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Abstract

Recommending products that are helpful to customers and tailored to their needs is

of pivotal importance for successful online retailing. Online purchase data is typically

used to generate such recommendations. This dissertation studies two topic models

that use purchase data to make product recommendations. The Author Topic Model

(ATM) and Sticky Author Topic Model (Sticky ATM) are applied to the purchase data

of an online retailer of animal health products, and their predictive performances are

contrasted with those of the benchmark methods Unigram, Bigram, and Collaborative

Filtering (CF). This work focuses on the generation of new product recommendations.

To increase novelty in recommendations, a new pre-processing approach is presented.

The data is prepared prior to model application such that more novel products are in-

cluded in the recommendations. A total of six data preparation variants are tested. The

key finding is that topic models are very competitive with the benchmark methods and

outperform them with the data preparation variant, where repetitively purchased items

(repeat items) and customers with one item transaction (single-item customers) are elim-

inated from the data. Marketing practitioners should consider this pre-processing when

implementing topic models as recommender models in their online shops.

Keywords: recommender systems, topic models, Latent Dirichlet Allocation, online

purchase data, data preparation
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1. Motivation

1.1. Making Product Recommendations with Online Purchase Data

Online stores with a large product range are very attractive because they offer shoppers

more choices to select from. However, a huge variety in products can also overwhelm

customers and make purchase decisions difficult. To address this issue, online retailers

incorporate recommender systems in their online shops; these systems have become stan-

dard features in many shop systems today. Familiar recommender systems, for example,

are Amazon’s “Customers who bought this item also bought” section or Zalando’s display

of a set of additional products to “Complete your look.” These recommender systems

both improve customers’ shopping experience and play a vital role in companies’ efforts

to increase sales and competitiveness. Various studies have already provided evidence

for such benefits for both customers and companies (Lee and Hosanagar 2014; Pathak

et al. 2010; Fleder and Hosanagar 2009).

To generate product recommendations in online shops, purchase data is typically used.

Online purchase data encompasses all past transactions of customers in an online shop.

This data provides valuable insights for recommender systems and is beneficial in the

context of online recommendations for various reasons. First, it contains information

on the co-occurrence of items, i.e., which items are purchased together in a shopping

basket. Such co-occurrences are used by recommender systems to identify a suitable

set of products for recommendation. Second, it reveals differences in customer prefer-

ences. For example, it can be assumed that a customer who orders a new iPhone and

the corresponding case by Apple puts more emphasis on style and design than on cost.

However, a customer who purchases a Huawei smartphone with a case that was tested

for a 12-foot drop seems to be more price-sensitive and safety-conscious. Both customers

probably value distinct recommendations. Third, online purchase data is readily avail-
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able in firms’ data warehouses, from which it can be obtained with minimal effort and at

almost no cost. This is important since online product recommendations must be contin-

ually updated in real time. For this reason, this dissertation focuses on making product

recommendations solely based on online purchase data. Some papers have also tried to

include additional product information, e.g., price or textual descriptions (Christidis and

Mentzas 2013; Iwata and Sawada 2013). Such information, though, is often not easily

available for every product or increases computational complexity.

1.2. Using Topic Models as Recommender Models

In this dissertation, topic models are applied to online purchase data to make new product

recommendations in online shops. Topic models were originally developed for application

with text data, in particular for finding the latent topics present in large text collections.

Application examples in marketing can be found in Büschken and Allenby (2016) and

Tirunillai and Tellis (2014), which analyze customer reviews respectively online chatter

with topic models to better understand what customers are saying about a company’s

products and services. These models are not necessarily tied to text data but can also

be used for other types of data with a similar structure, such as online purchase data.

Specifically, online purchase data is matched to text data by setting items equal to words

and customers’ purchase histories to text documents.

Scholars have already successfully applied topic models to purchase data to explain future

buying behavior. The literature for this can be split into two categories. One stream of

literature analyzes offline purchase data with topic models. In particular, scanner data

of supermarkets (Hruschka 2014; Hruschka 2016; Christidis, Apostolou, and Mentzas

2010) and stationary retailers (Schröder 2017; Ishigaki et al. 2015) has been evaluated

for product recommendations and cross-selling activities. A second stream of literature

analyzes online purchase data with topic models. For instance, Sun et al. (2013) used
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group purchasing data from a social media platform to predict which group purchasing

event a customer is most likely to join. Iwata and Sawada (2013) presented a topic

model that included price information of items and applied it to purchase records from

an online service for managing household accounts. Jacobs, Donkers, and Fok (2016)

analyzed purchase data from a Dutch online retailer for drugstore products to predict

what a customer would buy next. This latter study came closest to this dissertation be-

cause similar data and models were used. It will be subject of discussion later in this work.

Topic models are different compared to other recommender models in identifying the

latent topics that are present in purchase data and how much each customer is interested

in those topics. Based on this information individual product recommendations can de-

rived. A topic manifests itself as a collection of items which are frequently purchased

together across customers. For example, running shoes, sport socks and drinking bottles

might often co-appear in orders of customers interested in “running” while charcoal bags

and aluminium foils co-appear often in shopping baskets of those interested in “barbecue”.

The term latent refers to the fact that topics must not be clearly assigned to one specific

subject. Instead, it is possible that a topic consists of products of different categories

which at first glance seem to have little connection. For instance topic models could

reveal a topic “surfer’s clothing and barbecue” because people who are interested in both

activities generally like to spend much time outside.

In this dissertation, the topic models ATM and Sticky ATM (Büschken and Allenby 2016)

are selected for analysis. Both models include authorship information, i.e., customers’

entire purchase histories are considered instead of single orders. This provides the models

with a more informative data basis. In addition, the Sticky ATM model accounts for

stickiness at the item level. This means that the same topic assignment can carry over

for a certain sequence of items ordered by a customer. Such an assumption might better
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reflect customers’ purchasing behavior of buying by categories. Both topic models are

compared to the benchmark models Unigram, Bigram, and CF. Unigram is the simplest

method, which calculates marginal probabilities across all ordered items. Bigram is the

recommender method currently used by the online retailer considered for analysis in the

empirical part of this dissertation. CF is the most frequently applied method in practice.

1.3. Extending Existing Research

The literature is increasingly concerned with how to generate useful recommendations

for customers. Product recommendations often fail to meet the needs of customers

or do not really represent a true recommendation because the displayed products are

already known to a shopper. A central reason why recommender systems miss their

target is the evaluation method by which they are assessed and selected. Recommender

systems are typically evaluated based on their accuracy in predicting the next products

a customer will buy. This procedure favors the selection of models that recommend

popular items rather than unpopular items. The latter, however, are generally less

likely to be discovered by customers and thus are more likely to be novel and useful

to them. Research is increasingly finding that accuracy alone is not sufficient and that

an evaluation beyond accuracy should be carried out (McNee, Riedl, and Konstan 2006;

Adamopoulos 2013; Burke, Felfernig, and Göker 2011, p. 16; Jannach, Lerche, et al.

2015, pp. 428-429; Gunawardana and Shani 2009). This dissertation follows just such an

approach. To move beyond accuracy, it presents a new pre-processing approach in which

the input data is prepared prior to model running such that only the data relevant for

new product recommendations is fed into the models. This new approach provides an

alternative view to the more common post-processing approaches in the literature. Those

approaches re-rank the final results of a recommender algorithm after model running to

increase the representation of novel items in recommendations.
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2. Research Objective and Structure

The main objective of this dissertation is to investigate the application of topic mod-

els to online purchase data for the purpose of making new product recommendations.

Specifically, the following questions are addressed:

1. Are topic models effective in recommending novel items to customers? How do

they perform when predicting non-novel items? Are there recommender models

that are better suited for the one task or the other?

2. How do the two topic models perform? Can the Sticky ATM model outperform

the ATM model?

3. Which data preparation is most suitable for generating new product recommenda-

tions? And why? Are there differences between the recommender models?

The present work comprises four parts. Part I, Introduction, describes the motivation

behind the topic of this dissertation. It also discusses the research objective and structure

of the work. Part II, Theoretical Foundation, provides an overview of recommender

systems and topic models. The objective is to lay the necessary theoretical foundations

for generating new product recommendations with topic models in the empirical analysis.

In Part III, Empirical Analysis, the data used for analysis, the distinct data preparation

variants tested, and the procedure for splitting the data into training and test data are

described. The various recommender methods for the model comparison, including the

performance measure to evaluate the models, are explained in detail. Finally, the results

of the empirical analysis are presented and discussed critically. Part IV, Conclusion,

summarizes the main findings of this dissertation and offers ideas for future research.
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Part II.

Theoretical Foundation
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3. Recommender Systems

With the rise of the Internet in the mid-1990s, e-commerce websites began to develop in

addition to stationary retailing. One of the most popular e-commerce companies is the

American firm Amazon. With revenue of about 233 billion US Dollars in 2018 (Rabe

2019), it is among the largest online retailers in the world. The success of Amazon largely

rests on a vast product assortment of about 280 million products (US market) (Jordan

2017) originating from distinct categories such as electronics, apparel, and books. Even

though a large product offering is valued by customers because it provides more free-

dom and self-determination, it might also overwhelm customers (Ricci et al. 2011, p.

2). There is a pressing need for recommender systems to help customers make the best

choices. In particular, such systems support consumers by pointing out new and not yet

experienced items that might be relevant to them. Such personalized recommendations

do not only lead to higher customer satisfaction and loyalty (Srinivasan, Anderson, and

Ponnavolu 2002) but also to higher sales for companies. For instance, some studies show

that consumers are twice as likely to select a product when it is recommended (Senecal

and Nantel 2004; Postma and Brokke 2002). Furthermore, recommender systems increase

the diversity of products purchased by individuals (Lee and Hosanagar 2014; Fleder and

Hosanagar 2009), leading to additional sales of niche products. All in all, the use of

recommender systems is vital to online retailer to survive in today’s competitive mar-

ketplace. For more than two decades, therefore, Amazon has continuously strived to

improve its recommender algorithms, making them ever more intelligent and helpful to

people (Smith and Linden 2017).

The chapter provides an introduction to the most important theoretical basics and terms

associated with recommender systems. It starts with a definition of recommender sys-

tems and their common goals (3.1). It continues with an explanation of the required data

sources for recommender systems (3.2) and an overview of the available recommender
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techniques that are currently used (3.3). Finally, it elaborates on how to evaluate rec-

ommender systems (3.4), including a discussion on why accuracy metrics alone are not

enough to make useful product recommendations to customers.

3.1. Definition and Goal

Recommender systems were developed to provide helpful recommendations to users.

Ricci et al. (2011, p. 1) defined recommender systems as follows:

Recommender Systems [. . . ] are software tools and techniques providing sugges-

tions for items to be of use to a user.

This definition is very general and applies to recommender systems in distinct application

contexts, including that of product recommendations in this dissertation. In the above

definition, the term “items” refers to the specific objects that should be recommended.

This can be products in an online store, movies or songs on a streaming platform, content

on a news website, or friends to follow on social media. Such items are displayed by a

recommender system to an individual “user” such as an online shopper, viewer, listener,

reader or social media user who is faced with an immense variety of alternatives. Most

important in the above definition is that suggestions need to be “of use,” that is, they

should be relevant somehow to a customer and catch his or her interest. How such use-

fulness can be improved and measured for a recommender system is discussed in greater

detail in Chapter 3.4.3.

With respect to the goal of recommender systems, one needs to differentiate between

users and companies. From a user’s point of view, the main goal of a recommender

system is to make users aware of useful items and draw their attention to them. This

reduces the cost of their search for items and ultimately results in higher user satisfaction.
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From a company’s point of view, the main goal of a recommender system is to increase

sales and profit. This can be achieved by displaying appropriate recommendations at the

right time and place.

3.2. Data Sources

Recommender systems make use of various kinds of data to build their algorithms. The

type of data can be diverse and come from distinct knowledge sources. Whether a data

source can be ultimately exploited or not depends heavily on the selected recommenda-

tion technique (see Chapter 3.3). In general, data about items and users run into the

recommender models (Ricci et al. 2011, pp. 7-10). With respect to items, simple ratings

can be used. Some techniques also consider item information such as price, brand, cate-

gory, and available attributes. Other techniques include textual product descriptions and

tags added by users, such as how they feel about a product (e.g., “absolutely satisfied”

or “would not buy it again”). Systems that exploit information on users make use of

sociodemographic attributes such as age, income, gender, occupation, and place of resi-

dence. Based on such characteristics, the similarity among users can be computed and

similar users categorized in homogeneous groups that receive the same recommendations.

The most frequently discussed data basis in literature is ratings, which can take different

forms (Ricci et al. 2011, p. 9; Bodapati 2008, pp. 78-79):

• Numerical or ordinal ratings: A user votes for an item in form of a numeric value

(e.g., 1-5 stars on Amazon) or on an ordinal scale (e.g., strongly agree, agree,

neutral, disagree, strongly disagree).

• Binary ratings: A user expresses positive (“like”) or negative (“dislike”) valence for

an item. Such entries are typically labeled with either 1 and 0, respectively.

• Unary ratings: A user does not explicitly specify a rating, but indicates it through
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his or her behavior. For instance, a customer who orders a product in an online

shop can be assumed to like that product and therefore choose to buy it. This

type of rating is special in that only positive valences are observed, but nothing

is known about which items a user did not like. This is different from the other

types of ratings, where negative feedback can be expressed through a low rating or

“dislike” (Bodapati 2008, pp. 78-79; Hu, Koren, and Volinsky 2008, p. 264).

In the first two types of ratings, a customer explicitly states a rating; in the third type,

in contrast, the rating is only expressed implicitly through behavior. The literature also

uses the terms explicit rating and implicit rating to point out this difference. The online

purchase data analyzed in this dissertation is of the unary type.

3.3. Recommendation Techniques

Depending on the kind of data used, five different classes of recommendation techniques

can be differentiated: collaborative filtering models, content-based recommender systems,

knowledge-based recommender systems, demographic recommender systems, and hybrid

recommender systems (Aggarwal 2016, pp. 8-20, 29-224; Ricci et al. 2011, pp. 10-14).

The most common and widely used method in practice are collaborative filtering models.

Such models rely on rating data and make recommendations on the basis of similarities

between users or items. These are referred to as user-based collaborative filtering or item-

based collaborative filtering. Collaborative filtering methods can be further subdivided

into memory-based (or neighborhood-based) methods and model-based methods. The first

method makes use of simple similarity measures and matching procedures to identify

neighboring users or items. In the second method, machine learning and data mining

techniques, such as decision trees, rule-based methods, or Bayesian methods, are applied.

Another category includes content-based recommender systems, which rely on item de-
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scriptions. The term “content” refers to such descriptions. For instance, an online book

retailer could use product details such as author, genre, and price or extract relevant

keywords from a book description to find similar items for recommendation. There is

one central difference from the previous method: in collaborative filtering models, simi-

larity is based on the rating data of all other users, while in content-based recommender

models, similarity is based on the items liked by one user only, that is, the rating data

of other users is not required. The latter method is therefore often used in cold-start

scenarios where little information on the behavior of other users is available.

A third class of recommender approaches includes knowledge-based recommender systems.

Such recommender systems are used for items that are not purchased very often, such

as automobiles, real estates, or expensive luxury goods. For such items, not sufficient

rating data may be available and also preferences may change over time, which does

not lead to reasonable recommendations when using historical data. Unlike the previous

two approaches, in knowledge-based recommender systems, users take an active role in

specifying their requirements (“knowledge”) for a new item. This is usually done through

an interface where different options can be selected, e.g., as in a car configurator. The

specified customer requirements are then matched to different item descriptions and the

most similar items are offered to the customer.

A recommender technique that leverages demographic information about users is called

a demographic recommender system. Even though this approach cannot be used to rec-

ommend specific items and does not produce the best results on a stand alone basis,

it significantly improves recommendations when combined with other recommender sys-

tems.

This leads to the last approach, hybrid recommender systems, which combines various
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aspects of the previous methods in one new method. The objective is to benefit from the

respective strengths of the single methods and at the same time to compensate for their

weaknesses. In the literature, a large variety of hybrid recommender systems (Ansari,

Li, and Zhang 2018; Liu, Lai, and Lee 2009; Burke 2007) has emerged in recent years.

3.4. Evaluation

As presented in the previous chapter, a variety of recommendation techniques are studied

by researchers and used on commercial online platforms. To compare those recommen-

dation techniques with each other and find the one that suits a particular use case best,

evaluation methods are needed against which the different recommendation techniques

can be assessed.

This chapter provides an overview of the most common evaluation methods used in

practice and by the research community today. It starts by distinguishing evaluation

methods in offline evaluation and live user experiments. Most of the published papers

focus on offline evaluation, which is also applied in the empirical part of this work. This

approach is further deepened by surveying various accuracy metrics, which are part of the

offline evaluation process. Some recent works, however, criticize accuracy metrics as not

leading to the most satisfying experience for a customer when used alone. Instead, further

dimensions that contribute to usefulness of recommendations should be considered. The

last subsection is dedicated to this discussion and moves beyond accuracy by reviewing

a range of non-accuracy measures, including novelty and serendipity.

3.4.1. Offline Evaluation and Live User Experiments

The evaluation of recommender systems can be conducted either by using offline evalu-

ation, live user experiments, or a combination of both (Herlocker et al. 2004, pp. 12-13;

Shani and Gunawardana 2011, pp. 257-297; Aggarwal 2016, pp. 225-254). These two
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basic forms of evaluations, including their corresponding benefits and shortcomings, are

reviewed more in detail below.

Offline evaluation deploys historical data, such as online purchase data, and uses it to

predict future user behavior. The historical data set is partitioned into training data and

test data, where the training data is used to build the model and the test data is used

to calculate the predictive performance of the model. Test data is only considered at the

very end and does not enter the training process. Otherwise, predictive performance is

typically overestimated. To compute the predictive performance, a wide variety of accu-

racy metrics is available; these are discussed in greater detail in the next section. Offline

evaluation is the simplest form of assessing the performance of recommender systems and

is mostly used in the design phase to filter out inappropriate recommender models that

are not further tested in the more costly live user experiments. The big advantage of

offline evaluation is that it does not require a set-up that has real users. This saves time

and costs. The downside is that only questions on predictive power can be answered and

actual reactions of customers to recommendations are not measured. Nevertheless, due

to its simplicity, offline evaluation remains the most widely accepted evaluation approach

in the exploration of recommender systems.

Unlike offline evaluation, which makes use of historical data, live user experiments involve

users in the evaluation process. The live user experiments are further divided into online

evaluation and user studies (Shani and Gunawardana 2011, pp. 263-267; Aggarwal 2016,

pp. 227-229). These differ in the way in which users are recruited. In the online

evaluation users are real users of recommender systems, e.g., shoppers in an e-commerce

shop, and their behavior when interacting with such systems is measured without their

knowledge. In user studies, users are actively recruited and are aware of being part

of an experiment. Users are asked to interact with different recommender systems and
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then provide their feedback about them, e.g., in a questionnaire or personal discussions.

While user studies provide deeper qualitative insights about recommender systems, their

results can be biased because of users’ active awareness that they are participating in a

test study. Online evaluations are far less prone to such biases and are the only method

that measures the true response of users to recommender systems.

3.4.2. Accuracy Metrics

Offline evaluation makes use of accuracy metrics to compare the performance of different

recommender systems. According to del Olmo and Gaudioso (2008, p. 792), such metrics

measure “the quality of nearness to the truth or the true value achieved by a system.”

Selecting an appropriate accuracy metric, however, seems to be very challenging. Her-

locker et al. (2004) described two major challenges. First, researchers are confronted

with a range of questions that are not sufficiently answered in the currently published

literature. These include:

Will a given metric measure the effectiveness of a system with respect to the user

tasks for which it was designed? Are results with the chosen metric comparable

to other published research work in the field? Are the assumptions that a metric

is based on true? Will a metric be sensitive enough to detect real differences that

exist? How large a difference does there have to be in the value of a metric for a

statistically significant difference to exist? (Herlocker et al. 2004, p. 19)

Second, the selection of a suitable accuracy metric is further complicated by the large

number of published metrics. There is no standardized metric as of yet that researchers

commonly refer to. For a better overview, though, Herlocker et al. (2004) classify the

various accuracy metrics into three categories: predictive accuracy metric, classification

accuracy metrics and rank accuracy metrics. A similar categorization can be found, for
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instance, in Jannach, Zanker, et al. (2011) or del Olmo and Gaudioso (2008). Each of

these categories is briefly explained.

• Predictive accuracy metrics measure how close the predicted rating of a recom-

mender system is to the user’s true rating. The most popular measure is the mean

absolute error (MAE), which calculates the average absolute deviation between

the predicted scores and the actual rating values given by users. Alternatively,

some direct variations of MAE, such as mean squared error (MSE), root mean

squared error (RMSE), and normalized mean absolute error (NMAE), can be used.

