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Preface

This dissertation is the result of my research work at the Chair of Production
Management at the Faculty of Business Administration and Economics of the
Catholic University of Eichstätt-Ingolstadt in the years 2001 to 2006. After
his yearly production research meeting in Greece, my doctoral thesis super-
visor, Prof. Dr. Heinrich Kuhn, suggested to take a look at a proceedings
article of Kniker and Burman (2001). This article dealt with applying an
operations research technique called revenue management, which was mainly
used in the service sector up to this point, to the manufacturing sector.

After delving into the article I figured out that I now had a stochastic
operations research topic although I had tried to avoid stochastics as much
as possible during my previous studies. My knowledge accumulated for my
diploma thesis on deterministic lotsizing on parallel machines certainly was
of very little value for this topic. Nonetheless, after getting the book of
Puterman (1994) and exploring the world of stochastic decision processes,
I got to know and appreciate this world, while in parallel I was fittingly
assigned to deepen students’ knowledge of stochastic models in production
systems.

After many intellectual sweats and tears I managed to finish my disserta-
tion by September 2006. For the oral tests, though, the doctoral examination
regulations dictate presenting two rather small theses which are not supposed
to have any relation to the dissertation topic. After coming up with the first
hypothesis concerned with opposing numerical student ratings of teachers,
the second topic took quite some time because the first choice of topic did not
prove really fruitful. After settling for a second choice of opposing national
minimum wages, the oral tests took place successfully in January 2009.

I want to thank Prof. Dr. Heinrich Kuhn for providing me with an inter-
esting research topic which also resulted in several joint publications. I also
want to thank my second thesis supervisor, Prof. Dr. Ulrich Küsters, to make
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the effort of reading through and refereeing my dissertation. Furthermore, I
want to thank my colleagues at the Chair of Production Management, Dr.
Daniel Quadt and Dr. Georg Krieg for providing me with many interesting
discussions which most of the time did not have much to do with my research
topic but were interesting nonetheless.

Also, I want to thank my wife Serene for providing me with continuous
love and support and my parents for enabling me the education that was a
prerequisite for this dissertation. Lastly, I want to thank God for empowering
me to finish this project.

Freiburg im Breisgau, June 2009
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imum inventory level Ĩ . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Initializing the heuristic procedure . . . . . . . . . . . . . . . . 92
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A number of artificial order classes

a an artificial order class

Cs confidence interval for the sth proportion

c remaining number of periods the capacity is booked out

cmax maximum that c can reach

D(i) set of decisions that can be taken in state i

|D| maximum number of decisions that can be taken in a certain
state

d a decision

F (x) distribution function of supposedly lower values to be tested
with the Mann-Whitney test

G(x) distribution function of supposedly higher values to be tested
with the Mann-Whitney test

g average reward per period

g(I) average reward resulting from a FCFS policy using a maxi-
mum inventory level of I

g(π) average reward resulting from policy π

g(ω) average reward resulting from a policy that rejects ω artificial
order classes

H0 null hypothesis

H1 alternative hypothesis

h unit inventory holding cost per period

h, h lower, upper bound for h



xvi LIST OF SYMBOLS
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πopt optimal policy for a Markov decision process

πε average reward of the ε-optimal policy

π̃ best policy found by a heuristic procedure

π̃opt approximate optimal policy found by the value iteration al-
gorithm

ρ traffic intensity

ρ̃ approximate traffic intensity

ρn traffic intensity of order class n

σn share of order class n in the traffic intensity ρ

σ, σ global lower, upper bound for all σn

σv variable upper bound for σn

τn heuristic order acceptance threshold of order class n



Chapter 1

Introduction

1.1 Motivation and Outline

In a global competitive market, companies are always trying to improve their
profitability. A tool which has proven successful in order to achieve this goal
with relatively low technological investments has been the use of revenue
management systems. However, these systems have only been implemented
in service industries, see Talluri and van Ryzin (2004). Thus, the question
arises if revenue management could be profitably applied for manufacturing
companies, as well.

This dissertation tries to answer this question. For this purpose, the
remainder of this chapter describes the field of revenue management and
concludes with a thorough literature review regarding theoretical models con-
cerning the application of revenue management in a manufacturing context.

In the second chapter, an empirical study is described which answers two
important research questions with regards to revenue management for man-
ufacturing companies. Do some companies already implicitly use revenue
management and is there a potential for revenue management in the manu-
facturing industries? It turns out that a significant portion of manufacturing
companies fulfill the requirements of successfully applying revenue manage-
ment while only a small portion of the companies surveyed already apply
revenue management in one way or the other. Thus, the need for theoreti-
cal decision models arises which could be used in the not-too-distant future
to actually implement sophisticated revenue management systems for these
manufacturing companies. Figure 1.1 sketches such a revenue management
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Figure 1.1: Revenue management system, following Talluri and van Ryzin
(2004)
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Data inputs into the revenue management system are the customer pur-
chase history as well as product and pricing information. The input data
is gathered in a data collection layer which feeds the quantitative revenue
management model. The revenue management model mainly consists of two
parts, namely an estimation and forecasting component and an optimization
component. The output of the revenue management model is fed into the
central reservation system. Thus, a company effectively controls its capac-
ity by using a quantitative revenue management model. Calculations of the
revenue management model are controlled by analysts who also have the pos-
sibility to set parameters of the model. The capacity of the company is then
sold via different distribution channels, such as global distribution systems,
a sales department, call centers or web servers.

The next chapters describe quantitative revenue management models for
manufacturing companies and propose solution procedures to solve these
models for large problem instances. All mathematical models in the next
chapters are primarily concerned with the optimization routine of a revenue
management system, see figure 1.1.

In Chapter 3, a basic quantitative model for revenue management at a
manufacturing company is presented. After different solution procedures for
evaluating policies and solving the model optimally have been compared with
regards to their running times, a heuristic solution procedure is described
which is able to produce significant improvements for large problem instances.

In chapter 4, the basic quantitative model is expanded by the use of a
finished product inventory because usually manufacturing companies use the
possibility to store finished products in order to be able to fulfill short term
demands which are usually more profitable than longer term demands. A
heuristic procedure is described which first tackles the problem of finding a
good maximum inventory level in the trade-off between inventory holding
costs and the additional profits that can be generated by higher inventory
levels which enable the company to accept more profitable orders. After a
good maximum inventory level has been determined, the heuristic procedure
tries to find a good revenue management policy by trying to find the optimal
rejection level of less profitable orders.

In chapter 5, the basic model of revenue management is expanded by the
possibility of significant setup times and costs. In many industries, companies
offer different products which are produced on the same resources. This
often leads to significant setup times and costs and poses the interesting
research question in how far revenue management can be used to increase
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the profitability in these circumstances. A heuristic procedure is presented
in this chapter as well and the numerical tests show that it performs quite
satisfactorily for a wide range of problem instances.

The dissertation concludes with a summary and an outlook into further
research opportunities.

1.2 Revenue Management

Revenue management originates from the airline industry. In the late 1970s,
airlines started to offer early-bird discounts in order to optimize the capacity
utilization of their flights. One decision problem that emerged immediately
was how many seats should be sold at the early-bird rate while reserving
enough seats for the customers who would book shortly before their depar-
ture and pay the full price. This decision problem spawned a wide-ranging
scientific literature, see McGill and van Ryzin (1999), and started the era of
yield management, which later became known as revenue management.

Today, revenue management has gained ground in a number of industries,
see Talluri and van Ryzin (2004). In order to see what revenue management
presently encompasses, consider the steps a company has to take until the
benefits of revenue management can be reaped, see Wong, Koppelman, and
Daskin (1993). These steps might slightly differ depending on the actual
industry that the company is operating in.

analyzing the
demand structure and

segmenting the
 customers

pricing and fencing
 of customer segments

estimating the demand
in each customer

segment

allocating the
capacity to customer

segments

Figure 1.2: Phases of implementing revenue management

First, a company has to look at its demand structure and segment its
customers by their willingness to pay. This is possible only if there exist
differences in the customers’ willingness to pay which is also a condition
for using revenue management, see below. The result of the segmentation of
customers will be two or more customer classes which differ in certain aspects
of their demand, e.g. willingness to pay and service attributes of the product
sold. An example for different customer classes would be the different cabin
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classes for a certain flight. Here, the customer classes usually differ by their
willingness to pay and certain service attributes of a flight.

Once the customer classes have been segmented, they have to be priced
according to the willingness to pay of the different customer classes. Fur-
thermore, the company has to prevent that customers from higher-priced
customer classes can buy the product from the lower-priced segment. In the
airline industry, this is done by different measures, one of the more familiar
ones being the restriction for tourists that there has to be a weekend between
the dates of their outward and return flights. This way, business class pas-
sengers are discouraged to buy a ticket in the tourist class segment because
business class passengers usually want to be home by the weekend.

After the customer segments have been developed, the stochastic demand
in each customer segment has to be forecasted. These forecasts are then used
to allocate the capacity of the company to the different customer segments.

A central decision problem of this capacity allocation process is to pro-
vide enough capacity for higher-priced segments while not crowding out too
much lower-priced demand. If not enough capacity has been allocated for
the higher-priced demand, the company loses revenue because it could have
accepted more higher-priced demand if it had not accepted so much lower-
priced demand. If, on the other hand, the company reserves too much ca-
pacity for higher-priced customer segments, it will lose revenue because it
could have filled this capacity with demand from the lower-priced customer
segments.

Compared to service industries, the operating conditions of manufactur-
ing companies differ greatly for implementing capacity controls. Thus, in this
dissertation new models and solution procedures for implementing capacity
controls for manufacturing companies with the goal of profit maximization
are considered.
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Figure 1.3: Capacity control at a manufacturing company

Figure 1.3 shows how the capacity control step of revenue management
could be implemented at a manufacturing company. Orders from different
customer classes arrive and are either accepted or rejected in order to reserve
capacity for more profitable orders. All accepted orders are then scheduled
into the production system and maybe partially or completely fulfilled from
an inventory.

In order to utilize the benefits of revenue management, a number of con-
ditions has to be met which are outlined below, see e.g. Kimes (1989).

First, the customers of a company have to have a different willingness to
pay. In order to create this different willingness to pay, the company has to
be able to find product differentiations which evoke a different willingness to
pay on part of the customers. These product differentiations can be gener-
ated by physical or intangible product attributes. An example for a physical
product differentiation would be different quality levels of a product. In the
area of revenue management it is common to consider intangible product
differentiations, e.g. the time between the customers decision to buy and the
customer receiving the product or using the service. In the airline industry it
is common to reserve capacity for high-paying business class passengers who
only book a very short time before departure of the flight. For a manufac-
turing company, the lead time to deliver a product could constitute such a
product differentiation. Customers who need the product urgently are more
likely to have a higher willingness to pay than customers who can wait a bit
longer to receive the product.

A second condition for utilizing the benefits of revenue management is a
stochastic customer demand. If the customer demand would not be stochas-
tic but rather deterministic, the company could decide in advance which
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customers it should accept and which customers to reject and no sophisti-
cated capacity allocation techniques which constitute a major component of
revenue management would be necessary.

A condition on the side of the company are inflexible capacities which can
not always match the demand that the company encounters. If the capacity
would be flexible enough to match any demand, the company could accept all
customers and would not have to select which customers to sell their product
or service for each point in time.

The last condition that has to be met is concerned with the perishabil-
ity of the products or services that the company provides. If the company
could store its supply in advance of the customer demand, the company could
match its supply to the customer demand once it arrives. In the case of a
service company it becomes clear that this condition is easily fulfilled as ser-
vices can not be stored and are thus perishable. In the case of manufacturing
companies this condition can be fulfilled by the fact that inventory capacities
can be limited in the face of strong demand. Make-to-order companies fulfill
this condition because they do not produce for an inventory, and thus their
production capacity is perishable.

1.3 Literature Review

The scientific literature on revenue management is extensive. For a compre-
hensive overview of the literature especially in the non-manufacturing sectors
see McGill and van Ryzin (1999) and Talluri and van Ryzin (2004). When
looking at revenue management for the manufacturing industries, no com-
prehensive literature review exists as yet, so one will be given subsequently.

When optimizing the capacity allocation in a manufacturing context, it
becomes clear that instead of accepting or rejecting passengers the acceptance
or rejection of manufacturing orders placed by customers becomes relevant.
Thus, a high portion of the relevant literature deals with the decision problem
of how many and which orders should be accepted over a finite or infinite
time horizon in a stochastic environment with the optimization criterion of
maximizing profits.

Within the order acceptance literature, a number of authors model the
decision problem with Markov decision processes. Miller (1969) considers the
problem of profit-maximizing admission control to a queue which is basically
equivalent to the order acceptance problem. Miller models the problem by
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a continuous-time Markov decision process and provides a specialized solu-
tion algorithm for the problem that he considers. Lippman and Ross (1971)
extend Miller’s model by allowing service times that are dependent on the
customer classes, a general arrival process and an infinite number of cus-
tomer classes and study this problem with a semi-Markov decision process.
Lippman (1975) considers maximizing the average reward for a controlled
M/M/c queue, adapts a new definition for the transition times in Markov
decision processes and is able to derive several important results. Matsui
(1982, 1985) uses semi-Markov decision processes to consider several order
selection policies for stochastic job shops with the goal of maximizing the
long-term average reward. Carr and Duenyas (2000) use a continuous-time
Markov decision process to model a combined make-to-stock/make-to-order
manufacturing system in order to decide which orders should be accepted and
how many make-to-stock products to make. The authors are able to find the
structure of optimal control and sequencing policies. Kniker and Burman
(2001) propose a discrete-time Markov decision process for order acceptance
at a make-to-order company and Defregger and Kuhn (2004) outline a heuris-
tic for this approach. In an extension of their earlier paper, Defregger and
Kuhn (2007) provide a heuristic procedure for revenue management at a
manufacturing company with the possibility to store its finished goods in an
inventory.

Other modelling concepts for profit-maximizing order acceptance deci-
sions in a stochastic manufacturing context have been used. Keilson (1970)
and Balachandran and Schaefer (1981) provide nonlinear programming mod-
els and solution procedures for the order acceptance problem. In a series of
papers, Balakrishnan, Patterson and Sridharan (1996,1999) and Patterson,
Balakrishnan, and Sridharan (1997) use a decision-theoretic approach for re-
serving capacity of a make-to-order firm for orders with high profit margins.
Caldentey (2001) approximates the order acceptance problem with a dynamic
diffusion control model. In his model the price that the customers are will-
ing to pay changes stochastically over time and the company has to decide
about order acceptance and setting the inventory level. Missbauer (2003)
uses a stochastic model to derive optimal lower bounds for the profit margin
of stochastically arriving orders. Only orders whose contribution margins
exceed the optimal lower bounds are accepted. Barut and Sridharan (2005)
propose a heuristic procedure based on a decision tree analysis in order to
determine amounts of consumable capacity for each order class that can be
used to accept orders of this class.
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While direct order acceptance and rejection is an important technique for
controlling the capacity of a manufacturing company, there are other pos-
sibilities as well. By using these possibilities, a company tries to influence
external demand for the products by changing prices or quoted due dates.
One possibility is the concept of dynamic pricing. Instead of directly ac-
cepting or rejecting certain orders the company can dynamically change the
price for a certain product over time, thus in effect rejecting more orders
when raising the price and accepting more orders when lowering the price.

Low (1974) studies a semi-Markov decision process for determining opti-
mal pricing policies for a M/M/c queue. Harris and Pinder (1995) consider
an assemble-to-order manufacturing company and determine optimal pricing
and capacity reallocation policies for a static revenue management problem
with an arbitrary number of customer classes. Gallego and van Ryzin (1997)
consider pricing a given set of inventories of components that go into finished
products over a finite time horizon. Swann (1999, 2001) examines the suit-
ability of dynamic pricing in a manufacturing context and analyzes different
dynamic pricing models. Chen and Frank (2001) analyze pricing policies
for a company with homogeneous or heterogeneous customers where prices
for admission to the queue depend on the size of the queue. Elimam and
Dodin (2001) use nonlinear programming in order to determine optimal price
discount levels during off-peak periods at a manufacturing company. Chan,
Simchi-Levi, and Swann (2003) consider dynamic pricing strategies in a finite
horizon problem under non-stationary, stochastic demand. Ziya, Hayriye,
and Foley (2006) investigate optimal prices for M/M/1/m and M/GI/s/s
blocking systems.

Besides dynamic pricing, companies can also control their capacity by
quoting different due dates to customers. By quoting longer due dates the
company can decrease external demand and is thus effectively rejecting more
orders, while quoting shorter due dates increases the demand. Duenyas
(1995) and Duenyas and Hopp (1995) use semi-Markov decision processes
to solve the problem of quoting optimal lead times to customers when the
probability of a customer placing an order depends on the lead time quoted
to him. Easton and Moodie (1999) develop a probabilistic model in order
to determine optimal pricing and due date setting decisions and Watanapa
and Techanitisawad (2005) extend Easton and Moodie’s model. Kapuscin-
ski and Tayur (2000) are able to determine the structure of an optimal due
date setting policy for a revenue management problem at a make-to-order
company. Keskinocak, Ravi, and Tayur (2001) study several online and of-
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fline algorithms for quoting lead times to different customer classes where
revenues obtained from the customers are sensitive to lead time.

For a literature review with mostly finite-horizon models on coordinating
pricing with inventory and production decisions, see Chan, Shen, Simchi-
Levi, and Swann (2004). If customers do not require an immediate reply
whether their order will be accepted or not, the production capacity can also
be auctioned off, see Gallien and Wein (2005) or Baker and Murthy (2005).



Chapter 2

Empirical Study

2.1 Overview

An empirical study was conducted to answer three research questions con-
cerning the current state of revenue management in the German paper, steel
and aluminium industries:

• What proportion of companies in these three sectors currently uses
revenue management?

• What proportion of companies in the three sectors could potentially
use revenue management in order to boost their profits?

• Does the size of a company have an influence on the answer of the first
two research questions?

To answer these questions, questionnaires were sent to 311 companies in
Germany. The paper, steel and aluminium industries were chosen because it
is assumed that companies in these sectors are more likely than not to fulfill
one of the conditions to use revenue management profitably, which is to have
a relatively fixed capacity. 87 companies belong to the aluminium industry,
141 companies belong to the paper industry and 83 companies belong to the
steel industry.

Before starting the real study, a pre-test was conducted with 27 randomly
selected companies in order to obtain an estimate of the response rate and
to assert that all questions were understood correctly by the companies. 6
companies answered, resulting in a satisfactory response rate of 22%. The
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questionnaire underwent minor modifications and was sent to the remaining
284 companies. 74 companies responded and after sending a reminder letter
33 more companies answered, resulting in a response rate of 38%.

The three research questions mentioned above were not asked directly in
the questionnaire, but were rather modeled by a set of additional research
questions. These additional research questions were then formed into writ-
ten questions that were asked directly in the questionnaire. All answers
to a research question were then recorded as the percentage proportion of
the companies who answered the question positively. As the population of
this empirical study is finite, these percentage proportions are governed by a
hypergeometric distribution. The sample size for these hypergeometric dis-
tributions is given by the 107 companies which answered the questionnaire
while the population is 284 companies. Some companies did not answer all
questions of the questionnaire so that for these questions the sample size is
less than 107. These questions will be marked accordingly.

In addition to the estimated proportions of the positive answers for each
research question the confidence intervals for these proportion estimators
were calculated by the method of Wendell and Schmee (2001) using the statis-
tical system R, see R Development Core Team (2007). The overall confidence
level that the true proportions lie in their respective confidence intervals was
set to 90%. As there are 19 proportion estimators overall, the confidence
level for a single confidence interval can be calculated by Boole’s inequal-
ity which is mistakenly known as Bonferroni’s inequality, see Seneta (1993).
Boole’s inequality states that the probability that all confidence intervals Cs

simultaneously contain their respective true proportions µs satisfies

P (µs ∈ Cs,∀s ∈ {1, . . . , 19}) ≥ 1−
19∑

s=1

αs

where Cs is a confidence interval for the proportion µs with a confidence
level of 1 − αs, see Law and Kelton (2000). As the probability P is set to
90% and each of the 19 confidence intervals is set to have the same level of
confidence, the confidence level 1− αs of each of the 19 confidence intervals
can be calculated by

0.9 = 1− 19αs ⇔ αs =
0.1

19
⇔ 1− αs ≈ 99.5%
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Thus, when calculating the individual confidence intervals by the method of
Wendell and Schmee (2001), an individual confidence level of αs = 0.5% was
used.

2.2 Companies Using Revenue Management

To answer the question if a certain company is currently using revenue man-
agement, the following research questions were formulated:

(1) Does the company segment its customers?

(2) Does the company use price differentiation for its custom segments?

(3) Does the company regularly use forecasts?

(4) Does the company use revenue management capacity allocation tech-
niques?

As question (4) can not be asked directly from a company, this question
is represented by the following three questions:

(4.1) Does the company sometimes reject orders even if it could accept them,
in the hope that a more lucrative order would arrive?

(4.2) Does the company demand higher prices for urgent orders?

(4.3) Does the company vary its prices depending on the current capacity
utilization?

If one of these three questions is answered with a ”yes”, one can assume
that the company allocates its capacity in a revenue management manner.
Figure 2.1 shows the proportions of positive answers for question (4) and
its derived questions (4.1) through (4.3) with the 99.5% confidence intervals.
It can be seen that about 6% of the companies sometimes reject orders in
the hope that more lucrative orders would arrive. About 10% of the compa-
nies demand higher prices for urgent orders and about 6% vary their prices
depending on the current capacity utilization. Overall almost 20% of the
companies fulfill one of the three criteria (4.1) through (4.3) and can thus be
classified as using capacity allocation techniques in a revenue management
manner.
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Figure 2.1: Proportion of companies that use capacity allocation
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Figure 2.2: Proportion of companies that use revenue management

Figure 2.2 shows the proportions for answers (1) to (4) and the resulting
proportion of companies who currently use revenue management which is
assumed to be the case if all questions (1) to (4) was answered positively. It
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can be seen that most companies segment their customers, use price differ-
entiation among those segments and regularly use forecasts. Thus, overall
about 14% of the companies questioned currently use revenue management.

2.3 Potential of Revenue Management

To answer the question if a company has the potential for profitably using
revenue management the following questions were asked:

(1) Can the company segment its customers?

(2) Is the customer demand stochastic?

