violating the detour constraint. This set is calculated once and
reduces the runtime that would otherwise be wasted on fruitless attempts assigning requests to
drivers who are for sure unable to serve these requests. This set becomes considerably smaller as
βk decreases.
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Best insertion Instead of inserting the request randomly, the best insertion operator determines
which route and which position increase the costs least. The operator iterates across the set of
candidate RDs and ODs and chooses the driver who can accommodate the request with the least
additional effort.

Regret-3 insertion The operator shows some foresight. It calculates the cost difference between
the best vs. second best and second best vs. third best route in which the request can be inserted.
The operator iterates across all requests to be inserted and inserts the request with the highest
regret value. Before calculating the actual regret values, requests that can be served by fewer than
three routes because of the detour constraint are inserted in order of ascending number of potential
routes. This means requests with only one potential route are inserted first followed by requests
with two potential routes, and so on.

Best-with-random TP insertion This operator enforces the use of a random TP when inserting
the request. Figure 4.3 depicts the procedure. The procedure calculates the costs for all potential
pickup and delivery routes when using a random TP. The pickup route is the route where the
pickup will be inserted, the delivery route the route where the delivery of the same request will be
inserted. The TP can either be already in the route or has to be inserted. In the second case, it
is inserted at its least costly position in this route. If the insertion of the TP was successful, the
algorithm proceeds and inserts the pickup before the TP. Again, if the insertion of the pickup was
successful, the algorithm will succeed, otherwise it will try the next pickup route. The insertion
of the delivery with transshipment is performed in a similar manner. The only difference lies in
the position where the delivery has to be inserted. The delivery is inserted after the TP. For all
potential (pickup route) - (TP) - (delivery route) combinations the combination with the lowest
cost is determined and the request is inserted accordingly.

Best-with-best TP insertion The second-last repair operator is similar to the best-with-random
TP insertion operator. They differ in the fact that the best-with-best TP insertion operator iterates
across all possible TPs and uses the (pickup route) – (TP) – (delivery route) combination with the
lowest cost. The benefit is the choice of a TP that fits into the routes by means of short detours.
The obvious drawback is the high computation time.

Combined insertion The combined insertion operator inserts a request by randomly applying one
of the aforementioned operators. The operator is selected in the same fashion as the combined
removal operator. It can be worthwhile inserting just some of the requests with operators that
force the use of one TP, and the rest without transshipments.
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1 Require: Request r with pickup o(r) and delivery d(r)
2 Choose random t
3 for pickup route ∈ potential pickup routes do
4 CostP ickupRoute← f(pickuproute)
5 if t not in pickup route then
6 insert t in pickup route at best position
7 if t in pickup route then
8 insert o(r) in pickup route at best position before t
9 if o(r) in pickup route then

10 for delivery route ∈ potential delivery routes do
11 CostDeliveryRoute← f(deliveryroute)
12 if pickup route 6= delivery route then
13 if t not in delivery route then
14 insert t in delivery route at best position
15 if t in delivery route then
16 insert d(r) in delivery route at best position after t
17 if d(r) in delivery route then
18 Cost← f(pickup route)+f(delivery route)−CostP ickupRoute−CostDeliveryRoute

19 Determine (pickup route) – (TP) – (delivery route) combination with lowest Cost
20 Insert request accordingly

Figure 4.3: Best-with-random TP insertion operator

4.6 Computational Experiments

In this section we introduce the instances used, briefly show how we determined the parameters,
evaluate the performance of the ALNS and lastly provide some managerial insights by means of
a sensitivity analysis. All experiments were conducted on an AMD Ryzen 7 2700X CPU with
eight cores and 16 GB of RAM. We used Gurobi 8.1 as exact solver and LKH-3 (LKH-3 can be
downloaded from http://akira.ruc.dk/~keld/research/LKH-3/) as a benchmark heuristic for
the larger PDP instances. The ALNS was coded in C++.

4.6.1 Instance generation

The pickup and delivery problem with transshipments and occasional drivers (PDPTOD) is a new
problem and therefore no benchmark instances exist. We used Solomon instances (Solomon 1987)
and Li & Lim instances (Li and Lim 2003) to generate appropriate instances. All pickups originate
from a central depot (VRP-like) for Solomon instances, and every request has a unique origin (PDP-
like) for Li & Lim instances. We only used the coordinates for the requests from these instances, as
we do not consider capacities or time windows. We randomly generated the origins and destinations
of occasional drivers (ODs) in an area with a lower left corner [0.9 ·min(xr), 0.9 ·min(yr)] and an
upper right corner [1.1 ·max(xr), 1.1 ·max(yr)]. Note that xr denotes the x coordinate of requests
and yr the y coordinate. Four transshipment points (TPs) are generated in the same manner for the
case where TPs are randomly distributed in the relevant distribution area (scenario TR). Scenario
T4 assumes four TPs at the locations specified in Table 4.4, which locates the TPs according to
the requests. Scenario TR and T4 resemble the model PDPTOD. Scenario T0 goes without any
TPs and therefore resembles the model without transshipments, i.e., pickup and delivery problem
with occasional drivers (PDPOD).
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Table 4.4: Regions and locations of transshipment points (TPs) in scenario T4
Region Location
North [min(xr) + 0.5 · range(xr),min(yr) + 0.75 · range(yr)]
East [min(xr) + 0.75 · range(xr),min(yr) + 0.5 · range(yr)]
South [min(xr) + 0.5 · range(xr),min(yr) + 0.25 · range(yr)]
West [min(xr) + 0.25 · range(xr),min(yr) + 0.5 · range(yr)]

There are 12 request scenarios, each with three different TP scenarios and 30 different OD
distributions. As naming convention we propose Request Distribution-R-T-OD-n. For example
the instance R101-R25-TR-OD25-1 assumes 25 requests distributed according to R101, randomly
distributed TPs and 25 ODs with randomly distributed origin and destination. R101-R25-T4-
OD25-1 is the same instance except for the locations of TPs. This leads to 810 VRP-like instances
and 270 PDP-like instances. Table 4.5 presents an overview of all instances tested.

Table 4.5: Overview of test instances
Request Distribution #Requests TP Scenario #ODs

VRP-like
R101 25 T0, TR, T4 25

50 T0, TR, T4 50
100 T0, TR, T4 100

RC101 25 T0, TR, T4 25
50 T0, TR, T4 50
100 T0, TR, T4 100

C101 25 T0, TR, T4 25
50 T0, TR, T4 50
100 T0, TR, T4 100

PDP-like
lr201 51 T0, TR, T4 50
lrc201 51 T0, TR, T4 50
lc201 51 T0, TR, T4 50

4.6.2 Parameter tuning and analyses of operators

Parameters are tuned using the first instance of the TR, T4 and T0 scenario of R101, RC101, C101
with 100 requests and lr201, lrc201, lc201 with 51 requests (R101-R100-TR-OD100-1, R101-R-
T4-OD100-1,..., lc201-R51-T4-OD50-1 ), resulting in 12 tuning instances for the ALNS procedure.
Every instance is solved three times. We tune only the parameters that have shown the most impact
on the algorithm performance found in preliminary experiments, i.e., χ0, TempLow, coolRate,
and pbinom. We set default values to the parameters similar to values found in literature or use
values that seemed to deliver the best performance in preliminary experiments. We then fix all
parameters except for one that is altered in a specific range. Finally, we decide on a set of parameters
that promises a fair compromise of solution quality against runtime. Table 4.6 summarizes the
parameters used by the ALNS procedure independent of the underlying problem situation, whether
PDPOD or PDPTOD.
Table 4.7 shows the performance of the ALNS when removing one operator and using all the
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Table 4.6: Parameters and values for ALNS
Parameter Default value Range tested Chosen value

n0 400 - 400
χ0 0.25 [0.05, 0.10, ..., 0.90, 0.95] 0.35

TempLow 1 [2, 1, 0.5, 0.2, 0.1, 0.05, 0.01, 0.005] 0.5
coolRate 0.9996 [0.999, 0.9991, ..., 0.9999] 0.9998
pbinom 0.35 [0.05, 0.10, ..., 0.55, 0.60] 0.35
pshaw 6 - 6
Wi 1 - 1
σ1 30 - 30
σ2 1 - 1
σ3 10 - 10
Rate 0.1 - 0.1

remaining operators to solve PDPTOD. Column “Deviation” shows the deviation of the solution
quality compared to the solutions obtained by ALNS with all operators. We used the same instances
as for parameter tuning. We found that every operator contributes to the overall solution quality.
Shaw removal, best insertion and best-with-best TP insertion operator are especially powerful
operators that should not be left out. Even the random operators seem to increase the solution
quality by introducing some diversification, which ultimately helps finding better solutions.

Table 4.7: Performance without specific operators
Without Operator Deviation [%]

Random removal +5.61
Worst removal +4.46
Shaw removal +8.15
Least efficient removal +2.90
Combined removal +5.35

Random insertion +3.66
Best insertion +14.88
Regret-3 insertion +4.46
Best-with-random TP insertion +3.76
Best-with-best TP insertion +12.14
Combined insertion +6.70

4.6.3 Performance evaluation

The performance of the ALNS is evaluated by comparing its results against the exact solution
obtained by solving model PDPTOD with Gurobi. As Gurobi only solves small instances within
reasonable times, we evaluate the performance of the ALNS against the heuristic solution of the
LKH-3 for larger instances with up to 100 requests. Note that LKH-3 is only able to solve the
classical PDP without ODs and without TPs, i.e., |T | = 0, which is a special case of model
PDPTOD. We denote this case as a “baseline scenario.” Lastly, the solutions of instances with
ODs and TPs are compared against the previously solved baseline scenario, i.e., the case without
ODs and without TPs.
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4.6.3.1 Benchmark against gurobi

Twelve small instances with |R| ≤ 10, |T | = 4, |K̃| = 5, α = 12, β = 2.0, pstop = 0, pdetour = 1.0
are solved with Gurobi and the ALNS. The time limit for Gurobi was set to 7200s. Gurobi and the
ALNS are run only once. Table 4.8 presents the results. Note that the column “Gap” represents

Table 4.8: Results Gurobi vs. ALNS solution for instances with |R| ≤ 10, |T | = 4, |K̃| = 5

Instances Gurobi ALNS

Cost Runtime [s] Gap [%] Cost Runtime [s] Gap[%] TP used
R101-R8-RT-OD5 130 682 0 130 <1 0 y
RC101-R8-RT-OD5 59 7200 12 59 <1 12 y
C101-R8-RT-OD5 49 7200 57 36 <1 41 y
lr201-R8-RT-OD5 115 10 0 115 <1 0 y
lrc201-R8-RT-OD5 162 7200 29 162 <1 29 n
lc201-R8-RT-OD5 229 2529 0 229 <1 0 n
R101-R10-RT-OD5 173 579 0 173 <1 0 n
RC101-R10-RT-OD5 124 7200 59 86 <1 41 y
C101-R10-RT-OD5 58 7200 52 55 <1 49 y
lr201-R10-RT-OD5 130 40 0 130 <1 0 y
lrc201-R10-RT-OD5 - 7200 - 171 <1 - n
lc201-R10-RT-OD5 154 1113 0 155 <1 1 n

the MIP Gap, i.e., the difference vs. the current lower bound. Gurobi finds the optimal solution
(Gap = 0) within the time limit for six instances. For five instances it achieves a feasible integer
solution, it fails only for one instance. The ALNS achieves the same solutions for five instances.
For three instances it finds a better solution within the given time limit of the ALNS procedure.
The ALNS achieves slightly worse results only for one instance. The ALNS needs less than 1s for
each instance, while Gurobi needs 4013s on average. The ALNS achieves comparable results for
small instances. Unfortunately, it is not possible to compare the performance against Gurobi for
larger instances because the runtime becomes prohibitive. However, we analyze the quality of the
ALNS procedure by comparing the solutions achieved against the LKH-3 procedure, assuming the
baseline scenario where ODs and TPs are not present, i.e., the PDP modeling approach.

4.6.3.2 Benchmark against LKH-3

This section compares the results of the ALNS approach with the LKH-3 approach, assuming
scenarios without ODs and TPs. The LKH-3 and the ALNS are both run three times, the best
solution found, and the average runtime is reported in Table 4.9. The difference in terms of costs
is reported in column Gap [%], where Gap = CostALNS − CostLKH−3

CostLKH−3
.