Predictive accuracy metrics are typically applied for recommender systems with

explicit rating data; for example, they can be used in movie recommender systems

to evaluate the predictions of star-ratings.

• Classification accuracy metrics measure how often a recommender system makes

correct or incorrect decisions about whether a user likes an item. This requires the

recommender system to generate a list of relevant items for a given user. If the

user’s next selected item is found in this recommendation list, it is considered a

correct decision; otherwise, it is an incorrect decision. In other words, classification

accuracy metrics focus on whether a recommender system properly predicts that a

user will add an item from a recommendation list into the shopping cart. The best-

known classification metrics are precision, recall, and F1 metric, which combines

the former two into one metric. Also, ROC analysis is mentioned as an alternative

metric in the literature.

• Ranking accuracy metrics extend the classification accuracy metrics by taking an

item’s relative position in a recommendation list into account. This means that a

correct prediction for an item in the first position receives a greater reward than

correct predictions for items in the lower positions. Commonly applied ranking

metrics are correlation metrics, half-life utility metrics, lift indexes, and the NDPM
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measure.

To sum up, all three accuracy metrics are used to measure different tasks. Predictive ac-

curacy metrics are suitable when the closeness of predicted ratings to true ratings should

be identified. Their main emphasis lies in accurate rating predictions. Classification

and ranking accuracy metrics focus on measuring the ability of a recommender system

to make successful decisions. While classification accuracy metrics view all items in a

recommendation list as equally good, ranking accuracy metrics additionally consider the

ranking order of items in the list.

3.4.3. Beyond Accuracy

The previous section showed that there exists a large variety of different accuracy metrics

for the evaluation of recommender systems. An increasing number of scholars, however,

have noted that using these metrics alone does not lead to the most useful recommen-

dations for customers (McNee, Riedl, and Konstan 2006; Adamopoulos 2013; Burke,

Felfernig, and Göker 2011, p. 16; Jannach, Lerche, et al. 2015, pp. 428-429; Gunawar-

dana and Shani 2009).

The following example illustrates this: Imagine you are buying groceries from an online

retailer on a regular basis. On this retailer’s website the recommender system only dis-

plays products that you are already familiar with through previous purchases. Even if

these recommendations are exactly the products you are going to buy next – that is, the

accuracy of this recommender system is one hundred percent – this would still be a poor

recommender system because it does not inform you about new, not yet experienced

products.

Researchers have therefore proposed to move beyond evaluation based on accuracy and

consider additional aspects that contribute to usefulness. The following table lists some
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frequently discussed measures (Kaminskas and Bridge 2016; Aggarwal 2016, pp. 231-

235; Shani and Gunawardana 2011, pp. 281-293; Herlocker et al. 2004; Ge, Delgado-

Battenfeld, and Jannach 2010; Kotkov, Wang, and Veijalainen 2016):

Measure Explanation
Novelty Measures whether a recommendation is a new possibility for a user.
Serendipity Measures how positively surprised a user is by a new recommendation.
Diversity Measures in a set of recommendations how diverse the items are.
Coverage Measures the proportion of items that a recommender system can rec-

ommend.
Confidence Measures how much faith a system has in its recommendations.
Trust Measures how much faith a customer has in a sytem’s recommendations.
Privacy Measures how much private information is disclosed through a system’s

recommendations.
Learning
Rate

Measures how quickly (i.e., with how much learning data) a recommender
algorithm can produce good recommendations.

Table 1: Measures for Improving Recommendation Usefulness

The goal of this dissertation is to generate product recommendations that are new to

customers. The measure of novelty should therefore be examined in greater detail. Ac-

cording to Kapoor et al. (2015) and Kotkov, Veijalainen, and Wang (2016), novelty can

have three different meanings in recommender systems:

• Item novel to recommender system: A new item that was added to the product

program.

• Forgotten item: The user has forgotten that he consumed the item some time ago.

• Unknown item: The user has not consumed the item before.

The third meaning is the most common in the literature and is used in this dissertation.

Closely related to novelty is serendipity. Rather than displaying items that a user did

not know before, serendipity aims at recommendations that truly surprise a user. For

instance, if a customer always buys books from one writer and a recommender system
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recommends him a newly published book by this writer, it would be novel but not neces-

sarily serendipitous. When the same user, however, is recommended a book from a com-

pletely different genre and he discovers that it appeals to him, then this recommendation

would be serendipitous. Recommendations that are serendipitous are, by definition, also

novel (Adamopulos and Tuzhilin 2014). For this reason, both measures are frequently

discussed in literature together. Nevertheless, it is important to clearly differentiate be-

tween these two concepts when it comes to their measurement. While novelty measures

whether an item has not been discovered yet, serendipity additional measures whether

an item is unexpected for a user. For example, Ge, Delgado-Battenfeld, and Jannach

(2010) and Maksai, Garcin, and Faltings (2015) conceptualize serendipity by dividing it

into “unexpectedness” and “usefulness”. Other authors give slightly different definitions.

Zhang, Séaghdha, et al. (2012) describe serendipity as the “unusualness” or “surprise” of

recommendations. Aggarwal (2016, p. 234) views serendipity as a “departure from obvi-

ousness”. In the remainder of this section, novelty and serendipity are analyzed in greater

detail. The literature does not always clearly differentiate between those two concepts.

For this reason, it makes sense to review them together. First, some research to increase

novelty and serendipity in recommendations is presented. Subsequently, various methods

for measuring novelty and serendipity are discussed.

Improving Novelty and Serendipity. To improve novelty and serendipity, researchers

modify their recommender algorithms in various ways. First, a very simple approach is

to filter out non-relevant items from a recommendation list (Shani and Gunawardana

2011, pp. 286). For novelty, those would be items that a customer already knows, e.g.,

items the customer has previously purchased. Still, though, such an assumption might

be too simplistic and not capture novelty in its entirety. A customer probably knows far

more products than just the ones purchased. With respect to serendipity, non-relevant

items would be “obvious” items. Those could be, for example, items from the same man-
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ufacturer, product category, or brand. Defining what is obvious, however, can be difficult

because it might differ from user to user and change over time. Another approach builds

on the idea of item popularity, i.e., that popular items are generally less likely to be new

and their influence should therefore be reduced. For example, Herlocker et al. (2004)

presented a new ranking approach that gives less weight to popular items:

An alternative would be to divide each [item] probability [of a user] by the probabil-

ity that an average member of the community would like the item, and re-sort by the

ratio. Intuitively, each ratio represents the amount that the given user will like the

product more than most other users. Very popular items will be recommended only

if they are likely to be exceptionally interesting to the present user. Less popular

items will often be recommended, if they are particularly interesting to the present

user. This approach will dramatically change the set of recommendations made to

each user, and can help users uncover surprising items that they like. (Herlocker

et al. 2004, p. 43)

Similar work was done by Abdollahpouri, Burke, and Mobasher (2019) who developed a

re-ranking approach for long tail promotion. Their approach can be applied to the output

of any recommender system as a post-processing step and increases the representation

of less popular items in recommendations. A good discussion on further related works,

promoting less popular items from the long tail, can be found in Kaminskas and Bridge

(2016, pp. 2:13-2:14). Third, another strand of literature focuses on the similarity of

recommended items to a user profile. The idea is that items that are more similar to

the ones purchased by a customer are less likely to be surprising and should therefore

be avoided as recommendation. Instead, more distant, dissimilar items should be rec-

ommended. For example, Adamopulos and Tuzhilin (2014) proposed a new approach

that recommends unexpected items based on how distant they are from the set of items
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expected by a user. Similarily, Vargas and Castells (2011) developed a formal framework

for improving distance-based item novelty.

Measuring Novelty and Serendipity. With respect to measuring novelty and serendip-

ity, the most obvious way would be to conduct some user studies (Shani and Gunawardana

2011, pp. 285-288; Aggarwal 2016, pp. 233-234). For instance, novelty could be measured

by explicitly asking users whether they are already familiar with a recommended item.

For serendipity, additional questions on the unexpectedness of recommendations would

be necessary. The fraction of recommendations that are novel respectively serendipitous

can then be used as an evaluation measure. Although such studies provide meaningful

insights, they are often not conducted. The reason for this lies in the many challenges

that those studies entail (Kaminskas and Bridge 2016, pp. 2:17), e.g., recruiting a suffi-

ciently large number of participants, formulating clear survey questions, or designing the

correct experimental set-up. Specifically, serendipity has been reported in the literature

to be difficult to explain to study participants and is therefore often omitted from analy-

sis. Some understanding is therefore also gained through offline evaluation by designing

the appropriate metrics. Kotkov, Wang, and Veijalainen (2016) differentiated compo-

nent metrics, which measure subcomponents such as novelty or unexpectedness, and full

metrics, which measure serendipity as a whole. In their paper, they provided a good

overview of the most common metrics. One major criticism in the literature, however,

is that to date, there is no widely accepted metric that captures all the facets of novelty

and serendipity together. Even full metrics often disregard some subcomponents. Many

researchers consider this an open issue that has yet to be solved. For this reason, Her-

locker et al. (2004) gave rather vague recommendations on how to improve currently used

metrics. A good novelty metric should capture how well a recommender system makes a

user aware of previously unknown items. Good serendipity metrics should measure the

extent to which recommendations broaden a user’s interests over time.
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4. Topic Models

Topic models are statistical models for automatically extracting the latent themes, re-

ferred to as topics, that are hidden in large collections of unstructured data. These

models have increased in popularity over the last decade because of the unparalleled

growth of data and the inability of humans to process big data manually. The first topic

model was introduced by Blei and Jordan (2003) which is called Latent Dirichlet Allo-

cation (LDA). It was developed for application to text data, in particular for finding the

main topics present in newspapers and scientific articles. Later papers also apply topic

models to online text sources, e.g., blog entries (Mehrotra et al. 2013; Yano, Cohen, and

Smith 2009), customer online reviews (Büschken and Allenby 2016), and social media

conversations (Jaradat and Matskin 2019; Abinaya and Winster 2014).

Topic models are not necessarily tied to text data and have been extended to various

other data sources, such as images (Wang, Blei, and Li 2009; Rasiwasia and Vasconcelos

2013; Zhang, Lu, et al. 2011), videos (Hendel, Weinshall, and Peleg 2010; Niebles, Wang,

and Fei-Fei 2008; Wang, Ma, and Grimson 2007), and music data (Hu 2009; Hu and Saul

2009). A relatively new research stream in marketing applies topic models to purchase

data with the objective of predicting future customer behavior (Jacobs, Donkers, and

Fok 2016; Hruschka 2014; Hruschka 2016; Ishigaki et al. 2015; Schröder 2017; Sun et al.

2013). This last application of topic models is further investigated in the empirical sec-

tion of this dissertation.

This chapter focuses on the LDA model because it is the most basic topic model, and all

other topic model extensions that have been developed in recent years rely on this model.

The language of text data is used to explain LDA, as this is the most common across the

literature. For text data, the entities words or terms, documents, and corpus are used

(Blei, Ng, and Jordan 2003, p. 995). The basic unit of a text is its words. Building a
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sequence of different words results in a document. For instance, a document could be one

paper or one review on a website. The collection of all documents comprises the corpus.

The remainder of this chapter is organized as follows: First, the basic idea and assump-

tions (4.1) of LDA are explained and compared with related models (4.2). It follows a

precise description of the technical details (4.3) as well as how posterior inference (4.4)

via Gibbs sampling (4.5) is conducted for LDA. After this, an overview of different eval-

uation methods is presented (4.6); these are necessary to assess the results of the LDA

model. This chapter is supplemented by the detailed appendix A. 1 - A. 3, to which

references are made at the appropriate places in the text.

4.1. Basic Idea and Assumptions

The basic idea of LDA (Blei, Ng, and Jordan 2003, p. 996) is that each document is

characterized by its own mixture of topics (θd), and each topic is characterized by a

distribution over words (φk). Consider the example of hotel reviews on booking.com.

In those reviews, people generally talk about topics such as the room, staff, breakfast,

dinner, spa area, location, etc. However, not every guest will write about all those topics

equally. One review might be dominated by the description of a bad experience at dinner

and an extensive criticism of how the staff handled the problem. Another review might

stress the wonderful spa area and the excellent location of the hotel close to bars and

sightseeing attractions. Both reviews will have their own mixture of topics, which are

obviously very different. In addition, each revealed topic is described by distinct words.

For instance, in the topic room, words such as “bed,” “mattress,” “comfortable,” “view,”

or “quiet” might prevail, whereas in the topic location, words such as “central,” “sightsee-

ing,” “close,” “walking,” or “airport” might be more likely. The output of the LDA model

provides us with this information. A huge advantage of LDA is that the data does not

require any labeling in advance. Instead, the model is left alone to learn the latent topics
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from the original text data. This is referred to as “unsupervised learning.”

According to Blei, Ng, and Jordan (2003) and Blei (2012), LDA makes the following

assumptions:

• “Bag-of-words” or exchangeability assumption: This means that documents

are seen as a collection of words without any structure (“bag-of-words”). Thus, the

order of words in a document does not matter and can be arbitrarily changed.

• The order of documents does not matter: This assumption is less frequently

stated but is related to the first assumption. Besides words, documents can also

be exchanged, meaning that the order of documents in the text corpus can be

neglected.

• The number of topics is assumed to be known and fixed: Before running

the LDA model, the number of topics needs to be specified.

• Topics are uncorrelated: Topics are independent from one another and do not

show correlations. The independence of topics comes from the selection of a Dirich-

let distribution for the prior distribution. To model interdependence between top-

ics, a logistic normal distribution is required as in the correlated topic model (Blei

and Lafferty 2007).

Since the introduction of the LDA, many topic model extensions have been developed

that relax and extend the above stated assumptions, in order to discover more sophisti-

cated structures in text. A good overview of the most common extensions can be found

on David M. Blei’s website http://www.cs.columbia.edu/~blei/.
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4.2. Delimitation to Related Models

The LDA is frequently discussed in the context of other related models. The following

figure provides an overview of those related models and compares them with the LDA

model.

Figure 1: Models Related to LDA1

LDA is a Latent Variable Model. LDA belongs to the wider field of latent variable

models. Blei (2014, p. 203) defines latent variable models as “probabilistic model[s] of

hidden and observed variables, where the hidden variables encode hidden patterns in

[the] data”. In LDA, the hidden patterns to be found are the topics that are present

across different text documents.

LDA is a Mixed Membership Model. LDA can be summarized under the more gen-

eral framework of mixed membership models. This framework was created by Erosheva

(2002) and Erosheva, Fienberg, and Lafferty (2004) and encompasses three different mod-

els: the Grade of Memership (GoM) model, the Admixture model and the LDA model.

The GoM model was the first example of a mixed membership model and was developed

by Woodbury, Clive, and Garson (1978) for classification of medical diagnosis data. In
1Author’s own illustration, based on subsequent elaboration.
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the early 2000s, the Admixture (Pritchard, Stephens, and Donnelly 2000) and the LDA

(Blei, Ng, and Jordan 2003) models were developed simultaneously. Both models address

clustering problems, albeit in distinct application fields: the Admixture model in genet-

ics and the LDA in text analysis. All three models assume that an observational unit

(document) does not only belong to a single cluster (topic) but to all clusters in different

proportions (Airoldi et al. 2015, pp. 3-4). The word “mixed membership” alludes to this

fact, meaning that each document is characterized by a mixed membership of different

topics.

LDA is the Further Development of LSA and PLSA. The Latent Semantic Anal-

ysis (LSA) and Probabilistic Latent Semantic Analysis (PLSA) can be viewed as the

predecessors of the LDA model. The LSA was developed by Deerwester et al. (1990) in

the context of information retrieval from text data. The basic idea is to take a term-

document matrix and decompose it, using singular value decomposition (SVD), into a

term-topic matrix and topic-document matrix. This leads to a significant reduction in

dimensionality. PLSA, as its name suggests, is the probabilistic variant of LSA (Hofmann

1999). The model uses a probabilistic approach instead of SVD to find the latent topics.

Probabilistic models are set through a generative process that explains how words in

documents are generated based on hidden topics. This generative process also enables

the estimation of unknown parameters and makes PLSA a solid statistical model (Lee,

Baker, et al. 2010, pp. 3-5; Alsumait et al. 2010, pp. 185-186). In addition, PLSA

finally addresses the problem of polysemy: words in a topic can simultaneously appear

in other topics (Hofmann 1999, p. 50; Lee, Baker, et al. 2010, p. 4). However, the model

has one major drawback: there is no generative model at the document level (Blei, Ng,

and Jordan 2003, pp. 994-995). This leads to two problems. First, it remains unclear

as to how to incorporate new, unseen documents into the model. Second, the number

of parameters to be estimated grows linearly with the size of the corpus, resulting in
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problems with overfitting. LDA overcomes the shortcomings of PLSA by introducing

Dirichlet priors (α and β) over the per-document topic distributions (θd) and per-topic

word distributions (φk), making it a full generative probabilistic model.

LDA is (Not) a Mixture Model. It is important to distinguish between mixture

models and LDA. According to Blei (2009), mixture models only assign one topic to

a document and all the words in that document are dependent on that topic. This is

different in the LDA model, where each document comprises a mixture of topics, and the

words in that document can belong to different topics. In text analysis, the mixture model

has proven to work well, especially for very short texts such as tweets (Mazarura and

Waal 2016). For longer texts, which usually cover more diverse topics, the assumptions

of LDA are more appropriate. Interestingly, the mixture model can be considered as a

special case of the LDA model (Galyardt 2015, p. 45; Blei 2009). This is when very small

hyper-parameters (α) close to zero are selected for the draws of the topic distributions

(θd) from a Dirichlet. Such small values lead to extremely sparse topic distributions,

meaning that a document is represented by one topic with very high probability, close

to 1, and by all other topics with very low probabilities, close to 0. The LDA model is

then almost equivalent to a mixture model.

4.3. Model Description

In this chapter the technical details of the LDA model are described. This can be done

in three ways: graphically (4.3.1), linguistically (4.3.2), and mathematically (4.3.3).

4.3.1. Graphical Representation

The LDA model is most easily depicted by the “Directed Acyclic Graph” (DAG) in

Figure 2 (Blei, Ng, and Jordan 2003, p. 1006; Blei and Lafferty 2009, p. 74; Blei 2012,

p. 81), which is a standard way to visualize complex hierarchical probability models
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(Rossi, Allenby, and McCulloch 2006, pp. 67-70). The nodes represent the variables of

the model, where unknown variables are unshaded and observed variables are dark gray.

The light gray squares constitute the hyper-parameters2 for θd and φk. Arrows show the

conditional dependencies between the variables. The rectangles are the “plates” of the

model and indicate replication for the enclosed variable(s). This notation is therefore

often referred to as “plate notation” (Rossi, Allenby, and McCulloch 2006, p. 67).

Figure 2: Directed Acyclic Graph of LDA3

All variables and symbols used in LDA are detailed in Table 2. The table not only

contains the variables of the DAG but also those variables used later in this chapter. It

is intended as a reference table for the entire chapter.

2In the literature, the term “hyper-parameter” is interchangeable with “concentration parameter,”
“pseudo count,” “hyper-prior,” or only “prior” (e.g., see Wallach, Mimno, and McCallum 2009).

3In the original paper by Blei, Ng, and Jordan (2003), the authors formulate two different models:
unsmoothed LDA and smoothed LDA. In the unsmoothed LDA, no hyper-parameter is placed on
the per-topic word distribution φk. Thus, φk is not part of the inference process but needs to be
estimated using maximum likelihood (Geigle 2016, p. 4). Today, the smoothed LDA, as described
in Figure 2, is the most common, as it has the advantage of a full Bayesian inference process, i.e.,
Dirchlet priors are set on the per-document topic distribution θd and the per-topic word distribution
φk.
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Symbols Description
wd,n nth word in document d
zd,n topic assignment of the nth word in document d
θd per-document topic distribution
φk per-topic word distribution
α Dirichlet prior for θd (hyper-parameter)
β Dirichlet prior for φk (hyper-parameter)
D number of documents in the corpus
d document index
Nd number of words in document d
n word index on document level
K number of topics
k topic index
V number of unique words in the corpus (=vocabulary)
v unique word index
W number of words in the corpus
wd vector of all words in document d
wi ith word in the corpus
i word index on corpus level
zi topic assignment of the ith word in the corpus
z−i topic assignments of all words except for zi

Table 2: Notation Used for LDA

4.3.2. Generative Process

Another way to describe the LDA method is by its generative process, which is the

“imaginary random process” (Blei 2012, p. 78; Blei and Lafferty 2009, p. 73) by which

the model assumes that the observed data (wd,n) was produced. It is defined as follows:

1. For each topic k :

a) Draw a distribution over words φk ∼ Dirichlet(β).

