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Abstract

We cast mechanism design with evidence in the framework of Myerson (1982),

whereby his generalized revelation principle directly applies and yields standard

notions of incentive compatible direct mechanisms. Their specific nature depends

on whether the agent’s (verifiable) presentation of evidence is contractually con-

trollable, however. For deterministic implementation, we show that, in general,

such control has value, and we offer two independent conditions under which this

value vanishes, one on evidence (WET) and another on preferences (TIWO). Allow-

ing for fully stochastic mechanisms, we also show how randomization generally has

value and clarify to what extent this value vanishes under the common assumption

of evidentiary normality (NOR). While, in general, the value of control extends

to stochastic implementation, neither control nor randomization have any value if

NOR holds together with WET or TIWO.
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1 Introduction

We develop a Myersonian approach to mechanism design with evidence. By casting the

problem in the general framework of Myerson (1982), the presentation of evidence is cap-

tured as an action rather than as a form of communication. As we demonstrate, this avoids

and also clarifies a number of fundamental issues that have been raised under existing

approaches (e.g., Green and Laffont (1986), Bull and Watson (2007), Deneckere and Sev-

erinov (2008)). Most fundamentally, the general formulation of the revelation principle of

Myerson (1982) directly applies and simplifies the design problem with standard notions

of direct mechanisms and incentive compatibility, thus unifying mechanism design with

and without evidence – both conceptually and technically. With regards to applications,

our framework enables us to identify as well as relax the implicit assumptions concerning

the contractibility of evidence that underlie existing approaches, and we characterize their

economic significance in terms of general properties of the design problem.

In particular, due to the validity of the revelation principle, the framework permits

a general characterization of optimal mechanisms, without resorting to restrictions on

the underlying evidence structure such as a “nested range condition” (NRC, Green and

Laffont (1986)), or “normality” (NOR, Bull and Watson (2007)).1 Hence, our approach

allows to dispense with these restrictions for applications, as for instance in Hart, Kremer,

and Perry (2017), or Ben-Porath, Dekel, and Lipman (2019). For the same reason, when

these evidentiary conditions are not met, it also allows to dispense with strong simplifying

assumptions on preferences, as for instance in Singh and Wittman (2001), or Glazer and

Rubinstein (2006). However, as we show, combining the evidentiary condition of NOR

with either of two further conditions that we introduce below—WET, another eviden-

tiary condition, or TIWO, a condition on preferences—renders applications with evidence

especially tractable in two important ways. First, it eliminates the need for stochastic

mechanisms, so that a focus on deterministic implementation is without loss. Second,

it ensures that the extent to which the presentation of evidence is contractible becomes

inconsequential for implementability.

Indeed, our Myersonian approach immediately implies that the definition of incentive

compatible direct mechanisms crucially depends on the contractibility of evidence – or,

in the language of Myerson (1982), on its controllability. Loosely speaking, this refers

to whether the principal may offer contracts that bind the agent to presenting specific

evidence or instead faces moral hazard. Consequently, we obtain two different speci-

1NOR allows to pin down the evidence on which mechanisms can focus without loss, to “maximal”
evidence. It is equivalent to the “full reports condition” proposed in Lipman and Seppi (1995), as well
as the “minimal closure condition” in Forges and Koessler (2005). NRC is stronger than NOR, however
(see our Appendix C for details).
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fications of mechanism design with evidence, one for controllable evidence and one for

non-controllable evidence.

Applying the resulting framework to the case of a single privately informed agent,

we show how it allows to fully characterize the set of implementable social choice func-

tions, first for deterministic and then for general stochastic implementation. Moreover,

in each case, we characterize and compare implementability under controllable and non-

controllable evidence.

With regard to deterministic implementation, direct mechanisms for controllable evi-

dence correspond to simple menus of contracts from which the privately informed agent

gets to select one. Each contract specifies both the principal’s allocation and the agent’s

evidence, so the agent effectively gets to choose his favorite allocation among those that

his evidence gives him access to. By contrast, direct mechanisms for non-controllable

evidence are more complex due to evidentiary moral hazard. In particular, they involve

recommendations to the agent for what evidence he should present, and incentive compat-

ibility requires that the agent obediently follows these recommendations (in addition to

honestly reporting his type). We show, however, that these mechanisms permit a repre-

sentation that coincides with the contracts that are studied in the literature’s alternative

approaches to evidence; in particular, we thereby clarify the notion of inalienability as

used in Bull and Watson (2007).

The notion of controllability is economically meaningful, in the sense that control has

value even though, without control, only a problem of “verifiable moral hazard” obtains

(as evidence is verifiable by definition): We show with an explicit example (Example 1)

that controllable evidence supports the implementation of social choice functions that are

not implementable with non-controllable evidence.2

We then identify two independent conditions each of which is sufficient (and also

weakly necessary) for implementability to coincide under both contracting regimes, so

that assuming controllability of evidence to analytically simplify the problem is without

loss. Underlying both conditions is the conceptual insight (Corollary 1) that evidentiary

control benefits the principal only if she benefits from restricting the pieces of evidence

that the agent can use. The first condition, which we call WET, is novel in the literature

and concerns only the problem’s evidence structure. It requires that any evidence is

“maximal” with respect to some agent-type, in the sense of proving all that the agent

could possibly prove if that were truly his type.3 This means there is a weakest evidence

2This value of control then also implies that in settings with evidence, the “delegation principle”
generally fails, because despite verifiability, evidentiary moral hazard is costly; see Rochet (1985), who
introduces it as “taxation principle.”

3The notion of “maximal evidence” is well-known in the existing literature on evidence as the defining
feature of NOR (see Bull and Watson, 2007, p. 79). Following our terminology, NOR requires that
any agent-type has evidence that is maximal with respect to his true type. NOR and WET are two
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type (WET) for every piece of evidence, who cannot prove more than any other type

that has this evidence, so that a principal can effectively exclude it by assigning to it

the same outcome as for the associated weakest evidence type. The second condition,

which we call TIWO, concerns only the problem’s preference structure and requires that

some allocation is worst for the agent regardless of his type. This means a principal can

effectively exclude any evidence by assigning to it this type-independent worst outcome

(TIWO). TIWO is satisfied in particular whenever the agent’s ordinal preferences over

outcomes are type-independent, as is assumed in much of the literature on evidence games

(see, e.g., Glazer and Rubinstein (2006), Sher (2011, 2014), or Hart et al. (2017)). Notably,

TIWO naturally arises in settings with monetary transfers, which clarifies why “verifiable

moral hazard” would usually be an oxymoron.

