
Bed Planning: Advanced
Applications of Operational Research

in Large Hospitals

DOCTORAL THESIS

Unterlagen gemäß § 5 Abs. 3 der Fachpromotionsordnung der
Wirtschaftswissenschaftlichen Fakultät der Katholischen Universität

Eichstätt-Ingolstadt sowie gemäß § 7 Abs. 3 der Rahmenpromotionsordnung der
Katholischen Universität Eichstätt-Ingolstadt

Erstprüfer: Prof. Dr. Alexander Hübner
Zweitprüfer: Prof. Dr. Pirmin Fontaine
Eingereicht von: Manuel Walther
Datum Einreichung: 10 April 2020
Datum Verteidigung: 27 Juli 2020





DOCTORAL THESIS
Bed Planning: Advanced Applications of Operational Research in Large Hospitals

Contents

Acknowledgements vii

List of Figures ix

List of Tables xiii

1 Introduction 1

2 Strategical, Tactical, and Operational Aspects of Bed Plan-
ning Problems in Hospital Environments 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Strategical aspects of bed management . . . . . . . . . . . . 10

2.2.1 Hospital layout planning with regard to bed management 10
2.2.2 Pooling bed capacities . . . . . . . . . . . . . . . . . . 12

2.3 Tactical aspects of bed management . . . . . . . . . . . . . 15
2.4 Operational aspects of bed management . . . . . . . . . . . 17

2.4.1 Scheduling elective inpatient arrivals . . . . . . . . . . 18
2.4.2 Allocating patients to beds . . . . . . . . . . . . . . . 19

2.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . 24

3 Combining Clinical Departments and Wards in Maximum-
Care Hospitals 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Problem Description and Background . . . . . . . . . . . . 30
3.3 Related Literature . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Model Development . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Overview of General Model Approach . . . . . . . . . 41
3.4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . 43

iii



Contents Manuel Walther

3.4.2.1 Feasible Subsets of Departments . . . . . . . . 43
3.4.2.2 Bed Requirements per Department Combination 45
3.4.2.3 Costs per Department Combination . . . . . . 46
3.4.2.4 Distances between Wards and to Central Facil-

ities . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 Model Formulation . . . . . . . . . . . . . . . . . . . 48

3.5 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1.1 Data and Preprocessing . . . . . . . . . . . . 52
3.5.1.2 Results for the Case Hospital . . . . . . . . . 56
3.5.1.3 Sensitivity Analyses of Cost Parameters . . . 57

3.5.2 Quantifying Bed Requirements . . . . . . . . . . . . . 58
3.5.2.1 Impact of Weekly Seasonality . . . . . . . . . 59
3.5.2.2 Impact of Distributional Assumptions . . . . 60

3.5.3 Trade-off between Cost and Walking Distance Opti-
mization . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.3.1 Results for the Original Case Study Data . . . 62
3.5.3.2 Variation of Layout Restrictions . . . . . . . . 63
3.5.3.3 Larger Data Sets . . . . . . . . . . . . . . . . 64

3.6 Conclusion and Further Areas of Research . . . . . . . . . . 66

4 Operational Patient-Bed Assignment Problem in Large Hos-
pital Settings including Overflow and Uncertainty Manage-
ment 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Problem description, related literature and contribution . . 72

4.2.1 General planning problem . . . . . . . . . . . . . . . 73
4.2.2 Related literature and open research questions . . . . 78

4.3 Modeling and solution approach . . . . . . . . . . . . . . . . 81
4.3.1 Model development . . . . . . . . . . . . . . . . . . . 82
4.3.2 Greedy look-ahead heuristic . . . . . . . . . . . . . . 94

4.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Performance of the GLA heuristic . . . . . . . . . . . 100

iv



Contents Manuel Walther

4.4.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.4 General applicability . . . . . . . . . . . . . . . . . . 109
4.4.5 Sensitivity analyses . . . . . . . . . . . . . . . . . . . 110

4.5 Conclusion and further areas of research . . . . . . . . . . . 112

5 Machine Learning and Pilot Method: Tackling Uncertainty
in the Operational Patient-Bed Assignment Problem 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Problem description, related literature and contribution . . 117

5.2.1 General planning problem . . . . . . . . . . . . . . . 117
5.2.2 Complexity of the patient bed assignment problem . . 120
5.2.3 Related literature . . . . . . . . . . . . . . . . . . . . 122

5.2.3.1 Decision models and related literature for pa-
tient bed assignment . . . . . . . . . . . . . . 122

5.2.3.2 Literature related to estimating emergency pa-
tients . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Modeling and solution approach . . . . . . . . . . . . . . . . 131
5.3.1 Model complexity, general idea of the solution approach

and model overview . . . . . . . . . . . . . . . . . . . 131
5.3.2 Hyper-heuristic . . . . . . . . . . . . . . . . . . . . . 139

5.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.1 Overview of data . . . . . . . . . . . . . . . . . . . . 145
5.4.2 Applying machine learning to estimate emergency pa-

tients . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.4.3 Performance of the hyper-heuristic . . . . . . . . . . . 151
5.4.4 Hyper-heuristic combined with enhanced emergency

inpatient arrival forecasting . . . . . . . . . . . . . . . 155
5.5 Conclusion and further areas of research . . . . . . . . . . . 156

Bibliography xvii

Status of Publication xxv

Declaration of Honour /
Ehrenwörtliche Erklärung xxvii

v





DOCTORAL THESIS
Bed Planning: Advanced Applications of Operational Research in Large Hospitals

Acknowledgements

During my time as an external research assistant at the department of
Supply Chain Management and Operations at the Catholic University of
Eichstätt-Ingolstadt I was accompanied by various supporters to whom I
would like to express my deepest gratitude.

First and foremost, I would like to thank my supervisor and co-author of
three papers included in this dissertation, Prof. Dr. Alexander Hübner,
who has expertly guided me during several joint research projects and has
become a very good friend and mentor. Together with Prof. Dr. Heinrich
Kuhn he created a very open, inspiring, and pleasant working environment.
I am very thankful for the many engaging and fruitful discussions that we
had together that greatly improved my research and kept me motivated
throughout my work. In addition, I am grateful for having been given
the opportunity as an external research assistant to work with and teach
students in different OR-related subjects as well as the opportunity to
supervise several Bachelor’s and Master’s theses. In addition, I would like
to extend my special thanks to Prof. Dr. Pirmin Fontaine for co-supervising
this dissertation.

A terrific research group at Prof. Dr. Hübner’s and Prof. Dr. Kuhn’s de-
partments has further been a great support and helpful resource throughout
my time in Ingolstadt: Birgit Jürgens, Mareike Müller, Tobias Düsterhöft,
Prof. Dr. Andreas Holzapfel, Sandro Kühn, Marcel Lehmann, Tobias Po-
toczki, Dr. Kai Schaal, Dr. Manuel Ostermeier, Dr. Dominik Wörner, Dr.
Michael Sternbeck, Dr. Andreas Popp, and Dr. Johannes Wollenburg.

vii



Acknowledgements Manuel Walther

I would further like to extend a very special thank you to Fabian Schäfer
together with whom I have co-authored two papers included in this thesis.
Fabian was wonderful to work with and has always been a great friend.

Most of all and finally, I would like to thank my wife and kids, as well as
my parents for their limitless support, not only during my dissertation, but
during my whole life. Without them, this research project could not have
been realized.

Munich, 10 April 2020

Manuel Walther

viii



DOCTORAL THESIS
Bed Planning: Advanced Applications of Operational Research in Large Hospitals

List of Figures

2.1 Schematic overview of an inpatient path through a hospital 7

2.2 Schematic overview of maximum allowable distances in a
hospital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Combining clinical departments to balance occupancy levels
according to Hübner et al. (2018) . . . . . . . . . . . . . . . 13

2.4 Schematic cost-curve when combining departments and wards
to pool bed capacities . . . . . . . . . . . . . . . . . . . . . 14

2.5 Schematic example for the effects of master surgery schedules
on bed occupancies . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Example for bed occupancies over time when scheduling elec-
tive patients . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Example of an overview tool designed to support a bed man-
ager in a hospital . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Combination of clinical departments and wards . . . . . . . 30

3.2 Average number of beds occupied during a week (illustrative
example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



LIST OF FIGURES Manuel Walther

3.3 Algorithm determining the 0− 1 coefficient matrix Q . . . . 44

3.4 Pdf of the daily bed occupancy levels and quantification of
the number of required beds, bc, for department combination c 46

3.5 Compatibility matrix of departments based on medical con-
straints and patient compatibility; a) original input from
hospital management; b) resorted matrix visualizing a selec-
tion of cliques acquired by applying the approach suggested
in Subsection 3.4.2.1 . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Relative distances on a single floor between wards in the case
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Comparison of resulting layouts after combining departments
and wards using different settings for α and β . . . . . . . . 56

3.8 Sensitivity analysis of cost ratio f = ϕpool
c

∆ ϕbeds
c

. . . . . . . . . 58

4.1 Schematic example of a typical planning situation in a large
hospital serving elective and emergency inpatients . . . . . . 74

4.2 Schematic overview of the difference between patient schedul-
ing and patient-bed allocation . . . . . . . . . . . . . . . . . 75

4.3 Example for quantifying sbpt . . . . . . . . . . . . . . . . . . 87

4.4 Example of the GLA heuristic . . . . . . . . . . . . . . . . . 97

5.1 Illustration of the patient bed assignment problem . . . . . 118

5.2 Example for determining parameter sbpt for a new female
patient arrival . . . . . . . . . . . . . . . . . . . . . . . . . 137

x



LIST OF FIGURES Manuel Walther

5.3 Example for the GLA heuristic showing the steps of one
iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Measure of linear correlations between selected parameters . 147

5.5 Selected outcomes after application of the Boruta package . 148

5.6 Example of the structure of a neural network, including three
hidden layers . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xi





DOCTORAL THESIS
Bed Planning: Advanced Applications of Operational Research in Large Hospitals

List of Tables

2.1 Examples for hierarchical classification of bed planning prob-
lems - planning hierarchy based on Hulshof et al. (2012) . . 8

2.2 Overview of typical objectives and constraints for patients,
nurses, and doctors in the operational patient-bed allocation
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Analyses of seasonality effects when grouping departments
and assigning wards . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Empirical vs. theoretical occupancy distributions . . . . . . 61

3.4 Analysis of integrated approach for varying weight ratios,
based on case study data . . . . . . . . . . . . . . . . . . . 62

3.5 Analysis of computational efficiency with different walking
distance thresholds . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Analysis of the computational efficiency of the very large
hospital case . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



LIST OF TABLES Manuel Walther

4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Expanded notation for the GLA heuristic . . . . . . . . . . 95

4.3 Overview of weighting factors used . . . . . . . . . . . . . . 99

4.4 Computational time analyses . . . . . . . . . . . . . . . . . 100

4.5 Overview of average MIP Gap of the Gurobi implementation 101

4.6 Solution quality of GLA heuristic compared to Gurobi solution 102

4.7 Case study analyses . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Runtime analysis for one run-through . . . . . . . . . . . . 108

4.9 General applicability analyses . . . . . . . . . . . . . . . . . 109

4.10 Scenarios for sensitivity analyses . . . . . . . . . . . . . . . 110

4.11 Sensitivity analyses for patient-, doctor-, and nurse-specific
objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Overview of decision models related to patient bed assignment 124

5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Expanded notation for the pilot method . . . . . . . . . . . 140

5.4 Further notation for the Subheuristic for PBA . . . . . . . . 142

5.5 Overview of factors and properties assessed regarding correla-
tion with emergency inpatient arrivals . . . . . . . . . . . . 146

xiv



LIST OF TABLES Manuel Walther

5.6 Anticipation of emergency inpatient arrivals using machine
learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.7 Solution quality of the Pilot method compared to the GLA
heuristic for single problem instances . . . . . . . . . . . . . 159

5.8 Solution quality of the Pilot method compared to the GLA
heuristic for time series analysis . . . . . . . . . . . . . . . . 160

5.9 Solution quality of the Hyper-Heuristic ML compared to bench-
marks using a time series analysis . . . . . . . . . . . . . . . 161

xv





DOCTORAL THESIS
Bed Planning: Advanced Applications of Operational Research in Large Hospitals

1 Introduction

In many countries today, a rising life expectancy and the associated de-
mographic shift, coupled with the advancements of modern medicine, has
fueled an ever-increasing cost pressure on healthcare systems. A driving
factor for these rising costs can be seen in inpatient stays in hospitals that in
many cases are connected to cost-intensive treatments. A central concern of
any hospital management in such an environment is therefore to understand
how to make the best possible use of available resources. A decisive factor
in this regard is the management of bed capacities.

The present cumulative dissertation comprises four contributions, which ad-
dress open research questions in the field of strategic, tactical and operative
bed planning:

1 Walther, M., 2020. Strategical, tactical, and operational aspects of bed
planning problems in hospital environments. Submission planned to
Social Science Research Network (SSRN)

2 Hübner, A., Kuhn, H., Walther, M., 2018. Combining clinical depart-
ments and wards in maximum-care hospitals. OR Spectrum 40, 679-709

3 Schäfer, F., Walther, M., Hübner, A., Kuhn, H., 2019. Operational
patient-bed assignment problem in large hospital settings including over-
flow and uncertainty management. Flexible Services and Manufacturing
Journal 31, 1012–1041

4 Schäfer, F., Walther, M., Hübner, A., Grimm, D., 2020. Machine learning
and pilot method: tackling uncertainty in the operational patient-bed
assignment problem. Submitted to OR Spectrum on 13 February 2020
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The first contribution sets out to provide an overview over the different hier-
archical planning levels on which bed planning problems may be addressed.
It should be noted in this context that several different aspects may be
combined under the collective term “bed planning”. These may be delim-
ited in terms of their scope and their planning horizon. A frequently used
taxonomy in this context is the hierarchical subdivision of typical problems
in health care into strategical, tactical and operational levels as provided by
Hulshof et al. (2012). In the context of bed planning, a typical strategical
problem is how to combine departments and wards to obtain benefits from
pooled ward capacity. On a tactical level, an exemplary problem setting
related to bed planning can be seen in devising master surgery schedules
that optimize downstream bed occupancy levels as patients returning from
surgery will require a bed for post-surgical recovery and monitoring. Finally,
on an operational level, patient-bed allocations need to be optimized while
taking the objectives and constraints of patients and medical staff alike into
account.

To start, the second contribution deals with the strategical problem of
combining departments into groups and assigning pooled ward capacity
to these groups with the goal of balancing bed occupancy levels within a
hospital. Specifically, one of the underlying goals is to minimize the amount
of beds required to meet a predetermined service level. However, merging
ward capacities with the aim of simultaneously accommodating patients
from different medical departments increases the complexity of organizing
and ensuring proper care for these patients. This leads to so-called pooling
costs. To tackle this problem, a modeling and solution approach is developed
which is based on a generalized partitioning problem and is solved by integer
linear programming (ILP). This enables hospital management to determine
the cost-optimal combination of all departments and wards in a hospital,
while ensuring that predetermined thresholds with regard to maximum
walking distances for doctors and patients are adhered to.

Once pooled ward capacities are established, the solution space for allocating
incoming patients to beds is greatly increased and the underlying allocation

2
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problem quickly becomes too complex to be handled without computational
support. In this regard the third contribution ties in with the second
contribution in that it deals with optimizing the operational patient-bed
allocation problem. In order to enable optimal allocation of patients to beds,
it is important to identify and take into account the individual needs and
limitations of the three main stakeholders involved, namely patients, doctors,
and nursing staff. All of these stakeholders exhibit different and sometimes
contradicting objectives and constraints, such that a trade-off has to be
made that maximizes the overall utility for the hospital. In addition, the
complexity of the problem is increased by the high volatility and uncertainty
regarding patient arrivals, types of illnesses, and the resulting remaining
lengths of stay of newly arriving patients. In order to address this situation,
a mathematical model and solution approach for the patient-bed allocation
problem is developed that is designed to generate solutions for large, real-life
operative planning situations. In addition to being able to deal with overflow
situations, this solution approach further takes different patient types into
account, for example by anticipating emergency patient arrivals.

Finally, the fourth contribution builds on the third contribution in that the
modeling and solution approach to allocate patients to beds is extended by
several aspects. As mentioned above, hospitals have to deal with uncertainty
regarding the actual demand for beds. Here, the fourth contribution
improves the anticipation of emergency patients by using machine learning.
Specifically, weather data, seasons, important local and regional events, and
current and historical occupancy rates are combined to better anticipate
emergency inpatient arrivals. In addition, a hyper-heuristic approach is
developed based on the pilot method defined by Voß et al. (2005). By
combining the improved anticipation of emergency patients with this hyper-
heuristic approach significant improvements can be achieved compared to
the solution approach presented in the third contribution.

3
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2 Strategical, Tactical, and
Operational Aspects of Bed
Planning Problems in
Hospital Environments

Submission planned to SSRN

Abstract With rising health care costs, fueled by an aging demographic as well as
pharmaceutical and technical advances in medicine, hospitals have to ensure that all
available resources are put to use as efficiently as possible. A key aspect in this regard is
the management of bed capacities. This includes strategical, tactical, and operational
planning problems that are hierarchically dependent on one-another and that are based
on different time frames, namely years, months, and days, respectively. This paper exem-
plifies and introduces a selected number of these problems across the different hierarchy
levels to provide an introduction to the subject. On a strategical level overall hospital
capacity and layout planning are discussed. With regard to tactical problem settings,
the impact of adapting master surgery schedules on bed occupancy levels is highlighted.
This is then complemented by an overview of two operational problems, namely the
scheduling of elective inpatients and the allocation of patients to beds upon arrival.

5



Strategical, Tactical, and Operational Aspects of Bed Planning Problems Manuel Walther

2.1 Introduction

In modern medicine, hospital resources have to be put to use in the most
efficient way possible as healthcare costs are steadily rising due to an
aging demographic as well as advances in modern medicine which lead to
costlier treatments. In terms of bed management in hospitals, there are
several aspects that need to be considered, such as the need to increase
overall occupancy levels for bed capacities while ensuring a predetermined
availability, or how to efficiently distribute incoming patients to rooms and
beds. This paper is designed to give an idea of the variety of different bed
planning aspects and highlights key issues we have encountered during our
work on bed-planning related operational research questions and during
several joint research projects with a large German hospital. It is designed
to link the most relevant practical insights with literature, but not to detail
all aspects of hospital bed management.

To better understand the different stakeholders and aspects to be considered
in the broader context of bed planning in a hospital, one may look at the
typical patient path in a hospital which is schematically exemplified in Figure
2.1. To begin with, a typical large hospital has two types of patients that
arrive on any given day, namely elective patients and emergency patients.
Elective patient arrivals can be planned whereas emergency arrival rates
are by definition unpredictable. Both of these patient types may either
require ambulant care, meaning that they can have a consultation with
a physician or receive treatment on the same day they arrive, or they
may require longer term monitoring that requires at least one overnight
stay. Patients that leave on the same day as they arrive are typically
called outpatients, whereas patients that stay over night are referred to as
inpatients. Although outpatients may sometimes require a bed for certain
procedures, the actual bed capacity of any hospital typically refers to their
overnight bed capacity. This includes all rooms and their respective beds
that are located in dedicated inpatient wards. It should be noted in this

6
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context, that when discussing bed planning problems, this paper only refers
to inpatient bed capacity and not to the actual physical beds themselves.

Dedicated room and bed for overnight stay in a specific ward

Surgery, treatments, diagnostics, …

Overflow buffer – (e.g., hallway, emergency department, waiting room)

Elective 

patient 

arrivals

Emergency 

patient 

arrivals

Patient

discharge

Figure 2.1: Schematic overview of an inpatient path through a hospital

Coming back to Figure 2.1, it should be noted that “bed planning” should be
seen as a collective term that touches on many different planning problems
other than merely allocating patients to beds. For instance, some inpatients
will undergo surgical procedures and/or diagnostic treatments during their
hospital stay. After such treatments, they will be required to remain
in the hospital for recovery or follow-up procedures. Thus, scheduling
surgical and diagnostic treatments directly affects bed capacity utilization.
Furthermore, overall bed capacity in a hospital needs to be adequately sized
to provide sufficient ward space to meet the downstream bed capacity needs
of such surgical and diagnostic treatment facilities in order to minimize the
occurrence of overflow situations in which patients have to temporarily stay
in overflow buffer areas such as hallways or waiting rooms.

The above-mentioned aspects merely provide examples for what needs to
be considered when talking about holistic bed management approaches.
In essence, it doesn’t seem feasible to design a “one-size fits all” bed
management approach. Instead, different models can be formulated for

7
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different problem settings. In this regard, some problems are hierarchically
dependent on one another. Hulshof et al. (2012) have designed a taxonomic
classification to categorize different planning decisions in health care. They
differentiate between strategical, tactical, and operational problem settings.
These problem settings differ in terms of planning hierarchy and time
frame. Specifically, strategical, tactical, and operational problems as well
as the implications of their potential solutions, are considered in terms of
years, months, weeks and days, respectively. With regard to bed planning
and management, Table 2.1 highlights typical problem settings along said
hierarchical categories that will further be elaborated on in the following
sections of this paper.

time horizon typical problem settings (exemplary)

strategical years

 planning/building overall hospital 

capacity and infrastructure

 pooling resources in department/ward-

combinations

tactical months  adapting master surgery schedules to level 

bed occupancy rates

operational

weeks  scheduling elective patients to level out 

occupancy over time

days  allocating rooms/beds to patients

planning hierarchy

Table 2.1: Examples for hierarchical classification of bed planning problems -
planning hierarchy based on Hulshof et al. (2012)

On a strategic level, bed planning considerations play an important role
when considering hospital layouts. For instance, the hospital layout as a
whole should be designed such that walking distances for patients and staff
alike are minimized. Specifically, wards should be designed and allocated
to departments in a way that enables patients to be as close as possible to
their respective required treatment and diagnostic facilities. Likewise, the
same considerations can be made for doctors having to tend to patients in
wards and having to perform certain treatment procedures. For example,
the catheterization lab should be placed in close vicinity to the cardiology

8
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wards. In addition, pooling bed capacities across departments may help
balance bed occupancy levels.

On a tactical level, bed occupancy levels are directly affected by upstream
planning and scheduling decisions for surgical and diagnostic procedures.
For example, when scheduling patients for an elective surgery, the typical
length of stay (LOS) post-surgery needs to be considered. However, op-
erating room schedules also depend on staff rosters, cleaning procedures
and the like, such that a trade-off has to be determined between optimizing
downstream bed capacity levels and achieving the most efficient use of
surgical space.

On an operational level, different types of patients have to be considered
who have different requirements regarding available bed capacity. To give
an example, depending on the severity and type of illness a specific patient
exhibits, certain infrastructural requirements may have to be met. This
might range from being medically isolated due to a contagious disease to
having a bed which is equipped with telemetry infrastructure for patients
with certain cardio-vascular diseases. Another example can be seen in that
elective patients will typically not understand why a bed is not available
to them on the day of their scheduled arrival, whereas emergency patients
will be more likely to understand the need to be held in an overflow area
until a respective room and bed opens up. Furthermore, any hospital can
only be run with dedicated and highly trained staff. In this context it is
important that the respective objectives and constraints of doctors, nurses,
technicians and other staff are adequately met. For instance, this might
entail grouping certain types of patients in a specific ward area to ensure
efficient rounds by minimizing walking distances for doctors.

The remaining paper is structured as follows. Section 2.2 deals with strategi-
cal aspects in hospital bed management. Sections 2.3 and 2.4 discuss tactical
and operational problems in bed planning while highlighting the impact of
surgery scheduling on bed management as well as operational patient-bed

9
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allocation, respectively. Finally, section 2.5 provides a brief summary and
discusses potential future developments in bed management.

2.2 Strategical aspects of bed management

When talking about strategical aspects of bed management in large hospitals,
the term “strategical” is used to refer to the highest planning hierarchy as
defined by Hulshof et al. (2012). Although all bed planning aspects involve
some type of “strategy” this section focuses solely on decision problems
related to bed planning and management for which the time horizon is to be
seen in years (see Table 2.1). Specifically, the following sub-sections discuss
general aspects of hospital layout planning with regard to bed management
as well as the main benefits and challenges of pooling bed capacities.

2.2.1 Hospital layout planning with regard to bed
management

When designing a hospital a potential starting point is to anticipate the
amounts and types of patients that will be treated within the facilities.
For large maximum-care hospitals this may include 20 and more different
medical specialties or dedicated departments (see for example Hübner et al.
(2018)) including for example pediatrics, obstetrics, orthopedics, urology,
neurology, vascular surgery and so forth. All of these departments cater
to different types of patient clientele and have different infrastructural
requirements.

After having been admitted to a specific department and ward, patients are
prepped for a specific surgery, diagnostic procedure, or medical treatment.
Depending on the type of procedure that a specific patient has to go through,
a certain time for recovery and/or further treatment has to be planned.
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In terms of bed capacity required, one can take these data points and
determine the amount of beds required for a certain number of operating
theatres, diagnostic machines (MRIs, CTs, etc.) and the like.

Finally, after determining the amount of beds required to satisfy the individ-
ual needs of each of the medical departments, the question of locating bed
capacities within a hospital remains. In this context, two key aspects have
to be considered. First, patients as well as doctors have to move within the
hospital. Patients have to be transported to and from the OR while doctors
have to do rounds, i.e., tend to their patients, and – depending on their
specialty – may have to move back and forth between the emergency rooms,
the operating theatres and the wards. Helber et al. (2015), for example,
investigate ways to optimize these walking distances using a hierarchical
layout planning approach to minimize logistic costs which are directly linked
to patient transportation.

OR

Lab

Wards out of range 

Wards in range of laboratory

Wards in range of laboratory and OR

Wards

Floors

Figure 2.2: Schematic overview of maximum allowable distances in a hospital

Second, some wards have to be in close vicinity to certain diagnostic
facilities or the OR. To give an example, the obstetrics ward should be
fairly close to the delivery rooms. Depending on what facilities are required
for individual wards and patients, a hospital planner can thus design the
hospital by optimizing walking distances while at the same time ensuring
that maximum distance thresholds are not surpassed (see for example
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Hübner et al. (2018)). To illustrate this, Figure 2.2 shows a schematic
overview of a exemplary hospital comprising six floors with three wards
each. With the configuration shown, only five wards could potentially be
used for catering to patients that require being in the vicinity of the lab
and the ORs.

2.2.2 Pooling bed capacities

One of the key challenges many hospitals face is how to efficiently make use of
their bed capacities. Oftentimes, specific wards will fill up on weekdays while
other wards might have free capacities left. In this context, simply relying on
the total utilization of the overall hospital bed capacity may be misleading as
this does not account for the amount of overflow situations occurring locally
within specific departments and wards. A better indicator for efficient use
can thus be seen in the combined evaluation of bed availability, i.e., the
probability of a department not having enough dedicated ward space for a
given patient, and overall bed capacity utilization.

Faced with this challenge, many hospitals nowadays are considering pooling
bed capacities to reap the benefits of balancing effects. To give an example,
Van Essen et al. (2015) and Hübner et al. (2018) have investigated methods
to combine ward space and assign the resulting combined space to groups of
departments. Here, the rationale is to investigate the median distribution
of occupied beds per department over time while finding departments that
can be matched. An example for this can be seen in Figure 2.3. Here, three
different departments are considered which each exhibit different occupancy
distributions during a typical week. Although the average number of beds
occupied per department is equal to 30 in all three cases, the actual number
of beds required to meet the needs of a combined department is quite
different. Specifically, when combining departments 1 and 2, 74 beds will
be required to meet the required average bed capacity for this combination
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on a typical Wednesday. However, when combining departments 1 and 3,
this number can be reduced to 65 for this example.
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Figure 2.3: Combining clinical departments to balance occupancy levels according to
Hübner et al. (2018)

To reap the benefits of combining ward capacity for specific groups of
departments, it is however imperative that the patient clientele of the
departments in question are actually compatible with each other as this
means assigning patients of different departments to the same ward or room.
This compatibility covers several aspects. First, the patient clientele itself
has to be compatible. For example, it would not be possible to combine
pediatrics with general surgery, as children are typically separated from
adults in a hospital. Likewise, the obstetrics department would not be
combined with other departments as women in labor and newborn babies
require their own space. Second, combined ward space also requires the
attending nursing staff to be trained accordingly so that they can cater to
all patients from both departments. Furthermore, all respective rooms and
beds have to be equipped with the relevant infrastructure, e.g., telemetry
which is needed for the respective department combination in question.
To put it in a nutshell, there is a trade-off between the different levels
of grouping departments and wards which needs to be assessed. This
relationship is illustrated by Figure 2.4.
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Figure 2.4: Schematic cost-curve when combining departments and wards to pool bed
capacities

In essence, combining departments and assigning pooled ward space to
said group of departments entails additional costs for qualifying nursing
staff as well as providing additional infrastructure. On the other side of
the equation, pooling ward capacity reduces the number of beds, staff and
other resources that have to be held available to meet a certain availability
target assuming a given utilization rate. There are however limits to
the benefits of pooling bed capacities. As can be seen in Figure 2.4,
the overall cost actually rises compared to a non-combined state if one
were to assume a maximum amount of pooled beds. This is because
combining departments and wards makes sense for beneficial combinations
in which the “clustering cost”, i.e., additional qualification and infrastructure
expenses, are low while at the same time combining departments exhibiting
complementary occupancy level distributions. However, when creating
the largest theoretically possible combination of departments, one would
also combine unfavorable combinations that would create more costs than
benefits.
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2.3 Tactical aspects of bed management

Having a well-thought out hospital layout in which overall bed capacities,
operating room capacities, available infrastructure and so forth are designed
to meet the needs of the local patient clientele based on long-term analysis
of historical distributions is only one part of the story. As pointed out
in previous sections, it is imperative for hospital management to not only
ensure high overall occupancy rates over time with regard to their bed
capacity but to make sure that the availability of said bed capacity stays
high as well. This requires balancing of bed occupancies over time and across
wards. Balancing bed occupancies across wards is a strategical problem
related to combining departments and assigning pooled ward capacity to
these combinations which has been discussed in previous section 2.2. When
it comes to balancing bed occupancies over time, there are several aspects
involved. In theory, one could simply anticipate the total LOS for each
elective patient based on their planned procedure, respectively. This data
could then be used to rearrange the arrivals of elective patients in such a
way that it further takes anticipated emergency arrivals in the near future
as well as current occupancies into account, such that bed occupancies are
leveled over time. In addition, elective patient arrivals could theoretically
be rescheduled on an ad-hoc basis depending on the current occupancy
situation.

In practice, the operating rooms (ORs) and certain diagnostic infrastructure
also need to be used as efficiently as possible, as the cost to keep such
infrastructure up and running is substantial. The underlying thought
process is the same as described above for bed capacities. To illustrate this
aspect, one can consider a typical OR. To efficiently make use of OR capacity
means to ensure a very high utilization, i.e., ensure that every OR is actually
used for surgical procedures during normal operating hours, avoid delays
and quickly shift around patients if necessary. Elective surgical procedures
can theoretically be scheduled in a way that optimizes OR occupancy while
avoiding overflow situations as average cutting-suture times are known. In
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reality, however, staff constraints as well as downstream effects of patient
movements have to be considered. In particular, the required surgeons and
support staff have to be on duty whereas patients recovering from surgery
require a bed where they can stay after surgery. Working plans for doctors
and nurses are typically drawn up weeks or months in advance to help staff
better plan and bring together their private and professional lives. This
doesn’t mean that every specific surgical procedure has to be scheduled
weeks in advance, but it requires to determine time slots in which specific
types of procedures, i.e., procedures that can be done by a specific team of
physicians can be performed. These time slot schedules are typically called
“master surgery schedules” and have to be decided on months in advance.

