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�If nobody makes you do it, it counts as fun.�
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Abstract
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Doctor of Philosophy

From Bag-of-Words Towards Natural Language: Adapting
Topic Models to Avoid Stop Word Removal

by Max Schulze Dieckhoff

Topic models such as latent Dirichlet allocation (LDA) aim to identify
latent topics within text corpora. However, although LDA-type models
fall into the category of Natural Language Processing, the actual model
input is heavily modi�ed from the original natural language. Among
other things, this is typically done by removing speci�c terms, which
arguably might also remove information. In this paper, an extension to
LDA is proposed called uLDA, which seeks to incorporate some of these
formerly eliminated terms � namely stop words � to match �natural�
topics more closely. After developing and evaluating the new extension
on established �t measures, uLDA is then tasked with approximating
human-perceived topics. For this, a �ground truth� for topic labels is
generated using a human-based experiment. These values are then used
as a reference to be matched by the model output. Results show that
the new extension outperforms traditional topic models regarding out-of-
sample �t across all data sets and regarding human topic approximation
for most data sets. These �ndings demonstrate that the novel extension
can extract valuable information from the additional data conveyed by
stop words and shows potential for better modeling natural language in
the future.

Keywords: text mining, topic models, latent Dirichlet allocation, nat-
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Chapter 1

Motivation

When discussing statistical models for text data, a term that has gained
more and more traction within the past years is natural language pro-
cessing (NLP). It refers to the interaction between computer models and
(usually) human-generated language. The expression �natural language�
is derived from the fact that input data for these models take the form of
unmodi�ed human language. The de�nition is probably best illustrated
by contrasting it to structured text data such as hashtags, tables, or even
programming code.

However, the term is used somewhat loosely since most NLP models
do not directly take natural language as input. Instead, the raw text
data is pre-processed to make the data more compatible with model
assumptions. Typical pre-processing steps include, for example, remov-
ing spelling mistakes, removing redundant punctuation, or even deleting
punctuation altogether. Other common steps focus on removing words,
such as frequent or infrequent terms or so-called stop words. Finally,
some researchers also employ stemming, which removes grammar from
words by reducing them to the word stem. This procedure is often fol-
lowed by �quantifying� the text data through encoding terms into token
vectors, which is mainly done for the sake of conforming unstructured
language to structured models with limited capabilities.

These pre-processing steps present a common theme: removing struc-
ture and information from natural language is necessary to conform the
data to model requirements. However, some key bene�ts of natural lan-
guage are lost by these procedures since all the structure is part of what
makes it so easily understandable to humans. Therefore, the question
arises if all of the usual pre-processing steps are vital or if it would be
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advisable to somewhat ease model restrictions in order to better harness
this information that is otherwise lost.

Although there is plenty of research on this topic when looking at
supervised models such as deep neural networks, these methods require
labeled training data which provides additional hurdles for users. This
thesis will instead focus on unsupervised models that can generate in-
sights into previously unseen data without intensive training. One par-
ticular type of unsupervised models, namely topic models, will be at the
heart of this work. These models are typically used to identify latent
topics in both small and large corpora of text data.

Since resolving all the typical pre-processing steps would be an mul-
tifaceted task beyond the scope of one thesis, the attention of this disser-
tation is limited to the step of removing stop words. The following pages
will examine if and how stop words can be introduced into topic models
to avoid their removal and instead utilize the information conveyed by
them. The main objective behind this approach is to �nd a better model
for natural language.

However, de�ning what characterizes a �better� model is a challenge
of its own, since natural language is not a phenomenon easily quanti�ed.
Especially when trying to evaluate topic models, established measures
are more concerned with model �t or topic coherence than with how well
the model represents language. As an approach to resolve this issue, this
thesis also contains a novel experiment designed to obtain an approxi-
mation of natural language topics, which can then be used to evaluate
topic models concerning their prediction for that data.

In order to solve these two tasks, some groundwork has to be laid
�rst. The initial steps include re-de�ning the concept of stop words
and their role in text data as well as descriptive analyses on several
corpora to identify a suitable approach for including their information in
topic models. Once the model is formulated, the experiment will provide
human-generated topic labels that can then be used for evaluation.
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Chapter 2

Contribution and Structure

The primary focus of this thesis is to examine the relationship between
topics produced by topic models and topics as perceived by humans.
This endeavor will entail examining the discrepancy between raw text
data obtained as natural language and the pre-processed data fed into
a topic model, with a particular focus on stop words. A novel model
will be proposed that aims to handle data more closely to the original
text. The model proposition is complemented by an examination of
how humans do form topics when processing a corpus. The following
questions formalize this objective:

1. Does removing stop words before model estimation change the in-
teraction between LDA and the given data?

2. Can LDA be extended to harness possible interaction e�ects?
Could this allow for a reduced pre-processing that would warrant
the input data to be closer to natural language?

The natural next question would be whether the new extension can
model human-perceived topics better than standard LDA. However, it
this question cannot be answered without de�ning a human-based refer-
ence point �rst, which leads to these additional questions:

3. Can reference values for human-perceived topics be obtained in
an experimental setting? How do humans perceive topics in the
context of an experiment?

4. Does the proposed extension provide a demonstrably better model
for human-perceived topics?
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All these questions will addressed during the course of this thesis and
picked up again in the conclusion part.

The presented work is comprised of four parts. In the �rst part, the
Introduction, the motivation behind this thesis is described and the re-
search objective is presented. Part II, Theoretical Foundation, introduces
the primary reference model for this research, latent Dirichlet allocation,
and provides an overview of the current state of research regarding topic
model extensions concerned with relaxing related assumptions. It also
contains the theoretical framework of ubiquitous terms suggested to re-
place stop words and motivates the model extension introduced later.
The Empirical Analysis in part III is itself sectioned into four chapters.
First, the data used in this study is presented in chapter 5, followed by
a description of the employed methods used for answering the research
questions in chapter 6. The results are presented in chapter 7 and dis-
cussed in detail in chapter 8. Part IV, Conclusion, provides a summary
of the �ndings and o�ers possible future paths of research.
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Part II

Theoretical Foundation
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Chapter 3

Introduction to Topic

Models

This chapter introduces topic models, speci�cally latent Dirichlet allo-
cation as proposed for text data by Blei, Ng, and Jordan (2003). After
laying the groundwork to foster understanding of topic models and their
assumptions in section 3.1, section 3.2 will introduce the two main model
restrictions this thesis aims to resolve. The �rst part examines model
adaptations that aim to transfer some of the information on the internal
structure of documents into the model to move away from the simpli-
�cation of viewing documents as �bags of words.� The second part is
concerned with extensions to topic models that try to incorporate the
information of stop words in some way.

Afterwards, chapter 4 will provide suggestions for addressing said
limitations. First, existing research on how to approach the limitations
are presented in section 4.1. Second, section 4.2 will introduce a novel
approach to the issue of stop word information by introducing the con-
cept of ubiquitous terms.

In general, topic models aim to identify unobserved, latent topics
based on a statistical analysis of text data (Blei, Ng, and Jordan 2003;
T. L. Gri�ths and Mark Steyvers 2002; Hofmann 1999). The underlying
assumption is that documents consist of a mixture of topics, i.e., that a
document is merely the combination of terms that can be assigned to one
of several topics (M. Steyvers and T. Gri�ths 2010). Topics are, in this
case, de�ned as a probability distribution over terms. Therefore, every
word can be, in theory, assigned to every topic, but some assignments
are much more likely than others. The topics are usually characterized
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by their most likely terms. For example, a topic dealing with the optics
of a product could include words such as �red,� �blue,� �color,� �look,�
and �bright.�

Topic models are so-called generative models, which means that they
specify a probabilistic procedure that could be implemented to generate
documents (M. Steyvers and T. Gri�ths 2010). However, the actual use
of topic models shows when the process is inverted by looking at given
documents and estimating which model parameters are most likely to
have produced these results.

The usage of topic models did not necessarily start with LDA. It was
developed from other text mining approaches, such as latent semantic
analysis (LSA), which used matrix decomposition to �nd the topics of
a corpus. Still, LDA in the form proposed in the widely cited paper by
Blei, Ng, and Jordan (2003), was arguably the most used topic model
variant. To be precise, the smoothed LDA presented in the 2003 paper
is nowadays considered �standard LDA� and will therefore be referred
to as simply LDA. Section 3.1 will provide a closer look at that model,
which will also function as a starting point for developing the ubiquitous
terms model in section 6.2.

3.1 Latent Dirichlet Allocation

Latent Dirichlet allocation is a topic model that uses hierarchical Bayes
analysis to make statistical inference about the latent topics. It was
based on work about latent semantic analysis (LSA), frequently also
referred to as latent semantic indexing (LSI) (Deerwester et al. 1990;
Hofmann 1999).

Although the most prominent use case is text data, LDA and LDA-
based model extensions such as mixed-membership models have been
successfully used with a wide variety of data sets such as political voting
data (Gormley and Murphy 2014) and text data (Grimmer 2010), popu-
lation genetics (Shringarpure and Xing 2014), and image analyses (Cao
et al. 2016). In the �eld of marketing speci�cally, there have been appli-
cations to mobile app usage data (Do and Gatica-Perez 2010), consumer
reviews (e.g., Büschken and Allenby 2016), and purchase histories (e.g.,
Jacobs, Donkers, and Fok 2016; Ishigaki et al. 2015).
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Model Proposal

Latent Dirichlet allocation inherits the main idea of topic models that
documents can be represented by a collection of topics. A �topic� is de-
�ned as a probability vector across all terms of a corpus. As the model's
name suggests, the terms within a topic are assumed to follow a Dirichlet
distribution. The idea is that a corpus can be described with a set of T
topics. In a marketing context, these could be di�erent product aspects
in a consumer review. For example, in the tent data set, reviews could
describe the user experience with the tent in question by talking about
its durability, look, or handling. However, not all reviews talk about
all topics in the same scope. This is somewhat obvious since consumers
can have di�erent experiences with the same product or di�erent prefer-
ences about its characteristics. Nevertheless, this variety in subjects is
also a helpful circumstance when it comes to parameter estimation. The
variance in topic shares is necessary to determine the topic probability
vectors. If all documents had the same shares of topics, it would be
impossible to estimate the topics due to a lack of information. The only
observed variables in latent Dirichlet allocation are the document char-
acteristics themselves. LDA assumes that the words within a document
are distributed as

P (wi) =

T∑︂
t=1

P (wi | zi = t)P (zi = t) ∀i ∈ {1, . . . ,W} , (3.1)

where T is the number of topics and W is the number of words in
the respective document. Within the model, the probability of a word w
given topic t is denoted as ϕt = P (w | z = t). The prior probability of the
topic assignment z of that word being equal to topic t within document d
is θd = P (z = t). A detailed overview of the notation used for LDA-type
models within this dissertation is shown in the list of symbols preceding
the thesis.

As mentioned before, topic models are considered generative models,
and latent Dirichlet allocation is no exception. The generative process
that would describe how LDA could produce documents is stochastic,
which means that the results would be random. In theory, there is a
chance that a document would be generated that matches exactly one of
the reviews within a given data set. Some variables are considered �xed
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a priori, such as the number of topics (T ) and the vocabulary size across
all documents (V ). Additionally, α and β are positive vectors of length
T and V , respectively. In the following description, DirN (γ) denotes a
Dirichlet distributed vector of lengthN with parameter γ, while Multi(δ)
is a multinomial distributed value with probability vector δ.

Algorithm 1: Data generating process of LDA

for each topic t do
Draw a word distribution ϕt ∼ DirV (β)

for each document d do
Draw a vector of topic shares θd ∼ DirT (α)
for each word wd,n in document d do

Draw the topic assignment zd,n ∼ Multi(θd),
zd,n ∈ {1, . . . , T}
Draw a term wd,n ∼ Multi(ϕzd,n), wd,n ∈ {1, . . . , V }

This process is visualized in a directed acyclic graph representation in
�gure 3.1. The observed random variable wd,n is denoted by the shaded
node. The other, unshaded nodes, represent unobserved or hidden ran-
dom variables. The notation also includes constant priors (in this case
α and β), so-called hyperpriors. These are set a priori and can be used
as tuning parameters. The edges denote dependencies between random
variables and include the respective random distribution that shapes the
relationship. The boxes follow the �plate notation� and denote replica-
tion.

Other than in classical mixture models (e.g., Nigam et al. 2000),
in LDA, a document can inherit several topics. This characteristic is
represented by the probability vectors θd and ϕt, which are themselves
Dirichlet distributed. The Dirichlet distribution is predestined for this
use as it produces positive vectors that sum to one, which is necessary
for the subsequent draw from the multinomial distribution. The density
of a Dirichlet distribution is

p(θ | α) =
Γ(
∑︁
i αi)∏︁

i Γ(αi)

∏︂
i

θαi−1
i , (3.2)

where Γ denotes the Gamma function. If αi = αj∀i, j ∈ 1, . . . ,K
with K as the length of vector α, the Dirichlet distribution is also called
symmetric Dirichlet.
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wd,n

zd,n

θd

αθ

Multi

Multi

Dir

ϕt

βϕ

Dir

∀1 ≤ n ≤ Nd

∀d ∈ D

∀t ∈ T

Figure 3.1: Graphical model representation of la-
tent Dirichlet allocation.
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C

(words×documents)

= Φ

(words×topics)

× Θ
(topics×documents)

Figure 3.2: Visualization of the implicit matrix fac-
torization.

Parameter Estimation

Mathematically speaking, LDA performs an implicit matrix factoriza-
tion. A corpus of text is converted into a document-term-matrix, which
tables the counts for each word within each document. The goal is to de-
compose this matrix into two matrices by introducing latent topics. One
of the resulting matrices is the topic-term matrix, which contains the
probabilities to observe each word within each topic, respectively. The
other matrix is called the document-topic matrix and contains the prob-
ability that any observed word within a speci�c document is assigned to
a speci�c topic. This process is visualized in Figure 3.2.

These matrices are also involved in the estimation process when using
Gibbs sampling. Gibbs Sampling is a speci�c Markov chain Monte Carlo
(MCMC) method, an iterative approach to sample values from complex
distributions (Gilks, Richardson, and Spiegelhalter 1995). In Gibbs sam-
pling, joint distributions of several variables are deconstructed into dis-
tributions of a variable subset, conditioned on each other's results. By
sequentially sampling each distribution over and over again, the sampled
values approximate the target distribution.

To further demonstrate the principles of Gibbs sampling, the imple-
mentation of latent Dirichlet allocation, as shown by M. Steyvers and
T. Gri�ths (2010), is explained. The notation introduced at the start
of this work (page xv) applies here as well.
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The goal of this sampling procedure is to approximate the posterior
distribution of all terms as given by

P (wi | ϕ, θ, α, β). (3.3)

Equation 3.3 can be divided up into distributions dependent on each
other as follows:

P (wi | ϕ, θ, α, β) = P (wi | zi, ϕ)P (zi | θd)P (θ | α)P (ϕ | β) (3.4)

Using this partition and keeping in mind that wi is observed data, the
Gibbs sampling steps can be identi�ed as sampling zi, θ, and ϕ, with α
and β being constant priors that are treated as model parameters.

In this process, each word within each document is considered sep-
arately. For every word wi, a topic zi is sampled. Typically, LDA uses
a collapsed Gibbs sampling step for this, which means that although
zi would be directly dependant on ϕ, that parameter is integrated out.
Values of zi are instead sampled conditionally on other values of z, wi
and the priors, which implicitly provide information on the distributions
of topics and the terms within them. This sampling is done via:

P (zi = t | z−i, wi, di, ·) ∝
CWT
wij

+ β∑︁W
w=1 C

WT
w,j +Wβ

CDTdit + α∑︁T
u=1 C

DT
diu

+ Tα
(3.5)

where CWT is a matrix with observation counts for all words within
each topics and CDT is a matrix containing observation counts for
all topic assignments within each document (see notation on page xv).
Equation 3.5 can be used to produce an unnormalized probability vector
of length T . This unnormalized probability is then divided by its sum
to obtain the actual probability of zi = t.

For estimation purposes, starting values of zi are set randomly for all
tokens wi within the corpus. From this, CWT and CDT can be calculated
and then used to generate draws of zi. Since every draw of zi can only
be dependent on every other zi (as depicted in equation 3.5 by z−i), the
matrices cannot be used as-is for each draw. Before each sampling step,
both matrices are decremented by 1 at the position corresponding to wi,
di, and zi. After a new z∗i is generated, the matrices are incremented by
1 for wi, di, z∗i .
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Since equation 3.5 does not contain ϕ nor θ, technically, it would not
be necessary to sample either one of those hidden variables. However,
since both values are used for inference, it is advisable to sample them
during the Gibbs process to obtain their respective posterior distribution.
Moreover, they can be used to calculate the model log-likelihood to track
convergence.

The sampling of ϕ and θ is done via a simple Dirichlet draw using
the current count as distribution parameters. The expressions are:

ϕt = Dir(CWT
·t + β) ∀t ∈ {1, . . . , T} (3.6)

and

θd = Dir(CDTd· + α) ∀d ∈ {1, . . . , D} . (3.7)

After ϕ and θ are sampled, the whole process starts over. At the
start, there is a so-called burn-in period in which the process is still
dependent on its starting values and does not yet generate draws from
the posterior distribution of z (M. Steyvers and T. Gri�ths 2010). After
this period, the generated values represent a good approximation of the
target posterior distribution.

It should be noted that the topics are ordered randomly dependent
on starting values only. This means, for example, if there is a topic
about �tent set-up,� it should appear in every Gibbs sampling result if
it is a stable topic. However, at which point t (t ∈ {1, . . . , T}) this topic
appears is inconsistent across model instances, which must be kept in
mind when di�erent runs are compared.

One of the disadvantages of the original LDA approach is that the
number of topics is externally �xed, which means that T is another
parameter to be optimized. Luckily, there already have been a variety of
approaches to solving this problem in the literature. Techniques range
from simply estimating several models with di�erent topic numbers and
compare them by a certain measure, such as model log-likelihood or topic
perplexity (e.g., Blei, Ng, and Jordan 2003), to more complex solutions
incorporating the topic number selection process within the Bayesian
model itself (e.g., Blei, T. L. Gri�ths, et al. 2004; Teh et al. 2006).
However, the task of setting the optimal number of topics is not a focus
of this work. Instead, sensible values are used and the main �ndings will
be tested to be robust against changes in T .
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Model Results

Assuming all parameter tuning was done correctly, the question arises
of what to do with the results. The �rst step might be to visualize the
results to the user to give an overview of the model's expressiveness.

The �rst possible step is to visualize the resulting topics. This is
usually done by looking at the most frequent terms of that respective
topic, i.e., those with the highest values in the probability vector ˆ︁ϕt for
topic t. Table 3.1 shows this for some LDA results using the Brexit data
set. Blei and La�erty (2009) proposed a di�erent ranking method that
gives more importance to terms that are predominant in one topic only
by using the following equation:

term-scoret,v = ˆ︁ϕt,v · log
⎛⎜⎝ ˆ︁ϕt,v(︂∏︁T

j=1
ˆ︁ϕj,v)︂ 1

T

⎞⎟⎠ (3.8)

with t ∈ {1, . . . , T} being the respective topic and v ∈ {1, . . . , V }
denoting the respective term in the vocabulary. Table 3.2 again shows
some top words of an LDA over the Brexit data set1 using their approach.
Although there are only a few changes in the word order, some of the
top words di�er.

These terms are usually used to identify the primary concern of each
topic. For a human, there might be an intuitive answer on how those
topics could be described. For example, looking at Topic 10 from tables
3.1 and 3.2, a person somewhat familiar with the topics of the Brexit
discussion could recognize it as the Northern Irish backstop issue, which
was discussed extensively at the time. However, not every topic is as
clearly de�ned, and while looking only at the top words makes it easier
for humans to grasp the �topic� of a word collection quickly, it could be
argued that a large part of the topic is ignored since vocabularies often
range in the thousands. However, automatic topic labeling methods are
not yet well established. Some promising work on this was done by Mei,
Shen, and Zhai (2007). Since this is not an essential focus of this thesis,
the model analysis will forego labeling the topic and will use simple ϕ
values for ranking terms.

1The data sets used in this thesis are described in section 5.1.
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Table 3.1: The top 10 words ranked by ˆ︁ϕ for some
of the topics from an LDA on the Brexit data set (in

descending order).

Topic 3 Topic 4 Topic 8 Topic 10

johnson was labour ireland
deal remainers party eu
will you election northern
eu about voters the
he leavers vote border
mr his corbyn uk
trade bbc are deal
uk gove remain would
his her they agreement
free history tories irish

Table 3.2: The top 10 words of some of the topics
from an LDA on the Brexit data set ranked by a
term-score according to Blei and La�erty (2009) (in

descending order).

Topic 3 Topic 4 Topic 8 Topic 10

mr remainers labour ireland
johnson gove party northern
deal bbc election eu
trade you voters border
will leavers corbyn the
eu about vote uk
uk was are irish
he media remain agreement
his her farage deal
market his lib would
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3.2 Limitations

Although LDA shows good performance for various uses, it is still subject
to certain assumptions and restrictions. Disregarding the distribution
assumptions, which were already discussed in the previous section, there
are two issues worth pointing out. First, the model operates under a bag-
of-words within documents, often abbreviated as BoW, assumption. This
premise leads to the order of terms within each document being ignored
by LDA. Second, the model relies on pre-processing, which prepares the
data for the estimation routine and tends to eliminate the larger share
of terms within a corpus beforehand.

Bags of Words

The bags of words assumption is a widely used phrase to describe that
a model such as LDA has no concept for word order, and therefore the
actual sequence within a document does not impact the model results.
The image is that all words of a document could be put in a bag and
shaken, completely randomizing the order while still producing the iden-
tical posterior distribution according to LDA.

This assumption follows directly from the generative process. When
generating a document d with LDA, every word within the document is
an i.i.d. (independent and identically distributed) draw wi ∼ Multi(ϕzi)
following an i.i.d. draw for zi ∼ Multi(θd) (in standard Gibbs sampling).
Therefore, the probability for each word does not change depending on its
position inside the text. However, this assumption has some implications
that will be examined in the following paragraphs.

On the positive side, it helps with the variety of speech. When looking
at short windows such as individual sentences, the order of words can
often be changed while still conveying the same meaning. For example,
�We were able to set up the tent in just �ve minutes.� and �In just �ve
minutes, we were able to set up the tent.� basically provide the same
information, with a slightly changed word order. LDA treats both the
same, making it easier to compare di�erent people talking about the
set-up process and correctly group them into one topic. By ignoring
the structure within a document, it is also easy to identify topics spread
out across a document, for example, if a review contains the topic of
�material quality� on several paragraphs, separated by di�erent topics in
between.
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However, this simpli�cation also ignores a lot of the information
which can be conveyed by language structure. It stands to reason that
authors do not produce a text by randomly changing the topic after every
word. It seems more logical that words within proximity of each other
are more likely to be of the same topic than words separated by sev-
eral sentences. Incorporating that information in a model could improve
topic estimation and, therefore, overall model performance. Section 4.1
will give an overview of existing research on this topic.

Not Using All Available Data

The second limitation that will be spotlighted here is the pre-processing
of data, especially the step of removing so-called �stop words.� When dis-
cussing implementations of LDA, the input text is usually converted into
(word) tokens. These are generated by splitting documents at whites-
pace characters into lists of words (or sometimes numbers, which is why
the term token is probably more accurate). However, in reality, the
transformation from raw text into token lists is not quite as simple.
Unprocessed text is not only �lled with words but also with numbers,
punctuation marks, and other special characters such as hyphens or quo-
tation marks. The usual approach to pre-processing for LDA throws out
everything that is not a word (or number). The subsequent step can
then be to remove additional words, for instance, rare terms and stop
words.

The expression �rare terms� describes tokens that appear very infre-
quently within the corpus, with the de�nition of �infrequent� varying
between studies. Nevertheless, the motivation behind removing those
terms can be explained most easily when looking at the extreme case of
a token with one single occurrence. A term that only appears once has a
single co-occurrence with every term within its document. Determining
which topic within this document the term belongs to is impossible with-
out additional information � a single data point cannot form a pattern.
The draw would be solely depending on the prior. By the same logic,
rare terms cannot inform the model on other terms' topics since the co-
occurrence is too infrequent. Every additional occurrence increases the
con�dence with which the related topic(s) can be determined. Never-
theless, even if the rare terms were assigned to one topic, there would
be barely any bene�t. The terms could never be important enough for a
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topic (with importance measured by frequency within this topic) to gain
helpful insight.

All that being said, the question could arise why even bother remov-
ing terms that would probably not show up in the resulting visualiza-
tions. The main reason behind this is simply performance. Removing
rare terms shrinks the vocabulary V by a surprisingly large amount. In
an exemplary data set, the share of single occurrence words can be up to
roughly 50%.2 A smaller V reduces the dimensionality of CWT and the
total number of tokens W in a corpus, which reduces processing time
for Gibbs sampling in two ways. First, the number of words directly
impacts the number of draws for zi, which reduces runtime. This e�ect
is arguably relatively small since single occurrence words also count only
for one total occurrence in the corpus. Second, when the dimension of
CWT is reduced, the evaluation of equation 3.5 is faster as well.

The other type of removed terms, stop words, can not easily be dis-
missed since they are usually frequent enough to play a role in the topic
formation process. The term �stop words� describes words that do not
bear much meaning and are instead helping out by providing syntax.
Typical examples of this are function words such as �and,� �the,� or con-
jugations of �to be.� Frequently, these terms are removed via stop word
lists. In that case, all terms provided by a given stop word list are elimi-
nated from the corpus. Among the most prominent ones of these lists are
the NLTK3 and the snowball4 stop word list, which also contain words
as �very,� �too,� and �not,� which might arguably transport meaning in
speci�c contexts. Stop words usually appear numerously all across the
corpus.