(3) Does the company have inflexible production capacities?

(4) Does the company have perishable production capacities?

For the question if the company can segment its customers the companies
were asked about how long the average time is between receiving an order
and the latest possible production start to fulfill this order. The answer to
this question is depicted in figure 2.3.

0%

20%

40%

60%

< 1 day [1 day, 1 w eek] [1 w eek, 1 month] [1, 3] months > 3 months

Figure 2.3: Distribution of the average time between receiving an order and
the latest possible production start to fulfill that order
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Figure 2.3 shows the hypergeometric distribution of the time range men-
tioned. Confidence intervals for a multidimensional hypergeometric distri-
bution are not available. It can be seen that only at about 4% of the 104
companies who answered this question the time range was less than 1 day.
Thus, 96% of the companies have the possibility to classify their customers
according to the lead time wanted by a customer. In order to be able to
segment the customers, a company has to have a minimum number of differ-
ent customers. Thus, the companies were asked if they receive orders from
more than 10 different customers regularly. This was the case for 105 out of
106 companies who answered this question. Overall, 98 of 103 and thus 95%
of the companies who answered both questions had more than 10 customers
and a time range between receiving an order and the latest possible start
date for production of the order of more than 1 day. Thus, about 95% of the
companies questioned can segment their customers.

To answer question (2) if customer demand is stochastic the companies
were asked if unexpected orders arrive at the company from time to time.
This was the case at 106 of the 107 companies who answered this question.

To answer question (3) if a company has inflexible production capacities,
two indirect criteria were measured:

(3.1) Does the company have the possibility to order extra hours of work or
can orders be outsourced to subcontractors if the company’s production
capacity is fully utilized?

(3.2) Does the company need more than 1 month to expand its own produc-
tion capacities?

If the first criterion is answered negatively and the second criterion is
answered positively one can assume that the production capacities of the
company are fixed. Figure 2.4 shows the results of questions (3.1), (3.2) and
(3). It can be seen that about 67% of the companies answered question (3.1)
negatively and 105 out of 107 companies answered question (3.2) positively.
Thus it can be concluded that about 2 thirds of the companies surveyed have
inflexible production capacities.
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Figure 2.4: Proportion of companies with inflexible production capacities

To answer question (4) if a company has perishable production capacities,
the following criteria were developed:

(4.1) Does the company produce without an inventory?

(4.2) Is the inventory capacity usually too scarce?

(4.3) Does the company start production only after receiving an order for a
significant share of all orders?

If one of the three criteria is met one can assume that the production
capacity of the company is perishable. Figure 2.5 shows the results for ques-
tion (4.1), (4.2) and (4). About 9% of the 106 companies who answered this
question have no inventory. About 43% of the 99 companies that answered
this question have scarce inventory capacities and about 81% of the 105 com-
panies that answered this question have a significant shares of orders that are
produced in a make-to-order manner. Overall about 90% of the companies
that answered one of these questions have perishable capacities.
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Figure 2.5: Proportion of companies with perishable production capacities
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Figure 2.6: Proportion of the companies which fulfill the conditions to use
revenue management

In conclusion, figure 2.6 shows the estimated proportions of the condi-
tions for the companies to use revenue management in a profitable manner.
Overall, about 56% of the companies have the potential to use revenue man-
agement. On the other hand, about 47% of the companies with a potential
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to do so do not use revenue management. This shows that these companies
should at least seriously consider to introduce a revenue management system.

2.4 Influence of the Size of a Company

The third research question is concerned with the influence of the size of
a company on the actual and potential use of revenue management. This
research question was examined by contingency tables, see Agresti (2002).
The size of a company was measured by the number of people employed at
that company. A company was classified as small if its number of employees
fell into the [0, 49] interval, as medium-sized if its number of employees fell
into the [50, 499] interval and as large if its number of employees fell into
the [500,∞] interval. Out of the 107 companies that answered the ques-
tionnaire, there were 7 small companies, 64 medium-sized companies and 36
large companies. Denote by U the size of a company, where U can take one
of the values ”small”, ”medium” or ”large”. Denote by W the variable that
a company currently uses revenue management and by O the variable that a
company has the potential for using revenue management. Table 2.1 shows
the contingency table for the variables U and W .

small medium large
∑

revenue management is used 0 8 7 15

revenue management is not used 7 56 29 92

7 64 36 107

Table 2.1: Contingency table for the influence of the size of a company on
whether it uses revenue management or not

It can be seen that no small company currently uses revenue management,
while 8 out of 64 medium-sized companies and 7 out of 36 large companies
currently use revenue management. These proportions are depicted in figure
2.7.

While figure 2.7 seems to suggest that the size of a company has an
influence on whether it is currently using revenue management or not this
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Figure 2.7: Proportions of the companies which use revenue management

assumption can not be validated statistically. The significance level of a
statistical test is the maximum probability of falsely rejecting a true null
hypothesis. The p-value is the smallest significance level at which the null
hypothesis would be rejected for a given observation, see Conover (1999). As
the null hypothesis is rejected if the calculated p-value is smaller than the
significance level chosen by the researcher, a low p-value gives strong evidence
that the null hypothesis of a statistical test can be rejected. A significance
level of 0.05 was chosen for all statistical tests.

In order to test for the independence of the variables U and W , the chi-
square test is employed which results in a p-value of 0.3425. This shows
that the null hypothesis that the variables U and W are independent can
not be rejected at a significance level of 0.05 and it can not be demonstrated
that the size of a company has an influence on whether that company uses
revenue management. This is confirmed by the relatively low value of 0.142
for the association measure of Cramér which can be viewed as a coefficient
of correlation for nominal data, see Agresti (2002).

When looking at the influence of the size of a company on its potential
to use revenue management a different picture emerges. Table 2.2 shows the
contingency table for the variable U and O.

Figure 2.8 shows that almost half of the small and medium-sized com-
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small medium large
∑

potential for revenue management 3 28 27 58

no potential for revenue management 4 35 7 46

7 63 34 104

Table 2.2: Contingency table for the influence of the size of a company on
its potential to use revenue management

panies have the potential to use revenue management while almost 80% of
the large companies have this potential. Using the chi-square test a p-value
of 0.0033 emerges so the null hypothesis of independence of the variables U
and O can be rejected. Thus, one can say that the size of a company has
an influence whether a company can successfully use revenue management.
According to the data, larger companies have a greater potential for rev-
enue management than smaller companies. This is confirmed by Cramér’s
association measure which takes a value of 0.332.
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Figure 2.8: Proportions of the companies which have the potential for revenue
management
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Overall, one can say that the size of a company does not have any in-
fluence on whether the company is currently using revenue management but
larger companies seem to have a greater potential for making use of revenue
management than smaller companies. Kuhn and Defregger (2005) give a
more elaborate discussion of the empirical study.



Chapter 3

Basic Model

In this chapter a basic quantitative model for applying revenue management
to a manufacturing company is presented, following the paper of Kniker
and Burman (2001). Furthermore, we compare different solution procedures
for evaluating a policy and solving the decision model and we present a
heuristic procedure for solving the decision model. Numerical results show
that applying revenue management can have a distinct advantage over a
simple first-come-first-served (FCFS) policy and that the heuristic procedure
is useful for finding good policies for large problem instances.

3.1 Model

In this section the decision model is described. After presenting the model
assumptions and formulating the model, the model is classified. The classifi-
cation is necessary in order to find the correct solution procedures that can
solve the model. At the end of this section, the procedure to create individual
problem instances is described.

3.1.1 Model Assumptions

Consider a make-to-order company with one machine and one or more prod-
uct types. Orders of different order classes arrive at the company. Each
product type can encompass one or more order classes. The order classes
differentiate the orders by their profit margins, lead times, processing times
and arrival probabilities. The company has to decide which orders to accept
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and which orders to reject. It might be more profitable for the company not
to accept all orders because if the company accepts all orders, the situation
might arise that the company has to reject orders of order classes with higher
profit margins because it accepted too many orders of order classes with lower
profit margins. In this situation, the orders with lower profit margins crowd
out the orders with higher profit margins and the company loses some profits.
Thus, the company has to decide in which situations it should accept which
order classes. If many orders have been accepted and not been processed yet,
it might be wise only to accept orders with relatively high profit margins. If
the current queue of accepted orders is empty, the situation is different. Here
it might be profitable to accept any order which arrives at the company. The
decision problem is depicted in figure 3.1.

Incoming orders

Accept?

No

Delivery
Yes

MachineAccepted
orders

Figure 3.1: Basic decision problem

3.1.2 Model Formulation

The model is an infinite-horizon discrete-time Markov decision process which
is characterized as follows. All orders arriving at the company belong to a
certain order class n ∈ {1, . . . , N}. In each discrete time period at most
one order of any class n can arrive with probability pn,

∑N
n=1 pn < 1 . All

orders of class n have a profit margin of mn monetary units, a capacity usage
of un discrete time periods and a lead time of ln time periods. The lead
time specifies that the customer is willing to wait for a maximum of ln time
periods when placing the order at the company. To model the case that
no order arrives in a given period, the dummy order class n = 0 is used,
p0 = 1−∑N

n=1 pn, p0 > 0, m0 = u0 = l0 = 0.
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Each system state (n, c) is characterized by the two state variables n and
c, where n is the order class of the order that has arrived at the beginning of
the current period and c is the number of periods that the capacity is booked
out by orders which have already been accepted and not been completed yet.
The set of all system states (n, c) is denoted by S. The number of states |S|
for a certain problem instance is given by

|S| = (N + 1) lmax (3.1)

where lmax, the maximum lead time, is given by lmax = maxn ln. Each state
has a set of decisions D[(n, c)] which can be taken in that state. The state-
dependent decisions D of the Markov decision process are given by

D[(n, c)] =

{
D1 := ”reject”

D2 := ”accept” : n > 0 ∧ c + un ≤ ln

Orders can always be rejected and in the case no order arrives D1 has the
meaning of ”wait for the next order to arrive”. An order can only be accepted
if an order has arrived (n > 0) and the order can be finished within its lead
time ln. Action- and state-dependent rewards R are given by

RD1[(n, c)] = 0, ∀(n, c) ∈ S

RD2[(n, c)] = mn, ∀(n, c) ∈ S

The company receives a reward of mn if it accepts an order of class n, other-
wise there is no reward. The transition probabilities in the case of rejecting
an order are:

PD1[(n, c), (m, max{c− 1, 0})] = pm,∀(n, c) ∈ S, ∀m ∈ {0, . . . , N}
By rejecting an order or waiting for the next order to arrive the capacity
usage c is decreased by 1. If c has reached zero, it stays zero if the company
continues to reject orders or no orders arrive. The transition probabilities for
accepting an order are:

PD2[(n, c), (m, c + un − 1)] =

{
pm, ∀(n, c) ∈ S, m ∈ {0, . . . , N}
0, else
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When accepting an order, c is increased by un, but c will be decreased by one
unit by the beginning of the next period because of the ongoing production.
Thus, c can range between 0 and cmax = lmax − 1. By solving the Markov
decision process an optimality criterion is optimized by finding the optimal
policy πopt which maps an optimal decision to each state (n, c).

With regards to the optimality criterion of the Markov decision process
we follow the recommendation of Puterman (1994). He recommends using
the average reward per period for the optimality criterion when decisions are
made frequently which is the case here.

3.1.3 Model Classification

Before a solution procedure to solve the Markov decision process can be ap-
plied, the Markov decision process has to be classified. As we will show, this
Markov decision process can be classified as unichain. According to Puter-
man (1994), a Markov decision process can be classified as unichain if the
transition matrix to every deterministic policy consists of a single recurrent
class plus a possibly empty set of transient states. A state is classified as
recurrent if there is a positive probability that the stochastic process will
return to this state time if the stochastic process currently is in this state.

In order to show that the Markov decision process is unichain, the two
state variables n and c have to be considered. First, consider the state
variable n. In every period, any order of class n ∈ {1, . . . , N} can arrive so
the Markov decision process will always be unichain with regards to the state
variable n.

With regards to the state variable c, it has to be shown that all capacity
booking levels c ∈ {0, . . . , cmax} can be reached under all policies whereby
cmax can vary depending on the policy.

For a FCFS policy which accepts all orders whenever possible, cmax =
lmax − 1. For this policy one can see that all states (n, c) are recurrent
under this policy because any capacity booking level c ∈ {0, . . . , cmax} can
be reached repeatedly over time. The capacity booking level can always reach
its maximum cmax if every period an order arrives for an extended period of
time. Furthermore, c can also reach its minimum of zero and stay there if
no order arrives for a long period of time. As every state is accessible from
every other state the transition matrix consists of a single recurrent class
under this policy.

There are other policies where the maximum cmax that c can reach will be
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lower than lmax − 1. This might be either due to policies that do not accept
all order classes, specifically order class n = arg maxn ln or due to policies
that accept all order classes but not in all capacity booking levels c where
they could be accepted. In the case of such a policy one can see that all
states (n, c) with c > cmax will be transient states and all states (n, c) with
c ≤ cmax will be recurrent states.

In conclusion, under any policy the resulting transition matrix consists of
a single recurrent class plus a possibly empty set of transient states and the
Markov decision process can accordingly be classified as unichain. It follows
that in order to solve this Markov decision process, the unichain versions of
the standard solution procedures can be applied.

3.1.4 Creating Problem Instances

As we compare different solution procedures to evaluate a given policy in the
next section with a set of randomly created problem instances, the procedure
to create an individual problem instance is presented here.

The input data to the routine that creates a single problem instance is the
number of states |S|, the number of order classes N and the traffic intensity
ρ which is given by ρ =

∑N
n=1 pn un. The number of order classes N is drawn

from a uniform distribution whose range depends on the number of states |S|.
For example, when comparing different evaluation and solution procedures
of Markov decision processes, the number of states is set to 10,000 and the
range of the uniform distribution for the number of order classes is set to
[5, 30].

Once the number of order classes N and the traffic intensity ρ have been
determined for a certain problem instance, the maximum lead time lmax can
be calculated by

lmax = b|S|/(N + 1)c (3.2)

see equation (3.1). The real number of states that the problem instance will
have is calculated by

|S|real = lmax(N + 1).

|S|real will often differ marginally from the number of states |S| that was
originally planned for the problem instance because |S|, lmax and N all have
to be integer numbers.



28 CHAPTER 3. BASIC MODEL

After lmax and |S|real have been calculated, for each order class n ∈
{1, . . . , N} the routine randomly draws the share σn in the traffic inten-
sity ρ, where

∑N
n=1 σn = 1. One possibility would be to give each order

class an equal share of σn = 1/N , but in order to account for more diverse
distributions of the σn, they are drawn by the following procedure.

Algorithm 3.1 Draw shares σn in the traffic intensity

draw σ ∼ U [0.01
N

, 1
N

]

σ ← 1− (N − 1) σ

σv ← σ

for n = 1 to N − 1 do

draw σn ∼ U [σ, σv]

σv ← min{1−∑n
m=1 sm − (N − 1− n) σ, σ}

end for

sN ← 1−∑N−1
n=1 σn

First, a global lower bound σ for all σn is drawn from a uniform [0.01/N, 1/N ]
distribution. If σ is drawn to be near 1/N , then most σn will be near 1/N
and each order class will have a similar share of the overall traffic intensity.
On the other hand, if σ is drawn to be near 0.01/N , the shares of the traffic
intensities can have a much higher variance. The possible variation of σ
ensures the possibility of a large number of different distributions of the
shares σn.

After σ has been drawn, a global upper bound σ for all σn, n ∈ {1, . . . , N−
1} is calculated by σ = 1−(N−1) σ. A variable upper bound σv is initialized
with the global upper bound σ. Then, for each order class n ∈ {1, . . . , N−1}
a share in the traffic intensity is drawn from a uniform [σ, σv] distribution
and the upper bound σv is updated accordingly after each iteration. In the
end, sN is calculated by 1−∑N−1

n=1 σn.
After the shares σn have been specified, the traffic intensity ρn of each

order class n can be calculated by

ρn = σnρ (3.3)
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and the order classes are sorted in ascending order by their traffic intensities
ρn. After that, N capacity usages un are drawn from a uniform [1, lmax] distri-
bution for each order class and sorted in ascending order as well. The ordered
usages are matched to the ordered traffic intensities ρn. This matching of
low usages with low order class traffic intensities and high usages with high
order class traffic intensities is done to minimize extremely low probabilities
pn which can cause numerical instabilities.

Now the arrival probability pn for every order class can be calculated by
pn = ρn/un. The probability p0 that no order arrives in a period is calculated
by p0 = 1−∑N

n=1 pn. Subsequently, the lead time ln of each order class n is
drawn from a [un, lmax] uniform distribution. Then the relative profit margin
mrel

n for each order class n ∈ 1, . . . , N is drawn. The relative profit margins
are drawn instead of the profit margins mn because order classes can be better
compared by their relative profit margins instead of their profit margins. The
relative profit margins are drawn from a [1,5] left triangular distribution, see
figure 3.2. The left triangular distribution was chosen because it is more
likely that only a few order classes have a high relative profit margin while
most order classes should have lower relative profit margins.

1 5

0.5

Figure 3.2: Density function of a left triangular [1, 5] distribution

After the relative profit margins mrel
n have been drawn, they are sorted in

ascending order and matched to the N order classes which have been sorted
by their lead times in descending order. This ensures that orders of classes
with shorter lead times receive higher relative profit margins than orders of
classes with longer lead times. In the end, the profit margin mn can be
calculated for each order class n from the relative profit margin by mn =
unmrel

n .
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In the next section, different solution procedures for evaluating the aver-
age reward of a given policy are presented. To compare them with respect to
their running times, a number of problem instances are created by following
the procedure that was described in this section.

3.2 Evaluating a Policy

A policy π is a rule which specifies for each state i ∈ S which decision
d ∈ D(i) should be taken once the system enters state i. A policy is called
a stationary policy if the decision to be taken in each state does not vary
over time. We only consider stationary policies. Once a policy π has been
selected, the discrete-time Markov decision process reduces to a discrete-time
Markov reward process with transition probabilities P π(i, j) from state i to
state j and rewards Rπ(i) that the decision maker receives when leaving state
i under the given policy π. In order to compare different policies one has
to evaluate the average reward per period g(π) that results from a certain
policy π. In the following, we describe four solution procedures to evaluate
the average reward g(π) of a given policy π for a unichain Markov decision
process, for a reference see Puterman (1994) or Tijms (1994). At the end
of this section, the procedures to evaluate a given policy are compared with
respect to their running times.

3.2.1 Evaluation Equations

One possibility to evaluate the average reward g(π) is to solve the evaluation
equations which are given by the linear system of equations

g(π) + v(i)−
∑
j∈S

P π(i, j) v(j) = Rπ(i), ∀i ∈ S (3.4)

where P π(i, j) denotes the transition probability from state i to state j and
Rπ(i) denotes the reward the decision-maker receives when leaving state i
under policy π. The components v(i) represent relative values between states.
The difference between the relative values of two states i and j, v(i)− v(j),
indicates the difference in the total expected reward if the stochastic process
starts in state i and not in state j. For example, if v(i) = 0 and v(j) = −10
and the Markov reward process starts in state i, the decision maker will have
10 monetary units more overall than if the process would have started in
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state j. In contrast, the average reward g(π) is independent of the state that
the system starts in, at least for the unichain Markov decision processes that
are considered here.

As the system of equations (3.4) is under-determined, one of the compo-
nents v(i) has to be set to zero in order to solve the evaluation equations.
In the case of the mathematical model described in section 3.1.2 we set the
relative value of the state (n = 0, c = 0), v[(0, 0)], to zero to obtain the
following linear system of equations:

v[(0, 0)] = 0 (3.5)

g(π) + v(i)−
∑
j∈S

P π(i, j) v(j) = Rπ(i),∀i ∈ S (3.6)

For solving linear systems of equations one can use direct or iterative
methods. As the transition matrices of the Markov reward processes are
large systems with a high percentage of zero entries, iterative methods are
preferred in terms of both computer memory requirements and running times,
see Burden and Faires (1997). The Gauss-Seidel iterative technique was used
for solving the linear system of evaluation equations, for implementation
considerations see Stewart (1994).

Usually one can use over-relaxation in order to speed up the Gauss-Seidel
iterative technique, but over-relaxation did not work for the basic model
described in section 3.1.2 because the iterative process diverged for unknown
reasons.

Even when not using over-relaxation, the Gauss-Seidel iterative technique
did not converge for the relative values of states which have the same relative
value as state (0,0), i.e. for states i where v(i) = v[(0, 0)] = 0. Denote
the set of these states by Sv=0. By using under-relaxation, the iterates of
v(i), i ∈ Sv=0, converged, but we developed a different approach which makes
it possible to forgo under-relaxation and thus results in faster computations.

This approach starts by identifying all states in the set Sv=0 and then
using a special convergence test for the iterates of v(i), i ∈ Sv=0. The states
i ∈ Sv=0 can be identified by the following property:

i ∈ Sv=0 ⇔ v(i) = v[(0, 0)] = 0 ⇔ (c = 0 ∨ c = 1) ∧Rπ(i) = 0 (3.7)

This means a state has the same relative and thus economic value as state
(0, 0) if it models a current capacity usage of either 0 or 1 and if no reward
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is obtained when entering this state under policy π. Property (3.7) can be
explained by the fact that no reward can be collected in state (0, 0) because
no order has arrived in this state and that the state (0, 0) will inevitably
transition to a state where the capacity usage c stays 0. This transition to
a state with c = 0 can only happen from a state with c = 0 or c = 1 and in
which no order is accepted and consequently no reward is received.

As the relative values v(i), i ∈ Sv=0 are known to equal v[(0, 0)] = 0, the
convergence test for these relative values is set to

|v(i)(k)| < β, i ∈ Sv=0

where v(i)(k) is the iterate of v(i) in iteration k and β is chosen to be 10−10.

The convergence test for the relative values v(j), j 6∈ Sv=0 is given by

|v(j)(k) − v(j)(k−1)|
|v(j)(k)| < δ, j 6∈ Sv=0

where v(j)(k) is the iterate of v(j) in iteration k and δ is chosen to be 10−5.
In order to validate the results of our implementation of the Gauss-Seidel
iterative technique and to see if the equations could be solved faster, we also
solved the linear system of evaluation equations by formulating it as a linear
program and solving it with CPLEX 6.0. The linear program was imple-
mented by setting equations (3.5) and (3.6) as constraints and maximizing
g(π). The results are presented in section 3.2.5.