Tue Wed ThuMon Fri

8:00am

12:00pm

4:00pm

Tue Wed ThuMon Fri

8:00am

12:00pm

4:00pm

Tue Wed ThuMon Fri

Tue Wed ThuMon Fri

# of beds occupied

# of beds occupied

Master Surgery Schedule B

Master Surgery Schedule A

Figure 2.5: Schematic example for the effects of master surgery schedules on bed
occupancies
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Figure 2.5 shows a schematic example for the effects that different master
surgery schedules may have on bed occupancies. Specifically, every type
of surgical procedure requires different recovery and surveillance periods
for the patients that have undergone surgery resulting in respective bed
occupancies. In the schematic example shown in Figure 2.5, two master
surgery schedules A and B are compared. Both surgery schedules show
similar OR utilization rates and allow for scheduling the same amount of
surgical procedures per week. Here, each shade of gray represents time slots
that may be filled with specific types of surgeries for patients from specific
departments, respectively. However, as can be seen in the bed occupancy
graphs on the right, the resulting bed capacity requirements significantly
differ between both schedules. Depending on the overall utilization of
bed capacity within the hospital, it is clear that optimizing master surgery
schedules has the potential to significantly impact bed capacity requirements
and should therefore be considered when assessing bed management on
a tactical level (see for example Demeulemeester et al. (2013) or Fügener
et al. (2014)). Similar considerations apply when looking at schedules for
certain diagnostic treatments such as MRI and PET.

2.4 Operational aspects of bed management

The operational aspect of bed management is what usually comes to mind
when talking about bed management in a hospital, i.e., the actual allocation
of patients to beds. It should be stressed, however, that this is only the
last piece in the puzzle as laid out in the previous sections. In terms of
planning hierarchy (see Table 2.1, it is crucial that the strategical and
tactical aspects of bed planning have been thoroughly assessed and taken
into account before optimizing the operational aspect of bed management.
In other words, optimizing bed occupancy levels simply by changing the
way elective patients are scheduled for arrival at the hospital cannot by
itself make due for a lack of organization and planning on the strategical
and tactical level.
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On an operational level, bed management can be split into two different
sub-tasks which themselves can be seen as hierarchical decisions. Namely,
the first task is scheduling elective inpatients for arrival while the second
task is allocating a physical room and bed to an inpatient who has just
arrived.

2.4.1 Scheduling elective inpatient arrivals

The first task does not require the respective admission office of a specific
medical department to assign a specific bed to the patient. Instead, quite
similar to hotel room reservations, the key question at this stage is whether
or not enough capacity will be available on a certain day in the future.

# of beds occupied

today Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

bed 

capacity 

limit

Bed capacity required by inpatients (elective and emergency) currently occupying a bed within a designated ward space

Additional bed capacity required by emergency inpatients who are anticipated to arrive during the following days

Additional bed capacity required by elective inpatient arrivals who are scheduled to arrive during the following days

Figure 2.6: Example for bed occupancies over time when scheduling elective patients

Figure 2.6 provides a schematic graph which shows the total anticipated
bed occupancies over time divided by categories. Specifically, each bar
depicts the amount of beds that are required for a certain group of patients
on a particular day. This data is obtained by combining the anticipated
LOS per patient with the amount of patients requiring a bed. For instance,
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the light gray bars shows the bed capacity required for inpatients (elective
and emergency) that are already in the hospital at the time of planning, i.e.,
patients that already occupy a physical room and bed. These patients are
scheduled to leave the hospital within the following days, such that the light
gray bar gets smaller over time. In the example of Figure 2.6, two weeks
after today there are only about 20% of the patients anticipated to still be in
the hospital who are there today. The gray and dark gray bars on the other
side depict the total amount of beds required for future inpatient arrivals,
and are typically growing over time. This data is anticipated based on the
average LOS for the respective emergency and elective inpatient arrivals.
In the graph, one can see that the overall number of beds that at present
are believed to be required for the coming two weeks is slowly declining.
This is due to the fact that in this particular example there is still room for
scheduling elective inpatient arrivals within the next two weeks. However, it
should also be noted that the admission office in a hospital typically tries to
stay under the overall bed capacity limit by a predetermined safety margin
to avoid overflow, i.e., to account for statistical volatility in both emergency
patient arrival rates as well as changes in LOS. Naturally, scheduling elective
patients does not only require anticipating future bed occupancy levels but
also involves planning surgeries and accounting for special infrastructural
needs, i.e., telemetry, a specific patient might have, which for individual
patients will change the solution space as to which day these patients may
be scheduled to arrive.

2.4.2 Allocating patients to beds

Allocating patients to rooms and beds is an everyday task which is typically
carried out by the admission office once a patient arrives at a hospital and
requires a bed for an overnight stay. Revisiting the hotel room reservation
analogy from the previous subsection, it should be stressed that the up-
stream decision of scheduling elective inpatients only takes the overall bed
capacity that meets the requirements for the specific patient into account.
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The actual physical allocation to a bed will then happen only at the ex-
act moment a patient physically requires his or her respective room and
bed. When allocating a patient to a bed, several stakeholders are involved,
all of whom have different objectives and constraints. Namely, these are
the patients themselves, the nursing staff, and doctors (see Schäfer et al.
(2019)).

Beds Rooms Wards

Patient

Nursing 

Staff

Doctor

Objectives

▪ Constraints

O

C

▪ Minimize waiting time 

for beds for elective and 

emergency inpatients

▪ Ensure infrastructural 

requirements

O

C

▪ Maximize compatibility 

between patients (age, 

medical condition)

▪ Prohibit gender mixing

▪ Ensure medical isolation & 

infrastructural requirements

O

C

C

▪ Balance workload for 

nursing staff across 

wards

O

▪ Minimize walking distances 

for doctors during rounds

O

Table 2.2: Overview of typical objectives and constraints for patients, nurses, and
doctors in the operational patient-bed allocation problem

Table 2.2 gives an overview of objectives and constraints that usually have
to be met in this regard according to Schäfer et al. (2019). To begin with,
several hard constraints have to be adhered to when allocating inpatients
to rooms and beds. First, women and men are typically not allowed to
be mixed in the same room (except for certain intensive care units) for
an overnight stay. Second, all medically required infrastructure needs to
be available for a certain patient at a given bed. For example, certain
cardiac patients “require telemetry-ready” beds such that their cardiac
status can be constantly monitored by the attending nurses. Third, medical
isolation requirements have to be respected. This includes, for example,
isolating immuno-comprimised patients from normal patient clientele, or
isolating patients that have especially contagious or dangerous diseases such
as MRSA-infected patients. When all these necessary hard constraints are
met, the solution space for allocating a patient to a bed can then be assessed
with regard to the objectives of the three stakeholders. Patients as such
will want their time spent in the hospital to be as comfortable as possible
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while receiving the best treatment and care. A good proxy for ensuring
comfort can be maximizing compatibility between room mates with regard
to their medical condition and their age (see also Schäfer et al. (2019)).
Finally, elective patients may rightfully assume that a bed is available
for them on the day they are scheduled to arrive. Rescheduling elective
patient arrivals on short notice is only a theoretical option, as it would
cause problems for most patients. This is because such patients will usually
have undergone significant planning to account for their hospital stay in
their private and professional lives. Thus, forcing elective inpatients to be
rescheduled on short notice will leave them unhappy with the hospital’s
service and drive them away to other hospitals. However, as hospitals are
forced to operate with overall average bed occupancy rates of 80% and more,
overflow situations will happen due to the volatility of emergency arrival
rates, patient LOS and so forth. When overflow situations occur, incoming
emergency patients might sometimes be redirected to other hospitals if they
are still en route to the ER. Nonetheless, this does not prevent overflow
situations as patients who are already in the hospital might unexpectedly
have to stay longer. Another example could be seen in emergency patients
who have to unexpectedly spend the night after a first diagnostic treatment
has revealed the need for prolonged monitoring. When overflow situations
occur, some patients may be required to be temporarily placed in overflow
areas such as hallways, waiting rooms, or treatment rooms until a bed within
their respective department ward space becomes available. To avoid having
to reschedule elective patients or having to put them in such overflow areas,
a good option is to prefer elective patients when assigning bed capacity
provided that all medically required treatments may still be upheld for all
patient types alike. To summarize, the key to mitigating overflow situations
is to avoid them altogether and – if that is not feasible – to manage them
as best as possible.

Nursing staff are typically assigned to a specific ward and cannot be moved
around easily. This is because the work requires well-coordinated teams
that have an in-depth understanding of the specific procedures within a
certain department or ward. In addition, nursing staff cannot be quickly
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reassigned to different shifts as this would contravene personal planning
capabilities for the individual staff members. As a result, the care capacity
for a given ward on a given day is limited on short notice, i.e., the staff
assigned to a specific ward on a specific day are only capable of handling
a certain care work load. In terms of bed management this translates to
avoiding to assign too many care intensive patients to a single ward. As
different patients have different requirements regarding daily care, the key
is to balance care workload across different wards within the same pooled
ward capacity in line with the respective care capacity available in each of
these wards.

Finally, the allocation of patients to rooms and beds also effects doctors.
Typically, doctors have a set of patients they are assigned to and whom
they attend to at least once a day during rounds. The idea with regard
to bed management is to reduce walking distance for doctors such that
patients that are assigned to a specific doctor are located in close vicinity
to one another, preferably even sharing rooms.

Taking all the above-mentioned objectives and constraints into account
when planning patient allocations for pooled ward capacity of 50 beds or
more will become almost impossible to do by hand, especially considering
the high levels of uncertainty that are inherent to almost any patient
clientele with regard to LOS, arrival times, undetected illnesses and so forth.
To handle such problems, mathematical optimization models have been
proposed by numerous research groups (see for example Demeester et al.
(2010), Ceschia and Schaerf (2016), and Schäfer et al. (2019)). Moreover, in
addition to using automated assignment algorithms, professional software
tools are required that show the bed planner, nurse or doctor all the key
information relevant for patient bed allocation at a glance for a respective
combination of wards.

In case a fully integrated tool that automatically assigns patients to beds
does not yet exist, it can still be very helpful to provide a bed planner with an
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remaining LOS

patient-specific parameters (e.g., care level, age, 

infrastructural requirements, isolation level) 

patient name

Figure 2.7: Example of an overview tool designed to support a bed manager in a
hospital

overview that shows him or her all relevant information required to support
patient-bed allocation decisions at a glance. For example, Figure 2.7 depicts
an example view of such a basic tool, in which all occupants within 120
beds spanning across five wards are shown with their respective parameters
relevant for bed planning purposes, such as age, gender, remaining LOS,
infrastructural needs, or care level. In the example shown in Figure 2.7 every
ward has a total of 12 double bed rooms that can be occupied by either only
male or only female patients. For each bed, a name on a white background
signifies a male patient, whereas a name on a gray background signifies
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a female patient. In this example, only room five in ward one and room
four in ward three are completely empty whereas five beds are available
in rooms already having one female occupant and three beds are available
in rooms already having one male occupant. Depending on the gender of
known future patient arrivals, the bed planner can use this information
to decide whether or not to start filling an empty room. Furthermore,
the remaining LOS is depicted in the lower left corner. For example, the
female occupant in bed two in room ten in ward two is anticipated to
leave the hospital in two days, whereas the male occupant in bed one in
room eight in ward one is anticipated to leave in seven days. With this
information readily available the bed planner can combine patients with
similar remaining LOS such that both beds in a given room are vacated
on the same day, thereby providing more flexibility when assigning future
patients to beds as an empty room can be used either for male or female
patients. Finally, having an overview of patient-specific parameters, such as
the required care-level, infrastructural needs, and so forth, depicted in the
lower right corner, enables the bed planner to balance workload for nursing
staff and provides a quick overview over patient needs.

2.5 Summary and discussion

Rising health care costs have been forcing hospitals more than ever before to
operate as efficiently as possible. First and foremost this includes optimizing
the allocation of hospital resources as well as anticipating workload. In a
large hospital, this requires the careful orchestration of multiple medical
departments, diagnostic facilities, medical and non-medical staff, and last
but not least bed capacity. All of these different stakeholders have their
own objectives and constraints, respectively, that are closely interlinked
with each other. Naturally, not all of these objectives can be optimized at
the same time due to conflicting interests of the individual stakeholders
involved. Hence, trade-offs are required when looking to optimize the overall
utility for the hospital.
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In this context, bed management plays an important role in hospital plan-
ning activities. “Bed management” as such is a broad term encompassing
several individual planning problems. These problems may be categorized
along their planning hierarchy, i.e., with regard to the typical time frames
in which problems occur, decisions can be made, and results achieved.
In particular, these problems can be categorized in strategical, tactical,
and operational aspects, wherein the time horizon for each of these can
be viewed in years, months, and days, respectively. The strategical side
mainly includes hospital layout aspects as well as questions with regard to
pooling bed capacities across departments and wards. On a tactical level,
the interlink between main cost drivers such as diagnostic facilities and
operating rooms and bed capacity and bed management is assessed, while
the operational level then deals with the actual ad-hoc allocation of patients
to beds. However, the different problem settings on each hierarchical level
cannot be combined in a single mathematical model designed to deliver
solutions for all levels simultaneously. This is mainly due to the fact that
the cost for adopting a solution to a specific problem setting, in terms of
money and time spent to implement that solution, is substantially different
for every hierarchical level. For example, once the layout of a hospital has
been decided on, and after the hospital has been built according to that
layout plan, an actual change of that layout will most likely require time-
and cost-extensive remodeling efforts. Likewise, the decision to form combi-
nations of wards and departments with the goal of creating pooled ward
capacity has a significant lead time as qualification measures for nursing
staff have to be set up and implemented, for example. In essence, this
means that for each of these hierarchical layers, the underlying problem
settings are only worth solving again, should the relevant input parameters
change systematically. For example, it would not be sensible to regroup
departments and wards in case of a one-time surge of inpatients, e.g., due
to a large highway accident, whereas it would make sense to contemplate
such a regrouping in case a long-term trend in patient arrivals for a specific
department is observed, e.g., triggered by closures of smaller hospitals
in the vicinity. However, this does not mean that the effects that a hi-
erarchically higher decision has on downstream problem settings should
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be neglected. On the contrary, it simply means that decision variables
for mathematical models of problems on different hierarchical layers are
unlikely to be determined within the same optimization model since the
values for said variables require changing in substantially different intervals.
For instance, a specific master surgery schedule typically stays the same for
at least a couple of weeks while patient-bed-allocations may change within
hours. Instead, the connections between different planning levels need to be
formulated as boundary conditions or specific targets. For example, when
optimizing said master surgery schedule it is crucial to balance average bed
occupancy levels.

The key takeaway for any hospital management in this regard is to under-
stand that there are intricate relationships between all these aforementioned
aspects without making the error of trying to tackle all of the underlying
planning problems in one big “one size fits all” optimization model. Instead,
the key is to look at these problems hierarchically, while being aware of
the general implications that certain decisions on a higher hierarchical level
have on downstream planning problems. One prominent example here is
the effect master surgery schedules have on bed capacity requirements.

The main challenge that hospitals will face is the question of how to put
theory into practice. This is due to the rising need for computational
support when running larger bed management and planning systems com-
prising several hundred rooms and beds. Many hospitals today are in the
midst of a digital transformation, trying to move away from a paper-based
organization of patient pathways and treatment plans to a fully digital
system. In this transformation process it will be crucial to holistically look
at the combination of planning problems with regard to bed management
without focusing on specific medical departments or diagnostic facilities
individually, but on the hospital as a whole. As different stakeholders will
have contradicting objectives, it is key that the development and oversight
of the necessary digital infrastructure and planning software is done on
a hospital level, thereby preventing “fights for resources” and providing
planning security for all departments involved.
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Abstract Sharing bed capacity across clinical departments improves bed
availability via pooling effects. This means in effect that fewer beds are
required to satisfy a given service level when combining departments and
wards into groups. However, this increases the complexity of tending to
inpatients and therefore creates what we term pooling costs. To solve the
trade-off, we suggest an integer linear programming (ILP) modeling and
solution approach that is designed on a generalized set partitioning problem
(SPP). The approach finds the cost-minimal combination of departments
and wards in a maximum-care hospital that satisfies maximum walking
distance thresholds for doctors and patients. In particular, costs associated
with holding the required bed capacity are minimized while also consider-
ing seasonality of weekly demand as well as personnel qualification costs
and management costs incurred by combining departments and allocating
pooled ward capacity to these combinations. In addition, maximum walking
distances between wards and central facilities for the combinations obtained
are minimized. As actual management practice justifies solving the con-
flicting criteria of the entire planning problem in lexicographical order, the
resulting hierarchically structured and SPP-based ILP approach addition-
ally allows for time-efficient and exact solutions even for large problem
settings. Our modeling and solution approach was co-developed and imple-
mented at a large German maximum-care hospital comprising 22 clinical
departments. As a result, the number of beds needed to maintain a unified
service level of 95% can be reduced by 3.3%, while cutting costs by 2.1%.
We also perform several sensitivity analyses and show general applicability
by using simulated data for generalized and very large hospital settings.
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3.1 Introduction

Hospital resources have to be used as efficiently as possible while maintaining
a sufficient level of patient care and optimizing the workload for medical
staff. High and stable bed occupancy levels play a key role in this context.
Today, most hospitals are experiencing rising caseloads paired with cuts
in overall bed capacity. These tight bed capacities are required from an
economic efficiency perspective, but can lead to bed shortages, which can
in turn result in a cumbersome search for unoccupied beds within other
departments of the hospital, long waiting times for patients, or even lead
to patient rejection. As a result, most large maximum-care hospitals –
which are by definition obliged to treat any incoming patients – struggle
with the task of retaining given service levels while simultaneously keeping
overall costs for bed availability at a minimum. This is because they
experience greater variances in patient clientele paired with high emergency
admission rates, which significantly reduce planning opportunities. This
holds especially true when all beds of a given ward are exclusively assigned
to a single department (e.g., Urology, Cardiology, Orthopedics), as there
are no predefined alternatives for accommodating overflow patients.

The situation can be improved if several departments share the same beds,
i.e., if ward capacities are pooled and patients from different departments
are assigned to the same wards. However, not all departments of a hospital
can be grouped for medical and social reasons and because of additional
costs that would occur if existing wards were combined into larger units.
These additional costs, for example, may be caused by further training of
nursing staff.

In the present paper, we develop a model and solution approach that solves
both the trade-off between savings in bed capacity costs on the one hand and
pooling costs that occur on the other hand when combining departments
and wards. Aside from this, maximum walking distances between wards and
central facilities are minimized for the combinations obtained. In addition,
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several constraints are considered when grouping departments and assigning
wards to these groups of departments, including medical, social, service,
and infrastructural aspects, as well as a varying demand for beds.

We develop a modeling and solution approach for the NP-hard quadratic
assignment problem. The approach suggested generates cost-minimal
department-ward combinations assuming maximum walking distances for
doctors and patients and optimizes the layout of the combinations obtained
within the entire hospital.

The modeling and solution approach proposed contributes to existing
literature on various distinct aspects. First, the decision problem formulated
allows the solution of large, i.e., practical-sized, problem instances, when
solving the grouping problem and the layout problem in a lexicographical
manner, which is justified by actual management practice. Second, the
assignment problem is formulated as a generalized set partitioning problem,
which improves the solvability of the problem. The approach therefore
allows for time-efficient and exact solutions to this problem. Third, medical,
personnel, infrastructural and location constraints are considered including
synergy effects regarding additional qualification and management costs
incurred as a result of combining departments and wards to pooled capacities.
Fourth, we take seasonality effects and differing occupancy distributions per
department into account when combining departments. Last but not least,
we provide a solution that is highly customizable in terms of department-
specific constraints and service levels. Our model has been tested with real
data from a large German hospital.

The remainder of the paper is organized as follows. Section 3.2 describes
the problem at hand in detail. Section 3.3 reviews the related literature and
defines the contribution of the present paper. Section 3.4 then develops the
model and the solution approach. Section 3.5 presents numerical results.
Finally, Section 3.6 summarizes the key findings and highlights future areas
of research.
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3.2 Problem Description and Background

The aim of this paper is to develop a model and solution approach designed
to group clinical departments of a hospital and exclusively assign existing
ward capacity to these groups. Note, that single, i.e., non-grouped depart-
ments may also be part of the final solution. A department represents a
clinical unit such as Nephrology, or Urology. A ward is a nursing unit, i.e.,
a defined number of rooms and beds in a specific hallway on a given floor.
Several different wards can exist on a single floor. We denote a group of
departments (e.g., if Urology and Gastroenterology are put together) as
a “department combination”. Furthermore, such a combination is termed
“department-ward combination” when dedicated ward space is assigned to
it (e.g., wards 11 on floor 1 and ward 23 on floor 2 are assigned to the
department combination Urology and Gastroenterology). This is visualized
in Figure 3.1. Both combinations between departments and between de-
partments and wards are denoted in the literature as clustering, without
clearly distinguishing between them.

Figure 3.1: Combination of clinical departments and wards

The number of beds required on any given day is driven by a variety of
factors. Among others, these include uncontrollable external effects like
annual and weekly seasonality or unplanned patient arrivals (especially for
emergency patients), and internal parameters like master surgery schedules
or personnel rosters and shift plans. The resulting varying demand for
beds may either lead to unused capacity or shortages of hospital beds
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within a department. Unused capacity results in lower profitability, whereas
shortages require significant organizational effort when dealing with over-
flow situations. This paper therefore investigates the strategic option of
improving bed occupancy levels by sharing beds across departments using
department-ward combinations instead of exclusively assigning beds of
one or several wards to a single department. When departments share
wards, this implies that they not only share physical beds, but also the
nursing services and resources associated with that bed capacity. Nurses
are organizationally allocated to wards (=nursing unit), whereas doctors
are typically associated with departments. From an organizational point
of view, building department-ward combinations implies that nurses serve
patients from different departments within their ward, whereas doctors
still only serve patients from their department. However, patients of any
one department may be placed in any ward allocated to the respective
department combination at hand. This also means that patients from
different departments may share one single room.

Two key prerequisites for combining departments are medical and patient
compatibility (see Hübner et al. (2016)). Medical compatibility describes
the requirement that the risk of dangerous infections has to be kept as
low as possible. To that end, certain departments should not be sharing
the same ward to avoid mixing their respective patients. For example,
immunocompromised patients undergoing cancer treatment should not be
exposed to highly infectious patients. Patient compatibility, on the other
hand, describes social or emotional requirements of patients. This covers
issues such as combining departments with patients with significant differ-
ences in severity and type of individual medical condition, age, or gender.
For example, it would typically not be permissible to combine a Pediatric
department with a Geriatric department.

Focusing on the cost effects when grouping departments, we consider (1)
costs for bed availability that can be reduced with larger department com-
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binations via pooling effects as well as (2) additional ongoing pooling costs
resulting from the increasing complexity and size of the chosen department
combinations. In a nutshell, an increasing aggregation level, i.e., combining
more departments, decreases the overall bed capacity required and therefore
reduces the associated annual costs for providing the respective capacity.
On the other hand, the higher the aggregation level, the more complex, i.e.,
more costly it will be to operate the chosen configuration. We detail these
cost effects, which have been jointly developed with physicians, nurses and
managers of the case hospital.

(1) Cost Saved via Bed Pooling: Bed occupancy levels of any department are
a function of capacity and the number of patient arrivals, their arrival times
and lengths of stay. The latter depends on the patient clientele and their
respective treatment plans. The number of patient arrivals per day is driven
by the stochastic inflow of emergency patients as well as the scheduled
appointments for elective patients. Typically, the ratio of emergency and
elective patient arrivals varies greatly between departments (e.g., Cardiology
has a high share of emergency patients whereas Orthopedics is a heavily
elective discipline). Emergency patient arrivals occur randomly and cannot
be planned, whereas elective patient arrivals depend on multiple factors,
including capacity and availability of operation rooms (OR) as well as
medical personnel, and patient preferences. Seasonal effects also play an
important role for some departments. For instance, elderly people are
more likely to suffer fractures during the winter months when it is slippery
and wet outside. Demand during the week may also depend on external
factors, such as the daily opening hours of general practitioners. Given
these factors, it is clear that different departments will exhibit different
occupancy patterns, with varying weekly, monthly and seasonal peaks.
Figure 3.2 illustrates a representative case with three departments and two
potential department combinations. Combining departments 1 and 3 levels
bed requirements better than combining departments 1 and 2.

(2) Additional Ongoing Pooling Costs: However, pooling bed capacity
implies that all beds associated with a given department combination have
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Figure 3.2: Average number of beds occupied during a week (illustrative example)

to be able to accommodate every type of patient from that group. This
increases the costs that arise from pooling capacities. There are two cost
types:

(2a) Personnel skill-building costs: The nursing staff is the first point of
contact for patients. As opposed to doctors who usually see their patients
once or twice a day during rounds, nurses have to frequently interact with
their patients and are typically assigned to specific wards. Hence, joint ward
usage means nursing staff have to cater to the needs of all potential patient
types and medical conditions within a specific department combination, and
also need to be able to handle emergencies. This requires additional training
and qualifications. Skill-building of staff to work in a specific department
combination is considered an ongoing effort due to personnel fluctuations
and recurring training sessions (e.g., certification processes required to work
with specific medical equipment).

(2b) Additional management costs: Larger department combinations (e.g.,
with more than 200 beds) require more management resources to run day-to-
day business efficiently and smoothly than smaller units (e.g., with 20 beds).
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This includes operational bed assignment, personnel planning, and so forth.
In general, this can only be achieved by providing sufficient resources (e.g.,
a dedicated bed manager) and appropriate software support (e.g., a bed
management system) to create the required transparency across multiple
units.

To sum up, pooling effects reduce the number of beds needed for a given
service level, which results in lower bed costs. However, the more clinical
departments are included in one group, the higher the pooling costs become.
Basically, this implies that it is not advisable to combine as many depart-
ments into a group as possible just because they are medically compatible.
There is a trade-off to be made while seeking to find the lowest-cost solution
for this long- and mid-term planning problem.

Alongside minimizing costs, hospital management is also interested in
ensuring sufficiently short walking distances for all medical staff serving these
department-ward combinations as well as for inpatients. Three stakeholders
therefore need to be considered when modeling walking distances, namely
nurses, doctors, and patients.

Nurses are generally assigned to a specific ward. Their daily walking
distances depend on ward size alone and are not affected by the overall size
of the respective department-ward combination.

Doctors are typically assigned to departments, which means that the pa-
tients they are attending to may be scattered across all wards within their
respective combination. As a result, it seems advisable to avoid heavy
scattering of wards within a specific department-ward combination to avoid
long walking distances for doctors. However, the amount of time spent
while moving between patients is mostly of lower importance given that
they typically see their patients once or twice a day while doing rounds.
During the rest of their daily routine, doctors work in functional units (e.g.,
the OR and laboratories) and do office work. Optimizing walking distances
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for doctors can therefore be considered a downstream decision as it is mostly
driven by the actual operational bed assignment of incoming patients. In
practice though, heavy scattering of department-ward combinations should
still be avoided wherever possible to ensure coherence for patients and to
foster a feeling of togetherness for staff members of a given department. For
the long-term planning problem considered it is therefore relevant to ensure
that walking distances within any given department-ward combination
are not unreasonably high and to consider the objective of minimizing the
maximum walking distances between wards as a separately weighted goal.

Inpatients, on the other hand, require services from central facilities, so
the distances of all wards assigned to a department combination and the
respective central facilities required should be as short as possible. However,
equivalent arguments as formulated for doctors suggest this aim should be
considered as a separately weighted goal.

To sum up, minimizing walking distances is in general not a primary
objective in the given long-term grouping problem. However, it is of
particular interest formulating thresholds for maximum walking distances
between wards assigned to the same group of departments such that wards of
any given group are sufficiently close to each other, and a group is perceived
as a single unit by staff and patients. Simultaneously, the maximum
distances between any ward of a given department-ward combination and a
required central facility should be limited.

This discussion shows the diverse importance of obtaining cost-efficient
combinations and short walking distances in hospital practice. Hospital
management is usually expected to find the department-ward combinations
with the lowest overall operating costs that still adhere to predetermined
maximum walking distance thresholds. The minimization of walking dis-
tances can thus be considered as a separate goal that is relatively weighted
against the occurring operational costs. This leads to a multi-criteria de-
cision problem where the conflicting goals are weighted by the hospital
management. This modeling approach also allows solving the entire plan-
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ning problem in a lexicographical order, i.e., minimizing costs first, and
minimizing walking distances second.

3.3 Related Literature

The key question in bed capacity planning is how to best estimate future
occupancy levels. Due to the uncertainty and complexity that hospital
situations typically exhibit, there are numerous different approaches de-
termining bed requirements that have been investigated over time. For
example, Vassilacopoulos (1985) determines bed requirements based on his-
torical weekly patient data while incorporating constraints such as waiting
list length and minimum occupancy levels. Harris (1986) use cyclical OR
timetables and length-of-stay data to simulate bed requirements for surgical
departments. Alongside simulation techniques, there are numerous papers
that utilize queuing theory to plan bed capacity. Green and Ngyuen (2001)
for example use queuing models to model patient arrivals and lengths of
stay. In a different approach, Cochran and Bharti (2006) and Cochran and
Roche (2008) use financial data as well as midnight census data to assess
inpatient demand, which they then apply to their simulation to assess bed
capacity required.