One of the main points of this thesis is to demonstrate that these
terms should not be discarded beforehand since they can still provide
information to the model. Section 4.2 will go into detail and explain
why it is a reasonable assumption that stop words are relevant for topic
models. Therefore, it introduces the concept of �ubiquitous terms� to
better determine the contribution of those terms to a model. In the
meantime, section 4.1 provides an overview of existing research on in-
corporating the information provided by such terms into topic models.

2For example, the Brexit data set presented in section 5.1 has about 47% single
occurrence words

3The Natural Language Toolkit is a widely-used open-source package to facilitate
language modeling in python

4Snowball is an open-source project which aims to facilitate stemming for text
mining
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Chapter 4

Addressing LDA

Limitations

This chapter will provide a variety of ways to approach the limita-
tions presented in section 3.2. First, section 4.1 will outline existing
approaches on both bags-of-words and stop words. Section 4.2 will then
provide a novel perspective on stop words and their relation to top-
ics, which will constitute the theoretical framework upon which the new
model will be formulated in section 6.2.

4.1 Existing Approaches in Literature

Bag-of-Words within Documents

A wide range of publications already addressed the issue of including
the document structure into a topic model in one form or the other.
Wallach (2006) approached this problem by introducing a word-to-word
dependency, making the draw of wi dependant on zi as well as wi−1.
Büschken and Allenby (2016) introduced a constraint that forced words
within one sentence to be assigned the same topic, thus creating SC-LDA
(sentence-constraint latent Dirichlet allocation). A similar approach was
chosen by Gruber, Rosen-Zvi, and Weiss (2007), who postulate that
topics are identical for certain blocks within documents and only change
at speci�c points dependent on a change probability. Moody (2016),
on the other hand, combined the Dirichlet-distributed word spaces from
LDA with the skip-gram methodology as implemented by word2vec to
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create lda2vec. Sha�ei and Muios (2006) created latent Dirichlet co-
clustering, in which they assume that the bag-of-words assumption does
not hold for the whole document but only within segments of it, e.g.,
individual paragraphs. In this case, every segment can be assigned a
di�erent θ. Other approaches use external data to enrich the bag-of-
words representation, leading to non-i.i.d. draws of z. Examples include
de�ning keywords (Ramage, Dumais, and Liebling 2010) or tags (Yang
et al. 2015).

In the scope of this thesis, incorporating language structure into the
topic model will rely on the existing research of Büschken and Allenby
(2016). This will be picked up again in section 6.2.2, where their SC-
LDA model will be adapted to incorporate some form of structure into
the topic model proposed in section 6.2.1.

Using Stop Word Information

The issue of harnessing information of otherwise removed words has been
addressed from several angles in the literature. T. L. Gri�ths, Mark
Steyvers, et al. (2004) combined LDA with a Hidden Markov Model
(HMM) to classify terms in di�erent syntactic groups, with only one
group containing topic words. Although this model provided additional
information by including some sort of part-of-speech-tagging, it was out-
performed by LDA in document classi�cation tasks. Scho�eld, Magnus-
son, and Mimno (2017) experimented with removing stop words before
and after LDA estimation. They showed that both methods have ad-
vantages and disadvantages, dependent on the measure of quality, with
a tendency to improved coherence when estimating the model before re-
moving stop words. However, none of their approaches included stop
words in the evaluation period. Wallach, Mimno, and Mccallum (2009)
did not remove stop words but included an asymmetric prior over θ, to
the e�ect that stop words were grouped into one topic. This method is
e�ectively a similar approach to the model proposed in section 6.2.1 but
leaves more uncertainty to the symmetry of priors between actual topics
since these are also left to the model estimation process. Dolamic and
Savoy (2010) did not apply LDA but showed that the selection of stop
words matters for di�erent information retrieval methods. However, stop
word lists vary greatly and are mainly based on the researchers' opinion
(Fox 1989), which means that their �ndings point to the fact that opinion
possibly can in�uence model performance. With the goal of tempering



4.2. Introducing Ubiquitous Terms 25

this in�uence, a more automated approach will be put forward for the
modep proposed by this thesis..

Another point worth mentioning is that besides research on topic
models, language studies have shown that the use of pronouns (which
are typically among the removed stop words) was shown to be related
to both self-perception (Pennebaker 2011) and perception of the writer
(Packard, Moore, and McFerran 2018). Including these terms in the
data therefore can arguably convey valuable information, especially in a
marketing context.

This thesis focuses on a simple, automated approach that does not
require additional input by the user and can easily be incorporated into
existing LDA extensions. In the next section, a theoretical framework
for the distribution and information of �stop words� and similar terms
within data is developed and tested. Section 6.2 will then propose a new
extension to LDA based on those �ndings.

4.2 Introducing Ubiquitous Terms

This section will focus on moving topic model input closer to processing
natural language by addressing the limitations expounded in section 3.2.
As mentioned earlier, the issue of grammatical structure will be left to
the existing research of Büschken and Allenby (2016). However, the
information loss due to stop word removal will be approached from an
entirely new angle. The novel concept of ubiquitous terms is designed to
di�erentiate between typical stop word lists and �true� non-topic terms.

The following pages will now introduce the theoretical groundwork
upon the rest of this thesis is built. This includes presenting the concept
of ubiquitous terms and explaining how it di�ers from typical stop word
lists. This theoretical framework will later be reinforced by a descriptive
analysis of the data sets in section 5.3.

When talking about stop words, the emphasis is on terms such as
function words, which are perceived as �meaningless� when talking about
topic modeling. Stop words are usually compiled by consulting stop
word lists, but sometimes include high-frequency words as well. It is
assumed that they do not contribute to topic models signi�cantly since
they occur independently of the underlying topic. For now, this claim
is not contested for argument's sake, although it will be examined in
detail in section 5.3. The assumption is that words such as �is� and �the�
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appear in every context with similar frequency. Thus, these terms would
not give additional information about the co-occurrence of terms since
the occurrence has a too low variance. Since the terms are usually rather
prevalent, they would be expected to show up in topic-related top words
across all topics.

The main postulation of this thesis is that the established de�nition
and handling of �stop words� should be considered obsolete. First, de-
termining stop words by a pre-de�ned list can be arbitrary. Although
stop word lists usually have some foundation in research, there still is
a wide variety of lists that sometimes also get adapted by researchers,
which can lead to a bias introduced by the removal. Second, removing
these terms is thinning the data available to the model. There is a case
to be made that speci�c terms that usually appear on such lists might
get used more frequently in speci�c contexts � i.e., speci�c topics � than
others.

The word �to� can serve as an example of this since it is typically
included in stop word lists. In many circumstances, the term is used as
a particle, e.g., �I tried to set up the tent� or �I bought the toy to surprise
my dog.� There is arguably not much meaning in this word within that
context. However, the word can be used with a variety of other meanings
as well. For example, it is used in a temporal context in a sentence such
as �setting up the tent took 10 to 15 minutes� or �the shop is open from 9
to 5.� In this case, the context could arguably be topic-speci�c. Another
possible utilization is in a spatial context. Examples would be �it is 400
meters from the hotel to the beach� or �you can get to the city center in
only a few minutes.� A result of this could be that the term �to� is more
likely in the context of time frames or relative spatial positioning than it
is in other contexts. Hence it might be more likely to appear in speci�c
topics than in others, which contradicts the stop word assumption that
the terms are irrelevant � or at least agnostic � to topic content.

However, this is most certainly not true for all stop words. The best
example for a term that would probably be used frequently regardless of
the context is the de�nite article �the.� This word is such an elementary
part of the English language that it would most likely give no information
about the underlying topic to a model. The argument for removing it,
therefore, has some merit.

At this point, the concept of �ubiquitous terms� is introduced to bet-
ter distinguish between �stop words� as de�ned, for example, by stop
word lists and terms such as �the,� which are �true� stop words in the
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original sense. Ubiquitous terms are, as the name indicates, rather om-
nipresent in a constant frequency, with the latter part being the crucial
di�erence. Their frequency comes with such a low variance that it could
be considered constant across documents. Since topic models describe
documents as entirely comprised by varying compositions of latent top-
ics, it follows that the frequency should be near-constant across topics
as well.

In contrast to the straightforward de�nition that stop word lists pro-
vide, categorizing whether or not a word counts as a �ubiquitous term�
does not have to be binary. To recall the example made earlier, the term
�to� can be both considered ubiquitous and topic-speci�c. Since it is
among the most frequent words according to the Corpus of Contempo-
rary American English (Davies 2008), it would appear in high frequency
across all documents. However, as explained above, it might also occur
a little more frequently in speci�c contexts. It might depend on the
corpus whether or not the variation in use can be assigned to a topic.
Additionally, the determination of ubiquitous terms is agnostic to the
respective grammatical form, which means every part of speech could be
a ubiquitous term, and none has to be.

In conclusion, this work will employ the novel concept of ubiquitous
terms in order to identify non-topic words in a �exible, stochastic way
while still making use of their information. This approach aims to replace
the existing procedure of consulting �xed stop lists that relies on simply
discarding a pre-de�ned set of words and thus losing all related data.
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Part III

Empirical Analysis
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Chapter 5

Data

With the theoretical foundation all set, the upcoming chapter will pro-
vide information on the data used for the subsequent analyses. After
presenting the data sets in section 5.1, the pre-processing procedure is
described (5.2). An extensive descriptive analysis follows in section 5.3,
where term frequencies and their distribution within the three corpora
are examined.

5.1 Data Sets

This section will examine the data that is used for all following analyses.
After a summary of descriptive statistics and meta-information about
the data sets in use, the data preparation methods are discussed.

The analysis is based on three main data sets. Two of those consist of
customer reviews, one regarding a camping tent and one regarding a pet
supply store. The third data set consists of editorials from di�erent news
outlets that are concerned with Brexit. The latter is used as an example
for more complex texts, as the length and complexity of documents are
higher than for average online reviews.

Camping Tent Data Set

The camping tent data set is a collection of Amazon reviews for a product
line of a roomy tent. It was chosen because it provided a large number
of reviews that had mixed ratings. Although the average rating is about
4.2 on a 1 to 5 scale, there are still over 1000 reviews rated 2 stars
or lower. This distribution indicates that the topics these reviews talk
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about might be quite diverse. The raw set contains 7976 reviews and
will be referred to as �tent.�

Pet Supply Data Set

The pet supply data set is a collection of online reviews for a range of pet
supply products. These products mainly consist of dog or cat food and
other food supplements for pets that claim to provide health bene�ts.
The ratings are a bit more leaning towards �ve stars than in the tent
data set. The average rating is at 4.4, with about 670 reviews scoring at
or below 2 stars. The unprepared set contains 6053 reviews and will be
referred to as �dogfood.�

Brexit Editorial Data Set

The Brexit data set contains editorials that were gathered from di�erent
online news outlets. The main criterion was that the article had to be
about Brexit and that it had to be a long-form opinion piece. This lead
to the documents being longer and more complex than in the other two
data sets. However, since this is not a review data set, no ratings can
be examined. This set contains 168 editorials and will be referred to as
�Brexit.�

5.2 Data Preparation

All data sets were put through the same data preparation protocol. The
amount of pre-processing di�ers only for the separate analysis steps,
which will be laid out here.

5.2.1 Preparation for the Descriptive Analysis

For the descriptive analysis, the data sets were put through minimal
preparation procedures. Since the point of this thesis is to examine
text at a level that is as close to natural language as possible, the pre-
processing was very limited. In the �rst step, duplicates were removed.
The second step was to de-capitalize all text and clean it from unwanted
symbols and non-printable characters while also trying to �x encoding
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issues that can occur when loading text data containing emojis or non-
Latin characters. Apostrophes were removed while trying to concate-
nate negative clauses such as �don't� or �didn't� into single tokens (i.e.,
�dont�). After the text was cleaned, it was broken into words (tokens) by
splitting the text at each whitespace character. After the pre-processing,
each document is represented by a token vector, each token representing
one word.

5.2.2 Preparation for the Model Estimation

Since the data would be used for sentence constraint topic models down
the road, punctuation marks were used to identify sentence boundaries.
Sentences are set to end on full stops as well as exclamation and question
marks. The identifying characters themselves were not kept. The words
were counted, and some tokens were removed, namely so-called �short
tokens� that are not actual words but rather letters separated due to
various issues (such as spelling or encoding errors). Moreover, tokens
that appeared in less than three documents within the corpus were re-
moved as well. Therefore, depending on the intended model, documents
are represented by either a vector of tokens or a list of token vectors
for bag-of-words or sentence constrained models, respectively. Table 5.1
provides an overview of some descriptive statistics after pre-processing.
Note that although the Brexit data set has very few documents com-
pared to the other two data sets, it still has a reasonable amount of total
tokens (i.e., words) since the average document is more than ten times
as long.

Table 5.1: Descriptive statistics of the data sets
used.

document length

data set #docs #tokens vocabulary mean median sd

Brexit 167 115'961 4'073 694.38 724 409.78
dogfood 5'795 214'181 3'202 36.96 22 51.91
tent 7'851 697'065 5'462 88.79 52 115.43
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5.2.3 Preparation for the Human-Based Experiment

The experiment is conducted on subsets of all three data sets. Table 5.2
shows the subset size in comparison to the complete data sets. Since
the experiment relies on human processing, the amount of text made it
unfeasible to process the entire data sets during the experiment, with
the Brexit data set being the only exception.

Table 5.2: Descriptive statistics of the human-
labeled data.

data set tent dogfood Brexit

total number of documents 7'851 5'795 167
number of documents in subset 500 982 167
subset share of total size 6.4% 16.9% 100%

5.3 Extended Descriptive Analysis

Following these short statistics on the given corpora, an extended de-
scriptive analysis is conducted to better understand the data, especially
concerning ubiquitous terms as proposed in section 4.2. This explo-
ration will underpin the concept of �ubiquitous terms� and point out
how to approach the issue when extending LDA later in section 6.2.1.
While the �rst part is a purely model-free frequency analysis, the sec-
ond approach will look closer at the interaction between data and LDA
when stop words are present. Based on these �ndings, section 6.2 will
present an extension to LDA that aims to incorporate ubiquitous terms
instead of deleting stop words along with all information conveyed by
them. The data examination begins with a frequency analysis of words
within documents. Its goal is to improve the understanding of how words
are distributed in documents, with a particular focus on stop words to
sharpen the distinction between stop words in the traditional sense and
ubiquitous terms.
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5.3.1 Model Free Frequency Analysis

This section aims to quantify ubiquity within the scope of the presented
data. The task will be approached by studying word frequencies on a
document level. To further examine the data with regards to ubiquitous
terms, an in-depth analysis of the distributional characteristics of words
is conducted to identify ubiquitous terms and describe how they relate to
stop words. The results will show that a discrete allocation of terms to
stop words is not advisable since there is a smooth transition of disper-
sion measures from �ubiquitous� terms to �normal� terms. Stop words
and ubiquitous terms are not identical but overlapping. It is expected
that most ubiquitous terms would appear on typical stop word lists.

In preparation for the following analyses, the �rst step is to count
the occurrences of each word within each document, resulting in what
is typically referred to as a �document-term matrix,� which will here be
denoted as CDW :

1w(wi, w
∗) =

{︄
1, if wi = w∗

0, otherwise
(5.1)

CDWd,w∗ =

Nd∑︂
i=1

1w(wi, w
∗) (5.2)

By dividing this count matrix by the total number of terms in the
respective document Nd, a document-term-frequency matrix FDW can
be calculated in which each term gets assigned its share across words
within each document using

FDWd,w∗ =
CDWd,w∗

Nd
=

∑︁Nd

i=1 1w(wi, w
∗)

Nd
. (5.3)

In a �rst step, the most frequent terms as de�ned by the absolute
counts within the corpus were inspected. As table 5.3 shows, the ranking
slightly di�ers from those when looking at the average within-document
frequency. For example, in the tent data set, the term �up� is not among
the most frequent terms overall but appears to be frequent in many
documents. This pattern might occur because the setup process is part
of most reviews, but the description does not require extensive use of
the term. Going forward, the focus of this work will be on the latter
de�nition that refers to the average within-document frequency. This
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Table 5.3: The most frequent terms overall vs.
highest average frequency across documents for all

three data sets.

tent dogfood Brexit
overall by doc. overall by doc. overall by doc.

the the the my the the
and tent and dog to to
it and i the of of
tent it to it a a
to to a and and and
a a my food in in
i i dog dogs that that
in up it this is is
of this food i it for
this for this to for it

Note: Overall refers to the frequency of a term within the whole
corpus. By doc. refers to the mean of all within-document fre-
quencies of a term.

interpretation is more suitable, given that the de�nition of ubiquitous
terms is based on their appearance across all documents.

It could be tempting to simply use the frequency standard deviation
to evaluate the dispersion of word frequencies. However, this measure
would be biased since it prefers very infrequent terms, which is evident
when recalling the formula for the standard deviation,

s =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(xi − x̄)2. (5.4)

For rare terms, x̄ and all xi are very small, which leads to a small s. For
very frequent words, x̄ is large, and even relatively small deviations are,
in absolute terms, much higher than they can ever be for rare terms.
Using an actual numbers example, when the highest frequency of a term
r is xr = 0.0001, then the standard deviation cannot be higher than
that. This e�ect is ampli�ed by the fact that the values cannot fall
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below 0. If the highest frequency for a frequent term f is xf = 0.1, then
the standard deviation can easily assume values above xr even if the
changes are small relative to 0.1, e.g., only in the range [0.09, 0.11]. This
whole issue stems from the standard deviation being a non-normalized
measure.

There are di�erent dimensionless measures available to choose from,
but not all are equally suitable. For example, the quartile coe�cient of
dispersion is de�ned as

QCD =
Q3 −Q1

Q3 +Q1
, (5.5)

with Q1 and Q3 being the �rst and the third quartile, respectively.
However, this has the disadvantage of not being de�ned for values with
Q1 = Q3. Unfortunately, this happens to be most of the terms for short
documents such as customer reviews, where Q1 = Q3 = 0.

Instead, this study employs the more suitable relative standard devi-
ation, also known as the coe�cient of variation. It is commonly used for
comparing the variation of samples that have di�erent scales (Van Valen
2005). This measure is de�ned as the quotient of the standard deviation
and the arithmetic mean of the data, ergo:

RSD =
σ

µ
(5.6)

This measure is also closely related to the index of dispersion σ2

µ , with
the only di�erence being the use of σ2 instead of σ. Since this would not
change the ranking of terms, both could be used interchangeably within
the scope of this analysis.

Although the RSD can be biased on smaller sample sizes, it is still
the most promising measure for this task. Since the analysis is based on
the same sample size for all terms, the number of documents, any bias
would be applied equally. Moreover, since it is only used to compare
values between terms, a bias in the absolute value would have no relevant
impact.

Another challenge of this analysis is that it is very sensitive to short
documents since documents with only a few words might lead to the
frequency of some words shoot up to values above 20 percent, which is
not representative of the actual use within the English language. In real-
ity, consumer reviews can indeed be very short, which could potentially
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distort the results. To counter this issue, a proxy data set was compiled
by sampling 1% of the documents randomly and combining them into a
new virtual document. This step was repeated 1000 times to generate
the new corpus. Thus, very short reviews cannot distort the data as
much since several documents are combined. These results were checked
for robustness by generating all of the following plots with the unaltered
data sets as well, provided in Appendix A. Although the dispersion tends
to be higher, the key results remain unchanged. Note that this simu-
lation was not applied to the Brexit data set since it consists of fewer,
longer documents that are more representative by themselves. However,
for the sake of completeness, the simulation results are included in the
appendix as well.

With the method set, the ubiquitous terms are examined further by
sorting the vocabulary by the relative standard deviation in increasing
order. For the top 20 terms, i.e., the terms with the lowest RSD, box
plots are created showing relative deviation from the mean frequency.
The values are obtained by dividing the term frequencies across all (vir-
tual) documents by their mean. Figure 5.1 displays the box plots for
those terms with the lowest relative dispersion across documents.

As was expected, there are many �typical� stop words in that list,
such as �the,� �and,� and �a.� However, the list also includes words
that are widely used in that speci�c context, for example, �tent,� �food,�
or �Brexit.� Naturally, observing the term �tent� in a data set of tent
reviews is not surprising. Some of the high-ranked words seem to be
stop words but can be framed in a topic-speci�c context. When looking
at the tent data set, the term �up� is most likely related to the process
of setting up the tent. The dogfood data set contains frequent mentions
of the reviewer's dog or dogs, which is represented by terms such as �I,�
�have,� and �my.�

Another noteworthy piece of information is that the most ubiquitous
words in the consumer review data sets are similar, with terms such
as �I,� �it,� �a,� �and,� and �to� among the leftmost words. However,
the word �I� does not even appear for the Brexit data set, and �it� is
less frequent. This might be an indicator that the language used in both
cases is di�erent. Especially with the pronoun �I,� this makes sense since
editorials are rarely written in the �rst person, while consumer reviews
use this perspective very frequently when writing about the experience
with the product.
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Figure 5.1: Frequency distributions for the di�erent
data sets.
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Table 5.4: List of ten stop words used for the LDA-
based exploratory analysis.

Stop word

the
and
to
a
it
I
of
in
this
is

In summary, the �rst analyses strongly support the concept of ubiq-
uitous terms. For the next step, section 5.3.2 will use latent Dirichlet
allocation to further examine the characteristics of stop words and ubiq-
uitous terms in the context of topic models. Afterward, section 5.3.3 will
provide a summary as well as a brief discussion of the results.

5.3.2 LDA-Based Exploratory Analysis

The upcoming paragraphs will further examine the data concerning its
stop words in the context of an LDA model. This will help to gain a
deeper understanding of what role stop words play in an LDA's topic
and word distribution. For this, an LDA model is estimated using the
described data sets and typical hyperprior settings1. For the following
analysis, the posterior distributions of ϕ, θ, and z are used.

The �rst step is to focus on a speci�c set of common stop words as
they can be found in stop word lists. Since those lists can get rather long
(Dolamic and Savoy 2010), a subset of stop words was de�ned. For this,
all data sets were pooled, and word counts were calculated. The subset
was de�ned as the ten most frequent stop words in the pooled data set.
The list is displayed in table 5.4.

1To be precise: α = 0.1, β = 0.1, T = 20
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Figure 5.2: Distribution of selected stop words
amongst topics.
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Figure 5.3: Word cloud of the peculiar topic in
Brexit LDA.

Following the idea that stop words are occurring without relation
to topics, these stop word terms should be approximately equally dis-
tributed amongst all topics. However, as the ridgeline bar plots in �gure
5.2 show, that does not seem to be the case. These �gures display the fre-
quency of each word across all topics. It can be seen here that stop words
are not distributed equally among topics and that there are remarkable
di�erences between topics among certain words, which indicates that
these stop words are used topic-speci�c and should be incorporated into
a model instead of being removed from the corpus. The graphs show
that some topics generally contain more stop words than others, while
certain stop words can be almost entirely clustered into di�erent topics
entirely, such as the pronoun �I.� This indicates that some topics are
more related to personal experience, which would be expressed in the
�rst person, than others.

Figure 5.2 also shows a peculiar result for the Brexit data set. Al-
most all stop words seem to be grouped within one topic, with the
term �I� being the only exception. This anomaly hints at an interesting
model behavior. As is con�rmed by Figure 5.3, that particular topic
contains terms unrelated to �actual� topics predominantly. Since this
phenomenon is closely related to ubiquitous terms, Section 6.1 of the
methods chapter will pick it up again in a short analysis.
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5.3.3 Summary

The results of these two analyses indicate that stop words seem to be
partially identi�able just by looking at the data without actually pro-
cessing the word meaning and without applying any model. However,
it is still possible for some of those terms to be topic-related depending
on the circumstances of use, and other typical stop words do not appear
here. Nevertheless, there is no clear threshold by which words can be
grouped into �stop words� or �topic words.� The transition is smooth
and does not indicate that a natural border exists, which is taken as
supporting evidence for the claim that distinct assignment of �topic�
and �non-topic� for terms is inadvisable, and de�ning a cut-o� value for
topic words would be the same arbitrary de�nition that was criticized
earlier. Some terms are most likely non-topic related, while others could
doubtlessly appear in both topic and non-topic contexts. This ambigu-
ity will be re�ected in the proposed model in chapter 6.2 by a stochastic
assignment.

In conclusion, the results show that frequency dispersion is a good
indicator when examining ubiquitous terms and stop words. However,
such measures should not be employed to de�ne rigid stop word lists
since the topic-relation can be ambiguous. Nevertheless, when integrated
into a stochastic process, these model-independent frequency dispersion
measures can be utilized to extend existing topic models such as LDA.

The results of the LDA-based analysis re-emphasize the fact that
expanding LDA to include ubiquitous terms in the model process without
removing stop words is a consequential next step. Section 6.2 will later
combine all previous �ndings in the proposal of a novel extension to LDA
that incorporates these terms with new variables in the model.
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Chapter 6

Methods

The foundation built in the previous chapters is now used to improve
LDA by incorporating the concept of ubiquitous terms. In the pages
leading up to this chapter, it has been demonstrated that the traditional
approach of removing stop words before applying LDA is also ignoring
part of the information contained in a document. The analyses in section
5.3 have shown that some terms can be treated like stop words since
they appear with similar frequency across documents, while other typical
stop words can, in some cases, be topic-related. They also produced
indications of naturally occurring non-topics in �gure 5.2.