Turning to stochastic implementation of deterministic social choice functions, we show

that the value of control extends, and we provide explicit examples to establish that

also randomization has value, both for controllable evidence (Example 2) and for non-

controllable evidence (Example 3). These examples illustrate also the general insights

that: (i) when evidence is controllable, stochastic contracts that randomize over evidence

allow to weaken incentive constraints considerably, in that any agent-type need only be

prevented from mimicking types for whom he has all the evidence (i.e., in the absence

of moral hazard randomization allows to “maximize” evidence), and (ii) when evidence

is non-controllable, implementation of a deterministic objective can require randomiza-

tion that perfectly correlates the stochastic allocation rule with the stochastic evidence

recommendation. We further prove that, while NOR is sufficient (and also weakly nec-

essary) for randomization not to have any value with controllable evidence, this is not

generally true when evidence is non-controllable: Although deterministic evidence rec-

ommendations are then without loss, there can still be value to randomizing allocations

“off-path” to mitigate evidentiary moral hazard (Example 4); this latter result clarifies

the restriction to “simple type dependence” in Ben-Porath et al. (2019) to establish that

randomization has no value in a setting with NOR and non-controllable evidence. Hence,

with controllable evidence, the only purpose of randomization is to overcome the physical

limits of evidence presentation when some agent-types are unable to present maximal

evidence for their type (i.e., when NOR is violated); with non-controllable evidence, the

additional moral hazard problem means that randomization may additionally serve the

purpose of mitigating evidentiary moral hazard, as an imperfect substitute of control,

while also being less powerful in “maximizing” evidence.

Putting our results together, when NOR is satisfied jointly with WET or TIWO, con-

trol has again no value, so also randomization then has no value, even for non-controllable

independent conditions, however; an evidence structure may satisfy none, both, or only one of them.
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evidence. Notably, the evidence structure introduced by Dye (1985), which is commonly

assumed in applications (e.g., Shin (2003); Acharya, DeMarzo, and Kremer (2011)), sat-

isfies both NOR and WET. Hence, our results clarify the tractability this assumption

affords and suggest directions for generalizing existing results. Similarly, the aforemen-

tioned theoretical analyses of evidence games usually assume type-independent prefer-

ences over outcomes for the sender, implying TIWO, so this shows the strength of NOR

in such settings for mechanism design analysis – not only is randomization then unneces-

sary but the analysis can be carried out as if evidence were controllable, for simplicity. A

final example (Example 5) highlights a complementarity of control and randomization, by

showing that, without NOR, control can have value for stochastic implementation even

when both WET and TIWO hold jointly.

The rest of our paper is structured as follows: In the next section, we introduce the

evidentiary implementation model, and we explain how we operationalize the mechanism

design framework and revelation principle of Myerson (1982). Throughout we apply the

revelation principle thus derived for each contractual regime—controllable evidence and

non-controllable evidence—to characterize implementability of deterministic social choice

functions. In Section 3, we first restrict attention to deterministic implementation, for

which we establish and characterize the value of control, introducing WET and TIWO.

In Section 4, we consider fully stochastic implementation (of the deterministic objective)

and the value of randomization, where NOR plays a key role in simplifying the design

problem, and we also revisit the value of control. The final Section 5 discusses the related

literature (in addition to more specific remarks in the results sections) and straightforward

extensions as well as limitations of our analysis, concerning in particular settings with

multiple agents, sequential evidence presentation, and endogenous evidence structures.

2 Model and Mechanism Design Set-up

Setting and Problem. A principal (she) has to decide about an allocation x ∈ X that

affects an agent (he). The agent has private information captured by his type θ ∈ Θ.

The agent’s type identifies both his preferences over allocations x ∈ X, according to the

utility function u : X ×Θ → R, and the evidence e ∈ E that he has available, according

to the mapping E : Θ → 2E \ {∅}. Hence, the agent’s type θ captures all of his private

information, and any type report θ̂ by the agent implies a claim both to his preferences

as well as to the evidence he has available, namely u(·|θ̂) and E(θ̂).

Adopting the general formulation of evidence by Bull and Watson (2007),4 E is an

4This formulation generalizes both the “type-reports-as-evidence” model introduced in the pioneering
work by Green and Laffont (1986) and the “reduced-form” model recently studied by Ben-Porath et al.
(2019). It also covers the evidence formulation of Deneckere and Severinov (2008), which makes explicit
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abstract set describing all potentially available evidence, in the sense that E = ∪θ∈ΘE(θ),

while E(θ) ⊆ E represents the evidence available to a given type θ.5 By convention, type

θ can present only one element e ∈ E(θ).6 Evidence e ∈ E proves that the agent’s type is

one in {θ ∈ Θ : e ∈ E(θ)}. Thus, a given type θ can partially verify his private information

by presenting some evidence e ∈ E(θ) available to him. Note that the possibility of “no

evidence” can be captured by some e0 ∈ E such that e0 ∈ E(θ) holds true for all types

θ ∈ Θ of the agent, whereby e0 proves nothing.

We refer to the pair (X, u) as the problem’s preference structure and the pair (E, E)

as the problem’s evidence structure. To circumvent measure-theoretical complications,

we assume that X, Θ and E are finite sets. Consequently, we let p ∈ ∆(Θ) denote the

common prior probability distribution over types, and we assume it has full support; i.e.,

p is a mapping from Θ to [0, 1] with
∑

θ∈Θ p (θ) = 1 and p(θ) > 0 for all θ ∈ Θ.

Summarizing, the collection (Θ, p,X, u, E, E) represents the primitives of our eviden-

tiary implementation model, describing the model’s type structure (Θ, p), its preference

structure (X, u), and its evidence structure (E, E). Our main focus is on the question of

what (deterministic) social choice functions fX : Θ → X the principal is able to imple-

ment by relying on evidence as her only means to provide incentives. We refer to this as

the evidentiary implementation problem. It means we analyze the fundamental constraint

that the agent’s private information imposes on any objective of the principal, which

we therefore leave unspecified.7 Moreover, and in line with the literature studying such

problems, we abstract from any participation decision by the agent, so the agent must

participate in the mechanism chosen by the principal. This is without loss if the agent

always (i.e., for any type) prefers any allocation in X over his outside option.

Mechanism Design and Bayesian Games. Our first goal is to clarify the extent to

which we can employ the standard tools of mechanism design to evidentiary implementa-

tion problems, in particular standard formulations of the revelation principle (Myerson,

1979, 1982). We therefore briefly illustrate here why, with evidence, this is not immediate.

The complication arises from the defining feature of evidence. Any mechanism that calls

upon the agent to present evidence induces a game with type-dependent strategy spaces.