The result of the bed capacity planning models is mostly that higher
occupancy levels are achievable with larger units, i.e., greater pools of jointly
utilized bed capacity. Bed pooling approaches are therefore suggested that
group clinical departments and assign given wards to these groups. Green
and Ngyuen (2001) analyze the bed pooling effects in a large hospital
where several surgical specialties have been combined into a single nursing
unit. In their report, they emphasize that pooling capacity is especially
effective when combining smaller departments, as these typically exhibit
high inefficiency due to the underlying stochastic demand. They also
acknowledge the importance of taking medical constraints and patient
compatibility into consideration when pooling bed capacity. De Bruin et al.
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(2010) developed a decision support system based on the Erlang-loss model
to determine the appropriate size of wards and expected bed requirements
of departments or groups of departments in hospitals. Using historical
clinical data of multiple departments, they show that roughly half of the
scheduled admissions and almost all emergency admissions can be well
described by a Poisson process when considering weekdays and weekends
independently. For practical modeling purposes they applied their approach
to all departments. However, this implies that all elective patient arrivals
are evenly distributed during weekdays, which is not generally the case.
As a result, their approach does not differentiate between departments
with high or low emergency case ratios, and may therefore underestimate
existing weekly seasonality effects. Van Essen et al. (2015) contribute by
introducing a methodology to cluster clinical departments and assign wards
to these clusters all while not exceeding a pre-specified blocking probability.
They propose an approach where they build on the work of De Bruin et al.
(2010) and use the Erlang-loss formula to determine bed requirements. They
formulate a MIP model that groups departments into department-ward
combinations which they call clusters, and allocates ward capacity to these
clusters. Their multi-criteria objective function minimizes the maximum
number of departments grouped into one cluster and the walking distances
between wards assigned to the same cluster, and maximizes the preferences
of departments located close to central facilities, e.g., intensive care unit
(ICU) and operating room (OR). Since the problem formulated is strongly
NP-hard, they propose an approximation model and a two-step-sequential
heuristic solution approach. Another related approach has been formulated
by Best et al. (2015). They propose an optimization framework for strategic
bed capacity layout decisions in large hospitals with the goal of increasing
the overall utility for the hospital. Specifically, they try to find a trade-off
between forming specialized and non-specialized wings. In their model,
non-specialized wings profit from pooling effects while highly specialized
wings allow for more focused patient care, which may translate to lower
lengths of stay as well as higher utility for patients. Bed requirements
are calculated using queuing models without taking seasonal demand into
account.
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Research Gap and Contribution In general, the suggested bed pooling
approaches found in the literature assume Poisson-distributed arrival rates
and exponentially distributed lengths of stay. However, this neglects the
higher moments of interarrival times and lengths of stay. In particular,
departments with a high share of elective patients tend to exhibit less vari-
able interarrival times when comparing real data with Poisson-distributed
arrival rates. In addition, the vast majority of approaches neglect demand
seasonalities. At most, weekdays and weekends are distinguished. However,
occupancy levels of departments demonstrate a distinctive weekly, monthly,
and annual seasonality that also varies greatly between departments. Bed
pooling approaches should therefore include seasonality effects for relevant
cyclic time periods (e.g., week, month, year). We will therefore contribute
by both (a) applying empirical distributions of interarrival times as well as
lengths of stay, and (b) including department-individual seasonality effects.
Furthermore, the current literature on combining clinical departments fo-
cuses mostly on maximizing bed occupancy while limiting the aggregation
level of departments and satisfying a minimum service level. The literature
lacks a comprehensive analysis of actual costs and the trade-off in savings
through lower bed costs but higher pooling costs due to greater aggregation
of departments. The detailed analysis of decision-relevant costs via a joint
project with hospital management constitutes a further contribution of this
paper. The suitability of department combinations varies substantially in
real life. Simple and generalized approaches to combining departments
and assigning ward locations do not meet real life requirements. An ap-
proach is required with general and department-specific constraints that
can be established individually. This will be integrated in our approach by
department-individual constraints. Last but not least, the simultaneous
determination of department groups and assignment of wards to these
groups is a combination of strongly NP-hard problems (see Van Essen
et al. (2015)). An efficient solution approach is therefore necessary to solve
scenarios within reasonable time limits. We suggest a new Set Partitioning
(SP) modeling approach that can handle large problem settings without
having to rely on heuristics as in the other approaches like Van Essen et al.
(2015) or Best et al. (2015).
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3.4 Model Development

This section develops a model and solution approach to group clinical de-
partments of a hospital and to assign existing wards to these combinations.
As denoted in Section 5.2, the underlying problem is to find department-
ward combinations that minimize the total costs (i.e., solving the trade-off
between cost benefits for pooling bed capacities and the pooling costs
incurred) and to minimize distances between wards assigned to one de-
partment combination, and between those wards and the central facilities
required by the departments of the combination. We propose a decision
model that solves the department-ward combination problem by minimizing
total costs subject to maximum walking distances and in addition solves
the layout problem by minimizing maximum walking distances for the
determined department combinations. As minimizing walking distances
and minimizing total costs are conflicting goals, we develop a multi-criteria
model, which is motivated by managerial practice. The planning problem
is formulated as a generalized set partitioning problem (GSPP) designed to
find an optimized set of department-ward combinations while considering
the trade-off between costs for beds and costs for pooling while respecting
distance constraints and a layout that assigns specific wards to department
combinations of the entire hospital such that maximum walking distances
are minimized.

The remainder of this section is organized as follows. In a first step (3.4.1),
we start by describing our general modeling approach – a classical set
partitioning problem (SPP) – which we use to group all clinical departments
into disjointed subsets where every department is assigned to exactly one
subset. In a second step (3.4.2) we then describe the preprocessing required
to quantify the data sets and constraints needed to include ward assignment
and cost evaluation into the SPP. In a final step (3.4.3) we then formulate
the decision model used to solve the entire planning problem defined. The
following table summarizes the notation used.
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Sets
C set of feasible department combinations, C =

{1, 2, ..., c, ..., |C|}
Cmax set of maximal cliques in graph G, Cmax =

{1, 2, ..., i, ..., |Cmax|}
Copt set of cost-optimal department combinations derived from

Model I, Copt ⊆ C, Copt = {1, 2, ..., c, ..., |Copt|}
D set of departments in the hospital, D = {1, 2, ..., d, e, ..., |D|}
Smax,i set of vertices, i.e., departments belonging to maximal clique

i of graph G
Sc subsets of departments belonging to department combination

c, Sc ⊆ D
Ŝ superset of all feasible department combinations, Ŝ =⋃

c∈C Sc

W set of wards in the hospital , C = {1, 2, ..., v, w, ..., |W |}
Parameters
ϕc cost per department combination c
ϕbeds

c annual costs of bed availability for department combination
c meeting a predetermined service level

ϕMST
c additional costs per full-time equivalent (FTE) required to

operate department combination c
ϕpool

c additional annual pooling costs for department combination
c

aw number of available beds per ward w
bc number of beds required to meet the predefined service level

for department combination c
bFTE

d number of full-time equivalents (FTE) required to operate
department d

hcw distance between ward w and the furthest relevant central
facility (e.g., OR) for department combination c

h̃c maximum distance allowed between wards and the central
facilities of department combination c that are required

Continued on next page
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Table 3.1 – Continued from previous page
ide 0− 1 coefficient of incidence matrix I where element ide = 1

if departments d and e are allowed to be combined into the
same department combination; ide = 0 otherwise

I 0− 1 incidence matrix I with elements ide, d, e ∈ D
Kde additional personnel skill-building and management costs

per FTE (full-time equivalent) when combining departments
d and e to a department combination c

ldw maximum distance between ward w and the central facilities
required by department d

Q 0− 1 coefficient matrix of the set partitioning problem with
elements qdc

qdc 0 − 1 coefficient of the set partitioning problem; qdc = 1 if
department d belongs to department combination c; qdc = 0
otherwise

rwv distance between wards w and v
r̃ maximum distance permitted between any two wards w, v

within any one department-ward combination
R matrix of the distances between wards with elements rwv,

w, v ∈W
Decision and auxiliary variables
xc xc = 1 if department combination c is selected; xc = 0

otherwise
ycw ycw = 1 if ward w is assigned to department combination c;

ycw = 0 otherwise
zwv zwv = 1 if wards w and v are assigned to the same department

combination; zwv = 0 otherwise

Table 3.1: Notation

3.4.1 Overview of General Model Approach

Our modeling and solution approach to build the department-ward combi-
nations is based on a classical set partitioning problem (SPP). The SPP
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determines how the items of a given finite set – in our case the set of
departments D – can be partitioned into smaller subsets Sc, c ∈ C, i.e.,
department combinations such that the overall costs are minimized. C

represents the set of all department combinations that are medically and
socially feasible. The SPP approach requires every department d ∈ D to
be assigned to exactly one and only one partition, while minimizing the
overall costs of all chosen department combinations. Modeling the problem
as an SPP greatly reduces the combinatorial problem as only |C| potential
subsets have to be assessed during runtime as opposed to all theoretical
combinations 2|D| − 1. In essence, the SPP approach is transfering the
checking of medical and patient compatibility of department combinations
to the preprocessing step (see Subsection (3.4.2) for details). The cost-
optimal solution then contains a selection of disjoint subsets Sc, ∀c ∈ Copt

of the entire set of possible department combinations or subsets. The SPP
requires a given set C of |C| subsets Sc, where each item (department)
belongs to at least one subset and the costs ϕc associated with each subset
Sc are known. In this context the binary decision variable xc ∈ {0, 1},
∀ c ∈ C indicates whether a subset Sc or department combination is part
of the solution or not. The SPP can then be modeled as a 0 − 1 integer
programming model, as formulated below Wolsey and Nemhauser (1999).

Model SPP

min TC =
∑
c∈C

ϕc · xc (3.1)

subject to

∑
c∈C

qdc · xc = 1 ∀ d ∈ D (3.2)

xc ∈ {0, 1} ∀ c ∈ C (3.3)
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Equation 3.1 minimizes the total costs (TC) of all selected department
combinations. Equations 3.2 and 3.3 assure that each department is assigned
to one and only one department combination. The parameters qdc ∈ {0, 1},
∀ c ∈ C, d ∈ D define the 0− 1 coefficient matrix Q of the SPP symbolizing
whether department d is part of subset Sc , c ∈ C. Based on the SPP we
can formulate a generalized SPP that considers additional constraints and
the assignment of wards to each of the department combinations chosen.

3.4.2 Preprocessing

The SPP solution approach requires the definition of several sets, subsets
and parameters. These sets and figures are defined in the present subsection.
Subsection 3.4.2.1 describes how to attain feasible department combinations.
Subsequently, the number of beds required (3.4.2.2) and the costs (3.4.2.3)
of each of these combinations are quantified. Subsection 3.4.2.4 then defines
the distance and location constraints.

3.4.2.1 Feasible Subsets of Departments

For medical and social reasons, not all department combinations are per-
mitted in the problem. Compatibility between departments is defined by
the incidence matrix I, where the element ide = 1 if departments d and e
are allowed to be combined into the same department combination, and
ide = 0 otherwise. Please note that matrix I is symmetrical, i.e., ide = ied,
∀ d, e ∈ D and id,d = 1, ∀ d ∈ D. All possible and feasible department
combinations, i.e., subsets Sc, c ∈ C, can be generated from matrix I. If all
departments of a hospital are mutually compatible with each other, then
there are |C| = 2|D| − 1 possible department combinations. However, in
maximum-care hospitals only a limited number of departments are gener-
ally allowed to be grouped together. The number of subsets or potentially
feasible department combinations, |C|, and the size of the 0− 1 coefficient

43



Combining Clinical Departments and Wards in Maximum-Care Hospitals Manuel Walther

matrix Q of the generalized SPP will therefore be of quite reasonable size.
A branching algorithm is applied using recursive programming to determine
the 0 − 1 coefficient matrix Q based on the input matrix I. To do this,
we represent I as an undirected graph G with |D| vertices, where a direct
connection between two vertices d and e stands for compatibility between
these two departments. Finding the set of all potential department com-
binations C is then synonymous with finding all cliques within this graph
(see Figure 3.3).

Initialization: Set Ŝ = {}
Step 1: Apply Bron-Kerbosh algorithm on graph G

and determine all maximal cliques Smax,i , i ∈ Cmax

Step 2: Create all cliques of graph G
For all i ∈ Cmax do

Split Smax,i into all possible cliques with Si,j ⊆ Smax,i

For all Si,j; if Si,j /∈ Ŝ; set Ŝ = Ŝ ∪ Si,j

Step 3: Add all single departments to superset Ŝ
For all d ∈ D do; Ŝ = Ŝ ∪ d
Determine set C from superset Ŝ = ⋃

c∈C Sc

Step 4: Quantify matrix Q
For all c ∈ C and all departments d ∈ D do

If d ∈ Sc set qcd = 1; otherwise set qcd = 0

Figure 3.3: Algorithm determining the 0− 1 coefficient matrix Q

Step 1 of the algorithm determines all maximal cliques Smax,i, i ∈ Cmax

within G using the recursive algorithm of Bron and Kerbosch (1973). Step
2 then splits all maximal cliques into all of their respectively possible cliques
Si,j and adds those cliques to superset Ŝ that are not already part of superset
Ŝ. Step 3 adds all single vertices, i.e., departments to superset Ŝ. Superset
Ŝ then contains all feasible department combinations, Sc, c ∈ C, including
non-grouped single department setups, Ŝ = ⋃

c∈C Sc and set C denotes
each feasible department combination, C = {1, 2, ..., c, ..., |C|}. Finally, the
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0− 1 coefficient matrix Q used in the SPP is generated in step 4 using the
superset Ŝ obtained in step 3.

3.4.2.2 Bed Requirements per Department Combination

Once the set of potential department combinations is known, the required
number of beds to meet a predefined service level has to be determined
for each potential department combination. These service levels are either
defined by hospital management or set by the legislator. The weekly and
seasonal distribution of occupancy levels for every department is assumed to
be known. It can reflect historical data as well as expected future demands
Hall (2012) Hof et al. (2015). Furthermore, we assume mutually independent
distributions of occupancy levels between all departments. Inpatients are
typically assigned to one department upon arrival, where they are treated
for a specific medical condition, so this assumption is generally satisfied in
practice. To calculate the expected occupancy distribution for each depart-
ment combination c ∈ C we convolute the probability distribution functions
(pdf) of the occupancy levels of the groups or departments independently
for individual days within a specified time period (a similar approach is
suggested by Fügener et al. (2014)).

Having calculated the pdf for all groups, we can then determine the number
of beds bc needed to meet a predefined service level for every department
combination c ∈ C. In our case, it is the day with the highest bed re-
quirements satisfying a predetermined service level within the observed
time period (see Figure 3.4). We denote this approach “convolution ap-
proach” compared to approaches that only consider the first moments of
the respective distributions, such as the Erlang-Loss formula. Please note,
that this approach also allows the establishment of individual service level
requirements for each department and department combination. In addition,
it is important to note that using the day with the highest bed requirement
within a predefined time frame (e.g., one week) as the relevant indicator
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is a managerial decision. Different approaches are also possible, e.g., the
second highest day.
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Figure 3.4: Pdf of the daily bed occupancy levels and quantification of the number of
required beds, bc, for department combination c

3.4.2.3 Costs per Department Combination

The overall annual costs ϕc for a potential department combination c, c ∈ C
is the sum of (1) the annual costs for bed availability, ϕbeds

c , and (2) the
annual pooling costs for that combination, ϕpool

c .

(1) Costs for beds. The annual costs for beds, ϕbeds
c , is determined by

multiplying the number of beds needed per department combination bc by
the total cost per bed. This comprises not only the cost of the actual bed
but more importantly all costs associated with the additional capacity of
one bed. Note that these associated costs are to be seen as the ongoing
costs needed to have an additional bed, including personnel, infrastructure,
utilities, etc., readily available on a given ward. In a non-grouped state, the
total number of beds that have to be “readily available” to ensure predefined
service levels for each department is higher than in a grouped state that
benefits from balancing effects through pooling. Moreover, it is important
to note that the required number of beds to be kept readily available is
not equivalent to the theoretical total number of beds within all wards
associated with a given department or department combination. If rooms
in a ward are not required, hospital managers use these for alternative
purposes, e.g., waiting room, staff room.

46



Combining Clinical Departments and Wards in Maximum-Care Hospitals Manuel Walther

(2) Pooling costs. Combining departments incurs additional pooling costs
which also have to be taken into consideration. These additional annual
costs per full-time employee (FTE) are predetermined for every combination
of any two departments d and e, and symbolized as Kde. However, simply
adding up the individual costs Kde from each pair of departments within a
given group will unjustly penalize large groups. Instead we acknowledge
synergy effects when it comes to combining departments. These synergy
effects can be modeled as a minimum spanning tree (MST) problem where
the weights of the edges between nodes, i.e, departments, represent the
additional costs per FTE when combining two departments. Using the
Prim-Jarnik algorithm Prim (1957) we can quantify the minimum addi-
tional costs per FTE required for each department combination c, ϕMST

c .
Multiplying this cost factor by the total number of required FTE (bFTE

d )
of all departments assigned to department combination c, Sc, leads to the
annual additional pooling costs:

ϕpool
c =

∑
d∈Sc

bFTE
d · ϕMST

c ∀ c ∈ C (3.4)

Note that the actual number of patients per department does not change
due to the pooling process. The driver for the required FTEs is not the
number of beds within one department (or department combination) but
the number of patients expected. It is therefore possible to add the number
of FTEs bFTE

d theoretically required for every department d in combination
c, with d ∈ Sc. In essence, bFTE

d reflects the theoretically perfect workforce
size for department d in both the grouped and non-grouped state based on
a predefined staff-to-patient ratio.

3.4.2.4 Distances between Wards and to Central Facilities

The set of wards available in the entire hospital is denoted by w, v ∈ W . We
assume that the wards are already defined in respect of size, i.e., number of
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beds, aw, and their location in the building. The distance matrix R between
each pair of wards, w and v, rwv is calculated from the clinical layout.

In addition, certain departments require certain central facilities, e.g., the
ICU or the OR. For doctors and patients the maximum walking distance
to these facilities should be limited. Each department d can have multiple
requirements of different central facilities. For every potential ward w ∈ W
this relationship is captured prior to preprocessing, where ldw depicts the
maximum distance between ward w and the central facilities required by
department d. In this context, “required” means that there are sound
reasons (e.g., frequent interactions) for the department in question to be
close to a specific central facility. As all wards within a department-ward
combination can potentially be occupied by patients from any department
d within that department combination c, hcw = maxd∈Sc [ldw] denotes the
distance between ward w and the furthest relevant central facility for de-
partment combination c. Parameter h̃c then specifies the maximum distance
allowed between wards and the central facilities required for department
combination c. The threshold values r̃ and h̃c are predefined by hospital
management.

3.4.3 Model Formulation

The classical SPP defined in Subsection 3.4.1 can be applied to group
departments into department combinations. Along with it the given set of
wards of a hospital, W , have to be assigned to the department combinations
selected, and additional constraints have to be considered. Model SPP is
therefore extended to – what is termed – the generalized set partitioning
problem (GSPP) for determining the department-ward combinations.
The resulting multi-criteria model minimizes the total costs TC by choosing
the lowest-cost department combinations out of the group of potential
combinations and simultaneously minimizes the maximum walking distances
TDmax by assigning wards to these combinations. We introduce α as the
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weight for the cost value and β for the distance value since both criteria
are measured in different dimensions. The entire model is formulated as
follows:

min Z = α · TC + β · TDmax (3.5)

subject to

TC =
∑
c∈C

ϕc · xc (3.6)

TDmax = maxc,w,v[γ · rwv · zwv + δ · hcw · ycw] (3.7)

∑
c∈C

qdc · xc = 1 ∀ d ∈ D (3.8)

ycw ≤ xc ∀ c ∈ C; w ∈ W (3.9)

∑
c∈C

ycw ≤ 1 ∀ w ∈ W (3.10)

ycw + ycv − zwv ≤ 1 ∀ c ∈ C; w, v ∈ W, w 6= v (3.11)

hcw · ycw ≤ h̃c ∀ c ∈ C; W ∈ W (3.12)
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rwv · zwv ≤ r̃ ∀ w, v ∈ W, w 6= v (3.13)

∑
w∈W

ycw · aw − xc · bc ≥ 0 ∀ c ∈ C (3.14)

xc ∈ {0, 1} ∀ c ∈ C (3.15)

ycw ∈ {0, 1} ∀ c ∈ C; w ∈ W (3.16)

zvw ∈ {0, 1} ∀ v, w ∈ W, w 6= v (3.17)

As before, the binary decision variable xc defines whether department
combination c is selected or not. The additional binary decision variable ycw

defines whether ward w is assigned to department combination c or not. The
first part of the objective function (3.5), i.e., equation (3.6), minimizes the
total cost TC by choosing the lowest-cost department-ward combinations
out of the group of potential department combinations obtained during
preprocessing. The second part of the objective function (3.5), i.e., equation
(3.7), minimizes the maximum weighted distances TDmax. The first term of
equation (3.7) quantifies the walking distance between two wards, w and v,
assigned to the same department combination, and the second term specifies
the walking distances between the departments to the central facilities they
respectively require. Both terms are weighted by the parameters γ and δ,
which can be adjusted depending on managerial focus. The decision variable
ycw determines the assignment of ward w to group c, and the auxiliary
variable zwv defines whether wards w and v are assigned to the same
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department combination. Constraint (3.8) ensures that each department
d ∈ D is covered exactly once, where qdc equals 1 if department d is covered
by department combination c, and 0 otherwise. Constraint (3.9) denotes that
wards w ∈ W are only assigned to department combinations c ∈ C that are
chosen within the optimal solution. Constraint (3.10) ensures that any ward
w can only be connected to one department combination c or not used at
all. Thus, it is possible that some wards may be unused and idle afterwards.
Constraint (3.11) links the binary decision variables zvw and ycw. Constraint
(3.12) limits the distance of any ward w within a department combination
c from any central infrastructure required. Constraint (3.13) limits the
distance between any two wards w and v assigned to the same department
combination to r̃. Constraint (3.14) ensures that the ward capacity assigned
covers the number of beds needed, maintaining a predefined service level of
department combination c. Finally, constraints (3.15), (3.16), and (3.17)
define the binary decision variables.

3.5 Numerical Study

In this section we present detailed results for the approach proposed. We
solve a case study for a large maximum-care hospital in Germany in Section
3.5.1. The subsequent Section 3.5.2 investigates our contribution to litera-
ture when quantifying bed requirements by considering weekly seasonality
and higher moments of interarrival times as well as lengths of stay. Fur-
thermore, we also analyze the general applicability and robustness of the
approach suggested. To this end, we present computational experiments
using case study data and simulated data that we use to investigate a
generalized problem setting as well as a larger hospital scenario in Section
3.5.3. In this final section, we also present and investigate an integrated
multi-criteria decision model that simultaneously solves the grouping and
layout problem. All preprocessing steps are implemented in Delphi XE4
and Excel 2007. The ILP models are implemented in IBM ILOG Studio
v12.6 and solved via CPLEX. All computations were run on a work station
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equipped with an Intel Core i7-6700K CPU with 4.0 GHz and 32 GB of
RAM.

3.5.1 Case Study

3.5.1.1 Data and Preprocessing

Case Hospital The modeling and solution approach suggested is applied
at a large maximum-care hospital in Germany. The case hospital has a total
of 22 clinical departments ranging from Pediatric Surgery to Palliative Care.
Non-ICU inpatients are accommodated in 36 standard wards, which in the
present state are exclusively assigned to one and only one department. The
aim of the study was to analyze the feasibility of building department-ward
combinations, and to quantify the resulting cost savings when moving from
the non-grouped status quo to an optimal grouped state.

Potential Department Combinations In total |C| = 222−1 distinguish-
able department combinations would result, when assuming full compat-
ibility between all |D| = 22 departments of the case hospital. However,
several departments are incompatible for medical and social reasons. We
therefore analyzed and defined the bilateral compatibility of each possible
combination of two departments during an extensive discussion and several
meetings with head doctors, general management, and nursing management.
Figure 3.5a) presents the results of this process, i.e., the 0− 1 compatibility
matrix I between all departments of the case hospital, where entry 1 indi-
cates the bilateral compatibility of two different departments. Figure 3.5b)
shows a resorted version of the original compatibility matrix by applying
the approach suggested in Subsection 3.4.2.1 which finds all cliques within
the undirected graph defined by the original matrix. The resorted matrix
starts with the maximum-sized clique followed by the second largest clique,
and so on. Note that the resorted compatibility matrix visualizes some but
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not all of the possible and feasible department combinations found by our
algorithm. Clique {3, 4, 7} for example, which also represents a superset
of feasible department combinations, is not immediately obvious from the
matrix. A total of |C|=115 groups of mutually compatible department com-
binations were identified by applying the procedure described in Subsection
3.4.2.1. The maximum group size (maxc∈C [|Sc|]), i.e., the maximum-sized
clique, amounts to six departments.
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Figure 3.5: Compatibility matrix of departments based on medical constraints and
patient compatibility; a) original input from hospital management; b)
resorted matrix visualizing a selection of cliques acquired by applying the
approach suggested in Subsection 3.4.2.1

Bed Requirements of Department Combinations The expected fu-
ture occupancy levels per department were created by preparing three years’
worth of empirical data based on historical occupancy distributions from
2012 to 2014 and corrected for non-recurring events (e.g., renovation of
OR, additional treatments) and trends (e.g., expected case-mix changes).
Subsequently, occupancy levels were calculated for each potential depart-
ment combination for each day of the week independently. Bed capacity
requirements bc were then derived from this data for each potential depart-
ment combination by requiring a given unified service level of 95% based
on the weekday with the highest anticipated occupancy level. Note that
this can be a different day for each department combination depending on
the composition of one group.
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Costs of Department Combinations For every combination of two
departments, nursing management has defined a cost factor per FTE,
Kde, that quantifies the additional ongoing pooling costs due to higher
management complexity and continuous skill-building requirements if these
two departments were to be combined. Using this data set, we then
calculated the respective additional pooling costs ϕpool

c for each potential
department combination c ∈ C. Finally, the total costs per department
combination were determined by ϕc = ϕbeds

c + ϕpool
c .

Distances Between Wards In the case hospital the available wards are
distributed across five floors. Each floor consists of four wings, with each
wing consisting of two wards. This results in 40 wards, with four wards
that are used for central facilities. Wards differ in size due to architectural
restrictions or partial usage for other functions. In the case study we
therefore consider 36 wards with a capacity ranging from 8 to 24 beds per
ward. Furthermore, we only consider standard wards as potential capacity
for inpatients of combined departments. Specialized wards such as the
intensive care unit (ICU) are modeled as central facilities that do not share
beds with standard wards. For simplification purposes we used a normalized
distance unit representing the distance between two wards w and v, rwv.
Moving from floor to floor amounts to three units. Moving between wings on
a single floor takes one to three units depending on the respective distances
between these wings. Moving between wards of the same wing amounts to
zero units. Figure 3.6 illustrates the respective distances on a single floor
at the case hospital with four wings (a, b, c, and d) and eight wards.

c
1

c
2b

2

b
1

a
1

a
2 d

2

d
1

Figure 3.6: Relative distances on a single floor between wards in the case example

For example, the distance between wings a and b is 1 unit, between b and c
is 2 units, and between a and c is 1+2=3 units. Specific location constraints
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per department were jointly defined with nursing management and head
doctors. Accordingly, the maximum distance within a department-ward
combination was defined as r̃ = 10 distance units.

Distances to Relevant Central Facilities Depending on the depart-
ment, there may be either zero, one, or multiple location requirements
regarding central facilities. For example, all wards of the Obstetrics de-
partment have to be close to the laboratory and delivery rooms as well
as to the OR to perform C-sections, whereas the wards of the Oncology
department can be located anywhere within the hospital. Given this data
per department, we can determine the distance hcw to the furthest central
facility for every possible assignment of a department combination c with
any single ward w. The maximum distance to a relevant central facility is
limited by hospital management to h̃c = 10 distance units.

Relevance of different criteria Hospital management prioritizes gener-
ating cost benefits from bed pooling before minimizing walking distances
for patients and doctors. Finding the cost-minimal set of department com-
binations is defined as the primary goal as long as walking distances are
within defined boundaries. Minimizing walking distances for patients and
doctors is then formulated as a subordinate goal. Model GSPP is therefore
solved in a lexicographical manner, i.e., where α/β ≥ 10.000, such that
the focus of the model lies in generating a cost-minimal set of department
combinations for which walking distances are minimized simultaneously.
Note, however, that this approach does not bypass any preset maximum
walking distance thresholds for the chosen set of department combinations.
In addition, the hospital management considers occurring walking distances
between wards assigned to the same department combinations much more
unpleasant than possible distances to any central facilities required. This
implies that equation (3.7) is therefore implemented using γ � δ.
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3.5.1.2 Results for the Case Hospital

Given all cost, bed, and distance data for each potential department combi-
nation, we apply the model. This results in Copt = 16 disjoint groups of
department combinations. One of these groups contains three departments,
four groups contain two departments, and 11 departments remain isolated
(see Figure 3.7). Compared to the present organization of the hospital,

Floor 5

Floor 4

Floor 3

Floor 2

Floor 1

Grouped 
Departments

A (GSU), 
(URO),
(GAS)

B A B (VSU)

C A B (VSU)

E C (VSU) D

E A E C

(PSY) (PSY) (ONC) D

A (GER) (ONC) (REH)

(PSU) (NSU) (NEP)

E E (INF)

(PAL) (PSY) (GER)

(OBS) (GER) (OBS)

B C D E(GYN),
(RHY)

(PUL),
(CAR)

(NEU),
(STR)

(ORT),
(TSU)

Space 
occupied 
otherwise

B B C (GER)

(GER) B C (VSU)

A A D D

A A C A

(ONC) (ONC) (NSU) (ONC)

E E E E

(REH) (NEP) (OBS)

(REH) (OBS) (PAL)

(INF) (INF) (PSU)

(PSY) (PSY) (PSY)

Solution with β = 0 Solution with α/β ≥ 10.000

CaseStudyClusteringResults.eps

Wing a Wing b Wing c Wing d Wing a Wing b Wing c Wing d

Figure 3.7: Comparison of resulting layouts after combining departments and wards
using different settings for α and β

50% of all departments were grouped into department combinations with
an average size of 2.2 departments within one group. As a result of this
grouping, the number of beds needed to maintain a unified service level
of 95% for all departments was reduced by 3.3%, while total costs were
cut by 2.1%. The resulting ward assignment can also be seen in Figure
3.7. To verify that the application of high ratios of α/β actually leads to
a cost-optimal grouping of departments we first ran our model without
walking distance optimization, i.e., with β = 0. When comparing this result
with the solution of the model using α/β ≥ 10.000, it can be seen that
even the cost-optimal set of department-combinations allows for very good
results regarding walking distance optimization. In the case considered,
the maximum distances between wards assigned to the same group of de-
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partments were reduced to three distance units while keeping the most
cost-efficient set of department combinations.

3.5.1.3 Sensitivity Analyses of Cost Parameters

Management typically requests sensitivity analyses of the model parameters
applied since some parameters may be difficult to quantify or are not as
fixed as formulated by the right side of a “hard” constraint. The cost
parameter ϕc for example is highly dependent on the relationship between
the annual costs for beds, ϕbeds

c , and the annual pooling costs, ϕpool
c , of

department combination c. In practice, setting these two cost factors may
become challenging as there are many underlying aspects that either cannot
be determined easily or are highly dependent on subjective valuation. For
example, the exact cost of holding one bed or room available including
personnel, infrastructure, etc. is difficult to pinpoint. It is therefore
beneficial to evaluate the solutions of the optimization model along different
relationships of both cost parameters. In this setting we define the annual
pooling costs as percentage f , f ∈ [0%, 100%] of the additional annual cost
savings via bed pooling ϕpool

c = f ·
[∑

d∈Sc ϕ
beds
d − ϕbeds

c

]
= f ·∆ ϕbeds

c , ∀ c ∈
C. Here, ∆ ϕbeds

c depicts the cost-savings for combination c that occur as a
result of pooling ward capacity. Specifically, ϕbeds

d represents the number
of beds required for an individual department d in the non-grouped state.
Figure 3.8 then depicts the grouping results achieved when factor f varies
between 0% and 100%.

Setting f = 0% means that no additional pooling costs emerge when
grouping departments, and clinical departments will be grouped as much
as possible. In this case 13 out of 22 departments are grouped into one of
the department combinations generated. However, setting f = 100% leads
to prohibitively high grouping costs, with the result that none of the 22
departments are combined at all. Note that the solution generated for the
example case, i.e., Copt = 11, is remarkably stable over a wide range of cost
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Figure 3.8: Sensitivity analysis of cost ratio f = ϕpool
c

∆ ϕbeds
c

ratios, i.e., f ∈ [16%, 32%]. In the present case, a relatively robust solution
is therefore found with respect to the grouped departments.

3.5.2 Quantifying Bed Requirements

Current literature on department grouping does not leverage weekly sea-
sonality, and uses average data of a week to estimate bed requirements. In
addition, higher moments of interarrival times and lengths of stay are gen-
erally neglected. We would like to contribute to the literature by proposing
a different approach to quantify bed requirements. We will show in Section
3.5.2.1 that seasonality matters, and in Section 3.5.2.2 that empirical dis-
tributions are better suited for estimating bed occupancy levels than the
Erlang-Loss formula.