Starting o�, section 6.1 will explore the phenomenon of natural non-
topics by running LDA on di�erent data subsets. Section 6.2 will then
introduce an approach to address ubiquitous terms, the ubiquitous terms
LDA (uLDA). Section 6.2.1 will include the model proposition as well as
the mathematical framework and the sampling process. Possible further
expansions of the model are then examined in section 6.2.2.

After presenting the new topic models, section 6.3 will introduce a
novel experiment that aims to move model evaluation closer to natural
language by introducing a human in the loop element to topic generation.
This experiment will later be used to evaluate a range of competing mod-
els. Finally, the models that will compete in the following comparison
in chapter 7 are described in section 6.4.

6.1 Examining the Natural Non-Topic

The extended descriptive analysis in section 5.3 suggested that under
certain conditions, LDA can produce a non-topic, i.e., a topic containing
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mostly unspeci�c terms such as stop words. This section presents a short
setup that targets that phenomenon and tries to recreate this e�ect for
other data sets in order to �nd hints to the underlying conditions.

When looking at the di�erence between the consumer review data
sets, which contained no non-topic, and the Brexit data set, which pro-
duced a non-topic, the �rst characteristics standing out are the di�er-
ences in document length and corpus size. If this drives the occurrence
of a natural non-topic, pruning the tent data set to similar dimensions
should produce comparable results.

However, simply removing short texts would leave it unclear if the
e�ect is due to document length or corpus size. Therefore, sub-samples
were created by selecting similar-sized documents from the tent data
set, resulting in 3 data sets of about 200,000 tokens each but varying
document size. As a further check for robustness, the analysis will also
be repeated on the Reuters data set (UCI 1999), where two subsets were
created. Both have a higher average document length than the tent
subsets. However, one contains almost three times as many documents
as the other. This distinction will help separate the e�ects of average
document length and corpus size. Table 6.1 shows the characteristics of
these data sets.

Table 6.1: Number of word tokens per data set.

Tent Subset Reuters

#1 #2 #3 #1 #2

token count 200'018 200'012 200'270 552'071 267'539
document count 3'905 1'221 456 1'148 407
Avg. doc size 51.2 163.8 439.2 480.9 657.3

These data sets are then used to estimate LDA, and the results are
examined towards

1. how stop words are distributed across topics,

2. how topics are distributed across documents, and

3. given that there is a candidate for a natural non-topic, how words
are distributed within it.
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If these corpus dimensions are a contributing factor, the model results
for the tent subsets should include a non-topic at some point along the
line of increasing restrictions. A similar result is expected for the Reuters
data set. The results of this sub-study are displayed in section 7.3.

6.2 Extending Topic Models using the Ubiq-

uitous Terms Concept

This section will provide an extension to standard LDA that incorporates
the use of ubiquitous terms. This is done with the objective of utilizing
information that was formerly discarded by stop word removal. First,
section 6.2.1 will provide the proposition of a new model that includes
ubiquitous terms. It is followed by a section discussion further expanding
the new model by combining it with other existing approaches (6.2.2).

6.2.1 Latent Dirichlet Allocation with Ubiquitous

Terms

The new model that will be proposed by this thesis adapts latent Dirich-
let allocation by modeling terms that appear topic-independent and
group them into a �non-topic.� This way, topics can be de-cluttered
from too frequent terms while still keeping the information conveyed by
topic-related �stop words.� The stochastic implementation also provides
a tool to deal with the topic/non-topic ambiguity of speci�c terms.

The primary assumption of the new model is that a particular set
of words exists that is not part of any of the given topics but instead
belongs to a �non-topic.� Words within this non-topic are equally dis-
tributed amongst documents since the document's topic distribution has
no impact on their frequency. Mathematically, the non-topic itself is a
word distribution vector, like any �normal� topic in LDA. The model's
notation is extended from LDA and is also included in the list of symbols
on page xv.

Whether or not a speci�c word w is a topic word or a non-topic word
will be denoted by a binary classi�er τ , with τ = 1 indicating topic
words. Since non-topic words are, by de�nition, equally frequent across
all documents, the probability of a term w being a non-topic word must
be constant independently of the respective document, which means that
draws of τ follow a Bernoulli distribution with a constant probability.
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When the probability for a non-topic term is de�ned as 1− δ, this leads
to a distribution of τ according to

τ ∼ Ber(δ). (6.1)

Prior to model estimation, the frequency of non-topic words in a
given corpus is unknown. Additionally, there is no reason to believe that
this frequency is constant across all documents of one language. Terms
such as �tent� in the tent data set have shown that. The di�erent levels
of complexity that language can have are also contributing factors. It
is therefore advisable to estimate δ for each data set. In a hierarchical
Bayes model, this is done by providing a prior distribution. Since δ ∈
(0, 1), a natural choice is the Beta distribution

δ ∼ Beta(γ), (6.2)

with γ being a 2-tuple of (γ1, γ2) since the Beta distribution takes two
shape parameters.

Given τ , the draw of z is unchanged from LDA if τ = 1. However,
if τ = 0, there is no respective z, and w is generated from a non-topic
multinomial distribution denoted by ψ:

wτ=0 ∼ Multinomial(ψ), (6.3)

where ψ itself is Dirichlet distributed with a �xed prior βψ, which basi-
cally mimics a topic distribution but could potentially have a di�erent
prior:

ψ ∼ Dir(βψ) (6.4)

Since the uLDA is, like all topic models, a generative model, one
clear way of describing it is its data generation process. In analogy to
the description of LDA in section 3.1, the process can be described as
follows:
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Algorithm 2: Data generating process of the ubiquitous terms
model
Draw a topic-term probability δ ∼ Beta(γ)
Draw a ubiquitous term distribution ψ ∼ DirV (βψ)
for each topic t do

Draw a word distribution ϕt ∼ DirV (βϕ)
for each document d do

Draw a vector of topic shares θd ∼ DirT (α)
for each word wd,n in document d do

Draw a topic/non-topic classi�er τd,n ∼ Ber(δ)
if τd,n = 1 then

Draw the topic assignment zd,n ∼ Multi(θd),
zd,n ∈ {1, . . . , T}
Draw a term wn,d ∼ Multi(ϕzd,n), wd,n ∈ {1, . . . , V }

if τd,n = 0 then
Draw a term wd,n ∼ Multi(ψ), wd,n ∈ {1, . . . , V }

The main di�erence to latent Dirichlet allocation is that in uLDA,
τd,n is introduced as an indicator for whether the corresponding word
wd,n is a topic-speci�c word or a term belonging to the �non-topic.� LDA,
as proposed by Blei, Ng, and Jordan (2003), can be seen as a speci�c
form of uLDA. If δ = 1, the new model is equivalent to LDA, since
every word is a topic-speci�c word and will be drawn from the respective
multinomial Distribution Multi(ϕzd,n). In the case of δ = 0, only �non-
topic� terms exist, which are distributed according to ψ. However, the
term non-topic becomes meaningless at that point since all words in the
corpus are drawn from its probability vector ψ. This case, in turn, is
equivalent to LDA with only one topic. It then follows that ψ is the
word distribution for all documents since every document consists only
of that topic.

As before, the process can be visualized in a directed acyclic graph
(DAG). This representation is shown in �gure 6.1. Again, the shaded
node w is the only observed variable, while the unshaded nodes represent
latent variables and αθ, βϕ, βψ, and γδ are �xed priors.

This generative process can be used to derive the sampling process
for model estimation. This thesis uses MCMC with Gibbs sampling to
estimate latent variables. As explained in section 3.1, this method is
based on sampling each variable depending on all other model variables
and then repeating this step until the model is converged.
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Figure 6.1: DAG for the proposed ubiquitous term

LDA.
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In the case of uLDA, the distribution of all parameters can be split
up as follows:

p (w, z, θ, ϕ, α, βϕ, ψ, βψ, τ, δ, γ) =

= p(w | z, τ, ψ, ϕ)·
p(z | θ) · p(θ | α) · p(τ | δ) · p(δ | γ) · p(ϕ | βϕ) · p(ψ | βψ)

(6.5)

Since α, βϕ, βψ, and γ are �xed priors, equation 6.5 leads to the
conclusion that the model estimation requires sampling the following
parameters:

τ topic/non-topic indicator on word level

z topic for topic terms on word level

δ topic word probability

ϕ topic word distributions

ψ non-topic word distribution

θ topic distribution on document level

Since the draws are repeated, the order in which the parameters are
sampled is irrelevant and could be changed freely.

For τ , the draw depends on the likelihood of w being (any) topic
term or a non-topic term. The sampling equation can be derived1 as:

p(τw = 1 | ϕ, ψ, δ) ∝ ϕw × θd · δ
ϕw × θd · δ + ψw · (1− δ)

(6.6)

In this case, ϕw denotes the probability of w across all topics in ϕ.
If τi = 1 for a speci�c token wi, the same formula as in classic LDA

can be used to sample topic zi. In that formula, the draw of zi depends
on z−i, i.e., on all other draws of z at that point, and on the token wi.
However, z can be integrated out of the equation, which leads to the
draw being dependent on ϕ and θ:

p(zi = t | wi, ϕ, θ) ∝ ϕwi · θd (6.7)

1The derivations for all sampling equations can be found in Appendix B.
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If τi = 0, there is no draw of zi. The distributions θ, ϕ, and ψ are, in
analogy to LDA, simple Dirichlet draws with the respective word counts
and priors as parameters:

p(θd | z, τ, α) ∝ Dir(CDTd,t + α) (6.8)

p(ϕ | w, z, βϕ, τ = 1) ∝ Dir(CWT
w,t + βϕ) (6.9)

p(ψ | w, βψ, τ = 0) ∝ Dir(CW0
w + βψ) (6.10)

The draw of θ is marked as dependent on τ since the value of τ = 1 is
necessary for a value of z to exist.

Finally, δ is sampled from a Beta distribution dependent on the cur-
rent counts of topic and non-topic words and the prior γ:

p(δ | τ, γ) ∝ Beta(
∑︂

CWT
w,t + γ1,

∑︂
CW0
w ,+γ2) (6.11)

Using these equations, the model is implemented in the statistical
programming language R. The respective code can be found in Appendix
D.

6.2.2 Expanding on the uLDA Model

Section 6.2.1 has introduced the ubiquitous terms extension for classic
LDA, which essentially changed the generative process by inserting an
additional step before generating w. The simplicity of this approach is
also its strength since it enables the inclusion of a non-topic into other
extensions of LDA. This section will provide some examples that seem
suitable for such an extension and demonstrate this using the case of
SC-LDA as de�ned by Büschken and Allenby (2016).

Extending uLDA

The LDA derivative models most suitable for extending with ubiquitous
terms are arguably those that leave the draw of z unchanged. If the
sampling of z and w is unchanged from LDA, the inclusion of τ in the
process can be copied from section 6.2.1 and inserted before the topic
draw. Since it depends only on θ, ϕ, ψ,δ, and w, it is unchanged by any
model alteration that happens before the draw of the topic distribution
θ. Examples for such models are the latent co-clustering by Sha�ei and
Muios (2006), the keyword dependant topic distributions as proposed by
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Ramage, Dumais, and Liebling (2010), and the author-topic model by
Rosen-Zvi et al. (2010). These models alter the draw of θ by introducing
some hidden associations between documents. However, since everything
happening after that is identical to LDA, the implementation would be
relatively simple.

For models that alter the draw of z, the implementation could prove
signi�cantly more di�cult. However, there are some interesting LDA
extensions that could bene�t from incorporating ubiquitous terms. For
example, the model by Wallach (2006) introduces a dependency of z on
the previous term. Implementing a non-topic could enable the model
to pro�t from conjunctive adverbs that might be non-topic related but
could indicate a topic change. Gruber, Rosen-Zvi, and Weiss (2007)
model the topic sampling to only occur at speci�c points, while all other
values for z are set to match the most recent draw. In this case, intro-
ducing a non-topic might enable the model to skip over ambiguous terms
that might impact the likelihood of z being the topic of a �topic chunk.�
However, in both cases, it is impossible to talk about implications with-
out actually doing the math to derive the new sampling procedure. Since
those extensions are not the main focus of this thesis, the problem is left
to another study to explore.

Lastly, the SC-LDA by Büschken and Allenby (2016) is a suitable
candidate since it samples topics on a sentence level, which makes it
somewhat similar to the model of Gruber, Rosen-Zvi, and Weiss (2007).
When taking a closer look, it turns out to be a particularly interesting
case. The sentence constraint leads to chunks of text being assigned one
topic. This normally would require removing possibly ambiguous terms
such as stop words since those appear in most sentences independent of
the underlying topic. Otherwise, terms such as �the� would appear at
the top of nearly all topic word lists.

Nonetheless, using the ubiquitous terms extension, the model can
split a sentence into two subsets of terms. One subset, the topic terms,
will be used to determine that sentence's topic. The second subset con-
sisting of non-topic terms can be sampled independently and thus do not
in�uence the topic draw. The following paragraphs will provide details
on the implementation of this extension.
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SC-uLDA Model Proposition

This section will be concerned with implementing ubiquitous terms into
the sentence constraint LDA model by Büschken and Allenby (2016).
Again, the notation can be found on page xv. In analogy to their model
and uLDA, the generative process can be de�ned in Algorithm 3.

Algorithm 3: Data generating process of sentence-constrained
uLDA
Draw a topic-term probability δ ∼ Beta(γ)
Draw a ubiquitous term distribution ψ ∼ DirV (βψ)
for each topic t do

Draw a word distribution ϕt ∼ DirV (βϕ)
for each document d do

Draw a vector of topic shares θd ∼ DirT (α)
for each sentence s do

Draw the topic assignment zd,s ∼ Multi(θd),
zd,s ∈ {1, . . . , T}
for each word m in sentence s do

Draw a topic/non-topic classi�er τd,s,m ∼ Ber(δ)
if τ = 1 then

Assign topic zd,s,m = zd,s
Draw a term wd,s,m ∼ Multi(ϕzd,s),
wd,s,m ∈ {1, . . . , V }

if τ = 0 then
Assign no topic
Draw a term wd,s,m ∼ Multi(ψ),
wd,s,m ∈ {1, . . . , V }

When comparing this process with the uLDA process, it is clear that
the changes are minuscule. The main di�erence is the shift of the topic
draw from word level to sentence level. The directed acyclic graph in
�gure 6.2 also visualizes this adjustment of the process.

Although the di�erence in the generative process is minor, the adap-
tation does get more complicated when turning to the actual sampling
process with Gibbs. The di�erence in sampling lies in the draws of τ
and z. The topic term indicator τ is sampled on the word level. Other
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than in uLDA, this time, the sampling is conditioned on the underlying
sentence topic zd,s, which leads to the equation

p(τd,s,m = 1 | zd,s, ϕ, ψ, δ) =
ϕwd,s,m,zd,s · δ

ϕwd,s,m,zd,s · δ + ψw · (1− δ)
. (6.12)

Based on these values, z is sampled for each sentence with the com-
bined likelihood ϕw×θd of all topic words (τw = 1) within that sentence.
If a sentence contains only non-topic terms, z is sampled from the prior
θ following

p(zd,s = t | wd,s, τd,s, θ, ϕ) =

Md,s∏︂
m=1

(︁
ϕt,wd,s,m

)︁τd,s,m · θd,t. (6.13)

Note that the e�ect of τ in the exponent is to shrink all values of
ϕ for which τd,s,m = 0 to the neutral element 1. The draws of θ, ϕ,
ψ, and δ are unchanged from uLDA (see equations 6.8 � 6.11) and will
not be repeated at this point. Overall, this (from an implementation
standpoint) simple extension to uLDA can provide an additional bene�t
by imposing grammatical structure on the data. As such, it will also be
evaluated in chapter 7 and discussed in chapter 8.

6.3 Experiment: Approaching Natural Lan-

guage Topics

The experimental part of this thesis will be concerned with the evalu-
ation of topic model results. When trying to move topic models closer
towards natural language, there is reason to question whether or not
established evaluation methods are still suitable or if there is a need for
a more natural-language-based evaluation. This section will present an
experiment that can serve as one �rst step in that direction.

When evaluating topic models, there are various possible methods
that all have their respective costs and bene�ts. The di�erent ap-
proaches can be grouped into three categories: computer-based scoring
measures, human-based scoring measures, and application task perfor-
mance. While computer-based scoring is the cheapest, since it only re-
quires computational cost, it also is considered the least precise. Most
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papers that try to construct scoring measures try to quantify topic qual-
ity based on the topic's most prevalent words, but the new measures are
then usually pitched against human-based scoring as a gold standard
to evaluate them. Human-based scoring is usually done by presenting
the most prevalent terms of a topic to a human worker to directly or
indirectly obtain a rating. As mentioned, this is considered the best
method for rating topic quality, but it is also resource-intensive, costing
both time and money. The third method is to do away with the topic
quality and focus on a task that the model is supposed to perform, for
example, document retrieval. However, that would completely ignore
the composition of topics.

All three categories have in common that they apply after the model
has produced its output. They take the resulting topics and topic dis-
tributions and use them to generate a value quantifying their usefulness.
None of the approaches tries to evaluate how well the model actually rep-
resents the documents of the corpus and the topics within them. This
is not surprising since there is no �ground truth� available to compute
a �t measure. Although the model implies that the author had speci�c
topics in mind when writing each word, that information is lost to the
researcher. However, following the idea behind human-based scoring,
which is that human perception is the closest thing to �ground truth,�
such information could, in theory, be reconstructed. This task is the
focus of the following experiment.

6.3.1 Experimental Design

The main idea behind the experiment is arguably trivial. It borrows
the topic model assumption that a document is comprised of a range
of di�erent topics, and each part of the document can be allocated to
one of those topics. This means that each word within the corpus can
be assigned a speci�c topic. If this is done for all the words in all the
documents, the result is a vector of topic assignments of the same size as
the corpus itself. This is equal to the z vector generated by topic models.
The question now is: what if these word-topic-assignments were in fact
conducted by a human. Under the premise that human understanding
is �ground truth� for the output generated by an automated model, this
would provide a reference point of �natural topics� that can be used
to compare with model output. These topics would then be based on
natural language that is not limited by pre-processing.
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The experiment is approached by taking the above assumption and
creating rules and guidelines for a human worker to follow. The following
enumeration represents the protocol provided to participants.

Human in the Loop - Protocol

Goal:

1. Generate a set of N topics of which all documents are comprised.

2. Generate a unique(!) assignment of each word of a document to
one of these N topics.

Restrictions:

3. The number of topics should be �xed

4. Every word can only be assigned to one topic

Clari�cations

5. Concerning (3), there should be some consideration about the top-
ics ahead of the labeling (e.g., after reading about 20 documents).
The number of topics should not be changed �on the �y�. Instead,
topics should be merged or divided if necessary.

6. All participants should agree on a shared value of N to facilitate
comparability. This agreement does not extend to topic content.

7. Topics will probably appear in chains of words. This is not manda-
tory. Sentences can be subdivided to assign several topics. Item
(4) always holds true.

8. Topics should not be too speci�c. For example, the topic �bath-
room� is preferred over the collection of topics �bathtub�, �shower�,
�toilet�, �sink�, and �towels�.

9. Topics should be related to content and not to grammar. For
example, �quality of the product� could be a suitable topic, while
topics such as �double negation� or �conditional statement� are less
helpful.
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10. In accord with (8) and (9), sentences with di�erent meanings but
similar wording could still be assigned to one topic. For example,
the sentences �The bathroom was very clean.� and �The bathroom
was not very clean.� could be both assigned to the topic �bath-
room�. It is not imperative to de�ne the two topics �clean� and
�not clean�.

As it can be seen here, this experiment's objective is to get the unique
assignment for each term within the corpus to one of the T topics. It
should also be noted that this means that it is not the goal to provide
some form of summary, classi�cation, or ranking. Although this proce-
dure will produce topic labels, these are not used for further analysis.
These labels are merely necessary for enabling the worker to identify
their own topics when working through the text.

The restrictions are intended to guide the user to a result comparable
to topic models. The �xed number of topics is intended to avoid an
in�ation of topics and mimic topic model behavior more closely. Since
the number is still determined by the user, there is enough �exibility to
allow for enough topics to represent the corpus. The second restriction
is necessary to reinforce unique assignments. Especially with a limited
number of topics, preliminary studies have shown that there still can
be ambiguous parts within documents where users might be tempted to
assign more than one topic.

The clari�cations were introduced to give participants a better feel for
the desired outcome and further streamline the process. Point (5) aims
to the number of topics being determined before labeling. Ideally, the
user would read the whole corpus before deciding on the optimal number
of topics. However, this was determined infeasible due to the additional
workload. Instead of adding topics whenever a new issue occurs to the
reader, participants are encouraged to rede�ne existing ones to include
new information.

Clari�cation (6) was de�ned to facilitate the comparison of the results
across di�erent participants. It can facilitate further analysis when look-
ing at variance between di�erent results. Although it could be argued
that this is not a vital restriction, it was included for comfort.

Points (7) to (10) are concerned with topic formation. The �rst of
them is aimed to raise awareness that this experiment's goal is obtaining
labels on a word level. Preliminary studies have shown a tendency to
orient on sentence structures. Although topics might be chains of words,
participants are encouraged to break these chains into smaller parts if
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it better �ts a topic. This rule can also help to avoid ambiguity. The
remaining points try to clarify what can be considered a topic. Point (8)
is intended to motivate smaller topic numbers, while (9) was introduced
as a clari�cation after some testing revealed that participants might not
necessarily be familiar with the meaning of �topic� in a topic model
context. Finally, (10) is also aimed to help �nd a reasonable scope for
topics.

These instructions were given to study participants to follow, to-
gether with the unedited three corpora introduced above, namely the
tent, dogfood, and Brexit data sets. Following the protocol, three sets of
topic labels were produced and will be examined in the results chapter
(7). Implications of these results, as well as learnings from this experi-
ment, are elaborated in chapter 8.

6.3.2 Label Utilization

Since this experiment is a novel approach, it should be clari�ed what is
to be gained by the resulting topics. The �rst use will be a descriptive
analysis to gain some understanding of how the labeling was performed.
This exploration includes typical metrics such as the average size of
topics and also more speci�c phenomena such as the points where topics
are changed. The second use of the labels will be comparing these topics
to those resulting from actual topic models. This part is a bit more
complex and will therefore be explained in detail.

When comparing the human labels to topic model results, a few steps
are necessary beforehand. The main issue here is that topic models are
agnostic towards topic labels and topic order. That means the model
does not contain information on which topic is concerned with which
content except for the word probability vector. Also, the stochastic
characteristics of MCMC and the randomization of starting values can
lead to di�erent sorting each time the model is run. For example, when
the human labels provide a topic titled �tent size,� there is no direct
information given by the model whether or not its output contains a
topic that �ts this title, and if there was, which of its topics would
correspond to this. Moreover, the position of said topic could change
after every model run.

These issues lead to some preparation having to be done to match the
human labels with topic model results. Therefore, the objective could
be:
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For each Topic zH produced by human labeling, �nd a match-
ing topic zT from the topic model output.

However, this is not always possible. No mechanism is in place that
guarantees that a matching topic exists. Therefore, the best approach
is to �nd the closest topic, with the de�nition of �closest� put aside for
the moment. However, the next arising problem is that assigning each
topic to its closest counterpart does not necessarily produce a bijective
mapping. Since no topics should be discarded, assigning some topics to
sub-optimal counterparts might be necessary. This compromise leads to
the new formulation of the objective as:

Find a bijective mapping

f : zH ↦→ zT , zH , zT ∈ T

that maximizes the overall similarity between both topic sets.

The following pages will explain how this task was approached within
this study.