2. For each document d :

a) Draw a vector of topic proportions θd ∼ Dirichlet(α).

b) For each word:

i. Draw a topic assignment zd,n ∼Multinomial(θd), zd,n ∈ {1, ...,K}.
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ii. Draw a word wd,n ∼Multinomial(φzd,n), wd,n ∈ {1, ..., V }.

In the first step, the variable φk of the topic plate is generated. This is achieved by

sampling from a Dirichlet distribution with prior β. The process is repeated for every

topic available. The second step generates the variables of the document and word plate.

The topic distribution θd is drawn from a Dirichlet distribution with prior α for a docu-

ment. Subsequently, for each available word in that document, the topic assignment zd,n

and the word wd,n are drawn from a Multinomial distribution using θd respectively φzd,n .

Thereby, the topic assignments can take values in the range of 1 to K and the words

values in the range of 1 to V . This entire second step is repeated for every document in

the corpus. An implementation of the generative process in R is displayed in Appendix

A. 1.

4.3.3. Joint Distribution

The LDA method can also be mathematically described by the joint distribution of

all observed and hidden variables, given the hyper-parameters (Blei 2012, pp. 79-80;

Heinrich 2008, p. 17; Carpenter 2010, p. 2; Geigle 2016, p. 5; Darling 2011, p. 2):

p(φ, θ, z, w|α, β) (1)

Based on the conditional dependencies specified in the DAG and generative process, the

joint distribution can be factored out as follows:

= p(φ|β) · p(θ|α) · p(z|θ) · p(w|φ, z) (2)

30



Taking into account the plates of the model, this yields the expression:

=
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(3)

In the following, the four single factors of the joint distribution are explained in greater

detail, where p(φ|β) and p(θ|α) are Dirichlet distributions and p(z|θ) and p(w|φ, z) Multi-

nomial distributions (Wang 2008, pp. 6-7; Heinrich 2008, p. 21).

Considering the definition of the Dirichlet distribution (compare Appendix A. 3 and

Wang 2008, p. 6-7), the first two factors can be expressed as:

p(φ|β) =

KY
k=1

p(φk|β) =

KY
k=1

1

B(β)

VY
v=1

φβv−1
k,v (4)

p(θ|α) =

DY
d=1

p(θd|α) =

DY
d=1

1

B(α)

KY
k=1

θ
αk−1

d,k (5)

B(β) and B(α) are the normalizing constants of the Dirichlet distribution. βv and αk

constitute the hyper-parameters for each unique word v respectively topic k. φk,v is the

probability of word v appearing in topic k and θd,k is the probability of topic k being

present in document d.

Using the Multinomial distribution (see Appendix A. 3 and Wang 2008, p. 6-7), the

other two factors become:

p(z|θ) =

WY
i=1

θdi,zi =

DY
d=1

KY
k=1

θ
nd,k
d,k (6)
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nd,k=

WX
i=1

I{di = d ∧ zi = k}

p(w|φ, z) =

WY
i=1

φzi,wi =

KY
k=1

VY
v=1

φ
nk,v
k,v (7)

nk,v=

WX
i=1

I{wi = v ∧ zi = k}

nd,k counts the number of times topic k was assigned to words in document d (generally

speaking, it counts the number of times topic k appears in document d) and nk,v denotes

the number of times word v was associated with topic k. All counts of nd,k are collected

in a DxK matrix respectively all counts of nk,v in a KxV matrix. The resulting matrices

are denoted as the NDK and NKV matrix.

4.4. Posterior Inference

The goal of LDA is to compute the posterior distribution, which is defined as the condi-

tional distribution of the hidden variables (φ, θ, z), given the observed data (w) and the

hyper-parameters (α and β) (Blei 2012, pp. 79-81; Darling 2011, p. 3; Geigle 2016, p.

6):

p(φ, θ, z|w,α, β) =
p(φ, θ, z, w|α, β)

p(w|α, β)
(8)

A key problem in LDA is that this posterior distribution is intractable to compute (Blei,

Ng, and Jordan 2003, p. 1003; Blei 2012, p. 81). The numerator is the joint distribution

of all variables and can be computed easily. The marginal probability in the denominator

is problematic, however. It is the probability of observing all the data in the corpus. A

closer look at the form of the denominator shows the difficulty of calculation (Geigle
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2016, p. 6; Heinrich 2008, p. 17):

p(w|α, β) =

Z
φ

Z
θ

X
z

p(φ, θ, z, w|α, β) dθ dφ

=

Z
φ

p(φ|β) ·
Z
θ

p(θ|α) ·
X
z

p(z|θ) · p(w|φ, z) dθ dφ (9)

The problem of computation lies in the summation over the latent topic assignments

(Blei 2012, p. 81; Geigle 2016, p. 6). In theory, the sum would be over all possible

ways of assigning each observed word in the corpus to one of the topics. This, however,

involves an exponentially large number of combinations that make this sum and, thus,

the denominator analytically intractable to compute.

Fortunately, there are a number of approximation methods available that can be used to

approximate the posterior distribution. For LDA, two different approximation methods

can be distinguished: sampling-based algorithms and variational inference (Blei 2012, p.

81). A very common algorithm is Gibbs sampling, which is a sampling-based algorithm.

This sampling method is used in the empirical part of this dissertation and is therefore

explained in greater detail in the following chapter. Variational inference was applied in

the original LDA paper of Blei, Ng, and Jordan (2003, pp. 1003-1005). While variational

inference is often favored because of its faster computational speed, the Gibbs sampler

is generally known to be more accurate.

4.5. Gibbs Sampling

Gibbs sampling was first introduced in 1984 in a paper by Geman and Geman (1984)

in the context of image processing. The algorithm belongs to the Markov Chain Monte

Carlo (MCMC) methods and is used for difficult calculations, which are instead replaced

by a sequence of easier calculations (Casella and George 1992, p. 167). The Gibbs

sampler approximates the posterior distribution by iteratively sampling from the full
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conditional distributions (“full conditionals”), which are defined as the distribution of a

parameter conditional on all other known and unknown parameters (Walsh 2002, pp.

16-17; Gilks and Wild 1992, pp. 342-343; Gelfand and Smith 1990, pp. 400-401; Casella

and George 1992). Those full conditionals have a much easier form than the posterior

distribution and facilitate computation. Sampling needs to be conducted for many itera-

tions until the stationary state of the Markov chain is reached. This is when the sampled

values approximate (or “converge to”) the desired posterior distribution. Initial draws of

the Gibbs sampler need to be discarded, as they are poor estimates. Those draws are

referred to as the “burn-in period.”

In LDA the collapsed Gibbs sampler is most commonly used because of its high efficiency.

In this sampler the parameters φ and θ are integrated out (“collapsed”) which leads to a

faster convergence of the model. The complete derivation of the collapsed Gibbs sampler

is explained in detail in Appendix A. 2. At this point in the text only a short summary

of the sampling scheme is presented.

Steyvers and Griffiths (2007) and Griffiths and Steyvers (2004) summarize the entire

sampling process for the collapsed Gibbs sampler in four major steps:

1. Initialization: First, zi needs to be initialized by assigning each word i to a

random topic between 1 and K. This constitutes the initial state of the Markov

chain. Based on this information, the count matrices NKV and NDK can be created,

which are required for the next step.

2. Gibbs Sampling: The Gibbs sampler is now run for a number of iterations. One

iteration involves a pass over all words across all documents:

For each word i:

a) Decrement the count matricesNKV andNDK by 1 for the entries of the current
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topic assignment zi.

b) Sample a new topic from the full conditional:4

p(zi|z−i, w, α, β) ∝
n(−i)
k,v + βv

VP
v=1

(nk,v + βv)− 1

·
n(−i)
d,k + αk

KP
k=1

(nd,k + αk)− 1

c) Increment the count matrices NKV and NDK by 1 for the entries of the new

topic assignment.

This sampling procedure is repeated for many iterations until the Gibbs sampler

starts to approximate the target distribution.

3. Burn-in: The burn-in period refers to the initial draws of the Gibbs sampler, which

are poor estimates of the posterior distribution and therefore need to be eliminated

from the results. After this burn-in period, the samples start to converge around

the target distribution and can be used to get φ and θ.

4. Obtaining φ and θ: Parameters φ and θ can finally be obtained by a Dirichlet

draw, as follows:5

Dir(φk|nk + β) for each topic k = 1, ..., K

Dir(θd|nd + α) for each document d = 1, ..., D

4Compare Equation (26) in Appendix A. 2; n(−i)
k,v and n(−i)

d,k are counts that do not include the current
topic assignment zi.

5Compare Equation (27) and Equation (28) in Appendix A. 2.
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Alternatively, the formulas for the posterior means can be used:6

φk,v =
nk,v + βv

VP
v=1

(nk,v + βv)

θd,k =
nd,k + αk

KP
k=1

(nd,k + αk)

According to Heinrich (2008, p. 23), there are three ways to receive the model

parameters φ and θ after the burn-in period: (1) reading out only a single sample,

(2) averaging a number of samples, and (3) leaving an interval of I iterations

(“thinning interval” or “sampling lag”) between subsequent read-outs and averaging

across those.

4.6. Evaluation

A vital step in topic modeling is the evaluation of the model results. According to

Reisenbichler and Reutterer (2019), scholars perform evaluations for various reasons;

these are described below:

• Analysis of Model Fit

One major objective in topic modeling is to evaluate the predictive performance

of the model, i.e., how well a model performs on new, unseen data. Therefore,

the data is split into training data and test data (also known as “held-out data”

or “non-training data”), where the training data is used for learning the model and

the test data is used for evaluating the model. The data can be divided either on

the corpus level, i.e., taking entire documents for the test data, or on the docu-

ment level, i.e., separating a document into two parts where the first half goes into

the training data and the second half into the test data. The latter procedure is

6Compare Equation (29) and Equation (30) in Appendix A. 2.
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referred to as “document completion” (Wallach, Murray, et al. 2009, p. 1109).

A widely used metric for evaluating topic models is perplexity ; see, for example,

Blei, Ng, and Jordan (2003, p. 1008) or Grün and Hornik (2011, p. 7):

perplexity(w) = exp

 
− log p(w)PD

d=1

PV

v=1
nv,d

!
(10)

The numerator is the log-likelihood and the denominator the total number of tokens

in the data, where nv,d counts how often word v occurs in document d. The lower

the perplexity score, the better the model. In the above equation, the training data

is considered for the in-sample fit, and the test data is considered for the out-of-

sample or predictive fit. The log-likelihood is calculated using Grün and Hornik

(2011, p. 7):

log p(w) =

DX
d=1

VX
v=1

nv,d · log

"
KX
k=1

θd,kφk,v

#
(11)

Instead of computing the perplexity, as in Equation (10), some scholars only use

the log-likelihood in Equation (11) for their model fit, such as Büschken and Al-

lenby (2016, pp. 961-962) or Hruschka (2014, pp. 10-12). The interpretation of

the log-likelihood is opposite to the perplexity. The higher the log-likelihood, the

better the generalization performance of the model to new data. Other possible

evaluation metrics are summarized in Wallach, Murray, et al. (2009), which in-

cludes importance sampling, harmonic mean and annealed importance sampling,

Chib-style estimation, and a left-to-right evaluation algorithm.

• Analysis of Convergence

Checking whether a topic model converges is pivotal for receiving reliable estimates.

A standard way to determine the required number of iterations for convergence is

37



to calculate the perplexity, as defined in Equation (10), for every iteration.7 For

instance, Chen and Wang (2014, pp. 5-11), Sun et al. (2013, p. 72), and Asuncion

et al. (2009, pp. 31-33) follow this procedure in their analyses. In plotting the

perplexity against the iterations, convergence can be declared when the perplexity

decreases and then levels off.

• Analysis of Optimal Parameter Settings

Numerous studies discuss two parameter settings: selection of hyper-parameters

and selection of number of topics. The selection of the hyper-parameters and their

influence on the model results are discussed in detail in Appendix A. 3 and is

therefore not further explained here. Griffiths and Steyvers (2004, p. 5231) and

Steyvers and Griffiths (2007, p. 441) explain how to select the optimal number of

topics. A widely used approach is to run the topic model for different topic numbers

and calculate the perplexity, as defined in Equation (10). The topic number that

achieves the best perplexity value is then selected as a result and examined in closer

detail.

• Analysis of Clustering Output

Substantial research has been conducted on evaluating the clustering output. A

major focus lies on assessing topic coherence, i.e., the quality of a topic with respect

to its interpretability. Chang et al. (2009) presented an evaluation method with

human judgement, called a “word intrusion task.” In this task, a person is presented

six randomly ordered words and given the task of finding the word that is out of

place or does not belong to the others (i.e., the “intruder”). The set of words

displayed to a user is constructed by: (1) selecting a topic from the model; (2)

choosing the five most likely terms from that topic; and (3) adding an intruder

7Calculating the perplexity for every iteration can be very time-consuming. To speed up calculation,
very frequently only every ith iteration (e.g., every 10th or 100th iteration) is used. Standard packages
or softwares for topic models usually have an option to indicate the iteration interval at which
evaluation should be conducted.
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word from a pool of words with low probability in the current topic. Even though

it is useful, this method can be very time-consuming. Subsequent works, such as

Newman, Lau, et al. (2010), Newman, Baldwin, et al. (2010), and Mimno et al.

2011, have therefore developed metrics that automatically measure topic coherence

with near-human accuracy. Besides topic coherence, there exists a plethora of other

topic diagnostic metrics, e.g., topic size, word length or similarity measures, that

assess the model output. Boyd-Graber, Mimno, and Newman (2015, pp. 238-241)

provided a good overview of the most important metrics.

• Analysis of Computational Performance

Due to the combination of big data and complex models in the topic modeling

context, computation constitutes a major challenge. A growing number of papers

therefore have compared different estimation methods with respect to computa-

tional time or have developed new estimation methods that are faster (e.g., Ansari,

Li, and Zhang 2018; Ishigaki et al. 2015).
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Part III.

Empirical Analysis
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5. Data

This chapter takes a closer look at the data that is used in the empirical analysis. It starts

with discussing some descriptive statistics and special characteristics of the data (5.1).

Subsequently, the selected data preparation (5.2) is explained in detail, including why

a new pre-processing approach is necessary for making new product recommendations.

Finally, the division of the data into training and test data (5.3) is described. The chapter

is accompanied by Appendix B. 1 which provides some additional data statistics.

5.1. Data Description

For the empirical analysis, purchase data from an online retailer of animal health products

was used. The product assortment ranged from special animal food and veterinary

medicine to useful animal accessories for pets, such as cats and dogs, as well as larger

animals, such as horses. The complete order history from January 2012 until January

2016 was obtained. Only transactions with a status of “complete” were kept. Those were

transactions for which the delivery of the product and payment were fully completed and

the product’s return window had elapsed. “Canceled,” “pending,” or transactions in any

other status were removed from the data set. Table 3 shows the summary statistics of

the data set.

Total Median Mean SD Min Max
Number of orders 135,456 - - - - -
Number of customers 96,239 - - - - -
Number of SKUs (total) 264,717 - - - - -
Number of SKUs (unique) 4,758 - - - - -

Number of orders per customer - 1 1.41 2.63 1 603
Number of SKUs per order - 1 1.95 3.40 1 148
Number of SKUs per customer - 1 2.75 10.82 1 1,347
Number of orders per SKU - 4 33.37 206.53 1 6,140

Table 3: Descriptive Statistics of the Data Set
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The data set comprised of a total of 135,456 orders, which were placed by 96,239 cus-

tomers. Across these orders, a total of 264,717 items were dispatched. The number of

unique items equaled 4,758. The data set illustrated the typical purchasing behavior of

online shoppers; most customers placed very few orders with a small number of items.

As reported in the lower part of the table, the mean number of orders per customer was

1.41, with 1.95 items per order on average. When the orders were aggregated across

a customer, the average number of items became 2.75. A median of 1 for the number

of Stock Keeping Units (SKUs) per customer further shows that the majority of the

customers in the data set only placed one order with one item (single-item customers);

that is, for many customers there was very little information available. The large range

for the number of SKUs per customer, from 1 to 1,347, is also noteworthy. This implies

that information on co-occurrence of items is not evenly distributed across the customer

base. The last value in the table, the number of orders per SKU, indicates the number

of orders in which an item appeared. The distribution of this value exhibits a very long

tail. Most of the items were present in four or fewer orders. Some SKUs, however, also

appeared in many orders, up to a maximum of 6,140 orders.

Additional analyses revealed that customers frequently bought the same item multiple

times within an order or across orders. Such items are referred to as repeat items in this

work. The data comprised 40% repeat items when repeats were calculated at the order

level. When repeats were considered across a customer’s orders, they comprised 53% of

the data. Figure 3 shows these percentages.

42



60.0%

40.0%

0

50,000

100,000

150,000

no repeat repeat

fr
eq

ue
nc

y

46.86%

53.14%

0

50,000

100,000

150,000

no repeat repeat

fr
eq

ue
nc

y

Figure 3: Percentage of Repeat Items on Order (Left) and Customer (Right) Level

5.2. Data Preparation

There is disagreement in the literature about which data preparation should be used for

recommender systems. A comparison of the data pre-processing of several authors shows

very different approaches. Some authors removed repeat items (Jacobs, Donkers, and

Fok 2016, p. 397), while others left them in (Ishigaki et al. 2015, p. 13). A few papers

eliminated very frequent or rare items (Hruschka 2014, p. 269; Schröder et al. 2017, p.

41). In some analyses, researchers did not work with single items, but combined items

of the same category and brand into a “category-brand combination” (Jacobs, Donkers,

and Fok 2016, p. 397; Hruschka 2014, p. 269; Hruschka 2016, pp. 3, 7; Schröder 2017,

p. 30; Christidis, Apostolou, and Mentzas 2010, p. 7). Other authors deleted customers

with only a few purchased items (Iwata and Sawada 2013, p. 566; Sun et al. 2013, p. 72).

The selected data preparation method, however, can have substantial effects on the suc-

cess of a recommender algorithm. Herlocker et al. (2004) noted this and stated that the

data should be selected in such a way that a recommender system can fulfill the task for

which it is being evaluated as well as possible. The goal of this dissertation is to evaluate
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topic models in terms of how good they are at generating new product recommendations

for customers. For this reason, only data that contributes to novelty of recommendations

should be considered for analysis.

Two data characteristics require a closer examination when it comes to new product

recommendations: First, the data contained many repeat items, i.e., the same item is

purchased multiple times within an order or across orders of a customer. The problem

with repeat items is that they do not inform a recommender system about new items

and at the same time prevent product recommendations from the long tail. Such long

tail items, however, are critical for businesses as they are less likely to be discovered by

customers and often indicate new, emerging consumer preferences. Second, more than

half of the customers bought only one single item in their entire purchase history. Such

single-item customers are also not very informative. They do not provide information

about item interaction and are therefore of little use in identifying suitable new items for

cross-selling.

To investigate whether such repeat items and single-item customers should be eliminated

for new product recommendations, six different approaches to pre-processing were con-

sidered prior to running and comparing the models in this dissertation. Repeat items

were either left in the data, removed at the order level, or removed at the customer level.

Single-item customers were also either left in the data or removed from the data. Table

4 reports the data preparation variants as well as their abbreviations, which are used

throughout this work. Note that ALL is the variant without pre-processing for which

descriptive statistics are shown in Table 3. The extent of data preparation increases

when moving down in the columns and from left to right. 11USC constitutes the most

selective variant of data preparation.
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Customers
With Single-Item Customers Without Single-Item Customers

Items

ALL All SKUs 11ALL All SKUs

USO Unique SKUs at 11USO Unique SKUs at
the order level the order level

USC Unique SKUs at 11USC Unique SKUs at
the customer level the customer level

Table 4: Six Variants of Data Preparation8

This dissertation is closest to the study of Jacobs, Donkers, and Fok (2016) but sets a

different focus by making recommendations instead of predictions. The pre-processing

used by Jacobs, Donkers, and Fok (2016) is discussed below as well as why a different

data preparation method is necessary for a recommendation task. In their paper, the

researchers considered “unique category-brand combinations” at the order level. This

refers to a customer buying multiple items from the same category-brand combination

within an order and the multiple counts of those items are ignored; that is, they are set to

1. This involves two data preparation steps: (1) assigning products of the same category-

brand, such as different fragrances of the same deodorant brand, to one category-brand

combination; and (2) summarizing the same category-brand combinations within an order

to a single purchase. This pre-processing procedure, however, has some shortcomings in

a recommender context. In the first data preparation step, Jacobs, Donkers, and Fok

(2016) ignore different variants of products even though they might address different

customer needs. Furthermore, with regard to actual item recommendations in the online

shop, it is not clear which specific product should be recommended. This needs to be

left to a random selection of one of the products in the category-brand combination. In

the second data preparation step, it is assumed that buying multiple items from one

category-brand combination within an order provides no information with respect to

predicting future purchases. However, buying multiple items from one category-brand

8The “11” in the abbreviations stands for the fact that single-item customers were eliminated from the
data; these are customers with only “1” order and “1” purchased SKU.
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combination across orders is assumed to do so. This is counterintuitive for recommending

new products. For a recommender task, the number of purchases of an item should also

be irrelevant across orders when it is within orders.