Both heuristics achieve the same results for ten out of twelve instances. In one case the ALNS
produces slightly worse results, in one case slightly better. The LKH-3 needs 10s on average,
the ALNS only 4s. The ALNS produces high-quality solutions for cases with up to 100 requests,
assuming no TPs and no ODs, within a short computation time. Note that the results for this
baseline scenario serve as an upper bound for the following experiments. The objective value cannot
get worse if TPs or ODs are available because it is always possible to only use regular drivers (RDs)
without deploying ODs and without fulfilling requests via TPs.
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Table 4.9: Results of LKH-3 vs. ALNS for instances with |T | = 0, |K̃| = 0

Instance LKH-3 ALNS

Cost Runtime [s] Cost Runtime [s] Gap [%]
R101-R25-T0-OD0 311 <1 311 <1 0
RC101-R25-T0-OD0 226 <1 226 <1 0
C101-R25-T0-OD0 133 <1 133 <1 0
R101-R50-T0-OD0 455 <1 455 3 0
RC101-R50-T0-OD0 370 <1 370 2 0
C101-R50-T0-OD0 242 <1 242 2 0
lr201-R51-T0-OD0 709 35 723 4 2.0
lrc201-R51-T0-OD0 743 11 737 4 -0.8
lc201-R51-T0-OD0 543 <1 543 2 0
R101-R100-T0-OD0 629 17 629 10 0
RC101-R100-T0-OD0 637 29 637 10 0
C101-R100-T0-OD0 501 17 501 8 0

4.6.3.3 Comparison with baseline scenario

Table 4.10 shows the results obtained by solving instances with up to 100 requests, 100 ODs,
α = 12, β = 2.0, pstop = 0 and pdetour = 1.0. Cost [%] is a standardized value. It is calculated by
dividing the average cost, costav, by the best known cost of the baseline scenario, costbase, without
TPs and without ODs, as denoted in Table 4.9.

Table 4.10: Results achieved by approach PDPOD (T0) vs. approach PDPTOD (TR, T4) for
instances with |R|, |K̃| ≤ 100

Cost [%] Hypotheses1 Average runtime [s]

T0 TR T4 T0=TR T0=T4 TR=T4 T0 TR T4
R25, OD25 64.602 54.38 50.75 *** *** ** 1.10 3.19 3.84

R101 R50, OD50 55.86 51.64 46.92 *** *** *** 3.63 14.13 19.14
R100, OD100 42.22 41.32 39.01 o ** ** 11.85 115.63 161.02

R25, OD25 81.59 61.64 54.53 *** *** *** 1.09 3.06 3.37
RC101 R50, OD50 67.80 56.65 51.63 *** *** ** 3.53 15.49 18.57

R100, OD100 50.82 49.68 46.79 o *** * 13.25 113.55 168.93

R25, OD25 98.02 82.31 75.76 *** *** *** 0.46 2.18 2.35
C101 R50, OD50 80.29 68.35 59.82 *** *** *** 3.52 11.49 15.10

R100, OD100 48.32 49.56 44.25 o *** ** 14.09 113.97 145.89
1 Shows if the hypothesis can be rejected and the according p-value. ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05,
o: p > 0.05

2 Example calculation:
Cost [%] = costav

costbase · 100 = 64.60 with

costav =
∑30

i=1 f(R101− R25− T0−OD25− i)
30 = 200.91

costbase = 311

A Wilcoxon test on the paired samples is executed to check the following three hypotheses.

• Column T0=TR: ”Scenarios T0 and TR lead to the same solution quality”

• Column T0=T4: ”Scenarios T0 and T4 lead to the same solution quality”

• Column TR=T4: ”Scenarios TR and T4 lead to the same solution quality”
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The PDPTOD modeling approach usually leads to solutions with significantly lower costs com-
pared to the approach of neglecting TPs, i.e., the PDPOD modeling approach. We are only unable
to show a significant difference in the solution quality of scenario T0 and TR for instances with
100 requests. In general, the costs achieved by approach PDPTOD (TR, T4) should not be higher
than the costs achieved by approach PDPOD (T0) because TPs are only used if cost advantages
can be realized. The ALNS procedure successfully achieves cost advantages in all but one case
(C101-R100-TR-OD100). We can also reject the hypotheses that scenarios TR and T4 lead to the
same solution quality, i.e., the evidence provided in Table 4.10 shows that a reasonable placement
of TPs has the potential to decrease costs.
The ALNS procedure scales well with the instance size. Small instances with R25, OD25 are

solved in few seconds. Larger instances are solved in less than 20 seconds, except for instances with
R100, OD100 and TR or T4, which take considerably more time because of the increasing number
of possible solutions when TPs are available.

4.6.4 Sensitivity analysis

Since crowdshipping is a relatively new delivery concept, it is important to understand how the
characteristics of planning scenarios impact the economic advantages of this concept. The following
investigation may therefore be of interest for companies who are experimenting with crowdshipping.
We analyze the impact of the number and flexibility of ODs, the number and location of TPs and the
compensation scheme for ODs on diverse dependent variables. Dependent variables are total costs,
the share of ODs used and the share of requests served via TPs. We use randomly distributed and
clustered VRP-like instances with |R| = 50 (R101-R50 and C101-R50) to illustrate these effects.
Please note that because of space limitations we do not present the results for the additional
instances mentioned in Table 4.5 in detail as long as these instances result in equivalent effects.
We assume three flexibility levels: low (α = 4, β = 0.2), medium (α = 8, β = 0.6) and high

(α = 12, β = 1.0). As a compensation scheme we assume pdetour = 1 and pstop = 0, i.e., ODs
receive the same compensation as RDs. In this case, costs are synonymous with the total distance
traveled. The number of available ODs varies within the following range: |K̃| = [10, 20, 30, 40, 50].

4.6.4.1 Analyzing total costs

Figures 4.4 and 4.5 show the impact of the number of ODs, the flexibility level of ODs and the
transshipment scenario chosen on the objective value achieved. The horizontal and vertical axes
denote the number of ODs and the standardized objective value [%], respectively. The objective
value quantifies the percentage of the total costs achieved compared to the total costs in a scenario
without any ODs. Three different lines (light-grey dashed line, grey dotdashed line, black dotted
line) represent the transshipment scenario (T0, TR, T4).
It is possible to achieve significant cost savings if more ODs are available. However, the cost

savings strongly depend on the flexibility of ODs and how the requests are distributed. The cost
savings per additional OD are higher if the requests are randomly distributed and the flexibility of
the ODs is high (see Figure 4.4b). Minor cost effects can be observed on clustered instances with
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less flexible ODs, especially if no transshipment points (T0) are available (see Figure 4.5a). In the
event of clustered requests, the ODs should offer a certain degree of flexibility in order to be able to
serve an entire cluster with a limited number of ODs, since an entire cluster can also be efficiently
served by a single RD (see Figures 4.5a vs. 4.5b). Thus, if the flexibility of ODs is limited, it is
more cost efficient to serve the entire cluster with only one RD and not with a combination of ODs
and RDs. In addition, the impact of TPs on the objective value is greater for clustered instances
(C101) than for random instances (R101). This becomes especially visible if the TPs are placed
in a somewhat reasonable manner, e.g., scenario T4 (see black dotted line in Figure 4.5b). The
average effect of TPs on the objective value is relatively small in our numerical experiments. This
confirms the findings of Sampaio Oliveira et al. (2020). They found small positive cost effects if the
driver shift length is long and the distance between pickup and delivery points is short. However,
we observe additionally to their findings that the impact of TPs on the objective value strongly
depends on the distribution of requests.

(a) Low Flexibility (b) High Flexibility

Figure 4.4: Objective value depending on the number of available ODs, R101-R50

(a) Low Flexibility (b) High Flexibility

Figure 4.5: Objective value depending on the number of available ODs, C101-R50
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4.6.4.2 Analyzing the share of ODs used

We assume that the number of ODs used is important to achieve long-term stability. Low utilization
may lead to OD dissatisfaction. If ODs do not receive tasks repeatedly, it is likely that they will
no longer offer their services on the platform and henceforth fewer ODs will be available to fulfill
the requests. We therefore analyze this issue in the present subsection. Figures 4.6 and 4.7 show
the impact of the number of available ODs, the flexibility and the transshipment scenario on the
share of the entire set of available ODs used to fulfill the requests. Note that the share of ODs used
quantifies the average number of ODs deployed compared to the total number of available ODs.

(a) Low Flexibility (b) High Flexibility

Figure 4.6: Share of ODs used depending on the number of available ODs, R101-R50

(a) Low Flexibility (b) High Flexibility

Figure 4.7: Share of ODs used depending on the number of available ODs, C101-R50

Obviously, the deployment of an OD greatly depends on her/his willingness to undertake detours,
i.e., her/his flexibility to make extra trips. Thus, an OD would never be deployed for a trip that is
located outside her/his direct range. In the instances analyzed, only a limited share of ODs could
directly serve a request. We visualize this share of ODs by adding a solid black line into the charts
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of Figures 4.6 and 4.7. If a request is located outside the direct range of an OD, the OD can only
be deployed during a fulfillment process if the request is served via a TP. This means that in cases
without TPs (T0, light-grey dashed line), the share of ODs deployed cannot be higher than the
average share of ODs who are in the direct range of a request (solid black line). Figures 4.6 and
4.7 also show that the share of ODs used greatly depends on the request distribution, but only
slightly depends on the number of available ODs. This means that the absolute number of ODs
used increases with the number of available ODs. Therefore it is not against the ODs’ interests to
have more ODs to compete with, in some cases it is even beneficial for the ODs.
Higher flexibility increases utilization. The platform provider should therefore ensure that the

ODs are flexible, i.e., willing to deviate from the route originally planned, and to accept additional
stops. The share of ODs used is higher for instances where requests are randomly distributed (see
Figure 4.6). In these cases, many ODs get to serve only a small number of requests per OD. In
contrast, for clustered instances the utilization of ODs is relatively low (see Figure 4.7) because
clusters are better served with just a few ODs. Figure 4.8 shows an illustrative example where the
upper left cluster – far away from the origin of requests – is served by one OD only, who – of course
– offers high flexibility.

Low Flexibility

Depot RD

Origin request

Destination request

Origin OD

Destination OD

Route RD

Route OD

O

D

O O

High Flexibility

D D

Figure 4.8: Illustrative example of a cluster served by only one OD

TPs improve utilization. ODs who were not able to serve any request without TPs because of
the detour constraint now find themselves in the range of some requests delivered via TPs and can
also be deployed. This effect becomes more pronounced as flexibility decreases. In some cases (e.g.,
Figure 4.7a), the number of ODs used is even higher than the average share of ODs located in the
direct range of at least one request (solid black line vs. TR and T4 scenarios).
The results shown focus on VRP-like instances. The share of ODs deployed, however, is much

higher for PDP-like instances, which are not presented here in detail. In those cases, the deployment
of ODs only slightly depends on the flexibility offered by ODs, the availability of TPs and the total
number of available ODs. A platform operating in PDP-like circumstances can therefore guarantee
higher and more stable utilization of ODs than a platform operating in VRP-like circumstances.
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4.6.4.3 Analyzing the share of requests served via TPs

Figures 4.9 and 4.10 show the impact of the number of ODs, the flexibility level and the transship-
ment scenario on the share of requests served via TPs.