58



Combining Clinical Departments and Wards in Maximum-Care Hospitals Manuel Walther

3.5.2.1 Impact of Weekly Seasonality

In general there is no doubt that occupancy levels of clinical departments
exhibit a strong weekly seasonality that becomes especially visible when
weekdays and weekends are compared. Because of this observation several
approaches suggested in the literature either average the occupancy levels on
weekdays or use the peak occupancy level during the week when quantifying
the bed capacity required per department (see De Bruin et al. (2010) or
Van Essen et al. (2015)). However, the detailed occupancy pattern on each
day of the entire week has not yet been considered, which becomes especially
relevant when quantifying bed requirements of grouped departments (see
Section 5.2). To obtain more insights on how incorporating seasonality
effects impacts bed requirements and potential overflow, we investigate
three different approaches, all of which use the convolution approach to
calculate bed requirements:

• Approach 1: Omitting weekly seasonality entirely and quantifying an
aggregated occupancy distribution for each department on a weekly basis.

• Approach 2: Excluding weekend data and quantifying an aggregated
occupancy distribution for each department on a weekday basis.

• Approach 3: Considering weekly seasonality and explicitly modeling the
occupancy distribution for each day of a week, i.e., the approach proposed
in this paper.

We again use the historical occupancy levels of three years obtained from our
case hospital. Table 3.2 summarizes the resulting department combinations
and patient overflows. Note that we list only the grouped departments.

The results convey three distinct insights. First, changing the approach
for calculating bed requirements also impacts the resulting department
combinations. For example, the group comprising both PUL and CAR
without any other department has only been chosen in approach 3. In
other words, not including seasonality effects penalizes complimentary
occupancy patterns. Second, assuming average occupancy rates across
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Approach 1: No seasonality Approach 2: Partial seasonality Approach 3: Full seasonality
Combinations Overflow in %1 Combinations Overflow in % Combinations Overflow in %
GSU,GAS 3.5 GSU,GAS 1.7 - -
- - - - GSU,GAS,URO 1.6
- - GYN,RHY 2.1 GYN,RHY 2.1
GYN,URO 9.6 - - - -
NEP,VSU 8.5 NEP,VSU 3.6 - -
NEU,STR 4.4 NEU,STR 4.4 NEU,STR 1.2
- - - - PUL,CAR 1.7
RHY,PUL,CAR 13.1 - - - -
TSU,ORT 5.4 TSU,ORT 3.5 TSU,ORT 2.1
- - URO,PUL,CAR 6.2 - -
1 Amount of days with capacity overflow

Table 3.2: Analyses of seasonality effects when grouping departments and assigning
wards

the week or during weekdays may lead to unwanted overflow effects, as
can be seen in the results of approaches 1 and 2. Third, super-positioning
multiple departments that exhibit similar peak days during the week strongly
affects the overall occupancy level variance of the resulting combination.
This becomes especially visible when applying approach 1, where overflow
probabilities per combination range from 3.5% to 13.1%.

3.5.2.2 Impact of Distributional Assumptions

When modeling the distribution of occupancy levels of clinical departments,
the question arises: should one apply empirical or theoretical distributions?
Most approaches suggested in the literature rely on theoretical distributions
since these approaches mainly apply queuing theory models, e.g., the Erlang-
loss formula, when quantifying bed requirements (see De Bruin et al. (2010)
Best et al. (2015) Van Essen et al. (2015)). However, in our modeling and
solution approach we propose using empirical occupancy data corrected for
trends and non-recurring events. Achieving some insights into the above
mentioned question, we also compute the bed capacity required using the
Erlang-loss formula. Table 3.3 shows the results achieved for the grouped
departments. The “convolution approach” equals the proposed approach in
this paper by convoluting discrete empirical distributions when quantifying
the bed capacity required for each department combination, bc, ∀c ∈ C. The
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second approach, however, determines bed requirements by the Erlang-loss
formula using only weekday occupancy levels.

Convolution Approach: Erlang-Loss Approach:
Combinations Overflow in %1 bc Combinations Overflow in %1 bc

GSU,URO,GAS 1.6 91 GSU,URO,GAS 6.4 88
GYN,RHY 2.1 52 - - -
- - - GYN,RHY,CAR 12.9 83
- - - NEP,VSU 0.1 37
- - - NEU,NSU,STR 0.0 66
NEU,STR 1.2 43 - - -
PUL,CAR 1.7 56 - - -
- - - PUL,ONC 1.4 52
TSU,ORT 2.1 85 TSU,ORT 12.8 77
Comparison of bed requirements to meet target service level
Uncombined state

∑
bc = 611 Uncombined state

∑
bc = 643

Combined state
∑
bc = 591 Combined state

∑
bc = 592

1 Amount of days with capacity overflow

Table 3.3: Empirical vs. theoretical occupancy distributions

The comparison between these two approaches shows that convoluting
empirical occupancy distributions allows for a more precise approximation
of the beds required to fulfill the predefined service level of combined de-
partments. Note that using different approaches to calculating bc inevitably
leads to the model choosing partly different department combinations. In
essence, our analyses show that the assumption of the Erlang-loss formula,
i.e., a Poisson-distributed arrival process and exponentially distributed
lengths of stay, overestimates bed requirements for smaller department com-
binations or single departments, particularly if these departments mostly
treat elective patients and therefore exhibit a relatively low rate of randomly
distributed emergency patient arrivals.
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3.5.3 Trade-off between Cost and Walking Distance
Optimization

3.5.3.1 Results for the Original Case Study Data

In the following we compare the results achieved by Model GSPP when
modifying the ratio α/β, assuming the original data of the case study. Table
3.4 presents the results.

Setting Run Setup2 Combinations Beds Cost Maximum Maximum
α/β time1, (depart. grouped) pooled, savings3, ward-ward ward-infra.

in sec. total number in % in % distance distance
10,000 5.8 a 5 (11) 54 100 3 21
1,000 4.5 a 5 (11) 54 100 3 21
100 5.0 a 5 (11) 54 100 3 21
10 17.3 b 5 (10) 51 94 1 22
1 46.9 b 5 (10) 51 94 1 22
0.1 62.0 b 5 (10) 51 94 1 22
0.01 152.3 c 4 (9) 40 67 1 19
0.001 249.7 c 4 (9) 40 67 1 19
0.0001 130.7 c 4 (9) 40 67 1 19
1 Computational time of integrated model
2 Each letter describes a unique department-ward-layout combination;
3 Normalized cost savings with regard to non-clustered status quo; 100% = maximum costs savings
achieved by hierarchical approach, i.e., alpha/beta ≥ 10, 000

Table 3.4: Analysis of integrated approach for varying weight ratios, based on case
study data

The results of Table 3.4 reveal that the case example can be solved within a
reasonable computation time for all α/β-ratios. The required computation
time, however, gets longer when the ratio α/β decreases. Second, an
increase in the importance of walking distances within the integrated model,
i.e., a declining α/β-ratio, leads to new sets of department combinations.
This effect shows the rising impact of layout decisions on the chosen set of
department combinations when moving out of a setting with a dominant
focus on costs. Thus, assigning higher weights to distance optimization
takes a toll on pooling benefits. Third, the level of grouping, i.e., the
number of departments and beds in a grouped state, declines with a rising
importance of walking distances in the integrated model. This is in line with
what is to be expected. However, the real insight here is the fact that the
improvement in maximum ward to infrastructure distances is rather small
compared to a significant loss of pooled beds when increasing the walking
distance weight β. Furthermore, it is important to note, that even when
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assuming very high α/β-ratios, i.e., α/β ≥ 10, 000, resulting in the “setup
a”, the maximum distance between two wards of the same combination
only amounts to 3 normalized distance units (see Figure 3.6), which for a
typical hospital setting would be more than acceptable given the overall
size of the hospital.

3.5.3.2 Variation of Layout Restrictions

To build a generalized case, we have replaced the original department-
specific ward-to-ward and ward-to-infrastructure threshold restrictions with
unified distance thresholds for every department. We then investigated
five additional and different settings for thresholds ranging from strong
constraints (termed as T1) to weak constraints (T4) and no distance
constraints (no T). As thresholds we use 6, 8, 10, and 12 units for the
ward-ward distances and 18, 20, 22, and 25 for the ward-infrastructure
distances, respectively. Table 3.5 summarizes the results.

T1 T2 T3 T4 no T
α/β Time Setup Time Setup Time Setup Time Setup Time Setup
10,000 9.5 e 7.7 a 14.1 a 17.5 a 20.8 a
1,000 7.2 e 8.2 a 12.1 a 20.1 a 20.3 a
100 10.4 e 7.9 a 10.6 a 18.0 a 15.2 a
10 7.0 e 8.6 h 11.8 a 21.8 a 26.2 a
1 16.9 f 10.4 h 32.5 a 46.3 a 99.5 a
0.1 36.3 f 47.0 i 56.2 a 175.9 a 641.8 a
0.01 15.1 f 65.7 c 222.2 c 550.3 c 986.9 c
0.001 17.4 f 135.4 c 115.6 c 334.8 c 753.8 c
0.0001 21.9 f 90.1 c 247.6 c 427.0 c 600.3 c

Runtime of CPLEX solver, in seconds; each letter in columns “setup” describes a unique department-
ward-layout combination

Table 3.5: Analysis of computational efficiency with different walking distance thresh-
olds

The key conclusions drawn for our case study (see Table 3.4) hold true with
the extended analysis on the distance thresholds (see Table 3.5). Addition-
ally, it becomes clear, as one would assume, that predetermined walking
distance thresholds impact computation time, with looser boundaries lead-
ing to a wider solution space and thus a higher runtime. Moreover, there is
also a constraining effect visible with regard to the department combination
setup when applying very strong distance boundaries. For instance, even
when assuming α� β the model does not allow to select the cost-minimal
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“setup a” when applying very strict distance thresholds. Finally, the results
in Table 3.5 also show that even when removing the initial walking distance
thresholds entirely, the computation time remains within a reasonable time
frame for the case hospital setting.

3.5.3.3 Larger Data Sets

The modeling approach suggested minimizes the maximum walking dis-
tances (see equation (3.7)). This criteria has been derived from our work
with the management of the case hospital. In a further generalization, we
introduce an alternative objective function that minimizes the sum of all
walking distances. In particular, we compare the effect of these two criteria
for evaluating the walking distances. For this purpose the objective function
(3.5) of the integrated model is reformulated as follows:

min! Z = α ·
∑
c∈C

ϕc ·xc +β ·(γ ·
∑

w∈W

∑
v∈W

rwv ·zwv +δ ·
∑
c∈C

∑
w∈W

hcw ·ycw) (3.18)

We further analyze the scalability of our approach beyond the case study
setting for the maximum-care hospital, which was already large. In so
doing, we orientated ourselves to the largest hospitals available in Europe
when constructing the additional examples. These large hospitals have a
maximum of 40 departments in a single building complex. Additionally,
we assume that typically no more than 10 departments can be combined
into the same group due to compatibility constraints. To this end, we have
constructed a fictitious hospital building with 65 wards spread across 7
floors comprising a total of 1,396 standard beds, i.e., excluding intensive care
units, intermediate care units, and non-stationary emergency units. Such a
capacity of standard inpatient beds in one single building is comparable
to the largest European hospitals. This is termed “very large hospital”
(VLH). We then randomly determined all necessary parameters such as
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bed requirements, costs and so forth while applying reasonable boundaries
to keep the scenario realistic. Specifically, we built fictitious departments
and department combinations and based their respective bed requirements,
distance thresholds and cost parameters on experience from our case study
by applying similar distributions, minimums, and maximums. This leads to
960 potential department combinations comprising at least two departments
each.

We analyze the VLH case using different walking distance thresholds. The
thresholds applied are equivalent to the ones used in the generalized case
study. In order to showcase only the extreme settings in this simulated
case, we limit ourselves to the following three scenarios, including strong
thresholds (T1), weak thresholds (T4), as well as no thresholds (no T).
Furthermore, we compare these threshold-scenarios using the two distance
objectives (MinMax and MinSum).

’MinMax’ ’MinSum’
T1 T4 no T T1 T4 no T

α/β Time Setup Time Setup Time Setup Time Setup Time Setup Time Setup
10,000 294 A 1,217 B 2,779 B 317 A 1,519 B 3,783 B
1,000 325 A 844 B 1,356 B 5,227 A >24h N/A >24h N/A
100 327 A 924 B 2,071 B >24h N/A >24h N/A >24h N/A
10 721 A 30,594 C >24h N/A >24h N/A >24h N/A >24h N/A
1 5,633 A >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A
0.1 >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A
0.01 >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A
0.001 >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A
0.0001 >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A >24h N/A

Runtime of CPLEX solver, in seconds
Each letter in columns “setup” describes a unique department-ward-layout combination

Table 3.6: Analysis of the computational efficiency of the very large hospital case

The additional set of analyses for the VLH-case delivers three insights. First,
using large α/β-ratios , i.e., α/β ≥ 10, 000 has a very positive effect on
computational times, as expected. Second, the proposed MinMax objective
performs better throughout the different parameter settings. Due to the
large size of the simulated problem instance, the solution time for the
VLH-case increases exponentially when the α/β-ratio decreases within the
integrated model. This may lead to problem instances that cannot be solved
in acceptable time limits, especially when using the MinSum objective. Last
but not least, the effect of walking distance thresholds proves to be a lot
stronger in the VLH-case compared to the standard-sized generalized case
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study, which is also to be expected given the large size of the simulated
VLH case.

All in all, the results of our experiments show a general applicability for our
model for a generalized hospital case with varying parameters. Moreover,
a “hierarchical setting”, which is motivated by managerial practice allows
optimal solutions to be found for the department-ward combination problem
even for very large hospital settings within very short computational time
frames. The modeling and solution approach suggested therefore seems to
be well suited as a decision-support model in real-life hospital settings since
the approach allows in-depth sensitivity analyses of different setups and
parameters.

3.6 Conclusion and Further Areas of

Research

The present paper has considered the problem of grouping clinical depart-
ments of a maximum-care hospital and assigning the available wards of
the hospital to those groups. The entire problem is denoted as a strategic
department-ward combination problem. We developed a novel modeling
and solution approach based on a generalized set partitioning formulation.
Using a real-life case study, we demonstrated that the proposed approach
is generally applicable and leads to significant cost savings while ensuring
a minimum acceptance level of inpatients. Decision-relevant costs for bed
availability and pooling costs as well as maximum walking distances are
considered when creating department-ward combinations. In alignment
with the literature we found that the weekly demand seasonality has to
be considered when quantifying bed requirements of department combina-
tions. It is however insufficient to only distinguish between weekdays and
weekends. Department-specific daily demand patterns have to be taken
into consideration. In addition it is shown that the Erlang-loss formula
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leads to imprecise approximations for bed requirements. Using empirical
distributions is therefore much more advisable. For the case hospital con-
sidered, we demonstrated that moving from an ungrouped status quo to an
appropriate grouped state with pooled ward capacity leads to significant
cost savings, lower bed requirements and higher bed availability.

Nevertheless, our proposed modeling and solution approach offers several
areas for future research. Due to the long-term planning horizon of the
problem at hand we neglect the transition process as well as one-time
costs as we are only analyzing long-term steady states. Further research
should focus on how to manage the transition process as well as finding a
cost-efficient implementation sequence. Seasonally driven demand variation
could also be an interesting area of future research. In the present paper, we
focused on weekly seasonality effects, but we disregarded annual seasonality
effects. Here, one could imagine seasonal closures or temporal reallocations
of selected ward capacity. It is also crucial to understand and evaluate
the impact of tactical and operational decisions within a hospital on the
generally strategic department-ward combination problem. For example,
there are mutual dependencies between master surgery scheduling, personnel
rostering and bed occupancy planning. Typically, these interdependencies
are modeled by including respective assumptions and constraints and solving
one problem at a time. Future research should focus on shedding more
light on the relationships of different hierarchical planning problems. In
particular, it would be very beneficial to understand the impact of changing
the sequence of these planning problems on overall bed occupancy. Here,
one of the key questions could be how to integrate long-term OR scheduling.
Many approaches (see Fügener et al. (2014)) exist that investigate the
effect of OR scheduling on downstream units, but the strategic effect on
the department-ward combination problem has not yet been thoroughly
examined to our knowledge. We focus on the department-ward combination
problem and solve the cost-minimization and distance-minimization problem.
However, we assume a given pool of wards which are pre-specified in terms
of location and size as well as central facilities that are already firmly
located. These assumptions may be relaxed in the future, meaning that the
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entire problem then becomes harder to solve (see e.g., Helber et al. (2015)).
Finally, it would be fruitful to undertake research on how to handle tactical
and operational bed allocations within department combinations, and how
to handle overflow situations. Having an effective decision support system
to allocate beds to patients on a daily basis would be necessary in order
to effectively manage large department combinations and exploit synergies
from pooled bed capacity.
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Abstract Managing patient to bed allocations is an everyday task in hospitals which
in recent years has moved into focus due to a general rise in occupancy levels and
the resulting need to efficiently manage tight hospital bed-capacities. This holds true
especially when being faced with high volatility and uncertainty regarding patient arrivals
and lengths of stay. In our work with a large German hospital we identified three main
stakeholders, namely patients, nurses, and doctors, whose individual objectives and
constraints regarding patient-bed allocation (PBA) lead to a potential trade-off situation.
We developed a decision support model that tackles the PBA problem considering this
trade-off, while also being capable of handling overflow situations. In addition, we antici-
pate emergency patient arrivals based on historical probability distributions and account
for uncertainty regarding patient arrival and discharge dates. We develop a greedy
look-ahead heuristic which allows for generating solutions for large real-life operational
planning situations involving high ratios of emergency patients. We demonstrate the
performance of our heuristic approach by comparison with the results of a near-optimal
solution achieved by Gurobi’s MIP solver. Finally, we tested our approach using data sets
from the literature as well as actual clinic data from our case study hospital, for which
we were able to reduce overflow by over 96% while increasing overall utilization by 5%.
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4.1 Introduction

This paper deals with the operational planning question of assigning incom-
ing patients to specific rooms and beds upon their arrival at the hospital.
This so-called patient-bed allocation (PBA) problem has been gaining more
and more attention in recent years after a basic version of the problem
was formulated by Demeester et al. (2010). Based on this seminal work,
related research was mostly directed at either improving the computational
efficiency (see for example Bilgin et al. (2012) or Range et al. (2014)) or pro-
posed ways to incorporate upstream planning problems such as surgery or
elective patient scheduling (see for example Ceschia and Schaerf (2016)).

In our joint project with a large German hospital we identified several
challenges with respect to the PBA problem that have to be dealt with in
real-life situations including emergency and elective patients of all major
disciplines.

First and foremost, large hospitals with 500 or more beds covering all major
disciplines exhibit high ratios of emergency patients, e.g., up to 90% in
internal disciplines such as cardiology and gastroenterology. Due to the
nature of the patient clientele in these hospitals (inherent multimorbidity,
unknown medical history, etc.) it is oftentimes not possible to accurately
determine the actual length of stay (LOS) of a patient once they arrive as
well as throughout their stay.

Second, a shift in demographics as well as advances in medical technologies
are forcing hospitals to operate as cost-efficiently as possible. This leads
to high overall bed occupancy levels which in turn may more often lead
to situations in which bed capacities are insufficient. To minimize such
overflow situations while keeping bed occupancy levels high, a common
approach is to pool bed capacities across similar medical disciplines to create
a balancing effect across the associated wards (see for example Hübner
et al. (2016) and (2018)). However, as opposed to single wards with ten to
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twenty beds, managing operational patient bed assignments within a set of
designated wards comprising more than a hundred beds leads to a highly
complex planning problem which typically cannot be dealt with efficiently
by conventional planning approaches, e.g., a dedicated bed planner who
manually assigns patients to beds.

Third, there is a need to adapt patient-bed allocations ad-hoc to changes,
as any plan made at a certain point in time is likely to be obsolete only a
few hours later due to new emergency arrivals, sudden complications after
surgery, or new diagnostic findings (see for example Hulshof et al. (2016)).
In practice, this means that the decision problem has to be solved whenever
there is a change in the system which merits the physical allocation of a
newly arrived patient or a patient waiting in an overflow area to a bed. The
large hospitals considered in this paper are deciding on this issue several
hundred times a day.

Fourth, three major stakeholders have to be kept in mind, namely patients,
nurses, and doctors. Specifically, it is important to make the stay for
patients as comfortable as possible while simultaneously respecting patient-
specific constraints, balancing the workload for nurses, and making it as
efficient as possible for doctors to do rounds.

In essence, this leads to an assignment problem that respects the diverse
interests of patients, nurses, doctors and hospital management while simul-
taneously considering medical, gender, and capacity constraints. Hence,
there is a need for a PBA system which is capable of anticipating future
developments while at the same time being able to provide quick online
recommendations for patient-bed allocations within seconds when prompted
(see for example Hulshof et al. (2012)).

In this regard, the present paper proposes a new modeling and solution
approach to the PBA problem that incorporates stakeholder-specific objec-
tives for patients, nurses, and doctors. In addition, the paper provides a
greedy look-ahead heuristic that allows for flexible bed allocations while
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managing overflow situations and anticipating future arrivals of elective
and emergency patients. The findings and insights discussed herein are not
limited to the German health-care system but may well be of importance to
any large hospital setting faced with the above-described circumstances.

The remainder of this paper is structured as follows: Section 4.2 provides
a detailed problem description discussing relevant literature and further
elaborates on the specific contribution of this paper. Section 4.3 lays out
the modeling and solution approach. Section 4.4 then provides numerical
examples. In particular, we compare the results of our heuristic solution
approach with the results of a near-optimal solution achieved by Gurobi’s
MIP solver for selected problem instances. Furthermore, we test our ap-
proach with real-life data from a large hospital in Germany and use several
sensitivity analyses to investigate solution quality and run time required.
In addition, we further test our approach with data from the literature (see
Demeester et al. (2010)). Finally, Section 4.5 presents a summary of the
main results and gives an outlook on possible future avenues of research.

4.2 Problem description, related literature and

contribution

To understand the main objectives of the patient-bed allocation process
in a hospital we interviewed nurses, doctors, and hospital management of
our case-hospital. The following subsections describe the general planning
problem and related literature as well as open research questions that we
tackle.
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4.2.1 General planning problem

Operational bed occupancy management in hospitals comprises two inher-
ently different planning problems, namely patient admission scheduling
(PAS) and patient-bed allocation (PBA). It should be noted, that in the
literature these expressions have been used with varying definitions. We
consider the PAS problem as merely comprising the problem of scheduling
elective patient admission dates. The PBA problem, however, relates to
the problem of allocating a physical room and bed to a patient. In large
hospitals with more than 500 beds and a high rate of emergency arrivals
the two decision problems are typically solved in a hierarchical manner for
reasons set out below.

In a first step, the goal of a PAS system is to ensure a high and balanced
utilization of the available bed capacity over time. In principle, four patient
classes need to be considered. Namely, elective patients and emergency
patients who are already physically available in the hospital, as well as
planned elective patients and future emergency patients who are already
scheduled to or anticipated to arrive in the future, respectively. Figure
4.1 shows a schematic example for a typical PAS situation and depicts the
number of beds occupied by or reserved for the afore-mentioned patient
classes for the first night of the planning horizon, i.e., a Monday night, and
on each of the consecutive 13 nights.

On the first Monday a certain number of beds are already physically
occupied by elective and emergency patients. These numbers decrease over
time as most patients occupying a bed on the first day of the planning
horizon will leave the hospital on the following days. Note, these numbers
mostly stay stable on Saturdays and Sundays, since no discharges take
place on those days.

In addition, a certain number of beds have to be reserved for incoming
elective and emergency inpatients which are planned or anticipated to show
up in the future. Whatever bed capacity is still available after incorporating
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Figure 4.1: Schematic example of a typical planning situation in a large hospital serving
elective and emergency inpatients

these four patient classes, respectively, may then be used to schedule
additional elective patient arrivals as needed. Please note, patients leaving
the hospital on a respective day are already excluded from the bars from a
particular day. Newly incoming patients, however, are included in the bars
representing the required bed capacity for elective and emergency patients
of that day, respectively.

In addition, due to uncertainty regarding the anticipated number of emer-
gency patients as well as LOS changes, a safety margin of beds is established.
This is illustrated on the top of all bars in Figure 4.1. The safety margin
lowers the available capacity for scheduling elective patients below the
maximum possible bed capacity to avoid potential shortages of beds.

Scheduling patients for elective inpatient treatment is usually done a couple
of days or even weeks in advance and typically cannot be adjusted at short
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notice. This is because elective patients have to prepare for their hospital
stay well in advance, e.g., plan and schedule transportation, make necessary
arrangements at work and/or at home, or simply have to adhere to certain
dietary requirements from their physician in the days leading up to a surgery.
In addition, scheduling elective patient arrivals is also dependent on master
surgery schedules for patients who require surgery. Master surgery schedules
as well as staff rosters and staff scheduling are typically fixed weeks in
advance which in turn additionally limits the possibilities for rescheduling
patients at short notice (see for example Beliën and Demeulemeester (2007),
Bilgin et al. (2012) and Gross et al. (2017)). Finally, emergency patients can
typically not be deferred to other hospitals once they have been admitted,
i.e., once treatment has started.

It is therefore important to distinguish between PAS and PBA (see Figure
4.2). In PAS elective patients need to be scheduled such that the overall
ward utilization is balanced and overflow situations are minimized. In
the second step, i.e., the PBA, elective and emergency inpatients need to
be assigned actual physical rooms and beds upon entering the hospital.
In principle, the PBA problem can be viewed as a downstream decision
problem with regard to the PAS problem. For the PAS problem it is not
necessary to know which bed exactly will be held available for a certain
patient as long as it is guaranteed to a certain extent that a bed will be
available.

Fri Sat Sun Mon Tue Wed

amount of beds occupied by patient type

current occupancies current arrivals anticipated/planned arrivals

Tue Wed Fri Sat Sun MonMon

bed

bed 4

bed 3

bed 2

bed 1

Step 1: PAS – scheduling and anticipating inpatient arrivals Step 2: PBA – allocating specific beds to patients 

300

200

100

0

Figure 4.2: Schematic overview of the difference between patient scheduling and patient-
bed allocation
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The crucial question in PBA is to determine when the actual allocation
takes place and whether or not it should be possible to reserve a specific bed
for a specific patient in advance prior to their stay. In hospitals equipped
with a large number of beds, however, it oftentimes happens that allocation
plans made at the beginning of a specific day are obsolete shorty after, due
to changes in lengths of stay, no-shows, sudden complications during surgery
or treatment, or simply due to emergency arrivals. Thus, any planning
system which fixes patient bed allocations several days in advance will
inevitably produce allocations that will almost certainly become outdated
or even infeasible. Instead, a PBA system should be able to produce a
viable allocation for each patient directly when the patient physically needs
to occupy his or her room and bed.

In addition, many large hospitals that need to cover all major disciplines
exhibit high emergency arrival rates which lead to a higher volatility and
uncertainty regarding future occupancy levels. Overflow situations are an
inevitable consequence of tight capacities and uncertain demand. In such
cases, inpatients need to be assigned to overflow areas such as hallways,
emergency- or treatment-rooms, or to other wards outside their dedicated
ward space. Staying in such intermediate areas is unpleasant for patients
and will always entail additional work for nursing staff and doctors alike, as
they typically will not be able to offer the same level of medical assistance.
However, the overall LOS of a patient mostly stays the same as necessary
surgical procedures and medication treatment will still take place even if
a patient is not within his designated ward space. Nevertheless, a bed
planner will always try to move patients out of overflow areas whenever the
situation allows it to avoid the above-mentioned drawbacks.

As a result of the situation just described, the PBA problem has to be
solved several hundred times a day. For each of these planning instances,
anticipated future emergency arrivals as well as already scheduled elective
inpatients have to be considered. To give an example, a hospital comprising
500 beds and an average LOS of 3 or 4 days requires at least 330 or 250
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reruns of the PBA system per day, respectively, i.e., each time a new arrival
or departure becomes known to the system.

Objectives In general, patients want their stay to be as pleasant as
possible while receiving top-level medical care. This means that patients
want to have a room within a designated ward space that caters to their
medical needs while avoiding unnecessary room transfers and/or having
to wait in an overflow area. In addition, patients want to have pleasant
roommates they can get along with and relate to in case they have to share
a room. Age difference is a very good indicator for how good patients get
along with each other when sharing rooms, especially for longterm stays.
This hypothesis was verified by numerous interviews with nursing staff and
doctors conducted at our case hospital. Therefore, it is desirable to combine
patients of a similar age who have similar illnesses in terms of their specific
medical conditions and severity thereof.

As opposed to emergency patients, elective patients are less likely to accept
that a room and bed within their respective department is not “reserved”
for them upon arrival at the hospital. Emergency patients on the other
hand are more willing to accept having to temporarily stay in dedicated
overflow areas. In other words, elective patients should in general be
preferred when allocating patients to beds during overflow situations. If
staying in an overflow area does become necessary, patients wish to be
transferred to a “regular room” as soon as possible. In general, it should
be noted that elective and emergency patients get the same treatments and
the same amount of medical care. The above-described focus on elective
patients with regard to patient satisfaction is mainly due to the fact that
elective patients will change hospitals for their surgery or treatment if their
subjective opinion of a hospital suffers, which would be detrimental to any
hospital’s reputation.
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Doctors are typically bound to a specific department, i.e., a specific medical
specialty. In order to facilitate doing rounds and patient visits, it is essential
to minimize walking distances for doctors.

One of the main issues when managing patient-bed allocations with regard
to nursing staff is creating a balanced workload. This is especially important
as nurses are typically dedicated to specific wards in well-coordinated teams,
which are used to working with each other and therefore cannot easily be
transferred to other wards.

Constraints When trying to optimize PBA, the following hard constraints
are typically taken into account. First, non-ICU female and male inpa-
tients are not allowed to be allocated to the same room. Second, certain
medical conditions require patients to be in rooms which are equipped
with the necessary infrastructure, e.g., telemetry for certain cardiology
patients. Third, it may be the case that a patient or several patients need
to be isolated from other patients during their stay due to medical reasons.
Finally, non-medically induced room transfers are not allowed, meaning
that allocations of patients who already physically occupy rooms in their
designated department are treated as unchangeable. This is because ev-
ery physical room transfer entails significant additional work for hospital
personnel (e.g., cleaning and sanitizing rooms, moving beds, reorganizing
tasks) as well as unnecessary discomfort for the patient. In this context,
the only exceptions are transfers due to medical reasons (e.g., transfers to
and from the ICU, which may be modeled as separate patient arrivals and
discharges).

4.2.2 Related literature and open research questions

Related Literature Scheduling elective inpatients for surgery or treat-
ment such that utilization of bed capacity is optimized has been thoroughly
investigated in the literature. For example, Beliën and Demeulemeester
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(2007) optimize bed capacity utilization by incorporating the LOS of surgi-
cal patients into master surgery schedules in order to balance bed capacity
utilization over time. A similar approach has been developed by Fügener
et al. (2014) who investigate the effects of scheduling surgery patients on
several downstream resources such as the ICU or general ward capacities.
Gartner and Kolisch (2014) further investigate scheduling procedures for
elective patients such that the contribution margin per patient as well as
the utilization of hospital resources such as beds are optimized.