3.2.2 Stationary Probabilities

The average reward g(π) of a certain policy π can also be obtained by

g(π) =
∑
i∈S

P̃ π(i) Rπ(i)

where P̃ π(i), i ∈ S, is the stationary probability of state i resulting from the
Markov reward process under policy π and Rπ(i) is the reward obtained in
state i under policy π. The stationary probabilities P̃ π(i) are obtained by
the following system of equations:
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P̃ π(j) =
∑
i∈S

P̃ π(i) P π(i, j), ∀j ∈ S (3.8)

∑
i∈S

P̃ π(i) = 1 (3.9)

In order to solve this system of linear equations the Gauss-Seidel iterative
technique is used for equations (3.8) and the P̃ π(i) are normalized after
obtaining a solution.

The convergence test of all iterates P̃ π(i) is given by

|P̃ π(i)(k) − P̃ π(i)(k−1)|
|P̃ π(i)(k)| < δ, ∀i ∈ S

where P̃ π(i)(k) is the iterate of P̃ π(i) in iteration k and δ is chosen to be
10−5. The system of linear equations (3.8) and (3.9) was also solved using
CPLEX by formulating this system as constraints of a linear program with
the objective function of maximizing the left-hand side of equation (3.9).

As the stationary probability distribution that CPLEX provides by di-
rectly implementing equations (3.8) and (3.9) is not exact enough for a large
number of states |S|, equation (3.9) was replaced by

∑
i∈S

P̃ π(i) = |S|

and the P̃ (i) were normalized after obtaining the solution from CPLEX. This
way, we were able to obtain an exact stationary probability distribution.

3.2.3 Simulation

A Markov reward process resulting from a certain policy can also be evaluated
by simulation. Simulation can be implemented by starting out in a certain
state, e.g. state (0, 0), and simulating the stochastic process that is governed
by the Markov chain of the Markov reward process resulting from policy π.
During each transition, the rewards that are received in the visited states are
accumulated and at the end of a simulation replication the average reward
per period can be estimated by dividing the accumulated average reward by
the replication length. In order to estimate the average reward per period of
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a given policy, a number of such simulation replications has to be performed.
The final result of simulating a certain policy π is an estimate ĝ(π) for the
true average reward g(π) of this policy as given by the following equation:

ĝ(π) = Xπ(n) =
n∑

i=1

Xπi

n

where Xπ(n) is the average of the average rewards Xπi that are obtained in
the replications i ∈ {1, . . . , n} when simulating policy π.

An approximate 100(1−α) percent confidence interval for Xπ(n) is given
by

Xπ(n)± tn−1,1−α/2

√
S2(n)

n

where tn−1,1−α/2 is the upper (1 − α)/2 critical point for the t distribution
with n − 1 degrees of freedom and S2(n) is the sample variance of the Xπi

that were obtained by the n replications so far, see Law and Kelton (2000).
The number of replications to be made depends on the precision of the

estimated average reward that one wants to obtain. A measure for this
precision can be given by the relative error γ which is given by

γ =
|Xπ(n)− g(π)|

|g(π)|
where g(π) is the true average reward associated with policy π. In order
to obtain an estimate of g(π) with a maximum relative error of γ and a
confidence level of (1 − α) one first makes a certain minimum number of
replications and continues to make replications until

tn−1,1−α/2

√
S2(n)

n

Xπ(n)
≤ γ

1 + γ
,

see Law and Kelton (2000). We set γ to 0.5% and α to 5% so one can be
sure with an approximate confidence level of 95% that the estimated average
reward ĝ(π) which is obtained in a given simulation run does not differ by
more than 0.5% from the true average reward g(π).

The replication length and the length of the warm-up period have to be
set as well. To determine the length of the warm-up period the procedure of
Welch is used, see Law and Kelton (2000).
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Figure 3.3: Procedure of Welch to determine the warmup period and proce-
dure to determine the run length of a single replication

In order to determine the run length for a simulation run, a single pilot
run is conducted with a warmup period that has been determined by the
procedure of Welch. In this pilot run, the cumulated average reward per
period is calculated for every period and graphically displayed, see figure
3.3. Similarly to the procedure of Welch, the run length for all replications
is determined where the plot seems reasonably smooth.

One further parameter that has to be set before any simulation runs can
take place is the minimum number of replications to be performed. Following
Law and Kelton (2000), the minimum number of replications is set to ten.

The built-in random number generator of the programming environment
that we used had only a period of 224−1. This was sometimes not enough to
achieve a sufficiently high number of long replications to meet the maximum
relative error of γ = 0.5%. Consequently, we implemented the combined mul-
tiple recursive random number generator MRG32k3a. This random number
generator has a period of about 2191 and better statistical properties, see
L’Ecuyer (1999) and L’Ecuyer (2001).

3.2.4 Value Iteration

One of the standard methods for finding an optimal policy is the value iter-
ation algorithm. This algorithm cannot only be used for solving a Markov
decision process, however, but for evaluating a given policy π as well. This
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is detailed in algorithm 3.2.

Algorithm 3.2 Value iteration for evaluating a policy

n ← 1

V0(i) ← 0, ∀i ∈ S

repeat

1. compute for every state i ∈ S the values Vn(i) by

Vn(i) ← Rπ(i) +
∑
j∈S

P π(i, j)Vn−1(j), ∀i ∈ S

2. compute the bounds

∆V ← min
i∈S

{Vn(i)− Vn−1(i)}

∆V ← max
i∈S

{Vn(i)− Vn−1(i)}

3. n ← n + 1

until ∆V −∆V ≤ ε ∆V

obtain an estimate ĝ(π) for the average reward g(π) by

ĝ(π) ← ∆V + 0.5 (∆V −∆V )

It can be seen that for each state i ∈ S the values Vn(i) are calculated
during each iteration n. Each value Vn(i) represents the value of state i if
the stochastic process would end in n periods. The successive differences
Vn(i) − Vn−1(i) will eventually converge to the average reward g(π) of the
policy as the lower bound of the differences, ∆V , will continually increase
and the upper bound ∆V will continually decrease. Value iteration can
only approximate the true average reward g(π) by its estimate ĝ(π) with
an accuracy of ε, though. Similar to the relative error γ that is used in
simulation, ε is set to 0.5%.
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3.2.5 Comparing Procedures to Evaluate a Policy

In order to determine which solution procedure to evaluate a given policy is
most suitable they are compared with respect to their running times.

3.2.5.1 Small Problem Instances

The solution procedures were compared with 100 problem instances, each in-
stance with a problem size |S| of 10,000 states. The number of order classes
was drawn from a [5, 30] uniform distribution for each problem instance and
the traffic intensity from a [1, 2.5] uniform distribution. For each problem
instance, the FCFS policy which accepts all orders as long as they can be
accepted was evaluated by each solution procedure on a 733 MHz Intel Pen-
tium machine with 392 MB of memory and the running time to evaluate the
FCFS policy was measured for each solution procedure.

In order to validate the correct implementation of the solution proce-
dures, the average reward of each solution procedure was compared to the
average reward of the solution procedure ”Evaluation Equations (CPLEX)”
for each problem instance. Table 3.1 shows the maximum over all 100 prob-
lem instances of the absolute percentage deviation from the solution proce-
dure ”Evaluation Equations (CPLEX)” for each of the other five solution
procedures.

solution procedure mean maximum

evaluation equations (Gauss-Seidel) 0.00% 0.00%

stationary probabilities (Gauss-Seidel) 0.01% 0.12%

stationary probabilities (CPLEX) 0.00% 0.00%

simulation 0.21% 1.08%

value iteration 0.08% 0.20%

Table 3.1: Mean and maximum of absolute percentage deviations of the
average rewards compared to the average rewards obtained by solving the
evaluation equations with CPLEX

It can be seen that all solution procedures were implemented correctly
as they gave nearly identical average rewards over all 100 problem instances.
For simulation, the estimated average rewards of 99 problem instances staid
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within the maximum relative error γ of 0.5% while the estimated average
reward for one problem instance differed by about 1% from the true average
reward.

Table 3.2 gives the mean and standard deviations of the 100 running times
for each solution procedure. It can be seen that some means differ greatly.
In order to check if the differences in means have any statistical significance
a statistical test has to be employed. In order to decide which statistical test
should be used the data should be inspected and tested for normality first.

solution procedure mean standard deviation

evaluation equations (Gauss-Seidel) 1.6 1.6

evaluation equations (CPLEX) 26.2 30.7

stationary probabilities (Gauss-Seidel) 117.6 96.9

stationary probabilities (CPLEX) 193.3 48.5

simulation 11.8 7.8

value iteration 49.5 24.2

Table 3.2: Mean and standard deviation of running times in seconds

Thode (2002) recommends to graphically inspect the data by at least a his-
togram and a probability plot in order to identify distributional characteris-
tics before employing a statistical test.

As the histograms and quantile-quantile (Q-Q) plots of the running times
in figures 3.4 and 3.5 show, the running times do not seem to be normally
distributed.
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Figure 3.4: Histograms and Q-Q plots of 100 running times for solving the
evaluation equations and for obtaining the stationary probabilities with the
Gauss-Seidel procedure



40 CHAPTER 3. BASIC MODEL

Stationary Probabilities, CPLEX
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Figure 3.5: Histograms and Q-Q plots of 100 running times for obtaining the
stationary probabilities with CPLEX, simulation and value iteration
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As a statistical test for normality the Wilk-Shapiro test was chosen be-
cause it is recommended by both Thode (2002) and D’Agostino and Stephens
(1986) as one of the most powerful tests for normality. The results of this
test were obtained by the statistical computing system R, see R Development
Core Team (2007), and are shown in table 3.3.

As table 3.3 shows, the p-value resulting from the Wilk-Shapiro test is
significantly lower than the chosen significance level of 5% for all solution
procedures. So, one can conclude that for every solution procedure the null
hypothesis that the data are normally distributed can be rejected. Thus,
a statistical test to compare the running times of the solution procedures
which requires normally distributed data should not be used but rather a
nonparametric test.

solution procedure p-value

evaluation equations (Gauss-Seidel) 2.754 ·10−15

evaluation equations (CPLEX) 5.644 ·10−15

stationary probabilities (Gauss-Seidel) 1.361 ·10−10

stationary probabilities (CPLEX) 5.521 ·10−4

simulation 1.704 ·10−11

value iteration 2.203 ·10−10

Table 3.3: Wilk-Shapiro test for normality of the running times

As each of the 100 problem instances was used for all six solution proce-
dures, the running times for the six solution procedures were not indepen-
dent. From a statistical point of view, each problem instance can be viewed
as a block while the solution procedures can be viewed as the treatments,
see Conover (1999). Thus, a nonparametric test for a randomized complete
block design and several dependent samples had to be used. Conover (1999)
recommends two such tests for this situation, the Friedman test if there are
more than five treatments and the Quade test if there are five or less treat-
ments. As we considered six solution procedures, the Friedman test was
applied with the statistics system R. The Friedman test gave a p-value of
smaller than 2.2 · 10−16, thus rejecting the null hypothesis that all solution
procedures have equal running times.

In order to evaluate which solution procedures have higher running times
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than other solution procedures, multiple comparisons of the running times
had to be performed. To carry out multiple comparisons, we adopted the
procedure for multiple comparisons that is associated with the Friedman test,
see Conover (1999). It turns out that at a significance level of 5%, the mean
of the running times of every procedure was significantly different from the
mean of the running times of each other procedure. Thus, the procedures
could be ranked according to the means of the running times given in table
3.2. This ranking is shown in table 3.4. It follows that the solution of the
evaluation equations with the Gauss-Seidel procedure was the fastest solution
procedure for small problem instances.

solution procedure rank

evaluation equations (Gauss-Seidel) 1

simulation 2

evaluation equations (CPLEX) 3

value iteration 4

stationary probabilities (Gauss-Seidel) 5

stationary probabilities (CPLEX) 6

Table 3.4: Ranking the solution procedures with regards to the running times
for small problem instances

3.2.5.2 A Large Problem Instance

When looking at a large problem instance, a different picture emerges. We
considered a problem instance with 1,000,000 states, 50 order classes and a
traffic intensity of 1.5. For this problem instance, only the solution procedure
of simulation was able to finish within a one hour time limit, taking 355
seconds. All five other solution procedures were not able to finish within
the one hour time limit. This is due to higher memory requirements which
are outlined in table 3.5. For the solution procedures with CPLEX only
the memory requirements for generating the CPLEX problem file are given
because the memory requirements of CPLEX itself are difficult to obtain.

It can be seen that the memory requirements depend on the number of
states |S| and on the number of order classes N of a given problem instance.
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Solution Procedure Memory Requirement in Bytes

Evaluation Equations (Gauss-Seidel) (16N + 61) |S|
Evaluation Equations (CPLEX) (4 (N + 1 + Smax

(generating CPLEX file only) + Smax
D1 + Smax

D2 ) + 50) |S|
(16N + 4 (Smax

Stationary Probabilities (Gauss-Seidel)
+ Smax

D1 + Smax
D2 ) + 76) |S|

Stationary Probabilities (CPLEX)

(generating CPLEX file only)
(4 (N + 1) + 8) |S|

Simulation (4 (N + 1) + 8) |S|
Value Iteration (4 (N + 1) + 32) |S|

Table 3.5: Memory requirements for solution procedures

The memory requirements for the solution procedures ”Evaluation Equations
(CPLEX)” and ”Stationary Probabilities (Gauss-Seidel)” are significantly
higher than those of the other solution procedures because for these two
solution procedures the set of source states that go into a given state under a
certain policy has to be generated and stored while for the other four solution
procedures only the set of target states that a given state can transition into
has to be stored. The variable Smax

d is given by

Smax
d = max

i∈S
{Sd(i)}

where Sd(i) is the number of source states where decision d is taken and that
go into state i . The variable Smax is given by max(Smax

D1 , Smax
D2 ).

It can be seen that simulation is one of the solution procedures with the
lowest memory requirements. For two of the solution procedures, namely
generating the CPLEX problem file for the solution procedure ”Evaluation
Equations (CPLEX)” on the one hand and ”Stationary Probabilities (Gauss-
Seidel)” on the other hand, the overall memory of the PC was not enough and
the procedures terminated with an ”out of memory” error. The three other
solution procedures that could not finish within the one hour time limit were
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slowed down considerably because of an increased use of the swap file. For
the case of obtaining the stationary probabilities with CPLEX, the CPLEX
file could be generated but CPLEX itself could not finish within the one hour
time limit.

One can conclude that for large problem instances, the average reward
g(π) of policy π can only be estimated by simulation.

3.3 Solving the Markov Decision Process

After a Markov decision process has been formulated, one wants to find
an optimal policy πopt which maximizes the average reward per period to
obtain the optimal average reward g(πopt). Different solution procedures for
average reward unichain Markov decision processes exist, see e.g. Puterman
(1994) or Tijms (1994). In the following, we describe the three most common
algorithms for solving a Markov decision process.

3.3.1 Policy Iteration

One way to solve a unichain Markov decision process is given by the pol-
icy iteration algorithm. The policy iteration algorithm starts by choosing
an arbitrary policy π0. For the basic model of revenue management of this
chapter a FCFS policy was chosen as the initial policy for the policy iteration
algorithm. After the initial policy has been chosen, the algorithm evaluates
the current policy by solving the evaluation equations (3.4). As we showed
in the previous section, solving the evaluation equations by the Gauss-Seidel
iterative method proved to be significantly faster than CPLEX, so the itera-
tive method was chosen for this step of the policy iteration algorithm. After
the average reward g(πn) and the relative values v(i) have been calculated
for the current policy πn, a policy improvement step takes place in order to
obtain policy πn+1. If the policy improvement step does not alter the current
policy, the policy iteration algorithm terminates. Otherwise, n is increased
by one and the improved policy is evaluated. After the algorithm has termi-
nated, the optimal policy πopt is given by the last policy πn and the optimal
average reward g(πopt) is given by the value of g(πn).
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Algorithm 3.3 Policy iteration algorithm

n ← 0

choose an arbitrary starting policy π0

repeat

1. evaluate policy πn by solving the evaluation equations

g(πn) + v(i)−
∑
j∈S

P πn(i, j) v(j) = Rπn(i),∀i ∈ S

2. obtain the improved policy πn+1 by determining for each state i ∈ S

a decision d by

d = arg max
d∈D(i)

{Rd(i) +
∑
j∈S

P d(i, j) v(j)},∀i ∈ S

3. n ← n + 1

until πn = πn−1

πopt ← πn

g(πopt) ← g(πn)
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3.3.2 Value Iteration

Another method to solve a Markov decision process is the value iteration
algorithm which is shown in algorithm 3.4. The differences ∆V (i) of the
values Vn(i)− Vn−1(i) converge to an ε-optimal average reward which means
that the average reward found by the value iteration algorithm will differ at
most by 100ε% from the true optimal average reward.

Each value Vn during every iteration n is calculated by finding the decision
d in every state i that maximizes Vn. The ε-optimal policy is determined by
using the decisions d for every state i after ∆V and ∆V have converged
within ε% of ∆V . The convergence parameter ε was set to 0.5%.

3.3.3 Linear Programming

A third solution procedure to obtain the optimal policy πopt for a unichain
Markov decision process is given by solving the following linear program.

Maximize g(πopt) =
∑
i∈S

∑

d∈D(i)

Rd(i) P̃ d(i) (3.10)

subject to

∑

d∈D(j)

P̃ d(j) =
∑
i∈S

∑

d∈D(i)

P d(i, j) P̃ d(i),∀j ∈ S

∑
i∈S

∑

d∈D(i)

P̃ d(i) = 1

P̃ d(i) ≥ 0, ∀i ∈ S, ∀d ∈ D(i)

The optimal policy πopt is obtained by choosing each d ∈ D(i) in each state
i to be the decision d for which the stationary probability P̃ d(i) > 0. The
optimal average reward g(πopt) is given by the value of the objective function
(3.10) after the linear program has been solved.
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Algorithm 3.4 Value iteration algorithm

n ← 1

V0(i) ← 0,∀i ∈ S

repeat

1. compute for every state i ∈ S the values Vn(i) by

Vn(i) ← max
d∈D(i)

{Rd(i) +
∑
j∈S

P d(i, j)Vn−1(j)},∀i ∈ S

2. compute the bounds

∆V ← min
i∈S

{Vn(i)− Vn−1(i)} and ∆V ← max
i∈S

{Vn(i)− Vn−1(i)}

3. n ← n + 1

until ∆V −∆V ≤ ε ∆V

obtain the ε-optimal policy πε by choosing the decision d for each state i

by

d ← arg max
d∈D(i)

{Rd(i) +
∑
j∈S

P d(i, j)Vn−1(j)}

obtain an estimate ĝ(πε) for the average reward of the ε-optimal policy by

ĝ(πε) ← ∆V + 0.5 (∆V −∆V )
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3.3.4 Comparing Solution Procedures

In this section we will compare the three solution procedures with regards to
their running times.

3.3.4.1 Small Problem Instances

The same 100 problem instances with |S| = 10,000 states that were used
to compare the solution procedures to evaluate a given policy were used to
compare the solution procedures to solve the Markov decision process. In
order to check if all solution procedures obtained the same optimal average
reward, the maximum of the absolute percentage deviations of the average
reward that was obtained by solving the linear program was compared to the
two other solution procedures. The results are depicted in table 3.6. It can
be seen that all three solution procedures obtain almost identical optimal
average rewards g(πopt) and were thus correctly implemented.

Solution procedure Mean Maximum

Policy iteration 0.00% 0.00%

Value iteration 0.09% 0.23%

Table 3.6: Mean and maximum of absolute percentage deviations of the
average rewards obtained by two solution procedures compared to the average
rewards obtained by solving the linear program with CPLEX

Solution procedure Mean Standard deviation

Policy iteration 4.2 4.3

Value iteration 58.9 29.5

Linear programming 365.8 142.3

Table 3.7: Mean and standard deviation of running times

Table 3.7 shows the mean and standard deviation of the running times for
each solution procedure after solving the 100 problem instances.
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Figure 3.6: Histograms and Q-Q plots of 100 running times for obtaining the
optimal policy
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Policy iteration seems to dominate the other solution procedures, but in
order to see if this assumption can be substantiated, a statistical test has to
be employed.

The statistical design can be viewed as a randomized complete block
design with several dependent samples. In order to decide what type of
statistical test should be employed, the data of the running times have to
be inspected and tested for normality first. Figure 3.6 shows the histograms
and Q-Q plots for the running time data.

Only the running times of linear programming seem to be somewhat
normally distributed while the running times of the other solution procedures
seem to be highly nonnormal. This is confirmed by the Wilk-Shapiro test
whose p-values can be seen in table 3.8.

Solution procedure p-value

Policy iteration 2.338·10−11

Value iteration 1.562·10−9

Linear programming 0.118

Table 3.8: Wilk-Shapiro test for normality of the running times

As the running time data of two solution procedure are not normally dis-
tributed, a nonparametric test has to be employed. Conover (1999) recom-
mends using the Quade test as there are only three treatments involved.
Using the statistical system R, a p-value of 2.2 · 10−16 strongly suggests that
the null hypothesis that the running times of all solution procedures are
equal can be rejected. Performing the multiple comparisons procedure rec-
ommended by Conover (1999), it turns out that the running times of each
solution procedure are significantly different from the running times of the
other two solution procedures. Thus, the solution procedures can be ranked
according to their mean running times which are shown in table 3.7. One
can conclude that the policy iteration algorithm is superior for small problem
instances.

3.3.4.2 A Large Problem Instance

The same large problem instance that was used for analyzing the procedures
to evaluate the average reward of a given policy in section 3.2.5.2 was applied
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to the three solution procedures that solve the Markov decision process. It
turns out that neither solution procedure can solve this problem instance
within a one hour time limit. This result shows the need for a heuristic
procedure.

3.4 A Heuristic Procedure

When comparing a FCFS policy which accepts all orders if the current ca-
pacity situation allows it to the optimal policy πopt which can be obtained
by one of the solution procedures of the previous section, one notices that
the optimal policy differs from the FCFS policy by rejecting unprofitable or-
der classes to a certain extent. Thus, the idea for the heuristic procedure is
to reject orders from unprofitable order classes while accepting orders from
order classes with a higher profit margin. The profitability of an order class
n ∈ {1, · · · , N} will not be measured by its profit margin mn, but rather by
its relative profit margin mn/un, i.e. mn divided by the capacity usage un.
The relative profit margin is an indicator of how profitable it is to allocate
the machine for one period to an order of class n. The relative profit margin
for the dummy order class 0 is set to 0. Before the heuristic can start, the
order classes are sorted ascendingly by their relative profit margins.