Mechanism design, however, is built on the theory of Bayesian games as introduced by

Harsanyi (1967), which presumes that strategy spaces are type-independent.

To see that such type-independent strategy spaces are essential for the general ap-

plicability of the revelation principle, consider the following example. The principal

all “atomic” pieces of evidence.
5We use ⊆ to denote weak set inclusion and ⊂ to denote strict set inclusion.
6That the agent can only present one element e ∈ E is without loss, as any combination of pieces of

evidence that the agent could present altogether can be represented by a specific e ∈ E.
7Consequently, beyond its support Θ, the prior distribution p over types will play no role in our results.
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Figure 1: Failure of the revelation principle with type-dependent strategy spaces. The
left panel represents the game with type-dependent strategy spaces. The right panel
represents the corresponding direct mechanism, which fails to replicate the equilibrium
outcome, however.

has to decide between two allocations X = {x1, x2}, and the agent has two possi-

ble types Θ = {θ1, θ2}. While both types prefer x1 over x2, type θ1 has evidence

E(θ1) = E = {e1, e2} and type θ2 has evidence E(θ2) = {e2}. Suppose the principal

offers an “evidence matching mechanism” such that, if the agent presents evidence ei

then allocation xi is selected, i ∈ {1, 2}. This mechanism induces a game with type-

dependent strategy spaces, as illustrated in the left panel of Figure 1. Since type θ2 can

only present evidence e2, whereas type θ1 can and also will present e1 in order to obtain

his preferred allocation x1, this mechanism implements the social choice function fX such

that fX(θi) = xi, i ∈ {1, 2}.

The revelation principle states that it is possible to replicate any equilibrium outcome

via honest type reports that “directly” lead to the corresponding allocation. This claim

is not true when strategies in the original mechanism are type-dependent. As the right

panel of Figure 1 illustrates, the issue is that the direct mechanism that corresponds to

the indirect mechanism in the left panel gives type θ2 access to the preferred allocation

x1 by simply reporting his type as θ1.
8

Harsanyi (1967) already explicitly addresses the possibility of type-dependent strategy

spaces and argues that the assumption of type-independent strategy spaces is without

loss, because any game with type-dependent strategy spaces has a strategically equivalent

representation by a game with type-independent strategy spaces: “the assumption that

a given strategy si = s0i is not available to player i is equivalent, from a game-theoretical

point of view, to the assumption that player i will never actually use the strategy s0i (even

though it would be physically available to him) because by using s0i he would always obtain

some extremely low (i.e. high negative) payoffs” (Harsanyi, 1967, p. 1809; emphasis and

parentheses in original).

8Indeed, when the agent’s true type is θ2, it is also physically impossible to replicate type θ1’s pre-
sentation of e1, since this evidence is then not available. Relatedly, see Myerson (1991, Chapter 6) for a
discussion of the contract-theoretical foundation of the revelation principle’s replication argument.
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In our context, we obtain this strategically equivalent representation by defining the

following (evidence-)extended utility function:

U (x, e |θ ) =







u (x |θ ) if e ∈ E (θ) ,

−c otherwise,
(1)

with c sufficiently large.9 Evidence-extended utility functions translate the type-dependence

of the agent’s evidence into a property of his payoffs, so we can interpret any mechanism

as-if inducing a game in which any type of agent θ has any evidence e ∈ E available,

but his payoff depends on the (evidence-) extended allocation (x, e) according to U(x, e|θ).

Introducing this extension (of utility functions and allocations) thus ensures that the prin-

cipal’s mechanism induces a Bayesian game in the strict sense of Harsanyi (1967) and is a

first necessary step for operationalizing standard tools of mechanism design to evidentiary

implementation problems.10

Applying Harsanyi’s procedure to our specific example, Figure 2 confirms that it re-

stores the validity of the revelation principle. The left panel of Figure 2 illustrates the

game with type-independent strategy spaces that obtains from using the extended util-

ity functions; the right panel shows its direct representation does indeed replicate its

equilibrium outcome.

The example also serves to illustrate a related point: In contrast to communication,

evidence is a primitive of the setting and problem, hence cannot be arbitrarily designed.

We will therefore conceptualize the presentation of evidence as an action by the agent.

This enables us to cast the evidentiary implementation problem in the framework of

Myerson (1982), where—in line with evidence-extended utility—the factual presentation

of evidence is to be considered a part of the outcome implemented by any mechanism.11

Bayes-Nash Implementability. Having ensured that any mechanism induces a proper

Bayesian game, we next apply the usual definition of (Bayes-Nash) implementability in

9We can make “sufficiently large” precise by defining u ≡ max {u (x |θ ) : (x, θ) ∈ X ×Θ} and u ≡
min {u (x |θ ) : (x, θ) ∈ X ×Θ}. When restricting attention to deterministic mechanisms, as we do in
Section 3, c > −u is sufficient. When considering stochastic mechanisms, as we do in Section 4, c >

−u+ (|E| − 1) · (u− u) is sufficient, where |E| is the cardinality of the (finite) set E.
10It is already at this level where our approach diverges from the existing literature on mechanism

design with evidence, which has disregarded the issue of type-dependent strategy sets but nevertheless
applied the usual notions developed for Bayesian games. For instance, Bull and Watson (2007, p. 80)
speak of “a Bayesian game with type-contingent restrictions on actions,” and although in their footnote
7, they explicitly mention the use of evidence-extended utility functions as an “alternative way”, they
do not pursue this modeling alternative. By contrast, and in the context of full implementation with
evidence, Kartik and Tercieux (2012) use an approach similar to ours.

11See Forges and Koessler (2005) for a related discussion, when taking as given the type-dependent
“verifying messages” (evidence) available to players and allowing for any type-independent messages
(communication).
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Figure 2: The revelation principle restored. The left panel represents the game under
the equivalent “as-if” interpretation with type-independent strategy spaces and evidence-
extended allocations/utility. The right panel represents the corresponding direct mecha-
nism, which now replicates the equilibrium outcome.

mechanism design. That is, we say that a mechanism implements the social choice func-

tion fX , if the (proper) Bayesian game induced by the mechanism has a Bayes-Nash

equilibrium (BNE) whose outcome is such that an agent of type θ receives allocation

fX(θ). Moreover, we say that a social choice function fX is implementable, if there exists

a mechanism that implements it.

