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Abstract 

Reinforcement learning constitutes a valuable framework for reward-based decision 

making in humans, as it breaks down learning into a few computational steps. These 

computations are embedded in a task representation that links together stimuli, actions, and 

outcomes, and an internal model that derives contingencies from explicit knowledge. 

Although research on reinforcement learning has already greatly advanced our insights into 

the brain, there remain many open questions regarding the interaction between reinforcement 

learning, task representations, and internal models. Through the combination of computational 

modelling, experimental manipulation, and electrophysiological recording, the three studies of 

this thesis aim to elucidate how task representations and internal models are shaped and how 

they affect reinforcement learning. In Study 1, the manipulation of action-outcome 

contingencies in a simple one-stage decision task allowed to investigate the impact of explicit 

knowledge about task learnability on reinforcement learning. The results highlight the flexible 

adjustment of internal models and the suppression of central computations of reinforcement 

learning when a task is represented as not learnable. Using a similar manipulation, Study 2 

investigates how this influence of explicit knowledge on reinforcement learning holds under 

the increasing complexity of a two-stage environment. Again, pronounced neural differences 

between task conditions indicate separable computations of reinforcement learning and, more 

importantly, the selective influence of explicit knowledge and internal models on 

reinforcement learning. Study 3 uses a novel task design which necessitates inference about 

plausible action-outcome mappings, and thus, credit assignment. The findings suggest that 

multiple task representations are neurally conceptualized and compete for action selection, 

thereby solving the structural credit assignment problem. In sum, the studies of this thesis 

highlight the importance of reinforcement learning as a central biological principle and draw 

attention to the necessity of flexible interactions between reinforcement learning, task 

representations, and internal models to cope with the varying demands from the environment. 
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Introduction 

Introduction 

If scientific inquiry has taught us one thing, it is that the world and its mechanisms are 

highly complex and almost always more complicated than we initially considered. Examples 

for this escalating complexity are ubiquitous across multiple domains, from theoretical 

physics to economics. Thinking about complex systems quickly leads to the generation of 

models which reduce the complexity and abstract away unnecessary detail. While this 

statement is true for almost every field of science, in cognitive neuroscience, where the object 

of investigation is the human brain, the word “model” applies in a twofold meaning. Since the 

cognitive revolution in the 1950’s (Miller, 2003), one of the most prevailing and arguably 

most fruitful theories describes the mind as an information processing system (A. Newell & 

Simon, 1972; Norman, 1976; Simon, 1978). The simplifying idea behind this concept is that 

the brain, similar, for example, to a computer or a calculator, takes a certain input and 

formulates a certain output based on some internal computation. The field of computational 

cognitive neuroscience is specifically puzzled with the question on the qualitative and 

quantitative computations of the brain and seeks to find a formalization thereof (Kriegeskorte 

& Douglas, 2018). One of the currently most prominent theories, that allows such a input-

output formalization for the brain, is reinforcement learning, as it quantitively conceptualizes 

the brain as an agent which performs actions based on past experience to maximize future 

reward (Dayan & Niv, 2008; Niv, 2009; Niv & Langdon, 2016; Sutton & Barto, 2018). This 

is the first meaning of the word “model” which I call a computational model and which 

cognitive neuroscience shares with other fields of research. The central aspect of a 

computational model is that the scientist formulates hypotheses about its object of inquiry. 

However, based on the Helmholtzian perceptive (Dayan, Hinton, Neal, & Zemel, 1995; von 

Helmholtz, 1909), the brain as the object of neuroscientific inquiry is regarded as a model or 

hypothesis generator itself and its main function is to make inference about the probable 

causes of its inputs. This resulting model or hypothesis is the second meaning of the word 
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“model” which I call an internal model, and which is unique to cognitive neuroscience (and 

arguably psychology). The central aspect of an internal model is that the human brain as the 

object of investigation formulates hypotheses about its own object of investigation. 

The following empirical studies operate at the cross-section between both 

computational and internal models. My goal is to advance our insights on how the internal 

model (and the representation of the environment) can be accounted for by computational 

models of reinforcement learning. In this endeavor I carried out a series of three studies in 

which human participants performed sequential decisions to obtain reward. As a central 

manipulation in all three experiments the task complexity emphasized the requirement of a 

flexible representation of the task structure. First, I ask, how explicit knowledge about the 

causal structure of the environment manifests on the neural level and how different internal 

models impact on reinforcement learning during feedback processing. Second, I ask how this 

influence of the internal model on reinforcement learning changes as a function of task 

complexity. Third, I ask, how the experience can be used for inference and the arbitration 

between different plausible representations of the causal structure in the environment. I 

attempt to contribute to answering these questions through the application of experimental 

manipulation, analysis of electrophysiological data (EEG) and the implementation of 

computational models. In combination, these methods allow to draw a detailed picture of the 

human brain as a complex but efficient reinforcement learning agent which uses 

representations of the environment to infer inputs and maximize outputs. 

A computational model of reinforcement learning  

Models of reinforcement learning constitutes a well-defined set of algorithms that 

formalizes in a normative way how an agent learns to choose between different actions in 

order to maximize rewards and minimize punishment (Sutton & Barto, 2018). In the scope of 
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my study, reinforcement learning poses the central framework for the investigation of 

decision making in the human brain.  

The fundamental appeal of reinforcement learning arises from its ability to solve 

decision and learning problems using a simple and straightforward computational 

methodology. By breaking down complex problems into a few central concepts and ideas, 

computational models of reinforcement learning achieve great precision in finding close to 

optimal solutions. At its core, the idea behind reinforcement learning is that learning about 

what to do derives from interaction with the environment (Sutton & Barto, 2018). In a 

formalized way, this interaction follows the notation: The agent finds itself in a specific state 

(s) and takes a particular action (a). He subsequently observes an outcome (r) based on the 

previous action and finds himself in a new state which again might require another action 

leading to a new outcome and so forth. Consider, for example, a thirsty agent. In this state it 

can take different actions, such as eating, drinking or continue reading. The agent decides to 

eat something, but as you can imagine, the outcome is not as rewarding as expected, leaving 

the agent in a state of thirst (although maybe not hungry anymore) until it decides to take the 

action of drinking something. What the agent may have learned in this situation, is that only 

drinking in contrast to eating leads to the desired outcome that is moving away from a state of 

thirst. Therefore, if it ever experiences thirst again it may take the drinking action first.  

In an experimental setup, similar reward-based decision problems are usually studied 

in the so-called bandit task, drawing on its analogy to a slot machine or one-armed bandit. 

Bandit problems have been extensively studied in machine learning (Berry & Fristedt, 1986; 

Kaelbling, Littman, & Moore, 1996; Macready & Wolpert, 1998; Sutton & Barto, 2018) and 

cognitive science (J. D. Cohen, McClure, & Yu, 2007; Daw, O’Doherty, Dayan, Seymour, & 

Dolan, 2006; Frank, Seeberger, & O’Reilly, 2004), as they offer a simplified and controllable 

environment for the investigation of decision making. On each trial of the task an agent is 

faced with a decision between multiple alternative actions, each of which is associated with an 
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outcome drawn from a fixed but initially unknown probability distribution. Usually the 

outcome consists of some form of monetary payoff motivating agents to choose actions which 

maximize the total payoff over a sequence of trials. While multiple computational models for 

optimal reward-based decision-making have been proposed for solving the bandit task (Lee, 

Zhang, Munro, & Steyvers, 2011; Steyvers, Lee, & Wagenmakers, 2009), I focus on the 

reinforcement learning model, as it is most relevant in the scope of this thesis.  

First, I will take a closer look at the underlying mathematical computations and latent 

variables of reinforcement learning that allow an agent to maximize payoff by connecting the 

ideas about states, actions and outcomes encountered previously. I illustrate how the central 

latent variables of reinforcement are calculated using the bandit problem as introduced above. 

Based on the contingencies of the task, each action in the bandit task is followed by an 

outcome with a specific value. It is this value that action selection should have been based on. 

