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Abstract
TheCOVID-19 pandemic haswreaked havoc across supply chain (SC) operationsworldwide.
Specifically, decisions on the recovery planning are subject to multi-dimensional uncertainty
stemming from singular and correlated disruptions in demand, supply, and production capac-
ities. This is a new and understudied research area. In this study, we examine, SC recovery for
high-demand items (e.g., hand sanitizer and facemasks).Wefirst developed a stochasticmath-
ematical model to optimise recovery for a three-stage SC exposed to the multi-dimensional
impacts of COVID-19 pandemic. This allows to generalize a novel problem setting with
simultaneous demand, supply, and capacity uncertainty in a multi-stage SC recovery context.
We then developed a chance-constrained programming approach and present in this article
a new and enhanced multi-operator differential evolution variant-based solution approach
to solve our model. With the optimisation, we sought to understand the impact of different
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recovery strategies on SC profitability as well as identify optimal recovery plans. Through
extensive numerical experiments, we demonstrated capability towards efficiently solving
both small- and large-scale SC recovery problems. We tested, evaluated, and analyzed differ-
ent recovery strategies, scenarios, and problem scales to validate our approach. Ultimately,
the study provides a useful tool to optimise reactive adaptation strategies related to how and
when SC recovery operations should be deployed during a pandemic. This study contributes
to literature through development of a unique problem setting with multi-dimensional uncer-
tainty impacts for SC recovery, as well as an efficient solution approach for solution of both
small- and large-scale SC recovery problems. Relevant decision-makers can use the findings
of this research to select the most efficient SC recovery plan under pandemic conditions and
to determine the timing of its deployment.

Keywords Supply chain resilience · COVID-19 pandemic · Recovery planning · Stochastic
modelling · Chance-constrained programming

1 Introduction

The COVID-19 pandemic has severely impacted human lives and disrupted national
economies. As of 11 February 2022, more than 407 million people have been infected
with COVID-19 and more than 5.8 million people have died (Worldometers, 2022). As a
result of the severe impacts of pandemic, the global economy has contracted by 3.5 per-
cent, and according to the Global Economic Prospects report published in June 2021 (The
World Bank, 2021), the recession in 2020 was the deepest the world has seen since World
War II. This pandemic has also severely impacted businesses and their supply chains (SC).
While industry-specific impacts including financial loss, site shutdowns, job cuts, creation
of waste and loss of trade relationships have been reported in many articles (Belhadi et al.,
2021; Chowdhury et al., 2020), a recent review (Chowdhury, Paul, Kaisar, & Moktadir,
2021) on COVID-19-related studies in the SC discipline summarized 28 disruptive impacts
of the pandemic across various SC areas. Moreover, to mitigate the spread of the disease,
world governments have been imposing various restrictions on human and economic activi-
ties. Consequently, SC operations have been subject to heavy disruptions, where firms have
reported interruptions from their SC partners. According to a recent SC resilience report,
84 percent of businesses reported interruptions in their cross border activities and another
70 percent reported disruptions in domestic movements (Elliott, 2021). These disruptions
have also occurred beyond tier one SC partners, as the report suggested that 40 percent of
COVID-19-related SC disruptions occurred at tier two and beyond. In this unique setting,
SC face long-term highly unstable and unpredictable conditions caused by the devastating
impacts of the COVID-19 outbreak.

The severe impacts caused by the pandemic pose a unique question around recovery of the
SC under extraordinary conditions (Craighead et al., 2020; Golan et al., 2020; Queiroz et al.,
2020). Literature has examined SC operations in a pandemic setting as a specific research
area (Cheramin et al., 2021; Choi, 2020; Govindan et al., 2020; Ivanov & Dolgui, 2020a;
Ivanov, 2020a, 2020b; Kargar et al., 2020; Pamucar et al., 2022; Singh et al., 2020; van
Hoek, 2020; Yu et al., 2020). However, the focus of the majority of these studies remains on
the analysis of the pandemic impacts (Chowdhury et al., 2021). More specifically, research
focusing on developing recovery models and plans is scarce. On the other hand, recovery
decisions have been surrounded by multi-dimensional uncertainty stemming from singular
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and correlated uncertainties in product demand, supply, and production capacities (Dolgui
et al., 2020; Aldrighetti et al. 2021; Rozhkov et al. 2022). This emerging area of research is
thus related to deep uncertainty and correlated SC processes such as production and logistics
(Klibi et al., 2010; Baghalian et al., 2013; Fahimnia et al., 2015; Qazi et al., 2017; Amiri-Aref
et al., 2018, 2019; Fathollahi-fard et al., 2019; Snoeck et al., 2019; Zhao & Freeman, 2019;
Farahani et al., 2020; Sawik, 2020; Paul, Chowdhury, et al., 2021; Paul et al., 2021).

During the COVID-19 pandemic, many SCs of high-demand items have faced numer-
ous, simultaneous challenges, such as a surge in demand for face masks in global markets,
paired with a breakdown of global SCs and a lack of manufacturing capacity (Parker, 2020;
Paul et al., 2021; Paul Moktadir, & Ahsan, 2021; Paul, Chowdhury, et al., 2021). Other
high-demand products such as sanitizers and face shields have similarly become valuable
(and increasingly scarce) commodities during this time (Taylor, 2020). However, due to
government-imposed lockdowns, social distancing, and the closing of borders, the supply
and manufacturing capacities of such products have been impacted significantly. Moreover,
government restrictions have been imposed at different times in different parts of the world.
Such timing of restrictions has further impacted SCs, as the timing around the opening and
closing of factories of different SC partners represents a key factor determining the impact
of global disruptions on SC performance (Ivanov, 2020a, 2020b).

Accordingly, SCs have been facing multi-dimensional disruptions, in which the demand
for necessary (i.e., high-demand) items such as face shields and hand sanitizer, the supply
of raw materials, and production capacities have become simultaneously vulnerable on an
unprecedented scale. Moreover, supply, demand, and production capacities can face differ-
ent levels of uncertainties and variations, further complicating SC recovery plans. Therefore,
developing a recovery plan that considers these multi-dimensional disruptions and uncer-
tainties caused by the COVID-19 pandemic is necessary. In developing the recovery plan, a
quantitative modelling approach can account for all these multi-dimensional disruptions and
their associated uncertainties. Taking a quantitative approach to develop a recovery plan will
not only help to develop a more robust recovery model but will also help SC managers in
selecting an optimal recovery plan and associated strategies.

Currently, there are few studies focusing on the optimisation of SC recovery under condi-
tions of severe disruption (Vahdani et al., 2011; Hishamuddin et al., 2013, 2014; Ivanov et al.,
2014, 2016a,b; Chen et al., 2015; Shishebori et al., 2017; Azad & Hasini, 2019; Pavlov et al.,
2019). Ivanov et al. (2017) conducted a literature review of SC recovery research, which
revealed that most studies offer deterministic recovery models with small-scale and single-
dimensional disruption in production, supply, or transportation. Accordingly, the research
on mathematical recovery models for multi-dimensional disruptions with different levels of
uncertainties is still in its infancy. Considering such limitations in the literature, the current
study aimed to develop a quantitative recovery model for managing the multi-dimensional
uncertainty impacts of the COVID-19 pandemic. Specifically, we proposed the following
research objectives:

i. To develop amathematicalmodel for a three-stage SC to recover frommulti-dimensional
impacts of the COVID-19 pandemic, such as increased demand, reduced production
capacity, and reduced supply capacity;

ii. To consider uncertainties in demand, supply, and production capacities simultaneously;
and

iii. To develop an efficient solution approach to solve the model for both small- and large-
scale problems.
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To achieve these objectives, we developed a chance-constrained programming-based
mathematical model with total profit in the recovery window as the objective function.
To optimise the recovery plan, we considered several management strategies, such as the
emergency supply of raw materials and an increase in production capacity by running extra
shifts, hiring more manpower, as well as the cost for demand lost. We assumed that both an
emergency supply and an increase in production capacity are also uncertain. Therefore, we
developed a unique and enhanced multi-operator differential evolution (EDEcon) variant-
based solution approach to solve the model. Through extensive numerical experiments, we
demonstrated how the proposed solution approach is capable of efficiently solving both small-
and large-scale SC recovery problems.

This study makes several contributions. First, we examined a unique problem setting with
multi-dimensional uncertainty and demonstrated improvements in efficiency and respon-
siveness, which can be achieved by mathematical optimisation of SC recovery. Our second
contribution lies in the conceptualization of a novel model and solution approach that allows
for optimal SC recovery. Distinctively, our model is capable of considering different levels of
uncertainty in the variations of supply, demand, and production capacities. To the best of our
knowledge, our model is the first to consider SC recovery in light of simultaneous demand,
supply, and capacity disruptions in a pandemic setting. Our third contribution is related to
the efficient solution approach of the formulated chance-constrained programming model,
which can solve both small- and large-scale SC recovery problems.

The paper is organised as follows. Section 2 discusses the relevant literature streams. The
problem description and model formulation are presented in Sect. 3. Section 4 discusses the
solution approach. The experiments and discussion of the results are presented in Sect. 5.
Finally, the paper concludes with Sect. 6, where a summary of the study’s major findings is
given and future research avenues are addressed.

2 Literature review

This study contributes to several research streams: the development of an SC recoverymodel,
stochastic modelling of SC disruptions for correlated and large-scale SC disruptions and
disruption management in a pandemic setting. Our literature review is organized accordingly
and presents the rationale for our study.

2.1 Supply chain recovery modelling

Studies onSCdisruptions, referred to as catastrophic events, have received increased attention
in the literature (Ivanov et al., 2017). Given these events are difficult to predict and their
incidence impossible to eliminate (Christopher et al., 2011), an understanding of how SCs
can recover from the negative impacts of these events when they occur is critical. To achieve
this, firms must formulate and implement appropriate recovery strategies (Chowdhury et al.,
2019).

Mathematical modelling approaches dominate the methodology used in designing such
recovery strategies and plans (Baryannis et al., 2019; Duong & Chong, 2020). For example,
mathematical recoverymodels have been developed for supply disruption (Daromet al., 2018;
Paul & Rahman, 2018; Paul et al., 2016; Safaeian et al., 2019; Silbermayr & Minner, 2016),
production disruption (Ivanov, 2019; Paul et al., 2014a, 2015a, 2015b), demand disruption
(Paul et al., 2014b; Rezapour et al., 2011), and scheduling and transportation disruption
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(Hishamuddin et al., 2013; Paul, Asian, et al., 2019). While a combination of supply and
demand disruptions (Ivanov et al., 2014; Sawik, 2019), as well as supply, production, and
demand disruptions (Paul, Sarker, et al., 2019) have been considered in modelling the SC
recovery, the research onmulti-dimensional uncertainties is still scarce.Additionally, existing
work on SCdisruptions usingmathematicalmodellingmostly ignores the chance-constrained
programming approach (CCPA) for dealing with parametric or right-hand side uncertainties.

Although thesemodels and associated strategies andplans are effective for recovering from
small-scale disruptions, they are not readily applicable for recovery from a major epidemic
or pandemic outbreak. Moreover, pandemic settings are characterised by deep uncertainty
worldwide and simultaneous impacts (Ivanov, 2020a). However, the majority of the studies,
which appeared in the pre-COVID-19 era, have not considered uncertainty at the level of
simultaneous variations in demand, supply, and production when modelling the disruption
recovery plan (Paul & Chowdhury, 2021). This study considered such uncertainty, along
with the multi-dimensional impacts of the COVID-19 pandemic, which represents a novel
and distinct contribution made by this study.