The PBA problem has been introduced by Demeester et al. (2010). Note,
that Demeester et al. (2010) define the PBA problem as “patient admission
scheduling problem”. However, they consider and solve the PBA problem as
defined in Section 4.2.1. Demeester et al. (2010) suggest a decision support
system that assigns incoming patients to beds. They consider a situation
in which a hospital is initially empty and all future patient arrivals within
a given time horizon are known as well as their respective parameters, i.e.,
actual LOS, gender, department adherence, individual infrastructural needs
and so forth. In their model, every patient has to be assigned to a room such
that an overall cost function based on violating patient-specific requirements
and objectives is minimized. The formulated cost function acknowledges
gender-specific room allocation, assignment of patients to departments
suited for their age, availability of relevant infrastructure, adherence to
medical isolation, patient-specific room type preferences (e.g., single or
double room) and patient transfers. Based on this cost function patients
are assigned to available rooms of a certain type while taking predefined
admission and discharge dates of each patient into account. Demeester et al.
(2010) neglect nurse- and doctor-specific objectives and do not distinguish
between emergency and elective patients. In addition, they assume a static
offline planning situation in which all given patients are assigned to the
available rooms. An overflow buffer is not considered. Therefore, it has to
be ensured in advance that a given data set allows for a feasible assignment
of all patients to the limited number of rooms. Demeester et al. (2010)
solve the assignment problem using a tabu search algorithm.
Several authors have contributed to the problem of operational bed allo-

79



Operational Patient-Bed Assignment Problem Manuel Walther

cation either by providing alternative and/or improved heuristic solution
approaches for the problem defined by Demeester et al. and/or by adding
certain aspects to the problem.

Ceschia and Schaerf (2011) build on the model, solution approach, and
data sets provided by Demeester et al. (2010) by introducing new neigh-
borhood search strategies. They further propose a relaxation procedure
to provide lower bounds and introduce a simple dynamic version of the
planning problem. Subsequently, the authors expanded on their work and
introduced a more sophisticated heuristic solution approach involving simu-
lated annealing, incorporated emergency patient arrivals (see Ceschia and
Schaerf (2012)), and most recently included operating room utilization (see
Ceschia and Schaerf (2016)). Additionally, Ceschia and Schaerf (2016) allow
admission delays while penalizing delays that happen close to the originally
planned admission date but do not consider overflow per se.

Bilgin et al. (2012) build on the work of Demeester et al. (2010) by investi-
gating a hyper-heuristic approach to the PBA problem which focuses on
optimizing the trade-off between run-time and solution quality. A different
solution approach similarly aimed at finding a faster solution approach was
proposed by Range et al. (2014) who use a column generation approach for
solving the PBA problem. Vancroonenburg et al. (2016) propose to divide
the PBA problem into two IP models which assign current patients to beds
and reserve beds for future patient arrivals, respectively. A further approach
to solving the PBA problem worth noting was presented by Schmidt et al.
(2013), which in contrast to the afore-mentioned approaches, focuses on
assigning patients to bed contingents rather than individual beds, i.e., they
neglect room- and bed-specific characteristics, while respecting a given set
of patient preferences, respectively.

Open research and contribution to the literature In our joint project
with a large German hospital we identified a variety of additional aspects
which to the best of our knowledge have not been dealt with in the literature
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currently available regarding the PBA problem. We therefore suggest a
more comprehensive decision support model and a specialized solution
approach that overcomes actual planning shortages. The new modeling
and solution approach respects diverse interests of patients, nurses, doctors
and hospital management while simultaneously considering several hard
constraints when assigning patients to rooms and beds, i.e., medical, gender
as well as capacity constraints. In addition, we explicitly distinguish
between emergency and elective patients and consider their specific needs
and requirements. Furthermore, we deal with ad-hoc overflow situations in
which it is not possible to simply reschedule or defer patients. We assume a
dynamic online planning situation in which the PBA problem needs to be
solved several hundred times a day, i.e., at each point in time an inpatient
gets admitted or discharged or when any other change in the system merits
moving patients from an overflow area to a regular bed. In addition, the
developed approach is based on real time data that also anticipates future
developments, such that the decision support system can provide reliable
online recommendations for patient-bed allocations. Last but not least
we prove the general applicability of the approach suggested in hospital
practice using data sets from the literature as well as actual clinic data
from our case study hospital.

4.3 Modeling and solution approach

In the present section we develop a decision support model and a greedy
look-ahead heuristic (GLA heuristic) to assign elective and emergency
inpatients to beds. The model and the solution approach is designed to
be solved every time a change in the underlying parameters of the system
may lead to the physical allocation of a newly arrived patient or a patient
waiting in an overflow area to a regular bed. This may lead to several
hundred reruns of the designed procedure per day.
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4.3.1 Model development

The deterministic model maximizes a utility function which quantifies
the trade-off between patient-specific, doctor-specific, as well as nurse-
specific objectives, while simultaneously considering medical, gender as well
as capacity constraints when assigning patients to rooms and beds. In
addition, the model allows to assign patients to an overflow area if regular
beds are not available during the first or — as the case may be — for up to
all days of their designated stay. Table 4.1 summarizes the sets, parameters
and variables used when formulating the model.

Sets
B set of beds which are scheduled to be vacated within the planning

horizon of |T | days, B = {1, 2, ..., b, ..., |B|}
D set of departments, D = {1, 2, ..., d, ..., |D|}
P set of patients who require a bed at some point in time within

the planning horizon of |T | days including patients already
waiting in the overflow area, P = {1, 2, ..., p, ..., |P |}

R set of rooms which have at least one available bed, R =
{1, 2, ..., r, ..., |R|}

T set of days within the planning horizon, T = {1, 2, ..., t, ..., |T |}
W set of wards which have at least one available bed, W =

{1, 2, ..., w, ..., |W |}

Parameters
α, β, γ, δ weighting factors for patient- (α and β), doctor- and nurse-

related utilities, respectively
Ξp weighting factor that allows to distinguish between patient types,

e.g., elective and emergency patients
Ap age of patient p
Amax

rt(
Amin

rt

) Amax
rt

(
Amin

rt

)
is set to the maximum (minimum) age of all

patients already physically occupying room r for the night on
day t and to 0 (M) if the room is empty

OVp utility parameter depending on the time patient p has already
spent in the overflow area due to a previous overflow situation

Continued on next page
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Table 4.1 – Continued from previous page

cwt
additional care capacity for scheduling additional patients p ∈ P
on ward w on day t

Cp
care level required to accommodate patient p

drt drt represents the department of the prior occupants of room
r on day t only in case all of them are allocated to the same
department and 0 otherwise

Dp
associated department of patient p with Dp ∈ D

ebt ebt = 1 if bed b is located in a room that is initially empty on
day t and 0 otherwise

frt frt = 1 if room r is initially empty on day t and 0 otherwise
Gp Gp = −1 if patient p is male and Gp = 1 if patient p is female
Ip Ip = −1 if patient p requires medical isolation and 1 otherwise
Kbr Kbr = 1 if bed b is in room r and 0 otherwise
Lbw Lbw = 1 if bed b is in ward w and 0 otherwise
M

large integer value
πbp utility of assigning patient p to bed b based on overflow and

patient type (basic model)
Qt

relevance of a bed allocation for a patient on day t as antic-
ipated/planned; Qt approximated as Qt = (1− q)t with dis-
counting parameter q ∈ ]0; 1[

sbpt sbpt = 1 in case bed b is available for patient p on day t of his stay
in the hospital and 0 otherwise (“availability” further considers
gender, infrastructural, and medical isolation constraints based
on pre-occupancies in the room of bed b)

Decision variable
xbp xbp = 1 if patient p is assigned to bed b and 0 otherwise

Auxiliary variables
amax

rt

(
amin

rt

)
amax

rt

(
amin

rt

)
is the maximum (minimum) age of all patients p

assigned to room r on day t

Continued on next page
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Table 4.1 – Continued from previous page

o+
wt o+

wt denotes the additional accumulated care level surpassing a
predefined threshold for a given ward w on day t

yrt yrt = 1 if all patients assigned to an empty room r on day t are
from the same department and 0 otherwise

zrt zrt = 1 if all patients assigned to a partially occupied room r

are from the same department as the patients already occupying
room r and 0 otherwise

Table 4.1: Notation

We formulate the objective function as a multi-objective utility maximization
function to accommodate the trade-offs between the diverse interests of
patients, nurses and doctors that exist when allocating patients to beds.
The objective function (4.1) is formulated as follows:

max Π = α fbasic(xbp)− β fpatient(xbp) + γ fdoctor(xbp)− δ fnurse(xbp)
(4.1)

Equation (4.1) consists of four terms that represent (I) basic patient-specific
objectives, (II) extended patient-specific objectives, (III) doctor-specific
objectives and finally (IV) nurse-specific objectives. In the following, we will
gradually develop the four parts. The four partial objectives are weighted
by the factors α, β, γ, and δ. These weighting factors are used to control
the influence of the individual objectives on the overall solution. They are
derived from managerial decisions. All four objective values depend on the
assignment variable xbp which equals to 1 if patient p is allocated to bed b
and 0 otherwise.

84



Operational Patient-Bed Assignment Problem Manuel Walther

(I) Basic patient-specific objectives and constraints The first term
quantifies the patient-type-specific objectives:

fbasic(xbp) =
∑
b∈B

∑
p∈P

πbpxbp (4.2)

Parameter πbp denotes the patient-type-specific “utility” of assigning patient
p to bed b. It depends solely on information known prior to updating the
bed allocation planning. Thus, parameter πbp is not influenced by other
assignments of patients p ∈ P to beds b ∈ B during a specific planning
instant. As room transfers are not allowed, every assignment of a patient p
to a bed b, i.e., xbp = 1 generates a utility of πbp, which accounts for the
days that patient p actually spends in bed b within the planning horizon T .
For a given patient p and a given bed b the utility value is quantified as
follows:

πbp = OVp + Ξp

∑
t∈T

sbptQt (4.3)

Here, OVp represents a predetermined utility value which depends on the
time a patient p has already spent in the overflow area in the past. This
“overflow bonus” is only awarded to patients who are already waiting in
the overflow area at the time the decision model is solved. This is done to
ensure that patients who are already in the overflow area do not risk staying
there for the entirety of their stay. In other words, the set of patients P
includes not only current and future planned and anticipated emergency
patient arrivals but also patients that are currently waiting in the overflow
area. Patients already waiting in the overflow area will be preferred to
otherwise similar patients who have just arrived in the hospital as a result
of the additional utility value OVp.
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The second part of Equation (4.3) rewards the actual time that a patient
p spends in one of the beds b ∈ B. To this end, the predetermined
parameter sbpt is introduced, which is preset to 1 in case bed b is available
for patient p on day t and 0 otherwise. As non-medical room transfers
are not allowed, sbpt can be determined entirely during preprocessing and
is used to reflect not only bed availability but also bed compatibility by
incorporating gender constraints, infrastructural constraints, as well as
medical isolation constraints for each possible patient-bed combination.
The advantage of summing up sbpt over t ∈ T can be seen in that sbpt may
be determined entirely during preprocessing. Figure (4.3) shows an example
illustrating how parameter sbpt is set to 0 or 1. The example given considers
4 rooms, i.e., room I with beds 1 and 2, room II with beds 3 and 4, and
so forth. Here, there are multiple options for allocating female patient 1
to a bed. This patient arrives at the hospital on day 3 and is scheduled
to be discharged on day 8, thus having an anticipated LOS of 5 days. An
allocation to bed 1, for example, would imply an initial stay of three days
within the overflow area before moving to bed 1 for the remaining two
days. Accordingly, an allocation to bed 1 would have a lower utility than an
allocation to bed 4, for example, as the first three days spent in the overflow
area do not create any additional benefit. Beds 5 and 6, for example, are
not allowed to be used as this room is not equipped with essential medical
infrastructure specifically required for treating patient 1. Beds 7 and 8,
however, are both currently occupied by female patients requiring medical
isolation from non-quarantined patients for the duration of their stay, hence
forcing patient 1 to spend one day within the overflow area before moving
into either of these beds, should she be allocated to one of them.

It is important to note, that sbpt does not define the LOS of patient p. This
is because treatment of patients (e.g., surgery, medication) typically starts
once the patient arrives at the hospital, regardless of where in the hospital
their bed is physically located.

In addition, xbp defines not only the bed b that patient p is allocated to,
but also the time patient p has to spend in the overflow area depending
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Figure 4.3: Example for quantifying sbpt

on the current occupancy situation at the time the planning is updated.
In addition, spending time in the overflow area does not affect the overall
LOS. The parameter Ξp is a factor that allows to distinguish between
patient types, i.e., elective patients, emergency patients, or patients with
special infrastructural requirements. This factor may, for example, be used
to ensure that elective patients are more likely to be assigned to a bed
within their target ward upon arrival than emergency patients, or to ensure
that patients with special infrastructural needs are preferred. For example,
patients returning from the ICU could be attributed an even higher value
such that it is highly unlikely for them to be moved to an overflow area.

Finally, ∑
t∈T

sbptQt incorporates the time a patient is assigned to a regular
bed during his/her LOS. Qt is a parameter that reflects the relevance of a
bed allocation for a patient on day t as anticipated/planned where Qt is
decreasing with increasing t. Thus, otherwise similarly evaluated patients
contribute to the overall objective function with a higher utility if they
require a bed earlier in the planning horizon considered. This modeling
approach anticipates the possibility of reassigning later arriving patients
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to other beds at planning instants in the future. Due to uncertainties it is
quite reasonable that a patient, who is planned to arrive far in the future,
will be reassigned to another bed at later planning periods, which may
then even lead to a higher overall utility value for that patient. Possible
uncertainties are related to LOS, emergency arrivals, treatment progression,
no-shows and so forth. The decreasing parameter Qt is approximated as
follows, assuming q ∈ ]0; 1[:

Qt = (1− q)t (4.4)

In the following, the basic set of hard constraints is listed which have to be
adhered to regardless of how the individual parts of the objective function
are actually weighted.

∑
b∈B

xbp ≤ 1 ∀p ∈ P

(4.5)

∑
p∈P

sbptxbp ≤ 1 ∀b ∈ B; t ∈ T

(4.6)

∑
t∈T

sbpt ≥ xbp ∀b ∈ B; p ∈ P

(4.7)

KbrebtGpsbptxbp −KlreltGhslhtxlh ≥ −1 ∀b, l ∈ B; p, h ∈ P ; r ∈ R; t ∈ T

(4.8)
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KbrebtIpsbptxbp −KlreltIhslhtxlh ≥ −1 ∀b, l ∈ B; p, h ∈ P ; r ∈ R; t ∈ T

(4.9)

xbp ∈ {0, 1} ∀b ∈ B; p ∈ P

(4.10)

Equation (4.5) prevents double-booking by ensuring that each patient is
assigned to no more than one bed. Please note, a patient receives no bed
assignment if he/she entirely stays in the overflow area during his/her
scheduled LOS. In addition, Equation (4.6) prevents overbooking, such that
no two patients are allocated to the same bed on the same day. Equation
(4.7) ensures that a patient p can only be assigned to a bed b, i.e., xbp = 1
if bed b is at least available for this patient on one day of the planning
horizon, i.e., sbpt = 1 for at least one t ∈ T .

Furthermore, Equation (4.8) in combination with sbpt ensures that there are
no mixed male and female rooms on any given day t. Here, Gp is set to −1 if
patient p is male and to 1 if patient p is female. In particular, Equation 4.8
compares all patients p ∈ P which may be allocated to room r on day t. In
case a male patient is mixed with a female patient, the equation would not
be satisfied as it would then read −1− 1 ≥ −1, i.e., −2 ≥ −1. In addition,
most rooms are already preoccupied on specific days, such that only male
or female patients are additionally allowed, respectively. As pointed out
above, this prior occupancy is integrated into sbtp. Prior occupancies are
reflected in sbpt such that sbpt = 0 for a female patient p in case a bed b

is located in a room which is still occupied by at least one male patient
on day t and vice versa (see Figure (4.3) for an example). The parameter
ebt is set to 1 if bed b is located in a room that does not have any current
occupants (i.e., which is empty at the time the planning is updated) on day
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t and 0 otherwise. Finally, Kbr connects beds to rooms and is set to 1 if
bed b is located in room r and 0 otherwise.

Using a similar approach, equation (4.9) in combination with sbpt ensures
that medical isolation requirements are respected. Specifically, patients
that need to be isolated due to infectious diseases, for example, may only
be put into empty rooms or into rooms with patients that suffer from the
same condition. Here, Ip is set to −1 if patient p requires medical isolation
and 1 otherwise.

(II) Further patient-specific objectives and constraints The second
term of the objective function (4.1) is used to model the preferences of
the patients. This part of the objective function tries to minimize the age
differences within rooms since it is desirable to combine patients of a similar
age as it is more likely for them to share common interests. In addition,
they potentially share similar illnesses when associated to the same medical
department. Numerous interviews at our case hospital verify this approach.
The second term of the objective function is then denoted as follows:

fpatient(xbp) =
∑
r∈R

∑
t∈T

(amax
rt − amin

rt ) (4.11)

Here, amax
rt (amin

rt ) denotes the maximum (minimum) age of all patients
which during run-time of the model are going to be assigned to room r on
day t. As such, both auxiliary variables amax

rt and amin
rt are dependent on

the overall decision variable xbp. The following constraints are used to link
these auxiliary variables to xbp:

amax
rt ≥ Amax

rt ∀r ∈ R; t ∈ T (4.12)
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amax
rt ≥ KbrApsbptxbp ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T (4.13)

amin
rt ≤ Amin

rt ∀r ∈ R; t ∈ T (4.14)

amin
rt ≤

∑
b∈B

∑
p∈P

Amin
rt Kbrsbptxbp ∀r ∈ R; t ∈ T (4.15)

amin
rt ≤ KbrApsbptxbp + Amin

rt (1− xbp) ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T (4.16)

Here, Amax
rt is set to the current maximum age of all patients already

occupying room r on day t and to 0 in case room r is empty on day t. As it
is solely dependent on prior occupancy, Amax

rt is determined entirely during
preprocessing and is not affected by xbp.

With the same logic, Amin
rt is set to the minimum age of all patients already

occupying room r on day t and to a large integer value, e.g., 150, the
maximum age of any possible patient, in case there are no prior occupants
in room r on day t. Thus, Equations (4.12) and (4.13) ensure that the
auxiliary variable amax

rt reflects the maximum age of prior occupants and
newly allocated patients in a room r on day t. Likewise, Equations (4.14)
to (4.16) ensure the same for amin

rt while also making sure that amin
rt equals

amax
rt in the case room r is only occupied by one person or completely empty

on day t.

(III) Doctor-specific objectives and constraints The third term of the
objective function (4.1) rewards assigning patients of the same department
to identical rooms. Medical rounds for doctors are easier when having
several patients they are responsible for in the same room. In addition,
walking distances are reduced. The third term of the objective function is
then formulated as follows:

fdoctor(xbp) =
∑
r∈R

∑
t∈T

frtyrt +
∑
r∈R

∑
t∈T

(1− frt)zrt (4.17)
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As before, an additional set of constraints is required to establish the link
between the decision variable xbp and Equation (4.17):

KbrDpsbptxbp −KlrDhslhtxlh ≥ −M(1− yrt)

∀b, l ∈ B; p, h ∈ P ; r ∈ R; t ∈ T

(4.18)

∑
p∈P

∑
b∈B

Kbrsbptxbp ≥ yrt ∀r ∈ R; t ∈ T

(4.19)

KbrDpsbptxbp − drt ≤M(1− zrt) ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T

(4.20)

drt −KbrDpsbptxbp ≤M(1− zrt) ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T

(4.21)

∑
p∈P

∑
b∈B

Kbrsbptxbp ≥ zrt ∀r ∈ R; t ∈ T

(4.22)

yrt ∈ {0, 1} ∀r ∈ R; t ∈ T

(4.23)

zrt ∈ {0, 1} ∀r ∈ R; t ∈ T

(4.24)
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Here, Dp is an integer parameter that depicts the department that cor-
responds to the medical condition of patient p. In addition, drt depicts
the department of all prior occupants of room r on day t only if all prior
occupants are from the same department and is set to 0 otherwise. As
such, both Dp and drt are determined entirely during preprocessing. The
parameter frt is 1 in case room r does not have any prior occupants on
day t and 0 otherwise. Accordingly, the auxiliary variable yrt is set to 1,
if all patients assigned to an empty room r on day t are from the same
department which is achieved by Equations (4.18) and (4.19). An additional
auxiliary variable zrt is used in case a room r is already preoccupied on
day t and is set to 1 only if all patients assigned to room r as well as the
patients in room r are already from the same department. This is achieved
with Equations (4.20) to (4.22).

(IV) Nurse-specific objectives and constraints Finally, the fourth
term of the objective function (4.1) is used to balance workload for nursing
staff (see Section 4.2 for details) and is quantified as follows:

fnurse(xbp) =
∑

w∈W

∑
t∈T

o+
wt (4.25)

In particular, exceeding a predefined care capacity for nursing staff assigned
to ward w on day t is penalized. To this end, the following additional set
of constraints is required:

∑
b∈B

∑
p∈P

LbwCpsbptxbp ≤ cwt + o+
wt ∀t ∈ T ;w ∈ W (4.26)

o+
wt ≥ 0 ∀t ∈ T ;w ∈ W (4.27)
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Parameter Cp quantifies the level of care required for patient p. This repre-
sents the effort and resources that go into taking care of a particular patient.
In addition, the available number of nursing staff and thus, workforce per
ward w and day t is predetermined due to shift schedules, staff rosters, and
so forth. Thus, the parameter cwt represents the additional care capacity of
a given ward w on day t, i.e., the capacity to take in additional patients
p ∈ P requiring Cp units of care, respectively. For instance, assume cwt = 6
for a given ward w and a given day t. This would then mean that ward
w could additionally take up 2 patients with a care level Cp = 3 before
overloading the nursing staff of that ward on that day, for example. Nursing
staff typically cannot be moved from ward to ward on an ad-hoc basis. This
means that having patients in a first ward that are very easy to handle
cannot balance out a second ward filled with a very labor-intensive patient
clientele. Thus, the auxiliary variable o+

wt is introduced which denotes the
additional accumulated care level surpassing the predefined care capacity
threshold for a given ward w on day t. Equations (4.26) and (4.27) are
used to link xbp to o+

wt.

4.3.2 Greedy look-ahead heuristic

An efficient bed allocation support system needs to be able to give a bed
planner online recommendations for patient bed allocations within seconds
when prompted. This is due to real-life planning situations in large hospitals
requiring highly flexible planning systems which are able to adapt to ad-hoc
changes in real time. However, solving the model by Gurobi’s MIP solver
requires more than 12 hours for relevant problem instances (see Section
4.4 for details). Likewise, other approaches followed in the literature (see
for example Demeester et al. (2010); Ceschia and Schaerf (2011)) also had
to resort to using heuristic approaches for the same reasons. We therefore
develop a novel greedy look-ahead heuristic (GLA heuristic) which bases
on the general idea of Atkinson (1994) by sequentially assigning the most
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utility-attractive patient to his or her most beneficial bed while anticipating
potential room allocations still to be made in futher steps of the algorithm.
Table 4.2 summarizes the additional notation required to formulate the
GLA heuristic.

Ubp partial utility that an allocation of patient p to bed b may add
to the overall utility Π, p ∈ P , b ∈ B

Uargmax
p

index value of the bed that adds the maximum partial utility
to the overall utility Π when patient p, p ∈ P will be allocated
to this bed

Umax
p maximum partial utility that an allocation of patient p may add

to the overall utility Π, p ∈ P

Table 4.2: Expanded notation for the GLA heuristic

The basic premise of the GLA heuristic is based on a greedy algorithm when
assigning patients to beds which approximates assignments of patients to
beds that may be realized in later stages of the algorithm. To this end, a
utility matrix Ubp is used which, upon initiation of the PBA-algorithm, is
prefilled with the partial utilities that a respective allocation of patient p to
bed b would add to the overall utility Π of the objective function (4.1). It
should again be noted in this context, that the set of patients P as well as
the set of beds B includes not just current but also future patient arrivals
and bed availabilities, respectively, and as such every value of Ubp implicitly
includes time already spent in and time to be spent in the overflow area
as well as uncertainty regarding future arrival and discharge dates. Should
a specific bed b not be available at all for patient p at any time of their
planned stay, the value Ubp is set to zero.

Upon initiation of the GLA heuristic, xbp is set to 0 for all b ∈ B and
p ∈ P . As described above, the initial values for Ubp are calculated for
every b ∈ B and p ∈ P . Subsequently, the highest value in Ubp is identified
and xbp is set to 1 correspondingly, i.e., patient p is allocated to bed b.
Finally, all elements in Ubp that are affected by any allocation are updated
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before the next patient is allocated. To streamline the computations, only
the vectors Umax

p and Uargmax
p are calculated. Umax

p contains the maximum
partial utility that an allocation of patient p may add to the overall utility Π
and Uargmax

p reveals the index value of the corresponding bed b. If necessary
the values Umax

p and Uargmax
p are also updated after every allocation. This

way, the PBA-algorithm only has to compare |P | values instead of |P |× |B|
values.

Figure 4.4 illustrates the first steps of the GLA heuristic. Step 1 of Iteration
I shows the initial utility matrix Ubp as well as the initial corresponding
values for Umax

p and Uargmax
p . The highest value of Ubp then determines

the first allocation, i.e., x62 is set to 1. This initial allocation of patient
p = 2 to bed b = 6 then has an effect on a series of potential allocation
combinations xbp of the remaining patients P and beds B. Therefore, in
Step 2 of Iteration I the utility matrix Ubp is updated and if necessary the
variables Umax

p and Uargmax
p are redetermined. In the example shown in

Figure 4.4, the values marked with black boxes were updated. Iteration II
is then substantially equivalent and subsequent to Iteration I. Algorithm
4.1 summarizes the sequential, procedural program flow.

Algorithm 4.1 GLA heuristic
Require: P , B
Ensure: patient-bed allocations xbp

1: Ubp ← calculatePatientBedMatrix(P , B)
2: Umax

p ← max(Ubp)
3: Uargmax

p ← argmax(Ubp)
4: while (max(Ubp) 6= 0) do
5: p ← argmax(Umax

p )
6: b ← Umax

p [p]
7: xbp ← 1
8: Ubp ← updatePatientBedMatrix(p, b, Ubp, P , B)
9: end while
10: printPatientBedAllocations(xbp)

Allocating patients to rooms that are “still empty” at the time of allocation
but will be filled during later iterations, i.e., during runtime of the algorithm,
is approximated as follows. The value Bbp for the case that patient p is
allocated to bed b in a previously unoccupied room (at this exact point in
the GLA heuristic run through) is calculated assuming that any potential
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Figure 4.4: Example of the GLA heuristic
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future room-mates will not have the same department and will have the
largest possible age-difference based on the pool of patients that are still
to be allocated during the current run-through of the GLA heuristic. The
approach, therefore, “looks ahead” or approximates potential assignments of
rooms which will happen at a later stage of the run-through of the algorithm.
The procedure avoids that patients are disproportionately assigned to so
far empty rooms.

4.4 Numerical study

In this section we present detailed results for our proposed approach. First,
the choice of parameters generally used for the numerical studies is stated
in Section 4.4.1. In Section 4.4.2 we assess the performance of the GLA
heuristic by comparing runtime and solution quality of the GLA heuristic
with near-to-optimal solutions obtained by solving our model with Gurobi’s
MIP solver. In Section 4.4.3, we then solve a case study for a large German
hospital. In Section 4.4.4 we analyze the general applicability of our
approach by employing different sized problem instances from literature.
Section 4.4.5 then further investigates our contribution to literature with
regard to patient-specific, doctor-specific, and nurse-specific objectives.
All computational steps were carried out in Python 3.6.3 and Gurobi 7.5.
All computations were run on a work station equipped with 2 Intel Core
E5-2620 processors and 64 GB of RAM.

4.4.1 Parameters

The parameters presented in this Section are used for the following numerical
tests. In discussions with nurses, doctors, and hospital management we
determined the basic parameters to be used for our case study (see Table
4.3).
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Parameters α β γ δ Ξel Ξem Ξan Qt

Values 1 0.01 0.2 0.2 20 19 3 Qt = (1− q)t; q = 0.01

Table 4.3: Overview of weighting factors used

The main goal was to ensure that elective patients are generally preferred
over emergency arrivals to prevent allocating them to the overflow area
(see Section 4.2 for details). To achieve this, the weighting factor Ξp was
set to three distinct values depending on the patient type. Notably, these
consist of Ξel for elective patients, Ξem for current emergency arrivals, and
Ξan for anticipated emergency arrivals. Here, current emergency arrivals
are preferred over anticipated future emergency arrivals. This is due to the
fact, that the parameters of recently arrived emergency patients requiring
a bed are well known, whereas the relevant parameters of future emergency
arrivals have to be anticipated based on historical probability distributions.
Finally, the parameters α, β, γ, δ, and Qt were set such that patient-
specific, doctor-specific, and nurse-specific objectives reflect managerial
decisions regarding PBA in our case hospital. In our case study, two
specific effects regarding uncertainty of future events stood out. First, the
no-show probability was higher, the farther in the future a patient arrival
was scheduled. This is to be expected, as the time for potential problems
or issues to arise is longer. Second, doctors responsible for giving LOS
estimates based on their patients’ medical conditions tended to be more
conservative with these estimates the longer the remaining LOS was. This
was mainly due to doctors wanting to “avoid false promises” to patients
and the admission scheduling office alike. We approximate these issues
by a geometric function Qt = (1− q)t wherein q represents the associated
discounting factor. In essence, patients requiring a bed earlier within the
planning horizon obtain a higher priority than those who require a bed at
a later stage.
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4.4.2 Performance of the GLA heuristic

To assess the overall solution quality of our GLA heuristic we created
different sized problem instances for testing purposes ranging from 24 to
120 beds while using a planning horizon between 1 and 9 days. For each of
these problem sizes, we created 20 unique data sets based on the original
data obtained from our case hospital, i.e., over a year. In particular, 20
different “snap shots in time” were chosen at random from a 9 month period
worth of raw data to provide 20 completely different starting situations or
problem instances.
We then compared average run times for each problem size by comparing
near to optimal solutions of a Gurobi implementation of our model with
results obtained by our GLA heuristic (see Table 4.4). Near to optimal
means that we allowed a MIP Gap of up to 1%.

GLA heuristic - average solution time in seconds
|B| |T| = 1 |T| = 3 |T| = 5 |T| = 7 |T| = 9
24 0.005 0.007 0.014 0.014 0.095
48 0.012 0.028 0.060 0.106 0.171
72 0.015 0.051 0.165 0.261 0.445
96 0.022 0.073 0.157 0.296 0.551

120 0.044 0.139 0.246 0.585 0.853
Gurobi solution - average solution time in seconds

|B| |T| = 1 |T| = 3 |T| = 5 |T| = 7 |T| = 9
24 17 125 740 2124 9360
48 157 3492 19780
72 1212 16476
96 2822 stopped after 12 hours

120 10479

Table 4.4: Computational time analyses

Table 4.4 gives an overview of the average run times obtained. For the
smallest problem size, i.e., |B| = 24, the run time of the Gurobi imple-
mentation increases considerably from 17 seconds when only considering
a planning horizon of |T| = 1 to over 2.5 hours when using a planning
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horizon of |T| = 9. A similar increase can be observed when augmenting the
amount of beds included in the problem. Hence, run time heavily depends
on both planning horizon and the amount of beds considered such that
typical problem sizes, e.g., 100 beds and more with a planning horizon of 1
week, cannot be solved within a reasonable time frame. For the purpose of
our analyses we stopped the Gurobi solver after 12 hours for each data set.
However, when using our GLA heuristic, solution times stayed at under a
second even for the largest problem size tested. In addition, the solution
times obtained by the heuristic show a significantly lower rate of increase
compared to the Gurobi implementation when moving from smaller to
larger problem sizes.