The �rst step is to produce a topic representation of the human cod-
ing comparable with the topic model output. With a given z, the count
matrices CWT and CDT can be calculated by counting the occurrences of
word-topic combinations or topic-document combinations, respectively.
Given those matrices, implicit estimates for ϕ and θ can be obtained via:

ϕHw,z =
CWT
w,z∑︁W

i=1 C
WT
i,z

(6.14)

θHd,z =
CDTd,z∑︁T
i=1 C

DT
d,i

(6.15)

These approximations facilitate a direct comparison to topic model
results. However, there is still one obstacle left. There is no unambigu-
ous mapping of model-based topics TM and human-based topics TH .
A solution for this problem would be a method that can match similar
topics and thereby generate a mapping that can be used to compare the
results. In the literature, there are di�erent approaches to comparing
topics. Greene, O'Callaghan, and Cunningham (2014) propose compar-
ing two top-word lists by Average Jaccard, which is a modi�cation of
the Jaccard score that puts more weight on the higher-ranked terms. M.
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Steyvers and T. Gri�ths (2010) use the symmetrized Kullback Leibler
divergence. A similar alternative is the Jensen-Shannon distance men-
tioned by Heinrich (2009). After a short exploratory analysis, the latter
measure was selected for this experiment. The distance between two
distributions X and Y is de�ned as:

DJS(X||Y ) =
1

2
[DKL(X||M) +DKL(Y ||M)] (6.16)

whereM = 1
2 (X+Y ) andDKL(X||Y ) is the Kullback-Leibler divergence

between X and Y as produced by

DKL(X||Y ) =

N∑︂
n=1

p(X = n) [log2 p(X = n)− log2 p(Y = n)] (6.17)

With this step solved, another problem arises concerning the uLDA
and SC-uLDA models. Since some of the words are pulled out by the
non-topic, ubiquitous terms are ranked lower in ϕM than they would
be otherwise, while the human coding does not perform any separation
of that sort. Thus, the high-ranking ubiquitous terms in ϕH could be
distorting the matching process. This issue can be countered by re-
integrating ubiquitous terms into the topics before matching via

ϕM∗
i = δ · ϕMi + (1− δ) · ψM , (6.18)

which improves the matching results across all data sets and (ψ-related)
models. Note that, from a statistical standpoint, this is not necessarily
a valid integration of the two probabilities. Nevertheless, the only point
of this equation is to better match the model topics ϕM , which had stop
words extracted, with the human coded topics ϕH , for which no stop
word removal has taken place. This equation is not suggesting that ϕM∗

i

is a true representation of word probabilities.
After a topic model is �tted with the number of topics equal to TH ,

this measure is calculated for all possible topic matches. Since the match-
ing of topics can be viewed as an assignment problem, which has been
well-known for a long time in logistics, there are various approaches to
solve it. In this case, the resulting matrix is used to optimize the topic
mapping via the Hungarian method (Kuhn 1955; Munkres 1957), which
is a widely used, simple, and fast algorithm to solve the assignment
problem.
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When each topic zMi has been assigned to a topic zHj , the model hit
rate can be calculated. This is done by simply averaging the number
of hits. Unfortunately, this method encounters a problem when trying
to process ubiquitous terms models such as uLDA. The output of those
models does not contain a value of z for every word since non-topic terms
have no assigned topic. Just including the non-topic as another topic
is no sensible option since the terms are explicitly di�erent from topic
terms. This leaves three options to treat non-topic tokens. The �rst
option would be counting them as a �miss.� This choice would heavily
diminish the resulting hit rate and penalize the model for working as
intended. For the second alternative, the non-topic tokens could be
counted as a hit. However, this would arguably in�ate the hit rate.
Therefore, the third option was chosen, in which non-topic tokens are
removed altogether before calculating hit rates. Thus, only the share
of actual topic word hits is taken into account. With the number of
tokens that have an assigned topic z denoted as NT , the equation can
be written as:

NT =

N∑︂
i=1

τi (6.19)

1z(z, z
∗) =

{︄
1, if z = z∗

0, otherwise
(6.20)

hitrate(M,H) =
1

NT

NT∑︂
i=1

1z(z
H
i , z

T
i ) (6.21)

The baseline for this value is an entirely random assignment of topics,
which would lead to a hit rate of 1

T , e.g., 5% for T = 20.
With the objective to reduce noise, the values zMi for all tokens wi in

the corpus are not simply fetched from the most recent Gibbs sampling
step. They are instead generated from the posterior distribution of z,
which is estimated by looking at the S most recent draws of z for each
token. First, each topic gets assigned its share of all S draws by counting
the occurrences of z and dividing the value by S. The topic with the
highest share is chosen as zM , with ties broken randomly.
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Algorithm 4: Generating the smoothed topic label results zM

Generate a vector v of length T + 1 with all values set to 0 and
indices ranging from 0 to T .
for each word w ∈ corpus C do

for each draw s ∈ 1, . . . , S do
if zw,s does not exist then

set zw,s = 0
v[zw,s] = v[zw,s] + 1

zMw = argmax(v)

The results from this procedure are hit rates for every model on each
data set. Those will be presented in section 7.3.

6.4 Models Selected for Comparison

The main focus of this thesis is put on the uLDA extension. However,
when trying to quantify the performance of the new approach, reference
models are needed. Since there is plenty of research on the performance
of existing topic models, the aim is a direct comparison between the
existing models and the extension. Within the scope of this thesis, that
leads to a total of four models:

LDA The standard LDA model, as de�ned in section 3.1 (see Blei, Ng,
and Jordan 2003).

SC-LDA The sentence constraint model, as de�ned by Büschken and
Allenby (2016).

uLDA The ubiquitous terms LDA, as it was introduced in section 6.2.1.

SC-uLDA The ubiquitous terms extension to the SC-LDA, as intro-
duced in 6.2.2.

The actual implementation of all these models with R can be found
in Appendix D.
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Chapter 7

Results

This chapter contains the results for the di�erent analyses outlined in
chapter 6. First, the results for the analysis of possible natural non-topics
are presented in section 7.1. Afterward, section 7.2 includes the model
results from all four models that were selected earlier (6.4). Finally, the
results for the experiment to validate topic model results using a human
in the loop are presented in section 7.3.

7.1 Naturally Occurring Non-Topics

The analysis presented in section 6.1 produces interesting results. The
emergence of a �natural non-topic� could successfully be reproduced for
data sets containing longer documents.

Figures 7.1 show the distribution of topics over the corpus for all
data sets. It is clear that those corpora with longer documents contain
a dominant topic. For this to be a �natural non-topic,� the following has
to hold true:

1. It appears in high frequency across all documents.

2. It has only little variance in frequency across documents.

3. It contains mainly typical function words or non-informative terms.

Points 1 and 2 can be veri�ed by inspecting Figure 7.2, which plots the
respective θ values for each document. The respective topic is prevalent
across all texts within the respective data sets. However, this e�ect is
more clearly in the tent data set and less so in the Reuters data set.
Figure 7.3 shows the respective word clouds, which con�rms point 3.
Implications of these results will be discussed in section 8.1
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Figure 7.1: Shares of topics in each data set.
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Figure 7.2: Distribution of theta across all docu-
ments within each data set.
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Figure 7.3: Word cloud of top words from the nat-
urally occurring non-topic.

7.2 Topic Model Results

This section presents a summary of the results of all topic models that
were run for this study. After section 7.2.1 introduces the chosen model
parameters. Section 7.2.2 presents convergence and model �t, followed
by a description of the model's output with both the resulting topics and
their distribution.

7.2.1 Model Parameters

The model proposition in section 6.2.1 showed that the model's hyper-
priors have to be �xed a priori. For this thesis, so-called �at priors were
selected, which means that the impact of the prior on the result is kept
minimal. The following values were determined for all models:

α = 0.1 as the Dirichlet prior for θ.

βϕ = 0.1 as the Dirichlet prior for ϕ.

βψ = 0.1 as the Dirichlet prior for ψ, if applicable.

γ = (3, 3) as the Beta prior for δ.

All these parameters are very small compared to the in�uence of the
data itself.The draw of θ is in�uenced by +1 for each word in a document,
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which means that the Dirichlet parameter for T = 5 and Nd = 100 could
be, for example

θd ∼ Dir(CDTd,∗ + α) = Dir(30.1, 40.1, 20.1, 10.1, 0.1).

The last parameter that has to be determined is the number of topics
T . Unfortunately, estimating the optimal value for T is a di�cult task
that is already subject to many publications (Greene, O'Callaghan, and
Cunningham 2014; Arun et al. 2010; Zhao et al. 2015, to name just a
few). Instead of a lengthy digression on di�erent techniques and heuris-
tics, the following paragraphs will discuss the question of whether or not
the optimization of T matters in the scope of this work. First, the prob-
lem is not an easy one. There have been plenty of di�erent approaches on
how to optimize T . For example, Greene, O'Callaghan, and Cunning-
ham (2014) suggest estimating the topic model on corpus subsamples
and calculate an �agreement score� between the resulting topics. Arun
et al. (2010), on the other hand, turn to single value decomposition of
the distribution matrices Φ and Θ. Finally, Zhao et al. (2015) propose
a measure based on the change in perplexity when the number of topics
is incremented. All these methods have in common that they require
estimating the model across a wide range of values for T and comparing
the results ex-post. This would make it necessary to estimateM models,
with M typically in the range of 50 − 100, but only end up using one
result, which is highly ine�cient. In summary, it could be argued that
there is no consensus on the �best� approach to determine T , and most
techniques are resource-intensive.

Additionally, the results from the human-based experiment in chapter
6.3 provided a value for T that is considered optimal in that context.
Since the context of this thesis is not optimizing T , it can be argued
that any reasonable number of topics could be �xed for this analysis.
So the obvious choice would be to take the values of T that were parts
of the experiment results, which are displayed in table 7.1. However,
there is a slight theoretical chance that the following results could be
an anomaly that appears only at these values of T . This possibility is
acknowledged by including short versions of the following evaluations
for di�erent values of T in Appendix C, which show that the results are
robust towards varying the number of topics.
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Table 7.1: Number of topics per data set.

Note: These values were results of the human-
based experiment as described in section 6.3.

Data Set:

tent dogfood Brexit

Number of Topics 28 24 10

7.2.2 Model Output and Fit

Since the parameters were estimated using MCMC, model convergence
is an essential issue for evaluating the output. The models were run for
300-2000 iterations, depending on the model, and converted after 150-
1500 iterations on average. Table 7.2 shows a breakdown of these values
for the di�erent models. Every model uses only the last 100 iterations
for inference.

Table 7.2: MCMC convergence characteristics for
di�erent models.

Model:

LDA SC-LDA uLDA SC-uLDA

Iterations run 1'500 300 1'500 2'000
Conv. after iteration 1'000 150 1'000 1'500
Iterations used 100 100 100 100

Model �t was measured by out-of-sample log-likelihood Loos. For
this, a 10% holdout was separated from the training data and used for
evaluation. A condition of this sampling step was that the training set
had to include the human-coded documents, thus creating a small, ne-
glectable bias. Since holdout data is missing information on θ, z, and, if
applicable, τ , calculating the log-likelihood is not trivial. Wallach, Mur-
ray, et al. (2009) suggest a variety of possible solutions for this problem.
Most approaches have in common that they substitute the missing θ for
its prior α, which results in a symmetric distribution when applied in
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this study. The implementation chosen for this thesis is the harmonic
mean approach, mainly for its manageable computational cost. This
method estimates the probability of the data given model parameters,
for instance, P (w | ϕ, α) for LDA, by generating S samples for that
probability and then calculating the harmonic mean according to

P (w | ϕ, α) ≈ S∑︁S
s=1

1
P (w|z(s),ϕ)

(7.1)

for standard LDA models and

P (w | ϕ, ψ, δ, α) ≈ S∑︁S
s=1

1
P (w|z(s),τ(s),ϕ,ψ)

(7.2)

for ubiquitous term models. The values for z(s), τ (s) in turn are
generated by Gibbs sampling while holding model parameters such as
ϕ, ψ constant. The authors suggest prepending a short burn-in period
to the S Gibbs sampling steps. In this paper, the log-likelihood was
estimated using S = 100 after a burn-in period of 10 iterations. Figure
7.4 shows the resulting L(w) = log(P (w | ·)) values for the di�erent
models on the di�erent data sets.

The graphs indicate an advantage for the ubiquitous term models
across all data sets, which can be taken as an indicator that the new
models generate a better �t on the data. However, the argument could
be made that comparing uLDA to LDA on the same data is inappropriate
since the latter is not designed to handle ubiquitous terms. Therefore,
LDA and SC-LDA were estimated again, with typical stop words re-
moved. Since this means that the corpus size W = dim(w) is reduced, a
direct comparison of the log-likelihood is no longer suitable. Therefore,
the perplexity of all terms w was calculated via

perplexity(w) = exp

(︃
− L(w)

dim(w)

)︃
, (7.3)

which provides a measure that is relative to the number of tokens dim(w)
in the holdout data set. The results of this in �gure 7.5 show that ubiq-
uitous term variants still outperform their more standard counterparts,
and the �t measures are also higher for standard LDA models on the
less preprocessed data.
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(c) Out-of-sample �t for the Brexit data set.

Figure 7.4: Comparison of the out-of-sample log-
likelihood split by data set and model.
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Figure 7.5: Comparison of out-of-sample perplexity
by data set and model. Lower values are better.
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(d) Topic Word Cloud from SC-uLDA

Figure 7.6: Word clouds for similar topics of di�er-
ent models in the tent data set. This topic seems to
be concerned with the available space for mattresses.

Further exploration of the model results is done by looking at the
actual topics that were produced. Figures 7.6, 7.7, and 7.8 show exam-
ples of similar topics from all models side by side. Although these are
only a few prominent instances, they show that the inclusion of a non-
topic tends to give more room to topic-related terms, as they are more
prominent in the ubiquitous terms extensions. It is also not surprising
that the SC-LDA model has the most cluttered stop words since it is
forced to include such terms due to the sentence constraint. Another
interesting �nding is that the �natural� non-topic mentioned in section
5.3.2, which was an output of LDA when applied on the Brexit data set,
has a similar e�ect on the topic terms to the uLDA extension.

The resulting word clouds show that the LDA extensions are working
as intended. When comparing the resulting topics, the ubiquitous term
variants can reduce the relative importance of stop words (�the,� �and�)
while putting more emphasis on topic-related words (�room,� �amazon,�
�ireland�). Figure 7.8a shows a very similar topic to its uLDA counter-
part since the results include a natural non-topic, as will be discussed in
8.1.

In Addition to these established �t measures, the following section
will now present the results form the human-based experiment.
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Figure 7.7: Word clouds for similar topics of di�er-
ent models in the dogfood data set. This topic seems
to be concerned with comparing the price to other

retailers such as Amazon.
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Figure 7.8: Word clouds for similar topics of di�er-
ent models in the Brexit data set. This topic seems
to be concerned with the issues regarding Northern
Ireland. Note that LDA has a clearly de�ned topic
due to its naturally occurring non-topic (see section

8.1).
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7.3 Human-Based Topics Experiment

This section contains an overview of the results from the human-based
experiment presented in section 6.3. The main results of the experiment
are the topic labels for each token within each labeled data set. These
do not only provide information on how often each term was assigned
which topic, but also give insight on the points where topics change.
Most of the time, a string of consecutive words is assigned the same topic,
implying that the whole sequence is concerned with the same issue. This
phenomenon will be denoted as a �topic run.� It turns out that topic
runs are the most common form of topic labeling in this experiment.
Table 7.3 shows some information on how the length of these runs is
distributed.

Table 7.3: Statistics describing the distribution of
�topic run� lengths.

descriptive measures

min. 1st qu. median mean 3rd qu. max,

# token(s) 1.00 7.00 15.00 24.73 31.00 382.00

Since these runs are very common, the points within the text where
they end become more interesting. Therefore, these change points are
examined closer to �nd a pattern that could motivate a topic switch.
For this, the terms directly preceding and following such a change point
are examined, including any punctuation. If punctuation was present
directly before the change, it was taken at the most likely reason. This
also goes for brackets. If no punctuation was present, the next step was to
check for conjunctions immediately before or after the break, which were
then taken as the most likely cause. If both terms were conjunctions,
the word after the break was chosen. And �nally, if none of the previous
steps provided a possible reason, the �rst word of the new topic run was
chosen.

The most common reason identi�ed by this procedure is the end of a
sentence, represented by either a full stop, a question mark, or an excla-
mation mark. The second most frequent cause is due to conjunctions,
with the most prominent representatives being the words �and,� �but,�
and �as.� In third place is the start of a half-sentence, which was chosen
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if the previous run was ended by either a comma, a colon, a semicolon,
or brackets. Everything else is referred to as �miscellaneous,� although
it might be interesting that among these terms, the most common ones
were clearly related to a speci�c topic, such as �price,� �food,� or �ingre-
dients.� The percentages are also displayed in table 7.4. Implications of
these results will be discussed in 8.3.

Table 7.4: Likely reasons for the change in topic
within the labeled data.

Sentence Boundaries Conjunctions Misc.

. ! ? , ; : () and, but, ... price, taste, ...

share of all
changepoints 76.7% 8.1% 8.7% 6.3%

Besides topic runs and change points, the labels are also examined
concerning how often each topic was chosen. Since each token is assigned
exactly one topic, the number of times any token is assigned topic z can
easily be counted, which will be referred to as �topic size.� It turns out
that, especially for the consumer review data sets, the topic sizes vary a
lot from topic to topic. Some descriptive measures about the topics can
be seen in table 7.5.

The high variance for the consumer review data sets might stem from
the relatively large number of small topics. To illustrate this, the topics
are sorted from smallest to largest. Then, beginning with the smallest
topic, the number of topics that can �t in 1% of the respective corpus
size (measured in number of tokens) are counted. For the tent and the
dogfood data set, 6 and 4 topics �t in this 1% window, respectively. The
Brexit data set, on the other hand, does not have a topic as small. The
fact that the number of topics is smaller for the latter data set might be
a contributing factor.

As described during the experiment design section (6.3.1), all topics
were attached with topic labels describing the context. Figure 7.9 shows
the description with a word cloud of the respective largest topic, i.e., the
topic with the most tokens assigned to it. Since stop words are removed
in these word clouds for improved readability, the tent topic is missing
the term �up,� which would otherwise be part of the bigram �set up.�
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Table 7.5: Descriptive statistics of the human-
labeled topics.

units tent dogfood Brexit

number of topics # 28 24 10
size of smallest topic (tokens) 8 31 2'571
size of largest topic (tokens) 7'285 5'710 20'505

share of largest topic on all terms % 0.168 0.160 0.177
topics that �t in 1% of terms # 6 4 0

The hit rates that can be calculated for the di�erent models and
data sets range roughly from 12-24%, notably higher than the baseline
of random assignment. That baseline is about 3.6-10%, depending on
the data set. Table 7.6 shows hit rates for di�erent models and data
sets, including the baseline values. In some cases, such as the sentence-
constrained uLDA model on the tent data set, the baseline is surpassed
many times over.

Table 7.6: Average topic hit rates with comparison
to baseline results.

LDA SC-LDA Ubi-LDA Ubi-SC-LDA Baseline

tent 15.7% 20.5% 17.7% 23.5% 3.6%
dogfood 13.9% 18.4% 16.6% 22.8% 4.2%
Brexit 15.8% 23.6% 17.2% 22.4% 10%

As the results show, ubiquitous term models outperform the tradi-
tional counterparts in almost all cases. The only exception is the Brexit
data set, where the standard SC-LDA performs slightly better than its
new extension. This might be connected to the di�erent characteris-
tics of that corpus compared to the other two, which consist entirely
of consumer reviews. Those documents tend to be shorter and use less
complex language. These results will be analyzed in more detail during
the discussion in section 8.

The results of Table 7.6 also show that the hit rates vary from data set
to data set. This warrants a closer look in order to assess two possible
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contributing factors. First, it is analyzed whether the di�erent data
characteristics, such as document length or language complexity, could
in�uence the relative performance of models. The second step is to look
closer at a possible connection between correct model hits and the topics
identi�ed by workers. These factors are not exclusive, so a mixture of
both could impact the results. To �nd indication for one or both factors,
a simple regression is performed, and results are compared.

Additionally, the impact of the di�erent coding on the hit rates is
examined. For this, a topic-level hit rate is calculated. Figure 7.10
shows those hit rates for di�erent topics in all three data sets. It shows
that, at least for high topic numbers, only a few topics have very high
hit rates while other topics are barely identi�ed correctly. This asks for
further examination of topic characteristics to �nd any information on
what could drive topic identi�ability.

Low hit rates for small topics could be rooted in the fact that the
topics are not necessarily shared, but both the model and the human
coder create their own set of topics, leading to nuanced di�erences in
smaller topics. However, it is clear that certain topics drive the overall
model performance in this task.

The variance in performance between the di�erent topics begs the
question of whether or not identi�able characteristics of these topics
exist that drive the hit rates. Answering this could help to formulate
what makes a �good� topic. Consequently, the topics were examined for:

� size,

� concentration,

� and similarity to other topics.

However, there was no signi�cant correlation found between hit rates
and any of the above characteristics. The only solid result is that large1

topics usually have similar, average-sized hit rates while smaller topics
seem to be more �hit or miss,� meaning they display a higher range in
hit rates achieved.

Another possible contributor is variance in the data structure. For
this, the hit rates are examined on a document level to identify docu-
ment characteristics that in�uence the resulting document hit rate. The
chosen exogenous variables are displayed in table 7.7.

1In this context, �large� means that the respective topic was assigned to compa-
rably many tokens within the corpus.
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Figure 7.10: Topic-speci�c uLDA hit rates for the
di�erent data sets.
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Table 7.7: Text characteristics used for the regres-
sion analysis of hit rates.

Variable Explanation

wordcount The length of a document, measured in number of
words.

docvocab The number of unique words within a document.
wordlength The average number of characters per word.
sentlength The average number of sentences per document
share_repeats The share of words that appear multiple times.
lexical Lexical classi�cation score.
colemanliau The Coleman-Liau index, a readability score.

The lexical classi�cation score is used to describe the information
density within a text. It is calculated by dividing the number of lex-
ical words by the number of total words in a text. Lexical words are
words that have lexical meaning, which is simply determined by match-
ing them against a list of function words. All words not on that function
words list are considered lexical words. For this analysis, the R function
lexical_classification from the package qdap was used.

The Coleman-Liau index is a readability score developed by Meri
Coleman and T. L. Liau in order to estimate the grade level necessary
to comprehend a text (see R. P. Reck and R. A. Reck 2007). It uses the
average character length of words as well as the inverse average word
length of sentences. With some weighing factors, the total formula is2:

CL = 5.88

(︃
100 · characters

words

)︃
− 0.296

(︃
100 · sentences

words

)︃
− 15.8 (7.4)

It should be mentioned that there are plenty of di�erent readability
scores used in linguistics, for example, the Flesch Score, SMOG, Lix, or
the Gunning Fog Index, to name just a few. However, most of them are
very similar and rely in one form or another on sentence length and word

2Note that R. P. Reck and R. A. Reck (2007) present a di�erent de�nition of
the Coleman-Liau-Index that seems to correlate almost perfectly with the average
number of characters per word. Instead, the original index as proposed by Coleman
and Liau (1975) was used here.
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complexity (mainly measured by word length). Due to this similarity
between these test scores, it would be ill-advised to include several of
them in a regression model since they would be heavily correlated. The
Coleman-Liau index was chosen due to its relatively simple equation,
since it does measure word length based on characters and not based
on syllables, and due to its signi�cant in�uence based on preliminary
test models. Although these tests are usually used for longer texts, they
can still be applied here since the goal is not actually measuring the
readability rather than quantifying text complexity in order to look for
a connection to model performance.

Tables 7.8 to 7.10 show the regression results for the di�erent data
sets. these outputs will be discussed further in section 8.3.

Besides text complexity characteristics, another possible in�uence on
hit rates that should be examined are the speci�c prevalent topics within
a given document. According to Figure 7.10, the topic shares should
signi�cantly in�uence the score for the high-accuracy topics. This e�ect
should be more pronounced in the tent and dogfood data sets since the
hit rate is less balanced across topics. Note that due to redundancy, the
regression models contain one fewer topic than the actual topic model
since the shares always add up to 1.

The results in tables 7.11 to 7.13 show that the prevalence of speci�c
topics within a document is highly correlated with the resulting hit rate,
while most others do not seem to impact the hit rate at all. This means
that, according to the regression models, documents that have a high
share of speci�c topics tend to produce better hit rates than others, which
con�rms the implications of �gure 7.10 that some topics produce higher
hit rates than others. As a logical consequence, documents that consist
mainly of topics with high hit rates perform better overall. The output
tables also provide information on how much of the hit rate variance
can be explained with the respective topic shares. The adjusted R2

ranges from 8% for SC-uLDA on the Brexit data to 61% for uLDA on
the tent data set. This high dispersion of values does not allow for
a general interpretation of the explanatory power of topic shares. The
phenomenon seems to be connected to either corpus structure or number
of topics, or even both.
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Table 7.8: Regression output for tent data set.

Dependent variable:

LDA SC-LDA uLDA SC-uLDA

Constant 0.257∗∗∗ 0.181 0.289∗∗∗ 0.289∗∗

(0.094) (0.111) (0.105) (0.128)

wordcount −2.766e-04 −8.209e-04∗ −5.458e-04 −1.066e-03∗∗
(3.835e-04) (4.547e-04) (4.325e-04) (5.262e-04)

docvocab −6.082e-05 2.141e-03∗∗ 8.013e-04 1.965e-03∗

(8.674e-04) (1.028e-03) (9.781e-04) (1.190e-03)

wordlength −0.049∗ 0.016 −0.051 −0.025
(0.029) (0.034) (0.033) (0.04)

sentlength 1.363e-03 3.447e-03∗∗ 1.495e-03 −3.082e-04
(1.288e-03) (1.527e-03) (1.453e-03) (1.768e-03)

share_repeats 0.206∗ −0.1 0.083 0.196
(0.113) (0.134) (0.128) (0.156)

lexical 0.013 −0.235∗ −7.249e-03 −0.073
(0.102) (0.121) (0.115) (0.14)

colemanliau 0.013∗∗∗ −3.327e-03 0.014∗∗∗ 6.160e-03
(4.091e-03) (4.850e-03) (4.613e-03) (5.612e-03)

Observations 500 500 500 500
R2 0.077 0.055 0.068 0.042
Adjusted R2 0.064 0.042 0.054 0.029
F Statistic 5.905∗∗∗ 4.107∗∗∗ 5.104∗∗∗ 3.101∗∗∗

(df = 7; 492)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7.9: Regression output for dogfood data set.

Dependent variable:

LDA SC-LDA uLDA SC-uLDA

Constant 0.188∗∗∗ 0.303∗∗∗ 0.311∗∗∗ 0.394∗∗∗

(0.067) (0.084) (0.077) (0.099)

wordcount −1.003e-03 −7.015e-04 1.684e-03∗ −5.873e-04
(8.409e-04) (1.062e-03) (9.697e-04) (1.242e-03)

docvocab 2.154e-03 2.326e-03 −2.483e-03 1.717e-03
(1.476e-03) (1.864e-03) (1.702e-03) (2.179e-03)

wordlength 1.631e-03 −0.019 −0.013 1.269e-03
(0.02) (0.025) (0.023) (0.029)

sentlength 1.228e-03 5.510e-04 −2.396e-04 −3.714e-03∗∗
(1.259e-03) (1.590e-03) (1.452e-03) (1.859e-03)

share_repeats −0.263∗∗ −0.317∗∗ −0.329∗∗∗ −0.38∗∗
(0.108) (0.136) (0.124) (0.159)

lexical −0.148∗∗ −0.162∗ −0.123 −0.248∗∗
(0.067) (0.084) (0.077) (0.098)

colemanliau 3.425e-03 6.726e-03∗∗ 4.381e-03 3.467e-03
(2.525e-03) (3.188e-03) (2.911e-03) (3.727e-03)

Observations 982 982 982 982
R2 0.028 0.032 0.017 0.022
Adjusted R2 0.021 0.025 0.01 0.015
F Statistic 3.939∗∗∗ 4.654∗∗∗ 2.421∗∗ 3.177∗∗∗

(df = 7; 974)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7.10: Regression output for Brexit data set.