If an agent were informed on the values associated with his actions prior to taking the actions, 

solving the bandit task would be trivial: always (greedily) selecting the action with the highest 

value maximizes the total payoff. Although some studies provided participants with the exact 

action values (e.g. Li, Delgado, & Phelps, 2011; Walsh & Anderson, 2011), action selection 

can usually only be based on an estimated value of an action a in the given state s, denoted as 

Q(s,a). The goal of reinforcement learning is to optimize action selection by bringing the 

estimated value of an action as close to the exact (i.e., to be obtained) value of that action as 

possible. It does so by utilizing two simple yet powerful calculation steps. First, after 

observing the action-dependent outcome, reinforcement learning calculates the prediction 

error δ1 following the equation 

 
1 Technically, the term “temporal difference error”, originally proposed by Sutton and Barto (2018) as an 

extension of the “prediction error” proposed in the Rescorla-Wagner model (Rescorla & Wagner, 1972) would 

be correct. Besides the difference between the observed and expected value of an action, the temporal difference 

error also incorporates the summed expected rewards for all states observed in the future. However, this term is 

mostly dropped in the neuroscientific literature. See Sutton & Barto (2018) for further reading and the formal 

notation. 
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𝛿(t) = [𝑟(t) − 𝑄(a, s, t)], (1) 

where r(t) denotes the observed outcome received in that trial and Q(a,s,t) the 

expected value of the chosen action in a specific state. In the second step, this prediction error 

is then used to update the action values according to the equation 

𝑄(𝑎, 𝑠, 𝑡 + 1) =  𝑄(𝑎, 𝑠, 𝑡) +  𝛼 ∗  𝛿(𝑡), (2) 

where 𝛼 is the learning rate, which controls for the speed of updating of new 

information incorporated in the prediction error. Calculating these steps incrementally, that is 

again for every trial of the bandit task, leads to an approximation of the exact values of the 

different actions. Action selection on the next trial is then determined by transferring the 

updated action values into action probabilities using the softmax function 

𝑃(𝑎𝑡 = 𝑎 | 𝑠) =  
𝑒𝑥𝑝 (𝛽 ∗  𝑄(𝑎, 𝑠, 𝑡))

∑ 𝑒𝑥𝑝 (𝛽 ∗  𝑄(𝑎′, 𝑠, 𝑡)𝑎′ )
, 

(3) 

where the inverse temperature 𝛽 guides the stochasticity of the choices. Put simply, 

the softmax function is a normalizing procedure, which determines how strongly the 

differences in action values are translated into action probabilities. Taken together, the 

calculation of a prediction error, updating of the expected action value, and action selection 

are the computational basis for reinforcement learning and in the long run this three-step 

procedure guarantees close to optimal decision making which maximizes mean payoffs for an 

agent. 

Historically, the computational model of reinforcement learning is preceded by a 

wealth of animal studies investigating trial and error learning (Sutton & Barto, 2018). Already 

in 1898, Edward Thorndike noted the impact of reward on subsequent behavior. In his 

experiments, cats were placed in puzzle boxes and food was presented outside of the boxes. 

The boxes contained a setup of different levers and strings, which, when activated in the 

correct order, released the cat, and allowed access to the food. Thorndike observed that his 

subjects not only were able to escape from the boxes but also became progressively faster. 
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Derived from this observation he introduced the “Law of Effect”. The law of effect states that 

“the greater the satisfaction or discomfort, the greater the strengthening or weakening of the 

bond” (Thorndike, 1911, p.244). “Bond” in his words referred to the link or association 

between a state of the environment and an action of the agents. In other words, action values 

and action probabilities increase if an action is followed by a reward but decrease after a loss. 

Although the law of effect is devoid of a mathematical formalization, it is almost synonymous 

with reinforcement learning. However, Thorndike was not the only to notice the connection 

between reward or punishment and subsequent decision making. In the 1927 translation of the 

work done by the now famous Russian physiologist Ivan Pavlov in the late 19th century, the 

term “reinforcement” was introduced to describe the strengthening of a behavioral pattern 

which resulted from the delivery of a rewarding stimulus, i.e., a reinforcer. Crucially, Pavlov 

noted that given an appropriate temporal relationship between a rewarding stimulus and 

another stimulus or even an action so-called “conditioned reflexes” emerge. While studying 

the digestive system in dogs, he observed that innate responses (reflexes) to specific 

triggering stimuli can also be elicited by other, quite unrelated stimuli if they were paired with 

the initial triggering stimulus. More explicitly, in his experiment dogs did start salivating 

shortly after being presented with food. However, after several repetitions of pairing the 

saliva-eliciting food with the sound of a metronome, his test subjects already began salivating 

when only the sound of the metronome was presented. Establishing such novel connections is 

now called Pavlovian or classical conditioning. In contrast to Pavlov’s classical conditioning, 

which emphasized the association between conditional and unconditional stimuli (sound and 

food), work in line with Thorndike’s law of effect emphasized that learning depends on the 

consequences of subsequent behavior and was called instrumental or operant conditioning. 

Please note, however, that both forms can be subsumed under der framework of temporal-

difference learning, as described in more detail elsewhere (Sutton & Barto, 2018). Central to 

reinforcement learning is the agent’s ability to learn a prediction of the environment and to 
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adapt behavior in anticipation of an expected outcome. This could either be the prediction of a 

stimulus or state signaling subsequent outcomes (classical conditioning) or that of an action 

leading to an outcome (instrumental conditioning). 

The neural correlates of reinforcement learning  

Early research on conditioning in animals was exclusively based on behavioral 

measures (e.g. response rates and reaction times). However, a new era of reinforcement 

learning started in the late 20th century as evidence accumulated that the latent variables of 

reinforcement learning (i.e. prediction errors and action values) manifest on the neural level 

(for a recent review see Schultz, 2016). While studying the relationship between the 

neurotransmitter dopamine and muscle activity in monkeys, it was discovered that phasic 

bursts of dopamine initially associated with the delivery of a specific stimulus (in this case a 

rewarding stimulus, i.e. food) shifted in time over the course of the training procedure (Romo 

& Schultz, 1990; Schultz & Romo, 1992). As with the shift of the salivation onset for 

Pavlov’s dogs from food delivery to the predictive sound of the metronome, the observed 

pattern of neural firing revealed classical conditioning. This finding paved the way for the still 

influential hypothesis, that reward prediction errors are reflected in the neural activity of 

dopamine neurons (Montague, Dayan, & Sejnowski, 1996; for reviews see Glimcher, 2011; 

Schultz, 2016). This theory proposes that phasic dopamine activity from neurons in the 

ventral tegmental area (VTA) and the substantia nigra (SNpc), which are the main sources of 

dopamine in the mammalian brain, act as a teaching signal for target areas, which receive 

projections from these midbrain structures. Crucially, dopamine was hypothesized to reflect a 

reward prediction error, i.e., the difference between an expected and an observed outcome, 

thereby carrying information as provided by a reinforcement learning agent. While it was 

known at that time, that dopamine is associated with reward (Olds & Milner, 1954), the link 
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to formalized reinforcement learning, as developed in the growing field of machine learning, 

was astonishing. In line with their prediction, Schultz and colleagues found strong 

resemblance when comparing the prediction errors of a reinforcement learning model of 

classical conditioning with the phasic activity of dopamine neurons: A negative prediction 

error was mirrored by a decrease in phasic dopamine activity and a positive prediction error 

was mirrored by an increase in phasic dopamine activity (Montague et al., 1996; Schultz, 

Dayan, & Montague, 1997). Since these pioneer studies, the characteristic signatures of 

prediction errors in phasic dopaminergic responses have been replicated in many different 

settings (e.g. Bayer & Glimcher, 2005; Hollerman & Schultz, 1998; Takikawa, Kawagoe, & 

Hikosaka, 2004; Tobler, Dickinson, & Schultz, 2003) and the quantitative implications of the 

prediction error hypothesis, which lie deep within the theoretical foundations of reinforcement 

learning, have been reliably found to be reflected in dopamine responses (e.g. Bayer, Lau, & 

Glimcher, 2007; Fiorillo, Tobler, & Schultz, 2003; Roesch, Calu, & Schoenbaum, 2007; for a 

review, see Niv, 2009).  

However, these studies almost exclusively relied on intracranial methods in animals. 

While these methods allow for both a good temporal and spatial resolution, they are highly 

invasive. Although conditioning in humans and animals can be regarded as similar (Niv, 

2009), the goal for many researchers is to give a comprehensive account of human decision 

making. The most prominent technique for studying reinforcement learning in the human 

brain is functional magnetic resonance imaging (fMRI), as it allows to scan the brain in a non-

invasive way. Key advantage of this method is that it is particularly suited to identify spatial 

patterns of brain activations. Besides a low signal-to-noise ratio and a poor temporal 

resolution, the major disadvantage of fMRI is its challenge for statistical analyses of the 

extensive data (Gazzaniga, Ivry, & Mangun, 2014). Crucially, computational models are able 

to counteract this problem as they allow to search for latent variables which gave rise to the 

observed data. More specifically, the precise quantification of prediction errors and action 
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values within models of reinforcement learning enable to track the associated processes in the 

brain. This is achieved by searching for the dynamics of the latent variables in the brain data 

and identifying significant clusters of overlapping patterns between the model and the data 

(for a review of this method see Gläscher & O’Doherty, 2010). While early fMRI studies did 

not exploit the advantages of the analyses described above (Berns, McClure, Pagnoni, & 

Montague, 2001; Knutson, Adams, Fong, & Hommer, 2001; Pagnoni, Zink, Montague, & 

Berns, 2002), latent-variables analyses have become an indispensable tool for research on the 

connection between reinforcement learning and human brain activity. For example, in a 

seminal study latent-variable analyses revealed that prediction errors signals are dissociated 

between the dorsal and ventral striatum dependent on whether the task involved active 

decision making (instrumental conditioning) or not (Pavlovian conditioning) (O’Doherty et 

al., 2004). Finding these significant correlations not only supports the computational model 

used for the generation of the predictions but also greatly advances our knowledge about the 

architectural structure of the brain. However, one has to keep in mind, that the origin of blood 

oxygen level dependent (BOLD) response, which is quantified in fMRI studies, is still far 

from being fully understood (Turner, 2016). Therefore, the application of multiple different 

measures is advisable (O’Doherty, Hampton, & Kim, 2007).  