2.2 Stochastic modelling of supply chain disruptions

The modelling of stochastic parameters is well-established in the SC disruption literature
(Govindan et al., 2017).As an example, a recent study (Rezapour et al., 2021) used a stochastic
modelling approach to develop the best trigger time to implement preparedness and response
activities for managing disasters. Different approaches to dealing with stochastic parameter-
s—namely, two-stage stochastic programming (TSSP), robust optimisation (RO) (Pishvaee
et al., 2011), and CCPA (Ahmadi & Amin, 2019)-have all been applied to SC disruption
problems.

More recently, Tolooie et al. (2020) proposed a two-stage stochastic mixed-integer pro-
gramming model to ensure a reliable and efficient SC network after considering facility
disruptions and demand uncertainties. In their TSSP model, decisions regarding facility
allocation under different disruptions were handled in the second stage as a scenario decom-
position approach. To deal with the uncertain quality status of returned products, Jeihoonian
et al. (2017) instead proposed aTSSPmodelwith a focus on single-period recovery only.With
numerical experimentation, they further validated their proposed stochastic model against
techniques to handle uncertainties. However, in the case of TSSP, since the variables and
constraints are scenario-dependent, the model’s numbers may grow exponentially, leading
to solution complexity for larger problems. This sensitivity is arguably a major shortcoming
of such an approach (Govindan & Fattahi, 2017).

Meanwhile, RO has been commonly used in the literature, particularly when historical
data for uncertainty is scant or parameter distributions are difficult to predict. A detailed
discussion of different RO techniques to deal with uncertainties is highlighted in a review
by Govindan and Cheng (2018). Meanwhile, Shafiei Kisomi et al. (2016) proposed an RO
methodology to deal with uncertain SC configuration and supplier-selection problems. Three
different uncertainty settings were used to tackle unknown parameters and were solved using
an exact approach embedded with the CPLEX software. Although their approach was effec-
tive in dealing with stochastic data, their whole SC model was developed for single-period
recovery without concern for inventory management. Moreover, due to the additional com-
plexities of using the RO approach, particularly during the design of the objective function
and constraints, their approach could not be employed to solve larger SC models. Prakash
et al. (2020) also took the RO approach to deal with supply risks, transportation risks, and
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uncertain demands. RO is often considered an efficient technique to deal with stochastic data;
however, its solutions can be too conservative (Prakash et al., 2020). More specifically, using
this technique can lead to either an objective value much worse than the nominal solution
or even to the infeasibility of a robust problem (Roos & den Hertog, 2020). This conser-
vatism is prevalent due to the constraint-wise approach of RO and its core assumption that all
constraints are challenging for all scenarios in the uncertainty setting (Roos & den Hertog,
2020). This shortcoming applies in particular to SC models when dealing with uncertainties.

The CCPA is a comparatively recent approach that can guide risk-averse decision-makers,
even when the stochastic parameters or distribution types are unknown (i.e., if no historical
data is available). Unlike the TSSP and RO approaches, CCPA is unique when dealing with
parametric uncertainties (Ahmadi & Amin, 2019; see Sect. 3.3 for more details). Moreover,
traditional stochastic models often result in a higher number of constraints and decision
variables in the mathematical formulation due to the additional complexities arising from the
stochastic data. On the contrary, in the design of CCPA, it has one fundamental additional
constraint (i.e., the chance constraint) only, which has been proven to be computationally
less expensive to solve (Luedtke, 2014). Despite this, the CCPA has not been well-explored
with stochastic SC data, particularly data that focuses on disruption recovery (Izadikhah &
Saen, 2018). Hence, our work pioneers the application of CCPA to multi-dimensional SC
uncertainties.

Some studies on epidemic outbreaks in SC and operations management disciplines have
also used stochastic modelling as uncertainties involved in decision-making during a major
disruption (Farahani et al., 2020). However, the use of stochastic modelling in the epidemic
setting is predominantly limited to investigating disease progression, vaccination prioritisa-
tion, quarantine programs and decision support system design for humanitarian SCs (Gupta,
Starr, Farahani, & Asgari, 2020). On the other hand, the use of stochastic modelling in devel-
oping a recovery model for commercial SCs accounting for a major epidemic or pandemic
remains limited.

3 Research on COVID-19 in commercial supply chains

Epidemic or pandemic settings are referred to as extraordinary cases of SCdisruptionmanage-
ment (Ivanov & Dolgui, 2020b; Ivanov, 2020b). However, prior to the COVID-19 pandemic,
the literature on SC disruptions concerning these types of incidents had been narrowed to
humanitarian SCs (Dasaklis et al., 2012; Queiroz et al., 2020; Farahani et al., 2020; Dubey
et al., 2020; Zahedi, Salehi-amiri, Smith, & Hajiaghaei-keshteli, 2021).

A great focus, however, has been to investigate various issues of commercial SCs by con-
sidering a pandemic setting since the beginning of COVID-19. Among the various issues
investigated, the impacts of the pandemic on various areas of SCs and the development of
resilience strategies are the most common themes to come out of published articles (Chowd-
hury et al., 2021). For example, Ivanov (2020a) discusses both the short- and long-terms
impacts of COVID-19 and showed that all SCs could significantly be affected by lockdown
and quarantine measures. This pandemic is reported to have had simultaneous impacts on
both the demand and supply side of SCs (Chiaramonti &Maniatis, 2020), creating an imbal-
ance between the two (Queiroz et al., 2020; Sharma et al., 2020). Such simultaneous demand
and supply-side disruption such as demand surge and shutdown of the operations at suppliers
are found to have severe and the highest impact on SC operations and performance during
this pandemic (Burgos & Ivanov, 2021). Each of the impacts also has a ripple effect on firm
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operations and their SC (Ivanov et al., 2019; Li & Zobel, 2020). Moreover, the propagation,
i.e., the ripple effect, of disruption is influenced by the combinations of demand, supply and
logistics risks (Ghadge et al., 2021). Paul and Chowdhury (2021), meanwhile, discuss how
production, supply, and demand are significantly impacted by the pandemic setting. A recent
study (Hohenstein, 2022) re-confirms the severe impact of this pandemic on SCs with empir-
ical evidence. To facilitate in analyzing the impacts, Hosseini and Ivanov (2021) develop a
method to quantify the impacts of SC disruptions during the COVID-19 pandemic.

While for some products (e.g., garments and luxury items) demand has fallen and their
manufacturing capacities remain unused, essential items have been subject to substantial
increases in demand, with a shortage of raw materials (Ivanov & Dolgui, 2020a). For exam-
ple, Paul and Chowdhury (2021) report that in SCs of high-demand items, such as hand
sanitizers and medicines, firms are experiencing a surge in demand and critically low sup-
ply. Among the various SC players, manufacturers, as well as retailers, are more vulnerable
to simultaneous multiple disruptions such as supply, demand, and logistics disruption as a
seamless flow of operations is highly critical for manufacturing supply chains (Ghadge et al.,
2021). Relationships with suppliers have been affected, as communication is limited to audio
and video calls, despite strong collaboration is more important in a crisis (Berndt, 2020; M.
Sharma et al., 2022; Spieske et al., 2022). Moreover, the COVID-19 outbreak has caused
significant product wastage, including that related to essential, high-demand food products,
due to the lack of distribution facilities and the obsolescence of certain capital assets (Dente
& Hashimoto, 2020).

Several studies have recommended resilience strategies to minimise the impacts and
recover from disruptions caused by the pandemic. These studies also highlight the short-
comings of the current response planning and strategies for ensuring SC resilience (van
Hoek, 2020). In the pre-COVID-19 era, specific disruption scenarios were considered in
terms of recovery and resilience; however, the uncertainty of major disruptions, including
the ‘unknown unknowns,’ was not well-investigated or modelled (Golan et al., 2020). There-
fore, recent research has called for new developments in SC recovery to deal with significant
outbreaks and ensure resilient and sustainable SCs (Craighead et al., 2020; Jabbour et al.,
2020). Accordingly, Ivanov (2020b) calls for a viable SC that is adaptable and structurally
changeable enough to react agilely to changes, absorb and recover from the disruption, sur-
vive at the time of extraordinary global disruption, and is capable of maintaining consistent,
sustainable practices even during a pandemic.

Recent research provides the dimensions and their scales of this important concept, supply
chain viability, anddemonstrates how this improvesSCperformanceduring adisruption (Ruel
et al., 2021). This viability concept is further extended to an intertwined SC network, which
is a complex and interconnected SC (Ivanov & Dolgui, 2020b). Meanwhile, Ivanov (2021b)
develops a framework named AURA (Active Usage of Resilience Assets) that postulates
how SC resilience should be considered as an inherent, active, and value-adding component
rather than just a mechanism to protect from disruption.

Accordingly, appropriate recovery measures and strategies are required for the viability
of SC networks. Ivanov (2021c) provides four adaptation strategies such as intertwining,
scalability, substitution, and repurposing to ensure SC viability during a pandemic. In this
regard, learning from prior disruption is found as key to reconfiguring SC risk management
design (Hohenstein, 2022). Increasing capacity to speed up the production process as well
as expanding material supply are critical for the creation of essential drugs and high-demand
products during a pandemic situation (Yu,Razon,&Tan, 2020). Therefore, production andSC
systems should be sufficiently flexible to accommodate and adjust them to fulfill the increased
demand (Ivanov&Das, 2020). Moreover, strong bonding among SC partners is also found as
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effective to enhance supply chain resilience during a pandemic. For example, Spieske et al.,
(2022) find that bridging strategies such as buyer–supplier relationships are more effective
than buffering strategies. However, complementing both buffering and bridging provides
superior resilience during a pandemic like the COVID-19. Similarly, Ivanov (2021a) finds
that the conjunction of SC coordination and recovery and gradual ramp-up of production
capacity could be effective to exit from this pandemic.

In general, the literature suggests that different resilience strategies are required across
various industries and product types as the impacts of the pandemic are different in different
industries. Accordingly, researchers investigate resilience strategies by considering particular
industries. For example, Paul and Chowdhury (2020) explored strategies for improving the
service level of toilet paper supply during COVID-19. Their study suggests that resource
sharing among the country’s manufacturers, emergency sourcing, producing basic quality
toilet paper, and packing a minimum standard size are effective SC management strategies.
Similarly, Belhadi et al. (2021) assessed both short- and long-term resilience strategies for
automobile and airline industries; and Chowdhury et al. (2020) explored resilience strategies
for the food and beverage industries.