Gurobi solution - average MIP Gap
|B| |T| = 1 |T| = 3 |T| = 5 |T| = 7 |T| = 9
24 0.46% 0.53% 0.57% 0.72% 0.79%
48 0.80% 0.87% 0.89% 3.59% 6.79%
72 0.84% 0.95% 3.78% 6.82% 7.30%
96 0.96% 6.45% 6.70% 7.54% 8.19%

120 0.98% 6.88% 7.87% 10.60% 15.39%

Table 4.5: Overview of average MIP Gap of the Gurobi implementation

Table 4.5 shows an overview of the average MIP Gaps obtained with the
Gurobi implementation. The near-to-optimal solutions shown above the
dashed lines were all able to be solved with a MIP Gap of about 1% or
less within less than twelve hours (see Table 4.4). For all other values, the
Gurobi MIP solver was stopped after 12 hours and the respective solutions
and their corresponding MIP Gap at that time were recorded. Here, it
can be seen that solving the model in adequate time with a standard
MIP program does not seem feasible for typical problem instances in large
hospitals.

Table 4.6 shows the average as well as the minimum and maximum solu-
tion quality obtained for each problem size. Solution quality is defined as
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GLA heuristic - average solution quality compared to Gurobi solution1
|B| |T| = 1 |T| = 3 |T| = 5 |T| = 7 |T| = 9
24 98.68% 98.08% 98.95% 98.59% 98.45%
48 98.92% 97.40% 96.83% 96.30% 96.89%
72 98.80% 98.34% 97.53% 98.01% 99.58%
96 99.54% 99.27% 99.40% 99.78% 100.55%

120 99.55% 99.46% 99.13% 101.49% 101.00%
GLA heuristic - maximum solution quality compared to Gurobi solution1

|B| |T| = 1 |T| = 3 |T| = 5 |T| = 7 |T| = 9
24 100.0% 99.98% 99.93% 99.87% 99.65%
48 100.0% 99.70% 99.32% 99.48% 99.67%
72 100.0% 99.80% 99.76% 99.82% 99.58%
96 100.0% 99.85% 99.60% 100.21% 100.55%

120 100.0% 99.67% 99.20% 102.45% 101.00%
GLA heuristic - minimum solution quality compared to Gurobi solution1

|B| |T| = 1 |T| = 3 |T| = 5 |T| = 7 |T| = 9
24 90.71% 91.04% 95.66% 95.27% 96.17%
48 96.52% 91.33% 94.19% 92.40% 94.24%
72 91.74% 96.21% 96.24% 96.04% 99.58%
96 98.38% 98.69% 98.99% 99.36% 100.55%

120 97.71% 99.05% 99.00% 99.57% 101.00%
1 values below dashed line reflect the solution obtained when stopping the Gurobi
solver after 12 hours

Table 4.6: Solution quality of GLA heuristic compared to Gurobi solution

the comparison between the values of the objective function based on the
patient bed allocations created by both approaches. In particular, the GLA
heuristic was able to achieve a solution quality of more than 95% for all
comparable problem sizes. In addition, two effects can be observed from
the data in Table 4.6. First, the average solution quality of the heuristic
decreases slightly when increasing the planning horizon. This is to be ex-
pected since a longer planning horizon creates more favorable combinatorial
combinations of patient bed allocations which are not straightforward and
as such will likely not be detected by the heuristic approach. Second, the
minimum solution quality and with it the average solution quality generally
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increases the more beds are considered. This may be attributed to the
higher probability of having comparable solutions in terms of the respective
objective function value when increasing the number of beds. In other words,
the heuristic will likely find a similarly adequate patient bed allocation even
it moves away from the near to optimal solution. This can also be seen
when comparing the solutions obtained by the Gurobi solver when stopped
after 12 hours, i.e., the values below the dashed line. Here, the heuristic
even outperforms the solution obtained by Gurobi’s MIP solver for large
problem instances while using only a fraction of the time. In summary,
these analyses indicate that the use of the GLA heuristic developed may
indeed deliver high solution quality results even for very large problem
instances while at the same time providing ad-hoc online recommendations
within seconds.

4.4.3 Case study

The modeling and solution approach suggested is applied at a large hospital
in Germany. The first paragraph presents the data and parameters used
followed by the second paragraph which presents the main results for our
case study.

Environment, data used and methodology For our case study we
investigated two departments covering 55 rooms with a total of 120 beds
spread across 5 wards. This combination represents the pooled bed capacity
for inpatients from the cardiology and gastroenterology departments.

We further obtained a detailed data set covering admission, discharge, as
well as room transfer time stamps comprising the exact date and time on
which each individual patient was actively booked in or out of a room and
bed. In addition, the data set contains the department, age, gender, and
care level of each individual patient and includes all data points recorded
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for the cardiology and gastroenterology departments between January 2013
and September 2016. In this context, it is important to note that the
available data only represents ex-post data, representing “what actually
happened”. However, in a real-life situation, it is often not clear before-hand
how long a patient will stay as the anticipated discharge date is very likely
to change throughout the stay of a patient. Thus, we tracked actual patient
movements, as well as the actual predictions from physicians regarding
the anticipated discharge date on site over the course of 4 weeks for all
cardiology and gastroenterology patients on the associated wards. We then
used these distributions and combined them with the ex-post data set at
our disposal to prepare a series of event-based data points per patient which
may be used to mimic all relevant information known to a potential bed
planning system at a certain point in time. To this end, each data point
comprises all patient-specific parameters and time stamps of anticipated
arrivals or discharges as well as the exact time and date, on which these
parameters and time stamps were last updated. Using the above-described
approach, we apply nine data sets spanning from January 2016 to September
2016, with each set comprising all events, i.e., initial patients, admissions,
discharges, and updates of LOS, occurring within a specified 28-day period.
On average, every data set comprises 648 unique patients with around
2000 unique events taking place over the course of 28 days. This means
that a deterministic problem instance was solved around 2000 times to
simulate real-life application of our solution approach over time. The actual
bed occupancy situation at the beginning of each time period is taken to
initialize the calculation of each data set. All relevant patient parameters
of current emergency and elective patient arrivals, future elective patient
arrivals, as well as anticipated future emergency patient arrivals are taken
into account to run the GLA heuristic. Due to the fact that almost all
elective arrivals are known two weeks in advance, the time horizon taken
into account for each run-through of the GLA heuristic was set to 14 days.
In order to prevent overfitting, we used the available data from 2013 to 2015
to determine probability distributions for day-specific arrival rates, LOS,
care level, department affiliation, and the age as well gender of emergency
patients.
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To test our modeling and solution approach, we compared the status quo,
i.e., the actual PBA decisions taken in the case hospital, with the patient-bed
allocations decisions that our GLA heuristic would have taken within the
same time period. The GLA heuristic reruns every time a new event occurs,
with the best known data currently available. After having undertaken all
patient-bed allocations within the relevant data sets, the actual patient-bed
allocations were analyzed ex-post facto based on the objective function of
our decision model. We summarized the objective values as well as the
relevant patient-specific, doctor-specific, and nurse-specific indicators and
weighted them by the actual hours they were valid, respectively. In this
context, it should be noted that this does not include the additional benefit
OVp attributed to patients coming from the overflow area, because it is
merely an instrument to ensure that patients are not “left” in the overflow
area. The “status quo”, i.e., the ex-post evaluation of the patient-bed
allocations that have actually taken place at the case hospital were used
as a baseline. In addition, to assess the performance of our approach, we
evaluated an “elective” scenario in which every future emergency patient
and their characteristics as well as expected LOS are deterministically
known beforehand, i.e., a scenario in which all patients are considered to
be elective patients. However, the uncertainty of changes in LOS during
the hospitalization are still existent in this scenario. Due to the remaining
uncertainty, the result of the “elective” scenario is not necessarily better
than the status quo. Nevertheless, it is expected that the “elective” scenario
having significantly fewer uncertainty factors than the status quo achieves
a higher solution quality.

Case study results Looking at the results of our case study in Table 4.7,
the normalized values (normalized to the average of the status quo) of the
objective function give a first indication of the performance of our approach.
It can be noted that by using our GLA heuristic, i.e., the results in the
columns termed “heuristic”, it was possible to improve the patient-bed
allocations for every available data set. In addition, the accumulated values
of the objective function are fairly close for the “heuristic” and the “elective”
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accumulated OF values (normalized1) utilization (in percent)

DS status
quo

heuristic elective
scenario

status
quo

heuristic elective
scenario

1 98.3 % 103.0 % 103.3 % 76.5 % 82.0 % 81.9 %
2 100.9 % 105.3 % 105.7 % 77.8 % 82.9 % 82.9 %
3 98.9 % 103.4 % 103.6 % 76.3 % 82.5 % 82.5 %
4 106.6 % 111.5 % 112.0 % 81.9 % 88.0 % 88.0 %
5 102.7 % 106.1 % 106.5 % 78.4 % 82.8 % 83.2 %
6 100.4 % 103.3 % 103.3 % 77.6 % 82.0 % 81.9 %
7 102.0 % 106.1 % 106.2 % 78.7 % 83.4 % 82.8 %
8 94.0 % 97.1 % 97.4 % 72.1 % 76.9 % 76.9 %
9 96.2 % 99.6 % 98.8 % 73.5 % 77.9 % 77.5 %
∅ 100.0 % 103.9 % 104.1 % 77.0 % 82.0 % 82.0 %

overflow (in hours) age difference (average in years)

DS status
quo

heuristic elective
scenario

status
quo

heuristic elective
scenario

1 2951 14 140 11.6 4.9 4.4
2 2960 158 209 11.1 5.0 4.3
3 3174 89 95 11.1 5.4 5.2
4 3407 147 430 12.1 5.5 5.4
5 2692 64 132 10.5 5.1 5.3
6 2625 142 117 11.3 5.6 5.3
7 2354 111 426 10.5 5.1 4.7
8 2408 115 115 10.1 5.1 4.8
9 2223 63 29 9.9 5.1 4.0
∅ 2754 100 188 10.9 5.2 4.8

same department (percentage of rooms) care level surplus (average excess of threshold)

DS status
quo

heuristic elective
scenario

status
quo

heuristic elective
scenario

1 73.9 % 92.1 % 92.7 % 0.27 0.21 0.16
2 69.8 % 94.3 % 94.1 % 0.21 0.24 0.10
3 86.1 % 95.4 % 94.5 % 0.47 0.46 0.27
4 81.8 % 93.6 % 92.7 % 0.59 0.16 0.09
5 87.4 % 96.3 % 95.5 % 0.22 0.21 0.14
6 81.4 % 93.3 % 95.3 % 0.39 0.46 0.29
7 77.8 % 95.5 % 95.0 % 0.40 0.50 0.21
8 80.0 % 95.2 % 96.1 % 0.17 0.23 0.07
9 83.1 % 95.0 % 95.3 % 0.04 0.06 0.06
∅ 80.1 % 94.5 % 94.6 % 0.31 0.28 0.15
1 normalized to the average of the status quo values

Table 4.7: Case study analyses
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scenario case. The application of our modeling approach significantly
reduces the time patients have to spend in the overflow area and increases
the average utilization. Utilization in this context is defined as the ratio of
patients occupying a regular bed within their associated department-ward
combination to the total number of beds within that department-ward
combination. This is mainly due to three different effects with regard to the
status quo. First, female and male patients are more efficiently combined
to rooms such that situations in which several male-occupied rooms still
have beds available while there is no room left for incoming female patients
are prevented, and vice versa. Second, “standard patients” are less likely to
block rooms and beds equipped with special infrastructure which they do
not need. Third, medical isolation cases that may be combined, e.g., due to
similar medical conditions, are more likely to be allocated to the same room
instead of blocking multiple rooms. In comparison, the “elective” scenario
actively generates slightly more overflow as all future emergency patients
are already known which allows for trade-offs such that a slightly longer
allocation of a patient to an overflow area may entail a better combination of
patients in rooms and wards with regard to patient-specific, doctor-specific,
and nurse-specific objectives. This is expected.

Furthermore, the results of our “heuristic” approach regarding average age
difference, adherence to the same department, and care level all show sig-
nificant improvements compared to the "status quo" scenario. In particular,
it was possible to cut the average age difference in half while at the same
time improving the percentage of rooms that only accommodate patients
from a single department by 18 %. Finally, it was also possible to decrease
the total amount of additional workload for nurses exceeding the respective
predefined thresholds per ward by 10 %.

Traced run-times of the case study are demonstrated in Table 4.8. The
average for each data set is built over all run-throughs during the period of
28 days. Any event that may change the planned patient-bed assignments,
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runtime [sec]
average minimum maximum

data set 1 1.026 0.213 1.557
data set 2 0.949 0.220 1.487
data set 3 0.955 0.259 1.249
data set 4 1.034 0.329 1.394
data set 5 0.904 0.289 1.378
data set 6 1.115 0.353 1.495
data set 7 1.017 0.348 1.317
data set 8 0.995 0.272 1.341
data set 9 0.923 0.195 1.410

∅ 0.991 0.275 1.403

Table 4.8: Runtime analysis for one run-through

i.e. an emergency arrival or an update of the LOS, triggers a rerun of the
GLA heuristic. This ensures a planning decision based on all information
known to the system at that particular point in time. Each of the nine
datasets averaged around 950 total run-throughs of the algorithm, i.e.,
complete patient-bed allocation updates. For each complete update the
average runtime was less than one second and the maximum runtime does
not exceed 1.6 seconds. It should be noted, that this runtime comprises the
complete replanning effort, i.e., the assignment of all patients p ∈ P to all
available beds b ∈ B. In summary, the case study proves that the developed
GLA heuristic is suitable and applicable as decision support system for the
daily use in a large hospital.
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4.4.4 General applicability

In addition, we investigated the general applicability of our proposed
approach. Therefore, we drew on the data sets made publicly available
by Demeester et al. (2010) and applied our approach for each data set.
Although these data sets do not include previous occupancies, uncertainty, or
care levels of patients, they do provide several large-sized problem instances
which may be used for assessing computation times.

DS1 |P| |B| |T| utilization age dif.
[yr]

same
dep.

run
time
[sec]

1 693 286 14 60% 3 61% 2.5
2 778 465 14 60% 2.8 59% 4.7
3 757 395 14 57% 2.5 60% 3.8
4 782 471 14 54% 2.4 65% 4.7
5 631 325 14 49% 2.4 67% 2.5
6 726 313 14 64% 4.2 56% 3.5
7 770 472 14 34% 2.4 78% 1.5
8 895 441 21 44% 3.3 70% 4.3
9 1400 310 28 77% 11.2 40% 12.7

10 1575 308 56 48% 4.3 68% 17.6
11 2514 318 91 46% 3.6 71% 46.5
12 2750 310 84 55% 5.8 62% 55.8

1 made publicly available by Demeester et al. (2010) for benchmarking
purposes.

Table 4.9: General applicability analyses

Our results which can be seen in Table 4.9 show that the overall utilization
in Demeester’s data sets is so low that short-term allocations of patients to
an overflow area are basically not required. Nonetheless, even for the largest
problem instance, i.e., data set 12 comprising 2750 patients and a planning
horizon of 84 days, we found a solution with less than a minute computation
time. The achieved average age difference of the data sets varies around 3
years with one outlier of 11.2 years for data set 9. This is caused by the fact
that data set 9 involves a pediatric and geriatric department as well as high
utilization. Thereby, to avoid overflow situations, the model is forced to
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combine patients with a large age gap. The percentage of patients adhering
to the same department in one specific room per night ranges between 40%
and 78%. This depends on the amount of specialities and the utilization.

In summary, the data sets provided by Demeester et al. (2010) significantly
differ to what we encountered at our case hospital, in particular due to the
unusually low utilization rates, as well as the lack of uncertainty in patient
arrivals and updates of LOS. Thus, we additionally tested our model and
solution approach with real-life data provided by the case hospital.

4.4.5 Sensitivity analyses

To better understand the trade-off effects that exist between the different
objectives for patients, doctors, and nurses we created four additional
scenarios in which we increased each of the four weighting factors α, β, γ,
and δ by a factor of 10, respectively (see Table 4.10).

base
scenario

scenario
1

scenario
2

scenario
3

scenario
4

α 1 10 1 1 1
β 0.01 0.01 0.1 0.01 0.01
γ 0.2 0.2 0.2 2 0.2
δ 0.2 0.2 0.2 0.2 2

Table 4.10: Scenarios for sensitivity analyses

Each scenario is run with each of our nine real-life data sets. The results
in Table 4.11 show the aggregated average values for each scenario and
can be interpreted as follows. Throughout all four additionally created
scenarios the utilization remains fairly constant around 82%. However, the
individual results regarding overflow, age difference, department affiliation,
and care level surplus show significant differences. This behavior is to be
expected as the GLA heuristic will always try to fill up the available bed

110



Operational Patient-Bed Assignment Problem Manuel Walther

capacities. Nonetheless, significant trade-offs can be seen when focusing on
optimizing age differences, department adherence per room, and workload
for nurses. For instance, it can be seen that focusing optimization on
parameters with a higher variance such as the age of patients significantly
increases overflow as patients are “held back” in the overflow area to
achieve even better pairings with other patients in the future. On the
other hand, optimizing parameters with a low variance, such as department
adherence, does not have a measurable effect on overflow. Focusing on age
difference or department adherence significantly reduces the performance
of the respective other parameter, as both parameters are room-specific,
meaning that a trade-off has to be found. By contrast, the overall workload
for nurses is ward-specific. Thus, a strong focus on balancing this workload
does not lead to significantly worse values regarding age difference and
department adherence. Finally, a strong focus on weighting factor α leads
to a decrease in all observed objectives. This is due to the fact that in
such a constellation, the GLA heuristic always prefers incoming and future
elective patients regardless of how good a current emergency patient might
match with an elective patient when allocated to the same room, thus
leading to a slightly higher overflow of emergency patients.

utilization overflow age
differ-
ence

same
depart-
ment

care
level

surplus
base

scenario
82.0% 100 5.2 95% 0.28%

scenario 1 82.0% 84 6.3 90% 0.57%
scenario 2 81.2% 480 3.3 80% 0.25%
scenario 3 82.0% 67 11.5 98% 0.37%
scenario 4 82.0% 92 5.2 94% 0.13%

Table 4.11: Sensitivity analyses for patient-, doctor-, and nurse-specific objectives
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4.5 Conclusion and further areas of research

Conclusion The present paper presents a decision model that can be
applied for ad-hoc operational bed allocation in large hospital settings.
Most of the previous literature on PBA focuses on the developed model of
Demeester et al. (2010) and his published fictive example data sets, either
by providing alternative and/or improved heuristic solution approaches for
the problem defined and/or by adding certain aspects to the problem. In
our joint project with a large German hospital covering all major disciplines,
we identified a variety of additional aspects which to the best of our
knowledge have not been dealt with in the literature currently available.
Based on the real-life situation our decision support model incorporates
three main stakeholders, namely patients, nursing staff, and doctors. The
developed model integrates the planning of current emergency and elective
patient arrivals, future elective patient arrivals, as well as anticipated future
emergency patient arrivals. To the best of our knowledge, we are the first
who take into account all relevant stakeholders, extended patient-patient
room dependencies, overflow situations, and the anticipation of future
emergency patients as well as the possibility of a frequent replanning, which
accounts for the uncertainty being inherent in the system. The model
and solution approach developed is designed to very quickly propose a
meaningful bed allocation to the bed manager for every incoming patient
at the time of their arrival, based on all the information known at that
particular moment. We developed a greedy look-ahead (GLA) heuristic
that is suitable and applicable for daily use as an efficient and quick support
system. In the numerical results, we have shown that

i) the GLA heuristic greatly outperforms Gurobi’s MIP solver in terms
of computational time while delivering a solution quality of 96.8% and
higher

ii) our GLA heuristic can also sufficiently solve large data sets from
previous literature,
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iii) on the basis of real hospital data the GLA heuristic improved the
objectives of all stakeholders, e.g., the overflow was reduced by 96%,

iv) the objectives of the stakeholders are highly dependent on one another.

Finally, the modularity of our proposed approach regarding standard objec-
tives and constraints of the typical stakeholders along with the ability to
solve large problem instances renders our proposed approach applicable for
large hospitals anywhere in the world which cater to most major disciplines
and exhibit high emergency rates. As such it is not limited to the German
setting.

Future areas of research Various opportunities exist for further re-
search. Based on our decision model a survey on different sophisticated
heuristics can be conducted, focusing in detail on the trade-off between
runtime and solution quality. In addition, a more detailed investigation
on the effects of uncertainty regarding emergency arrival ratios and LOS
estimates can be undergone. This would include investigating different
ways of modeling uncertainties for the multi-objective PBA problem. It is
also imaginable to include further stakeholders such as, for example, bed
transport services. The modeling and solution approach presented in this
paper may be an appropriate starting point to address these open research
questions.
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Abstract This paper develops a multi-objective decision support model for solving
the patient bed assignment problem. Assigning inpatients to hospital beds impacts
patient satisfaction and the workload of nurses and doctors. The assignment is subject
to unknown patient arrivals and lengths of stay, in particular for emergency patients.
Hospitals therefore need to deal with uncertainty on actual bed requirements and po-
tential shortage situations as bed capacities are limited. This paper contributes by
improving the anticipation of emergency patients using machine learning approaches,
incorporating weather data, time and dates, important local and regional events, as
well as current and historical occupancy levels. Drawing on real-life data from a large
case hospital, we were able to improve forecasting accuracy for emergency inpatient
arrivals. We achieved an up to 17% better root mean square error when using machine
learning methods compared to a baseline approach relying on averages for historical
arrival rates. Second, we develop a new hyper-heuristic for solving real-life problem
instances based on the pilot method and a specialized greedy look-ahead heuristic.
When applying the hyper-heuristic in test sets we were able to increase the objective
function by up to 3% in a single problem instance and up to 4% in a time series
analysis compared to current approaches in literature. We achieved an improvement
of up to 2.2% compared to a baseline approach from literature by combining the
emergency patient admission forecasting and the hyper-heuristic on real-life situations.

115



Tackling Uncertainty in the Operational Patient-Bed Assignment Problem Manuel Walther

5.1 Introduction

This paper deals with the patient bed assignment problem (PBA). This
is the operational problem of allocating elective and emergency inpatients
to specific rooms and beds within a hospital upon their arrival. The key
challenge in PBA is the inherent uncertainty that governs most input
parameters. The planning situation is unstable due to frequent changes,
which may be caused by emergency patient arrivals, changes in treatment
plans and a number of other factors. For example, large maximum care
hospitals are a natural first point of contact for all emergency patients within
their catchment area, which naturally leads to a high ratio of unknown
emergency inpatient arrivals. Thus, when assigning inpatients to beds in
such environments, it is very important to anticipate the number of imminent
emergency patient arrivals as best as possible, as emergency and elective
inpatients can occupy the same ward space. Several circumstances and
external effects may drive the volume of emergency patients, e.g., seasons,
weekdays, local events (e.g., county fairs, sports events). There may be
different drivers for each discipline (e.g., snowy weather for trauma surgery,
availability of family doctor for internal medicine). Real-life planning
typically involves several hundred patients and beds, such that it is not
uncommon to be faced with a completely changed set of input parameters
due to several updates in the system during the planning horizon. Moreover,
the PBA affects patient satisfaction (e.g., suitable room with adequate
roommates), workload of nurses (e.g., a mix of work-intensive and easy-
to-handle patients) and workload of doctors (e.g., own patients located in
proximity). These may comprise some tradeoffs. For example, focusing
only on patient satisfaction by putting optimal roommates together may be
in conflict with the nurse workload. As such, the PBA is a multi-objective
problem that considers the tradeoff between patient-, nurse-, and doctor-
specific objectives while taking into account their respective constraints as
well as infrastructural requirements.
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The remainder of this paper is structured as follows: Section 5.2 defines
the PBA problem, discusses related literature, and further elaborates on
the specific contribution of this paper. Section 5.3 introduces the mathe-
matical model and the hyper-heuristic framework developed. It is based on
the “preferred iterative look-ahead technique” (pilot method) of Duin and
Voß (1999) and Voß et al. (2005), which in part incorporates the greedy
look-ahead heuristic described in Atkinson (1994) as a subheuristic. Section
5.4 provides several numerical examples based on actual hospital data and
details a machine learning approach developed to better anticipate emer-
gency inpatient arrivals. In addition, we combine these insights obtained
from machine learning with a hyper-heuristic framework for solving the
PBA efficiently for large problem instances. Finally, Section 5.5 presents
a summary of the main results and outlines potential avenues for further
research.

5.2 Problem description, related literature and

contribution

5.2.1 General planning problem

Scope of the patient bed assignment problem It is important to
distinguish between the patient admission and scheduling problem (PAS)
and the patient bed assignment problem (PBA), as these expressions have
been used with varying definitions in the literature. We consider the PAS
as only dealing with the scheduling of elective patient admission dates (see
e.g., Gartner and Kolisch (2014); Gartner and Padman (2019)), whereas
the PBA tackles the problem of allocating a specific room and bed to a
specific inpatient (see e.g., Demeester et al. (2010); Ceschia and Schaerf
(2011); Schäfer et al. (2019)). For the PAS it is not necessary to know
which bed exactly will be held available for a certain inpatient as long as
it is guaranteed to a certain extent that a bed will be available (see e.g.,
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Ceschia and Schaerf (2016)). The PBA is the downstream decision with
regard to the PAS.

Figure 5.1 presents an example of the PBA. Two female emergency patients
who have just arrived are planned to stay in beds 3 and 4. While bed 1
is theoretically available before bed 3, it is already “reserved” for a male
elective patient scheduled to arrive on Friday and stay for several days.
Consequently, the female patient planned to occupy bed 3 will have to wait
in an overflow area (e.g., hallways, emergency or treatment rooms) until
Saturday when bed 3 becomes available for her. For this example, it is
considered more important that the elective patient arriving on Friday does
not have to wait in an overflow area. Hence, it is crucial to determine at
which time a specific physical room and bed is to be assigned to a inpatient
and whether or not it should be possible to reserve such a bed. In essence,
there is always a tradeoff between different PBAs, which at times leads to
situations where it may be beneficial to the overall utility to deviate from a
first-come-first-served rule.

current occupancies 
(elective and emergency)

current arrivals 
(elective and emergency) 

planned elective 
inpatient arrivals

anticipated emergency 
inpatient arrivals

Tue Wed Fri Sat Sun MonMon

female

female

male

male

female

male

male

female

female

bed

bed 4

bed 3

bed 2

bed 1

...

Room 1

Room 2

planning time

Figure 5.1: Illustration of the patient bed assignment problem

Objectives of patient bed assignment problem In general, patients
want to have a room within a designated ward space that caters to their
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medical needs while avoiding unnecessary room transfers or having to wait
in an overflow area. It is further desirable to combine similar patients,
e.g., patients of similar age or with similar illnesses in terms of their
specific medical condition and the severity thereof. In addition, elective
patients typically do not accept that a room and bed within their respective
department is not “reserved” for them upon their arrival, while emergency
patients are more willing to accept having to temporarily stay in dedicated
overflow areas. If staying in an overflow area does become necessary, patients
wish to be transferred to a “regular room” as soon as possible. To facilitate
doing rounds and patient visits, walking distances for doctors should be
minimized. This can be achieved by grouping similar patients, i.e., patients
associated with a specific department, into rooms. Compared to doctors,
nurses can typically tend to a broader range of patients. However, they are
typically dedicated to a specific ward, working in well-coordinated teams,
and therefore cannot easily be transferred to other wards. Thus, balancing
workload between wards is a key objective for nurses when assigning patients
to beds (Schäfer et al., 2019).

Constraints of the patient bed assignment problem For the PBA,
the following conditions have to be taken into account. First, non-ICU
(intensive care unit) female and male inpatients are not allowed to be
allocated to the same room. Second, certain medical conditions require
patients to be in rooms, that are equipped with the necessary infrastructure,
e.g., telemetry for selected cardiology patients. Third, it may be the case
that a patient or several patients need to be isolated from other patients
during their stay for medical reasons. Finally, there are usually no non-
medically induced room transfers, meaning that assignments of patients
who already physically occupy rooms associated with their designated
department are treated as unchangeable. This is due to the fact that
every physical room transfer entails significant additional work for hospital
personnel (e.g., cleaning and sanitizing rooms, moving beds, reorganizing
tasks) as well as unnecessary discomfort for the patient. In this context,
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the only exceptions are transfers due to medical reasons (e.g., transfers to
and from the ICU).

5.2.2 Complexity of the patient bed assignment
problem

In order to guarantee patient satisfaction and trouble-free process flow
(i.e., avoid waiting times until inpatient admission as well as blocking
emergency departments), bed mangers need real-time decision support.
Furthermore, real-life planning situations are affected by many sudden
changes (e.g., update of length of stay (LOS), no-shows and emergency
patient admissions). Large hospitals in particular therefore require highly
flexible planning systems, that are able to adapt to unexpected changes in
real time. PBA complexity thus results from (1) being unable to precisely
estimate the number of beds required and (2) the size of the problem of
jointly planning hundreds of beds.

(1) Arrival and length of stay of patients Usually elective and emer-
gency inpatients share the same ward space and bed capacities. This
requires jointly planning the PBA for both types. Emergency inpatient
arrivals are not known in advance and are stochastic, so they can only
be estimated. Appropriately predicting which kind of emergency patients
and how many are likely to arrive on a given day is a fundamental input
to the PBA, particularly for large maximum care hospitals where up to
80% may be emergency patients. Simply predicting emergency patients
based on historical averages will fall short, as – in addition to an inherent
randomness – it seems highly probable that the actual number of emergency
arrivals is dependent on a plethora of factors internal and external to the
hospital, and cannot be explained solely by the time and date. For exam-
ple, trauma surgery departments may experience an increase in emergency
inpatients at the beginning of the cold season due to sidewalks that have
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frozen over, leading to more elderly people falling down and suffering a
fracture. Furthermore, the LOS of a patient is always an informed esti-
mate. Unforeseeable events such as sudden complications during surgery or
treatment, faster recoveries, or patients who self-discharge against medical
advice can potentially lead to a change in the LOS. Some disciplines exhibit
high emergency arrival rates or are subject to more LOS updates. Finally,
elective patients can also fail to show up for their planned inpatient stay. All
this together leads to high volatility regarding future occupancy levels. In
combination with the economic need for tight capacity and high occupancy
levels, the volatility in patient volume inevitably leads to occasional overflow
situations. In such cases, inpatients need to be temporarily assigned to
overflow areas. Hallways, emergency or treatment rooms, or other wards
outside a dedicated ward space may serve as buffers in such cases. Staying
in such intermediate areas, however, is unpleasant for patients and will
always entail additional work for nursing staff and doctors alike.

(2) Size of the problem To obtain better capacity utilization, depart-
ments of large hospitals now share ward space (see e.g., Van Essen et al.
(2015) and Hübner et al. (2018)), which calls for jointly planning hundreds
of beds and efficient decision support. Whenever an elective or emergency
patient is admitted to or discharged from wards, LOS are changed or
no-shows of elective patients occur, or patients are reassigned from the
overflow, the PBA needs to be updated. As such, the underlying planning
problem has to be solved many times per day. To illustrate, one can for
instance assume a scenario comprising a pooled capacity of 1,000 beds
exhibiting an average utilization of 90%, with patients who stay three days
on average. This would lead to an average of 300 inpatient arrivals and 300
inpatient dismissals per day, respectively. Further assuming an emergency
ratio of 50% would mean that at least 150 of said arrivals are subject to
fluctuations to the bed planning system beforehand. In addition, one can for
example assume that 50% of the remaining elective PBAs, i.e., 75 arrivals,
are somehow affected by a sudden change in LOS of any of the current
occupants. In total, this would lead to an average of 225 additional events
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during the day, for which all future PBAs have to be recalibrated. Further
changes in LOS updates for patients already occupying a room, no-shows of
elective patients and overflow situations will increase the number of events.
In overflow situations unexpected inpatient dismissals could then directly
affect potential PBAs of any patients currently waiting within an overflow
area.