5.3. Splitting Data into Training and Test Data

The data was split into training and test data. The training data was used for learning

the models and the test data for evaluating the models. For the division of the data, a

random 25% sample of all customers was drawn. These randomly drawn customers are

referred to as holdout customers. For each of the holdout customers, the last SKU in the

purchase history was pulled out and used as test data. This data division mimics the

situation in an online shop where a company wants to predict the next item a customer

is going to buy, given his past purchase history. Figure 4 illustrates this data splitting.

The figure shows customers 1 to N in the data and their purchased products, which are sorted by the
time ordered. The customers in red boxes belong to the random 25% sample and comprise the holdout
customers. From those holdout customers, the last item was pulled out for the test data. All other
SKUs, including those not in the 25% sample, went into the training data. Model evaluation is later
based on the correct prediction of the holdout items in the test data.

Figure 4: Example of Data Splitting

A closer look at the holdout customers reveals three different subgroups. There are

holdout customers for which a minimum of one item is observed in the training data.
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When an item is predicted for these customers, it can either be a non-novel product

the customer has already purchased (i.e., it is present in the training data) or a novel

product this customer has not purchased yet (i.e., it is not present in the training data).

The first subgroup is called Old Customer, Old SKU, and the second subgroup is called

Old Customer, New SKU. If a holdout customer has only ordered one single item, this

item goes into the test data (i.e., no purchases are observed for this customer in the

training data). This subgroup is called Cold Customer. Examples and definitions of each

subgroup are provided in Figure 5.

The subgroups are defined as follows: Old Customer, Old SKU are holdout customers with a minimum
of one item in the training data and for which an item is predicted that was purchased by this customer
before. Old Customer, New SKU are holdout customers with a minimum of one item in the training
data and for which an item is predicted that was not purchased by this customer before. Cold Customer
are holdout customers for which no items are observed in the training data.

Figure 5: Subgroups of Holdout Customers

This distinction of holdout customers is essential for revealing differences in model perfor-

mance with respect to these subgroups. Most important for evaluating a model’s ability

to recommend new items is the subgroup Old Customer, New SKU. It is the focus in this

work.
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6. Methods

This chapter introduces the recommender models that are compared in this dissertation.

The first section elaborates on the usage of topic models (6.1) as recommender models. It

starts by explaining how topic models can be applied to online purchase data and which

notation and model settings are used. Afterward, the two topic models, ATM and Sticky

ATM, are presented along with a discussion of how recommendations are generated with

them. In the second section, the benchmark models (6.2) Unigram, Bigram, and CF are

described. The chapter closes with describing the performance measure (6.3) used to

evaluate the various recommender models.

6.1. Topic Models

6.1.1. Application to Online Purchase Data

The use of topic models for text analysis or recommendation activities stems from the

same idea: In text analysis, topic models aim to detect frequently co-occurring words that

relate to latent topics. In a recommender context, topic models aim to detect frequently

co-occurring products that relate to latent customer interests. With this analogy, a

mapping of topic models from text data to online purchase data is possible. This is

demonstrated in Table 5:

Text Data Online Purchase Data
ATM Sticky ATM

Document Customer Purchase History Customer Purchase History
Word Product Product
Topic Topic (= Customer Interest) Topic (= Customer Interest)

Table 5: Application of Topic Models to Online Purchase Data

In both topic models, a customer’s purchase history is treated as a document9 and each

9Note that by defining a document as a customer purchase history, a customer’s single orders must
be pooled into one document. The identification of customers across different orders was possible
through their email address, which is required for each order in the online shop.
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purchased product as a word. A topic represents a collection of items that are likely

to be bought by a particular set of customers to whom they are of interest. For the

sake of simplicity, the term topic is further used in the context of online purchase data.

Other authors have changed the term to motivation (Jacobs, Donkers, and Fok 2016),

latent activity (Hruschka 2014), latent trait (Schröder 2017), or customer’s purchasing

preference (Sun et al. 2013).

6.1.2. Notation and Model Settings

The notation used for topic models in the empirical part of this dissertation is summa-

rized in Table 6 and compared to the standard notation commonly seen for text data.

The parameter xc,n is observed; it stands for the nth product of customer c. The parame-

ter zc,n is unobserved; it stands for the topic assignment of the nth product of customer c.

In a recommender context, topic models characterize each topic k by a distribution over

products (φk) and determine an individual topic distribution (θc) for each customer c.

The parameters α and β comprise the Dirichlet priors for φk and θc. They are fixed and

specified prior to running the model. The number of customers, the number of products

per customer, the number of topics, and the number of unique products are indicated by

the uppercase letters C, Nc, K, and P . The last three parameters , ψk and ζn are only

necessary in the Sticky ATM for modeling stickiness.

Both topic models were run for multiple topic numbers fromK = 5−100. ForK = 5−30,

each single topic number was considered, and for K = 30−100, every tenth topic number

was considered. Each model was run for 500 iterations. The priors were set to α = 1/K

and β = 200/P.
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6.1.3. ATM

The Author Topic Model (ATM) extends the basic LDA model of Blei, Ng, and Jordan

(2003) by including authorship information. This is achieved by pooling all orders of

a customer into one document. The word author in the ATM model thus refers to a

customer in the context of recommender systems. The output of the ATM differs from

the LDA in the topic distribution θ, which is obtained for each customer and not only for

each individual order. This allows for more customized recommendations. The generative

process of the ATM is defined as:

1. For each topic k :

a) Draw a distribution over products φk ∼ Dirichlet(β).

2. For each customer c:

a) Draw a vector of topic proportions θc ∼ Dirichlet(α).

b) For each product:

i. Draw a topic assignment zc,n ∼Multinomial(θc), zc,n ∈ {1, ...,K}.

ii. Draw a product xc,n ∼Multinomial(φzc,n), xc,n ∈ {1, ..., P}.

Figure 6 shows the DAG of ATM. For the estimation of the model, collapsed Gibbs

sampling is applied as outlined in Chapter 4.5.

Figure 6: Directed Acyclic Graph of ATM
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6.1.4. Sticky ATM

The Sticky ATM additionally accounts for stickiness at the item level (Büschken and

Allenby 2016, pp. 957-958). This means that the same topic assignment can carry over

for a certain sequence of items ordered by a customer. In other words, customers often

stay with one topic over a number of successively purchased items before they change the

topic from which they buy. Consider the following example: a customer wants to groom

his dog and puts a sponge, shampoo, and a brush in the online shopping basket of an

online retailer. One week later, he realizes he is almost out of dog food. He orders a bag

of dry food, three cans of wet foot, a mix of dog treats, and two chewing bones. This

customer clearly buys by topic. The first three items refer to the topic dog’s grooming.

The topic switches to dog food for the remaining items.

The Sticky ATM model accounts perfectly for this buying behavior. Stickiness is mod-

eled by drawing a stickiness indicator ζn for each item in a customer’s purchase history.

If ζ = 1, an item exhibits stickiness. That is, the topic of the previous item carries over

to the next item. If ζ = 0, no stickiness is observed. A new topic assignment is then

drawn for this item with the customer’s topic distribution θc. This indicates the shift of

buying from an old to a new topic.

Figure 7 illustrates this process. The upper panel describes the general case, where ζ is

unknown. In the middle panel, a sequence of sticky and non-sticky topic assignments are

displayed. The lower panel shows a sequence of only non-sticky topic assignments (ζs are

always 0). In this case, the Sticky ATM is equivalent to the ATM. ψ is the probability

of stickiness for each topic k, which is drawn with prior from a beta distribution. The

entire generative process for the Sticky ATM model is defined as follows (Büschken and

Allenby 2016, p. 971):
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1. Draw ψk from Beta( ) ∀ k iid.

2. Draw φk from Dirichlet(β) ∀ k iid.

3. Draw θc from Dirichlet(α) ∀ c iid.

4. For the first product p1 of customer c:

a) Draw z1 from Multinomial(θc).

b) Draw x1 from Multinomial(φk=z1
).

c) Draw ζ2 from Binomial(ψk=z1
).

5. For products xn, n ∈ {2, ..., Nc}, of customer c:

a) If ζn = 0: draw zn from Multinomial(θc); if ζn = 1: set zn = zn−1.

b) Draw xn from Multinomial(φk=zn).

c) Draw ζn+1 from Binomial(ψk=zn).

6. Repeat steps 4 and 5 for all customers c (except for draw of ζNc).

Uncollapsed Gibbs sampling is used for posterior estimation. Detailed information on

the sampling scheme can be found in Büschken and Allenby (2016, pp. 971-974).
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Figure 7: Directed Acyclic Graph of Sticky ATM10

10Adapted from Büschken and Allenby (2016, p. 959).
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6.1.5. Recommendation Generation

In this dissertation, two different approaches for generating recommendations for each

customer were considered: First, a customer received recommendations based on the most

probable items of a topic. This was achieved by drawing a topic from a Multinomial distri-

bution with the customer’s topic distribution θc. The most probable items in this drawn

topic were then displayed to the customer. Note that with this approach, recommenda-

tions were limited to coming from one topic only. The entire procedure is described as

pseudocode in the following:

Algorithm 1
1: input: matrices PHI (P x K) and THETA (K x C)
2: output: customer-specific recommendation list
3:
4: for each customer c do
5:
6: get theta_c ← THETA[ , c]
7:
8: draw topic from multinomial:
9: k ← which.max(rmultinom(1, 1, theta_c))

10:
11: get phi_k ← PHI[ , k]
12:
13: order phi_k descending:
14: recomlist← order(phi_k, decreasing = true)
15:
16: print recomlist[1 : N ]
17:
18: end for

Figure 8: Pseudocode for Recommendation Generation Approach 1

Second, a customer received recommendations based on the probability pc,p that a customer

c would purchase product p:

pc,p =

KX
k=1

φk,p · θc,k (12)

The formula relates to the importance of an item p in topic k (φk,p) multiplied by the

importance of a topic k for customer c (θc,k). The topics are “integrated out” through the
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summation across k = 1, . . . ,K. As a consequence, recommendations are not restricted

to one topic anymore but might include high probability items from different topics a

customer is interested in. This procedure was also selected by Jacobs, Donkers, and

Fok (2016, p. 392), Hruschka (2014, p. 266) and Schröder et al. (2017, p. 41). The

pseudocode is listed below:

Algorithm 2
1: input: matrices PHI (P x K) and THETA (K x C)
2: output: customer-specific recommendation list
3:
4: begin
5:
6: PROB ← PHI · THETA
7:
8: end matrix multiplication
9:

10: for each customer c do
11:
12: get p_c ← PROB[ , c]
13:
14: order p_c descending:
15: recomlist← order(p_c, decreasing = true)
16:
17: print recomlist[1 : N ]
18:
19: end for

Figure 9: Pseudocode for Recommendation Generation Approach 2

6.2. Benchmark Models

The topic models were compared to three benchmark models, Unigram, Bigram, and

CF. Unlike topic models, these methods do not identify the latent topics a customer

is interested in but calculate item probabilities based on item counts, item sequences

and item combinations. Unigram comprises the simplest method and is equivalent to

marginal probabilities. Bigram and CF make use of conditional probabilities. Whereas

Bigram conditions on the last item in a customer’s purchase history, CF conditions on

similar customers.
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6.2.1. Unigram

Unigram is the most straightforward method for making recommendations. Items are

aggregated across all customers; subsequently, the marginal probability is calculated for

each unique item as follows:

p(xi) =
c(xi)

X
(13)

where c(xi) stands for the counts of item xi across all customers and X equals the total

number of items in the data. Recommendations are then based on the top N most

probable items. With the Unigram model, each customer receives the same items as

recommendations since information at the customer level is ignored.

6.2.2. Bigram

Bigram models first-order dependencies of items, i.e., it takes a look at which products

are purchased one after the other. For the technical implementation of this method,

the purchase histories of all customers are divided into their sequences. For instance, a

customer’s history with items [5, 4, 10] would be divided into the sequences (5, 4) and

(4, 10). It is essential to maintain the order in which items are put into the shopping

basket.

To make product recommendations, the conditional probabilities are required of the

most likely (e.g., top 10) items given a customer’s last observed item. These conditional

probabilities are calculated as follows:

p(xi|xi−1) =
c(xi−1, xi)P
x
c(xi−1, x)

(14)

where c(xi−1, xi) counts the number of sequences of item xi−1 preceding item xi and is

normalized by the sum of all bigrams that share the same first item xi−1.
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Recommendations in the Bigram model are not the same for all customers but depend

on a customer’s last observed choice. Thus, customers with the same last observed item

(i.e., same conditioning argument) receive the same recommendations. Even though

information at the customer level is considered now, this method still lacks individual

item probabilities for each customer as in the topic models.

6.2.3. Collaborative Filtering

The idea of Collaborative Filtering (CF) is to compare a focal customer with similar

customers, i.e., customers who displayed similar purchasing behavior, and learn which

other products they purchased. Various types of implementation are possible. In this

dissertation, the CF technique proposed by Jacobs, Donkers, and Fok (2016) is used. In

their application, a focal customer is matched to other customers who purchased the same

products and at least one additional product. All items from those matching customers

are aggregated, and then the most likely products are recommended to the focal customer.

Matching on the complete purchase history, however, is not always possible. Customers

are therefore matched on parts of their purchase history, namely on unique items, or

singlets (CF-1) and unique sorted pairs, or doublets (CF-2). For recommending products,

one product more than the matching product(s) is always required. Thus, when products

should be recommended by matching on singlets, counts of doublets are needed and by

matching on doublets, counts of triplets are needed. A customer’s history is therefore

replaced by its singlets, doublets, and triplets. For instance, the purchase history [3, 3,

16, 42] has the following:

• Singlets (3), (16), and (42)

• Doublets (3, 3), (3, 16), (3, 42), and (16, 42)

• Triplets (3, 3, 16), (3, 3, 42), and (3, 16, 42).
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After disassembling the purchase histories into their components, individual-specific

product scores are computed for each customer. The products are ranked according to

these scores and the top N products are displayed to the customer. Formally, the score

of product j for customer c by matching on product combination of size k is (Jacobs,

Donkers, and Fok 2016, p. 401):

skcj =
X
h∈Hkc

c(h, j)PJ

p=1
c(h, p)

. (15)

The number of customers who bought product combination h and j, c(h,j), is normalized

by the total sum of product combinations comprising h and any other product p = 1, ..., J ,PJ

p=1
c(h, p). The parameter h either stands for a singlet (when k = 1 ) or a doublet (when

k = 2 ). The above fraction is calculated for every product combination h of a customer

c, and all single values are then summed up to the final score. Hk
c collects all product

combinations h of size k of customer c. If a product combination h is never bought with

an additional product across all customers, i.e.,
PJ

p=1
c(h, p) = 0, it is regressed to a lower

value of k. For cold-start customers, i.e., customers with no purchases yet, matching is

not possible and the most frequent singlets are used for recommendation.

6.3. Performance Measure

To evaluate the performance of the single models, recommender sets of different sizes were

built for each customer. These recommender sets contained the highest ranked items for

a customer. When only one product recommendation should be made, a recommender

set of size 1 was suitable. Online shops, though, often display multiple products to a cus-

tomer. Here, recommender sets of size 3, 5, or 10 would be more realistic. Recommender

sets were compared with the test data. If a customer’s holdout item was present in the

recommender set, this was considered a hit. The hit rate for a model M was calculated
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as follows:

hit rateM =
number of hitsM

number of holdout items
(16)

where the number of hits generated by modelM is divided by the total number of holdout

items. In a model comparison, the model that achieves the highest hit rate is considered

the best performing model. In other words, this model shows the highest number of hits

relative to the total number of hits possible.

Hit rates were calculated for all holdout customers and again separately for the different

subgroups stated in Chapter 5.3. When predicting items for the subgroup Old Customer,

New SKU, only those products were included in the recommender set that were not

bought by the corresponding customer in the past. This was achieved by eliminating the

customer’s previously bought items from her/his individual product ranking before the

recommender sets were built.
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7. Results

The results section is subdivided into two parts. First, some descriptive results of the

topic models (7.1) are presented. This includes a look at the convergence, optimal topic

number, and revealed item and topic distribution. Second, the different recommender

methods are compared to each other (7.2) by assessing their hit rates. Results are

displayed for all holdout customers and the different subgroups.

7.1. Topic Models

7.1.1. Convergence and Optimal Topic Number

It is essential to ensure that the topic models converged. Otherwise, the estimates would

not be useful. Convergence for ATM and Sticky ATM was usually observed within the

first 200 iterations. Every topic number was run for 500 iterations. The initial 400 iter-

ations were discarded and the remaining 100 iterations were used for analysis.

Another central step was to determine the optimal topic number for each topic model;

this is called model selection. In this dissertation, model selection was based on the

log-likelihood of observing the test data (predictive fit), as described in Chapter 4.6 in

Equation (11). The predictive fit was calculated for each topic number in the range of

K = 5 − 100. The optimal topic number was then the one with the highest predictive

fit. Note that calculating the log-likelihood for the training data (in-sample fit) was not

appropriate here, since the objective of this dissertation is to predict the next item a

customer would buy.

Model selection was conducted for each of the six data preparation variants separately.

Figure 10 shows an example of the procedure for data preparation 11USC. For both

topic models, it can be observed that the log-likelihood sharply increased for small topic
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numbers and then leveled off until a maximum was reached. After the maximum, the log-

likelihood slowly decreased again. The results imply that choosing a very small or very

high topic number caused the predictive performance to deteriorate. The log-likelihood

of both topic models was almost equivalent. The Sticky ATM reached its maximum at

K = 25 and the ATM at K = 40. These topic numbers were then used to generate rec-

ommendations and compute the hit rates. For the remaining data preparation variants,

comparable model selection results were achieved.
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Figure 10: Predictive Fit of Topic Models for Data Preparation 11USC

7.1.2. Item and Topic Distribution

Topic models yield an individual item distribution for each topic (φk); that is, each item

appears in a topic with a certain probability, and all those probabilities add up to 1. The

high-probability items in the identified topics form meaningful topics. Table 7 displays

eight example topics generated with the ATM model, where each topic shows the 10

most likely items for this topic. The topics were labeled by a veterinarian who is familiar

with the individual products and for which purposes they are purchased. Items in italics

were used to define the topic. The labels indicate that there are general topics such as

Old Cat, Old Dog, or Medicine Cabinet. The topic models, however, also identified a

collection of items that address specific pet problems, e.g., Hot Spots, Bladder Stone,
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Bloated Stomach, Joint Complaints, and Diarrhea.

Topic models can also determine the most likely topics a customer is interested in by

using the customer’s topic distribution (θc); that is, a customer is represented in each

topic with a certain probability, and all those probabilities add up to 1. Figure 11

shows four example customers and their topic distributions generated with the ATM

model. The different examples indicate that customer preferences can be very different.

In the upper right panel, the customer is likely to buy from multiple topics, whereas

in the upper left panel, the customer is clearly interested in only a few topics. Some

customers even have a strong preference for only one topic, as indicated in the lower

left panel. The customer in the lower right panel appears in almost all topics with low

probabilities and does not show a strong preference for one specific topic. The topic

models were not only able to identify such heterogeneity between customers but also to

reveal homogeneity between customers, which is expressed by similar topic distributions

of customers. Such deep insights about customers’ preferences help to make suitable and

personalized recommendations.
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Figure 11: Example Topic Distributions for Some Selected Customers
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7.2. Model Comparison

In this section, the recommender models are compared to one another by assessing their

hit rates. For the topic models, two different algorithms for generating recommendations

were tested (see Chapter 6.1.5). The approach of making recommendations based on

probability pc,p always showed higher hit rates. Therefore, only those results are exhibited

here. In the following sections, hit rates are reported for all holdout customers (7.2.1)

and the various subgroups (7.2.2), as defined in Chapter 5.3. The exact hit rate values,

according to which the figures in this chapter were created, are displayed in Appendix

B. 2.

7.2.1. Hit Rates for All Holdout Customers

Figure 12 presents the hit rates for all holdout customers. Each of the four panels refers

to different recommender set sizes, as indicated in the main header of each panel. The

x-axis specifies the different data preparation variants and the y-axis the hit rates.11 A

look at the performance of the different models shows that CF and Bigram mostly out-

performed the topic models except for data preparation 11USC. For this data preparation

variant topic models were clearly better; their superiority became even more visible with

a higher recommender set size. Hit rates of ATM and Sticky ATM were almost equiva-

lent; neither model was clearly dominant. CF and Bigram also showed almost identical

values. The Unigram model always yielded the lowest performance.

It was difficult to compare hit rates among the data variants because the test data was

composed of different subgroups in different proportions. For example, the test data for

evaluating the data preparation variants ALL, USO, and USC comprised many instances

of Cold Customer, whereas the test data for evaluating the data preparation variant

11The hit rates were calculated as in Equation (16) in Chapter 6.3.