(a) Low Flexibility (b) High Flexibility

Figure 4.9: Share of requests served via TPs depending on the number of available ODs, R101-R50

(a) Low Flexibility (b) High Flexibility

Figure 4.10: Share of requests served via TPs depending on the number of available ODs, C101-R50

Note that the charts do not show results for the instances that exclude TPs, i.e., scenario T0.
Obviously, in those cases no request can be fulfilled via TPs.
The share of requests served via transshipment points considerably depends on the flexibility

level offered by the ODs, and greatly depends on where the TPs are located in the distribution
area. In cases where ODs only offer low flexibility, TPs are rarely used (see Figures 4.9a and
4.10a). Nevertheless, the availability of TPs increases the deployment of ODs, as demonstrated in
the previous subsection. However, in cases where ODs offer high flexibility, the utilization of TPs
substantially increases with the increasing number of available ODs (see Figures 4.9b and 4.10b).
The T4 scenario (black dotted line), in addition, reveals the relevance of placing TPs appropriately
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in the distribution area. In this case the TPs are located in accordance with where requests occur.
Thus, almost every request is served via a TP. The solution for clustered instances results in a
two-stage distribution structure for 64% of the requests, on average, where the TPs (first stage)
are served via RDs and via ODs in the second stage. ODs additionally take over the first stage
of the transport for randomly distributed instances. TPs are at most used for 48% of requests in
the case of PDP-like instances (randomly generated instances, scenario T4 with 50 OD), and ODs
usually serve the first and second stage. A two-stage distribution structure is therefore not obvious
for PDP-like instances. Please note that a distribution structure larger than two stages cannot
occur since the ALNS procedure developed only allows using a maximum of one TP when fulfilling
a delivery request.
Summarizing the observations above, it is highly important to locate the TPs in accordance with

the demand arising, and not just randomly. In addition, a platform provider should preferably set
up a two-stage structure if ODs offer high flexibility and clustered requests originate mostly from
the depot.

4.6.4.4 Analyzing the compensation per additional stop

Figure 4.11 shows the impact of the compensation paid to ODs per additional stop, pstop, on the
objective value (4.11a), on the share of ODs used (4.11b) and on the share of requests served via
TPs (4.11c). The C101 instance type with medium flexibility serves here to illustrate the effect, as
it is very pronounced in this case. Nevertheless, the effects can also be observed in other instances,
albeit in a less pronounced form. As expected, cost savings decrease as the compensation per stop

(a) Objective Value (b) Proportion of ODs used (c) Proportion of requests served
via TPs

Figure 4.11: Impact of compensation rate pstop on the results, C101-R50, medium flexibility

increases. The share of ODs used also decreases gradually with increasing pstop. For both Figures
4.11a and 4.11b, it can be observed that there seems to be a critical compensation per stop, when
the usage of TPs is no longer beneficial. This critical compensation can be determined from Figure
4.11c. The share of requests served via TPs for the T4 scenario drops from a stable level of around
90% if pstop < 0.7 to under 20% if pstop > 1.4.
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4.6.4.5 Analyzing the influence of temporal flexibility

The model formulation principally assumes sufficiently high temporal flexibility of ODs such that
delivery schedules that result from the associated task assignments to ODs can always be realized.
However, drivers generally have limited temporal flexibility, e.g., commuters should arrive at their
working place at a specific time and cannot leave their working place before the end of work. They
cannot generally organize their private schedule in order to fulfill all tasks that might be realizable
related to their spatial degree of freedom. The duration of an OD’s route is not explicitly limited
within our model formulation. The model formulation only limits the number of stops and the
length of the detour for each individual OD’s offer. This however implicitly limits the duration of
the OD’s routes generated. Nevertheless, the duration of a route can become unacceptably long if
an OD has to wait at a TP for a parcel that is not yet available at their desired departure time.
Feasible OD schedules can only be assured for all instances if the modeling approach contains

concrete time windows for all trips and the associated detours offered by an OD. This would however
substantially increase model complexity and would also possibly cause some waiting times for ODs
who may have to wait at TPs, as traveling times may be stochastic in reality. Nevertheless, we
cope with this issue by letting ODs indicate whether their trip is planned before midday or after.
ODs only deliver parcels to TPs but do not gather parcels there if they offer their services before
midday. In contrast, ODs gather parcels from TPs but do not deliver to TPs if they offer their
services after midday. The direct delivery of parcels is not affected by these assumptions. The
commitments of the ODs guarantees that all parcels that are not directly delivered are available at
TPs before or at midday at the latest. Table 4.11 shows the results obtained by solving instances,
assuming half of the ODs are available before midday and the other half after midday.

Table 4.11: Results achieved by approach PDPOD (T0) vs. approach PDPTOD (TR, T4) for
instances with (un)limited temporal flexibility

Costs [%]

Instances T0 TR T4

Limited Unlimited Limited Unlimited

R101 R50, OD50 55.86 52.12 51.64 52.12 46.92
RC101 R50, OD50 67.80 66.63 56.65 63.99 51.63
C101 R50, OD50 80.29 72.78 68.35 70.32 59.82

The results are generated in the same manner as the results displayed in Table 4.10. In that
case, the potential TPs’ cost savings are obviously lower than when relaxing ODs’ potential tem-
poral constraints. Nevertheless, the savings are still significant depending on the type of instance.
Instances C101, for example, allows for about 10% additional cost savings when TPs are available,
i.e., 80.29% for scenario T0 and 70.32% for scenario T4 with limited temporal flexibility. The gap
between the limited and unlimited TR scenarios is more pronounced for clustered instances (C,
RC) because TPs are more frequently used compared to random scenarios (R), see Figures 4.9b
and 4.10b.

103



4 PDP with Transshipments and Occasional Drivers

4.6.4.6 Managerial insights

This section summarizes the findings of the sensitivity analysis and gives some advice on how to
include crowdshipping in the last-mile delivery process. The use of ODs has the potential for
cost savings independent of the request distribution (R, RC, C) or fulfillment structure (VRP-like
vs. PDP-like), but is dependent on the flexibility offered by ODs. The platform provider should
therefore create incentives for ODs that guarantee at least a moderate level of OD flexibility.
The benefits from TPs depend on the request distribution. If requests are evenly distributed

in the area, savings will be high and the utilization of ODs will be acceptable, even without
TPs. However, for clustered or semi-clustered (C, RC) request distributions, TPs reduce costs
and increase the utilization of ODs, which would otherwise be rather low. The location of TPs
is of considerable importance and should be carefully determined according to the distribution of
requests. As soon as a critical mass of ODs is available, the platform provider should consider
establishing a two-stage distribution system where RDs serve only TPs and ODs take over the
last-mile delivery from TPs to the destination of requests. The fact that TPs potentially increase
the number of ODs deployed is an especially valid reason for introducing TPs.
Customer requests fulfilled late or even unfulfilled lead to dissatisfied customers, which in the

end also reduces the number of requests. Future initiatives to set up crowdshipping platforms
should therefore carefully address the questions of how to attract a critical mass of ODs and how
to guarantee a high service level in all circumstances. The analyses presented here reveal some
valuable insights related to these questions. Above all, a business model that deploys a sufficient
number of RDs alongside ODs increases the level of service, i.e., fulfills a high share of requests, thus
maintaining high customer satisfaction, which is important to keep customers using the platform.
In addition to this general delivery framework, offering fair compensation for ODs, as assumed in
our analyses, is obviously a relevant factor attracting an adequate number of ODs. However, fair
payment on a one-off basis is insufficient to keep ODs on the platform in the long term if ODs
are only rarely deployed. TPs increase the deployment of ODs in all settings analyzed, but this in
turn depends on the compensation per stop for ODs. As a result, the compensation per additional
stop, pstop, has to be carefully quantified in order to benefit from operating TPs. On the one hand,
almost all delivery requests are assigned by the platform provider to RDs – for economic reasons
– if the cost rate is set too high. In that case, TPs remain unused and ODs are also not deployed
although they would be highly motivated to offer their services. On the other hand, ODs will most
likely not participate if the cost rate is set too low. In that case, a compensation solely for the
detour would generally be insufficient to motivate potential ODs.
Summarizing these thoughts, setting up appropriate TPs increases the utilization of ODs. The

employment of RDs ensures a high customer satisfaction, so customers keep on using the platform.
A crowdshipping business model operating TPs and employing RDs, defines suitable circumstances
for analyzing and setting up an appropriate compensation scheme for ODs. Then, in a later phase
of business activity, i.e., as soon as a critical mass of requests and ODs is available, the platform
provider may further develop their business concept. For example, they may only use ODs without
RDs, or apply the aforementioned two-stage distribution approach.
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4.7 Conclusions and Future Areas of Research

Conclusions This article introduces a variant of the static pickup and delivery problem with
transshipments and occasional drivers, termed PDPTOD. In this setting, occasional and regular
drivers (ODs and RDs) may pickup parcels at the origin, deliver these directly, or transfer them to
other drivers at dedicated transshipment points (TPs). The platform provider can choose between
RDs and rather constrained ODs who are willing to deviate from the route they had originally
planned and take on the fulfillment of one or more requests. We develop a novel MIP model
(PDPTOD) that we use to solve small instances. In order to solve larger instances with up to 100
requests, we develop a heuristic solution approach based on an adaptive large neighborhood search
(ALNS) for the optimization problem (PDPTOD) formulated. The ALNS procedure produces
equivalent results for small instances, compared to the exact solution obtained by Gurobi, and
for larger instances compared to results obtained by LKH heuristics. The ALNS scales well with
the problem size. The numerical experiments based on known instances from literature extended
by ODs and TPs show that the usage of both significantly reduces total costs. The cost savings
potential highly depends on the assumed flexibility of ODs. The cost savings are only moderate if
ODs are unwilling to make extra trips. In contrast, substantial cost savings are achievable if ODs
are willing to make additional trips. In addition, setting up TPs reduces total costs as well. This
occurs in both cases, i.e., where requests are distributed randomly in the delivery area, and where
requests predominantly emerge in specific regions of the delivery area. The availability of TPs will
certainly increase the utilization of ODs and will lead to a more equal distribution of workload
between RDs and ODs. This is a very relevant aspect when setting up a crowdshipping platform.
ODs are more likely to offer their services on a platform if they are consistently assigned requests
to serve. To get the most out of setting up TPs, it is important to locate them in accordance with
the demand arising, and not just randomly. The scenario where we positioned TPs in accordance
with demand achieves superior results in almost all cases compared to the scenario where TPs are
randomly distributed in the delivery area.

Future Areas of Research The suggested modeling and solution approach includes specific –
possibly restricted – assumptions that offer avenues for future research.

(a) ODs are only restricted by spatial limitations; strict temporal restrictions are not included
in our setting. Time windows for ODs are a realistic assumption and should be included
in further research. The effect of the length of time windows on the critical mass can be
examined, for example.

(b) The present research neglects delivery time windows, too. Approaches that assume customer-
preferred delivery time windows or time windows with higher customer attendance rates will
certainly increase the probability of successful deliveries.

(c) The timeline of the modeling approach assumes that all data are known when the planning
takes place. Customer requests and offers from ODs may however arrive on a dynamic and/or
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stochastic basis. Specialized modeling and solution approaches are required for those planning
situations.

(d) The locations of the TPs in the scenario analyzed are determined via a simple heuristic. It
can be assumed that a more elaborate model and solution procedure for planning the location
of TPs will impact the results, and will also increase the use of ODs.

(e) A two-stage approach where RDs only serve the first stage and ODs the second stage, i.e.,
the very last mile to customers, could be a viable option for established platforms with many
registered ODs, and therefore offers an additional avenue for further research.

(f) The compensation for ODs has to be determined carefully because it is probably the most
important reason for ODs to participate in the long run. Studies dealing with fair compensa-
tion for ODs and determining appropriate types of compensation schemes would be of great
value to further encourage crowdsourced logistics in the future.

(g) ODs are not obliged to accept the delivery of requests. Solutions may therefore not be robust
if many ODs decline requests, or do not fulfill requests even if they have pledged to do so.
Empirical research is needed to quantify the risk of unfulfilled requests and identify measures
to motivate ODs to accept requests.
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Appendix A

Appendix for The Vehicle Routing Problem with
Availability Profiles

A.1 Parameters

Table A.1: Parameters for HALNS
Parameter Meaning Chosen Value

np Size of the initial population 48
genmax Number of generations 30
genstop Number of generations without improvement 10
itlimit Number of iterations without improvement (one ALNS run) 30,000 (initial population)

7,500 (following generations)
β Cool rate in SA 0.9999
χ0 Acceptance probability in SA 0.25
n0 Number of iterations for determining the initial SA temperature 400
ω Weight for penalties drawn for every ALNS run unif(0.01, 1.00) · CVRP

pbinom Probability for binomial distribution drawn for every ALNS run unif(0.12, 0.24)
σ1 Score for operator - new best solution 35
σ2 Score for operator - new best current solution 2
σ3 Score for operator - worse solution, but accepted via SA 1
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Appendix A Appendix for VRPAP

A.2 Results for VRPTW, VRPMTW and VRPSTW Benchmark
Instances

Tables A.2-A.5 present the detailed results for VRPTW, VRPMTW and VRPSTW benchmark
instances. The first column shows the Instance name, the second column the previous BKS and
the following columns show the average and best results achieved for each approach. The last rows
present cumulated and averaged measures: Σ sums up the objective values over all instances, Avg
gap shows the average gap to the previous BKS, # BKS counts the number of (current) BKS
achieved with one approach, Avg T shows the average runtime, CPU the processor used and its
Passmark score. Bold entries state the BKS, entries with an asterisk (*) are new BKS found by
the HALNS. Further explanations are given below.
Additionally, Figures A.1 (VRPTW) and A.2 (VRPMTW) plot the average and best cumulated

objective values against respective standardized runtimes, T̄scaled [s], as if run on the AMD Ryzen
9 3900X using the passmark single thread ratings. The graphs of the HALNS are generated by
varying the stopping condition, genstop = [1, . . . , 10].