Another technique which is extensively used for studying reinforcement learning in 

the human brain is EEG. In contrast to fMRI, EEG provides a good means to identify and 

separate the temporal patterns underlying the diverse cognitive processes in the brain. 

Unsurprisingly, there exists a wealth of EEG studies that investigates the brain activity 

associated with reinforcement learning. The two components of the human event-related 

potential (ERP) most strongly associated with processing of outcome and reward are the 

feedback-related negativity (FRN; for reviews see San Martín, 2012; Walsh & Anderson, 

2012; Sambrook & Goslin, 2015; Proudfit, 2015; Holroyd & Umemoto, 2016; Krigolson, 
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2017; Cockburn & Holroyd, 2018) and the P3 (for reviews see Polich, 2007, 2020; San 

Martín, 2012).  

The FRN occurs at frontocentral electrode sites around 250 ms after the presentation 

of feedback and manifests as a strong negative deflection following losses compared to wins. 

It was first reported in a task in which participants received visual feedback about the 

correctness of a time estimation (Miltner, Braun, & Coles, 1997), but has since been 

replicated in multiple experimental settings. It is reportedly modulated by multiple outcome 

dimensions, such as valence, reward magnitude, and probability (for a review and discussion 

of inconsistent findings, see San Martín, 2012; Walsh & Anderson, 2012). Most importantly, 

this component has been claimed to reflect a reward prediction error as calculated by a 

temporal difference reinforcement learning algorithm (Holroyd & Coles, 2002). Although this 

claim has been investigated in many studies, most of these studies lack the powerful latent-

variable analyses approach described for the fMRI research in reinforcement learning. 

However, a meta-analysis revealed that this claim is consistent with the data and the FRN 

reflects a reward prediction error (Sambrook & Goslin, 2015). Recent evidence from studies 

which harness the advantages of computational modelling via latent-variable analyses further 

supports this idea (e.g. Chase, Swainson, Durham, Benham, & Cools, 2011; Walsh & 

Anderson, 2011; Sambrook, Hardwick, Wills, & Goslin, 2018).  

In short temporal succession to the FRN, the P3 occurs at posterior electrode sites 

around 300-600 ms after the presentation of the outcome. The P3 has been extensively 

investigated using the so-called “oddball” paradigm (e.g. Duncan-Johnson & Donchin, 1977; 

Pritchard, 1981), in which a low-frequency target stimulus (i.e., the oddball) is merged into a 

stream of high-frequency but non-target stimuli. Similar to the FRN, the P3 is also implicated 

to be modulated by distinct outcome dimensions, such as valence, magnitude, probability and 

need for behavioral adaptation (for a review and discussion, see San Martín, 2012). However, 

in contrast to the FRN which is suggested to foremost reflect a first evaluation of primary 
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outcome attributes (e.g. win vs. loss), the P3 is suggested to reflect a more in-depth evaluation 

of secondary attributes (e.g. magnitude or probability) (Bernat, Nelson, & Baskin-Sommers, 

2015; Cavanagh, 2015; Hajcak, Moser, Holroyd, & Simons, 2006; Nieuwenhuis, Holroyd, 

Mol, & Coles, 2004). Besides the obvious connection to measures of surprise (Kolossa, 

Fingscheidt, Wessel, & Kopp, 2012; Kolossa, Kopp, & Fingscheidt, 2015; Kopp et al., 2016; 

Mars et al., 2008; Seer, Lange, Boos, Dengler, & Kopp, 2016), the P3 has also been 

implicated in reflecting learning (Fischer & Ullsperger, 2013). Crucially, this link even holds 

after controlling for surprise (Jepma et al., 2018, 2016; Nassar, Bruckner, & Frank, 2019).  

Taken together, the FRN and P3 have been suggested to reflect distinct processes of 

feedback processing. For the scope of this thesis, this distinction is of special interest 

regarding reinforcement learning where the FRN is suggested to reflect a reward prediction 

error (Holroyd & Coles, 2002; Sambrook & Goslin, 2015), whereas the P3 seems to reflect 

the value of actions (Fischer & Ullsperger, 2013).  

The credit assignment problem 

The idea that the brain acts in accordance with reinforcement learning principles is 

supported by the findings from different lines of research and the hypothesis that phasic 

dopamine reflects reward prediction errors is broadly accepted. Yet, this picture is overly 

optimistic. For example, the observable structure of the extensively studied two-armed bandit 

task, where one action is followed by one outcome, implies a parsimonious and simple 

representation of the central contingency between the input (i.e. states and outcomes) as well 

as the possible outputs (i.e. actions) for the agent. Although such a reductionist approach 

allows for a precise investigation of decision making in the laboratory, the bandit task (as do 

most experimental setups) lacks ecological validity. Hence the generalization of findings from 
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simple computational models to account for decision making in naturalistic settings can be 

biased (Nassar & Frank, 2016). Equivalent limitations of the action and outcome space as in  

the bandit task are only rarely found in naturalistic settings, where a vast amount of actions 

can be made, and where rewards are often delayed in time. While the biological agents (e.g., 

animals and humans) perform well in naturalistic environments, artificial agents (e.g., a 

computational model of reinforcement learning) quickly break down and fail to work 

efficiently when faced with complex environments. This conundrum has been termed the 

“curse of dimensionality” (Bellman, 1957) because the number of parameters that must be 

represented and learned grows exponentially with the size of the task structure. This challenge 

resonates well with what has been introduced as the so-called “credit assignment problem” 

(Minsky, 1961). The credit assignment problem asks how agents assign credit for a reward to 

the several actions which may have been involved in producing it, or, put differently, how 

agents form a representation of the causal structure between actions and outcomes. More 

specifically, the credit assignment problem can be subdivided into a temporal and a structural 

aspect. 

Already the early researchers on classical and instrumental conditioning were aware of 

the temporal aspect of the credit assignment problem. Stimuli or actions in the past must 

receive credit or blame for the following consequences and therefore the formation of a 

predictive association required some sort of backward effect, sometimes called “spread of 

effect” (Thorndike, 1933). On the mathematical level, this backward effect of reinforcement 

learning is implemented in the updating of the expected action value using the prediction error 

(Equation 2). Already Pavlov (1927) pointed out that the existence of transient traces in the 

nervous system should allow learning (or conditioning) and this idea was incorporated in 

Hull’s influential learning theory to account for a variety of findings on instrumental 

conditioning (Hull, 1932, 1942). It was proposed that stimulus traces can bridge the gap in 

time between actions and consequent reward, making the action eligible for modification thus 
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allowing the updating of its action value. Although highly speculative at this time, the idea of 

eligibility traces for solving the temporal credit assignment problem was quickly incorporated 

as a basic mechanism in the computational model of reinforcement learning (Sutton & Barto, 

2018) and has received ample evidence as a biological plausible mechanism (Roelfsema & 

Holtmaat, 2018). Learning with eligibility traces is highly efficient even in complex 

environments because the backward effect of prediction errors is enhanced which 

subsequently increases the update of action values thus speeding up learning.  

In addition, the credit assignment problem also has a strong structural component. 

Besides the need for bridging the time gap between an action and an outcome, agents are 

often required to identify the relevant elements of the task but ignore irrelevant elements (i.e., 

stimuli, actions, outcomes). An important role for the solution of this structural credit 

assignment problem is attributed to the prefrontal cortex (Asaad, Lauro, Perge, & Eskandar, 

2017; Jocham et al., 2016; Noonan, Chau, Rushworth, & Fellows, 2017; Noonan et al., 2010). 

For example, Noonan and colleagues (2010) showed that the orbitofrontal cortex (OFC), a 

region strongly implicated in reward-based learning and decision making (FitzGerald, 

Seymour, & Dolan, 2009; Price, 2007), was causally involved in structural credit assignment. 