Figure 3.7 shows how a good heuristic policy might look like for five
hypothetical order classes which have been sorted in ascending order by their
relative profit margins, mn/un ≤ mn+1/un+1, n ∈ {1, 2, . . . , N − 1}. For each
order class the policy specifies if and under which circumstances this order
class is rejected or not.

0

reject

reject
partially

accept

n 1 2 3 4 5

Figure 3.7: Accepting and rejecting order classes

The dummy order class 0, which represents the case that no order arrives in
a given period is always set to rejection. The exemplary policy in figure 3.7
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rejects order class 1, the order class with the lowest relative profit margin,
in all system states even if it could be accepted in some system states. This
rejection of order class 1 might increase the average reward of the company
in order to reserve capacity for order classes with higher profit margins.
Order classes 2 and 3 are only partially rejected which means that they
are accepted in some system states but rejected in all other system states,
even if they could be accepted in some of those other system states. Order
classes 4 and 5 which have the highest relative profit margins are accepted
in all system states where acceptance is possible. The optimal policy will
be the optimal combination of which order classes are completely rejected,
which order classes are partially rejected and which order classes are fully
accepted.

In order to develop a heuristic procedure it is useful to represent each
policy of mapping a decision d ∈ D[(n, c)] to each state (n, c) by an N -
dimensional vector θT = (τ0, τ1, . . . , τN). The threshold τn specifies for which
capacity usages c an order of class n should be accepted or rejected. If c < τn,
the order should be accepted, while if c ≥ τn the order should be rejected,
see figure 3.8.

Figure 3.8 shows an order class

reject although
acceptance
possible

8

7

6

5

4

3

c

2

1

0

accept

acceptance not
possible

Figure 3.8: Partial rejection of order
class n, ln − un + 1 = 6, τn = 3

n with ln − un + 1 = 6 and a policy
for this order class that is described
by τn = 3. The term ln−un +1 rep-
resents the minimum capacity us-
age c where orders of class n can
not be accepted any more. This is
due to the fact that orders can only
be accepted if c + un ≤ ln which
can be converted to c ≤ ln − un.
For the order class n in figure 3.8,
ln−un+1 = 6 and thus if an order of
class n arrives at the company and
the capacity is booked out for more
than 6 periods, orders of that order
class have to be rejected because the
company cannot meet the lead time
ln that the customers of order class

n demand. The partial rejection of order class n in figure 3.8 is depicted
by the fact that τn = 3. This means that orders could be accepted up to
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a capacity booking level c of 6 units, but incoming orders of this class are
rejected for any c ≥ 3. This partial rejection of order class n might be more
profitable for the company than to either completely accept it because of
a high relative profit margin mn/un or to completely reject it because of a
rather low relative profit margin. If τn is set to ln − un + 1 it means that
all incoming orders of class n are rejected. If τn is set to 0 it means that all
orders of class n are accepted as long as the capacity booking level c is below
ln − un + 1.

Denote now by π the policy that the order classes n ∈ {0, . . . , π} are
completely rejected and the order classes n ∈ {π + 1, . . . , N} are completely
accepted. The idea of the heuristic is to evaluate various policies and find
good policies by simulation comparisons. Each policy π results in a Markov
reward process with an associated average reward per period g(π) whose esti-
mate ĝ(π) can be obtained by simulation. The heuristic starts by comparing
policies π = 0 and π = 1 by simulation which is shown in figure 3.9. In order
to simplify the display, ln − un + 1 is set to be constant for all order classes
n which is usually not the case.

If ĝ(0) > ĝ(1) policy 0 of accepting all order classes is accepted as the
optimal policy and the heuristic stops. Otherwise, π ← π + 1 and the pro-
cedure continues likewise until ĝ(π) > ĝ(π + 1). At that point, policy π has
the highest average reward of all policies compared so far, for an example see
figure 3.10 where π = 2.

τn

n
1 2 3 4 50

first two policies to be compared

policy π = 0

policy π = 1

ln − un
 + 1

0

Figure 3.9: Comparing policies

τn

n
1 2 3 4 50

π = 2

0

ln − un
 + 1

Figure 3.10: Policy π = 2

Now, the heuristic tries to further optimize policy π by comparing it to
policy π+ which is obtained by setting

τπ+1 ← b lπ+1 − uπ+1 + 1

2
c
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see figure 3.11. If ĝ(π+) > ĝ(π) policy π+ is accepted to be the best policy π̃
found by the heuristic. Otherwise, policy π is compared to policy π− which
is obtained by setting

τπ ← b lπ − uπ + 1

2
c.

If ĝ(π−) > ĝ(π) policy π− is accepted to be the best policy π̃ found by the
heuristic, otherwise π̃ results from policy π.

τn

n

1 2 3 4 50

π

aπ*+1

τn

n

1 2 3 4 50

π

aπ*

ln − un
 + 1 ln − un

 + 1

0 0

Figure 3.11: Policies π+ and π−

Two policies are compared following the paired-t confidence interval ap-
proach, see Law and Kelton (2000). This approach defines the random vari-
able Zi = X1i−X2i where X1i and X2i are the average rewards obtained from
replication i under the two policies that are being compared. An unbiased
estimator for the variance of Z(n) = 1/n

∑n
i=1 Zi after n replications is given

by

V̂ar[Z(n)] =

n∑
i=1

[Zi − Z(n)]2

n(n− 1)

In order to reduce the estimated variance V̂ar[Z(n)] and thus to speed up the
simulation comparison, common random numbers are used when two policies
are compared. Common random numbers in this case mean that the order
arrival pattern during a replication is identical for both policies.
A policy is determined to outperform another policy and the sequential simu-
lation comparison is thus stopped after n replications if the following criterion
is fulfilled:
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|Z(n)| − tn−1,1−α/2

√
V̂ar[Z(n)] > 0

where tn−1,1−α/2

√
V̂ar[Z(n)] is the half-width of the 100(1− α) percent con-

fidence interval for the true difference of the two average rewards being com-
pared.

If two average rewards to be compared are very close, no significant dif-
ference between the two policies can be detected within a reasonable amount
of replications. For this case the stopping criterion to end the comparison is:

|Z(n)|+ tn−1,1−α/2

√
V̂ar[Z(n)] < 0.5% ·min{X1(n), X2(n)}

Here the simulation comparison stops if the policies do not differ significantly
by more than half a percent. In this case, the policy which accepts more
orders overall is set to dominate the policy it was compared to.

After π̃, the best policy found by the heuristic procedure, has been de-
termined, the corresponding average reward g(π̃) is estimated by simulation
with a maximum relative error γ of 0.5%. As g(π̃) has to be estimated
more accurately than the individual average rewards of two policies that are
being compared, the replication lengths for the simulation runs of policy
comparisons can be set less conservatively than the replication lengths for
estimating g(π̃). This is illustrated in figure 3.12 for a problem instance with
10,000 states, 5 order classes and a traffic intensity of 1. The replication
length is set to 200,000 periods when comparing policies and to 600,000 pe-
riods when the average reward of the best policy found is estimated. The
warmup period of 10,000 periods is left equal for both purposes.



56 CHAPTER 3. BASIC MODEL

run length for
evaluating policy

warmup period

0 5000 10000 15000

0
5

10
15

20
2

5

R
ep

lic
at

io
n 

R
ew

ar
d 

A
ve

ra
ge

s

0   e+00 2   e+05 4   e+05 6   e+05 8   e+05 1   e+06

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

C
um

ul
at

ed
 A

ve
ra

ge
 R

ew
ar

d

run length for
comparing policies

Figure 3.12: Different run lengths for comparing and evaluating policies

3.5 Numerical Results

3.5.1 Comparing the Optimal Policy to a FCFS Policy

It is of interest to evaluate what benefits can be realized by using an optimal
policy and thus applying revenue management instead of using a FCFS pol-
icy which accepts all orders whenever possible. Thus the two policies were
compared with regards to the average reward per period for three problem
classes which are outlined in table 3.9.

problem class → 1 2 3

number of states 10,000 50,000 100,000

number of order classes [5, 20] [5, 30] [5, 50]

traffic intensity [1, 2.5] [1, 2.5] [1, 2.5]

maximum lead time [476, 1667] [1613, 8333] [1961, 16667]

Table 3.9: Problem classes for comparing the optimal policy to a FCFS policy

All problem instances that were created within a certain problem class had
the same number of states as given in table 3.9. The number of order classes
for a certain problem instance was drawn from a certain uniform distribution
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for each problem class. The maximum lead time, lmax, was calculated by
equation (3.2) and varied between the two values that are given in table 3.9,
depending on the number of order classes that had been drawn for a certain
problem instance.

The average rewards of the FCFS and optimal policies were obtained by
policy iteration. The results of comparing the optimal policy to a FCFS
policy are shown in table 3.10.

problem class → 1 2 3

problem instances 1,000 1,000 200

average [%] 2.5 2.3 2.1

minimum [%] 0.0 0.0 0.0

maximum [%] 41.2 34.0 32.8

standard deviation [%] 4.5 3.7 3.8

average running time [sec.] 3.1 29.4 87.5

Table 3.10: Percentage deviations ∆FCFS−opt of average rewards of the opti-
mal policy compared to the FCFS policy

As the average running times of computing the average rewards are low for
small problem instances, 1,000 problem instances were created for problem
classes 1 and 2. As the running times for problem class 3 increased consid-
erably, 200 problem instances were created for this problem class.

Table 3.10 shows the average, minimum, maximum and standard devia-
tion for the percentage deviations ∆FCFS−opt of the average reward per period
of the optimal policy compared to the FCFS policy. The percentage devi-
ation ∆FCFS−opt of a certain problem instance within a problem class was
calculated by

∆FCFS−opt =
g(πopt)− g(πFCFS)

g(πFCFS)
· 100%

where g(πopt) and g(πFCFS) were the average rewards per period of the opti-
mal and the FCFS policies, respectively.

Table 3.10 shows that the optimal policy outperforms the FCFS policy
by between 2.1% and 2.5% on average although there are problem instances
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where applying revenue management instead of using a FCFS policy increases
the average reward per period by as much as 41%.

Figure 3.13 shows that most percentage deviations lie in the [0, 5]% in-
terval but that some observations lie in higher intervals. Two of the factors
which might have an influence on the percentage deviations of the average
rewards of the optimal policy compared to the FCFS policy are examined
subsequently. These factors are the traffic intensity and the tightness of lead
times.
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3.5.1.1 Influence of the Traffic Intensity

The first factor to be evaluated is the traffic intensity which is given by
ρ =

∑N
n=1 pn un for a certain problem instance. Kniker and Burman (2001)

show for a single problem instance that the average reward increases with an
increase in the traffic intensity. In order to explore if this relationship holds
true generally, problem instances were created for the problem classes that
were defined above, see table 3.9. The problem instances were created in
two sets for each problem class. In the first set, each problem instance has a
traffic intensity of 1 and in the second set, each problem instance has a traffic
intensity of 2.5. For example, for problem class 1, 1,000 problem instances
were created with a traffic intensity of 1 and 1,000 problem instances were
created with a traffic intensity of 2.5. For each set the percentage deviations
of the optimal policy compared to the FCFS were computed. The results
can be seen in table 3.11.

problem class → 1 2 3

problem instances (ρ = 1/ρ = 2.5) 1000/1000 1000/1000 200/200

average [%] (ρ = 1/ρ = 2.5) 0.1/5.8 0.1/5.5 0.1/5.5

minimum [%] (ρ = 1/ρ = 2.5) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (ρ = 1/ρ = 2.5) 4.0/55.3 1.9/85.0 1.7/44.3

std. dev. [%] (ρ = 1/ρ = 2.5) 0.4/6.7 0.2/6.3 0.2/6.2

Table 3.11: ∆FCFS−opt with different traffic intensities

Table 3.11 shows that ∆FCFS−opt seems to depend on the traffic intensity.
For a relatively low traffic intensity of 1, the average percentage deviations
are 0.1% while for a higher traffic intensity of 2.5, the average percentage
deviations range from 5.5% to 5.8%.

In order to test this apparent dependency on the traffic intensity for sta-
tistical significance the data has to be analyzed for normality so an adequate
statistical test can be chosen. As figures 3.14 and 3.15 show, the percentage
deviations do not seem to be distributed normally.
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Figure 3.14: Histograms and Q-Q-plots of ∆FCFS−opt with a traffic intensity
of ρ = 1
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Figure 3.15: Histograms and Q-Q-plots of ∆FCFS−opt with a traffic intensity
of ρ = 2.5
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This is confirmed by the Wilk-Shapiro test which gives a p-value smaller than
10−15 for the two scenarios and for all 3 problem classes. As the data are
not normally distributed, a nonparametric test procedure has to be used. As
there are two independent samples that are compared within each problem
class, the Mann-Whitney test is used, see Conover (1999). An upper-tailed
version of this test is used to test the null hypothesis

H0 : F (x) = G(x)

versus the alternative hypothesis

H1 : F (x) < G(x)

where F (x) and G(x) are the distribution functions corresponding to the
percentage deviations of having a traffic intensity of 1 and 2.5, respectively.
The results of the Mann-Whitney test confirm the impression that the traffic
intensity has an influence on the value of revenue management. Using the
statistical computing system R, in all three problem classes a p-value which
is smaller than 10−16 is obtained. This suggests with near certainty that
problem instances with a traffic intensity of 2.5 have a larger distribution
function than problem instances with a traffic intensity of 1, confirming the
preliminary result in Kniker and Burman (2001).

3.5.1.2 Influence of the Tightness of Lead Times

Another factor that can be explored is the tightness of lead times. Kniker and
Burman (2001) hypothesize that if lead times are tight, the average reward
obtained by the FCFS policy should not differ much from the average reward
obtained by using revenue management. We now show that this statement
is only true if lead times are short and that for tight, but longer lead times
revenue management still provides a certain benefit.

We tested the influence of the tightness of lead times on the percentage
deviation of the average reward of the optimal policy compared to the average
reward of the FCFS policy. In order to test the hypothesis that tighter lead
times lead to a decrease of the average percentage deviation of the average
rewards, 1,000 problem instances were created for problem classes 1 and 2
and 200 problem instances were created for problem class 3. In each problem
instance the lead time of each order class was set equal to the capacity usage
of the order class, thus creating very tight lead times. The traffic intensity
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of each of these problem instances was set to 2.5 because with low traffic
intensities, the percentage deviations are usually near zero, see the previous
section.

The percentage deviations of the average rewards of the optimal policy
compared to the FCFS policy of these problem instances were compared to
the percentage deviations of the problem instances with a traffic intensity
of 2.5 that were used in the previous section 3.5.1.1, which had lead times
that vary between the order class usage un of the order class of a certain
problem instance and the maximum lead time lmax of that problem instance.
The results of comparing the percentage deviations of the average rewards of
problem instances with tight lead times with problem instances with normal
lead times can be seen in table 3.12.

problem class → 1 2 3

problem instances (tight/normal) 1000/1000 1000/1000 200/200

average [%] (tight/normal) 4.0/5.8 4.0/5.5 4.6/5.5

minimum [%] (tight/normal) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (tight/normal) 20.4/55.3 19.6/85.0 16.6/44.3

std. dev. [%] (tight/normal) 4.1/6.7 4.0/6.3 4.1/6.2

Table 3.12: ∆FCFS−opt for tight and normal lead times

Table 3.12 seems to suggest that problem instances with tighter lead times
do not have as great a potential for using revenue management as problem
instances where lead times are not tight. In order to test this hypothesis
statistically, the data were tested for normality. Figure 3.16 shows the his-
tograms and Q-Q-plots of the percentage deviations of comparing the optimal
policy to a FCFS policy with tight lead times.

They do not seem to be distributed normally which is confirmed by the
Wilk-Shapiro test. Table 3.13 shows that the null hypothesis that the data
are normally distributed can be rejected for all three problem classes. Thus,
a nonparametric test has to be used for two independent samples and the
Mann-Whitney test is employed again.
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Figure 3.16: Histograms and Q-Q-plots of ∆FCFS−opt with tight lead times
and a traffic intensity of ρ = 2.5
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Problem Class 1 2 3

p-value < 2.2 · 10−16 < 2.2 · 10−16 1.061 · 10−10

Table 3.13: Wilk-Shapiro test for normality

Problem Class 1 2 3

p-value 1.05 · 10−13 2.374 · 10−12 0.119

Table 3.14: Mann-Whitney test

The Mann-Whitney test shows that for problem classes 1 and 2 the alter-
native hypothesis that the percentage deviations with tight lead times tend
to be lower than the percentage deviations with normal lead times can be
accepted, see table 3.14. For problem class 3, the null hypothesis that the
distribution functions of the percentage deviations are equal can not be re-
jected at a significance level of 0.05. Thus, for problem class 3 the result is
that the tightness of lead times does not have a significant influence on the
potential of revenue management although the average ∆FCFS−opt of 4.6 for
tight lead times is lower than the average ∆FCFS−opt of 5.5 for normal lead
times.

This different result for problem class 3 may be due to the lower number
of 200 observations versus 1,000 observations for problem classes 1 and 2
which might be too few observations to detect any significant difference in
the percentage deviations ∆FCFS−opt for problem class 3. As we have shown
for problem classes 1 and 2, though, one can conclude that tight lead times
decrease the potential of using revenue management compared to a FCFS
policy.

In contrast to the hypothesis by Kniker and Burman (2001) that the per-
centage deviation of the average reward of the optimal policy compared to
the average reward of the FCFS policy should be near zero when lead times
are tight, we found that the percentage deviation averaged around 4%, see
table 3.12. This means that even if lead times are tight, revenue management
still has an advantage over a FCFS policy. This positive percentage deviation
can be explained by the fact that even if the lead times in our numerical tests
are tight, they are not as short as in the example by Kniker and Burman
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(2001). Thus, by accepting a relatively unprofitable order with a tight, but
relatively long lead time under a FCFS policy, the company is binding its ca-
pacity for this relatively long lead time and thus has to refuse more profitable
orders that arrive in the mean time. It follows that revenue management has
a positive impact if tight lead times are not too short, but that the optimal
average reward nears the average reward obtained by a FCFS policy if tight
lead times are also short.

3.5.2 Comparing the Heuristic to an Optimal Proce-
dure

In order to assess how well the heuristic procedure performs it was compared
to the policy iteration algorithm. The problem classes used to perform the
comparison were the same as in section 3.5.1, see table 3.9. The results of
comparing the heuristic procedure to the optimal procedure can be seen in
table 3.15.

problem class → 1 2 3

problem instances 500 500 200

average [%] 0.3 0.3 0.3

minimum [%] 0.0 0.0 0.0

maximum [%] 4.4 5.0 3.3

standard deviation [%] 0.6 0.5 0.5

running time heuristic [sec.] 28.7 119.0 249.2

running time policy iteration [sec.] 3.1 29.4 87.5

Table 3.15: Percentage deviations ∆H−opt of average rewards obtained by the
heuristic policy compared to the average rewards obtained by the optimal
policy

Because the heuristic procedure had higher running times, only the first
500 scenarios were used for problem classes 1 and 2 while all 200 scenarios
were used for problem class 3. The percentage deviation of the average
reward obtained by the heuristic procedure was compared to the average
reward obtained by the optimal procedure for each problem instance. This
percentage deviation ∆H−opt of a certain problem instance was calculated by
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∆H−opt =
g(πopt)− g(π̃)

g(π̃)
· 100%

where g(πopt) and g(π̃) were the average reward per period of the optimal
and the heuristic procedure, respectively.
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Figure 3.17: Histograms of the percentage deviations ∆H−opt of average re-
wards when comparing the optimal procedure to the heuristic procedure

Table 3.15 shows that the heuristic procedure performs 0.3% worse on
average than the optimal procedure for all three problem classes. The worst
cases for the three problem classes were deviations of 4.4%, 5.0% and 3.3%.
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Figure 3.17 shows that in most problem instances, the average reward ob-
tained by the heuristic procedure differed between 0% and 0.5% from the
average reward obtained by the optimal procedure.

It is interesting to investigate how the policy obtained by the heuristic
procedure differs from the optimal policy for the cases with high percent-
age deviations ∆H−opt. This is pictured in the bar plot in figure 3.18 where
the problem instances with the highest percentage deviations of the aver-
age rewards were evaluated for problem classes 1 and 2. Figure 3.18 shows
the FCFS policy and the policies obtained by the heuristic and the optimal
procedures for each of the two problem instances.

The order classes n are sorted ascendingly by their relative profit margins
mrel

n . The bars of the FCFS policy show for each order class n the lowest
capacity usage c where orders of this order class have to be rejected, i.e. the
height of a bar of the FCFS policy corresponds to the heuristic threshold
τn = ln− un + 1 where ln and un are the lead time and the capacity usage of
orders of class n, respectively.

It can be seen that in both problem instances, the heuristic procedure and
the optimal procedure do not have any bars for the first few order classes
with the lowest relative profit margins. This means that orders of these
order classes are rejected in any case, independently of the current capacity
utilization. Furthermore, figure 3.18 shows that the optimal policy generally
accepts orders of more order classes than the heuristic policy, although these
additional orders are only accepted when the current capacity utilization is
relatively low.