To explicitly keep track of how evidence supports implementation, we introduce ev-

idence extensions fE : Θ → E such that fE(θ) ∈ E(θ) for all types θ, which describe

for each type θ the evidence e ∈ E(θ) that he presents. We call a pair f = (fX , fE),

consisting of a social choice function fX and an evidence extension fE, an (evidence-)

extended social choice function, and we denote the space of all such extended social choice

functions by F . We say that a mechanism implements the extended social choice function

f = (fX , fE) ∈ F , if it implements the social choice function fX in a BNE whose outcome

is such that an agent of type θ presents evidence fE(θ). Likewise, we say that an extended

social choice function f is implementable, if there exists a mechanism that implements it.

While we follow the literature in focusing on the implementability of deterministic so-

cial choice functions, a well-known complication is that even the implementation of such

a deterministic objective may require randomization (see, e.g., Deneckere and Severinov,

2008, Example 5). It will be instructive, however, to first analyze deterministic imple-

mentation in Section 3 and postpone the discussion of general (i.e., possibly stochastic)

implementation of deterministic social choice functions to Section 4.

Revelation Principle. For studying the limits of implementability under asymmetric

information, the revelation principle plays a crucial role, because it yields a tractable

characterization of a subset of feasible mechanisms by which any implementable allocation

can be attained. This subset of mechanisms is therefore often referred to as canonical.

The most general formulation of the revelation principle for Bayes-Nash implementability
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is that of Myerson (1982). This work extends results based on the traditional domain of

pure adverse selection problems (see, e.g., Myerson, 1979) to domains including problems

of moral hazard (see, e.g., Holmström, 1979), the traditional domain of contract theory.

Our evidence extensions enable us to cast the evidentiary implementation problem in this

general framework and thereby operationalize this generalized revelation principle.12

What makes the framework of Myerson (1982) especially insightful for analyzing evi-

dentiary implementation is that it requires an explicit assumption about whether actions

by the agent—here the presentation of evidence—are (contractually) controllable or not.

This determines whether an action is subject to moral hazard, where controllability is

stronger than the concept of verifiability in contract theory. That is, all controllable ac-

tions are verifiable, but a non-controllable action is verifiable if the principal can condition

her controllable actions on it and is non-verifiable if she cannot. Hence, a non-controllable

verifiable action underlies verifiable moral hazard.

While in many economic contexts, the concepts of controllablity and verifiability yield

identical results in terms of implementability, we will show that this is not the case for

evidentiary implementation. Indeed, while throughout this paper we follow the literature’s

assumption that, by its very nature, what evidence the agent presents is verifiable, we

obtain differences in implementability, depending on whether this action is controllable

or not. These differences are reflected by the revelation principle, in that the concrete

structure of direct mechanisms and the associated notion of incentive compatibility differ

depending on whether evidence is controllable or non-controllable. It is useful to first

illustrate these differences in the context of deterministic implementation.

3 Deterministic Mechanism Design with Evidence

In this section, we consider evidentiary implementation problems under the restriction to

deterministic mechanisms. Accordingly, we say that a mechanism d-implements the social

choice function fX if it induces a Bayesian game in which there are no moves of nature—

apart from determining the agent’s type according to the common prior—and this game

has a pure BNE whose outcome is such that an agent of type θ receives allocation fX(θ).

We say that a social choice function fX is d-implementable if there exists a mechanism

that d-implements it. By using the notions of evidence-extended utility and social choice

functions, we derive a generalized revelation principle in the full spirit of Myerson (1982)

12Because BNE is a static solution concept, Myerson (1982) concerns static/one-shot principal-agent
problems. Hence, introducing the presentation of evidence as an action implies that there is a single stage
at which this is decided. While this is without loss with a single agent, where it is merely a matter of
appropriately specifying the evidence structure (see footnote 4), we discuss the extension to potentially
multiple stages of evidence presentation in Section 5, where we also consider multiple agents.
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for d-implementability (see Appendix A, in particular Theorem B): Any d-implementable

social choice function fX is implementable by a deterministic mechanism that is direct and

incentive compatible in the sense of Myerson (1982). We first explicitly derive the implied

representations of incentive compatible direct mechanisms, as they depend on whether

evidence is controllable or non-controllable, and then analyze the economic significance

of this formal distinction.

3.1 Controllable Evidence

With controllable evidence, the mechanism design problem does not involve any moral

hazard. As a result, the revelation principle reduces to its traditional version for pure

adverse selection problems: A direct mechanism asks the agent to report a type and,

depending on this report, selects a contract to be executed; it is incentive compatible if

the agent always finds it optimal to honestly report his type.

Formally, we can represent deterministic direct mechanisms with controllable evidence

as functions γC : Θ → X × E. We will often express these component-wise, as a pair of

functions
(

γC
X , γ

C
E

)

with γC
X : Θ → X and γC

E : Θ → E, specifying for a type report θr ∈ Θ,

the allocation γC
X(θ

r) that the principal must provide, and the evidence γC
E (θ

r) that the

agent must present. Denoting the set of all such direct mechanisms by ΓC ≡ (X × E)Θ,

observe that the set of extended social choice functions is a subset of the set of all direct

mechanisms, F ⊆ ΓC .

A direct mechanism γC is incentive compatible if it provides any type of agent with

an incentive to report honestly; i.e., if it satisfies:

ICC : U
(

γC (θ) |θ
)

≥ U
(

γC (θ′) |θ
)

, ∀ (θ, θ′) ∈ Θ×Θ.

The revelation principle for d-implementability implies the following characterization with

controllable evidence.

Theorem 1. Suppose evidence is controllable. Then, a social choice function fX is d-

implementable if and only if there exists an evidence extension fE such that the direct

mechanism given by (fX , fE) ∈ ΓC satisfies ICC.

Intuitively, the d-implementability of a social choice function fX is all about whether

its allocations fX (θ) can be matched with evidence fE (θ) ∈ E (θ) such that

fE (θ′) ∈ E (θ) ⇒ u (fX (θ) |θ ) ≥ u (fX (θ′) |θ ) , ∀ (θ, θ′) ∈ Θ×Θ. (2)

This characterization in terms of type-dependent allocation preferences and evidence fol-

lows immediately from ICC . By contrast, any extended social choice function f = (fX , fE)
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already fully pins down the direct mechanism that would have to d-implement it under

honesty, so ICC immediately characterizes its d-implementability.

We can represent any of the mechanisms identified by Theorem 1 as a menu of evidence-

extended allocation contracts M = {(x (θ) , e (θ))}θ∈Θ, from which the agent has to choose

one. The interpretation is that if the agent picks a pair (x, e) ∈ M , the principal must

provide the allocation x and the agent must present the evidence e. Since options in M for

which the agent does not possess the evidence are prohibitively costly, effectively only op-

tions for which he possesses the required evidence are open to the agent. This reveals how

the principal can use evidence to regulate the agent’s “access” to allocations: A type θ with

evidence E (θ) gets to choose his most preferred allocation from the subset of allocations

that his evidence gives him access to, i.e., from X(θ) = {x ∈ X : ∃e ∈ E (θ) , (x, e) ∈ M}.