Dependent variable:

LDA SC-LDA uLDA SC-uLDA

Constant −3.258∗∗ 2.092 −3.548∗ 0.48
(1.429) (2.356) (2.002) (2.54)

wordcount −1.115e-04 8.744e-06 −2.714e-05 1.248e-04
(7.010e-05) (1.156e-04) (9.823e-05) (1.247e-04)

docvocab 1.086e-04 −2.264e-04 8.725e-05 −5.538e-04
(2.447e-04) (4.036e-04) (3.429e-04) (4.351e-04)

wordlength 1.209∗∗∗ −0.423 1.143∗ 0.097
(0.444) (0.733) (0.622) (0.79)

sentlength 9.567e-03∗ −5.389e-03 0.015∗∗ −8.651e-03
(5.198e-03) (8.574e-03) (7.284e-03) (9.244e-03)

share_repeats 0.414∗∗ −0.116 0.243 0.046
(0.163) (0.27) (0.229) (0.291)

lexical −1.069∗∗∗ −0.852 0.558 −0.633
(0.344) (0.568) (0.482) (0.612)

colemanliau −0.207∗∗∗ 0.074 −0.229∗∗ −0.018
(0.074) (0.121) (0.103) (0.131)

Observations 168 168 168 168
R2 0.33 0.055 0.146 0.105
Adjusted R2 0.3 0.013 0.108 0.066
F Statistic 11.235∗∗∗ 1.32 3.893∗∗∗ 2.676∗∗

(df = 7; 160)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7.11: Regression output for theta shares on
tent data set.

Dependent variable:

LDA SC-LDA uLDA SC-uLDA

Constant −0.242∗ 0.317∗∗ 0.575∗∗∗ −0.216∗∗
topic1 0.049 −0.263 −0.524∗∗∗ 0.651∗∗

topic2 0.596∗∗∗ −0.663∗∗ −0.722∗∗∗ 0.456∗∗

topic3 0.206 −0.388∗ −0.488∗∗∗ 0.341∗

topic4 0.104 0.315 −0.519∗∗∗ 0.163
topic5 0.344∗∗ 0.81∗∗∗ −0.152 0.455∗∗

topic6 0.163 −0.502∗ −0.696∗∗∗ −0.236
topic7 0.461∗∗∗ 1.17∗∗∗ −0.434∗∗∗ 0.023
topic8 0.164 0.423∗ −0.011 0.245
topic9 0.734∗∗∗ −0.486 −0.733∗∗∗ 0.081
topic10 0.107 −0.378∗ −0.67∗∗∗ 2.202∗∗∗

topic11 0.073 −0.476∗ 0.521∗∗∗ 0.171
topic12 1.159∗∗∗ −0.388∗ −0.8∗∗∗ 0.352∗

topic13 1.275∗∗∗ −0.334 −0.645∗∗∗ 1.07∗∗∗

topic14 0.691∗∗∗ −0.47∗ −0.787∗∗∗ −0.062
topic15 0.436∗∗ −0.526∗∗ −0.685∗∗∗ −0.24
topic16 1.082∗∗∗ −0.429∗∗ −0.206∗∗ −0.118
topic17 0.177 −0.416∗∗ −0.594∗∗∗ 0.098
topic18 0.249 0.359 −0.668∗∗∗ 0.883∗∗∗

topic19 0.207 −0.373 −0.587∗∗∗ 0.039
topic20 0.388∗∗ −0.469∗∗ 0.305∗∗∗ 0.339∗∗

topic21 8.727e-03 −0.426∗ −0.214∗ 1.317∗∗∗

topic22 0.299∗∗ 1.498∗∗∗ −0.695∗∗∗ −0.178
topic23 0.86∗∗∗ −0.565∗∗ −0.565∗∗∗ 0.599∗∗∗

topic24 0.113 −0.493∗∗ −0.536∗∗∗ 0.266
topic25 0.236 0.257 0.546∗∗∗ 1.736∗∗∗

topic26 0.15 0.671∗∗∗ −0.587∗∗∗ 0.995∗∗∗

topic27 0.167 −0.561∗∗∗ −0.746∗∗∗ 0.094

Observations 500 500 500 500
R2 0.582 0.371 0.633 0.458
Adjusted R2 0.558 0.335 0.612 0.427
F Statistic 24.329∗∗∗ 10.294∗∗∗ 30.119∗∗∗ 14.75∗∗∗

(df = 27; 472)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Important: Since the models are estimated independently, there is no
association between individual topics. This means that topic 1 of LDA can
di�er from topic 1 in SC-LDA or uLDA. Comparing one row of models does
not provide useful information.
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Table 7.12: Regression output for theta shares on
dogfood data set.

Dependent variable:

LDA SC-LDA uLDA SC-uLDA

Constant 0.429∗∗∗ 0.79∗∗∗ 0.547∗∗∗ −0.219∗∗∗
topic1 −0.091 −0.955∗∗∗ −0.678∗∗∗ −0.088
topic2 −0.318∗∗∗ −0.698∗∗∗ −0.589∗∗∗ 0.197
topic3 −0.362∗∗∗ −0.975∗∗∗ −0.647∗∗∗ 0.466∗∗∗

topic4 0.265∗∗ −0.22 −0.127 0.258
topic5 −0.607∗∗∗ −0.526∗∗∗ −0.651∗∗∗ 0.352∗∗

topic6 −0.616∗∗∗ −0.416∗∗∗ −0.462∗∗∗ −0.061
topic7 0.29∗∗∗ −1.028∗∗∗ −0.407∗∗ −1.029e-03
topic8 −0.337∗∗∗ −0.453∗∗∗ −0.664∗∗∗ 0.465∗∗∗

topic9 −0.024 −0.791∗∗∗ −0.374∗∗∗ 0.495∗∗∗

topic10 −0.31∗∗∗ −0.694∗∗∗ −0.409∗∗∗ 0.77∗∗∗

topic11 0.378∗∗∗ −0.565∗∗∗ −0.324∗∗ 0.449∗∗

topic12 −0.49∗∗∗ 0.369∗∗∗ 0.511∗∗∗ 0.017
topic13 −0.432∗∗∗ −1.127∗∗∗ 0.031 −0.034
topic14 −0.446∗∗∗ −0.8∗∗∗ −0.028 1.397∗∗∗

topic15 −0.607∗∗∗ −1.005∗∗∗ −0.442∗∗∗ 1.648∗∗∗

topic16 −0.558∗∗∗ −0.966∗∗∗ −0.344∗∗ 1.474∗∗∗

topic17 0.258∗∗∗ −1.068∗∗∗ −0.624∗∗∗ 0.824∗∗∗

topic18 −0.437∗∗∗ 0.377∗∗∗ −0.653∗∗∗ 1.877∗∗∗

topic19 −0.612∗∗∗ −0.775∗∗∗ −0.361∗∗∗ 0.141
topic20 −0.305∗∗∗ −0.232 −0.379∗∗∗ −0.048
topic21 −0.406∗∗∗ −0.797∗∗∗ −0.693∗∗∗ 0.507∗∗∗

topic22 −0.343∗∗∗ −0.556∗∗∗ −0.42∗∗∗ −0.171
topic23 −0.477∗∗∗ −0.92∗∗∗ −0.698∗∗∗ −0.117
Observations 982 982 982 982
R2 0.375 0.328 0.354 0.408
Adjusted R2 0.36 0.312 0.339 0.394
F Statistic 24.947∗∗∗ 20.311∗∗∗ 22.859∗∗∗ 28.682∗∗∗

(df = 23; 958)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Important: Since the models are estimated independently, there is no
association between individual topics. This means that topic 1 of LDA can
di�er from topic 1 in SC-LDA or uLDA. Comparing one row of models does
not provide useful information.
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Table 7.13: Regression output for theta shares on
Brexit data set.

Dependent variable:

LDA SC-LDA uLDA SC-uLDA

Constant 0.052 −0.057 0.024 0.268∗∗∗

topic1 −0.21∗ 0.339∗ −0.012 −0.04
topic2 0.425∗∗∗ 0.081 0.17∗∗∗ −0.241∗
topic3 −0.053 0.122 0.306∗∗∗ −0.035
topic4 0.19 0.35∗∗ −0.011 −0.016
topic5 −0.101 0.226 0.458∗∗∗ −0.289∗∗
topic6 −0.154 0.609∗∗∗ 0.142∗∗∗ −0.032
topic7 0.212 0.311 0.125∗∗ −0.239
topic8 −0.228∗∗ 0.043 0.16∗∗∗ 0.161
topic9 −0.131 0.575∗∗∗ 0.236∗∗∗ 0.136

Observations 168 168 168 168
R2 0.248 0.171 0.38 0.129
Adjusted R2 0.206 0.124 0.345 0.08
F Statistic 5.805∗∗∗ 3.633∗∗∗ 10.775∗∗∗ 2.61∗∗∗

(df = 9; 158)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Important: Since the models are estimated independently, there is no
association between individual topics. This means that topic 1 of LDA can
di�er from topic 1 in SC-LDA or uLDA. Comparing one row of models does
not provide useful information.
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Chapter 8

Discussion

The results presented in chapter 7 con�rmed that the uLDA model pro-
vides a valuable extension to existing topic models. Since this thesis
both introduced the concept of ubiquitous terms and proposed a model
based on that concept, the following chapter will contextualize and as-
sess the results of both strains. Additionally, possible implications of the
�ndings presented in the results chapter will be provided.

The �rst section is concerned with the concept of ubiquitous terms as
discussed in section 4.2 and the naturally occurring non-topic examined
in section 7.1. This will illustrate how the theory is backed up by the
model-free analysis and further strengthened by the phenomenon of an
�natural non-topic.�

This is followed by a section on implications of the topic model re-
sults, which re-emphasizes the bene�t of incorporating stop words into
the model. Finally, an extensive discussion on the human-based ex-
periment will review both the method used and its results while also
suggesting improvements for future experiments.

8.1 Ubiquitous Terms and the Natural Non-

Topic

The extended descriptive analysis in section 5.3 has shown that ubiqui-
tous terms seem to be a valid concept supported by empirical evidence.
The frequency analysis demonstrated that some terms are in fact ubiq-
uitous, meaning that they appear across all documents in a similar, high
frequency. It was also shown that these terms have a considerable albeit
incomplete overlap with common stop words.
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In the context of topic models, this means that those terms cannot be
clearly assigned to a certain topic since the topic assignment is informed
by within-document co-occurrence. Terms that appear in near-constant
frequency across documents display no variation in co-occurrence, and
therefore there is little information on which topic these words should be
assigned to. This is supported by the fact that topic model results often
contain stop words in all resulting topics if these terms are not removed
beforehand.

The novel solution provided by this thesis is to absorb all these terms
in a separate probability vector that speci�cally includes words with a
near-constant frequency across all documents. Since these terms are not
assigned to any distinct topic, this collection of word probabilities was
dubbed �non-topic.� Due to the ubiquitous nature of the terms within
this non-topic, the implementation developed in section 6.2.1 used a
corpus-wide constant probability for a term to be allocated to this new
collection of terms.

This received further support from the results in section 7.1, where
it was demonstrated that non-topic-like topics could appear naturally in
LDA, given speci�c settings. Although not intended, this kind of topic
shows all the characteristics of ubiquitous terms.

1. It appears in high frequency across all documents.

2. It has only little variance in frequency across documents.

3. It contains mainly typical function words or non-informative terms.

The sub-study in Section 6.1 was conducted to test the hypothesis
that the average document size within a corpus is contributing to the
appearance of such a �natural non-topic.� When juxtaposing the results
in Section 7.1 with the criteria above, it can be con�rmed that document
size does play into this phenomenon. Figure 7.1 shows that, for the more
rigid sub-samples (sub-�gures C and E), one topic is selected far more
frequently than others. Figure 7.2 con�rms the second point in showing
that the dominant topic is evenly distributed across all documents, al-
though the e�ect is more pronounced for the tent data set. The third
point is backed by Figure 7.3, which displays the most prominent word
of the respective topic.

However, it seems that the emergence of a natural non-topic in LDA
results can not be explained solely by the average document size. As the
comparison with sub-samples from the Reuters data has shown, other



8.2. Comparing Topic Models 93

factors might be relevant, such as overall corpus size or heterogeneity in
topics. Nevertheless, it is clear that this e�ect is not a one-time anomaly
unique to the Brexit data set.

This means that even a standard LDA �nds enough evidence in the
provided data to identify such non-topic. The problem with relying on
a natural non-topic instead of incorporating the concept into the model
itself lies with the model de�nition. It is not guaranteed that such topics
would still appear if LDA is modi�ed. In fact, the SC-LDA model can not
produce such topics due to its sentence constraint. The issue that topics
can only be assigned to whole sentences leads inevitably to ubiquitous
terms being distributed almost evenly across topics. Therefore, if the
goal is to utilize non-topics, they have to be included in the model.

8.2 Comparing Topic Models

The model �t measures presented in section 7.2.2 show that topic mod-
els that include ubiquitous terms better �t the holdout data than the
traditional counterparts. Additionally, the perplexity values displayed
in Table 7.5 show that regarding model �t, including the ubiquitous
terms in the model clearly provides a more sophisticated alternative to
established pre-processing methods.

It should be stressed that this validates the central hypothesis of this
thesis, which is that including these terms would be bene�cial to model
performance. The new model outperforms standard LDA on both the
full and the stop words free data sets. This is a strong indication that the
information conveyed by typical stop words is indeed relevant to topic
models.

The results also con�rm the �ndings in Büschken and Allenby (2016)
by showing better �t measures for SC-LDA. However, it stands out that
the SC-uLDA model provides a slightly worse �t than simple uLDA. This
is a surprising result since the advantage is switched for the standard
models.

A possible explanation could be that the strict boundaries imposed
by the sentence structures within the SC-uLDA do not allow the uLDA
to fully bene�t from the increased �exibility that the non-topic provides.
Since changing a topic mid-sentence is not allowed in this model, some
model �t is inevitably lost on multi-topical sentences. This e�ect could



94 Chapter 8. Discussion

possibly be mitigated by relaxing the strict boundaries. Overall, the �t
measures reinforce the con�dence in the new model extensions.

Besides the �t measures, the results chapter included examples of
topic word clouds. These �gures display topic-related terms in di�erent
sizes dependent on their importance within that topic, measured by their
ϕ-values. Although comparing word clouds is a qualitative approach that
inherently is prone to subjectivity and possibly bias, the �gures should
be taken as an indication on the possibilities that uLDA models provide
for the interpretation of topics.

The examples in Figures 7.6, 7.7, and 7.8 show that ubiquitous terms
models tend to reduce the prevalence of stop words, although not in
equal scope across all cases. Sometimes the topics still contain stop
words. However, the importance of these terms in relation to topic-
speci�c terms is clearly reduced. This downranking of non-topic terms
would allow for a more straightforward interpretation by users.

In conclusion, classic �t measures con�rm that the proposed topic
models clearly bene�t from including ubiquitous terms. The fact that
these model consistently score higher than their �traditional� counter-
parts shows that the additional information provides a substantial ben-
e�t.

8.3 Human-Based Experiment

The experiment presented in section 6.3 provided a novel approach to
evaluating topic model results. Since the literature o�ers no indication
of a similar experiment being conducted, an extensive discussion of the
method and its results are needed. The �rst part of this section is con-
cerned with evaluating the results, followed by implications for both
topic models and study design.

The experiment provided topic labels for each term within a docu-
ment. This enables not only direct comparison with topic model outputs
but also provides additional information about the labeling behavior of
the participants. As shown in table 7.3, the provided labels often occur
in runs, i.e., consecutive words with the same topic assignment. This
means that there is a tendency to label chunks of words with the same
topic, often bounded by sentence markers or other grammatical stop
points such as conjunctions. Since no words were removed for the task,
these chunks would naturally include function words such as �and,� �the,�
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or �to.� This either means that those terms are relevant to the topic,
which is unlikely for a word such as �the,� or that the worker glosses over
function words, ignoring them when making the topic label decision. In
the �rst case, the term should not be removed. But in the latter case, it
should also not be included in the topic since it only happens to be in
the chunk by chance. This can be seen as another case for a stochastic
allocation of non-topic words as it is implemented in uLDA.

The phenomenon of �topic runs� was examined further by looking at
the change points provided in Table 7.4. The results showed that in 76.7
percent of all cases, topic changes appeared at sentence boundaries such
as full stops or question marks. When other reasonable markers such
as brackets, commas, and conjunctions are included, a total of 93.7% of
change points can be explained.

Overall this suggests that a sentence constraint can help identify the
topic runs labeled during the experiment. However, the limitation on
sentence boundaries can be too strict in some cases. This might be an
interesting starting point for developing the model further.

8.3.1 Model Implications

Based on the labels provided by this experiment, hit rates were calcu-
lated in section 7.3. These scores can provide some information about
model performance. The average hit rates for labeled documents were
calculated as described in equation 6.21. The results were classi�ed by
model and data set and are shown in table 7.6.

When looking at the results based on the human-based tagging, it
should be noted that directly comparing the hit rate percentage val-
ues would be improper. Random allocation of topics would lead to an
expected hit rate of 1

T , with di�erent T for the di�erent data sets. There-
fore, the model hit rates can be transformed into �hit rate lift scores,�
which indicate by what factor the model outperforms the respective base-
line.

Table 8.1 shows that this leads to the consumer review corpora per-
forming distinctly better than the editorial corpus. This could be related
to the variance in corpus characteristics. The model results hint to dif-
ferences in the language between the two types of data sets, reviews and
editorials. One hint for this are the estimated values of δ, which repre-
sents the share of topic-related words in a corpus. Its posterior mean lies
between 0.49 and 0.63 for the consumer review data sets but drops as far
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Table 8.1: Table of hit rate lift compared to random
baseline of 1

T
.

LDA SC-LDA Ubi-LDA Ubi-SC-LDA

tent 4.4 5.7 5.0 6.6
dogfood 3.3 4.4 4.0 5.5
Brexit 1.6 2.4 1.7 2.2

as 0.26 for the Brexit data set. In other words, almost three-quarters of
the terms in the editorial data set are classi�ed as �not topic-related� by
the SC-uLDA model. This might be an indication that the documents
have little variety in vocabulary and contain �ller words that do not
contribute to a speci�c topic. These discrepancies in language probably
contribute to the di�erences in hit rate performances.

Another possible explanation might be the di�erence in the num-
ber of topics. It is possible that the 10 topics that were used to tag
the Brexit data set lead to broader, less precise topics that are more
di�cult to reproduce for a topic model. Unfortunately, without obtain-
ing additional topic labels from human workers, this cannot be tested.
However, there is evidence that suggests that more complex texts might
have in�uenced topic labels. Table 8.2 shows the share of human-tagged
within-document topic changes that appear at the start or end of a
new sentence. Although this is generally very high with values of 66%
and 79% for the consumer reviews, the Brexit data set stands out with
over 97% of all within-document topic changes coinciding with sentence
boundaries. This might be a part of the explanation why the standard
SC-LDA performs better on this data set compared to the other two.

Table 8.2: Share of topic changes that appear at
the start or end of a sentence. Only topic changes
that appear within a document were considered.

tent data set dogfood data set Brexit data set

78.9% 66.1% 97.1%
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In summary, the results of the human-based tagging experiment show
that more complex models outperform standard LDA. Especially when
looking at consumer reviews, ubiquitous term models consistently out-
perform their traditional counterparts. This suggests that the proposed
extension brings the LDA closer to mimicking human language percep-
tion when de�ning topics. Unfortunately, the human codings do not
contain �ags for non-topic terms, so validating the non-topic ψ is not
possible based on the available data. This might be an interesting addi-
tion for future topic labeling projects.

A regression analysis with document characteristics as independent
variables was performed in 7.3 to identify possible drivers of hit rates.
Unfortunately, the results of this analysis are rather inconclusive. Al-
though there are signi�cant coe�cients in almost all regression models,
the in�uence seems to di�er from model to model and even from data
set to data set. Some of the more common regressors are the number of
words per document and the document vocabulary. The results should
be interpreted with caution since the adjusted coe�cient of determina-
tion (R2) is very low, suggesting that the variables can only explain a
small fraction of the variance in hit rates. This means that although
there are indications that the language complexity plays into model per-
formance, its e�ect size is most likely negligible.

If anything can be read from these outputs, it is that the model most
a�ected by these parameters is LDA, while other model performances,
especially for ubiquitous term based models, can barely be explained by
the examined characteristics. Although no substantial e�ect was found,
this should still be considered a positive outcome since it also means
that topic model performance is not impaired by variation in document
structure.

It should also be mentioned that the model implementations were
optimized for readability and not for speed. Since only a minimum of
terms were removed, the estimation process took a considerable amount
of time for both standard LDA models and ubiquitous terms extensions.
This might be an issue when implementing these models in a business
context but is not addressed here since it is outside the scope of this
thesis.
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8.3.2 Study Design Implications

Since the experiment presented in section 6.3.1 is a novel approach, there
is a lot to be learned for future instances of comparable studies. Certain
topics produce very low hit rates, while others are matched quite well.
A reason for this might be that human coders can interpret context
and understand intent while topic models can only access the term co-
occurrence since they have no concept of meaning. The fact that the
Brexit data set shows lower variation in hit rates could also signify that
the optimal topic count could actually be lower for the tent and dogfood
data sets.

A closer look at the actual topics that achieve particularly high or
low hit rates is given in tables 8.3 and 8.4. The �best matched� topics,
i.e., the topics that contained the most topic hits on average, are usu-
ally about distinct characteristics that can easily be di�erentiated from
others. Examples for this are the customer service (tent data set) or
the container the food comes in (dogfood dataset). On the other hand,
poorly performing topics are either very general, such as the �histori-
cal/general background� topic in the Brexit data set, or relatively small
such as the �quantity� (dogfood) or the �innovativity� topic (tent). Both
were assigned only 31 and 8 times in total, respectively. There is also
an obvious problem with the �innovativity�1 topic: it is so rare that its
de�ning term, �innovation,� seems to be left below the threshold of rare
terms and got removed 2.

These results might give some hints for further development of the
experimental design. It could be argued that very small topics should be
avoided if possible and that overly broad topics might better be divided
into more concrete ones.

When looking at the experiment results as a whole from all the angles
presented within this thesis, several starting points for future improve-
ments can be identi�ed. The main issues that will be addressed here are
subjectivity, topic set size, topic di�erentiation, ubiquitous terms, and
practical implementation.

Subjectivity The �rst adjustment is aimed at the issue that language
perception is subjective. The resulting labels do most likely depend on

1This label is a direct quote from the experiment results.
2The respective topic consisted only of the sentence �The tent is a great innovation

in large tents.�



8.3. Human-Based Experiment 99

Table 8.3: Two of the highest scoring topics across
models by data set.

The topics are represented by the 10 most likely terms according to the
posterior distribution of the respective ϕ.

Brexit dogfood tent

Brexit Brexit bag small coleman bugs
johnson deal holes size pole area
deal johnson bags dog replacement mosquitoes
eu eu box treats customer screened

party britain just dogs tent tent
labour european arrived break dont able
britain british food smaller tried annoying
people minister hole broken warranty dont
leave union im like called great
british parliament long pieces get keep

Table 8.4: Two of the lowest scoring topics across
models by data set.

The topics are represented by the 10 most likely terms according to the
posterior distribution of the respective ϕ.

Brexit dogfood tent

Brexit Brexit expiration bag material great
johnson eu date pound tent large

eu johnson away 30 better tent
deal deal bag 6 materials tents
labour britain dates largest well
britain british expired ordered 50
vote ireland good paid 6
party parliament guarantee quantity andor

parliament now product received breezes
british party store yet canvas
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prior knowledge and the workers' reading comprehension skills. A larger
pool of participants could better ensure reproducibility by balancing the
subjective in�uences. For this, two main approaches seem reasonable.
The �rst would be to employ H workers who individually label doc-
uments according to the given protocol, resulting in H topic sets of
possibly varying size and H sets of topic labels. These results can then
be taken to calculate H di�erent hit rates, of which the arithmetic mean
could provide an overall score for each model. An additional bene�t of
this lies in informing the researcher about the distribution of possible hit
rates.

Another approach to this issue would be to combine several partici-
pants into a group that jointly decide on topic set and document labels.
This could reduce the subjectivity in the resulting assignments of z, de-
pending on the number of persons and possibly also on group dynamics.
However, there might be a loss of e�ciency in tagging due to the coor-
dination costs. Both solutions mentioned above can also be combined
to form several groups or mixed to only de�ne the topic sets within the
group while keeping the labeling process on an individual level.

Unfortunately, all suggestions require enrolling additional workers
and therefore will inevitably lead to higher costs.

Topic Set Size The second suggestion for improving the experimental
design is related to topic set size. Note that topic set size, i.e., the number
of de�ned topics, is directly related to topic size, i.e., the number of
tokens per topic, since a larger topic set leads to an smaller average topic
size and also gives more room for niche topics consisting of relatively
few terms. In the presented form, there is no mechanism to control
for topic set size within the experiment, which could lead to the human
coders �over�tting� the data. It also seems that workers were tempted to
��ne-tune� topics when new documents presented them with unexpected
content.