Some of the above studies on the COVID-19 pandemic in SC disciplines have used a
mathematical modelling approach. For example, Gupta, Starr, et al. (2020), Gupta, Ivanov,
et al. (2020)) used the game theoretic model and investigated how SC disruption timing
impacts the pricing decision of substitute products. Similarly, Nagurney (2021) used the same
approach to develop a framework to capture the labour constraints in fresh produce products
during this pandemic, and Ivanov and Dolgui (2020b) introduced the concept of intertwined
supply network (ISN), suggesting that major SC disruptions like the COVID-19 pandemic
require resistance at the scale of viability. A mixed-integer linear modelling approach was
used to analyze the impact of this pandemic on a drug supply network (Lozano-Diez et al.,
2020), to provide an equitable vaccine distribution framework in developing countries (Tavana
et al., 2021), and to reconfigure food grain SCnetworks by considering government guidelines
(D. Sharma et al., 2021). Amulti-objectivemixed-integer linear programmingmodelling was
also used to develop a framework for sustainable, responsive, and resilientmixed SCnetworks
(Vali-Siar & Roghanian, 2022). Another study used a non-constrained linear mathematical
modelling approach to develop a production recovery plan for high-demand products (Paul &
Chowdhury, 2021). Jha et al. (2021) used an asymptomatic-situation-based model to forecast
the effect of epidemic outbreaks on SCs. Karwasra et al., (2021) applied graph theory, along
with interpretive structural modeling (ISM), to assess the dairy SC vulnerability during the
COVID-19 pandemic, and Lotfi et al. (2022) employed regression-based robust optimization
to predict the number of patients during the COVID-19 pandemic.

Some studies also used analyticalmodels using various quantitative approaches. For exam-
ple, Govindan et al. (2020) proposed a decision support systemusing a fuzzy inference system
for managing the demand for specific healthcare SCs. However, they did not consider the
commercial aspects. Choi (2020) similarly built an analytical model to bring services nearer
to customers’ homes. Meanwhile, Guan et al. (2020) used the adaptive regional input–output
(ARIO) model to investigate the impacts of the pandemic on global SCs, and Rahman et al.
(2021) used scenario analysis to investigate the effects of the pandemic on the ship recycling
industry.

A recent review article by Chowdhury et al. (2021) reports that only one out of 74
COVID-19 related articles has used a stochastic optimizationmodelling approach. This study
(Mehrotra et al., 2020) used stochastic optimization for managing critical resources during
a pandemic. However, more studies using stochastic optimization have appeared recently.
For example, Sawik (2022) investigates resilience strategies under ripple effect, and Kenan
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and Diabat (2022) solve the blood product SC issues during a pandemic using a stochastic
optimization approach. However, in general, the use of multi-dimensional disruptions and
uncertainties in variations in demand, supply, and production capacities is still limited in
this research area. In designing an SC recovery model, our study considered each of these
factors. To tackle uncertainties, a CCPA was applied. Our study also developed an efficient
solution approach using a multi-operator differential evolution variant-based technique to
solve both small- and large-scale problems. Therefore, our study is particularly timely in
addressing the research gaps identified above while also guiding practitioners involved in
managing high-demand essential items under pandemic conditions.

4 Problem description andmathematical formulation

In the following section, we describe the mathematical formulation of the ideal and recovery
plans.

4.1 Ideal plan

In the ideal plan, we considered an SC network system with multiple suppliers, multiple
manufacturing plants, and multiple retailers, as presented in Fig. 1.

Such an SC structure is intrinsically linked to high-demand items. For example, in hand
sanitizer SCs, manufacturers obtain raw materials (such as isopropyl) from their suppliers.
After producing and packaging sanitizers at the manufacturing plants, these are then sent
to retailers according to their demands. In this type of SC system, we considered the total
production and transportation cost, which was minimised to decide on the transportation,
production, and distribution plan (Rezapour et al., 2017; Sawik, 2013).

We introduced the following notations.
ISet of suppliers,∀i ∈ I
JSet of manufacturing plants, ∀ j ∈ J
KSet of retailers,∀k ∈ K
SiSupply capacity per period of supplier i
PjProduction capacity per period of manufacturing plant j
dkDemand per period of retailer k
T 1
i jPer unit raw material and transportation cost from supplier i to manufacturing plant j

Fig. 1 Supply chain network design
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T 2
j Per unit production cost at manufacturing plant j

T 3
jkPer unit transportation cost from manufacturing plant j to retailer k

SSelling price per unit of product.
In the ideal plan, the decision variables were as follows:
Xi jSupply quantity from supplier i to manufacturing plant j
Y jProduction quantity at manufacturing plant j
Z jkDelivery quantity from manufacturing plant j to retailer k
The following assumptions were made in the ideal plan:

• There is a single item in the system;
• One unit of the finished product requires one unit of raw material; and
• In the ideal plan, both supply and production capacities are greater than total demand.

In the ideal plan, the objective function is the total profit maximisation, which was cal-
culated as per Eq. (1). The profit function considers revenue, material, transportation, and
production cost subject to the constraints presented in Eqs. (2), (3), (4), (5), (6), (7).

Profit per period

S
J∑

j�1

K∑

k�1

Z jk −
⎡

⎣
I∑

i�1

J∑

j�1

T 1
i j Xi j +

J∑

j�1

T 2
j Y j +

J∑

j�1

K∑

k�1

T 3
jk Z jk

⎤

⎦ (1)

Supply constraint

J∑

j�1

Xi j ≤ Si ;∀i (2)

Balancing between supply and production

Y j �
I∑

i�1

Xi j ;∀ j (3)

Production constraint

Y j ≤ Pj ;∀ j (4)

Balancing between supply and delivery

Y j �
K∑

k�1

Z jk ;∀ j (5)

Demand constraint

dk �
J∑

j�1

Z jk ;∀k (6)

Non-negativity constraint

Xi j , Y j , Z jk ≥ 0 (7)
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4.2 Recovery plan

A recovery plan is a revised SC plan for a certain future period (recovery window) based on
changed operational parameters (e.g., the impacts of COVID-19) compared with the ideal
plan. Our paper outlines the changed parameters used in the current study, as follows:

• Reduced production capacity due to social distancing and other measures, which is uncer-
tain;

• Reduced supply capacity, which is uncertain; and
• Increased demand, which is also uncertain.

We considered a generalised case in which an SC network is affected due to the impact
of the COVID-19 pandemic. The demand for some items has increased in an uncertain way,
while the shortage of raw material supply has also been uncertain. We further considered
demand variation as low, medium, and high (Deblaere et al., 2011). To tackle these uncer-
tainties in supply and demand, the SC plan must be revised to recover from the impacts of
COVID-19. The optimal revised SCplan should be generated by adjusting supply, production,
and distribution quantities during the recovery window to maximise total SC profit.

To this end, we developed a stochastic mathematical model to generate the recovery plan.
To manage the model’s uncertain parameters, we used a chance-constrained method and
considered the following recovery strategies in line with the existing literature.

• Increase in production capacity: Using extra shifts, buyingmachines, utilising spare capac-
ities, hiring manufacturing facilities, and hiring workforce (Paul & Chowdhury, 2020).

• Increase in rawmaterial supply: Using emergency sourcing and collaborationwith partners
(Dong & Tomlin, 2012; Paul et al., 2021c).

• Cost of demand lost: If an SC is unable to meet demand, there will be a cost for demand
losses (Paul et al., 2017).

The following are additional notations for the recovery model.
NNumber of planning periods in the recovery window.
p1 jnReduced production capacity of plant j at period n in the recovery window, which is

uncertain.
p2 jnIncrease in production capacity of plant j at period n in the recovery window, which

is uncertain.
P

′
jnTotal production capacity of plant j at period n in the recovery window� p1 jn + p2 jn .

S
′
inReduced supply capacity of supplier i at period n in the recovery window, which is

uncertain.
eSet of emergency suppliers.
ESenSupply capacity of emergency supplier e at period n in the recovery window, which

is uncertain.
d̃knIncreased demand of retailer k at period n in the recovery window, which is uncertain.
T 1
i jnPer unit raw material and transportation cost from supplier i to manufacturing plant

j at period n in the recovery window.
T 2
jnPer unit production cost at manufacturing plant j at period n in the recovery window.

T 3
jknPer unit transportation cost from manufacturing plant j to retailer k at period n in the

recovery window.
T 4
ejnPer unit raw material and transportation cost from emergency supplier e to manufac-

turing plant j at period n in the recovery window.
FjFixed cost to increase capacity for manufacturing plant j in the recovery window.
C jPer unit capacity increase cost for manufacturing plant j in the recovery window.
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SSelling price per unit of product.
In the recovery plan, the decision variables were as follows.
X

′
i jnSupply quantity from current supplier i to manufacturing plant j at period n in the

recovery window.
Y

′
jnProduction quantity at manufacturing plant j at period n in the recovery window.

Z
′
jknDelivery quantity from manufacturing plant j to retailer k at period n in the recovery

window.
E

′
ejnSupply quantity from emergency supplier e to manufacturing plant j at period n in

the recovery window.
Subsequently, we defined the equations for different costs and revenue in the recovery

window.
Raw material and transportation cost from current suppliers (RTCs)

I∑

i�1

J∑

j�1

N∑

n�1

T 1
i jn X

′
i jn (8)

Raw material and transportation cost from emergency suppliers (RTCe)

E∑

e�1

J∑

j�1

N∑

n�1

T 4
ejn E

′
ejn (9)

Production cost (PC)

J∑

j�1

N∑

n�1

T 2
jnY

′
jn (10)

Cost of increasing capacity (CIC)

J∑

j�1

Fj +
J∑

j�1

C j

(
N∑

n�1

Y
′
jn −

N∑

n�1

p1 jn

)

Fj � 0i f
N∑

n�1

Y
′
jn �

N∑

n�1

p1 jn

(11)

Transportation cost from manufacturing plants to retailers TCpr

J∑

j�1

K∑

k�1

N∑

n�1

T 3
jkn Z

′
jkn (12)

Cost of demand lost (CDLL)
⎛

⎝
K∑

k�1

N∑

n�1

d̃kn −
J∑

j�1

K∑

k�1

N∑

n�1

Z ′
jkn

⎞

⎠ (13)

Total revenue (TR)

S
J∑

j�1

K∑

k�1

N∑

n�1

Z
′
jkn (14)
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In the recovery plan, the objective function, total profit (T P) � total revenue – total cost,
was determined using Eq. (15).

Max(T P)
(
X

′
i jn , E

′
ejn , Y

′
jn , Z

′
jkn

)
� S

J∑

j�1

K∑

k�1

N∑

n�1

Z
′
jkn −

I∑

i�1

J∑

j�1

N∑

n�1

T 1
i jn X

′
i jn −

E∑

e�1

J∑

j�1

N∑

n�1

T 4
ejn E

′
ejn

−
J∑

j�1

N∑

n�1

T 2
jnY

′
jn −

J∑

j�1

Fj −
J∑

j�1

C j

(
N∑

n�1

Y
′
jn −

N∑

n�1

p1 jn

)
−

J∑

j�1

K∑

k�1

N∑

n�1

T 3
jkn Z

′
jkn

− L

⎛

⎝
K∑

k�1

N∑

n�1

d̃kn −
J∑

j�1

K∑

k�1

N∑

n�1

Z
′
jkn

⎞

⎠ (15)

The objective function (Eq. 15) was subject to the constraints (16)-(23).
Supply constraint from current suppliers

J∑

j�1

X
′
i jn ≤ S

′
in ;∀i, n (16)

Supply constraint from emergency suppliers

J∑

j�1

E
′
ejn ≤ ESen ;∀e, n (17)

Production constraints

Y
′
jn ≤ p1 jn + p2 jn ;∀ j, n (18)

Demand constraints

J∑

j�1

Z
′
jkn ≤ d̃kn ;∀k, n (19)

Demand loss constraint

K∑

k�1

N∑

n�1

d̃kn −
J∑

j�1

K∑

k�1

N∑

n�1

Z
′
jkn ≥ 0 (20)

Network balancing constraints

Y
′
jn �

K∑

k�1

Z
′
jkn ;∀ j, n (21)

I∑

i�1

X
′
i jn � Y

′
jn ;∀ j, n (22)

Non-negativity constraints

X
′
i jn, Y

′
jn, Z

′
jkn, E

′
ejn ≥ 0;∀i, j, k, e, n (23)
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4.3 Chance-constrained programming approach (CCPA)

In this study, we considered a CCPA to deal with uncertain parameters. Based on the study
by He et al. (2009), a chance constraint can be symbolised as:

Pro[g(x, ζ ) ≥ β] ≥ ψ (24)

where, ζ � (α1, α2, . . . , αn) is a stochastic vector, the function g(x, ζ ) has the form g(x, ζ ) �
α1x1 + α2x2 + · · · + αnxn , and β is the maximum value for that function g(x, ζ ). ψ is the
maximum user-given service level (also referred to as a belief degree).