In their study, monkeys were trained to perform a bandit task, that on every trial required a 

decision between different actions followed by an outcome. In comparison to healthy 

monkeys, animals with OFC lesions were no longer able to learn the contingencies between 

actions and outcomes. The law of effect was apparently no longer effective as the lesioned 

monkeys lacked the ability to perform actions that maximize outcome. Interestingly, the 

backward-effect of reinforcement learning still was effective but apparently spilled across the 

trial structure, so that previous actions irrelevant for the present outcome were assigned credit 

and hence were updated. This suggests that while the structural credit assignment could not be 

solved, temporal credit assignment was still intact. In a recent study by the same group, these 

findings were extended to human subjects (Noonan et al., 2017). Again, only humans with 
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OFC lesions had difficulties in learning the representation of the simple bandit task. Although 

it has been proposed that dynamic interactions between the subregions of the PFC support 

structural credit assignment (Stolyarova, 2018) the underlying computational model and 

algorithm is still a matter of debate.  

In conclusion, reinforcement learning is a powerful computational framework for 

understanding decision making. However, in complex environments, the credit assignment 

problem arises because of the temporal delays and structural ambiguities between actions and 

outcomes. Solving this temporal and structural credit assignment problem is essential for 

reinforcement learning agents in order to optimize decision making. Although computational 

and biologically plausible solutions have been postulated for the temporal credit assignment 

problem, the exact implementation of its structural counterpart within the brain is still being 

discussed. 

Multiple systems of reinforcement learning 

So far, I have argued that the brain can be regarded as an agent which bases decision 

making on the reinforcement learning principle to maximize reward and minimize punishment 

in a given task. However, in contrast to animals and humans, the computational model of 

reinforcement learning quickly runs into credit assignment problems when faced with 

ambiguous or complex task structures. Moreover, it has been assumed that humans and 

animals possess multiple parallel reinforcement learning systems that compete for action 

selection (Daw, Niv, & Dayan, 2005; Dickinson & Balleine, 2002).  

For example, a common taxonomy of instrumental behavior, i.e., behavior that is 

shaped by the law of effect, distinguishes between goal-directed and habitual learning 

(Balleine & Dickinson, 1998; Dickinson & Balleine, 1995, 2002; Graybiel, 2008). Following 

this distinction, habitual behavior is acquired by repeatedly performing an action in a given 
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context (i.e. stimulus-response learning), whereas goal-directed behavior is acquired by 

performing an action to obtain an outcome (i.e. response-outcome learning). Formally, 

instrumental behavior is considered to be goal-directed if it meets two criteria (Dolan & 

Dayan, 2013). First, behavior must reflect knowledge about the link between cause and effect. 

Second, the outcome should be motivationally significant, that is attractive or worthwhile 

during action selection. In contrast, habitual behavior is hypothesized to be merely “stamped 

in” by the history of past reinforcement, disconnecting it from the current value of an action. 

Experimentally, the dichotomy between goal-directed and habitual behavior is usually 

demonstrated using a devaluation procedure. After learning of an action-outcome association 

(e.g. which arm is better in a bandit task), the outcome is devaluated, that is its delivery has no 

more rewarding property (i.e. satiety after food). Under goal-directed control, an agent should 

quickly cease to act in accordance with the previously learned action-outcome association, 

showing that behavior is governed by a representation of the outcome (Adams & Dickinson, 

1981; Gillan, Otto, Phelps, & Daw, 2015). Under habitual control, an agent should continue to 

act as usual, even when the outcome is undesirable. Interestingly, behavior can be regarded as 

a mixture of both modes of control with multiple contextual and intraindividual variables such 

as duration of training, task complexity, working memory capacity and working memory load 

(Adams, 1982; Kool, Gershman, & Cushman, 2017, 2018; Otto, Gershman, Markman, & 

Daw, 2013; Otto, Raio, Chiang, Phelps, & Daw, 2013) affecting the trade-off between them. 

Furthermore, lesion studies in rats implicate that both systems are dependent on distinct 

neural networks in the brain, including various parts of the frontal cortex and striatum (for a 

review see Daw & O’Doherty, 2014). However, findings in healthy animals support the idea 

of a dynamic interaction and dependency between both modes of control (Wassum, Cely, 

Maidment, & Balleine, 2009).  

Already in 1948, Edward Tolman argued, that the law of effect (i.e. the acquisition of 

instrumental behavior) is insufficient to account for all forms of mammalian learning. 



16 

 

Introduction 

Evidence for this statement was drawn from latent learning experiments which asked if 

learning is possible even in the absence of reward. In the earliest version of this experiment 

(Blodgett, 1929), two groups of rats were placed in a labyrinth. On the one hand, the reward 

group ran the maze and always found a desirable outcome at a goal position. On the other 

hand, the no-reward group initially ran the maze without such an outcome. As expected, the 

rats in the reward group showed learning, as indicated by their increasing performance over 

time. Crucially, while the rats in the no-reward group did not show any signs of instrumental 

behavior during the initial unrewarded phase, they quickly caught up with the performance in 

the reward group, when an outcome was suddenly introduced at the goal position. This 

demonstrated that the rats in the no-reward group acquired knowledge about the structure of 

the maze, which later facilitated learning when the reward was introduced. In conclusion, it 

was assumed that the experimental setup unmasked the existence of latent learning (Blodgett, 

1929). In his now classic work, Tolman argued that this and similar findings propagate the 

existence of so-called cognitive maps, i.e., mental representations of the environment in 

which the agent operates (Tolman, 1948). The idea of cognitive maps has strongly influenced 

the field of cognitive neuroscience (Dolan & Dayan, 2013). A central brain structure which 

supports the notion of cognitive maps quite literally is the hippocampus. Most famously, the 

hippocampus was found to consist of so-called place cells, which provide a neural 

representation of the rat’s environment (O’Keefe & Nadel, 1978) and seem to be activated 

according to an internal exploration or planning in the future (Johnson & Redish, 2007; 

Pfeiffer & Foster, 2013; van der Meer & Redish, 2009). Besides hippocampal areas, multiple 

other areas such as the prefrontal cortex, the amygdala and the dorsomedial striatum have 

been implicated in the representation of cognitive maps (Balleine, 2005; Balleine & 

Dickinson, 1998; Corbit & Balleine, 2003; Yin, Ostlund, Knowlton, & Balleine, 2005). 

Crucially, the notion of cognitive maps also had strong implications on the study of 

reinforcement learning in the brain, leading to the distinction between model-free and model-
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based reinforcement learning. On the one hand, model-free reinforcement learning is solely 

driven by reward and prediction errors to estimate the contingencies in the world. Most of the 

literature and research reported so far deal with this aspect of reinforcement learning. On the 

other hand, model-based reinforcement learning additionally bases decision making on an 

internal model of the world which (pre)assigns contingencies between states, actions, and 

outcomes. Model-free and model-based behavior can be functionally characterized in a 

mutually exclusive way. On the one hand, model-free behavior is supposed to be automatic, 

computationally efficient, and inflexible, whereas model-based behavior can include active 

deliberation, is computationally costly but allows flexible adaptation to changing task 

contingencies. 

The emerging dichotomy between model-free and model-based control and its 

mathematical formalization has sparked a variety of novel paradigms which allow to contrast 

both modes of reinforcement learning. Most famous is the widely used sequential two-choice 

Markov decision task (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). As an extension of 

the standard bandit task, agents are faced with a choice between two stimuli at a first-stage 

decision state. Based on a probabilistic transition structure, each action at this first-stage 

decision state is followed by one of two second-stage decision states. More specifically, each 

first-stage action is commonly (70%) followed by one associated second-stage state and only 

rarely (30%) with the other second-stage state. At the second-stage state, the participants are 

again faced with a choice between two stimuli with each second-stage state being associated 

with a different stimulus pair. Finally, each action is followed by a binary outcome. The 

probability for a positive outcome for each of the four actions at the second-stage decision 

states is slowly (and independently) changing throughout a block, following a Gaussian 

random walk. Critically, flexible decision making in this task is dependent on an internal 

model which accounts for both the probabilistic but fixed contingencies between first-stage 

and second-stage states and the probabilistic but volatile contingencies between second-stage 
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actions and outcomes. While model-free learning is not equipped with such an internal model 

and hence action selection (at the first-stage state) is only sensitive to previous outcomes, 

model-based learning exploits the explicit knowledge about the transition structure from the 

internal model and bases action selection (at the first-stage state) on both the previous 

outcome and the previous transition, leading to more flexible and successful behavior. 

Besides the distinct demands on (model-based) learning in the Markov decision task, different 

task designs could focus on different aspects of the internal model and necessitate the 

implementation of different (pre)assigned contingencies. For example, the manipulation of 

learnability (i.e., if contingencies between actions and outcomes are predictable or happen 

randomly, see Study 1 and 2), could also be incorporated in an internal model, possibly 

resulting in action selection that is insensitive to previous outcomes under random 

contingencies but sensitive to previous outcomes under predictable contingencies. 