Remarks: The assumption of controllable evidence finds its analogue in mechanism design

settings with transfers, because these models also assume that transfers are controllable in

the sense of Myerson (1982). Indeed, in an auction, the auction rules do not only specify

who obtains the object as a function of messages (or bids) but they also specify how much

each player must pay given these messages. Similarly in monopolistic screening models

with a single buyer such as those of Mussa and Rosen (1978), the optimal mechanism

is a menu of options from which the buyer can freely pick, but each of these options

does not only specify the quantity (or quality) that the seller has to deliver, but it also

explicitly specifies the price that the buyer must pay. Hence, the analogue of a menu

of evidence-extended allocation contracts in our context of controllable evidence, is a

menu of “transfer-extended allocation contracts” in the context of a monopolist using

second-degree price discrimination. This then also implies that with controllable evidence,

evidence plays a role that is structurally similar to the role of transfers in monopolistic

screening models.

3.2 Non-Controllable Evidence

With non-controllable evidence, the mechanism design problem involves both adverse

selection and (verifiable) moral hazard. Applying our deterministic revelation principle

to this set-up yields a class of canonical mechanisms that are “direct” in the dual sense

that they induce the following two-stage Bayesian game. In the first stage, after learning

his type, the agent directly reports some type. In the second stage, the agent receives a

direct (report-contingent) recommendation concerning his non-controllable action upon

which the agent chooses his action freely and thus determines the allocation according to

a (report-contingent) allocation rule. Hence, a direct mechanism with non-controllable

evidence specifies both how it picks a recommendation and how it picks a final allocation

depending on the evidence presented. Incentive compatibility is accordingly twofold. It

12



requires that the agent finds it optimal to first honestly report his type and then obey

the recommendation.

Formally, we can represent deterministic direct mechanisms in this setting as functions

γN : Θ → XE × E. We will often express these component-wise, as a pair of functions
(

γN
X , γN

E

)

with γN
X : Θ → XE specifying an evidence-contingent allocation rule (which we

write as γN
X (· |θ ) : E → X for any given type report θ) and γN

E : Θ → E specifying an

evidence recommendation, for any type report. Denoting the set of direct mechanisms

by ΓN ≡
(

XE × E
)Θ

, observe that such a mechanism is incentive compatible, ensuring

“honesty-plus-obedience,” if and only if it satisfies the constraint

ICN : U
(

γN
X

(

γN
E (θ) |θ

)

, γN
E (θ) |θ

)

≥ U
(

γN
X (e′ |θ′ ) , e′ |θ

)

, ∀ (θ, θ′, e′) ∈ Θ×Θ× E.

Theorem 2. Suppose evidence is non-controllable. Then, a social choice function fX is d-

implementable if and only if there exist an evidence extension fE and a rule γN
X : Θ → XE

such that (i) γN
X (fE (θ) |θ ) = fX (θ) for all types θ and (ii) the direct mechanism given by

(

γN
X , fE

)

∈ ΓN satisfies ICN .

Given a direct mechanism γN ∈ ΓN that satisfies requirement (i) for some evidence

extension, the incentive compatibility requirement (ii) reduces to

u(fX(θ)|θ) ≥ u(γN
X (e′|θ′)|θ), ∀(θ, θ′, e′) ∈ Θ×Θ× E : e′ ∈ E(θ). (3)

With non-controllable evidence, the agent’s presentation of evidence is subject to moral

hazard. Consequently, even a given extended social choice function f = (fX , fE) only

partially pins down the direct mechanism γN = (γN
X , γN

E ) that would have to implement

it. It does so only “on-path,” meaning γN
E (θ) = fE(θ) and γN

X (fE(θ)|θ) = fX(θ) must

hold for all types θ.

With but a single agent, recommendations turn out redundant when focusing on deter-

ministic implementation: Recommendations that deterministically depend on the agent’s

type report cannot disseminate any information to the agent in excess of what the agent

can already deduce from the mechanism itself. One may therefore reduce any mechanism

in ΓN that satisfies ICN to (an indirect) one in which communication and evidence pre-

sentation are collapsed into a single stage, without any recommendation/communication

from the mechanism. We can represent such mechanisms as functions gN : Θ× E → X,

specifying allocations x conditional on the agent’s type report and evidence (θ, e). While

obedience loses its literal meaning in the absence of a recommendation, the honesty re-
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quirement on type reports imposes the following incentive constraint:

ICN
G : ∃fE : Θ → E with fE(θ) ∈ E(θ), ∀θ ∈ Θ, such that

U
(

gN(θ, fE(θ)), fE(θ)|θ
)

≥ U
(

gN(θ′, e′), e′|θ
)

, ∀(θ, θ′, e′) ∈ Θ×Θ× E.

The next proposition shows that, with non-controllable evidence, mechanisms gN ∈

GN subject to ICN
G are without loss for d-implementability.

Proposition 1. Suppose evidence is non-controllable. Then, a social choice function fX

is d-implementable if and only if there exists a mechanism gN : Θ×E → X that satisfies

ICN
G and d-implements fX .

Proof. Only necessity requires proof, so suppose the social choice function fX is d-

implementable. By Theorem 2, there exists an evidence extension fE and a rule γN
X :

Θ → XE such that (i) γN
X (fE(θ) |θ ) = fX(θ) for all types θ and (ii) the direct mechanism

given by
(

γN
X , fE

)

∈ ΓN satisfies ICN .

Define then mechanism gN : Θ× E → X such that gN(θ, e) ≡ γN
X (e|θ) for all (θ, e) ∈

Θ × E. By (i), gN(θ, fE(θ)) = fX(θ) for all θ ∈ Θ, and by (ii), using (3), for all types

θ ∈ Θ,

U
(

gN(θ, fE(θ)), fE(θ)|θ
)

= max
(θ′,e′)∈Θ×E(θ)

u
(

γN
X (e′|θ′)|θ

)

= max
(θ′,e′)∈Θ×E(θ)

u
(

gN(θ′, e′)|θ
)

= max
(θ′,e′)∈Θ×E

U
(

gN(θ′, e′), e′|θ
)

.