66



11USC solely contained Old Customer, New SKU.12 For this reason, the next section

shows hit rates only for the individual subgroups.
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Figure 12: Hit Rates for All Holdout Customers

12Table 11, 14, 17, 20, 23 and 26 in Appendix B. 1 show the composition of the test data regarding the
different subgroups for each data preparation variant.
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7.2.2. Hit Rates for Subgroups

The predictive performance was studied in greater detail by separately considering dif-

ferent subgroups. Figure 13 and 14 show hit rates for the subgroup Old Customer, Old

SKU and Old Customer, New SKU. Hit rates for the subgroup Cold Customer are not

displayed because no considerable differences in the models’ performance were found.

The reason for this is that all models had to regress to marginal counts of products be-

cause no information was available for those customers. A comparison of Figure 13 and

14 reveals that hit rates differed strongly between the two subgroups. Hit rates for Old

Customer, Old SKU were much higher than hit rates for Old Customer, New SKU. This

implies that the models can more easily predict non-novel items than novel items.

With respect to predicting non-novel items, Figure 13 shows that CF and Bigram were

extremely good, reaching hit rates of up to 93%. The topic models were not able to

yield such high performances. In particular, for data preparation ALL and 11ALL, the

performance difference between CF and Bigram versus topic models was the greatest.

The Unigram model displayed the lowest hit rates. With data preparations USC and

11USC, no Old Customer, Old SKU was available in the data; hence, no hit rates can

be shown.

With regard to the prediction of novel items, Figure 14 shows that topic models performed

best with data preparation 11USC. Their performance superiority increased with a larger

recommender set size. The results further reveal that topic models were much more

sensitive to data preparation than their benchmark models. Whereas CF and Bigram

display nearly vertical lines, meaning that hit rates did not change much between the

data preparation variants, major variations were observed for the topic models. For

them, hit rates increased most with the elimination of repeat items. The Unigram model

showed fluctuations similar to those of the topic models, but its hit rates were by far the
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lowest of all models.
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Figure 13: Hit Rates for the Subgroup Old Customer, Old SKU
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Figure 14: Hit Rates for the Subgroup Old Customer, New SKU
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8. Discussion

The model comparison results showed that for recommending new items to customers,

topic models performed better than the benchmark models with data preparation 11USC.

This section examines this finding more closely and explains why this is the case. The

discussion first looks at which data properties (8.1) are changed by the different data

preparation variants. Subsequently, differences in the model results phi and theta (8.2)

are shown for the different data preparation variants. Lastly, it is demonstrated how

the data preparation changes the ranking (8.3) of items within the topics. This has

considerable ramifications on which items are finally recommended to customers.

8.1. Differences in Data Properties

All six data preparation variants led to certain modifications in the data. The concrete

data properties that were changed are listed and explained below:

1. General size of the data set: Through the elimination of single-item customers and/

or repeat items, the general size of the original data set was changed. As a result,

some data scenarios had more customers than others. In addition, the number of

items (total and unique) differed among the data scenarios. Appendix B. 1 shows

descriptive statistics for each of the data preparation variants.

2. Item distribution overall: A less obvious property that was altered by the different

data preparation variants is the concentration of the “item distribution overall.”

This distribution displays how often each unique item is purchased across all cus-

tomers. If some items are purchased much more often than others, then the con-

centration would be very high. Otherwise, if the item purchases are more equally

distributed across the entire product assortment, the concentration would be low.

The concentration of this distribution is known to have an influence on which items

are recommended by an algorithm. For instance, data sets with a high concentra-
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tion lead to more recommendations of popular items, whereas data sets with a

low concentration include more items from the long tail in the recommendations.

Already Herlocker et al. (2004) found that the concentration of this distribution is

relevant in a recommender context. Figure 15, in which the 200 most frequent items

are plotted for each of the different data scenarios, shows that the concentration

differed considerably. The frequency distribution became less concentrated with a

more selective data preparation. For example, for data preparation ALL, frequen-

cies of up to 8,000 were observed for the most popular items. These frequencies,

however, were much lower for data preparation 11USC, where the maximum count

was around 1,000.

3. Item distribution per customer: This distribution displays how often each unique

item is purchased by one customer. Item purchases are not aggregated across

customers (as in “item distribution overall”), but it is remained at the customer

level. The distribution was least concentrated for data preparations USC and

11USC because all repeat items at the customer level were eliminated from the

data. As a result, item counts could only take values of 1.
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Figure 15: Concentration of Item Distribution Overall
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8.2. Differences in Phi and Theta

To generate recommendations with topic models, the phis and thetas are needed. The

phis represent the item probabilities per topic and provide information on how impor-

tant an item is for a topic. The thetas represent the topic probabilities per customer and

provide information on how much a customer is interested in a topic. Figures 16 and 17

show both variables as cumulative probabilities for each of the data preparation variants.

From the phi plots in Figure 16, it can be observed that the distributions differed greatly

between the single data preparation variants. The curves are more concentrated when

repeat items remained in the data, and they are less concentrated when more repeat

items were removed from the data. For example, for data preparation ALL, it took far

fewer SKUs to obtain a cumulative probability of 80% (less than 100 SKUs) than for data

preparation USC (up to around 200 SKUs). The elimination of single-item customers

further reduced the concentration. For data preparation 11USC, more than 500 SKUs

were required to reach the same cumulative probability.

Also, differences in theta are apparent among the data preparation variants. This is

illustrated in Figure 17. With data preparations ALL, USO, and USC, some customers

with almost equal topic probabilities are observed. Those customers represent Cold

Customer. They had not yet conducted any item purchases, i.e., for them, no information

was available on their topics of interest. Their topic probabilities were therefore spread

almost equally across all topics by the model. The lines on the diagonal represent their

thetas. Another striking feature of the plots is that the theta curves are less concentrated

when repeat items were deleted. For example, data preparation USC and 11USC had

more customers with lower probabilities (around 0.2) and fewer customers with high

probabilities (above 0.8) for the first few topics. Those lower probabilities imply that

customers were generally interested in more different topics.
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Figure 16: Cumulative Probabilities for Phi
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Figure 17: Cumulative Probabilities for Theta
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8.3. Differences in Ranking

Central for creating the final recommendation list that is displayed to customers is the

ranking of items within the topics. Items that appear higher in the topics are more

likely to be recommended and items that appear lower in the topics are less likely to

be recommended. Since the goal of this dissertation is to recommend new products to

customers, novel products should therefore also appear in the upper ranks of the topics,

and popular items, commonly known as less novel, should appear in the lower ranks of

the topics. The following table shows that such a ranking can be achieved with data

preparation 11USC.

Rank S1 S2 S3 S4 S5 S6 S7 S8
ALL 1 1 1 1 1 1 1 1
11USC 55 105 39 653 58 84 86 7

Rank S9 S10 S11 S12 S13 S14 S15
ALL 2 1 1 1 1 1 1
11USC 55 1 7 3 90 68 37

Table 8: Highest Ranking across Topics for the 15 Most Frequently Deleted Items
between Data Preparation ALL and 11USC

For this table, the 15 most frequent items (S1-S15) deleted between data preparation ALL

and 11USC were determined and their highest rankings across topics were identified. For

data preparation ALL, all 15 items except S9 appeared in first place on one of the topics.

This implies that topics generated with data preparation ALL are clearly dominated by

frequently purchased items. For data preparation 11USC, the same items moved down

in the ranking, which decreased their chance of appearing in the recommender set. Only

S10 kept the same ranking, while S8, S11, and S12 remained at comparable rankings.

As popular items go down in the ranking, less popular items from the long tail must

move up. This may finally lead to recommendations that are perceived as more useful

by customers.
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Part IV.

Conclusion
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In this dissertation, several recommender models were compared to each other by as-

sessing their predictive performance for online purchase data. Influenced by the topic

modeling literature, the topic models ATM and Sticky ATM were considered for analysis

and contrasted against the benchmark models Unigram, Bigram, and CF. Moreover, this

work set its focus on generating new product recommendations. For this purpose, it

moved beyond the evaluation of recommender models based on accuracy alone. A new

pre-processing approach was presented in which the data is pre-processed prior to model

running in such a way to include more novel items from the long tail in the recommenda-

tions. This thesis closes with answering the research questions raised in Chapter 2 and

giving a brief outlook for future research.

1. Are topic models effective in recommending novel items to customers? How do they

perform when predicting non-novel items? Are there recommender models that are

better suited for the one task or the other?

All recommender models were evaluated based on their ability to predict novel

and non-novel items to customers. With respect to the prediction of novel items,

topic models outperformed all other models with data preparation variant 11USC.

Regarding the prediction of non-novel items, CF and Bigram always performed

better than topic models, especially with the data preparation variants ALL and

11ALL. The implication is that different models should be used, depending on the

company’s goals. If the objective is to remind a customer of certain products to

repurchase, CF and Bigram work well. To recommend new products that customers

may not have been aware of, topic models are more suitable.

2. How do the two topic models perform? Can the Sticky ATM model outperform the

ATM model?

It was expected that the Sticky ATM would perform better than the ATM model

because it additionally considers stickiness at the item level. The results, however,
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showed almost identical hit rates for both topic models. A possible explanation

for this could be the composition of the data. The data was made up of many

customers who only bought very few items. In the case of few item purchases,

stickiness can hardly come to bear. For the model to show its true strength, longer

buying histories are likely to be necessary. This would have to be tested with an

appropriate data set.

3. Which data preparation is most suitable for generating new product recommenda-

tions? And why? Are there differences between the recommender models?

The recommender models reacted with different sensitivities to the different data

preparation variants. Topic models were most sensitive to pre-processing and dis-

played the largest differences in hit rates among the data preparation variants.

They performed best when repeat items and single-item customers were eliminated

from the data (data preparation variant 11USC). This is because neither data ele-

ment is very helpful for topic models in generating new product recommendations.

Repeat items drive up the counts of an item disproportionally to items ordered in

smaller quantities. The implication is that repeat items dominate the revealed top-

ics and end up in the recommendation lists. Less popular items, however, which

often indicate new and emerging customer preferences, do not make it into the

recommender set. The problem with single-item customers is that they do not pro-

vide information about item interaction and thus which other new items should be

recommended. The discussion section detailed, why this data preparation variant

worked so well for topic models. The hit rates of CF were mainly unaffected due to

the different pre-processing variants. The performance of the Bigram model slightly

deteriorated when repeat items were deleted from the data. As input, the model

requires items to remain in the sequence in which they were ordered. Since this

sequence is partly no longer maintained after repeat items were removed, the per-

formance may have decreased. The Unigram model showed a slight improvement
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in hit rates when repeat items were eliminated.

Based on the results of this work, five avenues for future research are apparent. First, for

further validation, topic models should be applied to additional data sets. The data set

used for this dissertation comprises very short purchase histories and many repeat items.

However, these characteristics are not representative of the data of all online shops. There

may be online shops with much longer buying histories (e.g., online food retailers), lower

purchase frequencies and quantities (e.g., high-end and luxury goods), or even much

smaller or larger product assortments (e.g., very specialized shops vs. Amazon). Instead

of using real data sets, a simulation could also be carried out in which data sets of different

structures are simulated. Appendix C shows an example of how this can be done. Second,

future research efforts could extend topic models by incorporating additional purchase

information, such as price, purchase quantity, expenditure, or product category. For

example, Iwata and Sawada (2013) developed a topic model that clusters related items

with their prices. Such an approach could help to generate product recommendations that

align with customers’ willingness to pay. Third, the use of a dynamic topic model (Blei

and Lafferty 2006) for purchase data would be another interesting path of research. The

ATM and Sticky ATM models assume that the topics are stable over time. However, this

assumption is not always borne out by reality. New trends, technologies, and product

introductions are continually changing customer preferences and buying behavior. A

dynamic topic model would account for this. Fourth, further research could also focus

on the development of a hybrid recommender system that uses topic models together

with other models. For example, the model comparison could be extended by a Bigram

Topic Model (Wallach 2006) or Collaborative Topic Model (Wang and Blei 2011; Wilson,

Chaudhury, and Lall 2014). Lastly, the novelty of product recommendations could be

improved by combining various beyond accuracy measures. For instance, the new pre-

processing approach could be used together with some of the post-processing approaches

discussed in the literature.
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To conclude, topic models are a promising approach for generating new product rec-

ommendations in online shops. The present analysis has shown the suitability of those

models based on offline evaluation. To put topic models into practice, they should be

tested against the benchmark models in some live user experiments. This would finally

allow measurement of customers’ actual reaction to recommendations and whether those

recommendations are really perceived as more novel.
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A. 1. Generative Process of LDA in R

This appendix demonstrates how the generative process of LDA can be implemented in R

and what the resulting data looks like. A. 1.1 shows the example data that is generated,

and A. 1.2 shows the corresponding R code.

A. 1.1. Example

Imagine a text corpus has D = 5 documents with each document comprising Nd = 4

words, K = 3 topics, and a vocabulary of V = 6 unique words.13 For the hyper-

parameters, symmetric priors are selected: α = 0.5 and β = 1. Running the generative

process with those parameters yields the following data:

Figure 18: Data Matrix

Each row in the matrix of Figure 18 corresponds to one word in the text corpus. The

first column contains the words, the second column contains the topic assignment for

13Note that for demonstration purposes, small numbers were selected so that the results can be fully
displayed here. In reality, the number of documents and words as well as the size of the vocabulary
are typically much larger. For simplicity’s sake, the same fixed number of words was selected for
each document. To get a varying number of words for each document, the Poisson distribution, for
instance, could be used (compare comments in R code).
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each word, and the third column contains the document each word belongs to.

The generative process also provides all per-topic word distributions (φs) and per-

document topic distributions (θs), which are summarized in the following matrices:

Figure 19: Phi and Theta Matrix

It should be noted that for the φs (upper matrix of Figure 19), the word probabilities in

each topic always need to sum to one (
P
φk = 1), e.g., for topic 2:

X
φk=2 = 0.19 + 0.01 + 0.17 + 0.49 + 0.04 + 0.10 = 1

The same is true for the θs (lower matrix of Figure 19). Here the topic shares within a

document must sum to one (
P
θd = 1), e.g., for document 1:

X
θd=1 = 0.24 + 0.10 + 0.66 = 1

Based on the generated data, the count matrices NKV and NDK and the decremented

count matricesNKV
−i andNDK

−i , reduced by the current word entry i, can be created. Those

matrices are necessary to reversing the generative process and estimating the LDA model.

The count matrices are displayed in Figure 20 and Figure 21. For the decremented count
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matrices, it is assumed that the fifth word in the text corpus is excluded. A look at the

data matrix gives word = 2, topic = 3, and document = 2 for the fifth word. Comparing

the decremented count matrices with the regular count matrices shows that only one

entry (in blue) changes by “-1” and all other cells remain the same.

Figure 20: Count Matrices NKV and NDK

Figure 21: Decremented Count Matrices NKV
−i and NDK

−i for i=5
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A. 1.2. R Code

1 ####################################################################

2 ## LATENT DIRICHLET ALLOCATION (LDA):

3 ## Generative Process

4 ####################################################################

5 ####################################################################

6 ## This code comes from the PhD seminar "Topic Models" held

7 ## by Prof. Joachim Bueschken in the Summer Semester 2016

8 ## and is adapted to the purposes of this dissertation.

9 ####################################################################

10

11 library(bayesm)

12 library(data.table)

13 rm(list=ls())

14 set.seed (91)

15

16 ##---------------------------------------------------##

17 ## Set Parameters:

18 K = 3 # number of topics

19 V = 6 # number of unique words (vocabulary)

20 D = 5 # number of documents

21 N_d = 4 # number of words per document

22

23 alpha = 0.5 # hyper -parameter for theta

24 beta = 1 # hyper -parameter for phi

25 ##---------------------------------------------------##

26

27 ####################################################################

28 ## 1. DRAW OF PHI (FOR EACH TOPIC)

29 ####################################################################

30 Phi = matrix(NA,V,K)

31 for(k in 1:K){Phi[,k] = rdirichlet(rep(beta ,V))}

32 ## --> each column corresponds to phi_k

33

34 ####################################################################

35 ## 2.A. DRAW OF THETA (FOR EACH DOCUMENT)

36 ####################################################################

37 Theta = matrix(NA,K,D)
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38 for(d in 1:D){Theta[,d] = rdirichlet(rep(alpha ,K))}

39 ## --> each column corresponds to theta_d

40

41 ####################################################################

42 ## 2.B.i DRAW OF Z (FOR EACH WORD IN DOCUMENT D)

43 ## 2.B.ii DRAW OF W (FOR EACH WORD IN DOCUMENT D)

44 ####################################################################

45 Data = NULL

46 data = NULL

47

48 for(d in 1:D){

49

50 ##--------------------------------------------------------##

51 ## Determine number of words for document d:

52 ##--------------------------------------------------------##

53 ## Fixed number of words:

54 N_d = 4

55

56 ## or:

57 ## Draw from Poisson distribution:

58 #lambda = 10

59 #N_d = rpois(1,lambda)

60

61 ##--------------------------------------------------------##

62 ## Draw topic assignment z for each word in document d

63 ##--------------------------------------------------------##

64 z = rep(NA ,N_d)

65 for(n in 1:N_d){z[n] = which.max(rmultinom (1,1,Theta[,d]))}

66

67 ##--------------------------------------------------------##

68 ## Draw word w for each word in document d

69 ##--------------------------------------------------------##

70 w = rep(NA ,N_d)

71 for(n in 1:N_d){w[n] = which.max(rmultinom (1,1,Phi[,z[n]]))}

72

73 ##--------------------------------------------------------##

74 ## Store data for each document

75 ##--------------------------------------------------------##

76 Data[[d]] = list(d = d, N_d = N_d, z = z, w = w)
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77

78 ## Get data of current document:

79 data.new = cbind(Data[[d]]$w, Data[[d]]$z, Data[[d]]$d)

80

81 ## Stack data across all documents

82 data = rbind(data , data.new)

83 ## --> matrix: where each row corresponds to one word

84

85 }

86

87 ####################################################################

88 ## ADDITIONAL ANALYSES

89 ####################################################################

90 ##--------------------------------------------------------##

91 ## Create Data Matrix (Figure 18)

92 ##--------------------------------------------------------##

93 colnames(data) <- c("w","z","d")

94 data

95 w <- data[,"w"]

96 z <- data[,"z"]

97 d <- data[,"d"]

98

99 ##--------------------------------------------------------##

100 ## Create Phi and Theta Matrix (Figure 19)

101 ##--------------------------------------------------------##

102 round(t(Phi) ,2)

103 round(t(Theta) ,2)

104

105 ##--------------------------------------------------------##

106 ## Create Count Matrices (Figure 20)

107 ##--------------------------------------------------------##

108 ## N_KV COUNT MATRIX: containing all n_kv

109 N_kv = matrix(0,K,V)

110 rows = as.numeric(unlist(labels(table(z)))) ## (account for all "0"-rows)

111 cols = as.numeric(unlist(labels(table(w)))) ## (account for all "0"-cols)

112 N_kv[rows ,cols] = table(data.table(cbind(z,w)))

113

114 ### N_DK COUNT MATRIX: containing all n_dk

115 N_dk = matrix(0,D,K)
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116 rows = as.numeric(unlist(labels(table(d)))) ## (account for all "0"-rows)

117 cols = as.numeric(unlist(labels(table(z)))) ## (account for all "0"- columns)

118 N_dk[rows ,cols] = table(data.table(cbind(d,z)))

119

120 ##--------------------------------------------------------##

121 ## Create Decremented Count Matrices (-i) (Figure 21)

122 ##--------------------------------------------------------##

123 ## Example: Let ’s assume , we exclude the 5th word from our data

124 ## --> see: data[5,]

125 data[5,]

126

127 N_kv_reduced <- N_kv

128 N_dk_reduced <- N_dk

129

130 N_kv_reduced[data[5,"z"],data[5,"w"]] = N_kv[data[5,"z"],data[5,"w"]]-1

131 N_dk_reduced[data[5,"d"],data[5,"z"]] = N_dk[data[5,"d"],data[5,"z"]]-1
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A. 2. Derivation of Collapsed Gibbs Sampler

The derivation of the collapsed Gibbs sampler is based on the technical notes of Heinrich

(2008), Büschken (2013), and Darling (2011). In this sampler, the parameters φ and θ

are integrated out. Through this procedure, the posterior distribution in Equation (8)

in Chapter 4.4 reduces to:

p(z|w,α, β) =
p(z, w|α, β)

p(w|α, β)
(17)

This new posterior distribution is also intractable to compute because it has the same

denominator p(w|α, β), which involves the sum over an exponentially large number of

combinations. Thus, approximation techniques need to come into play. Instead of go-

ing through the full sampling scheme for every latent variable (φ, θ, z) of the LDA,

the collapsed Gibbs sampler simply requires the sampling of z because this is the sole

unknown parameter left when collapsing φ and θ. The only full conditional is therefore

p(zi|z−i, w, α, β), which makes the sampling scheme very easy. The probabilities φ and θ

are calculated after Gibbs sampling with a Dirichlet update using the final count matrices

NKV and NDK (and hyper-parameters α and β).