A.2.1 Results for Solomon and Desrosiers (1988) VRPTW Instances

Figure A.1 and Table A.2 show the detailed results for the VRPTW benchmark instances.
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Figure A.1: VRPTW Benchmark
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Table A.2: Detailed results for VRPTW instances
Instance BKS HALNS

Best 10 Avg 10

C101.100.10 828.94 828.94 828.94
C102.100.10 828.94 828.94 828.94
C103.100.10 828.06 828.07 828.07
C104.100.10 824.78 824.78 824.78
C105.100.10 828.94 828.94 828.94
C106.100.10 828.94 828.94 828.94
C107.100.10 828.94 828.94 828.94
C108.100.10 828.94 828.94 828.94
C109.100.10 828.94 828.94 828.94
C201.100.3 591.56 591.56 591.56
C202.100.3 591.56 591.56 591.56
C203.100.3 591.17 591.17 591.17
C204.100.3 590.6 590.6 590.6
C205.100.3 588.88 588.88 588.88
C206.100.3 588.49 588.49 588.49
C207.100.3 588.29 588.29 588.29
C208.100.3 588.32 588.32 588.32
R101.100.19 1650.8 1650.8 1650.8
R102.100.17 1486.12 1486.12 1486.12
R103.100.13 1292.68 1292.68 1292.68
R104.100.9 1007.31 1007.31 1007.31
R105.100.14 1377.11 1377.11 1377.11
R106.100.12 1252.03 1252.03 1252.03
R107.100.10 1104.66 1104.66 1104.74
R108.100.9 960.88 960.88 961.44
R109.100.11 1194.73 1194.73 1195.81
R110.100.10 1118.84 1118.84 1118.9
R111.100.10 1096.72 1096.73 1096.73
R112.100.9 982.14 982.25 987.51
R201.100.4 1252.37 1252.37 1252.37
R202.100.3 1191.7 1191.7 1191.7
R203.100.3 939.5 939.5 939.82
R204.100.2 825.52 825.52 826.17
R205.100.3 994.43 994.43 994.43
R206.100.3 906.14 906.14 906.14
R207.100.2 890.61 890.61 890.61
R208.100.2 726.82 726.82 726.82
R209.100.3 909.16 909.16 909.16
R210.100.3 939.37 939.37 941.35
R211.100.2 885.71 885.71 890.9

RC101.100.14 1696.95 1696.95 1696.95
RC102.100.12 1554.75 1554.75 1554.75
RC103.100.11 1261.67 1261.67 1261.67
RC104.100.10 1135.48 1135.48 1135.48
RC105.100.13 1629.44 1629.44 1629.44
RC106.100.11 1424.73 1424.73 1424.73
RC107.100.11 1230.48 1230.48 1230.57
RC108.100.10 1139.82 1139.82 1139.82
RC201.100.4 1406.94 1406.94 1406.94
RC202.100.3 1365.65 1365.65 1366.19
RC203.100.3 1049.62 1050.45 1050.6
RC204.100.3 798.46 798.46 798.46
RC205.100.4 1297.65 1297.65 1297.65
RC206.100.3 1146.32 1146.32 1146.32
RC207.100.3 1061.14 1061.14 1061.14
RC208.100.3 828.14 828.14 828.14

Σ 57187 57188 57204
Avg gap 0.00% 0.00% 0.03%
# BKS 56 52

Avg T 155s
CPU Ryzen 9 3900X

Passmark 2731
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A.2.2 Results for Belhaiza et al. (2014) VRPMTW Instances

Figure A.2 and Table A.3 show the detailed results for the VRPMTW benchmark instances.
Columns Belhaiza et al. (2014), Larsen and Pacino (2019), Schaap et al. (2019) and HALNS report
the best and average results from 10 runs, while columns Belhaiza et al. (2017) and Hoogeboom
et al. (2020) only show results from a single run. Columns K indicate the number of vehicles used
in the corresponding best solution found.
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Figure A.2: VRPMTW Benchmark
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A.2.3 Results for VRPSTW Instances

We compare our results for the VRPSTW against the approaches of Vidal et al. (2014b), Mouthuy
et al. (2015) and Kritzinger et al. (2017). Tables A.4 and A.5 present the detailed results for types
1 and 2 with α = 1 as described above.

Table A.4: Detailed results for VRPSTW instances type 1 (only lateness), α = 1
Instance BKS Kritzinger Vidal HALNS

Best 10 Avg 10 Best 10 Avg 10 Best 10 Avg 10

C101.100.10 828.94 828.94 828.94 828.94 828.94 828.94 828.94
C102.100.10 828.94 828.94 828.94 828.94 828.94 828.94 828.94
C103.100.10 828.06 828.07 828.07 828.06 828.06 828.07 828.07
C104.100.10 824.78 824.78 824.78 824.78 824.78 824.78 824.78
C105.100.10 828.94 828.94 828.94 828.94 828.94 828.94 828.94
C106.100.10 828.94 828.94 828.94 828.94 828.94 828.94 828.94
C107.100.10 828.94 828.94 828.94 828.94 828.94 828.94 828.94
C108.100.10 828.94 828.94 828.94 828.94 828.94 828.94 828.94
C109.100.10 828.94 828.94 828.94 828.94 828.94 828.94 828.94
C201.100.3 591.56 591.56 591.56 591.56 591.56 591.56 591.56
C202.100.3 591.56 591.56 591.56 591.56 591.56 591.56 591.56
C203.100.3 591.17 591.17 591.17 591.17 591.17 591.17 591.17
C204.100.3 590.6 590.6 590.6 590.6 590.6 590.6 590.6
C205.100.3 588.88 588.88 588.88 588.88 588.88 588.88 588.88
C206.100.3 588.49 588.49 588.49 588.49 588.49 588.49 588.49
C207.100.3 588.29 588.29 588.29 588.29 588.29 588.29 588.29
C208.100.3 588.32 588.32 588.32 588.32 588.32 588.32 588.32
R101.100.19 1562.58 1562.58 1562.98 1562.58 1562.89 1562.58 1562.58
R102.100.17 1379.11 1379.11 1379.62 1379.11 1379.21 1379.11 1379.11
R103.100.13 1159.28 1159.54 1160.64 1159.28 1159.51 1159.28 1159.41
R104.100.9 999.77 1003.73 1009.02 999.77 999.77 999.77 1000.04
R105.100.14 1347.75 1347.75 1348.89 1347.75 1347.75 1347.75 1347.75
R106.100.12 1236.58 1236.58 1237.29 1236.58 1236.58 1236.58 1236.6
R107.100.10 1083.62 1084.96 1089.84 1083.62 1083.62 1083.62 1083.66
R108.100.9 946.6 949.94 951.24 946.6 947.04 946.6 947.22
R109.100.11 1173.21 1173.21 1176.4 1173.21 1173.21 1173.21 1173.21
R110.100.10 1106.66 1106.66 1114.66 1107.26 1111.57 1109.58 1110.22
R111.100.10 1074.84 1080.25 1086.36 1074.84 1076.41 1074.84 1077.03
R112.100.9 971.31 972.11 981.82 971.31 975.78 971.31 971.94
R201.100.4 1237.11 1237.11 1237.17 1237.11 1237.11 1237.11 1237.11
R202.100.3 1165.32 1165.32 1169.23 1165.32 1165.32 1165.32 1165.32
R203.100.3 933.52 937.35 942.96 933.52 934.01 934.1 934.1
R204.100.2 824.02 832.38 840.79 824.02 824.73 824.02 825.4
R205.100.3 994.43 994.43 1006.79 994.43 994.43 994.43 994.43
R206.100.3 906.14 912.81 920.13 906.14 906.14 906.14 906.14
R207.100.2 887.28 908.7 1044.87 887.28 888.44 887.28 887.28
R208.100.2 726.82 728.92 735.26 726.82 727.08 726.82 726.82
R209.100.3 909.16 909.3 917.21 909.16 909.16 909.16 909.31
R210.100.3 938.34 948.8 958.58 938.34 941.95 938.34 938.34
R211.100.2 885.71 901.18 923.85 885.71 892.5 890.79 890.79

RC101.100.14 1590.22 1590.22 1591.59 1590.22 1590.22 1590.22 1591.23
RC102.100.12 1428.21 1428.21 1429.9 1428.21 1428.21 1428.21 1428.21
RC103.100.11 1239.54 1239.54 1242.33 1239.54 1239.73 1239.54 1240.91
RC104.100.10 1126.31 1126.31 1128.74 1126.31 1126.31 1126.31 1126.31
RC105.100.13 1450.84 1450.84 1451.38 1450.84 1450.84 1450.84 1450.84
RC106.100.11 1349.3 1349.3 1350.17 1349.3 1349.72 1350.57 1353.63
RC107.100.11 1208.81 1208.81 1208.96 1208.81 1208.98 1208.81 1208.81
RC108.100.10 1118 1118 1119.61 1118 1118.31 1119.59 1119.59
RC201.100.4 1380.33 1380.33 1380.47 1380.33 1380.33 1380.33 1380.33
RC202.100.3 1317.28 1317.28 1322.17 1317.28 1317.28 1317.28 1317.37
RC203.100.3 1040.77 1046.05 1057.1 1040.77 1045 1040.77 1040.77
RC204.100.3 797.04 797.41 809.09 797.04 797.04 797.04 797.04
RC205.100.4 1297.65 1299.61 1305.97 1297.65 1298 1297.65 1299.08
RC206.100.3 1135.26 1135.26 1135.9 1135.26 1135.26 1135.26 1135.26
RC207.100.3 1056.88 1061.14 1073.58 1056.88 1058.16 1056.88 1056.88
RC208.100.3 827.67 829 834.82 827.67 827.9 827.67 827.67

Σ 55987.56 56084.33 56411.68 55988.16 56019.79 55999.01 56012.04
Avg gap 0.00% 0.19% 0.81% 0.00% 0.06% 0.02% 0.04%
# BKS 56/56 36 55 50

Avg T 600s 349s 156s
CPU Xeon E7-8837 Opteron 2.2G Ryzen 9 3900X

Passmark 1124 445 2731

121



Appendix A Appendix for VRPAP

Table A.5: Detailed results for VRPSTW instances type 2 (earliness and lateness), α = 1
Instance BKS Vidal HALNS