Remarks: Proposition 1 establishes precisely how our Myersonian approach relates to the

existing revelation results in the literature on evidence. Both Bull and Watson (2007,

Theorems 1, 2 and 5) and Deneckere and Severinov (2008, Theorem 1) derive the suffi-

ciency of the canonical revelation mechanisms gN : Θ × E → X for d-implementability

of social choice functions fX . Our approach derives these from a standard Myersonian

revelation principle for settings with non-controllable evidence, hence with both adverse

selection and moral hazard. Thus, we formally clarify, on the one hand, the implicit

underlying assumption on the controllability of evidence in the existing literature, which

is that evidence presentation is non–controllable (and to which Bull and Watson (2007)

refer as “inalienability”), and, on the other hand, the otherwise hidden notion of incentive

compatibility with respect to evidence presentation, which is obedience. It is worthwhile

emphasizing here that the redundancy of recommendations is a consequence of the deter-

minism assumption, as we will show in Section 4.
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3.3 The Value of Control

Distinguishing the presentation of evidence according to its controllability results in two

structurally different classes of canonical mechanisms and associated notions of incentive

compatibility: (ΓC , ICC) for controllable and (ΓN , ICN) for non-controllable evidence.

We now analyze the economic significance of this distinction, i.e., the implications of

controllability for what the principal can implement.

We begin by showing that a principal’s contractual control over the agent’s evidence

presentation could never hurt her. This confirms the appropriateness of the notion of

controllability, as (weakly) enlarging the set of d-implementable social choice functions.

Proposition 2. A social choice function fX is d-implementable with non-controllable

evidence only if fX is d-implementable with controllable evidence.

Proof. Suppose the social choice function fX is d-implementable with non-controllable

evidence. By Theorem 2, there exists an evidence extension fE and a rule γN
X : Θ → XE

such that (i) γN
X (fE(θ) |θ ) = fX(θ) for all types θ and (ii) the direct mechanism given by

(

γN
X , fE

)

∈ ΓN satisfies ICN .

Now let f ≡ (fX , fE) ∈ F and recall that this extended social choice function fully

pins down the direct mechanism f ∈ ΓC that would have to d-implement it subject to

ICC with controllable evidence. Using (i) and (ii), for any (θ, θ′) ∈ Θ×Θ,

U(f(θ)|θ) = U(γN
X (fE(θ)|θ), fE(θ)|θ) ≥ U(γN

X (fE(θ
′)|θ), fE(θ

′)|θ) = U(f(θ′)|θ),

i.e., f satisfies ICC , whereby fX is d-implementable with controllable evidence.

The intuition behind the proposition is simple. The principal faces fewer incentive

constraints when evidence is controllable. Specificially, due to the absence of moral hazard,

there are no obedience constraints. Hence, with controllable evidence, the principal can

d-implement any social choice function that is d-implementable with non-controllable

evidence.

Based on this result, given any type structure and associated evidence and preference

structures, we say that control has value, if there exists a social choice function that is

d-implementable when evidence is controllable but not when evidence is non-controllable;

and we say that control has no value, if the sets of d-implementable social choice functions

in the two cases coincide.

The following simple example shows that, in general, control indeed has value; equiva-

lently, evidentiary moral hazard is generally costly to the principal, despite its verifiability.
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Example 1. The principal has to decide between two allocations X = {x1, x2}, and the

agent has two possible types Θ = {θ1, θ2}. The agent’s type-dependent preferences over

allocations are as in the following table:

u(x|θ) θ1 θ2

x1 0 1

x2 1 0

The evidence structure consists of three possible elements E = {e0, e1, e2} distributed

over types according to

E(θ1) = {e0, e1} and E(θ2) = {e0, e2}.

This means that each agent-type θi can either prove himself by presenting evidence ei, or

prove nothing by presenting “null-evidence” e0. We may also interpret this as any agent-

type having “hard” information to prove himself, which he may release or withhold.

Consider then the social choice function fX : {θ1, θ2} → {x1, x2} such that fX(θi) = xi

for both i ∈ {1, 2}. According to fX , the agent should always receive his less preferred

allocation.

First, note that fX is not d-implementable when evidence is non-controllable. Consider

any γN = (γN
X , γN

E ) ∈ ΓN . Either γN
X (e0|θ1) = x1, in which case type θ2 can and therefore

must obtain x1, or γ
N
X (e0|θ1) = x2, in which case type θ1 can and therefore must obtain

x2. Simply put, when evidence is non-controllable, any mechanism must specify some

allocation in response to the provision of evidence e0, and since both types can present

it, one of them must obtain his preferred allocation.

Second, when evidence is controllable, the following mechanism γC ∈ ΓC satisfies ICC

and implements fX : Let γ
C(θi) ≡ (xi, ei) for both i ∈ {1, 2}. Each type of agent reveals

himself, because the alternative of lying means he would have to prove his lie, which is

impossible. �

Jointly, Proposition 2 and Example 1 prove that, in general, control has value. The

example suggests that a value of control arises from the availability of shared evidence that

pools otherwise separable types. When evidence is non-controllable every such evidence

has to be followed by some allocation. This, in turn, enlarges the set of “accessible”

allocations for several types, thus interfering with incentives.

We next provide two independent conditions that guarantee that control has no value.

The first condition concerns the evidence structure; it identifies what constitutes poten-

tially “costly” evidence to the principal and rules out its existence. The second condi-

tion concerns the preference structure; it identifies when the presentation of potentially
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“costly” evidence can be deterred by the principal. Each of the two conditions is also

necessary for there to be no value of control, in a weak sense.

The significance of these two conditions is twofold. First, if one of them is satisfied,

then any assumptions concerning the controllability of evidence are irrelevant for deriv-

ing optimal mechanisms (assuming d-implementability). However, because the structure

of direct mechanisms and incentive constraints is considerably simpler with controllable

evidence, this allows to simplify the design problem by analyzing it “as if” evidence were

controllable. Second, the controllability of evidence relates to which evidentiary contracts

are enforced by the court system; because in many practical situations, this institutional

aspect constitutes a political “meta-decision” and is therefore endogenous itself (as op-

posed to being dictated by technological constraints), our two conditions also contribute

to identifying the settings where this higher-level institutional design matters, and to

understanding how it affects the welfare of the parties involved.

Providing the groundwork for these conditions is the following result that clarifies

the essence of controllability of evidence – namely, as the principal’s ability to effectively

rule out some evidence. Consider the class of (indirect) mechanisms GC defined by all

functions gCR : Θ×R → X such that R is any non-empty subset of E (and a “parameter” of

the mechanism). This class generalizes the class GN of indirect mechanisms we analyzed

with non-controllable evidence, which obtains for R = E. The interpretation is therefore

similar, except that the agent is restricted to presenting only evidence from the subset R.