The derivation of the full conditional p(zi|z−i, w, α, β) requires formulation of the joint

distribution with φ and θ integrated out. The following section therefore examines this

joint distribution first (A. 2.1). It continues with the derivation of the full conditional

(A. 2.2). Finally, it is explained how to obtain φ and θ (A. 2.3). An implementation of

the collapsed Gibbs sampler in R is further added to this appendix (A. 2.4).
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A. 2.1. Joint Distribution

The joint distribution and its factorization were specified in Chapter 4.3.3. When φ and

θ are integrated out, the joint distribution becomes:

p(w, z|α, β) =

Z Z
p(φ, θ, z, w|α, β) dθ dφ

=

Z Z
p(φ|β) · p(θ|α) · p(z|θ) · p(w|φ, z) dθ dφ

=

Z
p(w|φ, z) · p(φ|β) dφ

Z
p(z|θ) · p(θ|α) dθ

= p(w|z, β) · p(z|α) (18)

The joint distribution results in the product of the two terms p(w|z, β) and p(z|α). These

terms are now examined separately.

Consider the first term p(w|z, β). To obtain this distribution, φ needs to be integrated

out. This entails the following calculations:

p(w|z, β) =

Z
p(w|φ, z) · p(φ|β) dφ

=

Z KY
k=1

VY
v=1

φ
nk,v
k,v ·

KY
k=1

1

B(β)

VY
v=1

φβv−1
k,v dφk

=

Z KY
k=1

1

B(β)

VY
v=1

φ
nk,v+βv−1

k,v dφk

=

KY
k=1

1

B(β)

Z VY
v=1

φ
nk,v+βv−1

k,v dφk
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=

KY
k=1

B(nk + β)

B(β)
(19)

The expression p(w|φ, z) is a Multinomial distribution and p(φ|β) is a Dirichlet distribu-

tion. Both expressions were specified in Equation (7) and Equation (4) in Chapter 4.3.3

and are plugged in to the equation above. Subsequently, the exponents are summarized

and the constants are rearranged. According to Wang (2008, p. 5) and Büschken (2013,

p. 10), the integral of a Dirichlet distribution equals its normalizing constant. So in the

above calculation, it applies:

Z VY
v=1

φ
nk,v+βv−1

k,v dφk = B(nk + β) (20)

The integrating out of φ finally results in the quotient of two beta functions, where

nk = {nk,v}Vv=1 is the kth row of the NKV count matrix and β is the pseudo counts.

The second term p(z|α) can be derived analogously to the first term by integrating out θ

and plugging in the Multinomial distribution specified in Equation (6) for p(z|θ) and the

Dirichlet distribution specified in Equation (5) for p(θ|α) in Chapter 4.3.3. This yields:

p(z|α) =

Z
p(z|θ) · p(θ|α) dθ

=

Z DY
d=1

KY
k=1

θ
nd,k
d,k ·

DY
d=1

1

B(α)

KY
k=1

θ
αk−1

d,k dθd

=

Z DY
d=1

1

B(α)

KY
k=1

θ
nd,k+αk−1

d,k dθd

=

DY
d=1

1

B(α)

Z KY
k=1

θ
nd,k+αk−1

d,k dθd
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=

DY
d=1

B(nd + α)

B(α)
(21)

where nd = {nd,k}Kk=1 is the dth row of the NDK count matrix and α is the pseudo counts.

Finally, combining both terms in Equation (19) and Equation (21), results in the joint

distribution:

p(w, z|α, β) = p(w|z, β) · p(z|α)

=

KY
k=1

B(nk + β)

B(β)
·
DY
d=1

B(nd + α)

B(α)
(22)

A. 2.2. Full Conditional

Now that the joint distribution is defined, the full conditional p(zi|z−i, w, α, β) can be

derived. zi represents the topic assignment of word i and z−i refers to the topic assign-

ments of all other words (except for zi). The index “−i” thus always means that the ith

word is omitted from the calculation. Making use of the Bayes rule and w = {wi, w−i}

and z = {zi, z−i}, the full conditional becomes:

p(zi|z−i, w, α, β) =
p(w, zi, z−i|α, β)

p(w, z−i|α, β)
=

p(w, z|α, β)

p(w, z−i|α, β)

=
p(w, z|α, β)

p(wi, w−i, z−i|α, β)

=
p(w, z|α, β)

p(w−i, z−i|α, β)p(wi|α, β)

∝ p(w, z|α, β)

p(w−i, z−i|α, β)
(23)
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The result displays the quotient of two joint distributions, where the numerator p(w, z|α, β) =

p(w|z, β) · p(z|α) is defined in Equation (22) and the denominator p(w−i, z−i|α, β) =

p(w−i|z−i, β) · p(z−i|α) has a similar form but uses the reduced counts n(−i)
k and n(−i)

d .

Thus, p(w−i, z−i|α, β) =
KQ
k=1

B(n
(−i)
k

+β)

B(β)
·
DQ
d=1

B(n
(−i)
d

+α)

B(α)
. Plugging in those terms yields:

=
p(w|z, β) · p(z|α)

p(w−i|z−i, β) · p(z−i|α)

=

KY
k=1

B(nk + β)

B(β)
·
DY
d=1

B(nd + α)

B(α)

KY
k=1

B(n(−i)
k + β)

B(β)
·
DY
d=1

B(n(−i)
d + α)

B(α)

=

KY
k=1

B(nk + β)

B(n(−i)
k + β)

·
DY
d=1

B(nd + α)

B(n(−i)
d + α)

=
B(nk=1 + β) ·B(nk=2 + β) · ... ·B(nk=K + β)

B(n(−i)
k=1 + β) ·B(n(−i)

k=2 + β) · ... ·B(n(−i)
k=K + β)

· B(nd=1 + α) ·B(nd=2 + α) · ... ·B(nd=D + α)

B(n(−i)
d=1 + α) ·B(n(−i)

d=2 + α) · ... ·B(n(−i)
d=D + α)

=
B(nk + β)

B(n(−i)
k + β)

· B(nd + α)

B(n(−i)
d + α)

(24)

The beta function can be expressed in terms of a gamma function (compare Appendix A.

3). Hence, B(nk +β) =

VQ
v=1

Γ(nk,v+βv)

Γ(
VP
v=1

nk,v+βv)

and B(nd +α) =

KQ
k=1

Γ(nd,k+αk)

Γ(
KP
k=1

nd,k+αk)

. This works similarly

for B(n(−i)
k + β) =

VQ
v=1

Γ(n
(−i)
k,v

+βv)

Γ(
VP
v=1

n
(−i)
k,v

+βv)

and B(n(−i)
d + α) =

KQ
k=1

Γ(n
(−i)
d,k

+αk)

Γ(
KP
k=1

n
(−i)
d,k

+αk)

, where only the in-

dex “−i” needs to be added. Replacing the beta functions by gamma functions results in:
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=

VQ
v=1

Γ(nk,v + βv)

Γ(
VP
v=1

nk,v + βv)

VQ
v=1

Γ(n(−i)
k,v + βv)

Γ(
VP
v=1

n(−i)
k,v + βv)

·

KQ
k=1

Γ(nd,k + αk)

Γ(
KP
k=1

nd,k + αk)

KQ
k=1

Γ(n(−i)
d,k + αk)

Γ(
KP
k=1

n(−i)
d,k + αk)

=

VQ
v=1

Γ(nk,v + βv) · Γ(
VP
v=1

n(−i)
k,v + βv)

Γ(
VP
v=1

nk,v + βv) ·
VQ
v=1

Γ(n(−i)
k,v + βv)

·

KQ
k=1

Γ(nd,k + αk) · Γ(
KP
k=1

n(−i)
d,k + αk)

Γ(
KP
k=1

nd,k + αk) ·
KQ
k=1

Γ(n(−i)
d,k + αk)

=

VQ
v=1

Γ(nk,v + βv) · Γ(
VP
v=1

n(−i)
k,v + βv)

VQ
v=1

Γ(n(−i)
k,v + βv) · Γ(

VP
v=1

nk,v + βv)

·

KQ
k=1

Γ(nd,k + αk) · Γ(
KP
k=1

n(−i)
d,k + αk)

KQ
k=1

Γ(n(−i)
d,k + αk) · Γ(

KP
k=1

nd,k + αk)

=

Γ(nk,v=1 + βv) · Γ(nk,v=2 + βv) · ... · Γ(nk,v=V + βv) · Γ(
VP
v=1

n(−i)
k,v + βv)

Γ(n(−i)
k,v=1 + βv) · Γ(n(−i)

k,v=2 + βv) · ... · Γ(n(−i)
k,v=V + βv) · Γ(

VP
v=1

nk,v + βv)

·
Γ(nd,k=1 + αk) · Γ(nd,k=2 + αk) · ... · Γ(nd,k=K + αk) · Γ(

KP
k=1

n(−i)
d,k + αk)

Γ(n(−i)
d,k=1 + αk) · Γ(n(−i)

d,k=2 + αk) · ... · Γ(n(−i)
d,k=K + αk) · Γ(

KP
k=1

nd,k + αk)

=

Γ(nk,v + βv) · Γ(
VP
v=1

n(−i)
k,v + βv)

Γ(n(−i)
k,v + βv) · Γ(

VP
v=1

nk,v + βv)

·
Γ(nd,k + αk) · Γ(

KP
k=1

n(−i)
d,k + αk)

Γ(n(−i)
d,k + αk) · Γ(

KP
k=1

nd,k + αk)

(25)

To simplify the last expression above, the recursive property Γ(x + 1) = x Γ(x) of the
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gamma function is used. Furthermore, note that nk,v = n(−i)
k,v + 1 and nd,k = n(−i)

d,k + 1.

Exemplary for the first gamma term, it applies that Γ(nk,v + βv) = Γ(n(−i)
k,v + βv + 1) =

(n(−i)
k,v +βv)Γ(n(−i)

k,v +βv). Using the same logic for all other terms yields the final expression

of the full conditional:

=

Γ(n(−i)
k,v + βv + 1) · Γ(

VP
v=1

n(−i)
k,v + βv)

Γ(n(−i)
k,v + βv) · Γ(

VP
v=1

n(−i)
k,v + βv + 1)

·
Γ(n(−i)

d,k + αk + 1) · Γ(
KP
k=1

n(−i)
d,k + αk)

Γ(n(−i)
d,k + αk) · Γ(

KP
k=1

n(−i)
d,k + αk + 1)

=

(n(−i)
k,v + βv)�������

Γ(n(−i)
k,v + βv) ·

��������
Γ(

VP
v=1

n(−i)
k,v + βv)

�������
Γ(n(−i)

k,v + βv) · (
VP
v=1

n(−i)
k,v + βv)

��������
Γ(

VP
v=1

n(−i)
k,v + βv)

·
(n(−i)

d,k + αk)�������
Γ(n(−i)

d,k + αk) ·
��������
Γ(

KP
k=1

n(−i)
d,k + αk)

�������
Γ(n(−i)

d,k + αk) · (
KP
k=1

n(−i)
d,k + αk)

��������
Γ(

KP
k=1

n(−i)
d,k + αk)

=
n(−i)
k,v + βv

VP
v=1

n(−i)
k,v + βv

·
n(−i)
d,k + αk

KP
k=1

n(−i)
d,k + αk

=
n(−i)
k,v + βv

VP
v=1

(nk,v + βv)− 1

·
n(−i)
d,k + αk

KP
k=1

(nd,k + αk)− 1

(26)

The final result in Equation (26) shows that the full conditional p(zi|z−i, w, α, β) only

requires calculating the topic-word count matrix NKV and the document-topic count

matrix NDK . The counts nk,v and nd,k come directly from NKV and NDK and the counts

n(−i)
k,v and n(−i)

d,k come from the decremented count matrices NKV
−i and NDK

−i .

A. 2.3. Obtaining φ and θ

In a last step, the parameters φ and θ can be computed through a Dirichlet update. The

following derivations illustrate this:
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The parameter φ is calculated by p(φ|w, z, β) = p(w|φ,z)·p(φ|β)

p(w|z,β)
where the numerator is the

product of a Multinomial distribution and a Dirichlet distribution as specified in Equa-

tion (7) p(w|φ, z) =
QK

k=1

QV

v=1
φ
nk,v
k,v and Equation (4) p(φ|β) =

QK

k=1

1

B(β)

QV

v=1
φβv−1
k,v in

Chapter 4.3.3. The denominator was derived in Equation (19) p(w|z, β) =
QK

k=1

B(nk+β)

B(β)
.

Plugging in all these terms leads to:

p(φ|w, z, β) =
p(w|φ, z) · p(φ|β)

p(w|z, β)

=

KY
k=1

VY
v=1

φ
nk,v
k,v ·

KY
k=1

1

B(β)

VY
v=1

φβv−1
k,v

KY
k=1

B(nk + β)

B(β)

=

KY
k=1

VY
v=1

φ
nk,v
k,v ·

KY
k=1

1

B(β)

VY
v=1

φβv−1
k,v ·

KY
k=1

B(β)

B(nk + β)

=

KY
k=1

1

B(β)

B(β)

B(nk + β)
·
VY
v=1

φ
nk,v+βv−1

k,v

=

KY
k=1

1

B(nk + β)
·
VY
v=1

φ
nk,v+βv−1

k,v

= Dir(φk|nk + β) for each topic k = 1, ..., K (27)

The procedure is analogous for obtaining parameter θ. Therefore, p(θ|z, α) = p(z|θ)·p(θ|α)

p(z|α)

needs to be calculated. The numerator is again the product of a Multinomial likelihood

and a Dirichlet prior, as stated in Equation (6) p(z|θ) =
QD

d=1

QK

k=1
θ
nd,k
d,k and Equation

(5) p(θ|α) =
QD

d=1

1

B(α)

QK

k=1
θ
αk−1
d,k in Chapter 4.3.3. The denominator was derived in
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Equation (21) p(z|α) =
DQ
d=1

B(nd+α)

B(α)
. Using all these terms results in:

p(θ|z, α) =
p(z|θ) · p(θ|α)

p(z|α)

=

DY
d=1

KY
k=1

θ
nd,k
d,k ·

DY
d=1

1

B(α)

KY
k=1

θ
αk−1

d,k

DY
d=1

B(nd + α)

B(α)

=

DY
d=1

KY
k=1

θ
nd,k
d,k ·

DY
d=1

1

B(α)

KY
k=1

θ
αk−1

d,k ·
DY
d=1

B(α)

B(nd + α)

=

DY
d=1

1

B(α)

B(α)

B(nd + α)
·
KY
k=1

θ
nd,k+αk−1

d,k

=

DY
d=1

1

B(nd + α)
·
KY
k=1

θ
nd,k+αk−1

d,k

= Dir(θd|nd + α) for each document d = 1, ..., D (28)

As an alternative, the expectation (=mean) of the Dirichlet distribution E[xk] =
αkPK
k=1

αk

can be used to obtain φ and θ. This yields the following expressions:

φk,v =
nk,v + βv

VP
v=1

(nk,v + βv)

(29)

θd,k =
nd,k + αk

KP
k=1

(nd,k + αk)

(30)
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A. 2.4. R Code

1 ####################################################################

2 ## LATENT DIRICHLET ALLOCATION (LDA):

3 ## Collapsed Gibbs Sampling

4 ####################################################################

5 ####################################################################

6 ## This code comes from the PhD seminar "Topic models" held

7 ## by Prof. Joachim Bueschken in the Summer Semester 2016

8 ## and is adapted to the purposes of this dissertation.

9 ####################################################################

10 ##-------------------------------------------

11 ###Get Data

12 ###--> here: generated data from A. 1. is used

13 ##-------------------------------------------

14 rm(list=ls(1)[-c(which(ls(1)=="data"))])

15

16 w <- data[,"w"] ## all words

17 d <- data[,"d"] ## document that each words belongs to

18 W <- length(w) ## number of all words

19 V <- length(unique(w)) ## number of unique words

20 D <- length(unique(d)) ## number of documents

21

22 ##-------------------------------------------

23 ###1. Initialization

24 ##-------------------------------------------

25 ##Initialize number of topics:

26 K <- 3

27

28 ##Initialize number of iterations:

29 R <- 500

30

31 ##Initialize hyper -parameters:

32 alpha = 0.5 ## for theta

33 beta = 1 ## for phi

34

35 ##Initialize z:

36 z = apply(rmultinom(W,1,rep(1/K,K)),2,which.max)

37
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38 ##Initialize count matrices N_kv and N_dk

39 ##--> given the initialized topic indicators z:

40 ##N_kv (word -topic counts)

41 N_kv = matrix(0,V,K)

42 rows = as.numeric(unlist(labels(table(w)))) ## account for all -0 rows

43 cols <- as.numeric(unlist(labels(table(z)))) ## account for all -0 columns

44 N_kv[rows ,cols] = table(data.table(cbind(w,z)))

45 ##N_dk (topic -document counts)

46 N_dk = matrix(0,K,D)

47 rows <- as.numeric(unlist(labels(table(z)))) ## account for all -0 rows

48 cols = as.numeric(unlist(labels(table(d)))) ## account for all -0 columns

49 N_dk[rows ,cols] = table(data.table(cbind(z,d)))

50

51 ##Initialize matrices for saving phi and theta (for all iterations):

52 Phi_draw = array(NA,c(V,K,R))

53 Theta_draw = array(NA,c(K,D,R))

54

55 ##Time tracking

56 starttime = proc.time()[3]

57

58 ##-------------------------------------------

59 ###2. Gibbs Sampling

60 ##-------------------------------------------

61 for (rep in 1:R){

62

63 for(i in 1:W){

64

65 ##-------------------------------------------

66 ###2.a Decrement count matrices N_kv and N_dk by 1 for the entries of the

67 ### current topic assignment z[i]

68 ##-------------------------------------------

69 N_kv[w[i],z[i]] = N_kv[w[i],z[i]] - 1

70 N_dk[z[i],d[i]] = N_dk[z[i],d[i]] - 1

71

72 ##-------------------------------------------

73 ###2.b Sample new topic

74 ##-------------------------------------------

75 pt = (N_kv[w[i],]+beta)/colSums(N_kv+beta) * (N_dk[,d[i]]+ alpha)/rowSums(N_dk+

alpha)
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76 z[i] = which.max(rmultinom (1,1,pt))

77

78 ##-------------------------------------------

79 ###2.c Increment count matrices N_kv and N_dk by 1 for the entries of the

80 ### new topic assignment z[i]

81 ##-------------------------------------------

82 N_kv[w[i],z[i]] = N_kv[w[i],z[i]] + 1

83 N_dk[z[i],d[i]] = N_dk[z[i],d[i]] + 1

84

85 } ## end of W-loop (words)

86

87 ##Output in console

88 print(paste("Topic:", K, ";", "Iteration:", rep))

89

90 ##-------------------------------------------

91 ###3.Burn -in

92 ##-------------------------------------------

93 ###Only calculate parameters for last 100 draws:

94 if(rep >400){

95

96 ##-------------------------------------------

97 ###4. Obtaining phi and theta

98 ##-------------------------------------------

99 ##-------------------------------------------

100 ###4.a ... with Dirichlet draws

101 ##-------------------------------------------

102 phi = matrix(NA,V,K)

103 theta = matrix(NA,K,D)

104 ##Draw of phi_k

105 for(k in 1:K){phi[,k]= rdirichlet(N_kv[,k]+rep(beta ,V))}

106 ##Draw of theta_a

107 for(d in 1:D){theta[,d] = rdirichlet(N_dk[,d]+rep(alpha ,K))}

108

109 ##-------------------------------------------

110 ###4.b ... with the expectation of the Dirichlet distribution

111 ##-------------------------------------------

112 #exp.phi = matrix(NA,V,K)

113 #exp.theta = matrix(NA ,K,D)

114 #for(k in 1:K){exp.phi[,k] = (N_kv[,k]+beta)/sum(N_kv[,k]+beta)}
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115 #for(d in 1:D){exp.theta[,d] = (N_dk[,d]+alpha)/sum(N_dk[,d]+alpha)}

116

117 ##-------------------------------------------

118 ###4.c ... saving phi and theta

119 ##-------------------------------------------

120 Phi_draw[,,rep] <- phi

121 Theta_draw[,,rep] <- theta

122 #Phi_draw[,,rep] <- exp.phi

123 #Theta_draw[,,rep] <- exp.theta

124

125 } ## end of if(rep >400) (burn -in)

126

127 ##Time tracking and output in console

128 if(rep%%10 == 0){ ## time and output are updated after every 10^th iteration

129 endtime = proc.time()[3]

130 timetoend = (endtime -starttime)

131 print(paste(paste("Topic:",K, sep=""), ";", paste("Iteration:",rep , sep=""),

132 ";", paste("Time:", round(( timetoend)/60,2), "min", sep="")))

133 }

134

135 } ## end of R-loop (iterations)
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A. 3. Excursus: Dirichlet and Multinomial Distribution

This excursus has been added to provide a better understanding of the LDA model,

which makes use of the Dirichlet distribution and the Multinomial distribution. The

properties of both distributions are explained in detail (A. 3.1 and A. 3.2) as well as how

both distributions combine in the Dirichlet-Multinomial model (A. 3.3). At the end, the

R code (A. 3.4) used for creating the graphics in this excursus is shown.