Despite the initial assumption that model-free and model-based learning are 

computationally separable and act on distinct (neural) representations of the task (Daw et al., 

2005; Keramati, Dezfouli, & Piray, 2011), recent literature highlights the interaction between 

both systems to facilitate learning and solve the credit assignment problem (Moran, Keramati, 

Dayan, & Dolan, 2019). Moreover, recent simulation studies revealed that model-free and 

model-based behavior are difficult to separate in the Markov decision task under certain 

circumstances (Akam, Costa, & Dayan, 2015; Kool, Cushman, & Gershman, 2016). The 

picture is further complicated by the postulate that the representations on which both model-

free and model-based reinforcement learning operate to estimate the task contingencies are 

themselves subject to ongoing learning and optimization (Gershman & Niv, 2010; Gershman, 

Norman, & Niv, 2015; Niv, 2019). 
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Outline of subsequent studies 

Before drawing the outline of the three studies in this thesis, an explicit working 

definition of the central concepts under investigation is in order. Reinforcement learning, as 

defined formally and formerly (see Equations 1, 2, 3), constitutes the main framework for 

understanding human decision making under the premise of reward maximization. A task 

representation defines which elements (i.e., stimuli, actions, and outcomes) are relevant 

within a task and connects them within the central computations of reinforcement learning to 

allow learning of task contingencies (via the estimation of action values). If no task 

representation is available, credit assignment serves to infer a (plausible) task representation 

by assigning outcomes to actions. While task representations are necessary for both model-

free and model-based reinforcement learning, only model-based reinforcement learning 

utilizes an internal model that (pre)specifies certain contingencies (e.g. action values, state 

transition probabilities) based on prior explicit knowledge from instruction or observation.  

The following three studies aim to further elucidate the interaction of reinforcement 

learning and its task representation with internal models and credit assignment. I start my 

investigation with the question on how internal models can affect the task representation on 

which reinforcement learning operates. More specifically, I investigate how explicit 

knowledge about contingencies in the environment modulates the central computations of 

reinforcement learning, i.e., the calculation of prediction errors and the updating of action 

values. Subsequently, I extend this investigation to account for more complex environments 

which necessitate the application of more complex representations. Again, I ask how internal 

models influence reinforcement learning. Finally, I take a different approach and ask, how 

credit assignment can shape the task representation. Here, my goal is to provide insights into 

the possible mechanisms of credit assignment and inference which enable the emergence of 

appropriate task representations within a reinforcement learning perspective. 
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To investigate these issues, I utilize a computational modelling approach which 

provides both qualitative and quantitative predictions for the central computations in the brain 

and can thus help us understand its working principles from a mechanistic viewpoint. As I am 

interested in the implementation of reinforcement learning processes and concepts in the 

brain, I utilized a second approach and recorded electrophysiological data in addition to the 

behavioral data in human participants. While the behavioral data can already tell us a lot 

about the computational mechanisms of the brain, electrophysiological data add a further 

layer of insight. Especially, the integration and synthesis of these approaches, that is 

computational modelling, experimental manipulation, and the collection of electrophysio-

logical data, can lead to new insights which would not be possible by each single-method 

approach alone. Searching for the predicted patterns of a computational model in both the 

behavioral and neural data of human participants is a promising means for answering 

questions on the realization of different computational systems under varying task conditions 

in the human brain. 

Study 1 employs a standard bandit task in which outcomes (win or loss) are 

probabilistically mapped to actions. This means that the same action is not always rewarded 

or punished but only sometimes, based on a specific win probability. To guarantee constant 

learning, this probability is set to change over the course of a block according to a random 

walk. The main manipulation in the study affected a central characteristic of the contingency 

between actions and outcomes, the so-called learnability. In a learning condition, participants 

were faced with a probabilistic and volatile, yet predictable structure which was regarded as 

learnable. In a gambling condition, the same participants were faced with a random structure, 

which was regarded as unlearnable, due to the unpredictability of the action-outcome 

contingency. Participants were explicitly instructed on the nature of the task and the identity 

of the different conditions. A computational model of reinforcement learning was fit to extract 

latent variable estimates which were subsequently regressed on the EEG data. This approach 
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allows not only to find neural correlates of reinforcement learning but also to contrast the 

experimental conditions regarding their underlying task representations. Centrally, I 

investigated which subprocesses of reinforcement learning (calculation of reward prediction 

error or the updating of action values, equation 1 and 2 respectively) are affected by the 

learnability of the task. I found that the learnability of the task specifically modulates only the 

updating of action values (equation 2), which is interpreted as a suppression of reinforcement 

learning when the internal model suggests unpredictable contingencies and thus learning is 

not adaptive for the agent. 

Following this first attempt to investigate the influence of different internal models on 

reinforcement learning, Study 2 extended this idea to include more complex forms of task 

representations as well. In order to reliably elicit such complex task representations, we 

adapted the Markov decision paradigm (Daw et al., 2011). Again, the experimental 

manipulation included a learnable condition which was contrasted by a random condition. In 

contrast to Study 1, participants were instructed on the structure of the task but not on the 

identity of the conditions, which had to be inferred from experience. As with Study 1, a 

computational model of reinforcement learning was fit, and latent variable estimates extracted 

to be used for a subsequent regression with the EEG data. Again, this approach allows not 

only to find neural correlates of reinforcement learning but also to contrast task 

representations between experimental conditions. I find that, as in Study 1, the predictability 

of outcomes from action in complex tasks distinctly modulates the computational processes of 

reinforcement learning, lending support to the idea of a strong influence of internal models on 

task representations and reinforcement learning.  

In Study 3, I follow up on my previous research and ask how a plausible 

representation is selected to drive decision making when no prior knowledge about the task 

structure is available. In line with the idea of competitive interaction between multiple 

reinforcement learning systems, I sketch an inference mechanism which arbitrates between 
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different competing representation. To allow inference and credit assignment, the paradigm 

chosen for this study differs from the previous two studies and no random condition was 

included. However, two separate standard bandit tasks with each one transition were 

employed, so that on every trial, participants executed two actions and received two 

outcomes. Each bandit task (i.e., choice) was associated with a color-coded feedback but 

crucially participants were not instructed on the contingency between tasks and colors. Due to 

this initial uncertainty about the representation of the task, an inference mechanism is 

necessary to select and arbitrate control towards the most plausible representation. Again, 

central latent variable estimates were derived and used to predict behavioral and neural data. I 

find that multiple reinforcement learning systems are realized in the brain and that their 

respective computations of prediction errors can be used for credit assignment and the 

selection of the correct representation of the task. Taken together, this suggests a bidirectional 

interaction between reinforcement learning and task representation, which allows credit 

assignment under uncertainty about the correct representation of the environment.
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choice tasks 

Study 1: Task learnability modulates value updating but not 

prediction errors in probabilistic choice tasks 
 

By Franz Wurm, Wioleta Walentowska, Benjamin Ernst, Mario Carlo Severo, Gilles Pourtois, and 

Marco Steinhauser 

Abstract 

The goal of reinforcement learning is to maximize outcomes and improve future 

decision making. In gambling tasks, however, decision making cannot be improved due to the 

lack of learnability. Based on the idea that reinforcement learning comprises two subprocesses 

(calculation of reward prediction errors and updating of action values), we asked which of 

these subprocesses is affected when a task is not learnable. We contrasted behavioral data and 

event-related potentials (ERPs) in a learning variant and a gambling variant of a simple two-

armed bandit task in which outcome sequences were matched across tasks. Participants were 

explicitly informed that feedback could be used to improve performance in the learning task 

but not in the gambling task, and we predicted a corresponding modulation of the 

subprocesses of reinforcement learning. Based on a computational model of the two task 

variants, we used a model-based analysis of ERP data to extract the neural footprints of these 

subprocesses in the two tasks. Our results revealed that task learnability modulates 

reinforcement learning via the suppression of action value updating but leaves the calculation 

of reward prediction errors unaffected. Based on our model and the data, we propose that task 

learnability influences the strength of action value updating as well as the trade-off between 

choice policies (reinforcement learning, stochastic choice) based on a flexible cost-benefit 

arbitration. 