Therefore, it might be advisable to implement a two-stage process
where participants are given only a subset of the data along with the task
to de�ne a set of underlying topics. Upon completion, the rest of the data
is provided with the requirement to adhere to the previously de�ned topic
set. This procedure is arguably very similar to the protocol presented
in this study. Nevertheless, the stricter implementation would allow for
better control of the results by eliminating the ability to gloss over the
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results and compelling the workers to possibly make �incongruous� topic
assignments for some fringe cases.

This issue might also be mitigated when the group approach is im-
plemented as described above since the majority of participants would
have to be convinced that the respective topics are a necessary part of
the topic sets.

Topic Di�erentiation A matter closely intertwined with the issue of
topic size is topic di�erentiation. This close relationship is evident when
considering that a larger topic set size allows for more speci�c topics
and vice versa. Topic di�erentiation also poses an especially complex
problem since there is no �right� direction to take. Allowing for more
speci�c topics could lead to �over�tting�-like behavior and might result in
very small topics that are hardly detectable by topic models, which rely
on variance in co-occurrence. On the other hand, discouraging narrow
topics could lead to very broad topics that are not easily di�erentiated
from others.

It might be a reasonable approach to encourage a balance in topic
sizes across the topic set. However, this should probably not be a hard
criterion since in some cases, there might be good arguments for small,
precise topics regarding speci�c issues within a corpus. One approach
might be to de�ne some very low criteria that bring fringe cases to the
workers' attention without imposing hard boundaries. Examples for this
are topics that appear in less than 0.1% of documents or topics that make
up more than 4 or 5 times of the token than average. The convenience
of the latter example is that this can be achieved in two ways. Either
reduce the respective topic's size by making it more speci�c or increase
the average topic size by reducing the total number of topics.

However, it should be stressed again that too strict rules might be
counter-productive and also not necessary. The �rst step should be to
bring the issue to the workers' attention and hope the human mind
�gures out a suitable middle ground.

Ubiquitous Terms Another point mentioned earlier is that with the
current protocol, there is no distinction between topic-related and topic-
irrelevant terms, i.e., ubiquitous terms in the sense of uLDA. This lack
of di�erentiation makes it impossible to evaluate the quality of the non-
topic, which leads to the respective terms being omitted in the hit rate
scoring step.
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Obtaining this classi�cation would be useful since it could provide
further evaluation for the concept of ubiquitous terms. Moreover, know-
ing which terms inform topics and which do not would be an interesting
point of research even without its relation to the uLDA model. It could
provide insights into human language perception in general and help
develop these models further.

Practical Implementation The last point worth mentioning is con-
cerned with the practical implementation of the experiment. The �rst
trials were conducted by annotating text �les with numbers ranging from
1 to T . This procedure was both time-consuming and susceptible to slip-
ups. It might be helpful to employ a computer-assisted labeling method
that can ensure hard boundaries, such as surjective mapping of tokens
to topics, while increasing awareness for soft boundaries by, for instance,
highlighting topics that only contain a few words. Making the text im-
mutable would also ensure consistency in that area. The ability to click
on tokens in order to assign topics could also decrease the time cost.
Finally, a software-assisted solution would also reduce the room for sub-
jective interpretation of the experiment protocol in general, which could
reduce miscommunication and prevent issues that might not yet be on
the radar.

The main caveat with this solution would be that providing too much
feedback during the ongoing labeling process could have unintended con-
sequences. Participants could feel compelled to adhere to suggestions or
hints given by the tool, which would transmute soft boundaries into hard
boundaries. To ensure that the resulting labels are still based on human
perception and therefore can be considered as �ground truth� for the
model, the feedback to the worker should probably be kept to a mini-
mum. The exact design should itself be tested in experiments in order
to �nd an ideal compromise.

Summary Although there is still room for improvement in the experi-
ment process, the results can provide some form of performance measure
for the models. As results have shown, the models do outperform their
baseline of a randomly generated allocation of topics signi�cantly, which
is a clear sign that human-based topic labels are worth closer examina-
tion in the future.

The analyses of the results of this short run have provided several
starting points for future improvement that should be considered when
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similar experiments are conducted. In hindsight, the protocol could be
improved in some points in order to bring the results closer to the goal
of the minimal set of topics to fully describe the corpus content. Also,
some clari�cations could facilitate the labeling process for the partici-
pants. Additionally to conceptual modi�cations, introducing some form
of digital assistance could reduce cost by reducing time and error rate.

Nevertheless, it should be kept in mind that there is a risk of over-
engineering the labeling process. If too many rules and regulations are
provided, the result might stray away from creating human-perceived
topics towards human-executed topic modeling. This possibility should
always be kept in mind when imposing new restrictions or guidelines. In
general, it could be advisable to avoid examining topic model results on
a given corpus before conducting the experiment in order to avoid any
subconscious bias when designing the protocol.

Even though the study design might not be fully optimized yet, the
results have proven to be an excellent complement to established meth-
ods. The experiment in this thesis provides some groundwork for the
�eld of human-based topics. After the successful proof of concept, there
is still some room for improvement. If done correctly, human-based top-
ics could provide an interesting addition to current evaluation methods,
especially when examining new topic model extensions in an academic
context.
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Part IV

Conclusion
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The presented thesis aimed to narrow the gap between natural lan-
guage and topic models by reducing pre-processing. This objective was
approached from two directions. First, from the topic model perspec-
tive, an alternative concept to the classic understanding of stop words
was introduced in the form of ubiquitous terms. These �ndings were
used to formulate the uLDA model. And second, from the natural lan-
guage perspective, an experiment was conducted to better understand
how humans perceive topics and topic labels. The results of this course
of action will be summarized as answers to the research questions formed
in chapter 2.

1. Does removing stop words before model estimation change
the interaction between LDA and the given data
The analyses in section 5.3 have shown that stop words contribute
to the topic formation during LDA in the sense that the respec-
tive terms are not distributed equally across topics. Some stop
words are grouped into single topics, while others frequently ap-
pear across the whole topic set. This diversity suggests that in-
cluding stop words in topic modeling elevates the information level
and hence could provide a better �t. Furthermore, the occurrence
of �natural non-topics� as examined in section 6.1 has shown that,
under speci�c circumstances, terms not relevant to any speci�c
topic are grouped together, an e�ect that was used in the imple-
mentation of uLDA in section 6.2.1.

2. Can LDA be extended in order to harness possible interac-
tion e�ects? Could this allow for a reduced pre-processing
that would warrant the input data to be closer to natural
language?
The evaluation of uLDA has shown that the newly introduced non-
topic does, in fact, absorb some of the typical stop words while al-
lowing some of them to still appear prominently in certain topics.
This means that uLDA can use the characteristics of ubiquitous
terms and separate them from topic-related terms. Not removing
ubiquitous terms does preserve more of the original language of a
corpus, and uLDA can utilize this information that is now kept in
the data.

3. Can reference values for human-perceived topics be ob-
tained in an experimental setting? How do humans per-
ceive topics in the context of such an experiment?
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This thesis proposed an experiment for generating human-based
topic labels on a word level. The introduced protocol was mainly
aimed at mimicking topic model behavior by generating a set of
T topics and providing a surjective mapping from any model out-
put to these topics for all tokens within a corpus. The experiment
o�ered interesting data that was used to evaluate all estimated
models by matching the human topics against the model topics
and calculating an average hit rate for each model. A descriptive
analysis of the resulting human-based topics showed that humans
seem to perceive topics in chunks rather than on a word level, which
is an intriguing �nding regarding possible future model extensions.

4. Does such an extension actually provide a better model
for human-perceived topics?
The evaluation showed that models based on ubiquitous terms out-
perform standard LDA across all data sets when measuring the ex-
periment hit rate. In one case, SC-LDA showed slightly better val-
ues than the uLDA variants. Reasons for this might be di�erences
in the document characteristics; however, this phenomenon should
probably be examined closer in future research. In most cases,
uLDA and SC-uLDA show a better �t to both data, measured by
out-of-sample log-likelihood, and human coding, measured by hit
rate.

Based on these results, several paths for future research can be iden-
ti�ed. Concerning the uLDA model, the most obvious step would be to
scale up the data. This approach could include using more data sets with
a greater variety in characteristics, just using larger data sets, or a com-
bination of both. It could provide a better understanding of this model's
advisable applications and provide an explanation for the unexpectedly
high performance of SC-LDA in the Brexit data set.

For the experiment, section 8.3.2 provided some thoughts on improv-
ing the protocol. The most straightforward next step here would be
expanding the setting to include more workers, which mainly poses cost
restrictions. Another bene�cial adjustment could be introducing an as-
sisting software tool that guides the process and thus ensures quality
control. And �nally, with the variety of tweaks suggested in the discus-
sion part of this thesis, even deeper insight could be gained by evaluating
di�erent variations of the experiment to assess the e�ects of each sug-
gested modi�cation.
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Finally, regarding the proposed model, there are a variety of possible
approaches to take from here. The simple uLDA model and the SC-
uLDA extension have both been demonstrated to provide better results
on tasks directly linked to natural language modeling. As was discussed
in section 6.2.1, the elegance of the ubiquitous term extension lends
itself to being incorporated in many other topic models. Combining this
concept with other existing topic model extensions is clearly an appealing
issue to be examined.

Additionally, the descriptive analysis of human-based topic labels in
section 7.3 points in a particular direction for future research. The fact
that topic labels appear in blocks and do not seem to change after every
word is an indication that topic models that include such a structure
might perform better when trying to approximate human perception.
The SC-uLDA model already represents the �rst step in that direction.
However, the sentence boundaries seem a bit too strict when considering
that shorter document corpora had only about roughly 70% of topic
change points located right next to punctuation. A more �exible sizing
of these topic runs might be a promising next step.

In conclusion, this thesis provided groundwork on how to approach
natural language from a topic model standpoint. The proposed model
extensions have demonstrated promising performance while also incor-
porating typical stop words that would otherwise have been removed.
Moreover, the conducted experiment introduces a new approach to topic
model evaluation focusing on human topic perception. Both these re-
sults encourage further research in the �eld with the hopes of bringing
topic models even closer towards natural language.
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Appendix A

Empirical Analysis

Model Free Analysis

This section contains additional plots to complement those of section
5.3. The consumer review data sets are used as is (in contrast to the
plots in the thesis), while the brexit data set was prepared with repeated
sampling as described in the main matter. Figure A.1 displays these
results. The main �nding is not changed by this, although the visualiza-
tion di�ers. Slight changes in the ordering occur, however this does not
impact the conclusions drawn from this analysis.
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Figure A.1: Frequency distributions for the di�er-
ent data sets.
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Appendix B

Derivations

B.1 Derivation of uLDA Gibbs Sampling

Table B.1: Notation for uLDA Gibbs sampling.

notation description

Data
w word
W Number of words in the corpus

Latent Variables
z topic assignment
θ topic distribution
ϕ word distribution for every topic
ψ word distribution for �non-topic�
τ binary topic/non-topic indicator
δ a priori probability of τ = 1

Fixed Priors
α prior to θ
β prior to ϕ

Other
CW0 count vector for non-topic assignments per unique token
CDT count matrix for topic assignments per document

The LDA model by Blei, Ng, and Jordan (2003) is at its core an
hierarchical Bayes model. For this type of model, parameter estimation is
usually approached via posterior inference, which depends on calculating
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the posterior distribution of all model parameters. For standard LDA,
this was explained brie�y in section 3.1. This process can be adapted
for uLDA, in which case the joint posterior distribution of all model
parameters is

p(θ, ϕ, ψ, δ, τ, z | w,α, β) = p(θ, ϕ, ψ, δ, τ, z, w | α, β)
p(w | α, β)

, (B.1)

The Gibbs sampling method uses full conditional distributions to
sample each unknown parameter from a distribution of that speci�c pa-
rameter conditional on all others. For uLDA this means a full conditional
is needed for θ, δ, ϕ, ψ, τ , and z. The process is simpli�ed drastically
when considering that draws on word level are i.i.d., which leads to the
solution that for all {wi | τi = 1}, the sampling of zi is identical to
LDA. Since δ is irrelevant to the draw of zi if τi = 1 is given. The same
holds true for ψ, which is only relevant for non-topic terms. Note that
the collapsed Gibbs sampler introduced in equation 3.5 is not applicable
here, which slightly increases the time to convergence.

p(zi | θ, τi, wi, ϕ, ψ, δ) ∝ p(w | ϕzi) · p(zi | θdi) (B.2)

which is, in full Gibbs:

p(zi = t | wi, ϕ, θ) ∝ ϕwi,t · θdi,t (B.3)

and consequently:

p(zi = t | wi, ϕ, θ) ∼Mult

(︃
ϕwi

· θdi∑︁
t∈T ϕwi,t · θdi,t

)︃
(B.4)

For θ, nothing changes. The only di�erence is, that the count matrix
CDT only includes terms for which τ was sampled as 1. In this case,
δ can again be omitted since τ is given, which allows for copying the
distribution from LDA:

p(θd | zd, τd, α) ∝ p(zd | θd) · p(θd | α)
∼ Dir(CDT + α)

(B.5)

This is also the case for drawing ϕ and ψ. In LDA, ϕt is already
only dependent on terms with zi = t, which means non-topic terms are
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ignored. For ψ, the draw is equivalent to ϕt with the exception that the
relevant terms are not selected via zi = t, but τi = 0.

ϕ:

p(ϕ | w, z, β, τ = 1) ∝ p(w | ϕz) · p(ϕ | β)
∼ Dir(CWT + β)

(B.6)

ψ:

p(ψ | w, z, γ, τ = 0) ∝ p(w | ψ) · p(ψ | γ)
∼ Dir(CW0 + γ)

(B.7)

The �rst real new distribution comes with the draw of τ . Since this
parameter is assumed to be Bernoulli distributed, only the probability
of τ = 1 has to be determined, since p(τ = 0) = 1− p(τ = 1). Following
Bayes rule, this probability can be split up into likelihood times prior as
follows:

p(τi | wi, ϕ, ψ, θ, δ) ∝ p(wi | τi, ϕ, ψ, θ, δ) · p(τi | δ) (B.8)

(B.9)

Using the division of favorable outcomes (τ = 1) by possible outcomes
(τ = 1, τ = 0), this leads to P (τ = 1) being:

p(wi | τi, ϕ, ψ, θ, δ) · p(τi | δ) ∝

∝ p(wi | ϕ, θ, τi = 1) · p(τi = 1 | δ)
p(wi | ϕ, θ, τi = 1) · p(τi = 1 | δ) + p(wi | ψ, τi = 0) · p(τw = 0 | δ)

(B.10)

Luckily, the prior distribution p(τi | δ) was proposed as a Bernoulli
distribution, which simpli�es that part to:

p(τ = 1 | δ) = δ (B.11)

p(τ = 0 | δ) = 1− δ (B.12)
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This leaves only the likelihood for both cases. For τ = 0 this is simply
given by the non-topic distribution:

p(w | ψ, τ = 0) ∝ ψw (B.13)

And for τ = 1, the case is identical to the LDA likelihood of w.
However, a �xed value for zi is not always available. If the previous
draw of τi = 0, zi has no value. Therefore, zi is integrated out by
summing over all possible values, which leads to:

p(w | ϕ, zi, θ, τi = 1) ∝ p(wi | ϕzi , τi = 1)

∝ ϕwi,zi

integrate z out:

∝
T∑︂
zi

(ϕwi,zi · θdi,zi)

∝ ϕwi
× θdi

(B.14)

Putting all these simpli�cation together leads to the probability of
τi = 1 of:

p(τw = 1 | ϕ, ψ, θ, δ) ∝ ϕwi
× θd · δ

ϕwi × θdi · δ + ψwi · (1− δ)
(B.15)

Finally, the full conditional distribution of δ depends on τ and γ =
(γ1, γ2). This can be split up into

p(δ | τ, γ) ∝ p(τ | δ) · p(δ | γ) (B.16)

Since p(τ | δ) is Bernoulli distributed and p(δ | γ) was introduced as
Beta distributed, this leads to:
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p(δ | τ, γ) ∝
(︃
n

k

)︃
δk (1− δ)

n−k · 1

B(γ1, γ2)
δγ1−1 (1− δ)

γ2−1

∝ 1

B(k + γ1, n− k + γ2)
δk+γ1−1 (1− δ)

n−k+γ2−1

∼ Beta(k + γ1, n− k + γ2)

(B.17)

Since n is the number of draws, it equals to the total number of token
in the corpus W . In turn, k is the number of favorable outcomes, in this
case draws resulting in τ = 1. This equals to the sum of the count matrix
CW0 across the whole vocabulary V . Consequently, n − k is equal to
the di�erence between W and the sum of CW0. This leads to the �nal
description of the full conditional of δ as:

p(δ | τ, γ) ∼ Beta(

V∑︂
v

(︁
CW0
v

)︁
+ γ1,

(︄
W −

V∑︂
v

CW0
v

)︄
+ γ2). (B.18)

B.2 Derivation of SC-uLDA Gibbs Sampling

The SC-uLDA model is based on an extension proposed by Büschken and
Allenby (2016). A detailed description of all Gibbs sampling procedures
for their SC-LDA model can be found in their paper. This section builds
on their work in order to provide Gibbs sampling steps for the SC-uLDA
model.

For the ubiquitous term extension to the SC-LDA, full conditional
distributions are needed for the parameters θ, δ, ϕ, ψ, τ , and z. In
contrast to the uLDA model, draws of zi on a word level are no longer
considered independent, since topic assignment is done at a sentence
level. The non-topic assignment of τi is still separate for each token,
however it is now conditional on zd,s. The joint posterior distribution of
all model parameters can still be described as

p(θ, ϕ, ψ, δ, τ, z | w,α, β) = p(θ, ϕ, ψ, δ, τ, z, w | α, β)
p(w | α, β)

,

with the only di�erence being in the individual sampling steps.
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Table B.2: Notation for SC-uLDA Gibbs sampling.

notation description

Data
w word
s sentence
W Number of words in the corpus

Latent Variables
z topic assignment
θ topic distribution
ϕ word distribution for every topic
ψ word distribution for �non-topic�
τ binary topic/non-topic indicator
δ a priori probability of τ = 1

Fixed Priors
α prior to θ
β prior to ϕ

Other
CW0 count vector for non-topic assignments per unique token
CDT count matrix for topic assignments per document
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The �rst important thing to note here is that some draws do not
change from the uLDA model. This is the case for θ (equation B.5), ϕ
(B.6), ψ (B.7), and δ (B.18). This leaves the only changes to the draws
of τ and z.

For the draw of τ , equation B.10 still holds, but the likelihood of wi
changes. Equation B.14 is modi�ed, since in the case of SC-uLDA, the
topic assignment zd,s of the respective sentence is known. Therefore, z
is not integrated out which leaves the likelihood at:

p(w | ϕ, zd,s, θ, τi = 1) ∝ p(wi | ϕzd,s , τi = 1)

∝ ϕwi,zd,s

(B.19)

With everything else equal to the uLDA version, this leads to the
probability of τi = τd,s,m = 1 of:

p(τw = 1 | ϕwi,zd,s , ψwi
, δ) ∝

ϕwi,zd,s · δ
ϕwi,zd,s · δ + ψwi

· (1− δ)
(B.20)

In turn, the draw of zd,s is dependent on τ since only topic-related
words are used to inform this draw. Here, the sampling di�ers from
Büschken and Allenby (2016), as ϕ is not integrated out. Instead, the
distribution of z is decomposed again into likelihood times prior:

p(zd,s | θ, τd,s,·, wd,s,·, ϕ, ψ, δ) ∝ p(w | ϕzd,s) · p(zd,s | θd) (B.21)

The prior p(zd,s | θd) is unchanged from uLDA and still equals θd.
The likelihood however is now dependent on all topic words within sen-
tence s:

p(wd,s,· | ϕzd,s , τd,s = 1) =
∏︂
r∈s

p(wd,s,r | ϕzd,sτd,s)

=
∏︂
r∈s

(︁
ϕwd,s,r,zd,s

)︁τd,s,r (B.22)

The exponent τd,s,r leads to only words with τ = 1 being considered
in this equation, since τ = 0 reduces the respective probability to the
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multiplicative identity 1. If equation B.22 is put into equation B.21, the
resulting probability is

p(zd,s = t | θ, τd,s,·, wd,s,·, ϕ) ∝
∏︂
r∈s

(︁
ϕwd,s,r,zd,s

)︁τd,s,r · θd,t (B.23)

which leads to a target distribution of zd,s as:

p(zd,s | θ, τd,s,·, wd,s,·, ϕ) ∼Mult

(︄ ∏︁
r∈s
(︁
ϕwd,s,r,zd,s

)︁τd,s,r · θd∑︁
t∈T

∏︁
r∈s
(︁
ϕwd,s,r,zd,s

)︁τd,s,r · θd,t
)︄

(B.24)

As a consequence, if sentence s contains no topic terms, the proba-
bility is only informed by the topic prior θ.
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Results

Evaluation results for di�erent topic counts

This section contains a robustness check for the model �t results pre-
sented in section 7.2. For all three data sets, each model was estimated
�ve times with di�erent topic counts T ranging from 10 to 50 in incre-
ments of 10. Figure C.1 shows the resulting log-likelihood values for the
out of sample model �t. The graphics show that the uLDA and SC-
uLDA models achieve better results across all data sets and all across all
topic numbers. This demonstrates that the �ndings in the main matter
are robust against changes in T .

This is mirrored in the results for perplexity. Figure C.2 shows the
di�erent perplexity values for di�erent values of T . While the perfor-
mance of standard LDA and SC-LDA varies across the topic numbers,
they are still consistently outperformed by the ubiquitous term exten-
sions. This shows again that the results of this thesis are robust.
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Figure C.1: Out of sample log-likelihood across dif-
ferent values for T . Higher values are better.
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Figure C.2: Out of sample perplexity across di�er-
ent values for T . Lower values are better.
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R-Codes

R-Code for Preprocessing

This section contains the R-Code used for pre-processing the data.

1 #### provide a consistent function for preprocessing #####
2 ##
3 # Input:
4 # Vector of strings , each string 1 document
5 #
6 #
7
8 #### standard settings
9 # removeDuplicates = FALSE

10 # removeStopwords = FALSE
11 # customStopwords = character(0)
12 # contractionHandling = "removegen"
13 # replaceNumwords = FALSE
14 # dashReplace = " "
15 # concatCountwords = TRUE
16 # concatRanges = FALSE
17 # concatNegatives = FALSE
18 # replaceDigits = FALSE
19 # INCLUDEHITL = FALSE
20
21 make_mydocs <- function(documents ,
22 removeDuplicates = FALSE ,
23 removeStopwords = FALSE ,
24 customStopwords = character(0),
25 contractionHandling = "removegen",
26 replaceNumwords = FALSE ,
27 dashReplace = " ",
28 concatCountwords = TRUE ,
29 concatRanges = FALSE ,
30 concatNegatives = FALSE ,
31 replaceDigits = FALSE ,
32 tags = NULL){
33
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34 ### Output: list object with fields:
35 # plaindoc list of documents with all words
36 #
37 # sentids list indicating wich word is which sentence
38 # phrids list indicating which word is which phrase
39 # filters:
40 # stopwords filter vector list for all stopwords
41 # rarity vector indicating rarity for each term
42 # shortwords vector indicating "short" words like "b","k", etc.
43 #
44 # functions
45 # get_docs (
46 # doc_object: this object
47 # split_by: docs / sent / phr
48 # keep_stopwords: yes / no / cov (only keep covariate words)
49 # rarity: lower limit (0,1,2,3...)
50 # keep_shortwords: TRUE/FALSE
51 # )
52
53 ## check if hitl topic tagging was provided
54 if(is.null(tags)){
55 # provide dummy tagging if no tagging present
56 tags <- lapply(1:length(documents), function(x){
57 rep(x, length(documents [[x]]))
58 })
59 include_hitl_coding <- FALSE
60
61 } else {
62 include_hitl_coding <- TRUE
63 }
64
65
66 ## start output list
67 output <- list()
68
69 ### error testing for incompatible settings
70 contractionHandling <- tolower(contractionHandling)
71 if(!( contractionHandling %in% c("pasteall", "removegen", "breakall")

)){
72 warning("Illegal contraction handling. Will use 'pasteall '.")
73 contractionHandling <- "pasteall"
74 }
75
76 ### remove duplicates of documents
77 if(removeDuplicates){
78 doublettes <- which(duplicated(documents))
79 if(length(doublettes > 0)){
80 documents <- documents[-doublettes]
81 tags <- tags[-doublettes]
82 }
83 }
84
85 N_docs <- length(documents)
86
87
88 ### Define Helpful Constants
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89 Conjunctions <- c("for","and","nor","but","or","yet","so","after","
although","as","as if","as long as","as much as","as soon as","
as though","because","before","even","even if","even though","
if","if only","if when","if then","inasmuch","in order that", "
just as","lest","now","now since","now that","now when","once",
"provided","provided that","rather than","since","so that","
supposing","than","that","though","til","unless","until","when"
,"whenever","where","wheareas", "whichever","where if","
wherever","whether","which","while","who","whoever","why","what
","whom","whose")

90 Conjuntions <- sort(Conjunctions)
91 names(Conjunctions) <- Conjunctions
92
93 Punctuation <- c(",",".",";",":","!","?","&", "(",")")
94 names(Punctuation) <- c("comma","fullstop","semicolon","colon","

exclamation","question","&","para_open","para_close")
95
96 if(length(customStopwords) == 0){
97 myStopwords <- c("a","able","about","across","anyway","anyways","

after","all","almost","also","am","among","an",
98 "and","any","are","as","at","be","because","been"

,"but","by","could","dear","did","do","does"
,

99 "either","else","ever","every","for","from","get"
,"got","had","has","have","he","her","hers",

100 "him","his","how","however","in","into","is","it"
,"its","just","least","let","like","likely",

101 "may","me","might","my","neither","nor","of","off
","often","on", "one","only","other","our","
own",

102 "rather","said","say","says","she","should","
since","so","some","than","that","the","
their","them",

103 "then","there","these","they","this","to","too","
us","wants","was","we","were","what","when",

104 "where","which","while","who","whom","why","will"
,"with","would","yet","you","your")

105 } else {
106 myStopwords <- customStopwords
107 }
108 ### my short words - nonsensical particles
109 myshortwords = c("b","c","d","e","f","g","h","ii","j","k","l","ll","

m","n","p","o","r","s","t","u","v","w","x","y","z","xxx","00")
110
111 ### Define first text cleaning function
112 cleanText <- function(x){
113
114 ### All lower case
115 x <- tolower(x)
116
117 ## Handling of Apostrophe and Contractions
118 ## identify mishandled apostrophes (encoding)
119 x <- gsub("âN�", "'", x, fixed=TRUE)
120
121 ## handle mrsmr etcs by removing dots
122 gsub("\\b(mr|mrs|ms|dr|prof)\\.", "\\1", x)
123
124 ## similar stuff , such as abbreviations
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125 gsub("\\b(vs)\\.", "vs", x)
126 #gsub ("\\be\\.g\\.", "eg", x)
127 gsub("\\b([a-z]) \\.([a-z])\\.([a-z])\\. ", "\\1\\2\\3 ", x)
128 gsub("\\b([a-z]) \\.([a-z])\\. ", "\\1\\2 ", x)
129
130 ## how to deal with contractions
131 if(contractionHandling == "pasteall"){
132 # just paste everything together by removing '
133 x <- gsub(''', "", x)
134 x <- gsub("'", "", x)
135 } else if(contractionHandling == "removegen") {
136 # remove ' if it seems to be possessive
137 x <- gsub("he's ", "hes ", x)
138 x <- gsub("he's ", "hes ", x)
139 x <- gsub("she's ", "shes ", x)
140 x <- gsub("she 's ", "shes ", x)
141 x <- gsub("it's ", "its ", x)
142 x <- gsub("it's ", "its ", x)
143 x <- gsub("that's ", "thats ", x)
144 x <- gsub("that 's ", "thats ", x)
145 x <- gsub("'s\\b", "", x)
146 x <- gsub("'s\\b", "", x)
147 ## not -contractions
148 ## if they are not meant to be pasted , they have to be resolved

to "not"
149 if(! concatNegatives){
150 x <- gsub("n't\\b", " not", x)
151 x <- gsub("n't\\b", " not", x)
152 x <- gsub("\\bhav not\\b", "have not", x)
153 x <- gsub("\\bwo not\\b", "will not", x)
154 x <- gsub("\\bca not\\b", "cannot", x)
155 }
156 ## remove remaining apostrophes
157 x <- gsub(''', "", x)
158 x <- gsub("'", "", x)
159 } else if(contractionHandling == "breakall"){
160 ## breakall means replace apostrophes by space
161 if(concatNegatives){
162 warning("Contraction Handling is set to break all Contraction ,

 this is not compatible with Contracting negations .\n 
Negations will not be contracted.")