A. 3.1. The Dirichlet Distribution

The Dirichlet distribution is the multivariate generalization of the beta distribution.

It is commonly used in Bayesian statistics as a prior distribution for the Multinomial

distribution. The probability density function (PDF) of the Dirichlet distribution is

defined as (Murphy 2012, pp. 47-49; Bishop 2006, pp. 76-78):

p(θ|α) =
1

B(α)

KY
k=1

θ
αk−1

k (31)

where α = (α1, ..., αK) and αk > 0

where K ≥ 2 number of categories

where B(α) =

QK

k=1
Γ(αk)

Γ(
PK

k=1
αk)

where θ = (θ1, ..., θK) and θk ∈ [0, 1] ,

KX
k=1

θk = 1

The parameters of the model are the concentration parameters α = (α1, ..., αK), de-

fined for positive values only, and the number of categories K, with a minimum of two

categories. In the case of K = 2 categories, the Dirichlet distribution equals a beta

distribution. The multivariate beta function B(α) is the normalizing constant and can

be expressed in terms of a gamma function as shown in the equation above. The entries
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of the vector θ = (θ1, ..., θK) are real numbers in the interval [0,1] and need to sum to 1.

They are the probabilities for each category K.

Figure 22 displays several Dirichlet density plots with different concentration parameters

α for K = 3 categories. Two aspects are worth mentioning. First, there are asym-

metric and symmetric distributions. An asymmetric Dirichlet is a Dirichlet where the

parameter components of α have different values, e.g., α1 = 2, α2 = 5, α3 = 4 in the

upper-left panel. The distribution is asymmetric because it is not centered in the middle

of the simplex. A symmetric Dirichlet is a Dirichlet where each parameter component

of α has the same values, e.g., α1 = 2, α2 = 2, α3 = 2 in the middle-left panel. Those

distributions are always centered in the middle of the simplex. A special case comprises

α1 = 1, α2 = 1, α3 = 1 in the upper-right panel; it is called a flat (symmetric) Dirich-

let. The Dirichlet distribution is then equivalent to a uniform distribution in the simplex.

Second, values of α higher and lower to 1 lead to different shapes of the Dirichlet distribu-

tion. When α > 1 (see middle panels), the distribution is bent upward and the density

is concentrated in the center. With increasing α (moving from the middle-left to the

middle-right panel), more density is pushed to the center, which makes the distribution

peakier. When 0 < α < 1 (see lower panels), the distribution is bent downward and the

density is crammed up against the edges of the simplex. The closer α gets to zero (mov-

ing from the lower-left to the lower-right panel), the more density is pushed to the corners.

Figure 23 shows sample draws from different symmetric Dirichlet distributions with

K = 10 categories. Each row corresponds to another Dirichlet distribution with varying

concentration parameter α. The selected value is indicated in the labels above the pan-

els. From each of the distinct Dirichlet distributions 5 samples are drawn. The results

show that when sampling from Dirichlets with α much greater than 1, it yields almost

uniform distributions, i.e., all the values within a single sample are similar to each other
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(see upper two panels). Samples from Dirichlets with α less than 1 (see lower two pan-

els) generate sparse distributions (“sparsity”). This means that very few categories have

extremely high probabilities and the remaining categories’ probabilities are close to zero.

The LDA model has two Dirichlet variables: the topic distribution θd and the word dis-

tribution φk, which are drawn from a Dirichlet distribution with concentration parameter

α respectively β. Steyvers and Griffiths (2007) and Griffiths and Steyvers (2004) discuss

the selection of those concentration parameters more in detail:

• The choice of α determines the concentration of topics in a document. If a docu-

ment should be dominated by very few topics, a low value for α needs to be chosen.

In return, a high value for α leads to more equal topic probabilities and thus more

topics for each document.

• The choice of β determines the concentration of words in a topic and the required

number of topics. A low β value results in topics that are strongly determined

by very few words. This means that topics are more unique and address specific

topics. To cover all themes present in large text collections, the number of topics

is therefore typically higher. Conversely, higher values for β yield more equal word

distributions for a topic and make the topics more generic and similar to each other.

The required number of topics decreases.

In the LDA model, it is most common to use symmetric Dirichlet priors. Steyvers

and Griffiths (2007, pp. 431-433) have had good experiences with the symmetric priors

α = 50/K and β = 0.01 for many different text collections. However, for superior per-

formance, some literature (Wallach, Mimno, and McCallum 2009; Syed and Spruit 2018)

also suggests asymmetric priors, especially over the per-document topic distributions θd.

All in all, appropriate concentration parameters should be selected with care as their

choice can have tremendous implications on the model results.
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Figure 22: Dirichlet PDFs with Different Concentation Parameters14

14The plots were created in R. The code that generated the graphics is displayed in Appendix A. 3.4.1.
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Figure 23: Draws from Different Dirichlet Distributions15

15The plots were created in R following Blei’s Topic Models tutorial at the Machine Learning Summer
School (MLSS) in Cambridge 2009 (http://videolectures.net/mlss09uk_blei_tm/). The code
that generated the graphics is displayed in Appendix A. 3.4.2.
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A. 3.2. The Multinomial Distribution

The Multinomial distribution is the multivariate generalization of the binomial distri-

bution. It is used to model K outcomes such as the tossing of a K-sided die n times

or the extraction of n balls from an urn containing balls of k different colors. The n

trials are independent, i.e., a new trial does not depend on the previous trial. For the

urn example, this means that the extracted ball is replaced after each draw (“drawing

with replacement”). The Multinomial distribution is commonly used as the likelihood in

Bayesian statistics. Its probability mass function (PMF) is defined as (Murphy 2012, pp.

35-36; Bishop 2006, pp. 74-76):

p(x|n, θ) =
n

x1 ... xK

KY
k=1

θ
xk
k (32)

where n > 0 number of trials

where θ = (θ1, ..., θK) and θk ∈ [0, 1] ,

KX
k=1

θk = 1

where x = (x1, ..., xK) and xk ∈ {0, ..., n} ,
KX
k=1

xk = n

where
n

x1 ... xK
=

n!

x1! · · · xK !

The parameters of the Multinomial distribution are θ and n. The vector θ = (θ1, ..., θK)

contains the event probabilities, i.e., the probabilities that each outcome K occurs. They

take values in the interval [0,1] and sum to 1. n is the number of trials, which needs to

be a minimum of 1. The vector x = (x1, ..., xK) counts the number of times an outcome

k occurs. Its entries are integer values in the range of 0 to n and their total sum equals

the number of trials n. n

x1 ... xK
is the multinomial coefficient, which gives the number

of distinguishable permutations for the n trials. The number of possible outcomes is de-

noted by K.
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A special case of the Multinomial distribution is when there is only one single trial

(n=1). This would be the toss of a K-sided die once or the extraction of one ball from

an urn containing balls of k different colors. The distribution is then called the discrete

or categorical distribution. In analogy to the Bernoulli distribution, which also comprises

only one single trial, some literature also suggests the name Multinoulli distribution. The

PMF simplifies to:

p(x|1, θ) =

KY
k=1

θ
xk
k (33)

which is the Multinomial distribution without the multinomial coefficient.

A. 3.3. The Dirichlet-Multinomial Model

The Dirichlet-Multinomial model combines the Dirichlet distribution and the Multino-

mial distribution from the two previous chapters and is frequently used in Bayesian

statistics for posterior computation. The model greatly simplifies calculation because of

the conjugacy between the both distributions. In a Bayesian setting where the Dirichlet-

Multinomial model is used, the likelihood p(D|θ) always has the form of a Multinomial

distribution and the prior p(θ) the form of a Dirichlet distribution. When multiplying

the likelihood with the prior, both distributions combine so that the posterior p(θ|D) has

the same form as the prior, namely a Dirichlet distribution. This is called conjugacy.

The following calculations illustrate the Dirichlet-Multinomial model by plugging in the

formula for the Dirichlet distribution, Equation (31), and Multinomial distribution, Equa-

tion (32), (Murphy 2012, pp. 78-82):

p(θ|D) =
p(D|θ) · p(θ)

p(D)
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∝ p(D|θ) · p(θ)

=
n

x1 ... xK

KY
k=1

θ
xk
k ·

1

B(α)

KY
k=1

θ
αk−1

k

∝
KY
k=1

θ
xk
k · θ

αk−1

k =

KY
k=1

θ
xk+αk−1

k

= Dir(θ|x1 + α1, ..., xK + αK) = Dir(θ|x+ α) (34)
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A. 3.4. R Code

A. 3.4.1. R Code for Dirichlet PDFs

1 ####################################################################

2 ## DIRICHLET DISTRIBUTION:

3 ## Plotting different Probability Density Functions (PDFs)

4 ####################################################################

5 ####################################################################

6 ## This code comes from

7 ## https://www.math.wustl.edu/~victor/classes/ma322/r-eg -35. txt

8 ## and has been modified for the purposes of this dissertation

9 ##

10 ## Other interesting resources:

11 ## https://cswiki.cs.byu.edu/cs -401r/plotting -a-dirichlet

12 ####################################################################

13 rm(list=ls())

14 ##--------------------------------------------------------##

15 ## EXPLANATION

16 ##--------------------------------------------------------##

17 # The Dirichlet density is not implemented in base R.

18 # It is necessary to get a contributed package.

19 # Several are available , here are two:

20

21 #install.packages(’gtools ’)

22 require(’gtools ’)

23

24 #install.packages(’MCMCpack ’)

25 require(’MCMCpack ’)

26

27 # ... provides functions

28 # ddirichlet(x,alpha) # Density function at (x1 ,...,xk)

29 # rdirichlet(n,alpha) # n random samples

30

31 ###### Dirichlet density on 3 variables x=(x1 ,x2 ,x3),

32 ###### with x1+x2+x3=1, and shape parameters a=(a1,a2,a3)

33 #

34 # Generate a grid of x1,x2 values:

35 x1 <- seq(0,1, by =0.01)
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36 x2 <- seq(0,1, by =0.01)

37

38 # Initialize a matrix to hold the pdf value:

39 z <- matrix(0, nrow=length(x1), ncol=length(x2))

40

41 # Choose some reasonable shape parameters:

42 alpha <- c(3,5,12)

43

44 # Fill z by looping over all valid (x1,x2) pairs , putting in

45 # x3=1-x1-x2 as the third variable in ddirichlet ():

46 for(i in 1: length(x1)) {

47 for(j in 1: length(x2) ) {

48 if( x1[i]+x2[j] < 1) {

49 x <- c(x1[i], x2[j], 1-x1[i]-x2[j]) # so x1+x2+x3=1

50 z[i,j] <- ddirichlet(x,alpha);

51 } else {

52 z[i,j] <- NA

53 }

54 }

55 }

56 # Comment: It is the property of the Dirichlet distribution ,

57 # that the probabilities in the simplex always sum up to one.

58 # That ’s also why x1+x2+x3=1.

59

60 # View the results as a perpective plot:

61 persp(x1 ,x2,z)

62

63 ## To learn more about the different arguments of the function ’persp()’, go to:

64 ## https://www.rdocumentation.org/packages/graphics/versions/3.5.2/topics/persp

65

66 # View the results as a contour plot:

67 # contour(x1,x2 ,z)

68

69 ##--------------------------------------------------------##

70 ## FUNCTION

71 ##--------------------------------------------------------##

72 dirichletPDF_3D <- function(alpha1=2, alpha2=2, alpha3=2, granuarity =0.02) {

73

74 alpha <- c(alpha1 ,alpha2 ,alpha3)
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75 x1 <- seq(0,1, by=granuarity)

76 x2 <- seq(0,1, by=granuarity)

77 z <- matrix(0, nrow=length(x1), ncol=length(x2))

78 # Fill z by looping over all valid (x1,x2) pairs , putting in

79 # x3=1-x1-x2 as the third variable in ddirichlet ():

80 for(i in 1: length(x1)) {

81 for(j in 1: length(x2) ) {

82 if( x1[i]+x2[j] < 1) {

83 x <- c(x1[i], x2[j], 1-x1[i]-x2[j]) # so x1+x2+x3=1

84 z[i,j] <- ddirichlet(x,alpha);

85 } else {

86 z[i,j] <- NA

87 }

88 }

89 }

90

91 persp(x1 ,x2,z, col = "royalblue",

92 main=substitute(

93 paste(alpha[1], "= ", n1, ", ", alpha[2], "= ", n2, ", ",

94 alpha [3], "= ", n3), list(n1=alpha[1],n2=alpha[2],n3=alpha [3])),

95 cex.main =1.8,

96 zlim=c(-3,3), theta =310,phi=40, expand =0.5,

97 axes=TRUE , ticktype="detailed",d=4,

98 cex.axis =1.1,cex.lab=1.1, shade =0.01 ,

99 xlab="X", ylab="Y", zlab="density", border="black")

100

101 }

102

103 ##--------------------------------------------------------##

104 ## GET PLOTS

105 ##--------------------------------------------------------##

106 dirichletPDF_3D(2,5,4)

107 dirichletPDF_3D(1,1,1)

108

109 dirichletPDF_3D(2,2,2)

110 dirichletPDF_3D(4,4,4)

111

112 dirichletPDF_3D(0.5 ,0.5 ,0.5)

113 dirichletPDF_3D(0.1 ,0.1 ,0.1)
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114

115 ##--------------------------------------------------------##

116 ## SAVE PLOTS

117 ##--------------------------------------------------------##

118 setwd("C:/Users/wwa732/Desktop/Diss_R-Code")

119 pdf("dirichletPDF1.pdf")

120 par(mfrow=c(1,1))

121 dirichletPDF_3D(2,5,4)

122 dev.off()

123 pdf("dirichletPDF2.pdf")

124 par(mfrow=c(1,1))

125 dirichletPDF_3D(1,1,1)

126 dev.off()

127 pdf("dirichletPDF3.pdf")

128 par(mfrow=c(1,1))

129 dirichletPDF_3D(2,2,2)

130 dev.off()

131 pdf("dirichletPDF4.pdf")

132 par(mfrow=c(1,1))

133 dirichletPDF_3D(4,4,4)

134 dev.off()

135 pdf("dirichletPDF5.pdf")

136 par(mfrow=c(1,1))

137 dirichletPDF_3D(0.5 ,0.5 ,0.5)

138 dev.off()

139 pdf("dirichletPDF6.pdf")

140 par(mfrow=c(1,1))

141 dirichletPDF_3D(0.1 ,0.1 ,0.1)

142 dev.off()
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A. 3.4.2. R Code for Dirichlet Draws

1 ####################################################################

2 ## DIRICHLET DISTRIBUTION:

3 ## Plotting Draws from a Dirichlet with rdirichlet () and ggplot ()

4 ####################################################################

5 ####################################################################

6 ## This code comes from

7 ## https://stats.stackexchange.com/questions/15198/dirichlet -distribution -plot -in

-r

8 ## and has been modified for the purposes of this dissertation

9 ####################################################################

10 rm(list=ls())

11 set.seed (9989)

12 ##--------------------------------------------------------##

13 ## Getting Draws from a Dirichlet using rdirichlet ()

14 ##--------------------------------------------------------##

15 # For this task exists the function ’rdirichlet ’, which is

16 # available in three different packages:

17

18 # 1. ’bayesm ’:

19 # install.packages(’bayesm ’)

20 # library(’bayesm ’)

21 # require(’bayesm ’)

22 # --> rdirichlet(alpha)

23

24 # Example:

25 # K <- 5

26 # alpha <- 1

27 # rdirichlet(alpha=rep(alpha ,K))

28

29 # 2. ’gtools ’

30 # install.packages(’gtools ’)

31 library(’gtools ’)

32 require(’gtools ’)

33 # --> ddirichlet(x, alpha)

34 # --> rdirichlet(n, alpha)

35

36 # 3. ’MCMCpack ’
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37 library(’MCMCpack ’)

38 require(’MCMCpack ’)

39 # --> ddirichlet(x, alpha)

40 # --> rdirichlet(n, alpha)

41

42 # Example:

43 # K <- 5

44 # alpha <- 1

45 # rdirichlet(n=3, alpha=rep(alpha ,K))

46 # rdirichlet(n=2, alpha=c(1,1,1))

47

48 # Caution: be aware that , depending on which package is used ,

49 # the arguments are different. The following code requires the ’rdirichlet ’

50 # function from the ’gtools ’ and ’MCMCpack ’ package.

51

52 ####### Draws from a Dirichlet distribution

53 ####### with different concentration parameters:

54 # alpha =100

55 x100 <- rdirichlet(n=5, alpha=rep(100, 10))

56 # alpha =10

57 x10 <- rdirichlet(n=5, alpha=rep(10, 10))

58 # alpha =1

59 x1 <- rdirichlet(n=5, alpha=rep(1, 10))

60 # alpha =0.1

61 x0.1 <- rdirichlet(n=5, alpha=rep(0.1, 10))

62 # alpha =0.01

63 x0.01 <- rdirichlet(n=5, alpha=rep (0.01 , 10))

64

65 # Stack all draws:

66 x <- rbind(x100 ,x10 ,x1 ,x0.1,x0.01)

67 # --> This is the data for plotting

68

69 ##--------------------------------------------------------##

70 ## Plotting Draws with ggplot ()

71 ##--------------------------------------------------------##

72 # install.packages(’ggplot2 ’)

73 library(’ggplot2 ’)

74

75 # The input data needs to be a ’data.frame ’:
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76 dat <- data.frame(item=factor(rep (1:10 ,25)),

77 draw=factor(rep(1:25 , each =10)),

78 value=as.vector(t(x)))

79

80 # To define own labels in ggplot () a labeller function with

81 # two arguments (variable , value) needs to be specified (see below):

82 # https://stackoverflow.com/questions/3472980/ggplot -how -to -change -facet -labels

83 # https://github.com/tidyverse/ggplot2/wiki/labeller

84

85 LABEL_names <- list(

86 ’1’="Sample 1\ nalpha =100",

87 ’2’="Sample 2\ nalpha =100",

88 ’3’="Sample 3\ nalpha =100",

89 ’4’="Sample 4\ nalpha =100",

90 ’5’="Sample 5\ nalpha =100",

91 ’6’="Sample 1\ nalpha =10",

92 ’7’="Sample 2\ nalpha =10",

93 ’8’="Sample 3\ nalpha =10",

94 ’9’="Sample 4\ nalpha =10",

95 ’10’="Sample 5\ nalpha =10",

96 ’11’="Sample 1\ nalpha =1",

97 ’12’="Sample 2\ nalpha =1",

98 ’13’="Sample 3\ nalpha =1",

99 ’14’="Sample 4\ nalpha =1",

100 ’15’="Sample 5\ nalpha =1",

101 ’16’="Sample 1\ nalpha =0.1",

102 ’17’="Sample 2\ nalpha =0.1",

103 ’18’="Sample 3\ nalpha =0.1",

104 ’19’="Sample 4\ nalpha =0.1",

105 ’20’="Sample 5\ nalpha =0.1",

106 ’21’="Sample 1\ nalpha =0.01",

107 ’22’="Sample 2\ nalpha =0.01",

108 ’23’="Sample 3\ nalpha =0.01",

109 ’24’="Sample 4\ nalpha =0.01",

110 ’25’="Sample 5\ nalpha =0.01"

111 )

112

113 # Labeller Function:

114 LABEL_labeller <- function(variable ,value){
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115 return(LABEL_names[value ])

116 }

117

118 # To learn more about the different arguments of the function ’ggplot ’, go to:

119 # https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2 -cheatsheet.pdf

120 # --> ggplot2 Cheatsheet!