Best 10 Avg 10 Best 10 Avg 10

C101.100.10 828.94 828.94 828.94 828.94 828.94
C102.100.10 828.94 828.94 828.94 828.94 828.94
C103.100.10 828.06 828.06 828.06 828.07 828.07
C104.100.10 824.78 824.78 824.78 824.78 824.78
C105.100.10 828.94 828.94 828.94 828.94 828.94
C106.100.10 828.94 828.94 828.94 828.94 828.94
C107.100.10 828.94 828.94 828.94 828.94 828.94
C108.100.10 828.94 828.94 828.94 828.94 828.94
C109.100.10 828.94 828.94 828.94 828.94 828.94
C201.100.3 591.56 591.56 591.56 591.56 591.56
C202.100.3 591.56 591.56 591.56 591.56 591.56
C203.100.3 591.17 591.17 591.17 591.17 591.17
C204.100.3 590.6 590.6 590.6 590.6 590.6
C205.100.3 588.88 588.88 588.88 588.88 588.88
C206.100.3 588.49 588.49 588.49 588.49 588.49
C207.100.3 588.29 588.29 588.29 588.29 588.29
C208.100.3 588.32 588.32 588.32 588.32 588.32
R101.100.19 1546.91 1546.91 1546.91 1557.82 1561.92
R102.100.17 1377.38 1377.38 1377.38 1378.44 1379.8
R103.100.13 1158.31 1158.31 1158.83 1158.48 1159.71
R104.100.9 1000.33 1000.33 1004.57 1002.68 1003.7
R105.100.14 1342.57 1342.57 1342.57 1347.61 1347.72
R106.100.12 1223.09 1223.09 1223.09 1226.13 1226.8
R107.100.10 1079.12 1079.12 1080.9 1081.51 1083.76
R108.100.9 945.64 945.64 948.23 944.23* 947.33
R109.100.11 1164.68 1164.68 1164.68 1167.88 1173.72
R110.100.10 1104.59 1104.59 1108.3 1107.34 1111.01
R111.100.10 1065.76 1065.76 1065.76 1066.47 1070.24
R112.100.9 969.91 969.91 991.5 969.98 970.25
R201.100.4 1235.14 1235.14 1235.14 1237.11 1237.11
R202.100.3 1159.76 1159.76 1159.76 1165.32 1165.32
R203.100.3 934.1 934.1 937.04 934.09* 934.09*
R204.100.2 820.9 820.9 837.21 821.54 821.54
R205.100.3 994.43 994.43 996.24 994.43 994.43
R206.100.3 906.54 906.54 910.99 906.14* 906.14*
R207.100.2 906.81 906.81 937.79 887.28* 891.01
R208.100.2 730.52 730.52 735.31 726.82* 727.18
R209.100.3 909.16 909.16 911.61 909.16 909.16
R210.100.3 938.77 938.77 948.91 938.34* 938.34*
R211.100.2 912.39 912.39 921.81 885.71* 890.26

RC101.100.14 1584.2 1584.2 1584.2 1588.58 1591.72
RC102.100.12 1409.36 1409.36 1409.36 1416.67 1417.69
RC103.100.11 1231.67 1231.67 1231.67 1239.54 1241.41
RC104.100.10 1121.84 1121.84 1123.25 1126.31 1127.07
RC105.100.13 1433.37 1433.37 1433.37 1436.99 1437.04
RC106.100.11 1334.89 1334.89 1334.89 1338.42 1338.49
RC107.100.11 1203.06 1203.06 1203.06 1207.04 1208.39
RC108.100.10 1115.44 1115.44 1115.44 1119.59 1119.84
RC201.100.4 1380.33 1380.33 1380.33 1380.33 1380.33
RC202.100.3 1312.05 1312.05 1312.05 1312.05 1312.06
RC203.100.3 1044.74 1044.74 1047.43 1040.65* 1040.65*
RC204.100.3 796.68 796.68 796.91 797.04 797.05
RC205.100.4 1297.86 1297.86 1300.98 1297.97 1298.78
RC206.100.3 1135.26 1135.26 1135.44 1135.26 1135.26
RC207.100.3 1056.88 1056.88 1061.92 1056.88 1056.88
RC208.100.3 827.67 827.67 832.3 827.67 827.67

Σ 55886.4 55886.4 56021.42 55909.8 55955.17
Avg gap 0.00% 0.00% 0.26% 0.00% 0.07%
# BKS 48/56 48 31 (8 new)

Avg T 1797s 159s
CPU Opteron 2.2G Ryzen 9 3900X

Passmark 445 2731
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A.2.4 Results for VRPAP Instances

Table A.6 compares the HALNS algorithm with the lower and upper bound described in Section 1.4.
Column Ctrans

VRP shows the lowest possible transportation costs, achieved by solving a VRP, Column
C failed

VRPTW the lowest possible failed-delivery costs, and Column C lower
VRPAP the lower bound, derived

by the summation of both terms before. Column Best 10 and Avg 10 show the best and average
result of ten runs. Column Cupper

VRPAP signifies the upper bound. Columns ∆lb and ∆ub represent the
percentage gaps to the lower and upper bound, respectively. Column Avg T [s] shows the average
runtime of ten runs in seconds.

Table A.6: Results for VRPAP instances
Instance Ctrans

VRP Cfailed
VRPTW Clower

VRPAP Best 10 Avg 10 C
upper
VRPAP ∆lb ∆ub Avg T [s]

R101
A 865.95 86.6 952.55 1213.82 1217 1241.08 27% -2% 811
V 865.95 86.6 952.55 1279.87 1286.43 1355.9 34% -6% 779
W 865.95 173.19 1039.14 1253.02 1260.39 1326.98 21% -6% 1020
M 865.95 86.6 952.55 1191.85 1198.11 1269.92 25% -6% 819
AV 865.95 86.6 952.55 1216.4 1223.22 1303.43 28% -7% 1044
WM 865.95 129.89 995.84 1163.34 1168.37 1304.21 17% -11% 1001
AVWM 865.95 108.24 974.19 1180.49 1188.29 1298.67 21% -9% 1068
R201
A 651.3 65.13 716.43 915.79 920.04 936.57 28% -2% 1074
V 651.3 65.13 716.43 919.24 920.19 1012.77 28% -9% 1047
W 651.3 130.26 781.56 907.79 910.85 987.63 16% -8% 1043
M 651.3 65.13 716.43 919.76 921.02 962.04 28% -4% 979
AV 651.3 65.13 716.43 887.67 888.56 967.83 24% -8% 968
WM 651.3 97.7 749 882.62 882.91 976.62 18% -10% 969
AVWM 651.3 81.41 732.71 888.17 889.87 968.94 21% -8% 1023
C101
A 824.78 82.48 907.26 1141.24 1141.41 1187.68 26% -4% 699
V 824.78 82.48 907.26 1167.89 1169.7 1287.65 29% -9% 681
W 824.78 164.96 989.74 1149.36 1152.89 1216.96 16% -6% 929
M 824.78 82.48 907.26 1125.82 1125.82 1255.81 24% -10% 769
AV 824.78 82.48 907.26 1106.09 1107.16 1225.29 22% -10% 958
WM 824.78 123.72 948.5 1054.43 1057.28 1257.05 11% -16% 1009
AVWM 824.78 103.1 927.88 1062.39 1063.63 1239.23 14% -14% 871
C201
A 584.28 58.43 642.71 857.86 867.97 862.51 33% -1% 1129
V 584.28 58.43 642.71 860.06 861.97 889.98 34% -3% 764
W 584.28 116.86 701.14 856.55 858.52 885.89 22% -3% 814
M 584.28 58.43 642.71 857.72 857.91 866.95 33% -1% 838
AV 584.28 58.43 642.71 864.48 870.26 885.89 35% -2% 860
WM 584.28 87.64 671.92 832.31 835.94 881.27 24% -6% 789
AVWM 584.28 73.04 657.32 851.95 855.96 892.6 30% -5% 996
RC101
A 995.59 99.56 1095.15 1361.97 1363.45 1396.22 24% -2% 904
V 995.59 99.56 1095.15 1519.48 1521.66 1588.96 39% -4% 1148
W 995.59 199.12 1194.71 1438.19 1444.22 1521.06 20% -5% 990
M 995.59 99.56 1095.15 1383.98 1391.03 1468.79 26% -6% 1134
AV 995.59 99.56 1095.15 1393.96 1397.17 1475.27 27% -6% 1273
WM 995.59 149.34 1144.93 1332.51 1333.9 1442.61 16% -8% 952
AVWM 995.59 124.45 1120.04 1393.37 1399.14 1482.93 24% -6% 766
RC201
A 655.35 65.54 720.89 933.33 938.44 944.36 29% -1% 1113
V 655.35 65.54 720.89 947.69 951.66 1022.61 31% -7% 1031
W 655.35 131.07 786.42 937.76 942.06 1006.55 19% -7% 1043
M 655.35 65.54 720.89 931.21 932.37 959.17 29% -3% 805
AV 655.35 65.54 720.89 917.57 919.01 949.6 27% -3% 787
WM 655.35 98.3 753.65 907.02 908.96 979.94 20% -7% 964
AVWM 655.35 81.92 737.27 918.96 919.17 960.09 25% -4% 931

Avg 762.88 95.36 858.23 1069.64 1072.95 1141.56 25% -6% 943
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A.3 Results for Components

Figure A.3 plots the average objective values of ten HALNS runs as a function of runtime when
deactivating one component at a time (or activating local improvement, respectively) as described
in Section 1.6.2.3. As before, the graphs are generated by varying the stopping condition, genstop =
[1, ..., 10].
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Figure A.3: HALNS performance with and without specific components for VRPAP instances

A.4 UKTUS Availability Profiles

Figure A.4 shows the average APs depending on age and employment status. The x axis shows
the time from 8-18 o’clock, while the y axis represents the average availability in percent. It
can be observed that the average availability for unemployed people is generally higher compared
to employed people and that average availability increases with age in most cases. Furthermore
the profiles up to age 60 represent a V-profile with highest availability in the morning and evening
hours, whereas elderly people seem to return home during midday and leave again in the afternoon,
resulting in a W-profile.
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Figure A.4: UKTUS Availability Profiles depending on Age and Work Status
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B.1 Parameters

Table B.1: Parameters for HALNS
Parameter Meaning Chosen Value

nP Size of the initial population 12
genmax Maximum number of generations 10 in Section 2.5.2

100 in Section 2.5.3
50 in Section 2.5.4

itstop Number of ALNS iterations without improvement 10,000
α Cool rate in SA 0.9997
χ0 Acceptance probability in SA 0.10
n0 Number of iterations for determining the initial SA tem-

perature
400

ω Weight for penalties drawn at the beginning of every ALNS
run

unif(0.0001, 0.004) · f(ŝ)

pbinom Probability for binomial distribution drawn at the begin-
ning of every ALNS run

unif(0.10, 0.35)

σ1 Score for new best solution 35
σ2 Score for new best current solution 2
σ3 Score for worse solution, but accepted via SA 1
γ Reaction factor for adapting scores for operators and pbinom 0.3

B.2 Scaling of Runtimes

Table B.2 tests whether runtimes can reasonably be standardized by using the passmark single
thread rating. The table shows the runtimes of the HALNS (nP = 12, genmax = 50) on both CPUs
(AMD Ryzen 3900X and AMD Ryzen 2700X) for all three problem classes. The last column shows
the actual runtime reduction [%]. The passmark single thread rating seems to be a reasonably
good approximation for standardizing runtimes, as the runtime of running all instances is reduced
to 91.4% when running on the 3900X vs. 89.3% when estimated via passmark rating.