Overall, one can conclude that the optimal policy seems to accept orders
from more order classes than the heuristic policy, but that the heuristic policy
accepts orders at higher capacity utilizations for the first order classes where
orders are accepted. Thus, in order to improve the heuristic procedure, the
search for better thresholds τn should move to accepting orders from more
order classes, but at lower capacity utilizations.
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Problem Class 1: max{∆ H−opt } = 4.2%

Problem Class 2: max{∆ H−opt } = 5.0%
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Figure 3.18: Two problem instances with the worst performance of the heuris-
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3.5.2.1 Low Traffic Intensity

As the heuristic procedure starts out with a FCFS policy it is reasonable
to assume that the heuristic procedure will perform near-optimal when the
traffic intensity is low because the average rewards obtained by the optimal
policy do not differ much from the average rewards obtained by the FCFS
policy at low traffic intensities, see table 3.11. In order to verify this hypoth-
esis, the heuristic procedure was applied to the problem instances that were
created in section 3.5.1.1 for a traffic intensity of 1. As the heuristic proce-
dure has higher running times than the optimal procedure, only the first 500
scenarios were used for problem classes 1 and 2, though. The results can be
seen in table 3.16.

problem class → 1 2 3

problem instances 500 500 200

traffic intensity 1 1 1

average [%] 0.1 0.1 0.1

minimum [%] 0.0 0.0 0.0

maximum [%] 2.9 1.0 0.9

standard deviation [%] 0.2 0.1 0.2

Table 3.16: Percentage deviations ∆H−opt of average rewards obtained by the
heuristic policy compared to average rewards obtained by the optimal policy
at ρ = 1

Table 3.16 shows that the percentage deviation of the average rewards is
around 0.1% on average. The distributions of the percentage deviations can
be seen in figure 3.19. The histograms show that most percentage deviations
are in the range between 0% and 0.1%. The maximum percentage deviation
of 2.9% for problem class 1 is higher than the maxima of problem classes 2
and 3. Thus it is interesting to analyze the heuristic policy for the problem
instance that results in this maximum percentage deviation.

Figure 3.20 shows the comparison of the optimal policy to the policy
obtained by the heuristic for this problem instance. In this problem instance,
the heuristic policy differs significantly from the optimal policy for the first
five order classes as it accepts more orders than the optimal policy. It is
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remarkable that the optimal policy rejects orders from problem classes 4 and
5 completely. This might be due to the fact that the relative profit margins
of the first five order classes are very similar as shown at the bottom of figure
3.20. Furthermore, the FCFS policy shows that problem classes 4 and 5 have
a lower rejection limit ln − un + 1 which might make it more advantageous
to reject these order classes completely.
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3.5.2.2 High Traffic Intensity

The heuristic procedure was also tested at high traffic intensities. For this
purpose, the scenarios were taken from section 3.5.1.1, this time with a traffic
intensity of 2.5. The results can be seen in table 3.17.

problem class → 1 2 3

problem instances 500 500 200

traffic intensity 2.5 2.5 2.5

average [%] 0.4 0.5 0.6

minimum [%] 0.0 0.0 0.0

maximum [%] 6.3 8.1 7.9

standard deviation [%] 0.8 0.9 1.0

Table 3.17: Percentage deviations ∆H−opt at ρ = 2.5

Table 3.17 shows that the heuristic still performs satisfactorily at high
traffic intensities although it turns out that ∆H−opt tends to be higher than
in table 3.15. This is due to the fact that there is also a greater potential for
revenue management at high traffic intensities, see section 3.5.1.1.

The histograms of ∆H−opt at high traffic intensities in figure 3.21 show
that most percentage deviations lie in the [0, 1]% interval, demonstrating the
usefulness of the heuristic procedure.
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Figure 3.21: Histograms of ∆H−opt at high traffic intensities ρ = 2.5

3.5.3 Comparing the Heuristic to a FCFS Policy

For large problem instances, the optimal average reward could not be cal-
culated within a reasonable time limit. Thus, the average reward of the
heuristic procedure was compared to the average reward of the FCFS policy
in order to demonstrate the usefulness of the heuristic procedure for large
problem instances.

Two more problem classes were used for comparing the heuristic proce-
dure to the FCFS policy. They are shown in table 3.18.
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problem class → 4 5

number of states 500,000 1,000,000

number of order classes [10, 100] [10, 100]

traffic intensity [1, 2.5] [1, 2.5]

maximum lead time [4950, 45455] [9901, 90909]

Table 3.18: Problem classes for comparing the heuristic procedure to a FCFS
policy

Both average rewards were evaluated by simulation with a maximum relative
error of γ = 0.5% and a confidence level of 1− α = 95%. The results of the
comparison can be seen in table 3.19.

problem class → 4 5

problem instances 100 100

average [%] 1.2 1.4

minimum [%] 0.0 0.0

maximum [%] 16.8 16.0

standard deviation [%] 2.5 2.7

average running time FCFS [sec.] 253.5 537.8

average running time heuristic [sec.] 312.9 1615.7

Table 3.19: Percentage deviations ∆FCFS−H of average rewards of the optimal
policy compared to the FCFS policy

The percentage deviations ∆FCFS-H were calculated by

∆FCFS−H =
g(π̃)− g(πFCFS)

g(πFCFS)
· 100%

where g(π̃) and g(πFCFS) were the average rewards obtained by simulation.
On average, the heuristic procedure fared better than the FCFS policy

by 1.2% and 1.4%, but also greater improvements were recorded as can be
seen by the maximum percentage deviations of about 16%.
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Figure 3.22: Histograms of the percentage deviations ∆FCFS−H of the heuris-
tic policy compared to the FCFS policy

The histograms in figure 3.22 give a more detailed view of the distributions
of the percentage deviations.

Furthermore, the percentage distributions were studied under different
traffic intensities. The results can be seen in table 3.20.

problem class → 4 5

problem instances (ρ = 1/ρ = 2.5) 100/100 100/100

average [%] (ρ = 1/ρ = 2.5) 0.0/4.1 0.1/4.0

minimum [%] (ρ = 1/ρ = 2.5) 0.0/0.0 0.0/0.0

maximum [%] (ρ = 1/ρ = 2.5) 0.5/22.1 0.7/18.8

standard deviation [%] (ρ = 1/ρ = 2.5) 0.1/4.2 0.1/4.1

Table 3.20: ∆FCFS−H with different traffic intensities

As could be expected because of the results in sections 3.5.1.1 and 3.5.2.1,
the percentage deviations were near zero for a traffic intensity of 1. For a
traffic intensity of 2.5, table 3.20 shows that the heuristic procedure is able
to produce significant improvements over a FCFS policy. This is further
illustrated by the accompanying histograms in figure 3.23.
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Figure 3.23: Histograms of the percentage deviations ∆FCFS−H at varying
traffic intensities

Overall, one can conclude for the numerical results that the heuristic
procedure can produce significant improvements over a FCFS policy for large
problem instances. The heuristic procedure also performs near-optimal for
smaller problem instances, but the maximum percentage deviation ∆H - opt =
8% for high traffic intensities implies that the optimal procedure should be
used for smaller problem instances. For large problem instances, the heuristic
procedure is able to significantly improve the average reward of the FCFS
policy at high traffic intensities and the heuristic procedure should thus be
recommended to be used for an implementation with real-world problem
instances.



78 CHAPTER 3. BASIC MODEL



Chapter 4

Limited Inventory Capacity

We now consider a manufacturing company with a single-level production
capacity which manufactures only one product type and has a limited inven-
tory capacity to store this product. Even if there is only one product type,
the customers of this company have different preferences regarding the lead
time that they are willing to accept for their orders. Some companies are
in urgent need of the product while other companies can wait a little longer
before receiving the product after placing their order. The orders that are
placed at the company thus differ by their lead time, quantities and profit
margins. The company now faces the decision which orders it should accept
depending on the current inventory level and the current queue of accepted
orders in front of its production capacity.

If the company accepts an order it has to decide by how many units of
inventory it should fulfill the order and which portion of the order should
be fulfilled by the production system. This decision problem is illustrated in
figure 4.1.
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Incoming orders

Accept?

no

Delivery
yes

Machine

Inventory

Figure 4.1: Decision problem with limited inventory capacity

Furthermore, the company has to decide how high it should set the max-
imum inventory level in the face of the current inventory holding cost. In
the case of high inventory holding costs, it might be more profitable for the
company not to use its full inventory capacity but rather fill up the inventory
to a certain level or use no inventory at all. In the following we will present
a model for this situation.

4.1 Model

4.1.1 Model Formulation

The decision problem that we consider is an order acceptance problem with
limited inventory capacity that we model with an infinite-horizon discrete-
time Markov decision process with the optimization criterion of maximizing
the average reward per period. All orders that arrive at the manufacturing
company can be associated with an order class n ∈ {1, . . . , N} where the
number of order classes is given by N . In each period at most one order can
arrive and the probability of an order of class n arriving in each period is
given by pn,

∑N
n=1 pn < 1. Each order of class n has a profit margin mn, a

capacity usage of un discrete time periods, and a maximum lead time of ln
time periods. If an order is accepted, the complete fulfillment of that order
will take place at the latest within ln periods after accepting the order. Partial
deliveries to the customers are taking place whenever possible and without
any additional costs incurred. It is possible that no order arrives in a time
period. This event is modeled by the dummy order class 0. The probability
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that no order arrives in a period is given by p0 = 1 − ∑N
n=1 pn, p0 > 0.

The system state of the production system is measured at the beginning of
a discrete time period and is modeled by three state variables:

• n ∈ {0, . . . , N} is the class of the order that arrived in the beginning
of the current time period

• c is the number of periods the machine is still busy because of orders
that have been accepted in the past and have not been finished yet

• i is the current level of inventory. This state variable is measured in the
number of periods that the machine needed to produce the inventory
level i.

The state space of all possible system states (n, c, i) is denoted by S. The
inventory has a maximum capacity of Imax. Furthermore, each unit that is
on inventory for one period causes a holding cost of h monetary units.

The number of states |S| is given by

|S| = (N + 1)(max{max
n

ln, 1})(Imax + 1) (4.1)

In each state (n, c, i) ∈ S the company can choose a decision from a set of
decisions that depends on the state the system currently occupies. Basically,
the company has four types of decisions at its disposal which are depicted in
figure 4.2.

The four types of decisions are combinations of the decisions to accept
or reject an incoming order and to raise the inventory level or not to raise
it. If an order is accepted the company has to decide how many units of
inventory should be used to fulfill this order. The possible decisions D for a
given system state (n, c, i) are given as follows.
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Figure 4.2: Sequence of decisions

D[(n, c, i)] =





D1 := ”reject and do not raise inventory
level”, ∀(n, c, i) ∈ S

D2 := ”reject and raise inventory level”,

∀(n, c, i) ∈ {S : c = 0 ∧ i < Imax}
D3(ι) := ”accept, do not raise inven-

tory level and fulfill order by ι
units from the inventory”, ∀ι ∈
{ιmin, . . . , ιmax},∀(n, c, i) ∈ {S :
n > 0 ∧ (c + un ≤ ln + i ∨ un ≤ i)}

D4 := ”accept, fill order by inventory only
and raise inventory level”,

∀(n, c, i) ∈ {S : n > 0∧ c = 0∧un ≤
i}

The decisions can be further described as follows.
D1. The company always has the option of rejecting an incoming order

and not to raise the inventory level.
D2. The company can always reject any incoming order but can use the

production capacity during the current time period for raising the inventory
level if there are currently no orders waiting for the machine and the current
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inventory level is below the maximum inventory level Imax. As the company’s
decision only affects the current time period the inventory level i is raised by
one unit.

D3(ι). This models the decision that the company accepts an order,
takes ι units from the inventory to fulfill that order and does not raise the
inventory level. The company can only accept an order if in fact an order
has arrived (n > 0) and the current inventory and capacity booking levels i
and c permit delivery of the order within its lead time ln. Thus, it is feasible
to accept an order if and only if c + un ≤ ln + i ∨ un ≤ i. Furthermore, it
is feasible to use the machine to completely satisfy an order if and only if
c + un ≤ ln. It is feasible to use the machine for partially satisfying an order
if and only if c < ln.

The number of units ι that are taken from the inventory to help fulfill
the order is a decision variable and varies in the range between ιmin and
ιmax. The minimum amount of inventory that has to be used in order to
fulfill the accepted order is given by ιmin = min{max{0, c + un − ln}, un}
while the maximum amount that can be used to fulfill the order is given by
ιmax = min{i, un}. The range [ιmin, ιmax] thus depends on the state (n, c, i)
that the system occupies when the decision is taken.

One might argue that decision D3(ι) could be simplified and replaced by
a decision D3 which just takes all the necessary inventory to fulfill an order
and uses the machine if the inventory is not enough. Decision D3(ι) allows
to reserve some inventory for highly profitable orders with very short lead
times, though, which has a positive effect on the long-term average reward
of the company.

D4. The company can accept order n, fulfill it by inventory only and at
the same time raise the inventory level if and only if the production capacity
is currently not occupied by any outstanding orders, i.e. c = 0, and the
capacity requirement of the order un can be fulfilled by the current inventory
level, i.e. un ≤ i. As the company’s decision only affects the current time
period the inventory level i is raised by one unit.

The reward R in a given system state (n, c, i) ∈ S that the company
receives in a discrete time period results from the decision the company took
in that period:
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RD1 = −h i

RD2 = −h i

RD3(ι) = mn − h(i− ι)

RD4 = mn − h(i− un)

It is assumed that if a decision to raise the inventory level has been taken,
i.e. decision D2 or D4, the inventory level will have increased by the end of
the period. Thus the additional inventory holding costs which result from
the increase of the inventory level will only apply in the next period. If the
company partially or completely fulfills an order by inventory, i.e. decision
D3(ι) or D4, the inventory holding costs decrease accordingly.

The transition probabilities P show which states can be reached from a
state (n, c, i) once a certain decision has been taken.

PD1[(n, c, i), (m, max{c− 1, 0}, i)] = pm, ∀(n, c, i) ∈ S, ∀m ∈ {0, . . . , N}
If the company rejects an order and does not raise the inventory level (deci-
sion D1), the capacity booking level c is reduced by one in the next period.
If c has reached zero, it stays zero if the company continues to reject orders.
If the company decides for D2 the inventory level increases by one unit:

PD2[(n, 0, i), (m, 0, i + 1)] =





pm, ∀n ∈ {0, . . . , N},
∀m ∈ {0, . . . , N},
∀i ∈ {0, . . . , Imax − 1}

0, else

If the company accepts an order and uses ι units from the inventory to
fulfill it, the capacity booking level c and the inventory level i are updated
accordingly:

PD3(ι)[(n, c, i), (m, max{0, c + un − 1− ι}, i− ι)] =

=





pm, ∀ι ∈ {ιmin, . . . , ιmax},
∀(n, c, i) ∈ {S : n > 0 ∧ c + un ≤ ln + i ∨ un ≤ i},
∀m ∈ {0, . . . , N}

0, else
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If the company accepts an order, uses only the inventory to fulfill it and
raises the inventory level, the system state evolves as follows:

PD4[(n, 0, i), (m, 0, i− un + 1)] =





pm, ∀n ∈ {{1, . . . , N} : un ≤ i},
∀m ∈ {0, . . . , N},
∀i ∈ {0, . . . , Imax − 1}

0, else

All system states, decisions, transition probabilities and rewards specify an
infinite-horizon, discrete-time Markov decision process. In order to determine
which solution procedure can be applied, this Markov decision process has
to be classified.

4.1.2 Model Classification

As we will describe below, the Markov decision process can be classified as
multichain and communicating. A deterministic policy specifies which deci-
sion is taken at each state every time the system occupies this state. Once a
policy has been selected, the Markov decision process becomes a discrete-time
Markov reward process with a corresponding transition probability matrix.

Following Puterman (1994), the Markov decision process that we specified
in the previous section can be classified as multichain as there exists at least
one policy which induces two or more closed irreducible classes. This can
be seen in figure 4.3 which shows the stochastic process resulting from such
a policy. The policy-maker can choose an arbitrary inventory threshold ı̃ ∈
{1, . . . , Imax}. If the system’s inventory level is below ı̃, the policy prescribes
that the inventory level is never raised above ı̃. If the inventory level is
above ı̃, the inventory level is never decreased below ı̃. Thus this policy
induces a multichain transition matrix and the Markov decision process can
be classified as multichain.

The Markov decision process can also be classified as communicating.
A Markov decision process is called communicating if there exists a single
policy under which a is accessible from b for every pair of states a, b ∈ S. To
show that this Markov decision process is communicating consider the policy
πcom that always raises the inventory level whenever possible and accepts
all incoming orders. Furthermore, the policy satisfies the orders of order
class m = arg maxn ln only by the machine and not by the inventory, and all
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inventory level i

time

Imax

threshold

Figure 4.3: Stochastic process resulting from a policy which induces a mul-
tichain structure

other orders of classes n 6= m are satisfied by the inventory if available and
otherwise by the resource.

We will first show that the state variables n, c and i can realize all possible
values independently of each other.

• Order class n. With regards to the state variable n, the Markov
decision process is communicating because any order of class n ∈
{0, . . . , N} can arrive in all time periods.

• Capacity booking level c. Under any policy the capacity booking
level c can always decrease to 0 if for a very long number of periods
no orders arrive which is possible because of the condition p0 > 0. On
the other hand, there is a positive probability that the booking level
c can reach its maximum cmax = (maxn ln) − 1 if an order of class
m arrives in every period. Thus, all possible capacity booking levels
c ∈ {0, . . . , cmax} can be reached.

• Inventory level i. By a similar argument, the state variable i can also
realize all possible values. By fulfilling all incoming orders of classes
n 6= m by the inventory as far as possible, the inventory level i can
be brought to zero. On the other hand, if no orders arrive for a very
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long period the capacity booking level c will decrease to zero and the
inventory level can be raised to its maximum level Imax.

We still have to show that all states and thus all possible combinations
of n, c and i can be reached under policy πcom. First we will show that all
combinations of the minimum and maximum values of the state variable c
and i can be reached from any state (n, c, i) under policy πcom.

It is obvious that the state (0, 0, Imax) can be reached from any state
(n, c, i) if no orders arrive for a very long time. Once state (0, 0, Imax) has
been reached, an order of any class n can arrive and thus all states (n, 0, Imax)
can be reached.

Furthermore, the states (n, cmax, 0) can be reached from any state if orders
of class n 6= m arrive in every period to decrease the inventory level to zero
and then orders of any class arrive in every period to increase c. Once cmax has
been reached, any order of class n can arrive and thus any state (n, cmax, 0)
can be reached.

Now consider the states (n, cmax, Imax). These states can be reached under
policy πcom from any state by considering a long period of time where no order
arrives and the inventory level rises to Imax. Then, if only orders of class m
arrive for a long time, the inventory level will not change while c will rise
to its maximum cmax. Once the state (m, cmax, Imax) has been reached, any
order of class n can arrive and thus any state (n, cmax, Imax) can be reached
under policy πcom.

Then consider the states (n, 0, 0). These states might be difficult to reach
under policy πcom because the inventory level i is raised whenever c = 0. But
consider the case that the stochastic process has reached the state (n, cmax, 0),
see two paragraphes above. Now consider the stochastic path that results
from no orders arriving at all for a long period of time. Then, c will decrease
to zero as well and the state (0, 0, 0) will be reached. From this state, any
state (n, 0, 0) can be reached.

We now have shown that all combinations of extreme values of the state
variables c, i.e. 0 and cmax, and i, i.e. 0 and Imax, can be reached under
policy πcom from any state (n, c, i). It remains to show that all combinations
of values between the extreme values of c and i can be reached under policy
πcom as well.

Any value of i ∈ {1, . . . , Imax−1} can be reached if the stochastic process
is in the state (0, 0, 0) and no orders arrive while the inventory level rises
under policy πcom. Once any value of i has been reached and the stochastic
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process reaches the state (0, 0, i), any value of c can be reached if only orders
of class m begin to arrive. As c will rise by um − 1 each time an order of
class m has arrived, the values of c between the multiples of um − 1 can be
reached if no orders arrive in between. Thus, all possible values of c can be
reached from any inventory level i under policy πcom.

As we have shown that all possible outcomes of the state variables n, c
and i can be realized under policy πcom the Markov decision process can be
classified as communicating.

As the Markov decision process is multichain and communicating, the
unichain versions of solution procedures like value iteration, policy iteration
or linear programming do not apply. Instead, the communicating versions
of these solution procedures have to be used. For the inventory model, the
communicating value iteration method was selected because of its relative
simplicity with regards to implementation compared to the other solution
procedures. But in order to be able to use value iteration, one has to show
that the transition matrices of optimal policies are aperiodical, see Puterman
(1994).

We now show that all possible policies induce aperiodical transition ma-
trices. First consider the unichain case, i.e. the decision maker does not set a
threshold ı̃ as seen in figure 4.3 and it is possible that the inventory level can
always decrease to zero. A transition matrix is aperiodical if one system state
in each recurrent class of the transition matrix can be found which allows a
transition into itself. To find these states one can make the assumption that
no orders arrive during a large number of time periods which is possible be-
cause of the condition p0 > 0. Then the capacity booking level c will decrease
to 0 and the stochastic process will remain in the states (n, 0, i). Now, two
cases depending on the inventory policy can be distinguished. If the policy
does not prescribe to fill up the inventory level for any i ∈ {0, . . . , Imax − 1}
in the system state (n, 0, i), the system state will not change and the tran-
sition matrix will thus be aperiodic. If the policy prescribes to fill up the
inventory level until Imax, the inventory level will increase to Imax. If no
order arrives (n = 0) which is possible because of the assumption p0 > 0, the
state will make a transition into itself as the state variables n, c and i remain
unchanged. Thus the transition matrix is aperiodic.

This argument can be extended to multichain policies as well, see fig-
ure 4.4. No matter in which closed recurrent class the stochastic process is
evolving, the inventory level can always rise to its maximum with respect to
the recurrent class and then there is a positive probability that the system
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state remains unchanged. Thus, for multichain policies all possible transition
matrices are aperiodic as well.

As we have shown all possible policies to be aperiodic, we can use the
communicating value iteration algorithm to find the optimal policy for the
Markov decision process. As we will show in the numerical results, the value
iteration algorithm does not converge in a reasonable amount of time for
large problem instances, though. Thus, the need for a heuristic procedure
arises for large problem instances.

inventory level i

time

Imax

threshold

Figure 4.4: Example for a multichain policy which induces two aperiodic
recurrent classes

4.2 A Heuristic Procedure

The heuristic procedure consists of two parts. In the first part, a heuristic
inventory policy is determined while in the second part, a heuristic capacity
allocation policy is identified. The first part extends the heuristic procedure
described in Defregger and Kuhn (2007).
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4.2.1 Determining a Maximum Inventory Level

It might not be advantageous for a company to always replenish its inventory
to its full inventory capacity Imax because of high inventory holding costs or
low demand for its products. Thus, a maximum inventory level Ĩ has to be
determined that ensures that the inventory level will not rise above Ĩ and
will improve the average reward in order to reflect the inventory holding costs
and demand patterns. The company will then only replenish its inventory
to Ĩ ∈ {0, . . . , Imax} instead of always replenishing its inventory to Imax. In
order to determine such an inventory level Ĩ, the heuristic procedure com-
pares different maximum inventory levels for a FCFS policy that accepts all
orders if possible and chooses the inventory level Ĩ that generated the highest
average reward for this FCFS policy.