5.2.3 Related literature

The problem at hand is related to decision models for the PBA and relies on
estimating emergency patients. We structure the literature review in these
two areas, and derive the associated open research areas in each section.

5.2.3.1 Decision models and related literature for patient bed
assignment

The PBA has gained more and more attention mainly within the past
decade. Key challenges dealt with in most contributions to this area of
research can be seen in the computational complexity of typical problem
sizes and the resulting need for heuristic solution approaches, as well as the
underlying uncertainty and volatility of most parameters involved. Table
5.1 gives an overview of most of the recent contributions and highlights a
set of key aspects related to the challenges mentioned above. With regard
to the modeling approach followed, “static setting” refers to a hypothetical
scenario in which every future arrival is known and no prior occupancies are
considered, whereas in the “dynamic setting” prior occupancies are consid-
ered, while future arrivals are only known within a defined planning horizon.
Column “emergency patients” indicates whether or not the potential arrival
of inpatients is considered, which cannot be known in advance. Furthermore,
under “overflow possible” we indicate whether a specific modeling approach
is designed to deliver solutions for situations when not enough beds are
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available for all arriving inpatients. “Uncertainty considered” refers to the
modeling of volatility in patient parameters, e.g., future changes in LOS.
The column “stakeholders” indicates for which group, i.e., patients, nurses,
and doctors, are included within the model. The column “emergency fore-
cast” indicates whether emergency inpatient arrivals were analyzed beyond
the effects of using simple historical occupancy distributions. Furthermore,
the column “time series” indicates whether the continuous application of a
PBA algorithm over the course of several days or weeks was analyzed. In
essence, this means analyzing the actual accumulated partial benefits or
costs incurred by each patient stay in retrospect. Finally, the column “data
sets used” indicates whether simulated data or real-life hospital data was
used.
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Table 5.1: Overview of decision models related to patient bed assignment
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Static models for patient bed assignments The PBA was first intro-
duced by Demeester et al. (2010). They consider a situation in which a
hospital is initially empty and all future patient arrivals within a given time
horizon are deterministically known as well as their respective parameters,
e.g., actual LOS, gender, department adherence, individual infrastructural
needs. The model is formulated as a static model where the assignments
are only made once to populate the hospital. This static version is only
a single problem instance in which all future arrivals are known, without
considering any prior occupancies. In their model, patients are assigned to
rooms such that an overall objective function based on violating patient-
specific requirements is minimized. The model acknowledges gender-specific
room assignment, assignment of patients to departments suited to their age,
availability of relevant infrastructure, adherence to medical isolation and
patient-specific room type preferences (e.g., single or double room). Pa-
tients are assigned to available rooms of a certain type while taking known
admission and discharge dates of each patient into account. Capacity is
assumed to be sufficient to accommodate all inpatients. As such, it does not
allow for overflow situations, i.e., problem instances in which not enough
beds are available for all inpatients cannot be solved. Furthermore, they do
not consider nurse- and doctor-specific objectives and do not distinguish
between emergency and elective patients. They apply a token-ring tabu
search.

Several authors have since built on the model developed by Demeester et al.
(2010) by providing alternative or improved solution approaches and/or by
introducing new aspects to the PBA. Bilgin et al. (2012) use the model
provided by Demeester et al. (2010) and solve the static version of the
PBA by applying a hyper-heuristic approach using simulated annealing
and a tabu search. Kifah and Abdullah (2015) and Bastos et al. (2019)
also provide new solution approaches to the static version of the PBA
model as proposed by Demeester et al. (2010). In particular, Kifah and
Abdullah (2015) propose a variant of a generic algorithm, i.e., an adaptive
non-linear great deluge heuristic, whereas Bastos et al. (2019) propose
an MIP formulation and use sparcity conditions to find optimal solutions
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for some problem instances of Demeester et al. (2010). To decrease the
computational complexity, Ceschia and Schaerf (2011) have proposed a
reformulated version of the mathematical model originally proposed by
Demeester et al. (2010). Specifically, Ceschia and Schaerf (2011) reformulate
the model such that patients are only assigned to rooms rather than beds,
as they consider the beds in each room to be identical. Based on this
reformulated version, Turhan and Bilgen (2017), Guido et al. (2018), and
Dorgham et al. (2019) have presented solution approaches to the PBA.
For instance, Turhan and Bilgen (2017) also focus on improving the static
version of the PBA problem and investigate the effects of using a fix-and-
optimize heuristic. In addition, Guido et al. (2018) further investigate the
impact of switching hard and soft constraints in the PBA and develop a
matheuristic that focuses on providing tighter bounds on the search space.
More recently, Dorgham et al. (2019) have proposed a further variant of a
genetic algorithm combined with a hybrid simulated annealing approach.
Taramasco et al. (2019) on the other hand have taken a slightly different
modeling approach to the PBA. Specifically, they investigate a network of
hospitals and divide the PBA into two stages. In a first stage patients are
assigned to beds within a specific hospital, while in a subsequent second
stage patients who cannot be assigned an adequate bed are redistributed
among the other hospitals within the network. In addition, Taramasco et al.
(2019) are one of the few who have investigated the static version of the
PBA using real-life hospital data. To solve their model for large problem
instances, they propose a metaheuristic, which is a composition of different
specialized and evolutionary heuristics and approximate methods.

Investigating the static version of the PBA provides a valuable controlled
test environment, which has been used in the literature to compare different
modeling and solution approaches. However, for real-life applicability, a
proposed modeling and solution approach for the PBA needs to be able to
handle dynamic online planning situations, i.e., problem instances in which
some beds are already pre-occupied and in which not all future arrivals are
fully known to the system. In addition, for large hospitals using pooled
ward capacities and experiencing high ratios of emergency arrivals, it is
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especially important to incorporate potential emergency inpatients into the
bed assignment planning. First and foremost this requires having good
emergency arrival forecasts. Furthermore, when pairing high occupancy
rates with high emergency arrival rates, overflow situations are likely to
arrive that have to be handled by the PBA system.

Dynamic models for patient bed assignments Ceschia and Schaerf
(2011) are the first to provide an approach for adapting the PBA model
and solution approach to the dynamic case. To this end, they include
the notion of an individual “registration date” per patient, i.e., the date
the arrival of the patient becomes known to the system. The number of
days an arrival is known in advance can vary for elective patients and can
be considered to equal zero for emergency arrivals. However, emergency
patients are not treated any differently to elective patients once they are
known to the system. In addition, Ceschia and Schaerf (2011) consider pre-
occupancies, i.e., patients who are already in the hospital at the planning
date, whereby each PBA that has happened before said date is considered
fixed. To test their approach they draw on simulated data by Demeester
et al. (2010) and adapt the information in a reasonable but arbitrary
way. Furthermore, Ceschia and Schaerf (2011) provide an approach to
investigating the uncertainty regarding the discharge date of a patient
that is inherent in the dynamic problem setting. To assess the impact of
different LOS they solve the PBA several times using different values for
the discharge dates of all patients in the system. Specifically, they start by
assuming that each patient leaves after one day and add a day to the LOS
of each patient, respectively, until the actual discharge date is reached. In
their subsequent work (Ceschia and Schaerf (2012) and Ceschia and Schaerf
(2016)) they further include uncertainty by factoring in flexible horizons
and patient delays while also adding operating room constraints. Based on
the work of Ceschia and Schaerf (2012), Lusby et al. (2016) further provide
an alternative solution method to the PBA under uncertainty. Specifically,
they develop an adaptive search procedure. Vancroonenburg et al. (2016)
tackle the dynamic PBA setting by providing a first model that is designed
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to only assign those patients to a new room who have just arrived and
physically require a bed. They use a graph-based approach in which they
use maximal cliques to respect room capacity constraints. In addition, they
suggest a second model in which they also assign patients to beds who
are registered in the system but have not yet arrived. This approach uses
“dummy rooms” that are only “open” to patients who have not yet arrived in
order to ensure feasibility of the model in undercapacity situations. Schäfer
et al. (2019) have developed a comprehensive model and a specialized
solution approach for solving the PBA. Their model distinguishes between
emergency and elective patients and incorporates their respective needs
and constraints as well as those of doctors, nurses, and management. In
addition, it is designed to handle ad-hoc overflow situations, should they
arise. Finally, it incorporates and evaluates patient-patient dependencies
with regard to rooms and wards.

For real life situations in large hospitals, it is important to have a decision
support system that is proven to work in a dynamic online scheduling
scenario. At a minimum, this requires a solution approach that can deal with
ad-hoc overflow situations and emergency inpatient arrivals. In addition, the
underlying volatility of patient LOS and emergency arrival rates typically
requires several adaptations of future PBAs during any given day. The
performance of any such support system can thus only be measured by
retrospectively evaluating actual occupancy. To the best of our knowledge,
Schäfer et al. (2019) are the only ones to have analyzed the performance of
their modeling and solution approach over a time series. However, there
is still a need for better parameter forecasting for the dynamic problem
setting and testing.

Further literature related to patient bed assignment To complete
the picture, we additionally review related literature to highlight further
aspects, that are considered relevant to the PBA context. For instance, bed
capacity related issues are addressed by the following authors. Van Essen
et al. (2015) and Hübner et al. (2018) develop approaches to combine
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departments and wards to pool bed capacities. Vanberkel et al. (2012) use
a queuing model to investigate the tradeoffs between centralizing hospital
resources and decentralizing. Holm et al. (2013) use a discrete event
simulation model to analyze patient flows and optimize the assignment of
bed capacities between wards. Bekker et al. (2016) investigate the issue of
partially flexible ward capacity and how much should be attributed to a
general overflow area. Another example for handling overflow situations
can be found in Herring and Herrmann (2012) who investigate the effects
of deferring surgical patients while blocking surgical capacity for higher
priority cases. Cotta (2011) investigate the effects of patient prioritization
in a mass casualty scenario. With regard to patient admission, for instance,
Gartner and Padman (2019) build on and extend Gartner and Kolisch
(2014)’s approach to solving the PAS. They focus on the assignment of
hospital resources and provide a mathematical program, that, among other
things, includes flexible patient assignments to medical departments to
account for multi-morbid patient clientele, as well as overtime availability of
medical and nursing staff. Luscombe and Kozan (2016) provide a dynamic
scheduling framework that relates to parallel machine and flexible job shop
problems to provide a decision support model for patient assignment in
emergency departments.

Open research with regard to modeling and solving PBAs As to the
operational assignment of beds, the actual problem at hand is a dynamic
online planning situation in which the PBA needs to be solved several times
per day. That means at each point in time that an inpatient gets admitted
or discharged or when any other change in the system merits moving
patients from an overflow area to a regular bed. Alternative heuristics are
required to address the dynamic problem. As pointed out above, a key
performance indicator for any such heuristic is the retrospective assessment
of actual occupancies over time. To the best of our knowledge, Schäfer et al.
(2019) are the only ones to have provided such a time-series analysis using a
deterministic greedy look-ahead heuristic. However, there is still a need to
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investigate more sophisticated heuristic approaches using different parameter
settings, especially when using non-deterministic solution approaches.

5.2.3.2 Literature related to estimating emergency patients

One of the key drivers of uncertainty regarding bed management in large
hospitals is the large ratio of emergency inpatient arrivals, which for certain
medical specialties such as cardiology can surpass 80%. Carvalho-Silva et al.
(2018) as well as Afilal et al. (2016) concern themselves with the problem of
forecasting emergency arrivals at a hospital. Both use hospital data and use
an autoregressive moving average approach. Schiele et al. (2019) provide a
model to anticipate resulting bed occupancy levels based on a given master
surgery schedule. They consider different patient types and paths and make
use of a neural network based approach to improve their prediction quality.
In addition, several authors have dealt with forecasting emergency arrivals
in general, e.g., outpatient arrivals, day clinic walk-ins, or emergency calls,
as can be seen in a systematic review written by Wargon et al. (2009). More
recently, Gul and Celik (2018) have reviewed and analyzed contributions
on applications of statistical forecasting in emergency departments.

Open research with regard to estimating emergency patients for
PBA As pointed out above, anticipating emergency arrivals as accurately
as possible is key for the PBA. Our literature review shows that advanced
methods to better anticipate emergency inpatient arrivals, e.g., using state-
of-the-art machine learning methods, are rare in general and not available
for the specific problem of assigning inpatients to beds. To this end, a
broader investigation with combined effects such as detailed weather data,
holidays, seasons or significant local events is required. This will allow
the prediction of emergency arrivals more accurately compared to solely
drawing on historical averages and distributions of patient arrivals. Such an
approach is promising as it relies on publicly available data and as such is
possible to be incorporated in existing planning systems. To the best of our
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knowledge, such an integrated approach to forecasting emergency inpatient
arrivals for the PBA has not yet been proposed in the literature.

5.3 Modeling and solution approach

5.3.1 Model complexity, general idea of the solution
approach and model overview

Complexity and general idea The underlying problem of the PBA could
be represented as a stochastic dynamic program. The dynamic setting of
the problem arises from multiple events such as arrivals, discharges and
no-shows of patients as well as changes in LOS. Here, each event represents
a stage and the total number of inpatients constitutes the state space in
each stage. To illustrate, when assuming the case of a large hospital with
about 800 beds occupied on average, a planning horizon of 28 days and an
average of over 500 events per day, this would result in more than 14,000
stages and a total state space of more than 11 million entries. The stochastic
volatility arises from the fact that the total number and type of inpatients
cannot be predetermined and are further subject to uncontrollable external
influences (such as weather, patient recovery, treatment complications, etc.).
In light of this, it becomes obvious that such a dynamic problem setting
cannot be solved optimally, meaning that a heuristic approach is required
if one wants to provide efficient and effective decision support in real-life
settings. We approximate the dynamic problem as Schäfer et al. (2019) by
solving a static model that is updated at each possible event. Ceschia and
Schaerf (2011) propose a similar approach to test the performance of their
static model in a dynamic setting. When solving the model, it allocates
beds for patients (new inpatients and patients from overflow buffer), assigns
patients to overflow, and reserves beds for patients (currently in overflow and
future patient arrivals). As such, we subsequently solve single stages while
considering future arrivals and discharges that are both already known and
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estimated. The model takes all the relevant information currently available
into account for each of these individual stages.

Model overview The decision model is based on Schäfer et al. (2019).
A multi-objective utility maximization problem quantifies patient-specific,
doctor-specific, and nurse-specific objectives, while simultaneously consid-
ering medical, gender, and capacity constraints. The model builds in the
possibility of using a buffer for situations where the number of beds is
insufficient or beds may be blocked for patients arriving later. Table 5.2
summarizes the notation.

Sets
B Set of beds, B = {1, 2, ..., b, ..., |B|}
D Set of medical departments, D = {1, 2, ..., d, ..., |D|}
P Set of inpatients, P = {1, 2, ..., p, ..., |P |}
R Set of rooms, R = {1, 2, ..., r, ..., |R|}
T Set of days within the planning horizon, T = {1, 2, ..., t, ..., |T |}
W Set of wards, W = {1, 2, ..., w, ..., |W |}
Parameters
α, β, γ, δ Weights for basic and extended patient-, doctor- and nurse-related

utilities, respectively
Ξp Weight for patients o (e.g., elective vs. emergency patient)
ap Age of patient p
Amax

rt(
Amin

rt

) Maximum (minimum) age of all patients already occupying room
r on day t

Cwt Spare care capacity for caring for further patients on ward w on
day t

cp Care level required to accommodate patient p
Drt 1 if all prior occupants of room r on day t belong to same medical

department; 0 otherwise
dp Medical department of patient p with dp ∈ D
Ebt 1 if bed b is located in a room that is initially empty on day t; 0

otherwise
Frt 1 if room r is initially empty on day t; 0 otherwise
gp −1 if patient p is male; 1 if patient p is female
ip ip = −1 if patient p requires medical isolation; 1 otherwise
Kbr 1 if bed b is in room r; 0 otherwise
Lbw 1 if bed b is in ward w; 0 otherwise
OFp Utility parameter of patient p depending on the time patient p

has already spent in overflow

Continued on next page
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Table 5.2 – Continued from previous page

Qt Time-dependent relevance value that arrivals/discharges will take
place as anticipated/planned on day t

sbpt 1 if bed b is available for patient p on day t; 0 otherwise
Decision variable
xbp 1 if patient p is assigned to bed b; 0 otherwise
Auxiliary variables
amax

rt(
amin

rt

) Maximum (minimum) age of all patients p assigned to room r
on day t

o+
wt Amount the total care capacity on ward w on day t is exceeded
yrt (zrt) 1 if all patients assigned to an empty (partially occupied) room

r on day t are from the same medical department; 0 otherwise

Table 5.2: Notation

The objective function of Equation (5.1) maximizes the total utility U

and consists of four terms that represent basic patient-specific objectives,
extended patient-specific objectives, doctor-specific objectives and finally
nurse-specific objectives. The four partial utilities are weighted by the fac-
tors α, β, γ, and δ. All four utility values depend on the binary assignment
variable xbp that represents whether a patient p, p ∈ P is allocated to bed
b, b ∈ B. The model is formulated as follows:

maximize U = α
∑
b∈B

∑
p∈P

(OFp + Ξp

∑
t∈T

sbptQt)xbp − β
∑
r∈R

∑
t∈T

(amax
rt − amin

rt )

+γ
ñ∑

r∈R

∑
t∈T

frtyrt +
∑
r∈R

∑
t∈T

(1− frt)zrt

ô
− δ (

∑
w∈W

∑
t∈T

o+
wt)

(5.1)

subject to
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∑
b∈B

xbp ≤ 1 ∀p ∈ P

(5.2)∑
p∈P

sbptxbp ≤ 1 ∀b ∈ B; t ∈ T

(5.3)∑
t∈T

sbpt ≥ xbp ∀b ∈ B; p ∈ P

(5.4)

KbrEbtgpsbptxbp −KlrEltghslhtxlh ≥ −1 ∀b, l ∈ B; p, h ∈ P ; r ∈ R; t ∈ T

(5.5)

KbrEbtipsbptxbp −KlrEltihslhtxlh ≥ −1 ∀b, l ∈ B; p, h ∈ P ; r ∈ R; t ∈ T

(5.6)

amax
rt ≥ Amax

rt ∀r ∈ R; t ∈ T

(5.7)

amax
rt ≥ Kbrapsbptxbp ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T

(5.8)

amin
rt ≤ Amin

rt ∀r ∈ R; t ∈ T

(5.9)

amin
rt ≤

∑
b∈B

∑
p∈P

Amin
rt Kbrsbptxbp ∀r ∈ R; t ∈ T

(5.10)

amin
rt ≤ Kbrapsbptxbp + Amin

rt (1− xbp) ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T

(5.11)

Kbrdpsbptxbp −Klrdhslhtxlh ≥ −M(1− yrt) ∀b, l ∈ B; p, h ∈ P ; r ∈ R; t ∈ T

(5.12)
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∑
p∈P

∑
b∈B

Kbrsbptxbp ≥ yrt ∀r ∈ R; t ∈ T

(5.13)

Kbrdpsbptxbp −Drt ≤ M(1− zrt) ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T

(5.14)

Drt −Kbrdpsbptxbp ≤ M(1− zrt) ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T

(5.15)∑
p∈P

∑
b∈B

Kbrsbptxbp ≥ zrt ∀r ∈ R; t ∈ T

(5.16)∑
b∈B

∑
p∈P

Lbwcpsbptxbp ≤ Cwt + o+
wt ∀t ∈ T ;w ∈ W

(5.17)

o+
wt ≥ 0 ∀t ∈ T ;w ∈ W

(5.18)

xbp, yrt, zrt ∈ {0, 1} ∀b ∈ B; p ∈ P ; r ∈ R; t ∈ T

(5.19)

The first term of the objective function in Equation (5.1) summarizes the
basic patient-specific utility of assigning patient p, p ∈ P to bed b, b ∈ B.
Every assignment of a patient p to a bed b, i.e., xbp = 1 generates a utility
that accounts for the days that patient p is presumed to spend in bed
b within the planning horizon T . The utility depends on the time the
patient p already spent in the overflow (OFp) in the past, a patient type-
specific factor (Ξp), bed availability (sbpt), and a relevance value (Qt). The
incorporation of an overflow value in the first part of the utility function
allows patients already waiting in the overflow area to be assigned a higher
preference than similar patients who have just arrived in the hospital. The
second part of the utility function rewards the actual time that a patient p
spends in bed b ∈ B. The parameter Ξp is a factor that makes it possible to
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distinguish between patient types, i.e., elective patients, emergency patients,
or patients with special requirements. This factor may, for example, be
used to ensure that elective patients are more likely to be assigned to a bed
within their target ward upon arrival than emergency patients. In addition,
patients returning from the ICU could be attributed an even higher value
such that they will not be moved to an overflow area. The parameter
sbpt is set to 1 in the event that bed b is available for patient p on day t,
and 0 otherwise. As non-medical room transfers are not allowed, sbpt is
determined at each event and is used to reflect not only bed availability but
also bed compatibility by incorporating gender constraints (with respect to
current occupants), infrastructural constraints, as well as medical isolation
constraints (with respect to current occupants) for each possible patient
bed combination. Figure 5.2 shows an example illustrating how parameter
sbpt is determined. The upper part represents the current occupancy and
the lower part the determination of sbpt. The parameter sbpt = 1 if the
respective bed is available for this patient on this day, otherwise there is
no entry, meaning that sbpt = 0. The example considers four rooms, each
with two beds. A new female patient arrives on day 3 and is scheduled
to be discharged on day 8. There are multiple options for allocating her
to a bed. Male patients occupy room 1 with beds 1 and 2. Currently,
the earliest availability of bed 1 and 2 for a female patient is day 6 after
patient in bed 1 leaves. Therefore there are no entries in sbpt for days 1 to
5. As she is scheduled to leave on day 8, day 8 to the end of the planning
horizon has also no entry. Hence, assigning her to room 1 would result in
spending at least two days in the overflow area. Bed 3 is available from
day 4 and bed 4 is directly available. Beds 5 and 6 are not allowed to be
used by this inpatient as this room is not equipped with essential medical
infrastructure specifically required for this patient. Finally, female patients
currently occupy both beds 7 and 8. They require medical isolation from
non-quarantined patients for the duration of their stay, hence forcing the
new patient to spend one day in the overflow area before moving into either
of these beds, should she be allocated to one of them.
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Figure 5.2: Example for determining parameter sbpt for a new female patient arrival

Finally, Qt is a parameter that reflects the time-dependent relevance of a bed
assignment for patients on day t as anticipated/planned, where Qt decreases
with increasing t. It gives a higher value to patients who arrive earlier than
those who come later in the planning horizon. Due to uncertainties it is
quite reasonable that a patient who is planned to arrive far in the future
will be reassigned to another bed during later planning periods, which may
even lead to a higher overall utility value for that patient. Equations (5.2)
prevent double booking, i.e., a patient can only be allocated to a maximum
of one bed. Equations (5.3) prevent overbooking, i.e., no two patients can
be allocated to the same bed on the same day. Equations (5.4) ensure that
a patient p can only be assigned to a bed b if bed b is available for this
specific patient on at least one day during the stay, i.e., sbpt = 1 for at least
one t ∈ T . In addition, Equation (5.5) ensures that there are no mixed male
and female rooms on any given day t. Using a similar approach, Equation
(5.6) ensures that medical isolation requirements are respected. Specifically,
patients that need to be isolated due to infectious diseases, for example,
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may only be put into empty rooms or into rooms with patients that suffer
from the same condition.

The second term of Equation (5.1) represents the extended patient-specific
part. It evaluates the compatibility between different patients occupying
one room. The goal is to minimize the differences between patients within
rooms since it is desirable to combine similar patients. We use age difference
as an indicator for the compatibility between patients (see also ?). Other
indicators such as social status, education level, personal background etc.
could also be applied in our model with the same logic. In particular,
amax

rt − amin
rt denotes the age difference between the oldest and the youngest

patient in room r on day t. As such, both auxiliary variables amax
rt and amin

rt

are dependent on xbp as well as on the patients already occupying beds.
Amax

rt (Amin
rt ) is set to the current maximum (minimum) age of all patients

already occupying room r on day t. If room r is empty on day t, Amax
rt

is set to a large integer value that represents the maximum possible age
(e.g., 150), and Amin

rt is set to 0. Equations (5.7) and (5.8) ensure that the
auxiliary variable amax

rt reflects the maximum age of prior occupants and
newly allocated patients in a room r on day t. Likewise, Equations (5.9)
to (5.11) ensure the same for amin

rt while also making sure that amin
rt equals

amax
rt in the event that room r is only occupied by one person or completely

empty on day t.

The third term of Equation (5.1) rewards assigning only patients of the
same department to specific rooms. Medical rounds for doctors are easier
when several patients they are responsible for are in the same room. In
addition, walking distances are reduced. Here we need to differentiate
between empty and partially occupied rooms. This is indicated by the
parameter frt, which is 1 if room r is empty on day t, and 0 otherwise. Two
auxiliary variables yrt and zrt are applied:

• Empty rooms: The auxiliary variable yrt is set to 1 if all patients assigned
to an empty room r on day t are from the same medical department,
which is achieved by Equations (5.12) and (5.13). Here, dp is an integer
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value that depicts the medical department of patient p and M represents
an arbitrary large integer value (“big M”).

• Occupied rooms: The auxiliary variable zrt is set to 1 only if all patients
assigned to room r are already from the same department. This is
achieved by Equations (5.14) to (5.16). Here, Drt is set to 1 if all prior
occupants of room r on day t belong to the same medical department,
and 0 otherwise.

Finally, the fourth term of the objective function (5.1) is used to balance the
workload for nursing staff. This requires the matching of care requirements
of patients and care capacity on wards. The specific number of “care units”
for every patient p is quantified with cp. This represents the effort and
resources that go into taking care of that particular patient. The available
number of nursing staff and thus, workforce or total “care capacity” per
ward w and day t is predetermined due to shift schedules, staff rosters,
and cannot easily be changed on short notice. Parameter Cwt represents
the current spare capacity of a given ward w on day t for caring for newly
arriving patients (i.e., available capacity, being the delta of the total capacity
minus the capacity reserved for current patients in this ward). Exceeding
a predefined care capacity per ward w on day t needs to be penalized.
The amount by which the capacity of a ward w on day t is exceeded is
represented by the auxiliary variable o+

wt. Equations (5.17) and (5.18) link
xbp to o+

wt.

5.3.2 Hyper-heuristic

This subsection develops the solution approach. Bed managers require
a time-efficient system in everyday work that provides real-time decision
support for each new event. An optimal solution approach is impracticable
with respect to the combinatorial complexity of the PBA. Other approaches
in the literature (see for example Demeester et al. (2010), Ceschia and
Schaerf (2011)) also had to resort to using heuristic approaches for the same
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reasons. Schäfer et al. (2019) propose a GLA heuristic that derived from
the idea of Atkinson (1994). It is able to solve the problem time efficiently,
but is vulnerable to ending up in a non-optimal solution. To circumvent
these types of situations, we develop a hyper-heuristic framework based on
the “pilot method” of Duin and Voß (1999). It supports greedy algorithms
in avoiding local optimum traps. Duin and Voß (1999) and Voß et al. (2005)
show that the pilot method is suitable for solving highly combinatorial
problems (like the PBA), and that it performs competitively compared to
well-known meta-heuristics. By only looking forward, the method iteratively
weights all options before choosing the most promising. Further notation is
delineated in Table 5.3.

a0 Most promising element u(a0) ≥ u(a) ∀a ∈ A
A Set of all possible choices a, so-called pilots
H Subheuristic applied to assign remaining pilots a ∈ A \ Sa (e.g., greedy

heuristic)
N Number of partial solutions considered at each iteration
Sa Partial solution Sa = a ∪X
u(a) Predetermined utility function u : A→ R
X Master solution, iteratively created by adding the most promising

element of an iteration X = X ∪ a0

Table 5.3: Expanded notation for the pilot method

General Algorithm An initial empty master solution X = ∅ is iteratively
supplemented by an element a ∈ A, whereas A represents the set of
all possible choices, so-called pilots. Based on the master solution X, a
number of partial solutions N are generated by randomly drawing a pilot
(Sa = a ∪X). Each partial solution is completed by the remaining pilots
a ∈ A \ Sa by applying a subheuristic H. Each solution can be evaluated
using a predetermined utility function u : A → R. Let a0 be the most
promising element u(a0) ≥ u(a) ∀a ∈ A. The pilot a0 gets included in
the master solution X = X ∪ a0 and excluded from the remaining choices
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A = A \ a0. Then the algorithm loops to create the next partial solution
Sa = a ∪X until a stop criterion is met (e.g., set of pilots is empty A = ∅,
limitation of iterations). In our case, the utility is the total utility of the
objective function of Equation (5.1), i.e., u(a) = U .

To speed up the computations we limit the solution space by only considering
the set of relevant beds B and patients P . The relevant beds considered
include only those beds b, b ∈ B that are scheduled to be vacated within
the planning horizon T . This means that beds that are already occupied
by patients who have an estimated LOS exceeding the planning horizon
are not included (B ⊆ B). Likewise, only those patients p, p ∈ P , P ⊆ P

who are not yet occupying a bed b within their designated ward space
and who require a bed at some point in time within the planning horizon
T are considered. In particular, this includes patients who have just
arrived, patients who are already waiting in the overflow area, as well as
future elective patients already scheduled and anticipated future emergency
patients, at some point within the planning horizon T . Limiting the sets
for patients and beds is possible, as non-medical room transfers are not
allowed. Algorithm 5.1 demonstrates the pilot method tailored to the PBA
problem.

Subheuristic The subheuristic applied is based on the GLA heuristic
developed by Schäfer et al. (2019). It sequentially calculates the potential
added utility value with Equation (5.1) of each possible patient bed combi-
nation and also considers at this stage the constraints in Equations (5.2) to
(5.19). Finally, it executes the most promising assignment. The additional
notation to describe the subheuristic is shown in Table 5.4.

Figure 5.3 illustrates the first iteration of the GLA heuristic. During
an initialization process xbp is set to zero and the utility matrix Ubp is
calculated for all p ∈ P and b ∈ B. The utility matrix Ubp represents partial
utilities that can be added to the total utility function U (Equation (5.1))
by realizing a patient p to bed b assignment.
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Algorithm 5.1 Pilot method for PBA
Require: P , B, N
Ensure: patient bed assignments xbp

1: xbp ← ∅
2: A← generatePossiblePatientBedAssignments(P ,B)
3: while (|A| 6= 0) do
4: for i← 1, N do
5: a[i]← random(A)
6: pilot← xbp ∪ a[i]
7: B

′[i], P ′[i]← updatePatientsAndBeds(B,P , a[i]
8: pilotSolution[i]← Subheuristic(B′[i], P ′[i])
9: fitness[i]← calculateFitness(pilotSolution[i])
10: end for
11: j ← argmax(fitness)
12: a0 ← a[j]
13: xbp ← xbp ∪ a0

14: B ← B
′[j]

15: P ← P
′[j]

16: A← updatePossiblePatientBedAssignments(A, a0)
17: end while
18: printPatientBedAssignments(xbp)

Ubp Partial utility that an assignment of patient p, p ∈ P to bed b,
b ∈ B may add to the total utility U

Uargmax
p Index value of the bed b that adds the maximum partial

utility max(Ubp) to the total utility U when patient p, p ∈ P
is allocated to this bed b

Umax
p Maximum partial utility that assignment of patient p adds to

total utility U , p ∈ P

Table 5.4: Further notation for the Subheuristic for PBA

If a bed b is not available at any time of the planned stay for the specific
patient p, the partial utility value Ubp is set to zero. In Iteration I (Step 1),
the most promising combination Ubp (highest utility value) is chosen, i.e.,
xbp is set to 1 for patient 2 and bed 6 (x62 = 1). In the example, patient
p = 2 is assigned to bed b = 6 as this yields the highest partial utility
Umax

p , with Umax
p = max (Ubp) , ∀b ∈ B, ∀p ∈ P . To accelerate the process of

finding the highest value during the iterations, two auxiliary variables are
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Ubp

Figure 5.3: Example for the GLA heuristic showing the steps of one iteration

used to indicate the uppermost potential utility of a patient’s assignment
(Umax

p ) and the corresponding bed (Uargmax
p ). This reduces the amount of

values that need to be compared from |P | × |B| to |P | in each step.