 

This paper is currently under review at Journal of Cognitive Neuroscience 
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Study 2: The influence of internal models on feedback-related 

brain activity 
 

By Franz Wurm, Benjamin Ernst, and Marco Steinhauser 

Abstract 

Decision making relies on the interplay between two distinct learning mechanisms, namely 

habitual model-free learning and goal-directed model-based learning. Recent literature 

suggests that this interplay is significantly shaped by the environmental structure as 

represented by an internal model. We employed a modified two-stage but one-decision 

Markov decision task to investigate how two internal models differing in the predictability of 

stage transitions influence the neural correlates of feedback processing. Our results 

demonstrate that fronto-central theta and the feedback-related negativity (FRN), two 

correlates of reward prediction errors in the medial frontal cortex, are independent of the 

internal representations of the environmental structure. In contrast, centro-parietal delta and 

the P3, two correlates possibly reflecting feedback evaluation in working memory, were 

highly susceptible to the underlying internal model. Model-based analyses of single-trial 

activity showed a comparable pattern, indicating that while the computation of unsigned 

reward prediction errors is represented by theta and the FRN irrespective of the internal 

models, the P3 adapts to the internal representation of an environment. Our findings further 

substantiate the assumption, that the feedback-locked components under investigation reflect 

distinct mechanisms of feedback processing and that different internal models selectively 

influence these mechanisms. 

 

Published as Wurm, F., Ernst, B., & Steinhauser, M. (2020). The influence of internal 

models on feedback-related brain activity. Cognitive, Affective, & Behavioral Neuroscience, 

20, 1070-1089.  
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Study 3: Surprise-minimization as a solution to the structural 

credit assignment problem 
 

By Franz Wurm, Benjamin Ernst, and Marco Steinhauser 

Abstract 

The structural credit assignment problem arises when the causal structure between 

actions and subsequent outcomes is hidden from direct observation. To solve this problem and 

enable goal-directed behavior, an agent has to infer structure and form a representation 

thereof. In the scope of this study, we investigate a possible solution in the human brain. We 

recorded behavioral and electrophysiological data from human participants in a novel variant 

of the bandit task, where multiple actions lead to multiple outcomes. Crucially, the mapping 

between actions and outcomes was hidden and not instructed to the participants. Human 

choice behavior revealed clear hallmarks of credit assignment and learning. Moreover, a 

computational model which formalizes action selection as the competition between multiple 

representations of the hidden structure was fit to account for participants data. Starting in a 

state of uncertainty about the correct representation, the central mechanism of this model is 

the arbitration of action control towards the representation which minimizes surprise about 

outcomes. Crucially, single-trial latent-variable analysis reveals that the neural patterns 

clearly support central quantitative predictions of this surprise minimization model. The 

results suggest that posterior activity is not only related to reinforcement learning under 

correct as well as incorrect task representations but also reflects central mechanisms of credit 

assignment and representation learning. 

 

 

 

This paper is currently in preparation. 
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General discussion 

The goal of this thesis was to elucidate the interactive nature of reinforcement 

learning, its task representations, internal models, and credit assignment across distinct levels 

of complexity. In Study 1, participants worked through learnable and random conditions of a 

simple bandit task. As a central result of the study, reinforcement learning was distinctly 

modulated between these conditions. While neural activity in the learning condition reflected 

both prediction errors and action values, the neural activity in the random condition reflected 

only prediction errors, suggesting that reinforcement learning was suppressed in this 

condition. Interestingly, both patterns of neural activity can be interpreted as highly adaptive 

within the respective task conditions and consistently reflect the impact of the internal model 

on reinforcement learning and its task representation. In Study 2, a comparable pattern was 

observed. Participants worked through learnable and random conditions of a Markov decision 

task, a multi-stage variant of the bandit task, which is hypothesized to elicit the applications of 

multiple reinforcement learning systems. Again, neural activity related to reinforcement 

learning showed a distinct pattern between conditions. Crucially, this effect can be again 

interpreted as the consequence of the internal model on reinforcement learning and its task 

representations. In Study 3, I investigated the reversed effect, namely how reinforcement 

learning can shape the task representation via credit assignment. Participants worked through 

a novel variant of the bandit task in which multiple decisions led to multiple outcomes, but the 

link between decision and outcomes was not known to the participants and thus had to be 

inferred from experience. As a central finding of this study, participants correctly inferred the 

correct mapping between decision and outcomes, in accordance with a computational model 

that utilized the existence of multiple reinforcement learning systems to solve the credit 

assignment problem and inform the representation of the task. Crucially, model predictions of 
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latent variables involved in this inference and credit assignment process were reflected in the 

neural data, showing the influence of reinforcement learning on the task representation. 

The ubiquity of prediction errors 

A stable finding across all three studies presented in this thesis is that prediction errors 

are calculated in the brain irrespective of whether these prediction errors were translated into 

learning. In Study 1 and 2 we replicated the common finding that the FRN reliably reflects a 

reward prediction error. While this finding is expected for learnable conditions, it is surprising 

in the random condition, where learning is impossible and a representation without 

(reinforcement) learning was pursued by participants. However, this finding of a dissociation 

between behavioral and neural patterns fits with recent research on both animals and humans. 

Monkeys’ neural activity continued to estimate (model-free) reward prediction errors even 

when behavior followed a completely different (model-based) policy (Bayer & Glimcher, 

2005). In humans, FRN amplitudes reflected reward prediction errors in a reversal learning 

task, in which task contingencies were reversed at random points, and continued to reflect 

prediction errors based on old action values, even when the behavior already indicated that 

participants assumed a contingency reversal (Chase et al., 2011). In another study, 

participants were instructed on the exact action values and although this internal model led to 

asymptotic optimal behavior, the FRN was modulated as if the task representation did not 

incorporate this information (Walsh & Anderson, 2011). In Study 3, I extended existing 

evidence on the calculation of multiple prediction errors. To my knowledge, this is the first 

study which explicitly tested for the existence of alternative prediction errors, which are not 

calculated on a correct representation of the task but follow an incorrect representation of the 

task. Arguably, the main reason for the calculation of prediction errors for multiple 

representations is the uncertainty about the correct representation. Based on the computational 
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model, this incorrect prediction errors (and also the correct prediction errors) provided a 

teaching signal which was not only used for the estimation of contingencies within the 

representation but also the arbitration between task representations. Thus, prediction errors 

can be used for multiple purposes, further substantiating their ubiquity in the human brain. 

There also exist alternative instantiations of prediction errors. As in the three studies of 

this thesis, the most commonly employed prediction errors are reward prediction errors, 

implemented by a temporal difference process. As formalized above (see Equation 1), reward 

prediction errors quantify the difference between an expected value of an action and the 

observed outcome. While this calculation is mainly realized by model-free reinforcement 

learning, the model-based counterpart is called state-prediction error (Gläscher, Daw, Dayan, 

& O’Doherty, 2010): It measures the surprise of a new state given there is no external (i.e., 

observable) rewarding outcome (Walsh & Anderson, 2010). Recent work further suggests the 

existence of distinct model-based reward prediction errors at the level of outcome 

presentation (Sambrook et al., 2018), as well as so-called risk-prediction errors (Preuschoff, 

Bossaerts, & Quartz, 2006; Preuschoff, Quartz, & Bossaerts, 2008) which quantify the 

uncertainty about a certain reward prediction error. Pseudo-reward prediction errors 

(Botvinick, 2012; Botvinick, Niv, & Barto, 2009; Sutton, Precup, & Singh, 1999) are 

basically calculated on internal reward signals, for example after the achievement of a task 

subgoal. As an extension of the reinforcement learning framework, hierarchical reinforcement 

learning postulates the existence of such pseudo-reward prediction errors, that allow to extend 

learning of simple actions to account for elaborate action sequences (i.e. options). Evidence 

for the existence of pseudo-reward prediction errors have been found in the human brain 

(Diuk, Tsai, Wallis, Botvinick, & Niv, 2013; Ribas-Fernandes et al., 2011). Finally, in an 

overarching endeavor, the postulate of generalized prediction errors, which incorporate from 

both reward as well as sensory inputs, complements the arsenal of prediction error and calls 

for a reappraisal of the role of midbrain dopamine towards signaling a broader concept of 
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prediction error that is embedded between perception and reward processing (Gardner, 

Schoenbaum, & Gershman, 2018; Langdon, Sharpe, Schoenbaum, & Niv, 2018). 

In sum, the three studies of this thesis concurrently line up with previous findings on 

the ubiquity of prediction errors in the human brain. However, especially the results from 

Study 3 adds nuanced evidence to this issue by showing that even prediction errors calculated 

from an incorrect representation of the environment are reflected in the brain, further 

substantiating the idea of multiple independent control systems or policies (Daw & 

O’Doherty, 2014).  

Message passing in the brain 

While there seem to be a wide variety of prediction errors in the brain, ostensibly 

reflected in (phasic) dopamine activity, the studies presented in this thesis also highlight the 

propagation and subsequent processing of prediction errors within the human brain. In line 

with the idea of a (hierarchical) self-supervised system (Dayan et al., 1995), my studies show 

the importance of both bottom-up and top-down message passing to allow goal-directed 

behavior. In Study 1, where participants were explicitly instructed on the learnability of the 

task, the utilization of this knowledge was presumably implemented by top-down 

connections, supposedly via pathways from the prefrontal cortex to the basal ganglia (Doll, 

Hutchison, & Frank, 2011; Doll, Jacobs, Sanfey, & Frank, 2009). Critically, there was an 

interaction between different message passing mechanisms, where putative top-down control 

from prefrontal areas (via the internal model) mediated the bottom-up passing of reward 

prediction error from midbrain areas (via the task representation and reinforcement learning). 