Notably, for optimisation problems, uncertainties are broadly categorised into two differ-
ent forms, namely right-hand-side (RHS) uncertainty and matrix uncertainty (Zhang et al.,
2016). Similarly, based on the position of uncertain parameters, constraints in a mathematical
model can also be referred to as RHS and left-hand-side (LHS) uncertainties. Essentially, the
consideration of uncertainties within a mathematical model or the introduction of stochas-
tic parameters into the optimisation model is acknowledged as a preventive optimisation
approach. Consequently, this study also aimed to propose a similarly preventive approach, in
which constraints with uncertainties are individually considered with the aid of the CCPA.
We assumed that a particular constraint equation of an optimisation problem was Ãx ≤ b̃,

where Ã represented matrix uncertainty (i.e., uncertain constraint coefficients
∼
avc) and b̃

was the RHS uncertainty (i.e., a vector of uncertain parameters). Here, ∀v ∈ V (V was the
number of decision variables for that optimisation problem) and ∀c ∈ C (C was the number
of constraints in that optimization model with uncertainties). Based on Eq. (24), if the model
has only RHS uncertainties, the modified chance-constraint equation should take the form
of Eq. (25)

Pro

(
V∑

v�1

acvxv ≤ b̃c

)
≥ ψc, c � 1, . . . ,C (25)

To calculate the deterministic equivalent of Eq. (25), it can be reformulated as Eq. (26):

V∑

v�1

acvxv ≤ F̂−1
b̃c

(1 − ψc), c � 1, . . . ,C (26)

where F̂−1
b̃c

(1 − ψc) is the inverse cumulative density function of RHS uncertain

parametersb̃c, in constraint equationc.

4.4 Revised recovery model based on the CCPA

We now explain the process of dealing with uncertain parameters and the revised mathemat-
ical model. Due to the impacts of the pandemic, supplier capacity of a supplier i at period n
(S

′
in), the production capacity of a manufacturing plant j at period n (P

′
jn), and the supply

capacity of an emergency supplier e at period n (ESen) are stochastic in nature.

For the first stochastic parameter,S
′
in , we assumed that S

′
in �

(
S

′
1n, . . . , S

′
I n

)
∈ Rn+∀n ∈

N is the supply capacity vector for all suppliers (∀i ∈ I ) at period n in the recovery window.
This stochastic vector was assumed to be randomwith a joint cumulative distribution function
(e.g., uniform distribution). Due to this stochastic nature, the supply constraints (16) were
no longer well-defined. One possible way to reconfigure these constraints is by considering
the most conservative values (minimum) of the supply capacity, which, in contrast, may lead
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to a product build-up scenario that corresponds to a very unlikely future. The opposite effect

is also possible if we consider an optimistic figure for this S
′
in vector. Thus, considering

probabilistic constraints ensures a user-defined threshold. Let us assume θ1 is a user-defined
upper bound value or credibility level, which ensures that the probability of total supply
quantity from a supplier i to manufacturing plant j(∀ j ∈ J ) at period n (i .e.,

∑J
j�1 X

′
i jn)

should be less than or equal (≤) to that of the supplier’s maximum supply capacity, S
′
in .

Under this assumption, based on the chance-constrained structure as in inequality (26),
the deterministic counterpart or equivalent constraint equation of (16) can be re-written, as
shown in Eq. (27):

J∑

j�1

X
′
i jn ≤ F̂−1

S
′
in

(1 − θ1)∀i ∈ I ,∀n ∈ N (27)

Thus, to solve this stochastic parameter S
′
in , a decision-maker can use any probabilistic

distributions based on previous historical data or any unknown distribution type to fit into
Constraint Eq. (26). Based on the confidence level or belief degree θ1, a decision-maker will
have a different set of constraint equations, which, consequently, will produce a different set
of decision variables upon satisfying that confidence level.

Owing to the stochastic nature of capacity for emergency supplier e at period n in the
recovery window (ESen), we determined that the stochastic supply capacity vector for all
emergency suppliers is ESen � (ES1n, . . . , ES�n) ∈ R+,∀e ∈ �,∀n ∈ N . Here, �

represents the total number of emergency suppliers. Likewise, due to this stochastic nature,
Constraint Eq. (17) was ill-defined and, thus, needed to be modified based on the CCPA
solely to determine its deterministic counterparts. At this stage, we then assumed that θ2 is
the user-defined confidence level or belief degree, which ensures that the probability of the
total supply quantity from emergency supplier e to manufacturing plant j at period n (E

′
ejn)

should be less than or equal to the maximum supplier capacity of emergency supplier e at
the period (ESen). Consequently, the deterministic equivalent for Constraint Eq. (17) can be
expressed, as shown in Eq. (28):

J∑

j�1

E
′
ejn ≤ F̂−1

ESen
(1 − θ2)∀e, n (28)

Since the increased production capacity of a manufacturing plant j at period n (P
′
jn) was

also considered as a stochastic parameter, we assumed that P
′
jn is the increased produc-

tion capacity vector for all plants j(i.e.,∀ j ∈ J ) at period n in the recovery window, and

was defined asP
′
jn �

(
P

′
1n, . . . , P

′
Jn

)
∈ R+∀n ∈ N . Due to the stochastic nature of P

′
jn ,

Constraint Eq. (18) was also not well-defined and needed to be modified based on the above-
mentioned CCPA. We then assumed that θ3 is the user-defined confidence level or belief
degree, which ensured that the probability of production quantity at manufacturing plant j
at period n in the recovery window (Y

′
jn) was less than or equal to the increased production

capacity,P
′
jn . Therefore, the deterministic equivalent for Eq. (18) can be expressed, as shown

in Eq. (29):

Y
′
jn ≤ F̂−1

p1 jn (1 − θ3) + F̂−1
p2 jn (1 − θ3)∀ j, n (29)

To develop the revised mathematical model for the recovery plan, we replaced all deter-
ministic counterparts based on theCCPA, as explained above. The resultant objective function
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is presented in Eq. (15) subject to constraints (30)-(37).

J∑

j�1

X
′
i jn ≤ F̂−1

S
′
in

(1 − θ1)∀i ∈ I ,∀n ∈ N (30)

J∑

j�1

E
′
ejn ≤ F̂−1

ESen
(1 − θ2)∀e, n (31)

Y
′
jn ≤ F̂−1

p1 jn (1 − θ3) + F̂−1
p2 jn (1 − θ3) ∀ j, n (32)

J∑

j�1

Z
′
jkn ≤ d̃kn ;∀k, n (33)

K∑

k�1

N∑

n�1

d̃kn −
J∑

j�1

K∑

k�1

N∑

n�1

Z
′
jkn ≥ 0 (34)

Y
′
jn �

K∑

k�1

Z
′
jkn ;∀ j, n (35)

I∑

i�1

X
′
i jn � Y

′
jn ;∀ j, n (36)

X
′
i jn, Y

′
jn, Z

′
jkn, E

′
ejn ≥ 0;∀i, j, k, e, n (37)

5 Solution approach

The differential evolution (DE) algorithm is an evolutionary algorithm utilised to solve
optimisation problems through competition and cooperation among solutions within the
entire population. DE produces new solutions by following three main operators: mutation,
crossover, and selection in each generation. DE-based algorithms are commonly used to solve
a wide range of optimisation problems due to their low computational difficulty and strong
global search capabilities. Furthermore, they have few control parameters (i.e., population
size, scaling factor, and crossover rate) (Tanabe & Fukunaga, 2014). Lastly, DE has been
applied in many real-world applications (Wang et al., 2012b; Li et al., 2018; Wang et al.,
2012a; Lieckens & Vandaele, 2016).

Although several DE-based algorithms have been developed to obtain the optimal or
near-optimal solution for optimisation problems, no single algorithm or search operator has
consistently performed as the best solution (Elsayed et al., 2011; Mallipeddi et al., 2011).
Therefore, several authors have developed innovations that use more than one evolutionary
algorithm (EA) or search operator in a single algorithmic system—referred to as multi-
methods or multi-operators—to tackle this issue (Wu et al., 2018; Ali et al., 2015; Sallam
et al., 2017).Nevertheless, an effective algorithm for a better, faster, andmore reliable solution
to the complexproblemcan still be developed.We thus introduced an enhancedmulti-operator
DE variant, called EDEcon, that uses several DE mutation operators in a single algorithmic
system to solve the problem under study.

5.1 EDE_con algorithm

The proposed EDEcon algorithm began with the generation of initial random population size
(PS) solutions (i.e., X, Y, Z, and E were randomly generated) to ensure that every decision
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variable lay within its bounds. Then, the objective function value (TP) and total constraint
violation were computed for each solution. The number of function evaluations was simulta-
neously updated. As the proposed algorithm uses several operators (nop), initially, each DE
operator was used to guide the same number of solutions NSop toward the optimal one. The
objective function value and constraint violations for the newly generated populations were
computed, followed by pairwise comparisons between each individual in the parent popu-
lation and its counterpart in the offspring population (discussed in subsection 4.5), with the
better of the two joining the next population. At the end of each generation, the improvement
value was subsequently computed (discussed in subsection 4.3), based on which NSop was
updated. A minimum number of individuals updated by each DE mutation strategy was also
set (i.e., the population number, which should be updated at each evolutionary stage during
the DE mutation, was defined before the algorithm was allowed to run). Indeed, a popula-
tion size reduction mechanism was used at the end of each iteration by removing the worst
individual (Tanabe & Fukunaga, 2014), as in Eq. (45). This was done to preserve diversity
at the early generations and boost the convergence in the later ones. The main steps of the
proposed EDEcon algorithm are presented in Algorithm 1.