Table B.2: Analysis of Runtime Scaling Factor
Problem Class Runtime [s] Runtime [%]

AMD Ryzen 3900X AMD Ryzen 2700X
2E-VRP 214 226 94.7
LRP 245 290 84.5
MDVRP 510 556 91.7
All 252 276 91.4

Table B.3 lists the used CPUs with their respective passmark single thread rating (https:

//www.cpubenchmark.net/). Mühlbauer and Fontaine (2021) use 4 threads; we therefore multiply
the runtimes by four (1). Not all authors clearly state the CPU used. In these cases we made an
assumption based on the information given (2). Vidal et al. (2012) use an AMD Opteron 250 with
2.4 GHz, but report their runtimes as if run on an Intel Pentium 4 with 3 GHz (3). No passmark
rating could be found for a small number of CPUs used (4).
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Table B.3: CPUs used
Author CPU Clock Speed Rating Notes
Voigt et al. AMD Ryzen 9 3900X 3.8 GHz 2731
Voigt et al. AMD Ryzen 7 2700X 3.7 GHz 2439
Wang et al. (2017) Intel Xeon E5-2670 2.6 GHz 1460
Amarouche et al. (2018) Intel Xeon E5-2670v2 2.5 GHz 1592
Mühlbauer and Fontaine (2021) Intel i5-6200 2.4 GHz 1600 1
Breunig et al. (2016) Intel Xeon E5-2670v2 2.5 GHz 1592
Hemmelmayr et al. (2012) AMD Opteron 275 2.2 GHz 445
Enthoven et al. (2020) Intel Xeon E5-2680v3 2.5 GHz 1774
Yu et al. (2021) Intel i7-8700 3.2 GHz 2666
Schneider and Löffler (2019) Intel Xeon E5-2670 2.6 GHz 1460
Arnold and Sörensen (2021) AMD Ryzen 3 1300X 3.5 GHz 2084
Contardo et al. (2013) Intel Xeon E5462 3.0 GHz 1215
Hemmelmayr et al. (2012) AMD Opteron 275 2.2 GHz 445
Lopes et al. (2016) Intel i7-4790 3.6 GHz 2226
Escobar et al. (2014a) Intel Core2 Duo T6400 2.0 GHz 799 2
Ting and Chen (2013) AMD Athlon XP 2500+ 1.83 GHz 353
Escobar et al. (2013) Intel Core2 Duo T6400 2.0 GHz 799 2
Yu et al. (2010) Intel Core2 Quad Q8400 2.6 GHz 1152 2
Duhamel et al. (2010) Intel Core2 Quad Q9550 2.83 GHz 1228 2
Prins et al. (2007) Intel Pentium 4 2.4 GHz 360
Prins et al. (2006a) Intel Pentium 4 2.4 GHz 360
Prins et al. (2006b) Intel Pentium 4 2.4 GHz 360
Vidal et al. (2012) Intel Pentium 4 3.0 GHz 561 3
Arnold and Sörensen (2019) AMD Ryzen 3 1300X 3.5 GHz 2084
Luo and Chen (2014) Intel Pentium 4 2.8 GHz 506 2
Subramanian et al. (2013) Intel Core i7 2.93 GHz 1403
Pisinger and Ropke (2007) Intel Pentium 4 3.0 GHz 561
Sadati et al. (2021) Intel Core i7-8700 3.2 GHz 2666
Cordeau and Maischberger (2012) Intel Xeon X7350 2.93 GHz 1181
Escobar et al. (2014b) Intel Core2 Duo T6400 2.0 GHz 799 2
Renaud et al. (1996) Sun SparcStation 10 NA 100 4
Cordeau et al. (1997) Sun SparcStation 10 NA 100 4
Chao et al. (1993) Sun 4/370 NA 100 4

B.3 Detailed Results on Benchmark Instances

Tables B.4 - B.6 present the detailed results for 2E-VRP, LRP and MDVRP benchmark instances.
The first column shows the Instance name, the second column the (previous) BKS, column Best
5/10 the best result obtained after five or ten runs of the HALNS, and Avg 5/10 the average results
across five or ten runs. Runtime [s] shows the average runtime in seconds of the HALNS run on
the AMD Ryzen 9 3900X. The second-last row presents the Avg gap to the previous BKS and Avg
T the runtime averaged across all instances of the problem class. The last row # BKS counts
the number of (current) BKS achieved. Bold entries state the BKS, entries additionally marked
with an asterisk (*) are improving solutions against the previous BKS. Tables B.7 - B.9 detail
the solutions of newly found BKS. The new BKS for LRP instance P122212 was found during
parameter tuning. Please note that customer indices start at ns + 1, e.g., instance P122212 has
ten depots, so the first customer is denoted by ns + 1 = 11.
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Table B.4: Detailed results on 2E-VRP instances
Instance BKS HALNS

Best 5 Avg 5 Best Gap [%] Avg Gap [%] Runtime [s]

Set2a_E-n22-k4-s6-17 417.07 417.07 417.07 0 0 25.96
Set2a_E-n22-k4-s8-14 384.96 384.96 384.96 0 0 27.96
Set2a_E-n22-k4-s9-19 470.6 470.6 470.6 0 0 28.03
Set2a_E-n22-k4-s10-14 371.5 371.5 371.5 0 0 26.59
Set2a_E-n22-k4-s11-12 427.22 427.22 427.22 0 0 28.52
Set2a_E-n22-k4-s12-16 392.78 392.78 392.78 0 0 28.41
Set2a_E-n33-k4-s1-9 730.16 730.16 730.16 0 0 37.84
Set2a_E-n33-k4-s2-13 714.63 714.63 714.63 0 0 40.82
Set2a_E-n33-k4-s3-17 707.48 707.48 707.48 0 0 37.06
Set2a_E-n33-k4-s4-5 778.74 778.74 778.74 0 0 39.66
Set2a_E-n33-k4-s7-25 756.85 756.85 756.85 0 0 36.99
Set2a_E-n33-k4-s14-22 779.05 779.05 779.05 0 0 37.08

Set2b_E-n51-k5-s2-17 597.49 597.49 597.49 0 0 62.86
Set2b_E-n51-k5-s4-46 530.76 530.76 530.76 0 0 59.79
Set2b_E-n51-k5-s6-12 554.81 554.81 554.81 0 0 65.6
Set2b_E-n51-k5-s11-19 581.64 581.64 581.64 0 0 61.65
Set2b_E-n51-k5-s27-47 538.22 538.22 538.22 0 0 56.73
Set2b_E-n51-k5-s32-37 552.28 552.28 552.28 0 0 58.8

Set2b_E-n51-k5-s2-4-17-46 530.76 530.76 530.76 0 0 77.42
Set2b_E-n51-k5-s6-12-32-37 531.92 531.92 531.92 0 0 105.35
Set2b_E-n51-k5-s11-19-27-47 527.63 527.63 527.63 0 0 85.39

Set2c_E-n51-k5-s2-17 601.39 601.39 601.39 0 0 58.94
Set2c_E-n51-k5-s4-46 702.33 702.33 702.33 0 0 62.27
Set2c_E-n51-k5-s6-12 567.42 567.42 567.42 0 0 61.74
Set2c_E-n51-k5-s11-19 617.42 617.42 617.42 0 0 64.43
Set2c_E-n51-k5-s27-47 530.76 530.76 530.76 0 0 58.71
Set2c_E-n51-k5-s32-37 752.59 752.6 752.6 0 0 68.19

Set2c_E-n51-k5-s2-4-17-46 601.39 601.39 601.39 0 0 72.71
Set2c_E-n51-k5-s6-12 567.42 567.42 567.42 0 0 61.74

Set2c_E-n51-k5-s11-19-27-47 530.76 530.76 530.76 0 0 70.44

Set3_E-n22-k4-s13-14 526.15 526.15 526.15 0 0 28.38
Set3_E-n22-k4-s13-16 521.09 521.09 521.09 0 0 28.96
Set3_E-n22-k4-s13-17 496.38 496.38 496.38 0 0 26.58
Set3_E-n22-k4-s14-19 498.8 498.8 498.8 0 0 32.09
Set3_E-n22-k4-s17-19 512.8 512.8 512.8 0 0 30.93
Set3_E-n22-k4-s19-21 520.42 520.42 520.42 0 0 29.58
Set3_E-n33-k4-s16-22 672.17 672.17 672.17 0 0 40.96
Set3_E-n33-k4-s16-24 666.02 666.02 666.02 0 0 39.23
Set3_E-n33-k4-s19-26 680.36 680.37 680.37 0 0 37.8
Set3_E-n33-k4-s22-26 680.36 680.37 680.37 0 0 37.94
Set3_E-n33-k4-s24-28 670.43 670.43 670.43 0 0 38.84
Set3_E-n33-k4-s25-28 650.58 650.58 650.58 0 0 38.74
Set3_E-n51-k5-s12-18 690.59 690.59 690.59 0 0 70.25
Set3_E-n51-k5-s12-41 683.05 683.05 683.84 0 0.12 72.84
Set3_E-n51-k5-s12-43 710.41 710.41 710.41 0 0 61.4
Set3_E-n51-k5-s39-41 728.54 728.54 728.54 0 0 68.18
Set3_E-n51-k5-s40-41 723.75 723.75 724.28 0 0.07 98.94
Set3_E-n51-k5-s40-43 752.15 752.15 752.15 0 0 73.59
Set3_E-n51-k5-s13-19 560.73 560.73 560.73 0 0 62.19
Set3_E-n51-k5-s13-42 564.45 564.45 564.45 0 0 61.64
Set3_E-n51-k5-s13-44 564.45 564.45 564.45 0 0 61.49

Continued on next page
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Set3_E-n51-k5-s40-42 746.31 746.31 746.31 0 0 68.12
Set3_E-n51-k5-s41-42 771.56 771.56 771.56 0 0 67.28
Set3_E-n51-k5-s41-44 802.91 802.91 802.91 0 0 75.83

Set4a_Instance50-1 1569.42 1569.42 1569.42 0 0 59.6
Set4a_Instance50-2 1438.33 1438.32 1438.32 0 0 63.36
Set4a_Instance50-3 1570.43 1570.43 1570.43 0 0 58.52
Set4a_Instance50-4 1424.04 1424.04 1424.04 0 0 57.82
Set4a_Instance50-5 2193.52 2193.52 2193.52 0 0 69.28
Set4a_Instance50-6 1279.87 1279.89 1279.89 0 0 56.05
Set4a_Instance50-7 1458.63 1458.6 1458.6 0 0 54.47
Set4a_Instance50-8 1363.74 1363.76 1363.76 0 0 58.74
Set4a_Instance50-9 1450.27 1450.25 1450.25 0 0 55.81
Set4a_Instance50-10 1407.65 1407.65 1407.65 0 0 56.94
Set4a_Instance50-11 2047.46 2047.43 2047.43 0 0 68.68
Set4a_Instance50-12 1209.42 1209.46 1209.46 0 0 61.3
Set4a_Instance50-13 1481.83 1481.8 1481.8 0 0 66.36
Set4a_Instance50-14 1393.61 1393.64 1393.64 0 0 63.87
Set4a_Instance50-15 1489.94 1489.92 1489.92 0 0 62.26
Set4a_Instance50-16 1389.17 1389.2 1389.2 0 0 58.22
Set4a_Instance50-17 2088.49 2088.48 2088.48 0 0 101.54
Set4a_Instance50-18 1227.61 1227.68 1227.68 0.01 0.01 58.3
Set4a_Instance50-19 1564.66 1564.66 1564.66 0 0 94.04
Set4a_Instance50-20 1272.97 1272.98 1272.98 0 0 68.38
Set4a_Instance50-21 1577.82 1577.82 1577.82 0 0 113.89
Set4a_Instance50-22 1281.83 1281.83 1281.83 0 0 73.3
Set4a_Instance50-23 1807.35 1807.35 1807.35 0 0 146.68
Set4a_Instance50-24 1282.68 1282.69 1282.69 0 0 71.11
Set4a_Instance50-25 1522.42 1522.4 1522.4 0 0 108.17
Set4a_Instance50-26 1167.46 1167.47 1167.47 0 0 64.15
Set4a_Instance50-27 1481.57 1481.56 1481.77 0 0.01 125.24
Set4a_Instance50-28 1210.44 1210.46 1210.46 0 0 71.09
Set4a_Instance50-29 1722.04 1722 1722 0 0 150.95
Set4a_Instance50-30 1211.59 1211.63 1211.63 0 0 62.02
Set4a_Instance50-31 1490.33 1490.32 1490.32 0 0 99.38
Set4a_Instance50-32 1199 1199.05 1199.05 0 0 72.38
Set4a_Instance50-33 1508.3 1508.32 1508.86 0 0.04 123.17
Set4a_Instance50-34 1233.92 1233.96 1233.96 0 0 66.05
Set4a_Instance50-35 1718.41 1718.42 1718.42 0 0 134.33
Set4a_Instance50-36 1228.89 1228.95 1228.95 0 0 65.75
Set4a_Instance50-37 1528.73 1528.73 1528.73 0 0 214.77
Set4a_Instance50-38 1169.2 1169.2 1169.2 0 0 152.93
Set4a_Instance50-39 1520.92 1520.92 1520.92 0 0 190.49
Set4a_Instance50-40 1199.42 1199.42 1199.42 0 0 140.67
Set4a_Instance50-41 1667.96 1667.96 1667.96 0 0 259.01
Set4a_Instance50-42 1194.54 1194.54 1194.54 0 0 136.1
Set4a_Instance50-43 1439.67 1439.67 1440.59 0 0.06 209.83
Set4a_Instance50-44 1045.13 1045.14 1045.14 0 0 128.74
Set4a_Instance50-45 1450.95 1450.95 1450.95 0 0 249.41
Set4a_Instance50-46 1088.77 1088.79 1088.79 0 0 143.61
Set4a_Instance50-47 1587.29 1587.29 1587.29 0 0 212.73
Set4a_Instance50-48 1082.2 1082.21 1082.21 0 0 113.16
Set4a_Instance50-49 1434.88 1434.88 1434.88 0 0 183.78
Set4a_Instance50-50 1083.16 1083.16 1083.16 0 0 144.94
Set4a_Instance50-51 1398.05 1398.03 1398.03 0 0 175.27
Set4a_Instance50-52 1125.69 1125.69 1125.69 0 0 95.33