163 concatNegatives <- FALSE
164 }
165 ## break "n't" into not
166 x <- gsub("n't\\b", " not", x)
167 x <- gsub("n't\\b", " not", x)
168 x <- gsub("\\bhav not\\b", "have not", x)
169 x <- gsub(''', " ", x)
170 x <- gsub("'", " ", x)
171 }
172 # remove linebreaks
173 x <- gsub("\\n"," ", x, fixed = TRUE)
174 # remove unprintable characters
175 x <- gsub('[^[: print :]]', " ", x)
176 x <- gsub('[^\\x00 -\\x7F]', "", x, perl = TRUE)
177 ## concat from -to ranges into single expressions
178 if(concatRanges){
179 x <- gsub("([0-9]+) *\\- *([0-9]+)", "\\1to\\2", x)
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180 }
181 ## Remove all "-" and replace by preset (standard is " ")
182 x <- gsub("-",dashReplace ,x, fixed = TRUE)
183 # Remove "wacky" signs
184 x <- gsub("<br>"," ",x)
185 x <- gsub("\\n"," ", x)

186 x <- gsub("[\\/_\\\\@\\*+#%^= > <gíâ®âã© |1/21/4º±¾¤ï°≫�≪�½� 2 3 ]", "",x)

187 x <- gsub("[gíâ®âã© |1/21/4º±¾¤ï°≫�≪�½� 2 3 ]", "",x)
188 x <- gsub("~","",x,fixed=TRUE)
189 x <- gsub("|","",x,fixed=TRUE)
190 # Remove Quotes: " "
191 x <- gsub('\\"',' ', x)
192 ## Handle Dots / Exclamation / Question Marks
193 ## by replacing multiple with space + Sign + space ( "Test ... Test

." -> "Test . Test . ")
194 x <- gsub("([\\.!? ,;:])+"," \\1 ",x)
195 x <- gsub("(&)+"," \\1 ",x)
196 ## Handle Brackets
197 x <- gsub('[\\]\\}\\)]', " ) ", x, perl = TRUE)
198 x <- gsub('[\\[\\{\\(] ', " ( ", x, perl = TRUE)
199 ## Remove all spelled out unicode signs
200 x <- gsub("(\\\\u[0-9a-z])", "", x)
201 ## Handle elongated words
202 x <- gsub("\\bso+\\b", "so", x)
203 ## Handle Numeral words by replacing one - ten with 1 - 10
204 if(replaceNumwords){
205 numwords <- c("one","two","three","four","five","six","seven","

eight","nine","ten", "eleven","twelve")
206 for(i in 1:length(numwords)){
207 x <- gsub(paste0("\\b(",numwords[i],")\\b"), as.character(i),

x)
208 }
209 }
210
211 ### handle common num_combinations
212 if(concatCountwords){
213 x <- gsub("\\ bstars \\b", "star",x,fixed=TRUE)
214 x <- gsub("([0-9]+) (minutes|minute|nights|person|people|stars|

star|inches)", "\\1\\2", x)
215 x <- gsub("([0-9]+) ''", "\\1inches",x)
216 }
217
218 ### Handle Negations by contracting them
219 if(concatNegatives){
220 x <- gsub("do not", "dont", x, fixed = TRUE)
221 x <- gsub("did not", "didnt", x, fixed = TRUE)
222 x <- gsub("does not", "doesnt", x, fixed = TRUE)
223 x <- gsub("has not", "hasnt", x, fixed = TRUE)
224 x <- gsub("have not", "havnt", x, fixed = TRUE)
225 x <- gsub("can not", "cant", x, fixed = TRUE)
226 x <- gsub("cannot", "cant", x, fixed = TRUE)
227 x <- gsub("should not", "shouldnt", x, fixed = TRUE)
228 }
229
230 ### remove Dollar and Euro signs
231 x <- gsub("[\\$\\N]+", " ",x)
232
233 ###### Replace DIGIT?
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234 if(replaceDigits){
235 x <- gsub("[0-9]", "DIGIT", x)
236 }
237 # strip whitespaces
238 x <- gsub(" +"," ",x)
239 x <- strsplit(x, " ")
240 x <- lapply(x, function(y) y[y != ""])
241 return(x)
242 }
243
244 ## apply cleantext function
245 docprep <- lapply(documents ,cleanText)
246 names(docprep) <- NULL
247 tagprep <- tags
248
249 ### throw out empty reviews after clean -up
250 non.empty <- lapply(docprep , length) > 0
251 docprep <- docprep[non.empty]
252 tagprep <- tagprep[non.empty]
253
254 ############# next: Build Output List
255 ## first: make some lists
256 #### ID-Vectors for later being able to split the document into

sentences
257 docid <- list()
258 sentid <- list()
259 phrid <- list()
260 covid <- list()
261
262 #### Filter -Vectors for filtering Stopwords , short words etc
263 filter_stopwords <- list()
264 filter_conjunctions <- list()
265 filter_shortwords <- list()
266
267 ### Punctuation to Split documents
268 fullstops <- Punctuation[c("fullstop","exclamation","question")]
269 all.cov <- append(Conjunctions ,Punctuation)
270
271 ## now apply for each document
272 for(i in 1:length(docprep)){
273 ## get temporary doc
274 tmpdoc <- docprep [[i]]
275 tmptag <- rep(tagprep [[i]], sapply(tmpdoc , length))
276 tmpdoc <- unlist(tmpdoc)
277
278 ## indices to seperate by
279 sent.idx <- punct.idx <- allcov.idx <- c(1, rep(0,length(tmpdoc)-1

))
280
281 ## mark start of document
282 which.cov <- which(tmpdoc %in% all.cov)
283 names(which.cov) <- tmpdoc[which.cov]
284 tmp.cov <- data.frame(cov = names(which.cov), idx = which.cov)
285
286 sent.idx[tmp.cov$idx[tmp.cov$cov %in% fullstops ]] <- 1
287 punct.idx[tmp.cov$idx[tmp.cov$cov %in% Punctuation ]] <- 1
288 allcov.idx[tmp.cov$idx[tmp.cov$cov %in% all.cov]] <- 1
289
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290 ## now make running index of which phrase to select
291 sent.split <- cumsum(sent.idx)
292 punct.split <- cumsum(punct.idx)
293 allcov.split <- cumsum(allcov.idx)
294
295 ## Second: remove Punctuation
296 #### remove all punctuation from document , since its unwanted for

LDA
297 punctfilter <- !( tmpdoc %in% Punctuation)
298
299 ### Remove from DOCS AND TAGS
300 tmpdoc <- tmpdoc[punctfilter]
301 tmptag <- tmptag[punctfilter]
302 ### also remove from split indices
303 sent.split <- sent.split[punctfilter]
304 punct.split <- punct.split[punctfilter]
305 allcov.split <- allcov.split[punctfilter]
306
307 ## save to list
308 docid[[i]] <- rep(1,length(tmpdoc))
309 sentid [[i]] <- sent.split
310 phrid[[i]] <- punct.split
311 covid[[i]] <- allcov.split
312
313 ## Third: get StopWord -Indicator
314 sw_filter <- !( tmpdoc %in% myStopwords)
315 filter_stopwords [[i]] <- sw_filter
316
317 ## Fourth: get conjunction -Indicator
318 conj_filter <- !( tmpdoc %in% Conjunctions)
319 filter_conjunctions [[i]] <- conj_filter
320
321 ## Fifth: get short words indicator
322 shortfilt <- !( tmpdoc %in% myshortwords)
323 filter_shortwords [[i]] <- shortfilt
324
325 ## save updated document (without punctuation)
326 docprep [[i]] <- tmpdoc
327 tagprep [[i]] <- tmptag
328 }
329
330 ## NOW make rarity index
331 ### NEW - rarity by document appearance
332 vocab <- sort(unlist(docprep))
333 rarity_table <- table(vocab) * 0
334 for(i in 1:length(docprep)){
335 docvoc <- unique(unlist(docprep [[i]]))
336 rarity_table[docvoc] <- rarity_table[docvoc] + 1
337 }
338 rarity_index <- list()
339 for(i in 1:length(docprep)){
340 ## get rarity
341 rarity_index[[i]] <- rarity_table[docprep [[i]]]
342 }
343
344 ## save indices to list
345 ID <- list()
346 ID$docs <- docid
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347 ID$sent <- sentid
348 ID$phr <- phrid
349 ID$cov <- covid
350 ## add to output list object
351 output$plaindoc <- docprep
352 output$ID <- ID
353 output$filter_stopwords <- filter_stopwords
354 output$filter_conjunctions <- filter_conjunctions
355 output$filter_shortwords <- filter_shortwords
356 output$rarity_index <- rarity_index
357
358 if(include_hitl_coding){
359 output$coding <- tagprep
360 }
361
362 ###### Filter -Function
363 ## Inputs Object (like the "output"-list)
364 ## Inputs Filter list
365 ##
366 ## outputs filtered object
367 ##
368 output$filter_docs <- function(docobject , fltr){
369 ## for all object fields , filter by fltr
370 for(k in 1:length(docobject$plaindoc)){
371 for(i in 1:length(docobject$ID)){
372 docobject$ID[[i]][[k]] <- docobject$ID[[i]][[k]][ fltr[[k]]]
373 }
374 docobject$plaindoc [[k]] <- docobject$plaindoc [[k]][ fltr[[k]]]
375 docobject$rarity_index[[k]] <- docobject$rarity_index[[k]][ fltr

[[k]]]
376
377 if(!is.null(docobject$coding)){
378 docobject$coding [[k]] <- docobject$coding [[k]][ fltr[[k]]]
379 }
380 }
381 ## now , check if any documents are empty and remove if necessary
382 get_empty <- which(sapply(docobject$plaindoc , length) == 0)
383 if(length(get_empty) > 0){
384 for(i in 1:length(docobject$ID)){
385 docobject$ID[[i]] <- docobject$ID[[i]][-get_empty]
386 }
387 docobject$plaindoc <- docobject$plaindoc[-get_empty]
388 docobject$rarity_index <- docobject$rarity_index[-get_empty]
389 if(!is.null(docobject$coding)){
390 docobject$coding <- docobject$coding[-get_empty]
391 }
392 }
393 return(docobject)
394 }
395
396 #### Function to make document files like "mydoc"
397 ## Inputs
398 # docobj Document Object , like "output"-list
399 # splitby How to split up documents
400 # docs whole documents (mydoc)
401 # sent into sentences (by . ! ?)
402 # phr into phrases (by . ! ? , ; : ( ) )
403 # cov into phrases (by covariates and punctuation)
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404 # keep_stopwords whether or not to keep stopwords in the document
405 # rarity minimum rarity of terms (occurence count)
406 # keep_shortwords whether or not to keep short terms
407 # get_filter whether or not to output the filter applied
408 #
409 ## Output
410 # EITHER:
411 # list of documents
412 # OR:
413 # list of length 2:
414 # list of documents
415 # list of filters used to get to these documents
416 #
417 output$get_docs <- function(docobj ,
418 splitby = "docs",
419 keep_stopwords = TRUE ,
420 rarity = 2,
421 keep_shortwords = TRUE ,
422 get_filter = FALSE){
423
424 ## check for different possible inputs for keep_stopwords
425 if(tolower(keep_stopwords) %in% c("y","yes","all","true","t")){
426 keep_stopwords <- TRUE
427 } else if (tolower(keep_stopwords) %in% c("n","none","no","false",

"f")){
428 keep_stopwords <- FALSE
429 }
430 ## make plain filter
431 use_filter <- lapply(docobj$plaindoc ,function(x){
432 rep(TRUE , length(x))
433 })
434
435 ## adjust filter if removing stop words
436 if(keep_stopwords == FALSE){
437 for(i in 1:length(use_filter)){
438 use_filter [[i]] <- docobj$filter_stopwords [[i]]
439 }
440 }
441 ## adjust filter if keeping covariates
442 if(tolower(keep_stopwords) %in% c("cov", "covariates")){
443 for(i in 1:length(use_filter)){
444 use_filter [[i]] <- docobj$filter_stopwords [[i]] | !( docobj$

filter_conjunctions [[i]])
445 }
446 }
447 ## adjust filter if removing rare terms
448 if(rarity > 0){
449 if(rarity < 1){
450 ## interpret rarity as percentage of documents
451 new_rarity <- (length(docobj$plaindoc) * rarity)
452 rarity <- new_rarity
453 }
454 for(i in 1:length(docobj$plaindoc)){
455 use_filter [[i]] <- use_filter [[i]] & (docobj$rarity_index[[i]]

> rarity)
456 }
457 }
458 ## adjust filter if removing short terms
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459 if(!keep_shortwords){
460 for(i in 1:length(docobj$plaindoc)){
461 use_filter [[i]] <- use_filter [[i]] & docobj$filter_shortwords

[[i]]
462 }
463 }
464
465 ## apply filter on object
466 newobj <- docobj$filter_docs(docobj , use_filter)
467 ## if applicable , use topics
468 if(!is.null(newobj$coding)){
469 output_hitl <- TRUE
470 } else {
471 output_hitl <- FALSE
472 }
473
474 ## create docliist according to splitby
475 doclist <- list()
476
477 if(output_hitl) taglist <- newobj$coding
478
479 if(splitby == "docs"){
480 ## if "docs", no splitting needed
481 doclist <- newobj$plaindoc
482 } else {
483 for(i in 1:length(newobj$plaindoc)){
484 tmpdoc <- newobj$plaindoc [[i]]
485 tmpsplit <- newobj$ID[[ splitby ]][[i]]
486 sentlist <- list()
487 for(j in 1:max(tmpsplit)){
488 sentlist [[j]] <- tmpdoc[tmpsplit == j]
489 }
490 nonzero <- which(sapply(sentlist , length) > 0)
491 doclist [[i]] <- sentlist[nonzero]
492 }
493 }
494
495 ## if prompted , return filter , else return just documents
496 res <- list()
497 res$docs <- doclist
498 if(get_filter){
499 res$filter <- use_filter
500 }
501 if(output_hitl){
502 res$coding <- taglist
503 }
504 if(length(res) == 1){
505 res <- res[[1]]
506 }
507 return(res)
508 }
509
510 meta <- list( removeDuplicates = removeDuplicates ,
511 removeStopwords = removeStopwords ,
512 customStopwords = customStopwords ,
513 contractionHandling = contractionHandling ,
514 replaceNumwords = replaceNumwords ,
515 dashReplace = dashReplace ,
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516 concatCountwords = concatCountwords ,
517 concatRanges = concatRanges ,
518 concatNegatives = concatNegatives ,
519 replaceDigits = replaceDigits)
520 output$meta <- meta
521 return(output)
522 }

R-Code Models

R-Code LDA

1 ############### PIPELINE ##################
2 # Step 4: Estimate models on HITL Data
3 # Substep 1) LDA
4 #
5
6 ## requires:
7 # docs list object containing text data
8 # nT integer object containing number of Topics
9 # dataset character naming the dataset in use

10 #
11 # priors:
12 # alpha_value
13 # beta.phi_value
14 # beta.psi_value
15 # gamma_value
16
17 R = 1500
18
19 ## allow for overwriting R
20 if("OVERWRITER" %in% ls()){
21 R <- OVERWRITER
22 }
23
24 LISTLENGTH <- 100
25 LISTLENGTH <- min(LISTLENGTH , R) # must be smaller than R
26 ZLLENGTH <- 100 # list for zdraw is smaller
27 ZLLENGTH <- min(ZLLENGTH , R)
28
29 #### Prepare Data
30 D <- length(docs)
31 N_d <- sapply(docs ,length)
32 a <- rep(1:D, N_d)
33
34 ## setup vocabulary
35 i2w <- sort(unique(unlist(docs)))
36 ## enable ovveride for holdout
37 if("OVERRIDEVOCAB" %in% ls()){
38 if(class(OVERRIDEVOCAB) == "list"){
39 i2w <- OVERRIDEVOCAB$i2w
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40 }
41 }
42 W <- length(i2w)
43 w2i <- 1:W
44 names(w2i) <- i2w
45
46 w <- w2i[unlist(docs)]
47 N <- length(w)
48
49 ### Priors
50 alpha = rep(alpha_value ,nT)
51 beta.phi = rep(beta.phi_value ,W)
52 beta.psi = rep(beta.psi_value ,W)
53 gamma = gamma_value
54
55
56 ### Starting Values
57 z = apply(rmultinom(N,1,rep(1/nT,nT)),2,which.max)
58 ### Topic -author word counts
59 C_ta = matrix(0,nT ,D)
60 C_ta = matrix(table(data.table(cbind(z,a))),nT ,D)
61 # List Format
62 # TRANSPOSED
63 L_at = list()
64 for(i in 1:ncol(C_ta)){
65 L_at[[i]] <- C_ta[,i]
66 }
67 ### Terms -topics counts
68 C_wt = matrix(0,W,nT)
69 rows = as.numeric(unlist(labels(table(w)))) # account for all -0 rows

in C_wt
70 C_wt[rows ,] = table(data.table(cbind(w,z)))
71 # List Format
72 L_wt = list()
73 for(i in 1:nrow(C_wt)){
74 L_wt[[i]] <- C_wt[i,]
75 }
76 ## also store z counts seperately
77 zcounts = (Reduce(�+�, L_wt))
78
79 ## epsilon , sometimes needed to avoid log of zero
80 eps = 1e-128
81
82 ### generate starting values
83 theta = matrix(NA,nT,D)
84 for(d in 1:D){theta[,d] = MCMCpack :: rdirichlet(1,alpha)}
85
86 phi = matrix(NA ,W,nT)
87 for(t in 1:nT){phi[,t]= MCMCpack :: rdirichlet(1,C_wt[,t]+beta.phi)}
88
89 #### Data Infrastructure ####
90 zdraw <- list()
91 Theta_draw <- list()
92 Phi_draw <- list()
93
94 # MCMC Sampling
95 itime = proc.time()[3]
96
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97 ################### progress bar #####
98 pb <- progress_bar$new(
99 format = " Fitting LDA: [:bar] :percent eta: :eta (:tick_rate)",

100 total = R, clear = FALSE , width= 90)
101
102 for (r in 1:R){
103
104 ########################## Draw of z ##################
105 ## collapsed gibbs
106 for(i in 1:N){
107 # Collapsed Gibbs
108 #### List Notation
109 if(L_wt[[w[i]]][z[i]] <= 0 | L_at[[a[i]]][z[i]] <= 0){
110 cat("ERROR: Removing count below 0")
111 }
112 L_wt[[w[i]]][z[i]] = L_wt[[w[i]]][z[i]] - 1
113 L_at[[a[i]]][z[i]] = L_at[[a[i]]][z[i]] - 1
114 zcounts[z[i]] = zcounts[z[i]] - 1
115 p1 <- (L_wt[[w[i]]]+ beta.phi[w[i]]) / (zcounts + sum(beta.phi))
116 p2 <- (L_at[[a[i]]] + alpha) / sum(L_at[[a[i]]] + alpha)
117 pta = p1 * p2
118 z[i] = which.max(rmultinom(1,1,pta))
119 pta <- NA
120 L_wt[[w[i]]][z[i]] = L_wt[[w[i]]][z[i]] + 1
121 L_at[[a[i]]][z[i]] = L_at[[a[i]]][z[i]] + 1
122 zcounts[z[i]] = zcounts[z[i]] + 1
123 } # End of N Loop
124 ################## Draw of Theta #####################
125 theta <- apply(matrix(unlist(L_at), ncol= length(L_at))
126 , 2, function(x) MCMCpack :: rdirichlet(1,x + alpha))
127 ################## Draw of Phi #####################
128 phi <- apply(matrix(unlist(L_wt), byrow = TRUE , nrow= length(L_wt))
129 , 2, function(x) MCMCpack :: rdirichlet(1,x + beta.phi))
130
131 ####### store parameters
132 if(r <= LISTLENGTH){
133 Theta_draw[[r]] <- theta
134 Phi_draw[[r]] <- phi
135 } else {
136 Theta_draw[[1]] <- NULL
137 Phi_draw[[1]] <- NULL
138 Theta_draw[[ LISTLENGTH ]] <- theta
139 Phi_draw[[ LISTLENGTH ]] <- phi
140 }
141
142 ## zdraw only save "ZLLENGTH" iterations
143 if(r <= ZLLENGTH){
144 zdraw[[r]] <- z
145 } else {
146 zdraw[[1]] <- NULL
147 zdraw[[ ZLLENGTH ]] <- z
148 }
149
150 C_wt = matrix(0,W,nT)
151 rows = as.numeric(unlist(labels(table(w)))) # account for all -0 rows

in C_wt
152 C_wt[rows ,] = table(data.table(cbind(w,z)))
153
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154 pb$tick()
155
156 } # END R Loop
157 cat("Finished LDA with", nT , "Topcis and", R, "reps.\n")

R-Code uLDA

1 ############### PIPELINE ##################
2 # Step 4: Estimate models on HITL Data
3 # Substep 1) Ubi -LDA
4 #
5
6 ## requires:
7 # docs list object containing text data
8 # nT integer object containing number of Topics
9 # dataset character naming the dataset in use

10 #
11 # priors:
12 # alpha_value
13 # beta.phi_value
14 # beta.psi_value
15 # gamma_value
16
17 R = 1500
18
19 ## allow for overwriting R
20 if("OVERWRITER" %in% ls()){
21 R <- OVERWRITER
22 }
23
24 LISTLENGTH <- 100
25 LISTLENGTH <- min(LISTLENGTH , R) # must be smaller than R
26 ZLLENGTH <- 100 # list for zdraw is smaller
27 ZLLENGTH <- min(ZLLENGTH , R)
28
29 #### Prepare Data
30 D <- length(docs)
31 N_d <- sapply(docs ,length)
32 a <- rep(1:D, N_d)
33
34 ## setup vocabulary
35 i2w <- sort(unique(unlist(docs)))
36 W <- length(i2w)
37 w2i <- 1:W
38 names(w2i) <- i2w
39 w <- w2i[unlist(docs)]
40 N <- length(w)
41
42 ### Priors
43 alpha = rep(alpha_value ,nT)
44 beta.phi = rep(beta.phi_value ,W)
45 beta.psi = rep(beta.psi_value ,W)
46 gamma = gamma_value