In line with this generalization, say that a mechanism gCR is R-incentive compatible, if

it satisfies the following honesty constraint:

ICC
G : ∃fR : Θ → R with fR(θ) ∈ E(θ), ∀θ ∈ Θ, such that

U
(

gCR (θ, fR(θ)) , fR(θ)|θ
)

≥ U
(

gCR (θ′, e′) , e′|θ
)

, ∀(θ, θ′, e′) ∈ Θ×Θ×R.

Proposition 3. Suppose evidence is controllable. Then, a social choice function fX is

d-implementable if and only if there is a subset R ⊆ E and a mechanism gCR : Θ×R → X

such that gCR satisfies ICC
G and d-implements fX .

Proof. With the presentation of evidence as an action, mechanisms gCR with R 6= E are

technically not covered by the revelation principle of Theorem 1 for controllable evidence.

We therefore prove both necessity and sufficiency.

For necessity, suppose the social choice function fX is d-implementable (with control-

lable evidence). By Theorem 1, there exists an evidence extension fE such that the direct

mechanism given by extended social choice function f = (fX , fE) ∈ ΓC satisfies ICC .
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Construct then R ⊆ E and a mechanism gCR ∈ GC as follows:

R ≡ {e ∈ E : ∃θ ∈ Θ, fE(θ) = e},

gCR(θ, e) ≡







fX(θ), if e = fE(θ),

fX(t(e)), otherwise,

for all (θ, e) ∈ Θ× E,

for some t : R → Θ with fE(t(e)) = e for all e ∈ R.

Note that, given the specification of R, a mapping t exists and is well-defined. We now

show that this mechanism satisfies ICC
G with fR such that fR(θ) = fE(θ) ∈ R for all types

θ, which immediately implies that it d-implements fX .

Take any type θ ∈ Θ and observe that, by ICC , for any θ′ ∈ Θ, we have

U
(

gCR (θ, fE(θ)) , fE(θ)|θ
)

= U (f(θ)|θ)

≥ U (f(θ′)|θ)

= U
(

gCR (θ′, fE(θ
′)) , fE(θ

′)|θ
)

.

Hence, among all choices (θ′, e) ∈ Θ × R where report and evidence are consistent in

the sense that e = fE(θ
′), an honest type report together with the consistent evidence

is optimal. However, by construction, any inconsistent choice (θ′, e) ∈ Θ × R where

e 6= fE(θ
′) yields the same as some consistent one, because

U
(

gCR (θ′, e) , e|θ
)

= U (f(t(e))|θ) .

Hence, ICC
G holds true, establishing the necessity part.

For sufficiency, suppose R ⊆ E and the mechanism gCR ∈ GC satisfies ICC
G with

fR : Θ → R and d-implements fX . Since fR is an evidence extension, in terms of

extended social choice functions, the mechanism d-implements f = (fX , fR) ∈ F . We will

now establish the result by showing that f satisfies ICC . This follows immediately from

ICC
G , as, for all (θ, θ

′) ∈ Θ×Θ,

U (f(θ)|θ) = U
(

gCR (θ, fR(θ)) , fR(θ)|θ
)

≥ U
(

gCR (θ′, fR(θ
′)) , fR(θ

′)|θ
)

= U (f(θ′)|θ) .

Proposition 3 is analogous to Proposition 1, which considers the non-controllable case.
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The two results allow to directly relate implementability in the controllable and non-

controllable case.

Corollary 1. A social choice function fX is d-implementable with controllable evidence in

the evidentiary implementation model (Θ, p,X, u, E, E) if and only if there exists a subset

of evidence R ⊆ E such that fX is d-implementable with non-controllable evidence in the

evidentiary implementation model (Θ, p,X, u,R,R) with R(θ) ≡ E(θ) ∩ R 6= ∅ for all

θ ∈ Θ.

The corollary clarifies that any value of contractual control over evidence arises from

the ability to prevent the agent from presenting certain kinds of evidence.

In addition, Propositions 1 and 3 jointly offer an alternative proof that contractual

control could only ever be beneficial to the principal (Proposition 2), since all mechanisms

in GN satisfying ICN
G are also mechanisms in GC . The proof of Proposition 2 is however

more direct.

Some authors interpret communication subject to certain “lying” constraints as evi-

dence (see Green and Laffont, 1986; Forges and Koessler, 2005; Glazer and Rubinstein,

2006; Deneckere and Severinov, 2008). In view of the value of control established here,

the comparison of Propositions 1 and 3 shows that the ability to design this type of

communication—specifically, to restrict it—is valuable.13

Finally, Proposition 3 very directly points to how control would also be valuable once

we endogenized the agent’s participation in the mechanism. It would enable the principal

to exclude certain types of agent from her allocation, should she want to do so. Suppose

the agent had a type-independent outside option of u0, while always preferring any allo-

cation over it (i.e., min(x,θ)∈X×Θ u(x|θ) > u0). If the principal designed R ⊆ E such that

E(θ) ∩ R = ∅ for some type of agent θ, then this type would be bound to violate the

contract due to lack of evidence and hence not participate in the mechanism. Note that

this means the mechanism would not implement a social choice function fX : Θ → X

since fX(θ) /∈ X. By contrast, every type of agent will participate in any mechanism that

is feasible with non-controllable evidence, all of which implement a social choice function

fX : Θ → X.14

13Studying games extended by pre-play communication with type-dependent message spaces, Forges
and Koessler (2005) observe that restricting these message spaces is potentially valuable. Proposition
3 identifies that the reason for this is that the availability of such restrictions effectively transforms a
setting with non-controllable evidence into one with controllable evidence.

14Relatedly, with controllable evidence, the cost c we introduce with extended utility in equation
(1) corresponds to the cost imposed on the agent by the court system in case he violates the contract
chosen (footnote 9 explicitly states what this “fine” has to satisfy for our results on controllable evidence
to apply). This is different from c’s technical role with non-controllable evidence (where “c = ∞” is
appropriate).
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3.3.1 Weakest Evidence Types (WET)

We first develop a condition that guarantees that none of the evidence ever available to the

agent is costly, in the above sense that ruling it out would be beneficial to the principal.

The following notion of maximality of evidence will be key here.

Definition 1. Evidence e ∈ E is maximal with respect to type θ ∈ Θ, if, for any type

θ′ ∈ Θ, e ∈ E(θ′) implies E(θ) ⊆ E(θ′). Evidence e ∈ E is maximal evidence if it is

maximal with respect to some type θ ∈ Θ.

If evidence e is maximal with respect to type θ, then it proves all that could possibly

be proven if the agent’s true type were θ. This is so, because e establishes that the

agent has all of the evidence E(θ) that type θ has. Equivalently, whenever the agent has

evidence e available, E(θ) defines a lower bound on what he could prove (in this sense, θ

is a “weakest evidence type” for evidence e).