The details of the proposed algorithm are presented in the following subsections.
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5.2 DEmutation operators

To guide thewhole population to the optimal or near-optimal solutions, we used the following
two DE mutation strategies:

• DE/current-to-φ best/1/bin with archive

ui, j �
{
xi, j + Fi

(
xφ, j − xi, j + xr1, j − xr2, j

)
i f (rand ≤ Crior j � jrand)

xi, j otherwise
(38)

• DE/current-to-φ best/1/bin without archive

ui, j �
{
xi, j + Fi

(
xφ, j − xi, j + xr1, j − xr3, j

)
i f (rand ≤ Crior j � jrand)

xi, j otherwise
(39)

where r1, r2, r3 are three mutually exclusive random numbers;−→x r1 and
−→x r3 were randomly

chosen from the entire population; and −→x φ was selected randomly from the best 25% of
solutions in the entire population. −→x r2 was randomly picked from the union of the whole
population and archive, which we used in this study to preserve the population’s diversity.
New candidates that are worse than their parent ones were kept in the archive (Zhang &
Sanderson, 2009). To make space for the newly generated individuals, once the archive size
was greater than its default size, the worst individuals were removed from it.

5.3 Updating NSop

We used the population diversity and quality of the solutions to determine the number of
solutions each DE operator evolved. Considering the population diversity, at the end of each
generation (g), the diversity obtained from each DE search operator (Dop) was calculated by

Dop �
∑NSop

i

(
dis

(−→
Solop,i − −→

Sol
best

op

))

NSop
,∀op � 1, 2, . . . , nop (40)

where dis

(−→
Solop,i − −→

Sol
best

op

)
is the Euclidean distance between the i th solution and the

best one generated by each DE operator. Then the diversity ratio was calculated by

DRop � Dop∑nop
op�1 Dop

,∀op � 1, 2, . . . , nop (41)

Similarly, for the quality of solutions, the best obtained objective function value (total
profit) from each DE operator at generation g was used to calculate the normalised quality
of solution (NQop), as

NQop � T Pbest
g,op∑nop

op�1 T Pbest
g,op

,∀op � 1, 2, . . . , nop (42)

where T Pbest
g,op was the best total profit value obtained by DE operator op at generation g. As

we were solving a constrained optimisation problem, T Pbest
g,op was determined based on both

the fitness function values and the total constraint violations. This was done by sorting the
solutions based on both fitness function values and total constraint violations.
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Based on both the quality of solutions and diversity of the population mentioned above,
the improvement index value (IIV) was computed by

I I Vop � DRop +
(
1 − NQop

)
,∀op � 1, 2, . . . , nop (43)

Finally, the number of solutions that each DE operator will evolve was calculated as

NSop � max

(
0.1,min

(
0.9,

I I Vop∑nop
op�1 I I Vop

))
× PS,∀op � 1, 2, . . . , nop (44)

As one of the DE operators may behave differently during the stages of the optimisation
process (i.e., it may perform well at the early stages and worse at the later ones), we used a
minimum value (0.1) to provide opportunity for the low-performing operators to be applied.

5.4 Updating the values of PS,F, and Cr

As outlined in the literature, the performance of the DE algorithm is highly dependent on the
values of the control parameters. However, setting their values is not an easy task. Researchers
have traditionally used a trial-and-error method to determine the best values for the control
parameters, which is both tedious and time-intensive. To overcome this challenge, we used a
linear population size reduction mechanism to gradually reduce the population size. It begins
with a large number of solutions, and over the generations, it gradually decreases until it
reaches a minimum number. This is done to maintain population diversity at the early stages
of the optimisation process and to boost the convergence at the later stages. The following
equation was used to achieve this:

PSg+1 � round

[
PSinit +

(
PSmin − PSinit

M AXFES

)
× FES

]
(45)

where PSinit is the initial population size, PSmin the minimum population size, FES is the
current number of fitness evaluations, and MAXFES is the maximum number of FES.

To update the values of F and Cr, the same mechanism was used (Elsayed et al., 2016;
Sallam et al., 2019):

• A historical memory that has n components for recording both MF and MCr was ini-
tialised with 0.5 for all elements.

• Each solution
−→
Soli was linked with its own Fi and Cri values, such that

Fi � randci (MFri , 0.1) (46)

Cri � randni (MCrri , 0.1) (47)

where ri was randomly chosen from [1, n], randci and randni are values that were
randomly generated by following Cauchy and Normal distributions with variance 0.1, and
mean MF and MCr , respectively.

• At the end of each generation g, the values of Fi andCri utilized by the successful solutions
(i.e., the individuals whose new TP was better than their older ones) were saved in SF and
SCr. The entries of the historical memories were updated as

MFt � meanWL(SF)i f SF 
� φ (48)

MCrt � meanW A(SCr)i f SCr 
� φ (49)
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where 1 ≤ t ≤ n is the position of the element that should be updated in the memory. The
initial value of t was set to 1 and then increased when a new element was recorded in the
memory. If the size of the memory was larger than n, it was reset to 1. The Lehmer mean
(meanWL (SF)) and weighted mean (meanW A(SCr)) were computed as

meanWL (SF) �
∑|SF |

ϑ�1 ωϑ × SF2
ϑ∑|SF |

ϑ�1 ωϑ × SF_ϑ
(50)

meanW A(SCr) �
|SCr |∑

ϑ�1

ωϑ × SCrϑ (51)

where |SF | and |SCr | were the number of successful F and Cr recorded in SF and SCr with
|SF | � |SCr |, respectively, and ωϑ was the weight computed by

ωϑ � τϑ
∑|SCr |

ϑ�1 τϑ

(52)

As the problem of interest is a constrained optimisation problem, the values of τϑ were
computed using the following three scenarios.

a. Feasible solution to feasible solution: ϕ

(−→
Sol

best
)

� 0 at both generations g − 1 and,

where ϕ

(−→
Sol

best
)
is the violation of the best solution.

b. Infeasible to feasible:
−→
Sol

best
is infeasible at generation g− 1 and then becomes feasible

at generation g.

c. Infeasible to infeasible:
−→
Sol

best
is infeasible in both generations g − 1 and g.

First, for every successful individual (t ∈ 1, 2, . . . , |SF |) that fell under scenario (a), its
τϑ was computed as

τt � θt � max

(
0,

ϕt,g−1 − ϕt,g

ϕt,g−1

)
+ max

(
0,

T Pt,g−1 + T Pt,g
T Pt,g−1

)
(53)

Then, for each successful candidate solution that existed in either scenario (b) or (c), its
τϑ was calculated by

τt � max(0, θt) +
ϕt,g−1 − ϕt,g

ϕt,g−1
+ max

(
0,

T Pt,g−1 + T Pt,g
T Pt,g−1

)
(54)

5.5 Constraints handlingmethod

To deal with constrained optimisation problems using an evolutionary algorithm, a con-
strained handling technique is required to compare the solutions between the parent
population and the offspring one. In the current study, the technique proposed by Deb (2000)

was used, which has three cases. Suppose we have two solutions,
−→
Solold and

−→
Solnew.

a. If both
−→
Solold and

−→
Solnew are feasible andT P

(−→
Solnew

)
< T P(

−→
Solold ), then

−→
Solnew is

chosen.
b. If both

−→
Solold and

−→
Solnew are infeasible and ϕ

(−→
Solnew

)
< ϕ

(−→
Solold

)
, then

−→
Solnew is

chosen.
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c. If
−→
Solnew is feasible and

−→
Solold is infeasible, then

−→
Solnew is preferred.

The total constrained violation for a solution was computed using the following:

ϕ
(−→
Sol

)
�

K∑

k�1

max(0, gk
(−→
Sol

)
+

E∑

e�1

max
(
0,

∣∣∣he
(−→
Sol

)∣∣∣ − e

)
(55)

where gk(
−→
Sol) and he(

−→
Sol) are the kth inequality and eth equality constraints, respectively.

For each equality constraint he, e was set to a value of 0.0001.

6 Computational experiments and discussion of results

To validate the proposed EDEcon algorithm and to demonstrate the efficacy of the proposed
SC recovery model, this section discusses the computational experiments for both the ideal
and recovery models. The proposed EDEcon algorithm was coded and implemented into
MATLAB R2018b and ran on a PC with 16 GB RAM, core i7 processor with a 3.4 GHz
and Windows10. The algorithm was executed 30 times and the average result was recorded
based on these 30 runs. As the data was randomly generated, each run can be considered as
an instance. To substantiate the proposed model, four different problem sets were considered
with varied problem parameters (i.e., number of suppliers, plants, and retailers). Without
losing sight of practical reality, we created a generalised dataset, which is common for many
real SC designs in high-demand item production.While these are certainly different in detail,
they do share a common set of attributes, such as a multi-stage structure and simultaneous
disruptions in supply, demand, and capacity. For instance, a problem set 15 × 7 × 15 × 8 ×
2 indicates that there are 15 different suppliers (I), 7 different manufacturing plants (J), 15
retailers (K), 8 emergency suppliers (e), and 2 planning periods (N) in the recovery window.
Notably, for the ideal model, similar problem sets were developed, excluding the number of
emergency suppliers and planning periods. Table 1 highlights all key input parameters that
were hypothetically chosen to solve the proposed models using our EDE_con meta-heuristic
approach.

Given the essential assumptions of this model, production capacities and supply capacities
for both regular and emergency suppliers are uncertain due to the global pandemic. As
can be observed from Table 1, we arbitrarily used uniform distribution to generate random
numbers for handling these uncertain values. One may argue with the distribution selection,
as indisputably, the uniform distribution may not mirror the real-life scenario. Indisputably,
the prime focus of this study was to demonstrate how a typical SC recovery model works
under uncertain environments, and thus, the selection of uniform distribution was solely to
exemplify the model parameters. Moreover, to deal with the RHS uncertain parameters in the
mathematical optimisation approach, three sets of belief degrees were employed for θ1, θ2
and θ3, which were 0.95, 0.90, and 0.85, respectively. Additionally, the inverse cumulative
density function of the uniform distribution was used to generate deterministic equivalent
numbers for those chance-constraints (i.e., Eqs. (30) to (32)). For better mirroring of these
COVID-19 situations, increased demand from retailer k at period n (i.e., d̃kn) were assumed
to have three fluctuations (i.e., variations): low variability (e.g., luxury items, outdoor items),
medium variability (e.g., clothing, stationery items), and high variability (e.g., home-office
items, laptops, and toilet paper). To represent these variabilities, demand from retailer k at
period n (i .e., dkn) was generated by a discretised beta distribution with shape parameters 2
and 5, and an expected value E(dk) equal to the ideal demand value (say, 1000). This demand
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unit d̃kn has either a low, medium, or high variability, all with equal probability. In the case
of low variability, the minimum and maximum values of the stochastic variable d̃kn are equal
to E(dkn) and 1.625 ∗ E(dkn), respectively. In the case of a medium and high variability, the
corresponding intervals are [E(dkn), 2.25∗E(dkn)] and [E(dkn), 2.875∗E(dkn)], respectively
(Deblaere et al., 2011).

6.1 Model complexity

The complexity of any constrained optimization problem can be identified based on the
number of decision variables, the number of constraints and their types, and the nature of
the objective function. The following set equations were used to calculate the number of
decision variables, number of inequality constraints and number of equality constraints for
the recovery model.

• Number of variables �|i | ×|j| +|e| ×|j| +|j| +|j| ×|k|
• Number of inequality constraints � N × (|i | +|e| +|j| +|k|)
• Number of equality constraints � N × (|i |+ +|j|)

Here, |i | is the number of suppliers, | j | the number ofmanufacturing plants, |k| the number
of retailers, |e| the number of emergency suppliers and N is the number of planning periods
in the recovery window.