These top-down effects are likely to have led to the pronounced modulation of action value 

updating (Equation 2) that was observed in all three studies of this thesis. In Study 1, the 

updating of action values was enabled in the learnable condition, but inhibited in the gambling 
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condition, even though reward prediction errors were evident in both conditions. In Study 2, 

we found a similar effect towards a pronounced modulation only for the predictable structure, 

but not the random structure. In Study 3, the same effect was observed, and the updating of 

action values was inhibited only for the implausible but not the plausible representation of the 

causal structure.  

A possible mechanism with a central role in such a message passing system of 

reinforcement learning is attention. Attention has been suggested to interact with learning in a 

bidirectional way (Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017; Radulescu, Niv, & 

Ballard, 2019). On the one hand, learning can guide attention, so that dimensions that are 

predictive of reward are attended more strongly (Mackintosh, 1975). On the other hand, 

selective attention can guide learning towards specific dimensions of the environment, 

reducing the number of states and actions that have to be learned, hence simplifying the 

computations and making reinforcement learning and credit assignment more efficient (Niv et 

al., 2015). An additional aspect of attention which seems to be relevant for the interpretation 

of our results is the proposal of a distinction between attention at action and attention at 

feedback (Dayan, Kakade, & Montague, 2000). To maximize reward, attention during action 

selection should be directed towards the stimulus (feature) with the highest predictive value of 

reward. To minimize uncertainty, attention during feedback processing should be directed 

towards the most surprising outcome (features). Based on this idea that attention should be 

guided by two separate goals (i.e., optimize action selection and maximize information), the 

distinct subprocesses of reinforcement learning could be directly mapped onto the different 

roles of attention: While the calculation of prediction errors might be associated with the 

attention at feedback in order to extract information, updating of action values might be 

associated with the attention at action in order to optimize action selection. Arguably, the 

manipulation of learnability in Study 1 and 2 could have also impacted the attention at action. 

For example, in Study 1, participants were explicitly instructed that they “cannot in any way 
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influence the outcome”. Thus, if the distinct roles of attentions hold to be true, this might 

explain the intricate pattern of the electrophysiological data.  

Besides the role of attention, a hierarchical architecture is a natural extension of the 

computational model of reinforcement learning, and hierarchical tasks and models have 

already significantly improved our understanding of neural networks and message passing in 

the brain (Botvinick, 2012; Koechlin & Summerfield, 2007; Pezzulo, Rigoli, & Friston, 

2018). In addition to the previous discussion of the framework of hierarchical reinforcement 

learning (Botvinick, 2012; Botvinick et al., 2009), the importance of hierarchical organization 

is further supported by various examples across (cognitive) neuroscience  (Friston, 2008, 

2010), where the architecture of cortical sensory areas strongly supports the notion of 

hierarchy, in which messages are passed and integrated between functionally segregated areas 

to produce complex behavior (Zeki & Shipp, 1988) and hierarchical principles are commonly 

used to enhance the statistical power or allow the estimation of individual subject parameters 

as well as group distributions (Gelman, 2008; Kruschke, 2014; Vandekerckhove, Tuerlinckx, 

& Lee, 2011; Wagenmakers & Lee, 2013; Wiecki, Sofer, & Frank, 2013).  

Constructing better models 

In the scope of this thesis, I explored a selected subset of possible architectures and 

algorithmic processes for solving complex decision and inference problems. The core 

mechanisms relied on two simple processes commonly used in the reinforcement learning 

framework. First, the temporal difference rule allowed to estimate and update the expected 

value of an action as describer earlier (Equation 1 and 2). Second, the softmax rule (Equation 

3) translated these estimated values into action probabilities, allowing a policy to constantly 

optimize its associated behavior. While my fine tailored solutions for the specific 

experimental tasks were well suited to explain behavioral differences and track latent 
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variables at the neural level, there exist infinite further possible realizations of processes, all 

of which could be tested to improve the fit between computational models and the data. An 

advantage of the model-based approach is that every possible instantiation could separately 

induce knowledge about the algorithmic workings of the brain (Nassar & Frank, 2016). Of 

course, this inductive process should always be balanced by critical deduction and a 

falsification approach (Popper, 2005), to prevent spurious interpretation of models and 

estimated parameters (Nassar & Frank, 2016). Based on the models within this thesis I will 

highlight three important ways to improve existing architectures.  

First, one can identify central processes of different models and completely switch 

them with other possible processes. Take, for example, the softmax process, which transforms 

action values into action probabilities. Even within reinforcement learning there exist multiple 

different candidate processes for action selection. One prominent alternative is the so-called 

greedy action selection (Sutton & Barto, 2018). Greedy selection always selects the action 

with the highest value for execution. Although this selection process exploits current 

knowledge about action values, it completely neglects exploring alternative actions. In 

contrast to fully exploitative behavior, one could also construct a fully random and 

explorative choice strategy, as was done in Study 1 and 2. Interestingly, the softmax selection 

can mimic both greedy action selection and fully random behavior by setting the inverse 

temperature parameter either high or close to zero. An alternative for action selection which 

cannot be subsumed by softmax selection is drift diffusion modelling (DDM, Ratcliff, 1978). 

DDM is a widely used sequential-sampling model (Cavanagh et al., 2011; Forstmann, 

Ratcliff, & Wagenmakers, 2016; Ratcliff & McKoon, 2008; Wabersich & Vandekerckhove, 

2014), which assumes that action selection is determined by continuously sampling noisy 

evidence until a decision boundary is reached in favor of one action. Although DDM needs up 

to 4 free parameters (while softmax only needs one), its main advantage is the extraction of 

information about decision making not only from accuracy but also from response time data. 
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Because response times have so far not received much attention in the reinforcement learning 

literature (Keramati et al., 2011), the implementation of DDM can yield new insights into the 

neural underpinnings of reinforcement learning (Frank et al., 2015) as well as 

psychopathology (Pedersen, Frank, & Biele, 2016). Moreover, a recent study suggests that the 

use of DDM substantially improves the parameter recovery and stability of individual 

estimates of the trade-off between model-free and model-based learning for human 

participants in the Markov decision paradigm (Shahar et al., 2019). 

Second, computational models should be carefully reconciled with the task structure. 

Computational models usually consist of different free parameters, which are estimated from 

either behavioral or neural data. These parameters then drive central processes that relevantly 

contribute to the model’s characteristic pattern of decision making in the task. For example, 

within the temporal difference process, the learning rate controls the updating of the action 

values by the most recent prediction error (see Equation 2). Therefore, the learning rate 

constitutes a central parameter within my experiments. Crucially, this free model parameter 

was estimated as a constant scalar, fixed across the whole experiment for each participant. 

Although this is a common approach in reinforcement learning to induce an explanation for 

individual or condition-dependent differences (e.g. M. X. Cohen, 2007; Otto, Gershman, et 

al., 2013), a recent study suggests that the interpretation of overly simplified models (e.g. with 

a fixed learning rate) can be misleading as it biases the estimation of model parameters 

(Nassar & Gold, 2013). Using an estimation task in which participants had to predict 

upcoming reward magnitude, the authors demonstrated that although fixed learning rates have 

a good account for behavior, only variable learning rates can account for the increase of 

behavioral adaptation following sudden changes in action-outcome contingency (Jepma et al., 

2016; Nassar et al., 2019; Nassar & Gold, 2013). However, before coming to rash conclusions 

about the validity of fixed learning rates in reinforcement learning, one should pay attention to 

the importance of task design. In contrast to the studies presented in this thesis, in which 
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reward contingencies were either fully fixed or constantly changing, the contingencies of the 

estimation task were subject to random change points. In such an environment, a variable 

learning rate which adapts to the surprise associated with observed outcomes (Pearce & Hall, 

1980) is highly plausible as it balances the need for rapid learning after rare change points in 

an otherwise stable environment. Based on this obvious interaction between task design and 

requirements for the decision maker, computational modelling should not replace thorough 

experimental manipulation but rather complement it to isolate the processes of interest 

(Nassar & Gold, 2013; Wilson & Collins, 2019). 

So far, the two approaches for extending and improving computational models 

maintained the essential mechanisms (i.e., temporal difference and softmax) of reinforcement 

learning and either altered distinct processes within the model to better account for empirical 

data or constructed meaningful tasks to investigate the processes of interest. However, there 

exist multiple models of decision making that are distinct to reinforcement learning. For 

example, a large body of alternative models seeks to explain human probability matching. 