Appendix D. R-Codes 141

47
48 ### Starting Values
49 delta = rbeta(1,gamma[1],gamma[2])
50
51 tau = rbinom(N,1,delta)
52 k = sum(tau)
53 z = rep(NA ,N)
54 z[tau == 1] = apply(rmultinom(k,1,rep(1/nT ,nT)),2,which.max)
55
56 ### Topic -author word counts
57 C_ta = matrix(0,nT ,D)
58 C_ta = matrix(table(data.table(cbind(z,a))),nT ,D)
59
60 ### Terms -topics counts
61 C_wt = matrix(0,W,nT)
62 rows = as.numeric(unlist(labels(table(w)))) # account for all -0 rows

in C_wt
63 C_wt[rows ,] = table(data.table(cbind(w,z)))
64
65 ### Terms -Ubiquitous -Counts
66 C_w0 = table(data.table(cbind(w,tau)))[,1]
67
68 ## epsilon , sometimes needed to avoid log of zero
69 eps = 1e-128
70
71 ### generate starting values
72 theta = matrix(NA,nT,D)
73 for(i in 1:D){theta[,i] = MCMCpack :: rdirichlet(1,C_ta[,i]+alpha)}
74
75 phi = matrix(NA ,W,nT)
76 for(t in 1:nT){phi[,t] = MCMCpack :: rdirichlet(1,C_wt[,t]+beta.phi)}
77
78 psi = matrix(NA ,W,1)
79 psi[,1] = MCMCpack :: rdirichlet(1,C_w0+beta.psi)
80
81 #### Data Infrastructure ####
82 zdraw <- list()
83 taudraw <- list()
84
85 Theta_draw <- list()
86 Phi_draw <- list()
87 Psi_draw <- list()
88
89 naccept_theta = 0
90 deltadraw <- rep(NA ,R)
91
92 # MCMC Sampling
93 itime = proc.time()[3]
94 ################### progress bar #####
95 pb <- progress_bar$new(
96 format = " Fitting Ubi: [:bar] :percent eta: :eta (:tick_rate)",
97 total = R, clear = FALSE , width= 90)
98
99 for (r in 1:R){

100 ##################### Draw of Tau ################
101 for(i in 1:N){
102 p_t1 = (phi[w[i],]) %*% theta[, a[i]] * delta
103 p_t0 = (psi[w[i]]) * (1-delta)
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104 p_tau = p_t1 / (p_t1 + p_t0)
105 if(is.nan(p_tau)){
106 cat("Error: p_tau is NaN \n p_t1 =",p_t1, "| p_t0 =",p_t0,"...")
107 p_t1 = (phi[w[i],] + eps) %*% theta[, a[i]] * delta
108 p_t0 = (psi[w[i]] + eps) * (1-delta)
109 p_tau = p_t1 / (p_t1 + p_t0)
110 if(!is.nan(p_tau)) {
111 cat("fixed.\n")
112 } else {
113 cat("failed .\n")
114 }
115 }
116
117 tau[i] = rbinom(1,1,p_tau)
118 if(is.na(tau[i])){
119 cat("Error: Tau is NA at i =", i, " | r = ",r,"\n", "p_tau =", p

_tau , "\n")
120 }
121 } # End of N-Loop (tau)
122 ## Update Cw0
123 if(sum(tau) < length(tau)){
124 C_w0 = table(data.table(cbind(w,tau)))[,"0"]
125 } else {
126 C_w0 = rep(0, W)
127 }
128
129 ########################## Draw of z ##################
130 for(i in 1:N){
131 ## full conditional Gibbs
132 if(tau[i] == 1){
133 pz <- phi[w[i],] * theta[,a[i]]
134 if(sum(pz == 0)){
135 pz <- (phi[w[i],] + eps) * (theta[,a[i]] + eps)
136 }
137 z[i] = which.max(rmultinom(1,1,pz))
138 } else {
139 z[i] = NA
140 }
141 } # End of N Loop (z)
142 ### Update Counts
143 C_wt = matrix(0,W,nT)
144 rows = as.numeric(unlist(labels(table(w)))) # account for all -0 rows

in C_wt
145 sel_cols <- as.numeric(unlist(labels(table(z))))
146 C_wt[rows ,sel_cols] = table(data.table(cbind(w,z)))
147 C_ta = matrix(0,nT,D)
148 C_ta = matrix(table(data.table(cbind(z,a))),nT,D)
149
150 ################## Draw of Theta #####################
151 theta = matrix(NA,nT ,D)
152 for(i in 1:D){theta[,i] = MCMCpack :: rdirichlet(1,C_ta[,i]+alpha)}
153
154 ########## Draw of Phi and Psi #############
155 phi = matrix(NA ,W,nT)
156 for(t in 1:nT){
157 phi[,t]= MCMCpack :: rdirichlet(1,C_wt[,t]+beta.phi)
158 }
159 ### Draw PSI
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160 psi = rep(NA ,W)
161 psi = MCMCpack :: rdirichlet(1,C_w0+beta.psi)
162
163 ############ draw delta ############
164 k = sum(tau)
165 delta = rbeta(1,k+gamma[1],N-k+gamma[2])
166
167 ####### store parameters
168 if(r <= LISTLENGTH){
169 Theta_draw[[r]] <- theta
170 Phi_draw[[r]] <- phi
171 Psi_draw[[r]] <- psi
172 } else {
173 Theta_draw[[1]] <- NULL
174 Phi_draw[[1]] <- NULL
175 Psi_draw[[1]] <- NULL
176 Theta_draw[[ LISTLENGTH ]] <- theta
177 Phi_draw[[ LISTLENGTH ]] <- phi
178 Psi_draw[[ LISTLENGTH ]] <- psi
179 }
180 ## zdraw only save "ZLLENGTH" iterations
181 if(r <= ZLLENGTH){
182 taudraw [[r]] <- tau
183 zdraw[[r]] <- z
184 } else {
185 zdraw[[1]] <- NULL
186 taudraw [[1]] <- NULL
187 zdraw[[ ZLLENGTH ]] <- z
188 taudraw [[ ZLLENGTH ]] <- tau
189 }
190 deltadraw[r] <- delta
191
192 pb$tick()
193 } # END R Loop
194 cat("Finished Ubi -LDA with", nT , "Topcis and", R, "reps.\n")

R-Code SC-LDA

1 ############### PIPELINE ##################
2 # Step 4: Estimate models on HITL Data
3 # Substep 2) SC -LDA
4 #
5
6 ## requires:
7 # docs list object containing text data
8 # nT integer object containing number of Topics
9 # dataset character naming the dataset in use

10 #
11 # priors:
12 # alpha_value
13 # beta.phi_value
14 # beta.psi_value
15 # gamma_value
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16
17 R = 300
18
19 ## allow for overwriting R
20 if("OVERWRITER" %in% ls()){
21 R <- OVERWRITER
22 }
23
24 LISTLENGTH <- 100
25 LISTLENGTH <- min(LISTLENGTH , R) # must be smaller than R
26 ZLLENGTH <- 100 # list for zdraw is smaller
27 ZLLENGTH <- min(ZLLENGTH , R)
28
29 #### Prepare Data
30 D <- length(docs)
31 N_d <- sapply(docs ,length)
32 a <- rep(1:D, N_d)
33
34 ## setup vocabulary
35 i2w <- sort(unique(unlist(docs)))
36 W <- length(i2w)
37 w2i <- 1:W
38 names(w2i) <- i2w
39 w <- sapply(docs , function(x) sapply(x, function(y) list(w2i[y])))
40 N <- length(w)
41
42 ### Priors
43 alpha = rep(alpha_value ,nT)
44 beta.phi = rep(beta.phi_value ,W)
45 beta.psi = rep(beta.psi_value ,W)
46 gamma = gamma_value
47
48 ### Starting Values
49 N_w = list()
50 N_s = list()
51 A_w = list()
52 A_s = list()
53 for(d in 1:D){
54 N_s[[d]] = length(w[[d]])
55 N_w[[d]] = unlist(lapply(w[[d]],length))
56 A_s[[d]] = rep(d,N_s[[d]])
57 A_w[[d]] = rep(A_s[[d]],N_w[[d]])
58 }
59 z_s = list()
60 z_w = list()
61 ### Generate sentence -topic indicator randomly
62 for(d in 1:D){
63 z_s[[d]] = apply(rmultinom(N_s[[d]],1,rep(1/nT,nT)),2,which.max)
64 z_w[[d]] = rep(z_s[[d]],N_w[[d]])
65 }
66 ### Topic -author word counts
67 C_ta = matrix(0,nT ,D)
68 C_ta = matrix(table(data.table(cbind(unlist(z_s),unlist(A_s)))),nT ,D)
69 ### Terms -topics counts
70 C_wt = matrix(0,W,nT)
71 rows = as.numeric(unlist(labels(table(unlist(w))))) # account for all -

0 rows in C_wt
72 C_wt[rows ,] = table(data.table(cbind(unlist(w),unlist(z_w))))
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73
74 ## epsilon , sometimes needed to avoid log of zero
75 eps = 1e-128
76
77 ### generate starting values
78 theta = matrix(NA,nT,D)
79 for(d in 1:D){theta[,d] = MCMCpack :: rdirichlet(1,alpha)}
80
81 phi = matrix(NA ,W,nT)
82 for(t in 1:nT){phi[,t]= MCMCpack :: rdirichlet(1,C_wt[,t]+beta.phi)}
83
84
85 #### Data Infrastructure ####
86 zdraw <- list()
87 Theta_draw <- list()
88 Phi_draw <- list()
89
90 # MCMC Sampling
91 itime = proc.time()[3]
92
93 ################### progress bar #####
94 pb <- progress_bar$new(
95 format = " Fitting SC-LDA: [:bar] :percent eta: :eta (:tick_rate)",
96 total = R, clear = FALSE , width= 90)
97
98 for (r in 1:R){
99

100 ## draw of z conditional on theta_d
101 ## only in this case is z independent of rating
102 for(d in 1:D){
103
104 for(s in 1:N_s[[d]]){
105
106 # word count in sentence s (ordered !)
107 w.count.s = table(w[[d]][s])
108
109 # labels of unique words in sentence s (ordered !)
110 labels.s = as.numeric(names(w.count.s))
111
112 # number of unique elements of sentence s
113 nu = length(w.count.s)
114
115 C_wt[labels.s,z_s[[d]][s]] = C_wt[labels.s,z_s[[d]][s]] - w.

count.s
116 C_ta[z_s[[d]][s],A_s[[d]][s]] = C_ta[z_s[[d]][s],A_s[[d]][s]] -

1
117
118 # initialize matrices A and B with standard values
119 BigA = matrix(C_wt[labels.s,] + beta.phi[labels.s], nu, nT)
120 BigB = matrix(rep(apply(C_wt,2,sum) + sum(beta.phi),nu),nu,nT ,

byrow = TRUE)
121 BigB = log(BigB)
122 BigA = log(BigA)
123
124 ### compute A and B by row
125 for(j in 1:nu){
126 w_u = labels.s[j]
127 # compute count of occurrences of each unique word
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128 count = w.count.s[j]
129 # generating row of matrix A given unique word in sentence s
130 # count == 1 means no change
131 if(count > 1){
132 aa = exp(BigA[j,])
133 reduce_count = c(0:(count -1))
134 aa = rbind(aa ,matrix(1,max(reduce_count),nT))
135 aa[,z_s[[d]][s]] = rep(aa[1,z_s[[d]][s]],length(reduce_count

))+reduce_count
136 BigA[j,] = apply(log(aa),2,sum)
137 }
138 ### compute B
139 if(count > 1){
140 bb = exp(BigB[j,])
141 bb = rbind(bb ,matrix(1,max(reduce_count),nT))
142 bb[,z_s[[d]][s]] = rep(bb[1,z_s[[d]][s]],length(reduce_count

))+reduce_count
143 BigB[j,] = apply(log(bb),2,sum)
144 }
145 }
146 BigA = apply((BigA),2,sum) # taking logs throughout for

numerical stability
147 BigB = apply((BigB),2,sum)
148 BigC = C_ta[,d] + alpha
149 BigC = BigC / sum(BigC)
150
151 pt = exp(BigA -BigB+log(BigC))
152 if(identical(rep(0,nT),pt)){ ## this happens when

values are too small
153 ## due to the large

vocabulary
154 pt = exp((BigA -BigB+log(BigC))/4)
155 bigsum <- BigA -BigB+log(BigC)
156 if(min(bigsum) < -700) ## try shift to the right

by adding stuff to bigsum (so exp(bisgum) > 0)
157 {
158 bsdiff <- (-700 -min(bigsum))
159 if(max(bigsum) + bsdiff > 700){ ## if thats not possible

try to squeeze bigsum in [-700,700]
160 # squeeze
161 bsnorm <- bigsum - mean(bigsum)
162 bigsum <- bsnorm /(max(abs(bsnorm))/700)
163 } else {
164 bigsum <- bigsum + (-700 - min(bigsum))
165 }
166 pt = exp(bigsum)
167 if(! identical(rep(0,nT),pt) & max(pt)!=Inf){
168 #cat ("... fixed\n")
169 } else {
170 cat("pt error: doc", d,"sentence",s)
171 pt = exp((BigA -BigB+log(BigC))/4)
172 cat("... failed to fix\n")
173 }
174 } else {
175 cat("pt error: doc", d,"sentence",s)
176 pt = exp((BigA -BigB+log(BigC))/4)
177 cat("... cause unknown\n")
178 }
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179 }
180 # draw z
181 z_s[[d]][s] = which.max(rmultinom(1,1,pt)) # vectorizing the pta

matrix is equivalent
182 rm(pt, BigA , BigB , BigC)
183 ## update C_wt
184 C_wt[labels.s,z_s[[d]][s]] = C_wt[labels.s,z_s[[d]][s]] + w.

count.s
185 C_ta[z_s[[d]][s],A_s[[d]][s]] = C_ta[z_s[[d]][s],A_s[[d]][s]] +

1
186 } # s loop
187 # expanding the new topic
188 z_w[[d]] = rep(z_s[[d]],N_w[[d]])
189 } # d loop
190
191 ################## Draw of Theta #####################
192 theta <- apply(C_ta , 2, function(x) MCMCpack :: rdirichlet(1,x + alpha

))
193
194 ################## Draw of Phi #####################
195 phi <- apply(C_wt, 2, function(x) MCMCpack :: rdirichlet(1,x + beta.

phi))
196
197 ####### store parameters
198 if(r <= LISTLENGTH){
199 Theta_draw[[r]] <- theta
200 Phi_draw[[r]] <- phi
201 } else {
202 Theta_draw[[1]] <- NULL
203 Phi_draw[[1]] <- NULL
204 Theta_draw[[ LISTLENGTH ]] <- theta
205 Phi_draw[[ LISTLENGTH ]] <- phi
206 }
207
208 ## zdraw only save "ZLLENGTH" iterations
209 if(r <= ZLLENGTH){
210 zdraw[[r]] <- z_w
211 } else {
212 zdraw[[1]] <- NULL
213 zdraw[[ ZLLENGTH ]] <- z_w
214 }
215 pb$tick()
216 } # END R Loop
217 cat("Finished SC-LDA with", nT , "Topcis and", R, "reps.\n")

R-Code SC-uLDA

1 ############### PIPELINE ##################
2 # Step 4: Estimate models on HITL Data
3 # Substep 4) SC -UBI
4 #
5
6 ## requires:
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7 # docs list object containing text data
8 # nT integer object containing number of Topics
9 # dataset character naming the dataset in use

10 #
11 # priors:
12 # alpha_value
13 # beta.phi_value
14 # beta.psi_value
15 # gamma_value
16
17 R = 2000
18
19 ## allow for overwriting R
20 if("OVERWRITER" %in% ls()){
21 R <- OVERWRITER
22 }
23
24 LISTLENGTH <- 100
25 LISTLENGTH <- min(LISTLENGTH , R) # must be smaller than R
26 ZLLENGTH <- 100 # list for zdraw is smaller
27 ZLLENGTH <- min(ZLLENGTH , R)
28
29 #### Prepare Data
30 D <- length(docs)
31 N_d <- sapply(docs ,length)
32 a <- rep(1:D, N_d)
33
34 ## setup vocabulary
35 i2w <- sort(unique(unlist(docs)))
36 W <- length(i2w)
37 w2i <- 1:W
38 names(w2i) <- i2w
39 w <- sapply(docs , function(x) sapply(x, function(y) list(w2i[y])))
40 N <- length(w)
41
42 ### Priors
43 alpha = rep(alpha_value ,nT)
44 beta.phi = rep(beta.phi_value ,W)
45 beta.psi = rep(beta.psi_value ,W)
46 gamma = gamma_value
47
48 ### Starting Values
49 delta = 0.5 #rbeta(1,gamma[1],gamma[2])
50
51 N_w = list()
52 N_s = list()
53 A_w = list()
54 A_s = list()
55 for(d in 1:D){
56 if(class(w[[d]]) == "list"){
57 N_s[[d]] = length(w[[d]])
58 N_w[[d]] = unlist(lapply(w[[d]],length))
59 A_s[[d]] = rep(d,N_s[[d]])
60 A_w[[d]] = rep(A_s[[d]],N_w[[d]])
61 } else if(class(w[[d]]) %in% c("matrix", "integer")){
62 N_s[[d]] = 1
63 N_w[[d]] = length(w[[d]])
64 A_s[[d]] = rep(d,N_s[[d]])
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65 A_w[[d]] = rep(A_s[[d]],N_w[[d]])
66 }
67
68 }
69 z_s = list()
70 z_w = list()
71 tau = list()
72
73 ### Generate sentence -topic indicator randomly
74 for(d in 1:D){
75 tau[[d]] <- list()
76 S_w <- rep(1:N_s[[d]],N_w[[d]])
77 z_s[[d]] = apply(rmultinom(N_s[[d]],1,rep(1/nT,nT)),2,which.max)
78 z_w[[d]] = rep(z_s[[d]],N_w[[d]])
79 tau_d = rbinom(sum(N_w[[d]]), 1, delta)
80 z_w[[d]][tau_d == 0] = NA # set topic NA for nontopics
81 if(sum(tau_d) == 0){
82 s_na <- rep(TRUE , N_s[[d]])
83 } else {
84 s_na <- table(tau_d,S_w)["1" ,] == 0
85 }
86 for(s in 1:N_s[[d]]){
87 tau[[d]][[s]] <- tau_d[S_w == s]
88 }
89 }
90 ### Topic -author word counts
91 C_ta = matrix(0,nT ,D)
92 C_ta = matrix(table(data.table(cbind(unlist(z_s),unlist(A_s)))),nT ,D)
93 ### Terms -topics counts
94 C_wt = matrix(0,W,nT)
95 rows = as.numeric(unlist(labels(table(unlist(w))))) # account for all -

0 rows in C_wt
96 sel_cols = as.numeric(unlist(labels(table(unlist(z_w)))))
97 wtmp <- unlist(w)[unlist(tau)]
98 C_wt[rows ,sel_cols] = table(data.table(cbind(unlist(w),unlist(z_w))))
99

100 ## Term -Nontopic
101 C_w0 = matrix(0,W,1)
102 rows = as.numeric(unlist(labels(table(unlist(w)[unlist(tau) == 0]))))
103 C_w0[rows ,] = table(data.table(unlist(w)[unlist(tau)==0]))
104
105 ## epsilon , sometimes needed to avoid log of zero
106 eps = 1e-128
107
108 ### generate starting values
109 theta = matrix(NA,nT,D)
110 for(d in 1:D){theta[,d] = MCMCpack :: rdirichlet(1,C_ta[,d] + alpha)}
111
112 phi = matrix(NA ,W,nT)
113 for(t in 1:nT){phi[,t] = MCMCpack :: rdirichlet(1,C_wt[,t]+beta.phi)}
114 # for(t in 1:nT){phi[,t] = MCMCpack :: rdirichlet(1,beta.phi)}
115
116 psi = matrix(NA ,W,1)
117 psi[,1] = MCMCpack :: rdirichlet(1,C_w0+beta.psi)
118
119 #### Data Infrastructure ####
120 zdraw <- list()
121 taudraw <- list()
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122
123 Theta_draw <- list()
124 Phi_draw <- list()
125 Psi_draw <- list()
126
127 naccept_theta = 0
128 deltadraw <- rep(NA ,R)
129
130 # MCMC Sampling
131 itime = proc.time()[3]
132 ################### progress bar #####
133 pb <- progress_bar$new(
134 format = " Fitting SC-Ubi: [:bar] :percent eta: :eta (:tick_rate)",
135 total = R, clear = FALSE , width= 90)
136
137 for (r in 1:R){
138 ##################### Draw of Tau ################
139 ## draw of tau (integrated over z to avoid "empty" sentences)
140 for(i in 1:D){
141 for(s in 1:N_s[[i]]){
142 w.s = w[[i]][[s]]
143 for(ww in 1:length(w.s)){
144 # draw tau sentence -wise
145 p.tau.1 <- phi[w.s[ww],z_s[[i]][[s]]] * delta
146 p.tau.0 <- psi[w.s[ww],] * (1-delta)
147 p.tau <- p.tau.1 / (p.tau.1 + p.tau.0)
148 tau[[i]][[s]][ww] <- rbinom(1,1,p.tau)
149 if(any(is.na(tau[[i]][[s]]))) stop("tau NA")
150 }
151 } # sentence loop
152 } # document loop
153 ## draw of z conditional on theta_d
154 for(i in 1:D){
155 for(s in 1:length(w[[i]])){
156 if(length(w[[i]][[s]][tau[[i]][[s]]==1])==1){ # sentence has 1

topic word
157 p.z = phi[w[[i]][[s]][tau[[i]][[s]]==1],] * theta[,i]
158 z_s[[i]][[s]] = which.max(rmultinom(1,1,p.z))
159 }
160 if(length(w[[i]][[s]][tau[[i]][[s]]==1])>1){ # sentence has

several topic words
161 p.z = apply(phi[w[[i]][[s]][ tau[[i]][[s]]==1],],2,prod)*theta

[,i]
162 if(sum(p.z) == 0){
163 p.z = (apply(phi[w[[i]][[s]][tau[[i]][[s]]==1],],2,prod) +

eps)*(theta[,i] + eps)
164 }
165 z_s[[i]][[s]] = which.max(rmultinom(1,1,p.z))
166 }
167 if(length(w[[i]][[s]][tau[[i]][[s]]==1])==0){ # sentence has no

topic words
168 ### draw from prior
169 z_s[[i]][[s]] = which.max(rmultinom(1,1,theta[,i]))
170 }
171 } # sentence loop
172 } # document loop
173
174 ## update delta (prior to tau)
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175 taucounts = table(unlist(tau))
176 tau1 <- taucounts["1"]
177 tau0 <- taucounts["0"]
178 tau1 <- ifelse(is.na(tau1),0, tau1)
179 tau0 <- ifelse(is.na(tau0),0, tau0)
180
181 delta = rbeta(1,tau1+gamma[1],tau0+gamma[2])
182
183 # # expand topic assigment to word level , no topic for non -topic

words ("NA")
184 z_w <- lapply(1:N, function(i){
185 zw <- rep(z_s[[i]], N_w[[i]])
186 zw[unlist(tau[[i]]) == 0] <- NA
187 return(zw)
188 })
189
190 ## Update Count Matrices
191 ### Topic -author word counts
192 C_ta = matrix(0,nT,D)
193 C_ta = matrix(table(data.table(cbind(unlist(z_s),unlist(A_s)))),nT ,D

)
194
195 ### Terms -topics counts
196 C_wt = matrix(0,W,nT)
197 rows = as.numeric(unlist(labels(table(unlist(w))))) # account for

all -0 rows in C_wt
198 sel_cols <- as.numeric(unlist(labels(table(unlist(z_w)))))
199 C_wt[rows ,sel_cols] = table(data.table(cbind(unlist(w),unlist(z_w)))

)
200 ## Term -Nontopic
201 C_w0 = matrix(0,W,1)
202 rows = as.numeric(unlist(labels(table(unlist(w)[unlist(tau) == 0])))

)
203 C_w0[rows ,] = table(data.table(unlist(w)[unlist(tau)==0]))
204
205 theta = matrix(NA,nT ,D)
206 for(d in 1:D){theta[,d] = MCMCpack :: rdirichlet(1,C_ta[,d] + alpha)}
207
208 phi = matrix(NA ,W,nT)
209 for(t in 1:nT){phi[,t] = MCMCpack :: rdirichlet(1,C_wt[,t]+beta.phi)}
210
211 psi = matrix(NA ,W,1)
212 psi[,1] = MCMCpack :: rdirichlet(1,C_w0+beta.psi)
213
214 ####### store parameters
215 if(r <= LISTLENGTH){
216 Theta_draw[[r]] <- theta
217 Phi_draw[[r]] <- phi
218 Psi_draw[[r]] <- psi
219 } else {
220 Theta_draw[[1]] <- NULL
221 Phi_draw[[1]] <- NULL
222 Psi_draw[[1]] <- NULL
223 Theta_draw[[ LISTLENGTH ]] <- theta
224 Phi_draw[[ LISTLENGTH ]] <- phi
225 Psi_draw[[ LISTLENGTH ]] <- psi
226 }
227
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228 ## zdraw only save "ZLLENGTH" iterations
229 if(r <= ZLLENGTH){
230 taudraw [[r]] <- tau
231 zdraw[[r]] <- z_w
232 } else {
233 zdraw[[1]] <- NULL
234 taudraw [[1]] <- NULL
235 zdraw[[ ZLLENGTH ]] <- z_w
236 taudraw [[ ZLLENGTH ]] <- tau
237 }
238 deltadraw[r] <- delta
239
240 pb$tick()
241 } # END R Loop
242 cat("Finished Ubi -SCLDA with", nT, "Topcis and", R, "reps.\n")
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