From the abovementioned equations, it is clear any increase in any parameter will lead to
an increase in the number of decision variables, number of equality and inequality constraints,
which in turn will lead to an increase in the problem complexity. Suppose N � 2, |i |� 3, |e|�
2, |j|� 5 and |k|� 3, then the number of variables is 45; the number of inequality constraints
is equal to 26; and the number of equality constraints is equal to 16. If N is changed to 4 and
the other parameters remain the same, then the number of inequality constraints becomes 52
and the number of equality constraints becomes 32.

The largest instance we solved was 15 × 7 × 15 × 8 × 2, which indicated there were 15
different suppliers (I ), 7 different manufacturing plants (J ), 15 retailers (K ), 8 emergency
suppliers (e), and 2 planning periods (N ) in the recovery window.

• Number of variables � 15 × 7 + 8 × 7 + 7 + 7 × 15 � 273
• Number of inequality constraints � 2 × (15 + 7 + 7 + 17) � 98
• Number of equality constraints � 2 × (15 + 7) � 44

From the analysis outlined above, this was already a very complex constrained optimiza-
tion problem, as it had 142 constraints that the proposed algorithm needed to satisfy to obtain
a feasible solution.

6.2 Ideal plan

Table 2 depicts the results of our proposed EDEcon algorithm for the ideal model. Five
different performance measures were reported, as follows: total revenue (T R), raw material
and transportation cost from suppliers (RTCs), production cost (PC), transportation cost
from plants to retailers (TC pr ), and total profit (T P). As shown in Table 2, as (I , J , K )
increased, cost components such as RTCs and PC also increased. Similarly, the T P also
increased with increasing (I , J , K ), which is rational in an SC model under a stable or ideal
situation.
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Table 2 Performance of EDE_con for the ideal model

Parameter 3 × 2 × 5 8 × 4 × 10 10 × 6 × 15 15 × 7 × 15

TR $ 200,000 $ 400,040 $ 599,960 $ 610,800

RTCS $ 25,000 $ 50,005 $ 74,980 $ 76,290

PC $ 50,000 $ 100,020 $ 149,970 $ 152,890

TCpr $ 50,000 $ 20,002 $ 29,998 $ 30,540

TP $ 115,000 $ 230,013 $ 345,012 $ 351,080

6.3 Recovery plan

Given the hypothetically considered input data for the recovery model (mentioned in Table
1), the proposed EDEcon algorithm was utilised to solve the recovery model. Tables 3, 4
and 5 highlight results for all four problem sets. Besides the parameters in the ideal plan
(Sect. 5.2), two other cost elements were also added in the recovery model: the cost of
increasing capacity (C IC) and the cost of demand lost (CDL). Table 3 highlights the EDEcon

results of a recovery model for varied demand data (i.e., low [L], medium [M], and high [H]),

Table 3 Performance of EDEcon in the recovery model for varied demand data (when θ1 � θ2 � θ3 � 0.95).

Parameter 3 × 2 × 5 × 2 × 4 8 × 4 × 10 × 4 × 2

L M H L M H

TR $599,840.00 $562,640.00 $716,720 $713,720.00 $743,240.00

RTCS $73,580 $74,980.00 $70,330.00 $89,590 $89,215.00 $92,905.00

RTCe $51,688 $69,440.00 $66,336.00 $46,744 $36,712.00 $57,432.00

PC $147,160 $149,960.00 140,660 $179,180 $178,430.00 $185,810.00

CIC $15,290 $17,115.00 $12,245.00 $33,250 $32,830.00 $36,305.00

TCpr $29,432 $29,992.00 $28,132.00 $35,836 $35,686.00 $37,162.00

CDL $105,700 $100,400.00 $118,840.00 $41,640 $43,040.00 $27,340.00

TP $165,790 $157,953.00 $126,097.00 $290,480 $297,807.00 $306,286.00

Parameter 10 × 6 × 15 × 6 × 3 15 × 7 × 15 × 8 × 2

L M H L M H

TR $1,443,800 $1,649,120.00 $1,560,560 $1,125,440 $1,120,400 $1,124,040

RTCS $180,475 $206,140.00 $195,070 $140,680 $140,050 $140,505

RTCe $165,224 $152,440.00 $167,568 $130,968 $136,792 $119,520

PC $360,950 $412,280.00 $390,140 $281,360 $280,100 $281,010

CIC $51,285 $78,525.00 $65,210 $43,290 $41,870 $42,945

TCpr $72,190 $82,456.00 $78,028 $56,272 $56,020 $56,202

CDL $178,340 $75,440.00 $120,400 $37,580 $38,720 $38,520

TP $435,336 $641,839.00 $544,144 $435,290 $426,848 $445,338
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while the belief degrees for Chance-constraints (31) to (33) were considered as 0.95 (i.e.,
θ1 � θ2 � θ3 � 0.95). Similarly, Tables 4 and 5 (in Appendix A) show the results for belief
degrees 0.90 and 0.85, respectively.

As can be seen from Table 3, for the 15 × 7 × 15 × 8 × 2 problem set, the CDL values
were almost unchanged despite varied demand data due to the higher number of emergency
suppliers (i.e., 8).

Similar observations are also presented in Tables 4 and 5 in Appendix A, although their
belief degrees were lower than those presented in Table 3. Correspondingly, this can be
observed from Table 6, where the T P for any particular demand variation type usually
shows lower values for the lower belief degree (i.e., 0.85).

Figure 2 summarises the impact of duration variabilities on the SC performance param-
eters, particularly for the 10 × 6 × 15 × 6 × 3 dataset. Specifically, Fig. 2(a) shows the
impact of duration variations, wherein the decision-maker imposes 0.95 as the belief degree
for all chance-constraints, and Fig. 2(b) uses 0.85.

Notably, the CDL value was higher for the low-demand variability at both the 0.95
and 0.85 belief degrees. This is judicious given that increased demand fluctuations prompt
manufacturers to increase the PC and C IC to mitigate the impact of demand variability on
the T R and T P .

6.4 Sensitivity analysis

In this section, we detail the sensitivity analysis conducted to analyze the impacts of different
important parameters.

6.4.1 Impact of planning periods (N) in the recovery window

Table 7 summarizes the results of five different performance measures used in our recovery
model (i.e., T R, PC,C IC,CDL, and T P). All input parameters are given in Table 1,
while the number of planning periods (N ) was varied. Four different planning periods were
considered (i.e., 4, 8, 10, and 12). Each of these planning periods can be imagined as a
month, quarter, semi-annual, or year. For example, if the unit of each of the planning periods
is considered a ‘month’, then this table represents the performance of recovery models,
while a decision-maker may allocate 12 planning periods during the recovery window (e.g.,
one year). Table 7 also shows cost and profit data for varied demand scenarios along with
varied belief degrees to handle stochastic RHS parameters in the mathematical optimisation
model. As can be observed from Table 7, the cost of demand lost (CDL) usually increased
alongside the value of N (for different belief degree combinations). Similarly, theC IC values
also increased with increasing N. This is logical given that higher recovery planning periods
mean thatmanufacturers need to spendmore to increase their production capacities. However,
the additional production capacity can also increase costs, or the production costs may not
have a consequential impact on the T P for larger planning periods. For example, although
the values ofC IC and PC increased with the increasing N, T P s were not impacted—rather,
they showed higher values due to increasing T R.

Figure 3 briefly illustrates the impact of N on T P for the 3 × 2 × 5 × 2 × N dataset. As
evident from this figure, the trend of T P s non-linearly increased up to planning period 8.
After this point, it began to decrease, except for the TP-L-0.90, TP-M-0.90, and TP-H-0.90.
The T P s, on the other hand, began to decrease for N � 10. Here, TP-L-0.90 represented the
T P for the recovery model, while the realised demand data showed lower variability than

123



Annals of Operations Research

Ta
bl
e
4
Im

pa
ct
of

be
lie

f
de
gr
ee
s
on

to
ta
lp

ro
fit
s
(T
P)