The initial allocation of x62 = 1 has an effect on a series of potential
allocation combinations xbp of the remaining patients P and beds B. Subse-
quently, in Iteration I (Step 2), potential patient bed utilities Ubp that have
been affected by a previous PBA in Step 1 get updated (black boxes in
Figure 5.3). If necessary, Umax

p and Uargmax
p are redetermined. The following

Iteration II also starts with the assignment of the most beneficial PBA.
It will assign patient p = 6 to bed b = 2, as this has the highest utility
Ubp, as can be seen on the right of Figure 5.3. In Iteration II, Step 2, the
utilities of all remaining patient bed combinations will be updated. This
will be continued until all patients are assigned. Algorithm 5.2 represents
the iterative, procedural program flow.
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Algorithm 5.2 Subheuristic: GLA Heuristic for PBA
Require: P , B
Ensure: patient-bed assignments xbp

1: Ubp ← calculatePatientBedMatrix(P , B)
2: Umax

p ← max(Ubp)
3: Uargmax

p ← argmax(Ubp)
4: while (max(Ubp) 6= 0) do
5: p ← argmax(Umax

p )
6: b ← Umax

p [p]
7: xbp ← 1
8: Ubp ← updatePatientBedMatrix(p, b, Ubp, P , B)
9: end while
10: printPatientBedAssignments(xbp)

Applied Policies for Patient Bed Assignment To speed up the algo-
rithm and tailor it to the PBA, different policies have been implemented and
tested. First, at the start of each new pilot iteration the filter policy selects
only a determined number of promising pilots. The vector argmax(Umax

p )
(see Algorithm 5.2) is used for this, the calculation taking place anyway to
subsequently complete the partial solutions. Here, only those pilots with
high expected additional utility values are considered. Second, the drop pol-
icy is applied, which executes the subheuristic H for only a predetermined
fraction of the remaining options a ∈ A \X. This can be guaranteed by
only considering patients in the subheuristic who arrive within a certain
period (shorter than the planning horizon). Finally, we also restricted the
evaluation depth, i.e., only a subset of pilots a ⊆ A are allocated by the pilot
method. The remaining ones a ∈ A \X get assigned by the subheuristic H.
The efficiency and applicability of the different policies are investigated in
the numerical studies.
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5.4 Numerical study

This section presents numerical studies. We draw upon real-life hospital
data from a joint project with a large German hospital. First, we start
in subsection 5.4.1 by presenting the data and performing some basic
tests. Second, we continue in subsection 5.4.2 by presenting the machine
learning approach used to anticipate emergency inpatient arrivals. Third,
in subsection 5.4.3 we show the performance of the hyper-heuristic we have
developed. Finally, in subsection 5.4.4 we analyze the impact of both the
enhanced emergency inpatient arrival forecasting approach as well as the
improved hyper-heuristic on the overall solution. All computational steps
were carried out using Python 3.8 and R 3.6.

5.4.1 Overview of data

In order to analyze potential influences on emergency patient arrivals, we
have gathered metadata on various distinct features that were publicly
available and which we suspected of having an impact on the emergency
arrivals. These features relate to time and dates, weather data, important
local and regional events, as well as historical and current occupancy levels
(see Table 5.5). We then used this data in a machine learning approach to
anticipate emergency inpatient arrivals based on a selection of the most
significant features. The training data used spans across a time period of 2
years from 2014 to 2015, while our test and validation data is taken from
2016.

In a first step, to avoid multicollinearity issues (see e.g., Guyon and Elisseeff
(2003)), we determine the Pearson correlation coefficients (PCC) of each
potential pairing of features listed in Table 5.5. Figure 5.4 gives an overview
of all problematic pairings, i.e., all pairings wherein |PCC| >= 0.7. A
simple example of this would be that the maximum temperature Tmax

strongly correlates with the minimum temperature Tmin, e.g., minimum
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Factor Feature
Time and Date Weekday (WDMon, WDTue, ...)

Season (Q1, Q2, Q3, Q4)
School holidays (HolSchool)
Bank holidays (Holiday)
Post holiday weekday (WDpostholiday)

Weather Temperature (Tmean, Tmin, Tmax, Tdif)
Air pressure (APmean, APmin, APmax, APdif)
Humidity (Hmean, Hmin, Hmax, Hdif)
Wind (Wmean, Wmin, Wmax, Wdif , Gmax)
Precipitation (Rain, Snow, Hail)
Snow coverage (Scov)
Storm

Local and Regional Events Fairs (County Fairs, Sport events)
Current Occupancy Admissions of previous day (PrevAdmin)

Table 5.5: Overview of factors and properties assessed regarding correlation with emer-
gency inpatient arrivals

and maximum temperatures for any given day during summer time are
typically higher than during winter time.

As each medical department is expected to have its its own drivers, we
investigate each department individually. The remaining features have to be
tested to determine their explanatory power regarding the number of patient
arrivals on a given day. This is important for two reasons. First, simply
looking at the direct correlation between a given feature and the number
of emergency arrivals in the test data can be misleading as this overlooks
any potential effects that certain properties only have in combination
(Guyon and Elisseeff, 2003). Second, machine learning algorithms tend
to be overfitted when the number of features used is significantly higher
than optimal (see for example Kohavi and John (1997)). To this end,
we make use of the “Boruta” package developed by Kursa and Rudnicki
(2010). It consists of a feature selection algorithm based on the “random
forest” classification method (Breiman, 2001). Its aim is to rank a set of
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Figure 5.4: Measure of linear correlations between selected parameters

features according to their respective predictive power regarding a specific
classification variable, e.g., the number of emergency patient arrivals per day.
This ranking is performed according to the individual “importance” of each
feature, which is based on the average and standard deviation of the loss of
accuracy of classification caused by the random permutation of attribute
values between objects. A key idea here is to introduce so-called “shadow
variables”, i.e., additional random variables, which are then included in
the set of existing features. By adding randomness to the data set and
collecting results from the ensemble of randomized samples, it is possible
to reduce the misleading impact of random fluctuations and correlations.

147



Tackling Uncertainty in the Operational Patient-Bed Assignment Problem Manuel Walther

This process is undergone individually for every medical department, that
has emergency arrivals. To give an example, we present detailed results for
two different departments, namely trauma surgery and gastroenterology, as
can be seen in Figures 5.5a and 5.5b, respectively.
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(b) Gastroenterology department

Figure 5.5: Selected outcomes after application of the Boruta package

For trauma surgery, the number of emergency inpatient arrivals is clearly
correlated with the seasons (Q1 to Q4), with low temperatures (Tmin), as well
as with the magnitude of intra-day temperature changes (Tdif). Naturally,
any feature that correlates with the number of emergency inpatient arrivals,
in both the training data set and the test data set, can prove useful when
anticipating such arrivals. However, the causality behind this correlation
may only be guessed. In the case of emergency patients having had an
accident that requires trauma surgery, it seems plausible that sudden drops
of temperature, which lead to black ice on roads and sidewalks, or typical
recreational activities pursued in winter (Q1), e.g., skiing, are responsible
for this effect.
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For the gastroenterology department, however, the picture looks quite differ-
ent. Here, holidays, weekends and Mondays each exhibit a high explanatory
correlation with regard to incoming emergency patients, whereas the tem-
perature has a considerably lower influence when compared to the trauma
surgery department. This could be due to a couple of different reasons.
For instance, doctors and nursing staff we interviewed have reported that
many gastroenterological illnesses often initially present with non-specific
abdominal pain symptoms, which then intensify over the course of several
days. This means that in comparison with a broken hip, for example, there
is no immediate need to get to a hospital, such that patients could opt to
stay home on weekends. An alternative explanation could be that resident
doctors’ offices are typically closed on weekends and patients who are not
yet aware of the severity of their illness will usually wait until the next
workday to see their family doctor who might then immediately refer them
to a hospital for further diagnosis and treatment.

To summarize, the drivers for the arrival of emergency patients are different
across departments. This requires to address the forecasting and PBA
problem by department.

5.4.2 Applying machine learning to estimate
emergency patients

Estimating the number of future emergency patient admissions is inher-
ently a regression problem. We therefore first applied (1) regression-based
methods using the metadata described in Table (5.5). In addition, in a (2)
second step we applied a multilayer artificial neural network to account
for nonlinear dependencies. We used regularization methods in both ap-
proaches to avoid overfitting. Finally, (3) we used the test data to evaluate
the generalization abilities of our trained models.
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(1) Regression-based methods Ridge regression (RR) uses l2-regularization
(Hoerl and Kennard, 1970), whereas LASSO (LR) uses l1-regularization
(Tibshirani, 1996). l2-regularization accounts for correlations between the
input features, while l1-regularization favors sparse solutions. Elastic Net
(EN) is a regression-based method that combines l1 and l2 regularization
(Zou and Hastie, 2005). Another class of regression models is Group-LASSO
(GL), which allows individual features to be combined into groups (Yuan and
Lin, 2006). All features of a group are penalized together, leading to whole
groups being considered or neglected. We used 10-fold cross-validation to
tune the hyperparameter λ for each approach, which controls the strength
of the regularization. For EN we performed a grid-search between 0 and 1
in 0.025 steps to optimize the hyperparemters λ1 and λ2, which are used to
control the l1 and l2 penalty respectively.

(2) Artificial neural network We used artificial neural networks (ANN)
(Goodfellow et al., 2016; LeCun et al., 2015) to account for non-linear
dependencies. An example architecture of an ANN is illustrated in Figure
(5.6). We have evaluated several typologies of ANNs by varying the number
of hidden layers between one to five. The best results have been achieved by
applying a “32:16:8:4:2” network (the numbers are the number of neurons
per hidden layer; hidden layers are separated by colons), the rectified linear
unit (ReLu) as activation function, l1 and l2 regularization and the mean-
squared error (MSE) loss function as well as the optimizer RMSprop. To
avoid overfitting we have investigated the learning curve of training and
validation loss. For tuning hyperparameters l1 and l2 we used a grid search
algorithm.

(3) Evaluation of performance on test data We applied the learned
models to the test data from four departments at our case hospital that
have a significant number of emergency patients. For example, orthopedics
has almost no emergency patients. Table 5.6 summarizes the results and
shows the root mean square error (RMSE), the machine learning model used
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Figure 5.6: Example of the structure of a neural network, including three hidden layers

Approach 1 Approach 2 (ML) Max.
RR LR EN GL ANN Improvement

Department RMSE RMSE RMSE RMSE RMSE RMSE [%] Type
Department 1 4.888 4.331 4.309 4.183 4.103 4.060 16.9 ANN
Department 2 4.108 3.892 3.847 3.848 3.675 3.835 10.5 GL
Department 3 2.888 2.887 2.824 2.8 2.743 2.778 5.021 GL
Department 4 3.535 3.126 3.099 3.097 3.067 3.192 13.2 GL

Table 5.6: Anticipation of emergency inpatient arrivals using machine learning

that achieved the best performance, as well as the improvement achieved
in comparison to historical averages. The historical averages serve as a
baseline approach, and this is denoted as “Approach 1”. This is compared
with our above-described machine learning approach (denoted as “Approach
2 (ML)”). Table 5.6 shows that the machine learning approach outperforms
“Approach 1”. The ML approach leads to improvements of up to 17%,
depending on the department, compared to the basic historical averages.

5.4.3 Performance of the hyper-heuristic

In order to assess the solution quality of the hyper-heuristic proposed
in this paper, we drew upon nine data sets. The available real data of
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one department cluster consisting of department 1 and department 2 (see
also 5.4.2) based on actual patient movements between January 2016 and
September 2016 will be considered. The department cluster consists of six
wards with 24 beds each. Each data set is composed of 28 consecutive
days and comprises an average of 648 unique patients. On average, 40%
of patients are men and 60% women with an average age of 70 years and
a length of stay of 6 days. All data sets reveal high ratios of emergency
patients, e.g., up to 90%. We set the parameters in alignment with currently
applied weights in our case hospital: α = 1, β = 0.1, γ, δ = 2, q = 0.01.
Furthermore, the weighting factor Ξp was set to three distinct values
depending on the patient type. Notably, these consist of Ξel = 10 for
elective patients, Ξem = 9 for current emergency arrivals, and Ξan = 4
for anticipated emergency arrivals. Here, elective patients are preferred
to current emergency patients, and these in turn are given preference vs.
expected future emergency arrivals. We have adjusted the existing data
by eliminating all uncertainty factors for the sole purpose of monitoring
the performance of the heuristics applied. Accordingly, emergency patients
treated like elective patients and their exact admission are known in advance.
Both patient types are no longer subject to LOS updates due to precisely
known discharge times. Furthermore, patient no-shows are neglected. This
means that the data sets considered are no longer affected by stochastic
variations and are assumed to be deterministic.

Application to single problem instances We first assessed the perfor-
mance of our hyper-heuristic for single problem instances. Using such a
static version is a usual benchmark approach (see literature review in Section
5.2.3.1 above and for example in Bilgin et al. (2012); Guido et al. (2018);
Dorgham et al. (2019); Ceschia and Schaerf (2011)). This approach excludes
parameter-dependent (e.g., planning horizon, time-dependent relevance)
performance differences caused by time series analysis. These parameters
could lead to worse performance in the time series analysis and thus reduce
the meaningfulness of hyper-heuristic performance despite better perfor-
mance in all single problem instances. We tested several policies (see Section
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5.3.2). In particular, we applied a filter policy with which we restricted the
number of promising pilots to different predetermined amounts, which were
determined based on their individual additional potential benefit to the
utility function prior to an algorithm run-through. The best patient-bed
assignments are drawn randomly from the five most promising patients.
This was done to avoid unnecessary computational effort while at the same
time ensuring that no potentially “lucrative” PBAs are overlooked. It
should be noted that several potential PBAs of a single patient may have
similar values and hence a wide variety of alternative promising PBAs exist.
In addition, we applied a drop policy by limiting the application of the GLA
subheuristic to only those patients that were known or anticipated to arrive
within a certain number of days, which also leads to a significant reduction
of computational time while retaining a high solution quality. Finally, we
varied the evaluation depth by restricting the amount of subsequent PBAs
obtained through the pilot method. To give an example, selecting only
10 pilots and a depth of 20 translates into applying the pilot method to
determine the first 20 PBA, wherein for each of these 20 assignments the 10
most promising pilots will be chosen and evaluated using the GLA heuristic.
Table 5.7 gives an overview of the solutions obtained. For each of the shown
combinations of data set used, amount of promising pilots filtered (in lines),
and evaluation depth (in columns), we have taken into account all single
problem instances which emerged by executing the data sets. This results
in around 2,000 single problem instances for each data set (i.e., around
288,000 in total), promising pilot and evaluation depth combinations. We
did this in order to account for statistical distributions, which arise due
to the inherent randomness associated with our implementation of the
hybrid-heuristic.

The results obtained allow for drawing three main insights. First, by
using the pilot method, it was possible to increase the solution quality
in comparison to the GLA heuristic by up to 2.90% while achieving an
average increase of 2.42% when considering 20 promising pilots combined
with an evaluation depth of 20. This number can of course vary depending
on the characteristics of the underlying patient clientele. However, the
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effect observed is substantially the same across all nine data sets. Second,
as is to be expected, increasing the evaluation depth as well as increasing
the number of promising pilots both lead to an increase in solution quality.
This is because it is more likely that better solutions will be found when
broadening the search space as this increases the chance of finding solutions
that are further away from standard GLA heuristic solutions. The effect
of increasing the evaluation depth has a higher impact on solution quality
than increasing the number of promising pilots considered. A reason for
this effect could be seen in that even when using a low number of promising
pilots considered, the pilots chosen exhibit the highest additional benefit to
the overall utility function, respectively, which makes the underlying PBA
more likely to be part of a good solution. Third, depending on the situation
at hand, the acquired gain in solution quality due to a broader search
space goes hand in hand with higher computational effort, which can be
an important factor when requiring real-time PBAs in actual applications.
Roughly speaking, the total computation time for a single problem instance
can be estimated by adding up the total number of times the subheuristic
has to run through all PBAs for a given single problem instance. To give
an example, an evaluation depth of 10 combined with 10 selected pilots will
add up to 100 applications of the subheuristic while an evaluation depth of
5 combined with 5 selected pilots will only require 25 run-throughs of the
GLA heuristic, or 25% of the time. The runtime changes only proportional
to the dimension of evaluation depth when multi-processing is applied. This
means that the runtime compared to the GLA heuristic is just multiplied by
the evaluation depth. The GLA heuristic is typically solved in an average
of less than one second for instances encompassing 124 beds.

Application to time series In addition to comparing the solution quality
for single problem instances, we have undertaken analyses to compare the
performances of both approaches over time. For this purpose, the data
sets that have been cleared of uncertainties are also used. Furthermore, to
investigate the scaling effect in relation to the department cluster size we
divided the nine existing data sets with regard to the department cluster
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size stepwise by 24 beds from 24 to 120. To do this, the patients and beds
are added depending on the division of the wards and their specific specialty.
To test the hyper-heuristic approach developed, we use the top-performing
settings from the single problem instance analyses (see Table 5.7), i.e., an
evaluation depth of 20 combined with a selection of 20 promising pilots for
each subsequent PBA.

The results of this analysis are presented in Table 5.8. Again, we have ac-
counted for statistical effects of the stochastic search procedure by running
the algorithm 20 times for each combination of data set and beds considered.
Here, the results show an increase in total utility. The hyper-heuristic ap-
proach outperforms the GLA heuristic by 1.48% on average while achieving
an increase of up to 3.86% for certain data sets. The utility increase of the
hyper-heuristic vs. the GLA heuristic for the time series analyses in Table
5.8 is not as clearly predictable as for the single problem instance solution
in Table 5.7. This is due to the settings of the hyper-heuristic (i.e., plan-
ning horizon, time-dependent relevance parameter Qt). Furthermore, only
patients within the planning horizon, that may overlap with the hospital
stays of future elective patients (arrival exceeding planning horizon) are con-
sidered. In other words, even if the hyper-heuristic performs considerably
better than the GLA heuristic for each single problem instance within the
time series investigated, time-dependent parameter settings may eradicate
the positive effect of the hyper-heuristic compared to the GLA heuristic
for certain combinations of data sets and beds. This also explains some
negative entries in the minimum values of Table 5.8. The hyper-heuristic
outperformed the GLA heuristic in over 99% of the test instances.

5.4.4 Hyper-heuristic combined with enhanced
emergency inpatient arrival forecasting

In this subsection, the impact of both the enhanced emergency inpatient
arrival forecasting approach as well as the improved hyper-heuristic with
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regard to real data are analyzed. The nine data sets (6 wards with 24 beds
each), including uncertainties, are used to do this. Each data set consists
of around 2,000 unique events that take place over the course of 28 days.
We denote the hyper-heuristic approach including the enhanced emergency
patient admission data, which was achieved with machine learning, as Hyper-
Heuristic ML. It is executed 20 times for all data sets and the average of
all runs is reported. We apply two benchmarks:

• GLA Avg: The first is the GLA heuristic of Schäfer et al. (2019) where the
arrivals of emergency patients have been estimated according to Approach
1 (see 5.4.2). We normalize all values of the alternative approaches to
this.

• GLA ML: The second is also based on the GLA heuristic, but the arrivals
of emergency patients have also been estimated with machine learning.

Looking at the results of the analysis of the three methods in Table 5.9,
the normalized values of the objective function give a first indication of the
performance of our approach. It can be noted that the Hyper-Heuristic ML
outperforms the GLA as well as the GLA ML approach in each data set.
On average across all data sets the Hyper-Heuristic ML shows 1.4% better
results than the GLA and beats the GLA ML by 0.4%. Even the minimum
outcome of the Hyper-Heuristic ML for all data sets performs better than
the GLA method. This makes the Hyper-Heuristic ML the most promising
and reliable approach to solve the PBA problem.

5.5 Conclusion and further areas of research

Conclusion This paper develops and investigates improvements for the
operational PBA. The model used has been developed in a joint project with
a large German hospital covering all major disciplines and incorporates the
objectives and constraints of the three main stakeholders, namely patients,
doctors, and nursing staff. It integrates the planning of current emergency
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and elective patient arrivals, future elective patient arrivals, as well as
anticipated future emergency patient arrivals. Two important aspects were
tackled and improved in this paper.

• To tackle the uncertainty of emergency patient admissions, we applied
machine learning techniques to estimate these more precisely. To this end,
we used historic emergency inpatient data as well as metadata relating
to time, date, weather forecasts, and local and regional events. We are
the first to investigate and make use of the correlation of several external
factors, such as weather data, to better anticipate emergency inpatient
admissions.

• To enhance the performance of the solution approach we integrate the
GLA heuristic into the Pilot method which consists of a hyper-heuristic
framework.

Our numerical results have shown that machine learning approaches can
outperform historical average approaches by up to 17% when it comes
to predicting emergency inpatient arrivals. The underlying drivers for
emergency inpatient arrivals differ strongly between departments due to the
associated patient clientele, e.g., Trauma Surgery shows a higher dependency
on weather data than Gastroenterology, which in turn is more strongly
correlated with times and dates. Compared to the GLA heuristic, the
hyper-heuristic developed can improve performance by up to 3% for single
problem instances and up to 4% in a time series analysis. With respect
to real data, the hyper-heuristic approach combined with sophisticated
prediction of future emergency patient admissions by machine learning
outperforms the GLA heuristic in a time series analysis by up to 2.2%.

Future areas of research Various opportunities exist for further re-
search. For the problem shown, the existing solution methods can be
further developed and different approaches can be pursued. The focus
may be on enhanced anticipation of the input parameters, improvement
of the heuristic methods or development of an optimal solution method.
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The estimate of input parameters focuses on both emergency and elective
patients. Information on the progress the patient’s recovery is making (e.g.,
LOS as well as type and probability of complications) can be anticipated
for both patient groups. The approximation of time-related arrivals and
patient characteristics (e.g., gender, age, and disease) is especially in focus
for emergency patients, while no-show rates are interesting for elective pa-
tients. In the development of heuristics, the focus can be on runtime-related
aspects, solution quality or the proportion of both by implementing and
testing alternative approaches (e.g., meta-heuristics, matheuristics, exact
approaches). Another topic of research interest is to integrate upstream
and/or downstream processes in the decision model, such as admission
scheduling of elective patients, operating room scheduling, bed transport
services or staff rostering (cf. e.g., van Oostrum et al. (2008); Beaudry
et al. (2010); Rachuba and Werners (2014); Aringhieri et al. (2015); Erhard
et al. (2018); Thielen (2018); Séguin et al. (2019)). This integration makes
it possible to obtain information about conflicts of interests of individual
problems. In order to maximize profit, operating rooms should usually be
booked to full capacity, although the hospital may not have suitable beds
available for patients who have had surgery. Furthermore, the underlying
mechanics of the PBA decision model are not limited to hospital settings
alone. Further investigation could be made into identifying problem settings
that have a similar scope. To give an example, the student-room assignment
problem in hostels (Alfred and Yu, 2020) could potentially yield further
areas of application.
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DS11 Depth DS 2 Depth
Pilots2 5 10 15 20 Avg. Pilots 5 10 15 20 Avg.

5 0.66% 1.13% 1.49% 1.73% 1.25% 5 0.52% 0.99% 1.33% 1.49% 1.08%
10 0.76% 1.27% 1.60% 1.91% 1.38% 10 0.61% 1.12% 1.45% 1.62% 1.20%
15 0.79% 1.30% 1.59% 1.94% 1.40% 15 0.65% 1.17% 1.46% 1.63% 1.22%
20 0.83% 1.31% 1.66% 1.93% 1.43% 20 0.64% 1.21% 1.41% 1.61% 1.21%

Avg. 0.76% 1.25% 1.59% 1.88% - Avg. 0.60% 1.12% 1.41% 1.59% -
DS 3 Depth DS 4 Depth
Pilots 5 10 15 20 Avg. Pilots 5 10 15 20 Avg.

5 0.55% 0.98% 1.49% 2.05% 1.02% 5 0.65% 1.31% 1.98% 2.39% 1.56%
10 0.60% 1.06% 1.6% 2.27% 1.10% 10 0.78% 1.64% 2.15% 2.57% 1.76%
15 0.66% 1.18% 1.79% 2.20% 1.16% 15 0.81% 1.62% 2.35% 2.78% 1.85%
20 0.68% 1.28% 1.92% 2.38% 1.24% 20 0.79% 1.77% 2.28% 2.67% 1.85%

Avg. 0.62% 1.12% 1.70% 2.22% - Avg. 0.76% 1.58% 2.19% 2.60% -
DS 5 Depth DS 6 Depth
Pilots 5 10 15 20 Avg. Pilots 5 10 15 20 Avg.

5 0.68% 1.12% 1.51% 1.83% 1.28% 5 0.81% 1.51% 2.27% 2.54% 1.75%
10 0.78% 1.21% 1.64% 2.04% 1.41% 10 0.91% 1.73% 2.44% 2.85% 1.94%
15 0.79% 1.26% 1.78% 1.98% 1.44% 15 0.96% 1.82% 2.47% 2.79% 1.97%
20 0.84% 1.33% 1.80% 2.03% 1.49% 20 0.95% 1.91% 2.51% 2.90% 2.02%

Avg. 0.77% 1.23% 1.68% 1.97% - Avg. 0.91% 1.74% 2.42% 2.77% -
DS 7 Depth DS 8 Depth
Pilots 5 10 15 20 Avg. Pilots 5 10 15 20 Avg.

5 0.82% 1.43% 2.02% 2.40% 1.65% 5 0.95% 1.68% 2.22% 2.66% 1.86%
10 0.88% 1.64% 2.17% 2.62% 1.81% 10 1.06% 1.83% 2.43% 2.72% 1.99%
15 0.93% 1.76% 2.31% 2.70% 1.91% 15 1.11% 1.87% 2.51% 2.69% 2.03%
20 0.94% 1.77% 2.32% 2.79% 1.94% 20 1.12% 1.92% 2.52% 2.84% 2.08%

Avg. 0.89% 1.65% 2.21% 2.63% - Avg. 1.06% 1.82% 2.42% 2.73% -
DS 9 Depth Total3 Depth
Pilots 5 10 15 20 Avg. Pilots 5 10 15 20 Avg.

5 0.70% 1.19% 1.72% 2.33% 1.46% 5 0.70% 1.26% 1.78% 2.16% 1.48%
10 0.78% 1.43% 1.98% 2.55% 1.66% 10 0.80% 1.44% 1.94% 2.35% 1.63%
15 0.80% 1.47% 2.06% 2.52% 1.69% 15 0.83% 1.49% 2.03% 2.36% 1.68%
20 0.83% 1.52% 2.16% 2.63% 1.75% 20 0.84% 1.56% 2.07% 2.42% 1.72%

Avg. 0.78% 1.40% 1.98% 2.51% - Avg. 0.79% 1.44% 1.96% 2.32% -
1 Data set used to extract problem instances
2 Number of promising pilots filtered for further analysis
3 Total average across all problem instances analyzed

Table 5.7: Solution quality of the Pilot method compared to the GLA heuristic for single
problem instances
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Data 24 beds Data 48 beds
Set Min Avg. Max Set Min Avg. Max

1 0.64% 1.62% 3.4% 1 1.54% 2.47% 3.58%
2 0.43% 0.75% 1.32% 2 -

0.02%
1.69% 2.73%

3 -
1.12%

-
0.03%

0.68% 3 0.72% 0.99% 1.34%

4 1.08% 1.31% 1.54% 4 1.87% 3.18% 3.71%
5 0.14% 1.06% 2.60% 5 1.27% 2.06% 2.55%
6 1.89% 2.83% 3.48% 6 1.59% 1.81% 2.16%
7 1.66% 1.77% 1.96% 7 1.85% 2.56% 3.86%
8 0.82% 1.72% 2.44% 8 1.18% 2.87% 3.68%
9 -

0.45%
0.46% 1.50% 9 1.21% 2.05% 2.89%

Avg. 0.57% 1.28% 2.10% Avg. 1.25% 2.19% 2.95%
Data 72 beds Data 96 beds
Set Min Avg. Max Set Min Avg. Max

1 0.79% 1.62% 2.39% 1 1.00% 1.69% 2.17%
2 1.32% 2.30% 3.18% 2 0.98% 1.55% 1.88%
3 1.47% 1.47% 1.47% 3 0.00% 0.23% 0.47%
4 0.67% 0.67% 0.67% 4 0.81% 1.17% 1.61%
5 1.75% 1.75% 1.75% 5 1.36% 1.65% 1.82%
6 0.68% 0.68% 0.68% 6 0.80% 1.68% 2.38%
7 2.25% 2.25% 2.25% 7 1.53% 1.71% 1.97%
8 1.52% 1.52% 1.52% 8 0.32% 0.84% 1.37%
9 1.02% 1.02% 1.02% 9 0.17% 0.58% 0.76%

Avg. 1.27% 1.47% 1.66% Avg. 0.77% 1.23% 1.61%
Data 120 beds Data Total1
Set Min Avg. Max Set Min Avg. Max

1 1.30% 1.75% 2.11% 1 1.06% 1.83% 2.73%
2 0.88% 1.24% 1.57% 2 0.72% 1.51% 2.13%
3 1.03% 1.61% 2.06% 3 0.42% 0.85% 1.21%
4 -

0.14%
0.56% 1.03% 4 0.86% 1.38% 1.71%

5 0.69% 0.91% 1.20% 5 1.04% 1.49% 1.98%
6 1.92% 2.30% 2.74% 6 1.38% 1.86% 2.29%
7 1.18% 1.48% 1.86% 7 1.69% 1.95% 2.38%
8 -

0.05%
0.25% 0.52% 8 0.76% 1.44% 1.91%

9 0.76% 1.07% 1.42% 9 0.55% 1.04% 1.52%
Avg. 0.84% 1.24% 1.61% Avg. 0.94% 1.48% 1.98%
1 Total average across all bed sizes

Table 5.8: Solution quality of the Pilot method compared to the GLA
heuristic for time series analysis
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Model Data Set
1 2 3 4 5

GLA Avg 99.37% 102.13% 102.77% 107.8% 99.65%
GLA ML 100.12% 102.22% 103.69% 107.83% 101.60%

Hyper-Heuristic
ML

100.38% 102.74% 104.31% 108.25% 101.77%

Model Data Set Total16 7 8 9
GLA Avg. 98.32% 101.11% 95.05% 93.81% 100.00%
GLA ML 100.39% 101.96% 96.27% 94.91% 101.00%

Hyper-Heuristic
ML

100.46% 102.21% 97.12% 95.31% 101.40%

1 total average across all data sets

Table 5.9: Solution quality of the Hyper-Heuristic ML compared to benchmarks
using a time series analysis
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