The heuristic procedure assumes that the average reward is a concave
function of the maximum inventory level Ĩ. This is illustrated in figure 4.5
which shows that at high inventory holding costs, the average reward g(Ĩ) can
even become negative for a high maximum inventory level as the inventory
holding costs outweigh the revenues which are received by fulfilling incoming
orders.

1 2 3 4 5
0

6 7 8 9 10 11

Figure 4.5: Assumption of the average reward g(Ĩ) depending on the maxi-
mum inventory level Ĩ

The procedure to determine Ĩ is outlined in algorithm 4.1.
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Algorithm 4.1 Determine a maximum inventory level

I ← 0, I ← Imax, I1 ← 0, I2 ← Imax, Ĩ ← 0

compare I1 and I2 by simulation and estimate ĝ(I1) and ĝ(I2)

ĝ(I) ← ĝ(I1), ĝ(I) ← ĝ(I2)

repeat

if ĝ(I1) ≥ ĝ(I2) then

I ← I2, Ĩ ← I1

else if ĝ(I2) > ĝ(I1) then

I ← I1, Ĩ ← I2

end if

if |(I − Ĩ)− (Ĩ − I)| ≤ 1 then {I and I have equal distance to Ĩ}
if ĝ(I) > ĝ(I) then

I1 ← Ĩ , I2 ← Ĩ + b(I − Ĩ)/2c
else

I2 ← Ĩ , I1 ← Ĩ − b(Ĩ − I)/2c
end if

else {I and I do not have equal distance to Ĩ}
if Ĩ − I < I − Ĩ then {Ĩ is closer to I than to I}

I1 ← Ĩ , I2 ← Ĩ + b(I − Ĩ)/2c
else if I − Ĩ < Ĩ − I then {Ĩ is closer to I than to I}

I2 ← Ĩ , I1 ← Ĩ − b(Ĩ − I)/2c
end if

end if

compare I1 and I2 by simulation and estimate ĝ(I1) and ĝ(I2)

until I2 − I1 ≤ 1

if ĝ(I1) ≥ ĝ(I2) then

Ĩ ← I1

else

Ĩ ← I2

end if

It starts by initializing Ĩ, the maximum inventory level that generates
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the highest average reward so far, a lower bound I and an upper bound I
for Ĩ, and the two maximum inventory levels I1 and I2 that are compared
first. The heuristic procedure then compares the average rewards that result
from FCFS policies with a maximum inventory level of zero and a maximum
inventory level with the inventory capacity Imax. This is illustrated in figure
4.6.

After that, a procedure is repeated which consists of the following steps.
First, the lower and the upper bound and Ĩ, the best maximum inventory
level found so far, are updated. In a second step, the maximum inventory
levels I1 and I2 that should be compared next are determined. To set I1 and
I2, it is checked wether the updated bounds have roughly the same distance
to Ĩ. If this is the case I1 and I2 are set depending on the current values
of the average rewards ĝ(I) and ĝ(I) of the bounds I and I. An example is
given in figure 4.7.

1 2 3 4 5
0

6 7 8 9 10 11

average
reward

maximum
inventory

level

Figure 4.6: Initializing the heuristic procedure
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Figure 4.7: Setting I1 and I2 if Ĩ has the same distance to I and I

If the bounds I and I do not have the same distance to Ĩ, I1 and I2 are set
depending on the distances of the bounds to Ĩ which is illustrated in figure
4.8.
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Figure 4.8: Setting I1 and I2 if Ĩ does not have the same distance to I and I

The procedure continues until the difference between I1 and I2 becomes
smaller or equal than 1. The procedure results in the maximum inven-
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tory level Ĩ until which the company will replenish its inventory. Thus, the
stochastic reward process resulting from any simulated policy can not visit
any states with an inventory level greater than Ĩ any more as the warmup
phase of each simulation replication starts with the state (0, 0, 0), i.e. with
no order arrived and a capacity and inventory level of zero.

Two FCFS policies with different maximum inventory levels I1 and I2 are
compared by simulation and the paired-t confidence interval approach which
was outlined in section 3.4.

4.2.2 Finding a Capacity Allocation Policy

After the maximum inventory Ĩ has been determined, the heuristic procedure
tries to find a good policy regarding the acceptance and rejection of incoming
orders. This is done similarly to the heuristic procedure presented for the
basic model in the previous chapter. The order classes are sorted ascendingly
by their relative profit margins mn/un and the heuristic starts to reject orders
from the order classes with the lowest relative profit margins.

0

reject

reject
partially

accept

n 1 2 3 4 5

Figure 4.9: Accepting and rejecting order classes

A difference to the basic model is the definition of ”partially rejecting” an
order class. Figure 4.10 illustrates the concept of partial rejection of a certain
order class, e.g. order class 2 or 3 in figure 4.9. We consider a hypothetical
order class n that is partially rejected and has a capacity usage un of 3 units
and a lead time ln of 4 time periods. The maximum inventory level Ĩ is 7. It
can be seen in figure 4.10 that there are some states in which the company is
forced to reject orders and cannot decide otherwise because it cannot deliver
the product within the lead time ln wanted by the customer, even if there is
some inventory i on hand.



4.2. A HEURISTIC PROCEDURE 95

reject although
acceptance
possible

accept

0
acceptance not
possible1

2

3

4

5

0 1 2 3 4c

i

5 6

6

7

Figure 4.10: Partial rejection of order class n, ln = 4, un = 3

The dummy order class 0, which represents the case that no order arrives
in a given period is always set to rejection. The exemplary policy in figure
4.9 rejects order class 1, the order class with the lowest relative profit margin,
in all system states even if it could be accepted in some system states. This
rejection of order class 1 might increase the average reward of the company
in order to reserve capacity for order classes with higher profit margins.
Order classes 2 and 3 are only partially rejected which means that they
are accepted in some system states but rejected in all other system states,
even if they could be accepted in some of those other system states. Order
classes 4 and 5 which have the highest relative profit margins are accepted
in all system states where acceptance is possible. The optimal policy will
be the optimal combination of which order classes are completely rejected,
which order classes are partially rejected and which order classes are fully
accepted.

In order to develop a heuristic procedure it is helpful to approximate
each policy of mapping an action to each state by an N -dimensional vector
θT = (τ0, τ1, . . . , τN). The element τn specifies what the minimum inventory
level i is for accepting an order when c = 0, e.g. in figure 4.10, τn = 2. For
c > 0 the decision at what minimum inventory level to accept or reject an
order is given by τn + c, e.g. with τn = 2 and c = 1, the order is accepted at
a minimum inventory level i of 3 units, see figure 4.10.

Each τn thus specifies exactly in which states orders of class n should
be accepted and in which states they should be rejected. The lower bound
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of the range for each element τn is max{0, un − ln} as this is the minimum
inventory needed to accept the order of class n when the machine capacity
is not booked out, i. e., c = 0. The upper bound for the range of each τn is
Ĩ, where Ĩ is the maximum inventory level found by the heuristic procedure
as described in the previous section. If all orders of class n are rejected, τn

is set to Ĩ + 1. The dummy order class 0 which models the event that no
order arrives in a given period is always set to rejection, so τ0 ← Ĩ + 1 for
any heuristic policy.

τn

n
1 2 3 4 50

+ 1

max{0, un − ln}

Figure 4.11: Policy approximation

Figure 4.11 shows how a policy with five order classes is approximated
by the vector θT = (τ0, τ1, . . . , τ5). In this example, the order class with the
lowest relative profit margin mn/un is completely rejected while order classes
2 and 3 are partially rejected. Order classes 4 and 5 are fully accepted.

Denote by π the policy that the order classes n ∈ {0, . . . , π} are com-
pletely rejected and the order classes n ∈ {π + 1, . . . , N} are completely
accepted. The idea of the heuristic is to evaluate various policies and find
good policies by simulation comparisons. Each policy π results in a Markov
reward process with an associated average reward per period g(π) whose esti-
mate ĝ(π) can be obtained by simulation. The heuristic starts by comparing
policies π = 0 and π = 1 by simulation (see figure 4.12). If ĝ(0) > ĝ(1) pol-
icy 0 of accepting all order classes is accepted as the optimal policy and the
heuristic stops. Otherwise, π → π + 1 and the procedure continues likewise
until ĝ(π) > ĝ(π +1). At that point, policy π has the highest average reward
of all policies compared so far, see figure 4.13 for an example.

Now, the heuristic tries to further optimize policy π by comparing it to
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first two policies to be compared

policy π = 1

policy π = 0

+ 1

Figure 4.12: Comparing policies

τn

n
1 2 3 4 50

π = 2

max{0, un − ln}

+ 1

Figure 4.13: Policy π = 2

policy π+ which is obtained by setting

τπ+1 ← b Ĩ + 1−max{0, uπ+1 − lπ+1}
2

c+ max{0, uπ+1 − lπ+1},

see figure 4.14. If ĝ(π+) > ĝ(π) policy π+ is accepted to be π̃, the best policy
found by the heuristic. Otherwise, policy π is compared to policy π− which
is obtained by setting

τπ ← b Ĩ + 1−max{0, uπ − lπ}
2

c+ max{0, uπ − lπ}.

If ĝ(π−) > ĝ(π) policy π− is set to be π̃, otherwise policy π is set to be π̃.

τn

n

1 2 3 4 5

+1

0

π*

τπ*+1

max{0, un - ln}

τn

n

1 2 3 4 5

+1

0

π*

τπ*

max{0, un - ln}

Figure 4.14: Policies π+ and π−

Two policies are again compared by using the paired-t confidence interval
approach, see section 3.4.
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4.3 Numerical Results

4.3.1 Creating Problem Instances

The problem instances that are generated for the model with a maximum
inventory capacity are created in a similar way as for the basic model as
described in section 3.1.4. The only difference lies with additional input
parameters for the procedure to randomly create a problem instance. These
additional input parameters are the inventory capacity Imax and a lower
bound h and an upper bound h for the holding cost h. First, the inventory
holding cost h is drawn from a [h, h] uniform distribution. After that, the
traffic intensity is drawn from a [1, 2.5] uniform distribution. Then, the
maximum lead time lmax is calculated by

lmax = b|S|/((N + 1) Imax)c
where |S| is the desired number of states, N is the number of order classes
and Imax is the maximum inventory capacity of the problem instance. The
real number of states that the problem instance will have is calculated by

|S|real = (N + 1)(max{lmax, 1})(Imax + 1)

and will often differ a bit from the desired number of states because the
number of states, the maximum lead time, the number of order classes and
the maximum inventory capacity all have to be integer numbers.

After |S|real has been determined, the procedure follows the procedure to
create a problem instance for the basic model which is described in section
3.1.4. The only difference to the procedure for the basic model is that the
lead time of an order class can now be drawn to be less than the order class
usage. The lower bound ln of the lead time of each order class is given by
ln = max{un− Imax, 0} and each lead time is drawn from a uniform [ln, lmax]
distribution.

4.3.2 Comparing the Optimal Policy to a FCFS Policy

The average reward of the ε-optimal policy obtained by value iteration was
compared to the average reward of a FCFS policy in order to evaluate the
potential benefits of using revenue management. Under the FCFS policy all
orders are accepted whenever possible. In order to prevent negative average
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rewards of the FCFS policy due to high inventory holding costs, a simple
heuristic was implemented before the average reward of the FCFS policy was
evaluated.

This simple heuristic compared the average reward of using a maximum
inventory level of Imax versus using a maximum inventory level of zero. In the
case of high inventory costs the FCFS policy will operate with a maximum
inventory level of zero and in the case of low inventory costs the FCFS policy
will operate with a maximum inventory level of Imax. After a maximum
inventory level Ĩ had been chosen, the average reward of the FCFS policy
was evaluated by simulation with a confidence level of 95% and a maximum
relative error of 5%. Calculations were done on a 733 MHz Intel Pentium
machine with 392 MB of memory. The optimal policy was determined by
value iteration where ε was set to 0.5%.

The problem classes that were used for comparing the FCFS policy to
the ε-optimal policy are displayed in table 4.1.

problem class → 1 2 3

number of states 10,000 50,000 100,000

number of order classes [5, 10] [5, 20] [5, 30]

maximum inventory capacity 20 30 50

inventory holding cost [0.01, 1] [0.01, 1] [0.01, 1]

relative profit margin [1, 5] [1, 5] [1, 5]

traffic intensity [1, 2.5] [1, 2.5] [1, 2.5]

maximum lead time [43, 79] [77, 269] [63, 327]

Table 4.1: Problem classes for comparing the ε-optimal policy to a FCFS
policy

Three problem classes with 10,000, 50,000 and 100,000 states were chosen.
The number of order classes for each problem instance was drawn from a
uniform distribution which depended on the problem class. The maximum
inventory level was fixed for each problem class. The inventory holding cost
was drawn from a [0.01, 1] and the traffic intensity from a [1, 2.5] uniform
distribution while the relative profit margin for each order class was drawn
from a [1, 5] triangular distribution for each problem instance, all regardless
of the problem class.
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The chosen parameters of the number of order classes and the maximum
inventory capacity resulted in a certain range of maximum lead times, which
is shown in table 4.1 as well.

The results for comparing the FCFS policy described above to the ε-
optimal policy obtained by value iteration can be seen in table 4.2 and in
figure 4.15.

problem class → 1 2 3

problem instances 100 100 100

average [%] 5.3 1.1 1.7

minimum [%] 0.0 0.0 0.0

maximum [%] 132.2 38.8 90.7

standard deviation [%] 19.4 4.4 9.2

running time simulation [sec.] 8.1 12.1 17.3

running time value iteration [sec.] 17.3 359.6 1,376.7

Table 4.2: Percentage deviations ∆FCFS−opt of average rewards of the ε-
optimal policy compared to the FCFS policy

100 problem instances were created for each problem class. Table 4.2 also
shows the average running times of the procedures to determine the average
reward of the FCFS policy and the ε-optimal average reward per period.
The percentage deviation ∆FCFS−opt of a certain problem instance within a
problem class was calculated by

∆FCFS−opt =
ĝ(πε)− g(πFCFS)

g(πFCFS)
· 100%

where ĝ(πε) was the estimated average reward for the ε-optimal policy ob-
tained by value iteration and g(πFCFS) was the average reward of the FCFS
policy.

Figure 4.15 shows that most percentage deviations lie in a [0%, 10%]
or [0%, 20%] interval while there are some outliers in each problem class.
The high maximum percentage deviations can be explained by the fact that
sometimes the optimal maximum inventory level lies almost in the middle
between zero and the maximum inventory capacity Imax while the FCFS



4.3. NUMERICAL RESULTS 101

policy chooses either a maximum inventory level of zero or Imax. Thus, the
simple heuristic that is used for the FCFS policy to determine the maximum
inventory level is choosing an inventory level that is quite far away from
the optimal inventory level which explains the high maximum percentage
deviations in table 4.2.

Figure 4.15 also shows that most percentage deviations are near zero.
This can be explained by the fact that the expected inventory holding cost
of 0.505 is relatively high, see table 4.1. In the case of high inventory holding
costs, the optimal maximum inventory level will be near zero which has
several consequences.
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Figure 4.15: Histograms of the percentage deviations ∆FCFS−opt of the ε-
optimal policy compared to the FCFS policy
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First, many order classes might not be able to be accepted any more at
a maximum inventory level of zero because lead times that are below the
order class usage are allowed, see the end of section 4.3.1. Furthermore,
at a maximum inventory level of zero, less orders can be accepted at high
capacity booking levels c than if the maximum inventory level would be
higher. Overall one can say that at a maximum inventory level of zero the
effective traffic intensity is reduced. At low traffic intensities, the difference
in the average reward of the FCFS policy and the optimal average reward
will be near zero, see also section 3.5.1.1. This explains why many percentage
deviations ∆FCFS−opt are near zero.

In the case of low inventory holding costs, a different picture emerges.
100 problem instances were created for each of the three problem classes
and all problem instances had a low inventory holding cost of 0.01. Another
100 problem instances were created for each problem class, each with a high
inventory holding cost of 1. The results can be seen in table 4.3 and figure
4.16.

problem class → 1 2 3

problem instances (h = 0.01/h = 1) 100/100 100/100 100/100

average [%] (h = 0.01/h = 1) 5.9/1.2 3.4/1.0 5.5/0.2

minimum [%] (h = 0.01/h = 1) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (h = 0.01/h = 1) 29.7/18.3 26.6/23.6 37.8/6.6

standard deviation [%] (h = 0.01/h = 1) 6.5/3.6 4.7/3.2 8.4/0.8

Table 4.3: ∆FCFS−opt with a low and a high inventory holding cost h

At a low inventory holding cost, the maximum percentage deviations are
not as extreme and the average percentage deviations are higher. This can
be explained by the fact that at a low inventory holding cost, the optimal
maximum inventory level will usually be equal to the maximum inventory
capacity Imax. Thus, the FCFS heuristic will usually find the optimal in-
ventory level as well. Furthermore, if the optimal inventory level equals the
maximum inventory capacity, the effective traffic intensity will be higher as
more orders can be accepted for the optimal policy. Thus, the percentage
differences ∆FCFS−opt will be higher as well.
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Figure 4.16: Histograms of the percentage deviations ∆FCFS−opt at a low and
a high inventory holding cost
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To illustrate these effects, the percentage deviations are also shown for
high inventory holding costs in table 4.3 and figure 4.16. Here it is interesting
to see that with a rising inventory capacity from problem class 1 through 3,
the percentage deviations become lower. This is presumably because the
high inventory holding costs will play a larger role with a larger maximum
inventory capacity.

It is also interesting to investigate the effect of different traffic intensities
on the percentage deviations ∆FCFS−opt. For this purpose, 100 problem in-
stances were created for each problem class with a traffic intensity of ρ = 1
and 100 problem instances were created for each problem class with a traffic
intensity of ρ = 2.5. The results can be seen in table 4.4 and the correspond-
ing histograms in figure 4.17.

problem class → 1 2 3

problem instances (ρ = 1/ρ = 2.5) 100/100 100/100 100/100

average [%] (ρ = 1/ρ = 2.5) 2.0/6.7 0.8/7.1 1.1/1.7

minimum [%] (ρ = 1/ρ = 2.5) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (ρ = 1/ρ = 2.5) 63.4/62.7 49.3/305.8 56.3/15.9

standard deviation [%] (ρ = 1/ρ = 2.5) 7.9/13.4 5.3/31.0 6.9/3.4

Table 4.4: ∆FCFS−opt with different traffic intensities

Table 4.4 shows that the average percentage deviations are generally
higher for higher traffic intensities and lower for lower traffic intensities, sim-
ilar to the basic model of revenue management of the previous chapter. It is
interesting to see how low the percentage deviations are in problem class 3
for high traffic intensities compared to problem classes 1 and 2. These low
percentage deviations might be explained by the fact that problem class 3
has the highest maximum inventory capacity of 50 units. Thus, the rela-
tively high expected inventory holding cost of 0.505 might have the greatest
influence on reducing the effective traffic intensity in this problem class.

When looking at table 4.4, one also notices the high maximum percentage
deviations, especially the 305.8% for a high traffic intensity in problem class
2.
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Figure 4.17: Histograms of the percentage deviations ∆FCFS−opt at varying
traffic intensities
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These high maxima can again be explained by the fact that the maximum
inventory level chosen by the FCFS policy is quite far away from the optimum
maximum inventory level which usually lies in the middle between 0 and Imax

for these problem instances. In order to conserve the explanatory power of
the histogram with a high traffic intensity for problem class 2 in figure 4.17,
the maximum value of 305.8% was not taken into account when producing
this histogram.

Overall, one can conclude for this section that an optimal policy that
uses revenue management can produce significant improvements over the
FCFS policy with the simple heuristic to set the maximum inventory level,
especially at a low inventory holding cost or at a high traffic intensity.

4.3.3 Comparing the Heuristic to an Optimal Proce-
dure

In order to estimate the performance of the heuristic procedure which was
described in section 4.2 the heuristic was compared to value iteration. The
problem classes were the same as in section 4.3.2, see table 4.1.

The results of comparing both procedures are shown in table 4.5 and
figure 4.18.

problem class → 1 2 3

problem instances 100 100 100

average [%] 1.7 0.4 0.2

minimum [%] 0.0 0.0 0.0

maximum [%] 114.0 16.6 6.8

standard deviation [%] 11.7 1.8 0.8

running time heuristic [sec.] 16.7 21.1 38.4

running time value iteration [sec.] 17.3 359.6 1, 376.7

Table 4.5: Percentage deviations ∆H−opt of average rewards of the ε-optimal
policy compared to the heuristic policy

100 problem instances were created for each problem class. The running
times show that the average running times of the heuristic procedure grow
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much slower with respect to the problem size than the average running times
of value iteration. The percentage deviation ∆H−opt of a certain problem
instance was calculated by

∆H−opt =
ĝ(πε)− g(π̃)

g(π̃)
· 100%

where ĝ(πε) was the estimated average reward for the ε-optimal policy ob-
tained by value iteration and g(π̃) was the average reward obtained by the
heuristic procedure.
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Figure 4.18: Histograms of the percentage deviations ∆H−opt of the ε-optimal
policy compared to the heuristic policy
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On average, the heuristic procedure performs between 1.7% for problem
class 1 and 0.2% for problem class 3 worse than the ε-optimal procedure. The
relatively high maximum percentage deviation ∆H−opt of 114% for problem
class 1 results from the fact that the average rewards are near zero. The
average reward of the heuristic procedure is about 6.17E-02 monetary units
while the average reward of the optimal procedure is about 1.32E-01 mone-
tary units. Thus, the absolute difference is still relatively small with about
1.26E-01 monetary units. Overall, the heuristic procedure performs well.