Continued on next page

130



Appendix B Appendix for HALNS for VRPs with Depot Location Decisions

Table B.4 – Continued from previous page

Set4a_Instance50-53 1567.77 1567.79 1568.52 0 0.05 189.32
Set4a_Instance50-54 1127.61 1127.66 1132.03 0 0.39 142.55

Set4b_Instance50-1 1569.42 1569.42 1569.42 0 0 65.73
Set4b_Instance50-2 1438.33 1438.32 1438.32 0 0 74.04
Set4b_Instance50-3 1570.34 1570.43 1570.43 0.01 0.01 66.89
Set4b_Instance50-4 1424.04 1424.04 1424.04 0 0 64.9
Set4b_Instance50-5 2193.52 2193.52 2193.52 0 0 70.7
Set4b_Instance50-6 1279.87 1279.89 1279.89 0 0 63.25
Set4b_Instance50-7 1408.57 1408.58 1408.58 0 0 66.29
Set4b_Instance50-8 1360.32 1360.32 1360.32 0 0 65.19
Set4b_Instance50-9 1403.53 1403.53 1403.53 0 0 60.95
Set4b_Instance50-10 1360.56 1360.54 1360.54 0 0 61.48
Set4b_Instance50-11 2047.46 2047.43 2047.43 0 0 88.55
Set4b_Instance50-12 1209.42 1209.46 1209.46 0 0 64.11
Set4b_Instance50-13 1450.93 1450.94 1450.94 0 0 60.66
Set4b_Instance50-14 1393.61 1393.64 1393.64 0 0 64.43
Set4b_Instance50-15 1466.83 1466.84 1466.84 0 0 62.12
Set4b_Instance50-16 1387.83 1387.85 1387.85 0 0 67.61
Set4b_Instance50-17 2088.49 2088.48 2088.48 0 0 74.91
Set4b_Instance50-18 1227.61 1227.68 1227.68 0.01 0.01 62.27
Set4b_Instance50-19 1546.28 1546.28 1546.91 0 0.04 96.27
Set4b_Instance50-20 1272.97 1272.98 1272.98 0 0 69.84
Set4b_Instance50-21 1577.82 1577.82 1577.82 0 0 97.49
Set4b_Instance50-22 1281.83 1281.83 1281.83 0 0 74.92
Set4b_Instance50-23 1652.98 1652.98 1652.98 0 0 78.49
Set4b_Instance50-24 1282.68 1282.69 1282.69 0 0 71.72
Set4b_Instance50-25 1408.57 1408.58 1408.58 0 0 70.13
Set4b_Instance50-26 1167.46 1167.47 1167.47 0 0 66.26
Set4b_Instance50-27 1444.5 1444.49 1444.49 0 0 105.95
Set4b_Instance50-28 1210.44 1210.46 1210.46 0 0 71.68
Set4b_Instance50-29 1552.66 1552.66 1552.66 0 0 96.53
Set4b_Instance50-30 1211.49 1211.63 1211.63 0.01 0.01 66.07
Set4b_Instance50-31 1440.86 1440.85 1441.01 0 0.01 99.36
Set4b_Instance50-32 1199 1199.05 1199.05 0 0 71.74
Set4b_Instance50-33 1478.86 1478.87 1478.87 0 0 85.78
Set4b_Instance50-34 1233.92 1233.96 1233.96 0 0 65.83
Set4b_Instance50-35 1570.72 1570.73 1570.73 0 0 76.54
Set4b_Instance50-36 1228.89 1228.95 1228.95 0 0 65.35
Set4b_Instance50-37 1528.73 1528.73 1528.73 0 0 162.83
Set4b_Instance50-38 1163.07 1163.07 1163.07 0 0 112.17
Set4b_Instance50-39 1520.92 1520.92 1520.92 0 0 179.79
Set4b_Instance50-40 1163.04 1163.04 1164.76 0 0.15 172.62
Set4b_Instance50-41 1652.98 1652.98 1652.98 0 0 127.34
Set4b_Instance50-42 1190.17 1190.17 1190.17 0 0 105.48
Set4b_Instance50-43 1406.11 1406.1 1406.1 0 0 168.45
Set4b_Instance50-44 1035.03 1035.05 1035.05 0 0 103.48
Set4b_Instance50-45 1401.87 1401.87 1401.87 0 0 148.67
Set4b_Instance50-46 1058.11 1058.1 1058.1 0 0 144.73
Set4b_Instance50-47 1552.66 1552.66 1552.66 0 0 132.45
Set4b_Instance50-48 1074.5 1074.51 1074.51 0 0 91.28
Set4b_Instance50-49 1434.88 1434.88 1434.88 0 0 148.69
Set4b_Instance50-50 1065.25 1065.3 1065.3 0 0 87.9
Set4b_Instance50-51 1387.51 1387.51 1387.51 0 0 147.36
Set4b_Instance50-52 1103.42 1103.47 1104.17 0 0.07 121.2
Set4b_Instance50-53 1545.73 1545.76 1545.76 0 0 97.61
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Set4b_Instance50-54 1113.62 1113.66 1113.66 0 0 90.87

Set5_100-5-1 1564.46 1571.43 1572.77 0.45 0.53 809.82
Set5_100-5-1b 1099.35 1109.27 1109.27 0.9 0.9 377.91
Set5_100-5-2 1016.32 1016.32 1017.99 0 0.16 491.56
Set5_100-5-2b 782.25 783.39 783.39 0.15 0.15 297.13
Set5_100-5-3 1045.29 1045.29 1046 0 0.07 589.98
Set5_100-5-3b 828.54 828.54 828.54 0 0 279.19
Set5_100-10-1 1124.93 1124.93 1124.93 0 0 2919.96
Set5_100-10-1b 911.8 913.59 913.59 0.2 0.2 1258.56
Set5_100-10-2 985.4 996.3 996.74 1.11 1.15 1195.51
Set5_100-10-2b 766.28 768.13 768.13 0.24 0.24 750.73
Set5_100-10-3 1042.63 1042.63 1042.63 0 0 1675.63
Set5_100-10-3b 848.16 848.16 849.56 0 0.17 1601.16
Set5_200-10-1 1537.52 1544.1 1545.98 0.43 0.55 8035.98
Set5_200-10-1b 1173.07 1175.27 1178.51 0.19 0.46 3751.62
Set5_200-10-2 1352.87 1353.21 1353.74 0.03 0.06 2947.85
Set5_200-10-2b 985.99 987.44 988.29 0.15 0.23 1635.62
Set5_200-10-3 1777.49 1782.81 1784.61 0.3 0.4 3905.13
Set5_200-10-3b 1192.35 1197.97 1198.67 0.47 0.53 2283.3

Set6_A-n51-4 652 652 652 0 0 111.32
Set6_A-n51-5 663.41 663.41 663.41 0 0 136.18
Set6_A-n51-6 662.51 662.51 662.51 0 0 227.35
Set6_B-n51-4 563.98 563.98 563.98 0 0 92.84
Set6_B-n51-5 549.23 549.23 549.23 0 0 113.16
Set6_B-n51-6 556.32 556.32 556.32 0 0 172.88
Set6_C-n51-4 689.18 689.18 689.18 0 0 109.08
Set6_C-n51-5 723.12 723.12 723.12 0 0 108.27
Set6_C-n51-6 697 697 697 0 0 156.1
Set6_A-n76-4 985.95 985.95 986.01 0 0.01 235.59
Set6_A-n76-5 979.15 979.15 979.15 0 0 472.36
Set6_A-n76-6 970.2 970.2 970.2 0 0 612.56
Set6_B-n76-4 792.73 792.73 792.73 0 0 236.2
Set6_B-n76-5 783.93 783.93 784.09 0 0.02 351.29
Set6_B-n76-6 774.17 774.17 775.5 0 0.17 459.42
Set6_C-n76-4 1054.89 1054.89 1054.89 0 0 254.82
Set6_C-n76-5 1115.32 1115.32 1115.32 0 0 377.73
Set6_C-n76-6 1060.52 1060.52 1062.85 0 0.22 745.98
Set6_A-n101-4 1194.17 1194.17 1194.38 0 0.02 326.11
Set6_A-n101-5 1211.38 1214.41 1214.41 0.25 0.25 699.03
Set6_A-n101-6 1155.89 1155.94 1156.56 0 0.06 959.49
Set6_B-n101-4 939.21 939.83 939.83 0.07 0.07 319.94
Set6_B-n101-5 967.82 969.07 969.07 0.13 0.13 763.59
Set6_B-n101-6 960.29 960.29 960.81 0 0.05 688.98
Set6_C-n101-4 1292.04 1292.04 1297.26 0 0.4 509.41
Set6_C-n101-5 1304.86 1305.82 1305.82 0.07 0.07 552.44
Set6_C-n101-6 1284.48 1284.48 1290.35 0 0.46 796.4

Avg. gap / avg. time 0.00% 0.025% 0.043% 285.8s
# BKS 207/207 190/207
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Table B.5: Detailed results on LRP instances
Instance BKS HALNS

Best 10 Avg 10 Best Gap [%] Avg Gap [%] Runtime [s]

20-5-1a 54793 54793 54793 0 0 25.61
20-5-1b 39104 39104 39104 0 0 21.3
20-5-2a 48908 48908 48908 0 0 23.1
20-5-2b 37542 37542 37542 0 0 22.61
50-5-1 90111 90111 90111 0 0 61.47
50-5-1b 63242 63242 63242 0 0 54.47
50-5-2 88298 88298 88298 0 0 59.08
50-5-2b 67308 67308 67308 0 0 58.93
50-5-2bis 84055 84055 84055 0 0 61.26
50-5-2bbis 51822 51822 51822 0 0 52.94
50-5-3 86203 86203 86203 0 0 66.52
50-5-3b 61830 61830 61830 0 0 54.99
100-5-1 274814 275079 275120.6 0.1 0.11 385.09
100-5-1b 213568 213568 213588.6 0 0.01 279.77
100-5-2 193671 193671 193671 0 0 210.24
100-5-2b 157095 157095 157095 0 0 186.1
100-5-3 200079 200079 200079 0 0 247.28
100-5-3b 152441 152441 152441 0 0 138.93
100-10-1 287661 287692 287870 0.01 0.07 394.79
100-10-1b 230989 230989 230989 0 0 222.9
100-10-2 243590 243590 243611 0 0.01 254.71
100-10-2b 203988 203988 203988 0 0 146.75
100-10-3 250882 250882 250945.6 0 0.03 332.39
100-10-3b 203114 203114 203404.6 0 0.14 207.38
200-10-1 474850 476472 477174.2 0.34 0.49 1478.59
200-10-1b 375177 375346 375512.6 0.05 0.09 1031.6
200-10-2 448077 448721 449138.6 0.14 0.24 1283.05
200-10-2b 373696 373696 373706.2 0 0 951.11
200-10-3 469433 470422 471149 0.21 0.37 1197.06
200-10-3b 362320 362630 362744.4 0.09 0.12 1091.56

P111112 1467.68 1467.68 1467.68 0 0 163.22
P111122 1448.37 1448.37 1448.54 0 0.01 239.21
P111212 1394.8 1394.8 1394.8 0 0 162.94
P111222 1432.29 1432.29 1432.6 0 0.02 234.86
P112112 1167.16 1167.16 1167.16 0 0 184.35
P112122 1102.24 1102.24 1102.24 0 0 151.51
P112212 791.66 791.66 791.66 0 0 168.88
P112222 728.3 728.3 728.3 0 0 137.87
P113112 1238.24 1238.49 1238.49 0.02 0.02 197.3
P113122 1245.3 1245.31 1245.46 0 0.01 150.63
P113212 902.26 902.26 902.26 0 0 141.88
P113222 1018.29 1018.29 1020.09 0 0.18 154.53
P131112 1892.17 1892.17 1893.86 0 0.09 481.69
P131122 1819.68 1819.68 1822.7 0 0.17 473.25
P131212 1960.02 1964.34 1965.4 0.22 0.27 406.93
P131222 1792.77 1792.77 1795.23 0 0.14 377.68
P132112 1443.32 1443.32 1443.32 0 0 368.65
P132122 1429.3 1429.3 1439 0 0.68 441.85
P132212 1204.42 1204.42 1204.42 0 0 427.53
P132222 924.68 924.68 924.68 0 0 484.31
P133112 1694.18 1694.68 1698.6 0.03 0.26 530.37
P133122 1392.01 1392.01 1393.74 0 0.12 473.67