Probability matching describes the observation that participants match the action probabilities 

with the reward probabilities (B. R. Newell, Koehler, James, Rakow, & van Ravenzwaaij, 

2013; Otto, Taylor, & Markman, 2011; Vulkan, 2000). It has been shown that matching 

behavior can arise under different models, such as win-stay lose-shift (WSLS: Herrnstein, 

2000) or expectation matching (Sugrue, Corrado, & Newsome, 2004). Taking WSLS literally, 

it assumes that participants switch actions after losses but stick with actions after wins. Under 

expectation matching, the agent is hypothesized to integrate a moving window of past 

rewards, on which action selection is then based. Although decision making under these 

models was found to mirror probability matching in empirical data, it has been suggested that 

reinforcement learning best accounts for a variety of findings (Feher Da Silva, Victorino, 

Caticha, & Baldo, 2017) or is at least partly responsible for behavior (Worthy & Maddox, 

2014). Interestingly for the scope of this thesis, it has been suggested that the main reason for 
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probability matching is uncertainty about the generative process of the task which thus leads 

to pattern search, exploration, and recency effects (Feher Da Silva et al., 2017).  

Taken together, this short overview on the diverse landscape of computational 

modelling illustrates how existing models can be extended to further improve our 

understanding of decision making and cognition in the brain. Future model-based research 

should embrace both the advantages and pitfalls of the approach when designing experiments 

and interpreting results in terms of cognitive processes (Mars, Shea, Kolling, & Rushworth, 

2012; Wilson & Niv, 2015). Please note that these suggestions by no means diminish their 

conclusiveness if model-based analyses are combined with sound experimental manipulation 

(Nassar & Gold, 2013). Often, even gross errors in parameter estimates result only in 

comparably insignificant changes in the connection between neural activity and latent 

variables (Wilson & Niv, 2015). 

Accounting for uncertainty 

A major point for criticism of all the computational models of reinforcement learning 

reported so far is that they only consider estimates of prediction errors or action values as 

simple scalars. Although the temporal difference model has proven to be a reliable 

generalization of earlier (reinforcement) learning models (e.g., the Rescorla-Wagner model) 

and is grounded in the normative theory of reinforcement learning (Gershman, 2015), it only 

encompasses so-called point estimator statistics (e.g., mean or variance). However, there is 

reliable evidence that, besides the estimation of the single most likely values for central latent 

variables, the brain also incorporates the uncertainty or precision about these estimates (Bach 

& Dolan, 2012; Pouget, Beck, Ma, & Latham, 2013). As we have seen, uncertainty about 

contingency (Studies 1-3) and especially structure (Study 3) is an important component in 

efficient reinforcement and therefore deserves further considerations. A more fine-grained 
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distinction dichotomized expected and unexpected uncertainty (Yu & Dayan, 2005). Under 

this notion, reward prediction errors might be simple scalar values to update value functions, 

but the system additionally utilized these prediction errors to estimate uncertainty.  

One possible mechanism proposes a novel set of latent variables which is incorporated 

in the temporal difference framework: outcome variance and risk prediction errors 

(Preuschoff et al., 2006, 2008). Crucially, these variables work similarly to the already 

established latent variables of action values and reward prediction errors. The risk prediction 

error is calculated as the squared prediction error normalized by the mean outcome and 

therefore is closely linked to surprise. Outcome variance is then estimated by incrementally 

updating with the risk prediction errors. For the agent, the estimated outcome variance 

constitutes a good measure of expected uncertainty. Unexpected uncertainty can then be 

regarded as the surplus of the trial-to-trial risk prediction error that is unexplained by the 

estimated outcome variance or expected uncertainty. Foremost, high unexpected uncertainty 

indicates an inadequate representation of the task’s structure. In line with the finding from 

Study 3 that the competition between (absolute) prediction errors is reflected in the brain, the 

demonstration that risk prediction errors are reflected in neural structures such as the anterior 

insula (Preuschoff et al., 2006, 2008) or ventral striatum (d’Acremont, Lu, Li, Van der 

Linden, & Bechara, 2009) further consolidate the idea that the brain implements 

reinforcement learning as a point-estimation of value, with a limited estimation of precision 

(Findling, Skvortsova, Dromnelle, Palminteri, & Wyart, 2019) 

Another possible mechanism which naturally incorporates the notion of uncertainty is 

Bayesian inference. In contrast to reinforcement learning models in which the ultimate goal is 

to optimize the long-term reward within a task, Bayesian models foremost deal with inference 

about structured knowledge. So far, their use was mainly limited to the domain of category 

learning (Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Tenenbaum, Griffiths, & 

Kemp, 2006). In a category learning task, participants must ascribe stimuli to different 
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categories based on the presence or absence of a specific stimulus feature. Similar to inference 

in Study 3, the initial uncertainty about category membership or the defining stimulus feature 

must be disambiguated. Although Bayesian models still lack a plausible neurobiological 

implementation (Gershman, 2015; Radulescu et al., 2019), their use within neuroscientific 

research of decision making is promoted by findings that humans act in accordance with 

Bayesian optimality. Because a full Bayesian approach becomes intractable with complexity 

(Kwisthout, Wareham, & van Rooij, 2011), the usage of approximation methods in 

neuroscience is increasingly popular (Sanborn & Chater, 2016; Sanborn, Griffiths, & Navarro, 

2010). One variant are particle filters (Gershman, 2015; Radulescu et al., 2019) or variational 

Bayes (Friston et al., 2015; Mathys, 2011; Sajid, Ball, & Friston, 2020). These methods act in 

accordance with Bayes theorem, by transforming a prior distribution over the belief about 

different candidate representations into a posterior distribution by updating with a likelihood 

that states the probability of the observations given the representation (the filter).  

While reinforcement learning and Bayes inference have long been considered in 

independent domains, there is an ongoing urge to integrate both computational approaches 

(Gershman, 2015; Radulescu et al., 2019). On the one hand, reinforcement learning is an 

efficient method to optimize decision making and minimize expected uncertainty under a 

specific representation or internal model. On the other hand, Bayesian inference is a potent 

tool to infer and arbitrate between representations and adapt to unexpected uncertainty. The 

central idea behind a unification of both approaches is that the internal models are learned 

through (approximate) Bayesian inference and subsequently used as a source of top-down 

modulation that shape the representation over which reinforcement learning is optimizing 

decision making. 
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Conclusion 

In the scope of this thesis, I used computational modelling to formalize and capture the 

interactions between reinforcement learning and the representation of the environment across 

increasingly complex task environments. Crucially, the computational modelling approach 

allowed me to derive latent variables from the behavioral data which were subsequently used 

to reveal patterns in the neural data that reflected central model computations. In three EEG-

studies I showed that the quantitative predictions from the computational model of 

reinforcement learning were evident on the neural level. Crucially, goal-directed modulations 

within the neural computations indicated an elaborate interplay of cooperation and 

competition between separable processes and systems of reinforcement learning. In Study 1 

and 2, the internal model was identified as the driving neural modulator of reinforcement 

learning and the top-down implementation of control. A central finding was the biasing of the 

(ubiquitous) temporal difference process, which can be interpreted as a necessary step for 

optimizing reward and uncertainty across different levels of task complexity. In Study 3, a 

modified design of the classic bandit task, in which multiple actions lead to multiple outcomes 

and the correct representation of the mapping between actions and outcomes are unknown, 

allowed us to implement a novel computational architecture which uses reinforcement 

learning principles to infer credit assignment and inform the task representation. Critically, 

this novel inference model makes distinct predictions for higher-level computations and credit 

assignment, expressed in an uncertainty formulation. The predicted surprise-based 

computations were clearly evident in posterior neural data. As the electrode sites for the 

surprise-based inference signal match those of both earlier studies of this thesis and the 

literature (Jepma et al., 2018, 2016; Nassar et al., 2019; Polich, 2007), this further adds to the 

importance of this electrophysiological phenomenon in the study of the brain as an 

information processing system (Polich, 2020).  
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Taken together, this thesis provides a step towards an integration of multiple 

functional principles of the brain in a biologically plausible framework. Besides the 

importance of appropriate task designs, this empirical work puts an emphasis on the 

indispensable role of computational models to disentangle the intricate cortical operations 

thus allowing us to study the brain under a holistic perspective (Radulescu et al., 2019; 

Bogacz, 2017; Friston, Daunizeau, & Kiebel, 2009; Sajid, Ball, & Friston, 2020). 

Reinforcement learning, and more specifically the temporal difference algorithm, has 

successfully paved the way to a biologically plausible description of the human brain as an 

extremely powerful and efficient information processing system. However, more research is 

required to further our understanding how the brain can actively control its internal 

computations and representations in a goal-directed manner. 
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