121

122 ####### Plot Dirichelt draws with ggplot ()

123 ####### and save as pdf file:

124 #

125 setwd("C:/Users/wwa732/Desktop/Diss_R-Code")

126 pdf("dirichletdraws_plot.pdf")

127 par(mfrow=c(1,1))

128

129 ggplot(dat ,aes(x=item ,y=value ,ymin=0,ymax=value)) +

130 geom_point(colour=I("royalblue")) +

131 geom_linerange(colour=I("royalblue")) +

132 facet_wrap(~draw ,ncol=5,labeller=LABEL_labeller) +

133 scale_y_continuous(lim=c(0,1)) +

134 theme(panel.border = element_rect(fill=0, colour="black")) +

135 labs(title="", x="K", y="Probability")

136

137 dev.off()
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B. 1. Data

B. 1.1. Data Preparation ALL

Total Median Mean SD Min Max

No. of customers 96,239 - - - - -

No. of SKUs (total) 264,717 - - - - -

No. of SKUs (unique) 4,758 - - - - -

No. of orders 135,456 - - - - -

No. of orders per customer - 1 1.41 2.63 1 603

No. of SKUs per customer - 1 2.75 10.82 1 1,347

No. of SKUs per order - 1 1.95 3.40 1 148

No. of orders per SKU - 4 33.37 206.53 1 6,140

Table 9: Descriptive Statistics (ALL)

Full Data Training Data Test Data

No. of customers 96,239 81,531 24,060

No. of SKUs (total) 264,717 240,657 24,060

No. of SKUs (unique) 4,758 4,634 2,315

No. of orders 135,456 118,254 24,060

Table 10: Overview Splitted Data Set (ALL)

Holdout Customers Number

All Customers 24,060

Cold Customer 14,708

Old Customer, Old SKU 7,002

Old Customer, New SKU 2,350

Table 11: Holdout Customers (ALL)
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B. 1.2. Data Preparation USO

Total Median Mean SD Min Max

No. of customers 96,239 - - - - -

No. of SKUs (total) 158,788 - - - - -

No. of SKUs (unique) 4,758 - - - - -

No. of orders 135,456 - - - - -

No. of orders per customer - 1 1.41 2.63 1 603

No. of SKUs per customer - 1 1.65 3.66 1 671

No. of SKUs per order - 1 1.17 0.63 1 21

No. of orders per SKU - 4 33.37 206.53 1 6,140

Table 12: Descriptive Statistics (USO)

Full Data Training Data Test Data

No. of customers 96,239 78,057 24,060

No. of SKUs (total) 158,788 134,728 24,060

No. of SKUs (unique) 4,758 4,591 2,315

No. of orders 135,456 113,463 24,060

Table 13: Overview Splitted Data Set (USO)

Holdout Customers Number

All Customers 24,060

Cold Customer 18,182

Old Customer, Old SKU 2,916

Old Customer, New SKU 2,962

Table 14: Holdout Customers (USO)
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B. 1.3. Data Preparation USC

Total Median Mean SD Min Max

No. of customers 96,239 - - - - -

No. of SKUs (total) 124,043 - - - - -

No. of SKUs (unique) 4,758 - - - - -

No. of SKUs per customer - 1 1.29 1.33 1 178

No. of customers per SKU - 4 26.07 169.06 1 5,468

Table 15: Descriptive Statistics (USC)

Full Data Training Data Test Data

No. of customers 96,239 75,956 24,060

No. of SKUs (total) 124,043 99,983 24,060

No. of SKUs (unique) 4,758 4,576 2,348

Table 16: Overview Splitted Data Set (USC)

Holdout Customers Number

All Customers 24,060

Cold Customer 20,283

Old Customer, Old SKU -

Old Customer, New SKU 3,777

Table 17: Holdout Customers (USC)
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B. 1.4. Data Preparation 11ALL

Total Median Mean SD Min Max

No. of customers 37,583 - - - - -

No. of SKUs (total) 206,061 - - - - -

No. of SKUs (unique) 4,321 - - - - -

No. of orders 76,800 - - - - -

No. of orders per customer - 1 2.04 4.13 1 603

No. of SKUs per customer - 3 5.48 16.96 2 1,347

No. of SKUs per order - 2 2.68 4.37 1 148

No. of orders per SKU - 4 23.17 112.01 1 3,412

Table 18: Descriptive Statistics (11ALL)

Full Data Training Data Test Data

No. of customers 37,583 37,583 9,396

No. of SKUs (total) 206,061 196,665 9,396

No. of SKUs (unique) 4,321 4,255 1,765

No. of orders 76,800 74,295 9,396

Table 19: Overview Splitted Data Set (11ALL)

Holdout Customers Number

All Customers 9,396

Cold Customer -

Old Customer, Old SKU 7,073

Old Customer, New SKU 2,323

Table 20: Holdout Customers (11ALL)
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B. 1.5. Data Preparation 11USO

Total Median Mean SD Min Max

No. of customers 24,136 - - - - -

No. of SKUs (total) 86,685 - - - - -

No. of SKUs (unique) 4,173 - - - - -

No. of orders 63,353 - - - - -

No. of orders per customer - 2 2.63 5.06 1 603

No. of SKUs per customer - 2 3.60 6.96 2 671

No. of SKUs per order - 1 1.37 0.87 1 21

No. of orders per SKU - 3 20.77 99.03 1 2,930

Table 21: Descriptive Statistics (11USO)

Full Data Training Data Test Data

No. of customers 24,136 24,136 6,034

No. of SKUs (total) 86,685 80,651 6,034

No. of SKUs (unique) 4,173 4,083 1,423

No. of orders 63,353 59,464 6,034

Table 22: Overview Splitted Data Set (11USO)

Holdout Customers Number

All Customers 6,034

Cold Customer -

Old Customer, Old SKU 2,958

Old Customer, New SKU 3,076

Table 23: Holdout Customers (11USO)
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B. 1.6. Data Preparation 11USC

Total Median Mean SD Min Max

No. of customers 15,365 - - - - -

No. of SKUs (total) 43,169 - - - - -

No. of SKUs (unique) 4,102 - - - - -

No. of SKUs per customer - 2 2.81 2.88 2 178

No. of customers per SKU - 3 10.52 36.53 1 969

Table 24: Descriptive Statistics (11USC)

Full Data Training Data Test Data

No. of customers 15,365 15,365 3,841

No. of SKUs (total) 43,169 39,328 3,841

No. of SKUs (unique) 4,102 3,975 1,366

Table 25: Overview Splitted Data Set (11USC)

Holdout Customers Number

All Customers 3,841

Cold Customer -

Old Customer, Old SKU -

Old Customer, New SKU 3,841

Table 26: Holdout Customers (11USC)
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B. 2. Hit Rates

B. 2.1. Data Preparation ALL

|RS|=1 |RS|=3 |RS|=5 |RS|=10

ATM
All Customers 17.66 29.05 35.15 43.36
Old Customer, Old SKU 47.42 66.38 74.08 81.85
Old Customer, New SKU 10.17 17.06 20.43 27.49

Sticky ATM
All Customers 17.47 28.37 34.11 42.94
Old Customer, Old SKU 47.12 66.12 73.15 80.89
Old Customer, New SKU 10.77 17.53 23.02 31.02

CF
All Customers 30.57 38.20 43.87 52.67
Old Customer, Old SKU 85.16 91.92 92.93 93.87
Old Customer, New SKU 12.89 20.34 24.04 27.83

Bigram
All Customers 32.23 39.97 45.08 53.48
Old Customer, Old SKU 89.31 91.91 92.68 93.46
Old Customer, New SKU 17.83 28.48 32.59 37.36

Unigram
All Customers 4.56 13.19 15.38 23.44
Old Customer, Old SKU 5.06 10.40 14.04 20.22
Old Customer, New SKU 2.30 7.19 8.85 13.28

Table 27: Hit Rates in Percent (ALL)
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B. 2.2. Data Preparation USO

|RS|=1 |RS|=3 |RS|=5 |RS|=10

ATM
All Customers 11.33 21.40 27.72 36.82
Old Customer, Old SKU 54.70 71.40 76.89 83.33
Old Customer, New SKU 11.01 20.53 26.16 33.69

Sticky ATM
All Customers 11.50 21.01 27.61 36.72
Old Customer, Old SKU 52.88 68.79 74.55 80.69
Old Customer, New SKU 10.84 20.76 25.86 34.81

CF
All Customers 15.70 23.39 29.69 39.26
Old Customer, Old SKU 77.88 86.15 88.27 89.75
Old Customer, New SKU 12.56 19.89 23.40 27.52

Bigram
All Customers 15.84 24.61 30.34 39.60
Old Customer, Old SKU 74.62 80.43 82.32 84.05
Old Customer, New SKU 16.83 27.07 31.22 35.84

Unigram
All Customers 4.56 13.25 19.96 29.33
Old Customer, Old SKU 7.41 15.53 17.80 26.41
Old Customer, New SKU 2.26 6.99 9.89 14.79

Table 28: Hit Rates in Percent (USO)
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B. 2.3. Data Preparation USC

|RS|=1 |RS|=3 |RS|=5 |RS|=10

ATM
All Customers 6.42 15.51 21.83 32.43
Old Customer, Old SKU - - - -
Old Customer, New SKU 12.15 23.14 28.57 36.48

Sticky ATM
All Customers 6.58 15.74 22.00 32.37
Old Customer, Old SKU - - - -
Old Customer, New SKU 11.41 20.44 25.81 33.25

CF
All Customers 6.92 15.84 21.38 31.73
Old Customer, Old SKU - - - -
Old Customer, New SKU 12.28 19.94 23.40 27.51

Bigram
All Customers 7.48 16.60 22.70 32.60
Old Customer, Old SKU - - - -
Old Customer, New SKU 15.90 24.92 28.64 33.09

Unigram
All Customers 5.31 13.57 19.25 29.77
Old Customer, Old SKU - - - -
Old Customer, New SKU 2.04 5.45 9.88 14.99

Table 29: Hit Rates in Percent (USC)
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B. 2.4. Data Preparation 11ALL

|RS|=1 |RS|=3 |RS|=5 |RS|=10

ATM
All Customers 36.49 54.42 61.13 69.46
Old Customer, Old SKU 45.99 66.58 73.91 82.64
Old Customer, New SKU 7.58 17.39 22.21 29.32

Sticky ATM
All Customers 38.32 54.67 61.63 69.25
Old Customer, Old SKU 48.17 67.10 74.96 82.60
Old Customer, New SKU 8.14 15.71 21.22 27.72

CF
All Customers 66.61 74.13 76.02 77.70
Old Customer, Old SKU 84.46 91.71 93.00 93.96
Old Customer, New SKU 12.27 20.58 24.32 28.20

Bigram
All Customers 71.18 75.82 77.41 79.23
Old Customer, Old SKU 89.34 91.96 92.67 93.41
Old Customer, New SKU 15.82 26.55 31.08 36.15

Unigram
All Customers 4.02 8.51 10.00 16.38
Old Customer, Old SKU 4.55 9.70 11.58 18.96
Old Customer, New SKU 2.41 4.91 5.21 8.52

Table 30: Hit Rates in Percent (11ALL)
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B. 2.5. Data Preparation 11USO

|RS|=1 |RS|=3 |RS|=5 |RS|=10

ATM
All Customers 33.46 47.68 53.35 60.18
Old Customer, Old SKU 56.39 74.14 79.78 86.00
Old Customer, New SKU 12.13 20.42 26.46 34.17

Sticky ATM
All Customers 34.07 48.34 53.68 60.32
Old Customer, Old SKU 56.22 75.19 80.80 86.48
Old Customer, New SKU 11.87 21.91 26.63 35.34

CF
All Customers 45.18 52.77 55.24 58.17
Old Customer, Old SKU 78.84 87.12 89.05 90.47
Old Customer, New SKU 12.81 19.73 22.72 27.11

Bigram
All Customers 45.04 52.67 55.58 58.90
Old Customer, Old SKU 75.09 81.14 82.87 84.58
Old Customer, New SKU 16.19 25.36 29.45 34.38

Unigram
All Customers 4.14 9.73 12.11 18.53
Old Customer, Old SKU 6.56 15.15 18.76 26.54
Old Customer, New SKU 1.82 4.52 5.72 10.83

Table 31: Hit Rates in Percent (11USO)
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B. 2.6. Data Preparation 11USC

|RS|=1 |RS|=3 |RS|=5 |RS|=10

ATM
All Customers 14.22 25.49 32.15 40.20
Old Customer, Old SKU - - - -
Old Customer, New SKU 14.22 25.49 32.15 40.20

Sticky ATM
All Customers 13.49 24.11 30.25 38.82
Old Customer, Old SKU - - - -
Old Customer, New SKU 13.49 24.11 30.25 38.82

CF
All Customers 12.05 19.37 22.68 26.82
Old Customer, Old SKU - - - -
Old Customer, New SKU 12.05 19.37 22.68 26.82

Bigram
All Customers 14.81 23.57 27.33 31.90
Old Customer, Old SKU - - - -
Old Customer, New SKU 14.81 23.57 27.33 31.90

Unigram
All Customers 2.24 6.98 10.13 15.59
Old Customer, Old SKU - - - -
Old Customer, New SKU 2.24 6.98 10.13 15.59

Table 32: Hit Rates in Percent (11USC)
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This appendix demonstrates how purchase data of different structures can be generated

and additional information on the performance of recommender models can be gained.

In the following, the set-up (C. 1) of the simulation, some descriptive statistics (C. 2)

of the simulated data sets, and the hit rate results (C. 3) for three recommender models

using the simulation data are presented. At the end of this appendix, the R code (C. 4)

of the simulation is displayed.

C. 1. Set-Up

In this simulation, 18 different data sets of purchase data were simulated and used to

fit some recommender models. To generate the data, the generative process of the ATM

model was used and different values for beta, alpha, and number of topics (K) were

selected. For beta, the six values 1, 0.5, 0.1, 0.05, 0.01, and 0.001 were chosen, and for

alpha, the three values 1, 0.5, and 0.1 were chosen. The number of topics was determined

to be K = 20. With each possible combination of alpha, beta, and number of topics,

one data set was generated. Each data set contained 2,000 customers with a potential

product assortment of 1,000 items. The number of items per customer was simulated from

a truncated log-normal distribution using mean = 1.5 and sd = 4.5. The drawn values

were rounded up or down to the nearest whole number. The log-normal distribution

has two major advantages. First, it only provides positive values. This is important

since the number of items per customer can never be negative. Second, the log-normal

distribution controls better for the standard deviation than other distributions. This

allows varying the number of products per customer more strongly. Such data is more

likely to correspond to real purchase data. Table 33 summarizes all parameter settings

considered in this simulation.
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Beta 1, 0.5, 0.1, 0.05, 0.01, 0.001
Alpha 1, 0.5, 0.1

Number of topics (K) 20
Customers 2,000

Product assortment 1,000
Number of items per customer truncated log-normal: mean = 1.5; sd = 4.5

Table 33: Parameter Settings for Simulation

C. 2. Descriptive Statistics

Descriptive statistics of all simulated data sets are displayed in Table 34. Each row repre-

sents one data set-up. Information is given on the number of items unique (n.SKU.uniq),

in total (n.SKU.total), and per customer (n.SKU.cust). The number of items unique var-

ied strongly between the different data set-ups. In particular, it decreased when a lower

beta value was chosen. The total number of products was almost equal for all data set-

ups, at about 17,000 items. The statistics on the number of SKUs per customer did not

differ much between the different data set-ups. On average, each customer purchased

around 8 to 9 items. The median was below the mean and equaled 4 items. This implies

that the distribution is skewed to the right, showing a long tail toward higher values.

The minimum number of items per customer was 2 and the maximum was 475. The last

two columns provide information on the percentage of repeat items (perc.rep) and the

concentration of the item distribution overall (concentr). Both variables varied between

the single data set-ups. They increased with a smaller beta value. While concentr was

largely unaffected by the value of alpha, perc.rep additionally increased with a lower

alpha.

Each of the 18 different data set-ups was replicated 60 times. This was done because,

when data is simulated from distributions, each draw generates slightly different results.
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Hit rate results are therefore displayed below as box plots to show these variations. On

the simulated data sets, the ATM model using recommendation generation approach 1

(ATM_1)16, the ATM model using recommendation generation approach 2 (ATM_2)17,

and the most basic benchmark model Unigram are applied as examples. The models are

compared based on their hit rates for predicting novel items.

C. 3. Results

Figure 24 displays the models’ hit rates for all simulated data sets. The results reveal

that recommender models were not equally well suited for all types of data sets. For

example, there were data set-ups where the ATM model was much better than the Uni-

gram model. In other data set-ups, though, the performance of both models was almost

identical. Here, it makes little sense to implement the much more complex topic model.

The simulation also allows comparing a model’s performance using distinct recommen-

dation generation approaches. The plots show that ATM_2 is either equivalent to or

superior to ATM_1 for all simulated data sets. The same result was found for the data

used in the empirical part of this dissertation.

This and additional insights into the applicability of topic models as recommender mod-

els can be gained through simulating data. Ideally, a simulation would help to set up

boundary conditions under which topic models work best in comparison with other rec-

ommender models. The big advantage of a simulation is that it can be conducted very

quickly and with minimal effort. For instance, it does not require data collection from

different online shops or the cumbersome cleaning of data. Instead, the simulated data

can be used right away.

16The recommendation generation approach 1 was explained in Chapter 6.1.5.
17The recommendation generation approach 2 was explained in Chapter 6.1.5.
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The upper row of plots shows the hit rates for all data set-ups using alpha = 0.1, the middle
row for all data set-ups using alpha = 0.5, and the lower row for all data set-ups using alpha =
1. Moving from left to right, the data set-ups have lower beta values. Hit rates for each model
are displayed as box plots. Each model has its own color. Blue represents the ATM model using
recommendation generation approach 1, green represents the ATM model using recommendation
generation approach 2 and orange represents the Unigram model.

Figure 24: Hit Rate Results
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C. 4. R Code

1 ## SIMULATION

2 ## --> with generative process of ATM

3

4 library(bayesm)

5 library(data.table)

6 rm(list=ls())

7

8 ##---------------------------------------------------##

9 ## Set Parameters:

10 K = 20 # number of topics

11 V = 1000 # number of unique items (product assortment)

12 C = 2000 # number of customers

13 N_c = NULL # number of items per customer

14 alpha = 1 # hyper -parameter for theta

15 beta = 0.1 # hyper -parameter for phi

16 ##---------------------------------------------------##

17

18 ####################################################################

19 ## 1. DRAW OF PHI (FOR EACH TOPIC)

20 ####################################################################

21 Phi = matrix(NA,V,K)

22 for(k in 1:K){Phi[,k] = rdirichlet(rep(beta ,V))}

23 ## --> each column corresponds to phi_k

24

25 ####################################################################

26 ## 2.A. DRAW OF THETA (FOR EACH CUSTOMER)

27 ####################################################################

28 Theta = matrix(NA,K,C)

29 for(c in 1:C){Theta[,c] = rdirichlet(rep(alpha ,K))}

30 ## --> each column corresponds to theta_c

31

32 ####################################################################

33 ## 2.B.i DRAW OF Z (FOR EACH ITEM IN CUSTOMER C)

34 ## 2.B.ii DRAW OF X (FOR EACH ITEM IN CUSTOMER C)

35 ####################################################################

36 Data = NULL

37 data = NULL
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38

39 for(c in 1:C){

40

41 ##--------------------------------------------------------##

42 ## Determine number of items for customer c:

43 ##--------------------------------------------------------##

44 ## Draw from truncated log -normal distribution

45 m <- log (0.5); s <- log (3.0); n <- 1

46 Y <- round(rlnorm(n, meanlog = m, sdlog = s) ,0)

47 Y0 <- Y[Y>1]; r <- (n - length(Y0))

48

49 while(r>0){

50 Y <- round(rlnorm(r, meanlog = m, sdlog = s) ,0)

51 Y0 <- c(Y0,Y[Y>1]); r <- (n - length(Y0))

52 }

53

54 N_c <- Y0

55

56 ##--------------------------------------------------------##

57 ## Draw topic assignment z for each item in customer c

58 ##--------------------------------------------------------##

59 z = rep(NA ,N_c)

60 for(n in 1:N_c){z[n] = which.max(rmultinom (1,1,Theta[,c]))}

61

62 ##--------------------------------------------------------##

63 ## Draw item x for each item in customer c

64 ##--------------------------------------------------------##

65 x = rep(NA ,N_c)

66 for(n in 1:N_c){x[n] = which.max(rmultinom (1,1,Phi[,z[n]]))}

67

68 ##--------------------------------------------------------##

69 ## Store data for each author

70 ##--------------------------------------------------------##

71 Data[[c]] = list(c = c, N_c = N_c, z = z, x = x)

72

73 ## Get data of current customer:

74 data.new = cbind(Data[[a]]$x, Data[[a]]$z, Data[[a]]$c)

75

76 ## Stack data across all customers:
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77 data = rbind(data , data.new)

78 ## --> matrix: where each row corresponds to one word

79

80 }

81

82 colnames(data) <- c("x","z","c")

83 data

84 x <- data[,"x"]

85 z <- data[,"z"]

86 c <- data[,"c"]

87 mycustomer <- split(x,c)

88

89 rm(data.new , C, K, k, m, n, N_c, r, s, V, Y, Y0)

90

91 ####################################################################

92 ## SIMULATED DATA SET

93 ####################################################################

94 mycustomer
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