Continued on next page
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Table B.5 – Continued from previous page

P133212 1197.95 1197.95 1197.95 0 0 478.82
P133222 1151.37 1151.69 1151.78 0.03 0.04 385.31
P121112 2237.73 2238.59 2245.18 0.04 0.33 856.79
P121122 2137.45 2137.45 2140.31 0 0.13 1011.3
P121212 2195.17 2195.17 2199.6 0 0.2 858.64
P121222 2214.86 2214.86 2216.2 0 0.06 1014.78
P122112 2070.43 2070.43 2072.01 0 0.08 861.55
P122122 1685.52 1685.52 1685.69 0 0.01 1029.48
P122212 1449.93 1449.62 1449.77 -0.02 -0.01 1067.59
P122222 1082.46 1082.59 1082.59 0.01 0.01 842.09
P123112 1942.23 1949.95 1952.82 0.4 0.55 1047.41
P123122 1910.08 1910.08 1913.17 0 0.16 1005.32
P123212 1761.11 1760.2 1761.14 -0.05 0 1118.7
P123222 1390.86 1390.74 1390.79 -0.01 -0.01 663.32

Christ50 565.6 565.6 565.6 0 0 54.96
Christ75 848.85 848.85 848.85 0 0 120.92
Christ100 833.4 833.43 833.95 0 0.07 196.76
Das88 355.78 355.78 355.78 0 0 91.74
Das150 43919.9 43919.9 43920.6 0 0 410.93
Gaspelle 424.9 424.9 424.9 0 0 24.9
Gaspelle2 585.11 585.11 585.11 0 0 23.67
Gaspelle3 512.1 512.1 512.1 0 0 29.05
Gaspelle4 562.22 562.22 562.22 0 0 34.49
Gaspelle5 504.33 504.33 504.33 0 0 32.52
Gaspelle6 460.37 460.37 460.37 0 0 35.88
Min27 3062 3062.02 3062.02 0 0 28.55
Min134 5709 5709 5709 0 0 240.03

Avg. gap / avg. time 0.00% 0.020% 0.067% 388.9s
# BKS 76/79 62 (3 new)/79
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Table B.6: Detailed results on MDVRP instances
Instance BKS HALNS

Best 10 Avg 10 Best Gap [%] Avg Gap [%] Runtime [s]

p01 576.87 576.87 576.87 0 0 60.02
p02 473.53 473.53 473.53 0 0 54.47
p03 641.19 641.19 641.19 0 0 103
p04 1001.04 1001.04 1001.04 0 0 198.66
p05 750.03 750.03 750.03 0 0 145.98
p06 876.5 876.5 876.62 0 0.01 206.59
p07 881.97 881.97 881.97 0 0 203.58
p08 4369.95 4375.49 4379.97 0.13 0.23 1599.68
p09 3858.66 3862.16 3865.39 0.09 0.17 1401.68
p10 3629.6 3631.37 3632.57 0.05 0.08 1653.99
p11 3545.18 3546.06 3546.06 0.02 0.02 1032.74
p12 1318.95 1318.95 1318.95 0 0 100.22
p13 1318.95 1318.95 1318.95 0 0 85.05
p14 1360.12 1360.12 1360.12 0 0 84.2
p15 2505.42 2505.42 2505.42 0 0 334.53
p16 2572.23 2572.23 2572.23 0 0 252.51
p17 2709.09 2709.09 2709.09 0 0 239.79
p18 3702.85 3702.85 3702.85 0 0 1243.84
p19 3827.06 3827.06 3827.06 0 0 538.79
p20 4058.07 4058.07 4058.07 0 0 477.34
p21 5474.84 5474.84 5480.95 0 0.11 3310.95
p22 5702.16 5702.16 5702.16 0 0 1309.81
p23 6078.75 6078.75 6078.75 0 0 1072.26
pr01 861.32 861.32 861.32 0 0 44.35
pr02 1307.34 1307.34 1307.34 0 0 124.84
pr03 1803.8 1803.8 1803.8 0 0 246.15
pr04 2058.31 2058.31 2058.82 0 0.02 578.52
pr05 2331.2 2331.2 2336.91 0 0.24 1174.63
pr06 2676.3 2677.8 2683.72 0.06 0.28 1709.75
pr07 1089.56 1089.56 1089.56 0 0 69.25
pr08 1664.85 1664.85 1664.85 0 0 338.88
pr09 2133.2 2133.2 2136.49 0 0.15 726.5
pr10 2867.26 2870.63 2879.33 0.12 0.42 2207.43

Avg. gap / avg. time 0.00% 0.014% 0.053% 694.8s
# BKS 33/33 27/33
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Table B.7: Solution LRP instance P122212
LRP - P122212 BKS 1449.03

Depot 8 Demand
1928

Route Demand Distance Duration Sequence
Route 1 148 63.3482 63.3482 8-101-97-93-153-98-111-123-146-113-128-8
Route 2 148 37.6835 37.6835 8-105-94-119-152-100-129-140-137-136-8
Route 3 149 78.4976 78.4976 8-186-170-207-180-167-187-182-203-209-175-188-8
Route 4 148 105.137 105.137 8-99-104-106-11-174-194-190-178-208-164-8
Route 5 149 78.9653 78.9653 8-184-158-179-199-172-196-161-173-210-189-191-8
Route 6 147 55.6065 55.6065 8-92-121-122-147-88-133-86-116-91-115-8
Route 7 150 45.8852 45.8852 8-84-109-87-103-142-120-143-131-124-102-8
Route 8 150 103.39 103.39 8-165-155-162-198-202-176-157-156-16-201-8
Route 9 150 49.8417 49.8417 8-83-117-114-125-110-145-150-138-96-144-8
Route 10 149 34.1428 34.1428 8-95-118-130-148-107-89-149-132-90-139-8
Route 11 150 65.1197 65.1197 8-112-15-13-108-85-126-151-141-135-134-127-8
Route 12 145 59.4967 59.4967 8-168-206-197-183-171-195-166-192-193-205-8
Route 13 145 63.3845 63.3845 8-163-200-154-177-185-159-204-160-181-169-8

Depot 9 Demand
1009

Route Demand Distance Duration Sequence
Route 1 141 22.6563 22.6563 9-26-22-50-56-21-51-72-58-44-9
Route 2 150 69.7896 69.7896 9-36-12-78-14-53-81-68-24-45-77-40-9
Route 3 138 25.9581 25.9581 9-41-17-61-76-71-59-33-64-67-9
Route 4 149 27.1209 27.1209 9-57-35-20-74-75-47-28-34-60-79-9
Route 5 137 19.9485 19.9485 9-18-55-80-42-19-38-25-43-49-73-9
Route 6 148 18.6211 18.6211 9-30-31-82-23-54-52-48-37-66-9
Route 7 146 24.4349 24.4349 9-65-27-69-39-62-29-32-46-63-70-9
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Table B.8: Solution LRP instance P123212
LRP - P123212 BKS 1760.20

Depot 3 Demand
1827

Route Demand Distance Duration Sequence
Route 1 142 82.4028 82.4028 3-90-60-77-65-84-78-81-88-95-3
Route 2 132 67.7368 67.7368 3-16-17-24-50-28-23-27-44-3
Route 3 150 85.9019 85.9019 3-20-40-36-42-14-48-46-29-30-52-3
Route 4 150 72.8714 72.8714 3-11-43-18-19-37-13-15-45-49-26-3
Route 5 147 77.7983 77.7983 3-63-66-69-89-79-93-72-74-57-76-3
Route 6 149 68.96 68.96 3-71-82-70-68-80-75-59-92-61-94-3
Route 7 145 69.8052 69.8052 3-56-55-96-73-87-58-86-54-91-3
Route 8 142 56.1821 56.1821 3-186-198-183-196-188-177-199-190-182-197-3
Route 9 148 81.946 81.946 3-33-25-32-21-12-51-62-64-67-85-83-3
Route 10 137 45.8671 45.8671 3-178-184-185-205-193-207-180-191-209-3
Route 11 149 81.2453 81.2453 3-35-22-34-41-31-53-38-39-47-3
Route 12 147 63.2245 63.2245 3-175-201-202-194-187-206-200-204-189-192-203-3
Route 13 89 43.0705 43.0705 3-176-210-179-195-181-208-3

Depot 8 Demand
1191

Route Demand Distance Duration Sequence
Route 1 150 47.1888 47.1888 8-107-138-132-126-100-133-121-119-128-8
Route 2 147 74.5361 74.5361 8-166-147-159-154-173-152-153-142-171-174-8
Route 3 148 65.6967 65.6967 8-151-146-169-162-157-148-163-149-150-155-8
Route 4 150 49.3432 49.3432 8-106-97-124-139-135-136-134-103-114-8
Route 5 149 32.2056 32.2056 8-125-122-108-102-130-98-116-112-137-8
Route 6 149 35.6204 35.6204 8-127-110-113-141-140-118-99-123-120-131-8
Route 7 150 68.8255 68.8255 8-144-143-172-156-168-145-164-167-160-158-165-8
Route 8 148 79.7698 79.7698 8-129-104-111-115-117-105-101-109-170-161-8

137



Appendix B Appendix for HALNS for VRPs with Depot Location Decisions

Table B.9: Solution LRP instance P123222
LRP - P123222 BKS 1390.74

Depot 3 Demand
594

Route Demand Distance Duration Sequence
Route 1 149 50.2523 50.2523 3-105-110-140-119-136-129-137-139-133-128-3
Route 2 149 44.5297 44.5297 3-104-122-135-115-113-111-121-142-114-123-3
Route 3 148 29.2728 29.2728 3-109-118-107-124-130-131-117-108-116-126-3
Route 4 148 34.4071 34.4071 3-106-132-141-125-127-138-112-134-120-3

Depot 4 Demand
500

Route Demand Distance Duration Sequence
Route 1 78 10.1649 10.1649 4-204-203-208-202-206-4
Route 2 139 29.1737 29.1737 4-193-196-195-209-218-214-188-194-213-4
Route 3 139 28.4829 28.4829 4-191-220-207-189-211-210-212-200-197-4
Route 4 144 24.9624 24.9624 4-215-219-198-216-201-205-190-192-199-217-4

Depot 13 Demand
591

Route Demand Distance Duration Sequence
Route 1 146 19.0509 19.0509 13-77-81-100-89-80-68-98-85-86-13
Route 2 150 46.464 46.464 13-88-102-69-97-87-72-91-103-90-94-96-13
Route 3 150 24.6196 24.6196 13-70-67-82-71-73-76-78-84-93-13
Route 4 145 40.7973 40.7973 13-65-79-99-74-75-101-83-66-92-95-13

Depot 19 Demand
690

Route Demand Distance Duration Sequence
Route 1 147 44.2391 44.2391 19-152-186-153-146-180-160-148-167-184-183-19
Route 2 137 27.384 27.384 19-157-176-156-155-168-158-159-165-19
Route 3 140 33.505 33.505 19-162-182-164-178-154-161-171-173-185-19
Route 4 148 46.706 46.706 19-144-175-187-163-145-170-172-147-174-151-19
Route 5 118 30.0726 30.0726 19-166-179-149-150-143-169-177-181-19

Depot 20 Demand
683

Route Demand Distance Duration Sequence
Route 1 150 27.9864 27.9864 20-61-24-34-40-46-25-52-43-63-62-64-20
Route 2 143 26.132 26.132 20-22-47-36-26-54-35-32-53-33-48-20
Route 3 137 18.2386 18.2386 20-39-57-50-59-21-27-49-41-20
Route 4 138 21.8631 21.8631 20-51-30-31-29-28-44-42-55-20
Route 5 115 12.4397 12.4397 20-23-56-37-45-58-38-60-20
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