fo
r
di
ff
er
en
tp

ro
bl
em

ty
pe
s

Pr
ob

le
m

ty
pe

T
P-
L
-0
.9
5

T
P-
M
-0
.9
5

T
P-
H
-0
.9
5

T
P-
L
-0
.9
0

T
P-
M
-0
.9
0

T
P-
H
-0
.9
0

T
P-
L
-0
.8
5

T
P-
M
-0
.8
5

T
P-
H
-0
.8
5

3
×

2
×

5
×

2
×

4
16

5,
79

0
15

7,
95

3
12

6,
09

7
92

,2
38

15
4,
36

7
16

9,
67

7
14

4,
68

4
17

0,
64

4
18

9,
77

2

8
×

4
×

10
×

4
×

2
29

0,
48

0
29

7,
80

7
30

6,
28

6
23

6,
24

9
29

3,
40

4
28

2,
92

4
30

5,
69

5
28

1,
06

4
29

5,
27

4

10
×

6
×

15
×

6
×

3
43

5,
33

6
64

1,
83

9
54

4,
14

4
49

3,
38

4
55

4,
93

9
60

6,
47

5
52

3,
25

5
57

5,
48

9
52

7,
80

0

15
×

7
×

15
×

8
×

2
43

5,
29

0
42

6,
84

8
44

5,
33

8
42

7,
24

8
44

8,
60

7
45

6,
70

6
48

0,
88

5
47

5,
57

4
34

5,
48

1

123



Annals of Operations Research

Ta
bl
e
5
R
es
ul
ts
of

th
e
pr
op

os
ed

E
D
E
co
n
al
go

ri
th
m

fo
r
va
ri
ed

pl
an
ni
ng

pe
ri
od

s
(N

)
in

th
e
re
co
ve
ry

w
in
do
w
fo
r
th
e
3

×
2

×
5

×
2

×
N

da
ta
se
t

Pl
an
ni
ng

Pe
ri
od

s
(N

)
Pa
ra
m
et
er
s

θ 1
�

θ 2
�

θ 3
�

0.
95

θ 1
�

θ 2
�

θ 3
�

0.
90

θ 1
�

θ 2
�

θ 3
�

0.
85

L
M

H
L

M
H

L
M

H

4
T
R

$5
88

,6
40

$5
99

,8
40

$5
62

,6
40

$5
13

,8
80

$5
94

,7
60

$6
18

,2
40

$5
72

,0
00

$6
02

,2
80

$6
13

,0
00

PC
$1

47
,1
60

$1
49

,9
60

$1
40

,6
60

$1
28

,4
70

$1
48

,6
90

$1
54

,5
60

$1
43

,0
00

$1
50

,5
70

$1
53

,2
50

C
IC

$1
5,
29

0
$1

7,
11

5
$1

2,
24

5
$5

,9
75

$1
5,
96

0
$1

9,
31

5
$1

4,
04

0
$1

6,
99

5
$1

8,
87

5

C
D
L

$1
05

,7
00

$1
00

,4
00

$1
18

,8
40

$1
43

,3
00

$1
03

,3
80

$9
4,
20

0
$1

14
,4
00

$9
8,
44

0
$9

3,
38

0

T
P

$1
65

,7
90

$1
57

,9
53

$1
26

,0
97

$9
2,
23

8
$1

54
,3
67

$1
69

,6
77

$1
44

,6
84

$1
70

,6
44

$1
89

,7
72

8
T
R

$1
,1
30

,1
20

$1
,1
82

,1
20

$1
,1
70

,0
40

$1
,2
42

,7
20

$1
,0
93

,3
60

$1
,0
34

,7
20

$1
,1
44

,6
00

$1
,1
77

,5
20

$1
,1
21

,8
00

PC
$2

82
,5
30

$2
95

,5
30

$2
92

,5
10

$3
10

,6
80

$2
73

,3
40

$2
58

,6
80

$2
86

,1
50

$2
94

,3
80

$2
80

,4
40

C
IC

$4
3,
85

0
$5

6,
92

0
$5

2,
93

0
$7

0,
25

0
$3

5,
31

0
$2

0,
43

0
$4

7,
69

0
$5

8,
15

0
$4

3,
04

0

C
D
L

$2
35

,1
40

$2
09

,4
20

$2
15

,4
20

$1
90

,4
40

$2
55

,3
20

$2
83

,6
00

$2
28

,5
80

$2
11

,7
80

$2
36

,9
20

T
P

$2
47

,2
29

$3
10

,6
35

$2
83

,8
23

$3
09

,3
35

$2
36

,7
08

$1
98

,3
66

$2
56

,8
03

$2
81

,6
40

$2
27

,9
95

10
T
R

$1
,2
54

,6
40

$1
,3
31

,5
60

$1
,4
51

,3
20

$1
,4
43

,2
40

$1
,3
32

,6
00

$1
,4
20

,0
00

$1
,3
38

,4
80

$1
,3
48

,2
40

$1
,3
41

,2
00

PC
$3

13
,6
50

$3
32

,8
90

$3
62

,8
30

$3
60

,8
10

$3
33

,1
50

$3
55

,0
00

$3
34

,6
30

$3
37

,0
60

$3
35

,3
00

C
IC

$1
5,
60

0
$3

4,
46

0
$6

5,
15

0
$6

2,
43

0
$3

3,
54

0
$5

5,
60

0
$3

5,
98

0
$4

0,
61

0
$3

9,
63

0

C
D
L

$3
73

,2
60

$3
33

,0
60

$2
77

,6
60

$2
78

,7
80

$3
33

,3
40

$2
91

,4
00

$3
31

,2
60

$3
26

,1
20

$3
29

,7
80

T
P

$1
61

,1
65

$2
87

,7
03

$2
95

,6
91

$3
73

,2
93

$2
48

,3
01

$3
38

,2
52

$2
28

,5
39

$3
00

,2
36

$2
37

,2
66

12
T
R

$1
,3
73

,2
40

$1
,3
01

,0
00

$1
,3
98

,3
60

$1
,4
26

,4
00

$1
,4
88

,7
20

$1
,3
58

,4
80

$1
,3
02

,4
00

$1
,3
77

,9
60

$1
,4
07

,4
40

PC
$3

43
,3
20

$3
25

,2
40

$3
49

,5
90

$3
56

,6
00

$3
72

,1
80

$3
39

,6
20

$3
25

,6
00

$3
44

,4
90

$3
51

,8
60

C
IC

$5
2,
61

6
$3

5,
60

0
$6

4,
50

8
$6

9,
40

4
$8

7,
82

4
$4

8,
21

2
$3

2,
02

4
$5

3,
55

2
$6

2,
37

2

C
D
L

$3
14

,3
20

$3
50

,4
20

$3
02

,5
60

$2
87

,3
80

$2
54

,3
20

$3
21

,1
40

$3
48

,5
20

$3
12

,2
20

$2
96

,8
20

T
P

$2
37

,5
36

$1
76

,4
91

$3
25

,2
93

$3
25

,6
76

$3
61

,2
94

$2
78

,4
46

$2
68

,9
60

$3
14

,9
95

$2
86

,3
23

123



Annals of Operations Research

$0

$200,000

$400,000

$600,000

$800,000

$1,000,000

$1,200,000

$1,400,000

$1,600,000

$1,800,000

TR PC CDL TP
Low Medium High

$0

$200,000

$400,000

$600,000

$800,000

$1,000,000

$1,200,000

$1,400,000

$1,600,000

$1,800,000

TR PC CDL TP
Low Medium High

(b) Belief degrees = 0.95 (a) Belief degrees = 0.85
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Fig. 3 Impact of planning periods (N) on total profits (TP) for the 3 × 2 × 5 × 2 × N dataset

the expected demand, and the combination of belief degrees was 0.90. Arguably, therefore,
for a medium-sized SC recovery model, increasing N values will not always increase profit
margins in a linear fashion. Rather, it will decrease if demand variation is high or low, and if
the decision-maker’s belief degrees are 0.90 for constraints (31) to (33).

6.4.2 Impact of per-unit selling price (S) in the recovery window

Figure 4 illustrates the impact of S on both T P and CDL for a medium-sized problem set
(i.e., the 3 × 2 × 5 × 2 × 4 dataset). To measure the impact, S values were set as 50,
100, and 150. Figure 4 reports the impact for belief degrees 0.95, while Fig. 5(a) and (b) of
Appendix A report the impacts of S when belief degrees were 0.90 and 0.85, respectively.
Figure 4 reveals that for the 0.95 belief degrees, the T P increased with increasing S, which
was to be expected. While the increment pattern for both TP-H and TP-L was linear, it was
non-linear for the TP-M. In contrast, the CDL values showed surprising patterns with the
demand fluctuations and S values. CDL values were non-linearly increased with increasing S
values, particularly when the demand data showed medium or high variability. Meanwhile, if
belief degrees were 0.90, then CDL values decreased after a certain S value (i.e., S � 100),
as shown in Fig. 5(a) in Appendix A. Therefore, if the S value is set at more than 100, the
manufacturer may experience lower CDL . A similar observation was true for that presented
in Fig. 5(b) (Appendix A) when belief degrees were equal to 0.85.
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6.4.3 Impact of per-unit lost sale cost and selling price

Like the impact of S, the per-unit lost sale (L) also had an influence on the T P during the
recovery period. To observe this impact, we considered three combinations of (S, L): (50,
25), (50, 50), and (50, 60). The ultimate rationale underpinning such combination selection
was to observe the impact of L , when it was set at half of the value of S, equal to S and a bit
higher than S. Table 8 summarises all results obtained from the proposed EDEcon approach
with varied S, L, demand, and belief degrees. As expected, increasing the L values from 25
to 60 (without changing the S values) decreased the T P margin for all demand fluctuation
scenarios and all belief degree combinations. Therefore, the recovery model always empha-
sises minimising the gap between actual demands and demand fulfilment (i.e., total delivery
to all retailers). Consequently, the CDL values increased with increasing L values, which
was also an expected outcome.

6.4.4 Impact of the number of emergency suppliers

During the pandemic period, due to varied (but increased) demand fluctuations and com-
pulsory social distancing measures, suppliers’ capacities have been vulnerable to change
or reduction. In this challenging situation, manufacturers or plants are highly dependent on
the number of emergency suppliers and their capacities. As expected, it was found that if a
plant has a good number of emergency suppliers as a backup, its sustainability is also high
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due to increased opportunities to subcontract unmet demands. To observe the impact of ‘the
number of emergency supplier’s (e), this study considered three different values of e: 2, 4,
and 6. Figures 6, 7(a), and (b) report the results of EDEcon for varied e values for the recov-
ery model of the 3 × 2 × 5 × 2 × 4 problem set, while the belief degrees were 0.95, 0.90,
and 0.85, respectively. Next, as evident from Figs. 6 and 7(a), when the belief degrees were
comparatively higher, the CDL values decreased with increasing e. This is logical, as with
increasing emergency supplier numbers, plants can subcontract to minimise unmet demands.
However, when practitioners have less confidence over their capacity constraints (i.e., belief
degrees equal 0.85), CDL values were found to increase up to a certain number of e (here,
at 4) and then began decreasing, particularly when demand data fluctuations were medium
or high (shown in Fig. 7(b)). Although the CDL decreased with increasing e values, the T P
values were also decreasing exceptionally, for almost all cases. Essentially, if CDL values
are low, T P should be higher. Nevertheless, the T P values decreased, mostly because of
increases in other SC costs (e.g., RTCe, PC,C IC, and TC pr ). Notably, Fig. 7 is given in
Appendix A.

6.4.5 Impact of belief degrees

Indisputably, the confidence interval or belief degrees should have a significant impact on the
mathematical optimisation approach, and thus on the model’s performance parameters. To
measure this impact, we considered four different belief degrees (0.95, 0.90, 0.85, and 0.80).
The results obtained after applying the proposed EDEcon approach for the 3 × 2 × 5 × 2 ×
4 dataset are given in Table 9 (Appendix A). As discussed in chance-constraint Eqs. (32) to
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dataset

(34), if a θ1 value is 0.95, then the model needs to satisfy that for at least 95% cases, where
the chance constraint is then satisfied. Meanwhile, for lower θ1 values, the chance constraint
is less strict. As observed from Fig. 8, the T P values increased from 0.80 to 0.85, then began
to drop from 0.85 to 0.90, and then again increased from 0.90 to 0.95 (except for the TP-H).
Therefore, the impact of belief degrees onmultiple chance-constraints was difficult to predict
and did not show any linear trend. It can further be claimed that if the belief degrees are 0.85
and the demand data shows high variability, then the T P will be the highest. Additionally,
the impact of belief degrees on the CDL was also non-linear.

We further conducted a sensitivity analysis for different parameters and observed that the
model reacted very well.

6.4.6 Impact of fixed costs of increasing production capacity

Due to the increasing demand during pandemics, plants or manufacturers are forced to
increase their production capacity to minimise the gap of unmet demands. However, increas-
ing production capacity largely depends on the number of normal and emergency suppliers
and their stochastic capacity and the availability of transportation materials. Now, to observe
the impact of the fixed cost of increasing production capacity (F), this study considered three
different values of F for the 3 × 2 × 5 × 2 × 4 problem set: $1000, $1500, and $2000. Three
demand fluctuations and belief degrees of 0.95 were considered to solve this problem set.
Notably, both plants were assumed to have the same F values. As expected, Fig. 9 shows that
the T Ps decreased with increasing F values. However, the rate of decrement is non-linear,
solely due to the influence of other parameters (e.g., operating costs, variable costs, trans-
portation costs, and project-specific costs). Furthermore, as illustrated in Fig. 9, the C IC
increased with increasing F values up to 1500. After this point, the cost began to decrease.
Thus, the impact of a fixed cost is nullified once the production capacity has reached a certain
level.

6.4.7 Impact of different belief degree combinations

Throughout all of the numerical experiments, the belief degrees for all three Chance-
constraint Eqs. (32) to (34) were considered equal (i.e., θ1 � θ2 � θ3). However, in practice,
the belief degree may vary for different uncertain RHS parameters. For example, the man-
ufacturer may have higher confidence in the variability of production capacity and supplier
capacity but lower confidence in the emergency supplier’s capacity. In that case, θ1 and θ3
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should be higher than θ2. Therefore, a set of experiments was needed to demonstrate the
impact of varied belief degrees. Consequently, this work considered nine different combina-
tions of θ1, θ2 and θ3, as shown in Fig. 10.