The heuristic procedure was also compared to value iteration for low and
high inventory holding costs traffic intensities. The results are shown in
tables 4.6 and 4.7.

problem class → 1 2 3

problem instances (h = 0.01/h = 1) 100/100 100/100 100/100

average [%] (h = 0.01/h = 1) 1.4/0.3 1.0/0.4 1.2/0.1

minimum [%] (h = 0.01/h = 1) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (h = 0.01/h = 1) 7.9/5.5 7.2/10.5 12.4/6.6

standard deviation [%] (h = 0.01/h = 1) 1.8/0.7 1.5/1.4 1.8/0.7

Table 4.6: ∆H−opt with varying inventory holding costs h

Table 4.6 shows that the heuristic procedure performs between 1.2% and
1.4% worse than value iteration on average for low inventory holding costs
and between 0.1% and 0.3% for high inventory holding costs.

problem class → 1 2 3

problem instances (ρ = 1/ρ = 2.5) 100/100 100/100 100/100

average [%] (ρ = 1/ρ = 2.5) 0.2/1.0 0.2/1.1 0.1/0.5

minimum [%] (ρ = 1/ρ = 2.5) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (ρ = 1/ρ = 2.5) 11.5/17.5 16.9/20.5 4.9/6.8

standard deviation [%] (ρ = 1/ρ = 2.5) 1.2/2.4 1.7/3.1 0.6/1.1

Table 4.7: ∆H−opt with varying traffic intensities ρ
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Figure 4.19: Histograms of the percentage deviations ∆H−opt at varying in-
ventory holding costs
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Table 4.7 shows that the heuristic procedure performs between 0.1% and
0.2% worse than value iteration on average for low traffic intensities and
between 0.5% and 1.1% for high traffic intensities. Overall, one can conclude
that the heuristic procedure performs quite well.

This impression is substantiated by the histograms in figures 4.19 and
4.20 which give a more detailed picture of the distributions of the percentage
deviations.

4.3.4 Comparing the Heuristic to a FCFS Policy

In order to measure the value of the heuristic procedure for large problem
instances, it was compared to the FCFS policy that was described in section
4.3.2. Table 4.8 shows the two problem classes that were used to compare
the heuristic procedure to a FCFS policy.

problem class → 4 5

number of states 500,000 1,000,000

number of order classes [10, 50] [10, 50]

maximum inventory capacity 100 100

inventory holding cost [0.01, 1] [0.01, 1]

relative profit margin [1, 5] [1, 5]

traffic intensity [1, 2.5] [1, 2.5]

maximum lead time [97, 450] [194, 900]

Table 4.8: Problem classes for comparing a FCFS policy to the heuristic
policy

As in section 3.5.3, two problem classes with 500,000 and 1,000,000 states
were used as large problem classes. The number of instances in each problem
class was set to 100. The number of order classes in each problem instance
was drawn from a uniform [10, 50] distribution while the maximum inventory
capacity Imax was set to 100. The inventory holding cost of each problem
instance was drawn from a [0.01, 1] uniform distribution and the relative
profit margin of each order class within a problem instance was drawn from
a left-triangular [1, 5] distribution. The traffic intensity for each problem
instance was drawn from a [1, 2.5] uniform distribution. The maximum lead
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times in table 4.8 result from the number of order classes that has been drawn
for a certain problem instance and equation (4.1).

Table 4.8 also shows the average running times for obtaining the average
reward of the FCFS policy and for performing the heuristic procedure. The
running times are significantly lower than the running times in section 3.5.3.
This is because the variance in average rewards is lower for the inventory
model compared to the average rewards of the basic model. The higher
variance in average rewards for the basic model results in more simulation
runs for the basic model until the maximum relative error γ = 0.5% can be
met.

Table 4.9 and figure 4.21 show the results of comparing the heuristic
procedure to the FCFS policy. The percentage deviations ∆FCFS-H were cal-
culated by

∆FCFS−H =
g(π̃)− g(πFCFS)

g(πFCFS)
· 100%

where g(π̃) and g(πFCFS) were the average rewards obtained by simulation.

problem class → 4 5

problem instances 100 100

average [%] 2.3 0.5

minimum [%] 0.0 0.0

maximum [%] 121.0 15.2

standard deviation [%] 13.2 2.1

running time FCFS [sec.] 30.7 40.4

running time heuristic [sec.] 77.8 89.6

Table 4.9: Percentage deviations ∆FCFS−H of average rewards of the optimal
policy compared to the FCFS policy

For problem class 4 the average percentage deviation is 2.3% and for
problem class 5 the average percentage deviation is 0.5%. The relatively
high maximum percentage deviation for problem class 4 shows the potential
usefulness of the heuristic procedure for large problem instances.
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Figure 4.21: Histograms of the percentage deviations ∆FCFS−H of the heuris-
tic policy compared to the FCFS policy

The heuristic procedure was also compared to the FCFS policy for low
and high inventory holding costs. The results can be seen in table 4.10.

problem class → 4 5

problem instances (h = 0.01/h = 1) 100/100 100/100

average [%] (h = 0.01/h = 1) 2.9/0.1 2.5/0.3

minimum [%] (h = 0.01/h = 1) 0.0/0.0 0.0/0.0

maximum [%] (h = 0.01/h = 1) 35.9/1.8 48.3/6.4

standard deviation [%] (h = 0.01/h = 1) 5.1/0.2 5.4/1.1

Table 4.10: ∆FCFS−H with a low and a high inventory holding cost h

It can be seen that for low inventory holding costs the percentage de-
viations lie above 2% on average while for high inventory holding costs the
percentage deviations are rather low. Even then, the maximum percentage
deviation of 6.4% in problem class 5 is remarkable.

Table 4.11 shows the results for low and high traffic intensities. At a traffic
intensity of 1 the heuristic was not able to outperform the FCFS policy in
even a single problem instance of problem class 4. Nevertheless, table 4.11



114 CHAPTER 4. LIMITED INVENTORY CAPACITY

shows that substantial improvements are possible, especially in problem class
5.

problem class → 4 5

problem instances (ρ = 1/ρ = 2.5) 100/100 100/100

average [%] (ρ = 1/ρ = 2.5) 0.0/0.5 0.3/0.8

minimum [%] (ρ = 1/ρ = 2.5) 0.0/0.0 0.0/0.0

maximum [%] (ρ = 1/ρ = 2.5) 0.0/6.9 25.5/38.2

standard deviation [%] (ρ = 1/ρ = 2.5) 0.0/1.3 2.5/3.9

Table 4.11: ∆FCFS−H with varying traffic intensities ρ

The histograms in figures 4.22 and 4.23 show the distributions of the
percentage deviations in more detail. Overall, one can conclude that the
heuristic procedure can bring significant improvements over the FCFS policy
for large problem instances.

Concluding the numerical tests for this chapter, it turned out that the
percentage deviations ∆H - opt can be quite high for small problem instances,
but mainly when the average rewards are near zero which causes even small
absolute deviations to result in large percentage deviations. Nevertheless,
one should use an optimal procedure for small problem instances because
the percentage deviations of the heuristic procedure from the optimal pro-
cedure can be significant even without factoring in the effect which results
from average rewards being near zero. For large problem instances, optimal
solution procedures can not be solved within a reasonable amount of time.
Here, it turns out that the heuristic procedure is able to produce a signif-
icant value when compared to a FCFS policy and the heuristic procedure
should thus be recommended for usage in an implementation with real-world
problem instances.
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Figure 4.22: Histograms of the percentage deviations ∆FCFS−H at low and
high inventory holding costs
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Figure 4.23: Histograms of the percentage deviations ∆FCFS−H at a low and
a high traffic intensity



Chapter 5

Setup Times and Costs

5.1 Model

In this chapter, the basic model is extended by sequence-dependent setup
times and costs between different order classes.

5.1.1 Model Formulation

Again, the decision problem is modeled with a discrete-time, infinite-horizon
Markov decision process with the optimization criterion of maximizing the
long-term average reward per period. Each incoming order belongs to one
of the order classes n ∈ {1, ..., N}. Orders of a specific order class n have a
certain lead time of ln periods, a processing time of un periods and a profit
margin of mn monetary units. In each discrete time period at most one
order can arrive. The probability that an order of class n arrives at the
beginning of each time period is given by pn,

∑N
n=1 pn < 1. It is possible that

no order arrives in a period. This is modeled by the dummy order class 0,
p0 = 1−∑N

n=1 pn. If an order of class n has been accepted and the last order
that was accepted before belongs to order class m, a setup time tmn and a
setup cost omn are incurred, tnn = onn = 0∀n ∈ {1, ..., N}.

The state of the system is observed at the beginning of each time period
and is described by the three state variables:

• n ∈ {0, . . . , N} is the order class of the order that arrived at the be-
ginning of the currently observed period
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• c ∈ {0, . . . , (maxn ln)− 1} is the number of periods the machine is still
busy because of orders that have been accepted in the past and have
not been completed yet

• s ∈ {1, . . . , N} is the order class of the last order that was accepted by
the company, i.e. the setup state that the resource will occupy after all
currently accepted orders have been processed

The state space is the set of all possible states (n, c, s) and is denoted by S.
The number of states |S| of a certain problem instance is given by

|S| = (N + 1)(max
n

ln)N (5.1)

In each state (n, c, s) , the company can take two possible decisions D:

D[(n, c, s)] =

{
D1 := ”reject”,∀(n, c, s) ∈ S

D2 := ”accept”, ∀(n, c, s) ∈ {S : n > 0 ∧ c + un + tsn ≤ ln}
An incoming order can only be accepted if an order has in fact arrived and
if the order can be finished within its lead time ln while a possible setup
change from order class s to order class n has to be taken into account. Any
incoming order can also be rejected. If no order arrives, decision D1 is taken.
Depending on the decision in state (n, c, s), the company receives a reward
R :

RD1[(n, c, s)] = 0, ∀(n, c, s) ∈ S

RD2[(n, c, s)] = mn − osn, ∀(n, c, s) ∈ S

If an order has been rejected, no reward is received while if an order is ac-
cepted, the company receives the profit margin of the order which is decreased
by a possible setup cost osn.

The transition probabilities P of the Markov decision process show which
states can be reached from a state (n, c, s) once the decision to accept or
reject an order has been taken.

PD1[(n, c, s), (m, max{c− 1, 0}, s)] = pm, ∀(n, c, s) ∈ S, ∀m ∈ {0, . . . , N}
If an order has been rejected, the number of periods c that the machine
is still busy in order to complete all orders that have been accepted so far
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will be reduced by one period in the beginning of the next period. If an
incoming order has been accepted, the capacity booking level c is increased
accordingly:

PD2[(n, c, s), (m, c+tsn+un−1, n)] =

{
pm, ∀(n, c, s) ∈ S, m ∈ {0, . . . , N}
0, else

All states, decisions, rewards and transition probabilities that we described
above specify a discrete-time Markov decision process with an infinite time
horizon.

In order to find the optimal decision for each state and thus the optimal
policy and the optimal average reward per period, different solution proce-
dures exist which depend on the type of the Markov decision process. Thus,
the Markov decision process has to be classified before a solution procedure
can be applied.

5.1.2 Model Classification

We will first show that the Markov decision process described above can
be classified as multichain. A Markov decision process can be classified as
multichain if any policy can be found that results in a Markov reward process
with two or more irreducible classes, see Puterman (1994). For the Markov
decision process described above such a policy can be found by accepting
only orders in a state (n, c, s) if n > 0∧ c+un + tsn ≤ ln, as described above,
and the additional condition that n = s. The additional condition specifies
that orders are only accepted if no setup is incurred. With this policy, the
setup state of the resource will never change and depends entirely on the
setup state at the beginning of the first period of the infinite time horizon.
Thus, depending on the initial setup state of the resource, the stochastic
process will evolve into different irreducible classes and the Markov decision
process can be classified as multichain.

Furthermore, a Markov decision process can be classified as communicat-
ing if for every pair of states a, b ∈ S an arbitrary policy can be found under
which a is accessible from b. To show that the Markov decision process is
communicating, a policy can be found that results in all possible outcomes
of the state variables n, c and s.
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Order class n. With regards to the state variable n, the Markov decision
process is communicating regardless of any policy because any order of class
n ∈ {0, . . . , N} can arrive in every period.
Capacity booking level c. Under any policy the capacity booking level
c can always decrease to 0 if for a very long number of periods no orders
arrive which is possible because of p0 > 0. On the other hand, there is a
positive probability that the booking level c can reach its maximum if an
order arrives in every period and all incoming orders are accepted. Thus, all
possible capacity booking levels c can be reached by a FCFS policy which
accepts all orders.
Setup state s. The policy to reach all setup states s consists of the FCFS
policy as well. As an order of any order class n can arrive in every period, all
setup states can be reached by the FCFS policy provided that no order class
n has such large setup times tmn that no orders of this class can be accepted
for any system state (m, c, s),m 6= n. This condition will be considered in
the numerical tests when individual problem instances are created.

Thus, we showed that there exists a policy by which all possible realiza-
tions of the state variables n, c and s can be attained and the Markov decision
process can be classified as communicating.

A solution procedure for a multichain and communicating Markov deci-
sion process is the value iteration algorithm, provided that all optimal policies
induce aperiodical transition matrices. We will show this condition for all
possible policies. Consider the assumption that no order arrives for a large
number of periods, so that c decreases to zero and the stochastic process
resulting from any policy will remain in the states (0, 0, s). Thus, under
all policies there will be transitions from state (0, 0, s) into itself which is
equivalent to the transition matrix being aperiodic, see Kulkarni (1999).

In conclusion, the value iteration algorithm for the multichain and com-
municating Markov decision process can be used in order to find the optimal
policy and maximum average reward per period. Because of high running
times, the value iteration algorithm can not be reasonably applied to large
problem instances, so we suggest the following heuristic procedure.

5.2 A Heuristic Procedure

The idea of the heuristic procedure is to reject orders depending on the order
class and the current setup state. This rejection of orders is done in order to
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increase the average reward that can be obtained in comparison to a FCFS
policy that accepts all orders of all order classes regardless of the setup state
that the resource currently occupies.

In order to start rejecting orders, artificial order classes are created. An
artificial order class is specified by two components: the class n of an order
that arrives in any given period and the setup state s of the resource in this
period. All possible combinations (n, s) constitute the set of all artificial
order classes a ∈ {1, ..., A}. The number of artificial order classes is given by
A = (N + 1) N .

Before the heuristic procedure starts rejecting orders, the artificial order
classes are sorted ascendingly by the following criterion:

mn − osn

un + tsn
This criterion resembles a relative profit margin mn/un that additionally
considers the relevant setup cost osn and setup time tsn if the order of class n
is accepted while the resource occupies the setup state s. After the artificial
order classes have been sorted by the above criterion, the heuristic tries to
find the optimal number of artificial order classes ω̃ that should be rejected
in order to find the best possible average reward per period.

1 2 3 4 50 6 7 8 9 10 11

average
reward

number of re-
jected artificial
order classes12

FCFS policy

all incoming
orders rejected

Figure 5.1: Example for the assumption that the average reward is a concave
function of the number of rejected artificial order classes

This search process is guided by the assumption that the average reward
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g(ω) is a concave function of the number of rejected artificial order classes
ω. Figure 5.1 gives an example for a problem instance with N = 3, A = 12.

Figure 5.1 shows that if all artificial order classes are accepted, the average
reward is equal to the average reward of a FCFS policy, if all artificial order
classes are rejected, the average reward drops to zero. As this assumption is
very similar to the assumption on how the average reward depends on the
maximum inventory level in the previous chapter, the same algorithm was
employed again and is outlined in algorithm 5.1.

Algorithm 5.1 is nearly identical to algorithm 4.1 of the previous chapter,
the only difference is that instead of finding the best maximum inventory
level Ĩ, algorithm 5.1 tries to find the best number of artificial order classes
ω̃ that should be rejected.

The idea of the search procedure is to continually update lower and up-
per bounds for the best number of rejected order classes ω̃. The heuristic
procedure starts by initializing the number of rejected artificial order classes
that generates the highest average reward so far, ω̃, a lower bound ω and an
upper bound ω for ω̃. Basically, the search procedure continually compares
two policies ω1 and ω2 that are updated during the search process. The first
two policies to be compared are the FCFS policy which accepts all orders
and the policy that rejects all orders. Thus, ω1 is initialized to zero artifi-
cial order classes that are rejected and ω2 is initialized to all artificial order
classes A that are rejected.

After that, a procedure is repeated which consists of the following steps.
First, the lower and the upper bound and ω̃, the best number of rejected
artificial order classes found so far, are updated. In a second step, the number
of rejected artificial order classes ω1 and ω2 that should be compared next
are determined. To set ω1 and ω2, it is checked wether the updated bounds
have roughly the same distance to ω̃. If this is the case ω1 and ω2 are set
depending on the current estimates of the average rewards ĝ(ω) and ĝ(ω) of
the bounds ω and ω. An example is given in figure 5.2.
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Algorithm 5.1 Find the number of rejected artificial order classes ω̃ that

generates the highest average reward
ω̃ ← 0, ω ← 0, ω ← A,ω1 ← 0, ω2 ← A

compare ω1 and ω2 by simulation and estimate ĝ(ω1) and ĝ(ω2)

ĝ(ω) ← ĝ(ω1), ĝ(ω) ← ĝ(ω2)

repeat

if ĝ(ω1) ≥ ĝ(ω2) then

ω̃ ← ω1, ω ← ω2

else if ĝ(ω2) > ĝ(ω1) then

ω̃ ← ω2, ω ← ω1

end if

if |(ω − ω̃)− (ω̃ − ω)| ≤ 1 then {ω and ω have equal distance to ω̃}
if ĝ(ω) > ĝ(ω) then

ω1 ← ω̃, ω2 ← ω̃ + b(ω − ω̃)/2c
else {ĝ(ω) ≤ ĝ(ω)}

ω2 ← ω̃, ω1 ← ω̃ − b(ω̃ − ω)/2c
end if

else {ω and ω do not have equal distance to ω̃}
if ω̃ − ω < ω − ω̃ then {ω̃ is closer to ω than to ω}

ω1 ← ω̃, ω2 ← ω̃ + b(ω − ω̃)/2c
else if ω − ω̃ < ω̃ − ω then {ω̃ is closer to ω than to ω}

ω2 ← ω̃, ω1 ← ω̃ − b(ω̃ − ω)/2c
end if

end if

compare ω1 and ω2 by simulation and estimate ĝ(ω1) and ĝ(ω2)

until ω2 − ω1 ≤ 1

if ĝ(ω1) ≥ ĝ(ω2) then

ω̃ ← ω1

else

ω̃ ← ω2

end if
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1 2 3 4 50 6 7 8 9 10 11

average
reward

number of re-
jected artificial
order classes12

Figure 5.2: Setting ω1 and ω2 if ω̃ has the same distance to ω and ω and
ĝ(ω) ≤ ĝ(ω)

If the bounds ω and ω do not have the same distance to ω̃, ω1 and ω2

are set depending on the distances of the bounds to ω̃ which is illustrated in
figure 5.3.

1 2 3 4 50 6 7 8 9 10 11

average
reward

number of re-
jected artificial
order classes12

Figure 5.3: Setting ω1 and ω2 if ω̃ does not have the same distance to ω and
ω and ω̃ is closer to ω than to ω

Two policies ω1 and ω2 are compared by simulation the paired-t confidence
interval approach, see Law and Kelton (2000). After ω̃ has been determined,
the average reward associated to the policy of rejecting the first ω̃ artificial
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order classes is estimated by simulation with a maximum relative error of
γ = 0.5% and a confidence level of 95%.

5.3 Numerical Results

5.3.1 Creating Problem Instances

When creating problem instances for the model with setups, controlling the
traffic intensity ρ of a problem instance becomes more elaborate because
the setup times have an influence on the traffic intensity as well. Higher
setup times will cause a higher workload for the single resource than lower
or no setup times. For the basic and for the inventory model, ρ is given
by ρ =

∑N
n=1 pn un. For the model with setup times and costs ρ can be

approximated by ρ̃ =
∑N

n=1 pn xn where

xn = un + tn (5.2)

and where tn is the average setup time into order class n,

tn =
1

N

N∑
m=1

tmn (5.3)

In order to create problem instances with an approximate ρ̃ our idea was
to directly draw xn for each order class n from a uniform [10, lmax] distribu-
tion. The sum xn should be drawn for each order class n so that the relation
of the order class usage un to the average setup time into order class n, tn,
could be controlled externally by a parameter r for all order classes. Once
xn had been drawn for a certain order class, un was given by

un = rxn (5.4)

and tn was given by

tn = xn − un

By introducing the parameter r, problem instances with higher or lower
average setup times tn in relation to the processing times un could be created.

After tn had been determined, the individual setup times tmn into order
class n could be drawn randomly while fulfilling the following condition:
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N∑
m=1

tmn = Ntn (5.5)

see equation (5.3).
But a problem arose when xn was drawn to be lmax because of the fol-

lowing two restrictions regarding the setup times tmn into order class n:

un + tmn ≤ lmax∀m ∈ {1, . . . , N} (5.6)

tnn = 0 (5.7)

Restriction (5.6) is needed to keep the model a communicating Markov deci-
sion process, see section 5.1.2. Restrictions (5.6) and (5.7) can not be fulfilled
simultaneously if xn has been drawn to equal lmax.

This can be seen by the fact that even if all setup times tmn,m 6= n,
would be drawn to their maximum lmax − un, the desired average of the
tmn,m ∈ {1, . . . , N}, tn = lmax − un can not be reached because tnn = 0.

Because of this problem, we introduce the average t
′
n of the setup times

tmn,m 6= n,

t
′
n =

1

N − 1

N∑
m=1

tmn (5.8)

From equations (5.3) and (5.8), tn can be expressed in terms of t
′
n by

tn =
N − 1

N
t
′
n (5.9)

Instead of xn = un + tn the sum x′n is drawn from a [10, lmax] uniform distri-
bution for every order class n where

x′n = un + t
′
n (5.10)

After x′n has been drawn it is necessary to express un in terms of x′n and the
input parameter r where

r =
un

un + tn
, (5.11)
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see equation (5.4). In order to obtain the expression of un in terms of x′n and
r one first transforms equation (5.11):

un(1− r) = rtn

Expressing tn in terms of t
′
n and replacing t

′
n by t

′
n = x′n − un, one obtains

un(1− r) = r
N − 1

N
(x′n − un)

see equations (5.9) and (5.10). Solving to un and simplifying, one finally
obtains

un =
x′n(

1

r
− 1

)
N

N − 1
+ 1

(5.12)

Thus, after x′n has been drawn, un can be calculated by equation (5.12).

Once un has been calculated, t
′
n can be calculated by t

′
n = x′n − un and

tn can be calculated from equation (5.9).