The resultswere obtained after employing the proposed EDEcon meta-heuristic algorithm
for the 3 × 2 × 5 × 2 × 4 problem set. For simplicity, only the high duration variance was
considered. As evident from Fig. 5, the maximum value of T P was obtained when the
combination was (0.95, 0.85, 0.95). Therefore, if the decision-maker (i.e., manufacturer) has
high belief degrees for dealing with stochastic production capacity and stochastic supplier
capacity and a low belief degree for the stochastic emergency supplier capacity, then the
resultant T P value will be higher. However, if all of these belief degrees are at the highest
level (0.95), then the recovery model will produce the least T P .

6.5 Managerial insights

FromTable 3 it can be seen that the T P (bolded values) for problem set 3×2×5×2×4 showed
varied values along with the varied demand data. For instance, if the demand showed low
variability in the expected or ideal model’s demand data, then the T P equalled $165,790. If
the demand showed medium variability, then the T P dropped to $157,953. For high-demand
variability, the T P dropped even further to $126,097. In contrast, for the larger SC design,
particularly if the number of emergency suppliers was comparatively higher (e.g., for the
15 × 7 × 15 × 8 × 2 problem set), the impact of demand variabilities on the T P were
not practically significant. Further, they did not show any particular trend of increasing or
decreasing with the demand variability. The following managerial insight 1 can be drawn
from this finding.

Managerial insight 1: The impact of demand variability significantly contributes to
shrinking profit margins, particularly for smaller SC designs (i.e., when the number of suppli-
ers, plants, and retailers is low). In larger SC networks, manufacturers havemore flexibility to
order shortage materials from their emergency suppliers and to minimise the cost of demand
lost.

Table 6 provides a detailed discussion on the impact of different belief degrees on T P .
Essentially, a higher value of θ means that the service level is increased, and hence the
decision-maker will want to satisfy the original ‘stochastic’ constraint with a higher prob-
ability. Hence, the chance constraint needs to become stricter when θ increases. So, with
lower belief degrees, the chance-constraints are pragmatically easier to solve, which pro-
vides the model with less control over limiting variables (e.g., decision variables), and thus
often produces lower T P (or higher costs). This is obvious since the decision-maker has less
confidence in the controlling parameters of RHS uncertain values (Zhang et al., 2016). Also,
Fig. 2 shows the impact of duration variabilities on the SC performance parameters. From
these findings, the following managerial insight 2 can be drawn.

Managerial insight 2: TR and TP are higher for the medium variability demand data.
With increasing variability from medium to high, the TP and TR values are decreased, solely
due to increased uncertainty in the SCmodel. However, the change in profit margins does not
follow the same pattern if the variability of demand data is increased from low to medium.

In this study, we used hypothetical and random data. However, in practice, these data can
be estimated using historical demand, supply, and cost information. Also, decision-maker
can use emergent technologies such as blockchain, artificial intelligence, and Industry 4.0
to store data and information which can be used in the model to develop the recovery plan
(Ivanov et al., 2022; Dolgui and Ivanov 2022; Ivanov 2021d).
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7 Conclusions

The impacts of COVID-19 on SCs are devastating and have spread across different network
stages. The high-demand and essential product SCs have predominantly been significantly
affected by the pandemic due to its multi-dimensional impacts, such as demand surge and
reduction in supply and production capacities, wherein the extent of variations is uncer-
tain. Without proper planning and strategies, companies may lose substantial demand and,
therefore, profit in the short-term, potentially facing complete shutdown in the medium- to
long-term.

We took up this issue and studied the recovery of an SC for a high-demand item (e.g., hand
sanitizers or face masks). We began by defining a stochastic mathematical model to optimise
a recovery plan in a three-stage SC facing the multi-dimensional impacts of the COVID-19
pandemic. In this setting, we developed a constrained programmingmathematical model that
optimises the total SC profit in the recovery window by considering the multi-dimensional
yet uncertain impacts of a pandemic. Our definition generalizes a unique problem setting
with simultaneous demand, supply, and capacity uncertainties in a multi-stage SC recovery
context. In themathematicalmodel,we consideredmultiple strategies that can simultaneously
enhance the production capacity and rawmaterial supply. The model also considered the cost
of lost sales if firms are unable to meet the demand or perceive that sacrificing sales would
be more profitable than increasing capacity to meet the short-term and sudden demand.
This feature of the model enables practitioners to decide between increasing capacities to
meet demand and sacrificing sales. The findings revealed that companies could significantly
improve their total profit by implementing the strategies suggested for various scenarios and
the model developed in this study.

We then presented a new, enhanced multi-operator differential evolution variant-based
solution approach to solve our model. Through extensive numerical experiments, we demon-
strated how the solution approach developed is capable of solving both small- and large-scale
SC recovery problems.With the optimisation, we sought to understand the impact of different
recovery strategies on SC profitability and to determine the optimal recovery plans through
adjustments of supply, production, and transportation quantities. We tested, evaluated, and
analysed different recovery strategies, scenarios, and problem scales. Ultimately, we provide
a useful tool to optimize reactive adaptation strategies related to how and when to recover the
SC operations during a pandemic. The outcomes of this research can be used by decision-
makers to select the most efficient SC recovery plan in a pandemic setting and to determine
the timing of its deployment.

Despite its substantial contributions, the study also has some limitations that must be
acknowledged. For example, the SC recovery model developed in this study is effective for
planning recovery strategies for a high-demand item. However, the COVID-19 pandemic
has simultaneously affected the SCs of multiple high-demand items as well as several high-
demand and stable demand products. In such a situation, a modified SC recovery model,
which is capable of considering recovery plans for multiple products and intertwined sup-
ply networks, is needed. Therefore, future studies could work to develop such models. This
study also focused exclusively on a manufacturing plant, its immediate tier-one suppliers,
and downstream retailers. In the real world, however, an SC is typically more complex, and
many other members (such as upstream suppliers at various tiers) and middlemen (such as
distributors, brokers, and wholesalers) are also involved in the operations. Therefore, future
studies could develop models that consider all potential SC members to enhance the appli-
cability of the model. Finally, this study considered hypothetical, yet realistic input data for
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analyzing the various scenarios within the model. Future studies could provide a further
empirical examination via multiple case studies or a large-scale survey to explore and test the
benefits of the strategies suggested in this research to enhance their generalizability. Consid-
ering the relevance of including sustainability features (e.g., social impact and environmental
sustainability) with economical and resilience objectives, another possible extension of this
work could be to consider multi-objective formulations.
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Appendix A

See (Figs. 9 and 10) .
(Tables 7, 8 and 9).
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Fig. 9 Impact of fixed costs of increasing production capacity (F) in the recovery period for the 3×2×5×2×4
dataset (θ1 � θ2 � θ3 � 0.95
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Fig. 10 Impact of different belief degree combinations on the total profit in the recovery period for the 3 × 2
× 5 × 2 × 4 dataset (for HIGH duration variance only)
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Table 7 Performance of EDEcon in the recovery model for varied demand data (when θ1 � θ2 � θ3 � 0.90)

Parameter 3 × 2 × 5 × 2 × 4 8 × 4 × 10 × 4 × 2

L M H L M H

TR $513,880 $594,760 $618,240 $662,280 $720,200 $741,240

RTCS $64,235 $74,345 $77,280 $82,785 $90,025 $92,655

RTCE $53,968 $68,280 $72,296 $49,032 $48,536 $77,264

PC $128,470 $148,690 $154,560 $165,570 $180,050 $185,310

CIC $5,975 $15,960 $19,315 $27,010 $34,235 $36,545

TCpr $25,694 $29,738 $30,912 $33,114 $36,010 $37,062

CDL $143,300 $103,380 $94,200 $68,520 $37,940 $29,480

TP $92,238 $154,367 $169,677 $236,249 $293,404 $282,924

Parameter 10 × 6 × 15 × 6 × 3 15 × 7 × 15 × 8 × 2

L M H L M H

TR $1,470,600 $1,527,560 $1,606,440 $1,110,360 $1,139,120 $1,156,320

RTCS $183,825 $190,945 $200,805 $138,795 $142,390 $144,540

RTCE $132,176 $125,968 $145,648 $125,024 $131,232 $138,448

PC $367,650 $381,890 $401,610 $277,590 $284,780 $289,080

CIC $54,915 $61,500 $72,160 $40,745 $44,355 $46,930

TCpr $73,530 $76,378 $80,322 $55,518 $56,956 $57,816

CDL $165,120 $135,940 $99,420 $45,440 $30,800 $22,800

TP $493,384 $554,939 $606,475 $427,248 $448,607 $456,706
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Table 8 Performance of EDEcon in the recovery model for varied demand data (when θ1 � θ2 � θ3 � 0.85)

Parameter 3 × 2 × 5 × 2 × 4 8 × 4 × 10 × 4 × 2

L M H L M H

TR $572,000 $602,280 $613,000 $734,040 $711,200 $733,080

RTCS $71,500 $75,285 $76,625 $91,755 $88,900 $91,635

RTCE $56,776 $60,232 $50,448 $48,688 $51,456 $55,432

PC $143,000 $150,570 $153,250 $183,510 $177,800 $183,270

CIC $14,040 $16,995 $18,875 $35,050 $32,400 $36,055

TCpr $28,600 $30,114 $30,650 $36,702 $35,560 $36,654

CDL $114,400 $98,440 $93,380 $32,640 $44,020 $34,760

TP $144,684 $170,644 $189,772 $305,695 $281,064 $295,274

Parameter 10 × 6 × 15 × 6 × 3 15 × 7 × 15 × 8 × 2

L M H L M H

TR $1,508,680 $1,565,640 $1,391,720 $1,144,680 $1,144,360 $1,013,920

RTCS $188,585 $195,705 $173,965 $143,085 $143,045 $126,740

RTCE $138,816 $139,104 $146,392 $103,936 $110,928 $117,848

PC $377,170 $391,410 $347,930 $286,170 $286,090 $253,480

CIC $58,580 $67,130 $44,925 $45,750 $44,705 $28,755

TCpr $75,434 $78,282 $69,586 $57,234 $57,218 $50,696

CDL $146,840 $118,520 $81,122 $27,620 $26,800 $90,920

TP $523,255 $575,489 $527,800 $480,885 $475,574 $345,481

Table 9 Performance for varied belief degrees for the 3 × 2 × 5 × 2 × 4 dataset

Parameters θ1 � θ2 � θ3 � 0.95 θ1 � θ2 � θ3 � 0.90

L M H L M H

TR $588,640 $599,840 $562,640 $513,880 $594,760 $618,240

PC $147,160 $149,960 $140,660 $128,470 $148,690 $154,560

CIC $15,290 $17,115 $12,245 $5,975 $15,960 $19,315

CDL $105,700 $100,400 $118,840 $143,300 $103,380 $94,200

TP $165,790 $157,953 $126,097 $92,238 $154,367 $169,677

Parameters θ1 � θ2 � θ3 � 0.85 θ1 � θ2 � θ3 � 0.80

L M H L M H

TR $572,000 $602,280 $613,000 $548,720 $586,360 $535,320

PC $143,000 $150,570 $153,250 $137,180 $146,590 $133,830

CIC $14,040 $16,995 $18,875 $10,810 $15,465 $8,490

CDL $114,400 $98,440 $93,380 $125,540 $106,700 $134,540

TP $144,684 $170,644 $189,772 $135,948 $168,224 $119,115
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