After tn has been obtained, the individual setup times tmn can be drawn
randomly while fulfilling conditions (5.5) through (5.7) in a fashion similar
to algorithm 3.1. A fourth condition is used when creating the individual
setup times tmn into order class n:

tmn < 3 tn,∀m ∈ {1, . . . , N}

This is to prevent the case that one individual setup time tln becomes too
large compared to the other setup times tmn,m 6= l.

The setup costs omn are obtained by first drawing the relative setup costs
omn from a [0.01, 1] uniform distribution where

orel
mn = omn/tmn

The setup costs omn can then be calculated by omn = orel
mntmn.

After the approximate traffic intensity of order class n, ρ̃n, has been
obtained using algorithm 3.1 and equation (3.3), the arrival probability of
order class n is given by pn = ρ̃n/(un + tn).
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5.3.2 Comparing the Optimal Policy to a FCFS Policy

In order to investigate the potential of revenue management for the model
with setup times and costs, the ε-optimal average reward obtained by value
iteration was compared to the average reward of a FCFS policy, where ε and
the maximum relative error γ were set to 0.5%. Under the FCFS policy, all
orders were accepted as long as their lead times can be met and as long their
profit margin is not smaller than the setup cost to fulfill the order. Numerical
tests were performed for three problem classes which are outlined in table
5.1.

problem class → 1 2 3

number of states 10,000 50,000 100,000

number of order classes [5, 10] [5, 20] [5, 30]

relative setup cost [0.01, 1] [0.01, 1] [0.01, 1]

relative profit margin [1, 5] [1, 5] [1, 5]

approximate traffic intensity [1, 2.5] [1, 2.5] [1, 2.5]

ratio setup times [0.5, 0.9] [0.5, 0.9] [0.5, 0.9]

maximum lead time [91, 333] [119, 1667] [108, 3333]

Table 5.1: Problem classes for comparing FCFS policies to ε-optimal policies

The number of order classes for each problem instance of a certain problem
class was drawn from a uniform distribution whose parameters are given in
table 5.1. The relative setup cost from a certain order class to all other order
classes of a problem instance was drawn from a [0.01, 1] uniform distribution
while the relative profit margin of each order class was drawn from a [1, 5] left
triangular distribution. The approximate traffic intensity ρ̃ for each problem
instance was drawn from a [1, 2.5] uniform distribution while the parameter r
to determine the average length of the setup times was drawn from a [0.5, 0.9]
uniform distribution for each problem instance within a certain problem class.
The maximum lead times given in table 5.1 result from the number of order
classes drawn for a certain problem instance and equation (5.1) in section
5.1.1. All calculations in this chapter were done on a desktop PC with a
3 GHz Pentium processor and 1 GB RAM, unlike to the numerical tests in
chapters 3 and 4.
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The results for comparing the ε-optimal average reward to the FCFS
average reward are shown in table 5.2 and figure 5.4.

problem class → 1 2 3

problem instances 100 100 100

average [%] 8.9 8.1 8.2

minimum [%] 0.0 0.0 0.0

maximum [%] 42.9 42.6 30.7

standard deviation [%] 8.2 8.2 7.1

running time simulation [sec.] 2.5 3.6 8.1

running time value iteration [sec.] 2.2 29.9 111.9

Table 5.2: Percentage deviations ∆FCFS−opt of average rewards of the ε-
optimal policy compared to the FCFS policy

The percentage deviation ∆FCFS−opt of a certain problem instance within a
problem class was calculated by

∆FCFS−opt =
ĝ(πε)− g(πFCFS)

g(πFCFS)
· 100%

where ĝ(πε) was the estimated average reward for the ε-optimal policy ob-
tained by value iteration and g(πFCFS) was the average reward of the FCFS
policy.

For each problem class, 100 problem instances were drawn randomly ac-
cording to the distributions shown in table 5.1 and as described in section
5.3.1. Table 5.2 also shows the average running times for obtaining the aver-
age reward of the FCFS policy and for obtaining the optimal average reward.

Table 5.2 shows that on average, the optimal policy outperformed the
FCFS policy by between 8% and 9%. This shows that using revenue man-
agement does indeed have a promising potential for the model with setup
times and costs.
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Figure 5.4: Histograms of the percentage deviations ∆FCFS−opt of the optimal
policy compared to the FCFS policy

problem class → 1 2 3

problem instances (r = 0.9/r = 0.5) 100/100 100/100 100/100

average [%] (r = 0.9/r = 0.5) 4.6/9.9 4.1/10.1 4.8/9.2

minimum [%] (r = 0.9/r = 0.5) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (r = 0.9/r = 0.5) 27.7/45.6 34.7/47.1 25.4/53.1

std. dev. [%] (r = 0.9/r = 0.5) 5.3/7.9 4.7/8.4 4.5/8.2

Table 5.3: ∆FCFS−opt with low (r = 0.9) and high (r = 0.5) setup times

The potential of using revenue management instead of a FCFS policy was
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also investigated for varying setup times and traffic intensities. The results
for varying setup times are shown in table 5.3 and figure 5.5.

For a reminder of the relationship between r and the length of the setup
times, see equations (5.2) and (5.4). Table 5.3 shows that the potential
for revenue management is higher when setup times are high. Overall, the
improvements of the optimal average reward obtained by value iteration are
substantial.

The potential of revenue management was also studied for different ap-
proximate traffic intensities ρ̃. The results are shown in table 5.4 and figure
5.6.

problem class → 1 2 3

problem instances (ρ̃ = 1/ρ̃ = 2.5) 100/100 100/100 100/100

average [%] (ρ̃ = 1/ρ̃ = 2.5) 2.5/16.4 2.2/14.8 2.3/14.4

minimum [%] (ρ̃ = 1/ρ̃ = 2.5) 0.0/0.7 0.0/0.0 0.0/0.0

maximum [%] (ρ̃ = 1/ρ̃ = 2.5) 17.7/102.9 14.4/48.7 11.7/49.6

std. dev. [%] (ρ̃ = 1/ρ̃ = 2.5) 3.5/15.3 2.8/10.1 2.4/10.1

Table 5.4: ∆FCFS−opt with different approximate traffic intensities ρ̃

Table 5.4 shows that the optimal policy outperforms the FCFS policy even
for an approximate traffic intensity of ρ̃ = 1. This indicates that ρ̃ is indeed
an approximation of the traffic intensity and underestimates the true traffic
intensity because one would expect no significant improvement of the optimal
policy compared to the FCFS policy if the true traffic intensity was ρ = 1.
Here, the true traffic intensity is larger than 1 because there are significant
improvements of the optimal policy compared to the FCFS policy.
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Figure 5.5: Histograms of the percentage deviations ∆FCFS−opt with low and
high setup times
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Figure 5.6: Histograms of the percentage deviations ∆FCFS−opt at varying
approximate traffic intensities ρ̃
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Overall, table 5.4 shows that using revenue management offers signifi-
cant improvements versus a simple FCFS policy. One can conclude for this
section that using revenue management instead of a FCFS policy allows for
significant improvements of the average reward per period when setup times
and costs are present.

5.3.3 Comparing the Heuristic to an Optimal Proce-
dure

In order to investigate the performance of the heuristic procedure that was
proposed in section 5.2 it was compared to the value iteration algorithm which
is an optimal procedure. The problem classes that were used to perform the
comparison were the same as in section 5.3.2, see table 5.1. The results of
comparing the heuristic procedure to the optimal procedure are shown in
table 5.5 and figure 5.7.

problem class → 1 2 3

problem instances 100 100 100

average [%] 1.1 1.0 1.0

minimum [%] 0.0 0.0 0.0

maximum [%] 16.0 8.6 9.8

standard deviation [%] 2.3 1.7 1.5

running time heuristic [sec.] 10.3 12.3 41.2

running time value iteration [sec.] 2.2 29.9 111.9

Table 5.5: Percentage deviations ∆H−opt of average rewards of the optimal
policy compared to the heuristic policy

The percentage deviation ∆H−opt of a certain problem instance was cal-
culated by

∆H−opt =
ĝ(πε)− g(π̃)

g(π̃)
· 100%

where ĝ(πε) was the estimated average reward for the ε-optimal policy ob-
tained by value iteration and g(π̃) was the average reward obtained by the
heuristic procedure.
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Table 5.5 shows that on average, the heuristic procedure performs about
1% worse than the optimal procedure. Although there are some significant
maxima, the histograms in figure 5.7 show that most percentage deviations
lie in the [0%, 2%] and respectively the [0%, 1%] intervals.
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Figure 5.7: Histograms of the percentage deviations ∆H−opt of the optimal
policy compared to the heuristic policy

The heuristic procedure was also compared to the optimal procedure with
regards to differing setup times and approximate traffic intensities.
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problem class → 1 2 3

problem instances (r = 0.9/r = 0.5) 100/100 100/100 100/100

average [%] (r = 0.9/r = 0.5) 0.2/2.5 0.2/2.2 0.2/1.7

minimum [%] (r = 0.9/r = 0.5) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (r = 0.9/r = 0.5) 3.0/27.3 1.2/12.9 2.2/14.4

standard deviation [%] (r = 0.9/r = 0.5) 0.4/4.4 0.2/2.4 0.3/2.3

Table 5.6: ∆H−opt with low (r = 0.9) and high (r = 0.5) setup times

problem class → 1 2 3

problem instances (ρ̃ = 1/ρ̃ = 2.5) 100/100 100/100 100/100

average [%] (ρ̃ = 1/ρ̃ = 2.5) 0.5/2.0 0.3/1.9 0.2/2.5

minimum [%] (ρ̃ = 1/ρ̃ = 2.5) 0.0/0.0 0.0/0.0 0.0/0.0

maximum [%] (ρ̃ = 1/ρ̃ = 2.5) 12.3/20.2 2.3/15.9 3.4/15.8

standard deviation [%] (ρ̃ = 1/ρ̃ = 2.5) 1.4/2.3 0.4/2.4 0.5/2.9

Table 5.7: ∆H−opt with different approximate traffic intensities ρ̃

The results are shown in table 5.6 and table 5.7. Table 5.6 shows that
the heuristic procedure performs almost optimal when setup times are low.
When setup times are high, the heuristic performs between 1.7% and 2.5%
worse than value iteration. For different traffic intensities, a similar picture
emerges. Figure 5.7 shows that the heuristic procedure performs between
0.2% and 0.5% on average worse than value iteration for an approximate
traffic intensity of 1. For high traffic intensities, the heuristic procedure on
average performs between 1.9% and 2.5% worse than value iteration.
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Figure 5.8: Histograms of the percentage deviations ∆H−opt with low and
high setup times
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Figure 5.9: Histograms of the percentage deviations ∆H−opt at varying traffic
intensities
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5.3.4 Comparing the Heuristic to a FCFS Policy

In order to investigate the performance of the heuristic procedure for large
problem instances it was compared to a FCFS policy which accepts all orders
as long as their profit margin exceed the setup costs which have to be paid in
order to accept the order. For this purpose, two more problem classes were
defined which are described in table 5.8.

problem class → 4 5

number of states 500,000 1,000,000

number of order classes [10, 50] [10, 50]

relative setup cost [0.01, 1] [0.01, 1]

relative profit margin [1, 5] [1, 5]

approximate traffic intensity [1, 2.5] [1, 2.5]

ratio setup times [0.5, 0.9] [0.5, 0.9]

maximum lead time [196, 4545] [392, 9091]

Table 5.8: Problem classes for comparing a FCFS policy to the heuristic
policy

The number of order classes was drawn from a [10, 50] uniform distribu-
tion for both problem classes and the relative setup cost was drawn from
a [0.01, 1] uniform distribution for every setup possible in each problem in-
stance. The relative profit margin was drawn from a [1, 5] left triangular
distribution for every order class in every problem instance. The parameter
r for the setup times was drawn from a [0.5, 0.9] uniform distribution for ev-
ery problem instance. The maximum lead times given in table 5.8 result from
the number of order classes that was drawn for a certain problem instance
and equation (5.1) in section 5.1.1.

The results of comparing the heuristic procedure to the FCFS policy for
large problem instances can be seen in table 5.9.
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problem class → 4 5

problem instances 100 100

average [%] 7.5 5.7

minimum [%] 0.0 0.0

maximum [%] 37.1 32.7

standard deviation [%] 7.3 5.7

running time FCFS [sec.] 10.0 17.3

running time heuristic [sec.] 83.7 108.8

Table 5.9: Percentage deviations ∆FCFS−H of average rewards of the optimal
policy compared to the heuristic policy

It shows that on average, the heuristic procedure outperforms the FCFS
policy by 7.5% for problem class 4 and 5.7% for problem class 5. The maxi-
mum percentage deviations show that using the heuristic instead of a FCFS
policy can be indeed quite profitable. Figure 5.10 shows the percentage de-
viations in more detail.
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Figure 5.10: Histograms of the percentage deviations ∆FCFS−H of the heuris-
tic policy compared to the FCFS policy

The performance of the heuristic procedure was also investigated for dif-
ferent average lengths of the setup times which can be seen in table 5.10.
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problem class → 4 5

problem instances (r = 0.9/r = 0.5) 100/100 100/100

average [%] (r = 0.9/r = 0.5) 3.9/6.1 4.6/8.4

minimum [%] (r = 0.9/r = 0.5) 0.0/0.0 0.0/0.0

maximum [%] (r = 0.9/r = 0.5) 19.2/29.2 32.2/37.8

standard deviation [%] (r = 0.9/r = 0.5) 4.2/5.3 5.0/7.7

Table 5.10: ∆FCFS−H with low (r = 0.9) and high (r = 0.5) setup times

It can be seen that the heuristic procedure performs better with higher
setup times than with lower setup times which can be expected because
the potential of revenue management correlates with the average length of
setup times, see table 5.3. The percentage deviations in table 5.10 show that
substantial improvements can be achieved by the heuristic procedure. Figure
5.11 shows the percentage deviations in more detail.

Table 5.11 shows the comparison of the heuristic procedure to a FCFS
policy at different traffic intensities. As can be expected, the performance
improvements are directly correlated to the traffic intensity. Table 5.11 shows
that the performance improvements by the heuristic procedure can be sub-
stantial and figure 5.12 shows the percentage deviations in more detail.

problem class → 4 5

problem instances (ρ̃ = 1/ρ̃ = 2.5) 100/100 100/100

average [%] (ρ̃ = 1/ρ̃ = 2.5) 1.8/11.5 2.2/13.1

minimum [%] (ρ̃ = 1/ρ̃ = 2.5) 0.0/0.0 0.0/0.0

maximum [%] (ρ̃ = 1/ρ̃ = 2.5) 18.3/44.5 12.8/48.2

standard deviation [%] (ρ̃ = 1/ρ̃ = 2.5) 2.4/8.3 2.4/9.8

Table 5.11: ∆FCFS−H with different approximate traffic intensities ρ̃
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Figure 5.11: Histograms of the percentage deviations ∆FCFS−H with low and
high setup times
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Figure 5.12: Histograms of the percentage deviations ∆FCFS−H at varying
traffic intensities

Concluding the numerical tests for this chapter, it was shown that revenue
management has a significant advantage over a FCFS policy. The heuristic
procedure performed quite well on average, but there were maximum per-
centage deviations from the optimal procedure up to 16% which suggest that
an optimal procedure should be used when available. The heuristic proce-
dure proved suitable to significantly improve the average reward of a FCFS
policy for large problem instances, which would make it the method of choice
for an implementation for large real-world problem instances.
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Chapter 6

Conclusions and Future
Research

In this dissertation, the potential benefits of applying revenue management
to manufacturing companies were investigated. The general conclusion that
can be drawn is that revenue management can have a significant impact on
the bottom line of manufacturing companies. The numerical tests showed
that by using revenue management, the profitability of a company can be
increased significantly, which in turn strengthens the company’s position in
a global market. In one real-world case, not using revenue management
drove a company out of business, see the quote of Donald Burr, former CEO
of PeopleExpress in Cross (1997). Another real-world example shows that
American Airlines was able to generate US$1.4 billion in additional revenue
over a three-year period in 1988, see Smith, Leimkuhler, and Darrow (1992).
While these examples might not be representative for manufacturing com-
panies, they show that revenue management can have a deep impact on a
company’s business.

The potential of revenue management for manufacturing companies was
exemplified in the second chapter, where an empirical study showed that
there exists a substantial potential for revenue management in manufacturing
industries which has not been fully tapped yet.

In the following chapters, a basic quantitative model for applying revenue
management in a manufacturing context was formulated as a Markov decision
process and expanded. Chapter 3 started by presenting a basic quantitative
model for revenue management and classifying it. After that, six different
procedures to evaluate the average reward of a given policy are compared with
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regards to their running times. It turned out that evaluating the evaluation
equations with a modified Gauss-Seidel method was the fastest procedure
for small problem instances while simulation was the only viable method for
large problem instances. Chapter 3 continued with a comparison of three
standard procedures for solving a Markov decision process and it turned out
that the policy iteration method was the fastest method while no solution
method could solve the Markov decision process for a large problem instance
within a time limit of one hour. Thus, a heuristic solution procedure was
presented in order to solve the Markov decision process in a short amount
of time resulting in a relatively good average reward per period. Numerical
tests concluded this chapter which showed that revenue management has a
significant potential compared to a simple FCFS policy and that the heuristic
procedure performs reasonably well for a wide array of problem classes.

In chapter 4, the basic model of chapter 3 was expanded by the possi-
bility to store a single product type in an inventory with limited inventory
capacity. After an adequate mathematical model was formulated and classi-
fied, a heuristic procedure was presented which consists of two parts. First,
a suitable maximum inventory level is found which is necessary in order to
take into account the inventory holding costs. A suitable trade-off has to be
found between the inventory holding costs which might be quite high and the
advantages of being able to fulfill more orders with a rising inventory level.
In the second part, the heuristic procedure tries to find the right amount of
orders which should be rejected in order to reserve enough capacity for more
profitable orders. Following the description of the heuristic procedure, it was
shown in a number of numerical tests that revenue management can have a
significant impact on the average reward per period when compared to a sim-
ple FCFS policy which chooses a maximum inventory level of either zero or
the maximum inventory capacity, depending on the inventory holding costs.
It was also shown that when inventory holding costs are high, the impact of
using revenue management becomes rather small because the optimal inven-
tory level is zero and thus the traffic intensity is effectively reduced because
less orders can be accepted.

Chapter 5 expanded the basic model of chapter 3 by allowing for sequence-
dependent setup times and costs for multiple order classes. After an appro-
priate model had been formulated and classified, a heuristic procedure was
introduced which uses a similar technique to the first part of the heuristic
procedure in chapter 4. In the course of the numerical tests it turned out
that it was more difficult to control the traffic intensity than in the previous
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chapters because setup times have an impact on resource utilization as well.
As a remedy, a procedure to create problem instances was introduced which
was able to control the approximate traffic intensity and the ratio of setup
times to usage times of each order class. In the course of the numerical tests
it turned out an ε-optimal policy obtained by value iteration outperforms a
simple FCFS policy significantly. The performance of the heuristic procedure
was also compared to the ε-optimal policy for small problem instances and to
a FCFS policy for large problem instances. It turned out that the heuristic
procedure performs well and is able to produce significant improvements for
large problem instances.

One further question is how the mathematical models could be imple-
mented in a real-world revenue management system and how the necessary
input data for the mathematical models could be obtained. After a segmen-
tation of customer orders into order classes has been obtained, the arrival
probabilities of the different order classes would have to be estimated. This
could be achieved by simply counting arriving orders over a longer investi-
gation period Π to obtain an arrival rate for each order class. As the time-
discrete Markov decision models imply geometrically distributed interarrival
times of the orders, the arrival probability of the orders could be calculated
from the mean of the geometric distribution of the interarrival times. This
mean could be calculated for the investigation period Π by dividing by the
number of orders which have arrived during this period. For example, if 5
orders of a certain order class n arrived over an investigation period of Π =10
days, the geometric mean of the interarrival times would be 2 days. Thus,
the arrival probability would be calculated by pn = 1/2 = 0.5. The profit
margins mn could be obtained from the accounting department and the us-
age times un from the production management department while the lead
times ln could be obtained from the customers.

One specific question with regards to an implementation of the mathe-
matical models would also be the length of the discrete time periods used
in the mathematical decision models. A finer time discretization would be a
more accurate representation of reality, but the mathematical models would
become more difficult to solve because of a larger state space. Thus, one
would have to find a time-discretization that would it still make possible
not to overuse the given memory capacity of the computer that solves the
mathematical decision problem.

Another interesting aspect of the mathematical models is the link between
capacity control and dynamic pricing. While the mathematical models solve
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a capacity control problem, it turns out that the stochastic process resulting
from an optimal policy reflects the solution of a dynamic pricing problem.
This is shown in a fictitious example in figure 6.1.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time

capacity usage

lowest quoted price

Figure 6.1: Stochastic process which results in dynamic pricing

Figure 6.1 shows that the lowest quoted price for customers varies with
the current capacity usage of the resource. In period 2, the capacity usage
sinks below a level where an additional order class is accepted. In period
5, an incoming order has been accepted and the capacity usage rises. This
causes some order classes to be closed which results in an increase in the
lowest price quoted to customers. In period 8, another order is accepted
and the capacity usage rises further, then no more order is accepted and the
capacity usage decreases by one unit in every period. This simple example
shows that the capacity control models in this dissertation can also be used
to implement dynamic pricing policies.

With regards to further research opportunities, all mathematical models
presented in this dissertation did not allow for any scheduling of orders that
have already been accepted. Implementing an opportunity of making orders
independent of the order in which they were received at the order acceptance
department would make all mathematical models intractable because of an
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explosion of the state space. Every state would have to use an additional
state variable for every order which was already accepted which would lead
to an explosion of the state space. Allowing for a rescheduling of orders would
considerably increase the average reward per period that can be obtained, but
a solution to this problem seems very difficult, but perhaps not impossible.

Summing up, this dissertation has showed that revenue management is
already used by a significant fraction of companies in the paper, steel and
aluminium industries. The quantitative decision models show that a great
potential for applying revenue management in the manufacturing industries
exists at least in theory. Implementing these models into the wider frame
of a complete revenue management system might be difficult, but the nu-
merical results show that an implementation effort could well be worthwhile.
Only time will tell if real decision systems for revenue management based on
quantitative decision models will start to take hold on a larger scale in the
manufacturing industries.
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