Clearly, evidence that is exclusive to a type is maximal with respect to this type, as

this evidence then provides proof of all of his private information. However, the definition

is much more permissive. Evidence e can be maximal with respect to a type θ of agent

without being exclusive to this type, and even without this type’s possessing e.15

In case type θ does have evidence that is maximal with respect to himself, however,

i.e., if e ∈ E(θ), he has a way of proving everything he could possibly prove, so presenting

any other (non-maximal) evidence is tantamount to withholding evidence. Observe now

that in Example 1’s evidence structure, evidence e0 is not only shared by both types, but

it is also not maximal evidence. Thus, it violates the following condition.

Definition 2. An evidence structure (E, E) satisfies the weakest evidence types con-

dition (WET), if every evidence e ∈ E is maximal evidence.

WET still allows for “null” evidence that proves nothing, i.e., some evidence e0 such

that e0 ∈ ∩θ∈ΘE(θ); e.g., adding a third type θ0 to Example 1, with evidence E(θ0) = {e0},

evidence e0 still proves nothing but is then maximal with respect to this additional type,

whereby the evidence structure satisfies WET. Indeed, what WET ensures is that any

evidence that is shared by multiple types is still maximal with respect to some type. As

the following result formally establishes, under this condition evidentiary moral hazard is

costless, and the set of d-implementable allocations is independent of whether evidence is

controllable.

15In fact, e can be maximal with respect to type θ when this type does not even possess any evidence
that would be maximal with respect to himself. For instance, consider the following evidence structure
for four types: E(θ1) = {e1}, E(θ2) = {e2}, E(θ3) = {e1, e2, e3}, and E(θ4) = {e1, e2}. Neither e1 nor
e2 are maximal with respect to θ4, yet e3 is maximal with respect to every type, hence in particular θ4,
because it proves θ3, whereas no other evidence would disprove this type.
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Proposition 4. Fix the type structure (Θ, p) and evidence structure (E, E) of any evi-

dentiary implementation model. Then, the evidence structure (E, E) satisfies WET if and

only if control has no value for any preference structure (X, u).

The sufficiency of WET for control not to have value follows from a straightforward

revealed preference argument: If evidence e is maximal with respect to some type θ, then

any other type that has e could always mimic θ, irrespective of whether e is ruled out.

Hence, if every evidence is maximal evidence, i.e., WET holds, then control has no value.

The proposition also expresses the sense in which WET is actually necessary for control

not to have value: Whenever the evidence structure of an evidentiary implementation

model violates WET, we can modify the preference structure such that control allows to

implement strictly more. Indeed, WET is not generally necessary for control to not have

value. That is, there exist evidentiary implementation models where WET is violated,

yet control has no value (see the TIWO condition below).

The necessity proof is based on graph-theoretical arguments. We first show that non-

maximality of some evidence ẽ implies a subset Θ̃ ⊂ Θ of at least two types that all have

this evidence ẽ ∈ E, such that every type θ (in the full set of types Θ, hence including

also Θ̃ itself) has some evidence that some (other) type in Θ̃ does not have. Based on

this insight, we construct a preference structure and social choice function generalizing

Example 1 where control has value: There are as many different allocations in X as types

in Θ̃, such that each of these types desires exactly one of them (all others are indifferent

over all allocations), and control allows to ensure none of them gets their desired allocation,

by always requiring evidence for it that the corresponding type does not have. This is

impossible without control, because then ẽ has to be followed by one such type’s desired

allocation.

Remarks: WET is a novel condition in the literature. Its key underlying notion of maximal

evidence, however, also plays an important role as part of the common assumption of

“normality” (see Bull and Watson, 2007), another condition on the evidence structure.16

Using our Definition 1, we can define normality as follows, which immediately relates it

to WET.

Definition 3. An evidence structure (E, E) satisfies normality (NOR), if every type

θ ∈ Θ has evidence e ∈ E(θ) that is maximal with respect to θ.

While WET requires that any evidence is maximal with respect to some type, NOR

requires that any type has some evidence that is maximal with respect to himself. Under

NOR, the agent can always provide maximal evidence for his type, whereby not doing so

16See also the “full reports condition” by Lipman and Seppi (1995) and the “minimal closure condition”
by Forges and Koessler (2005).
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means he is withholding evidence. This permits a further simplification of the canonical

mechanisms identified via the revelation principle here: For controllable evidence, it is

then without loss to consider direct mechanisms γC = (γC
X , γ

C
E ) where every γC

E (θ) is some

evidence that is maximal with respect to type θ. In analogy to honest type reporting, the

mechanism therefore requires incentive compatibility only for maximal evidence presenta-

tion. For non-controllable evidence, NOR implies that it is without loss to consider direct

mechanisms γN = (γN
X , γN

E ) with an evidence recommendation γN
E that recommends each

type to present maximal evidence for his type. Hence, NOR directly allows to pin down

γN
E (see also Forges and Koessler, 2005; Bull and Watson, 2007; Deneckere and Severinov,

2008). We return to this implication and further clarify the role of NOR in mechanism

design with evidence below, in Section 4, where we extend the analysis to stochastic

mechanisms.

Even though related, WET and NOR are independent properties in that neither im-

plies the other. Example 1’s evidence structure satisfies NOR, because ei ∈ E(θi) is

maximal with respect to θi, for each i ∈ {1, 2}, while it violates WET, because e0 is not

maximal evidence. To see that WET does not imply NOR, consider the evidence structure

for three types Θ = {θ1, θ2, θ3} given by E(θ1) = {e1}, E(θ2) = {e2}, and E(θ3) = {e1, e2}:

Each ei is maximal evidence because it is maximal with respect to type θi, i ∈ {1, 2},

satisfying WET, but type θ3 does not have evidence that is maximal with respect to him-

self, because each of his evidence is available to some other type while he also has strictly

more evidence than any other type, violating NOR.

At the same time, WET and NOR are not mutually exclusive. For instance, the

nested-range condition (NRC, see Green and Laffont (1986)) implies both WET and

NOR, whereby they both weaken NRC, but in distinct ways.17 The evidence structure

introduced by Dye (1985), which has proven highly useful in applications (e.g., see Shin,

2003; Acharya et al., 2011; Ben-Porath et al., 2018; Shishkin, 2023, among many others)

satisfies both WET and NOR. Hence, our results regarding the value of control offer an

additional perspective on why such evidence structures afford tractability; specifically,

optimal mechanisms do not depend on the controllability of evidence presentation.18

17More precisely, jointly requiring “WET+NOR” is a weaker condition than NRC. We prove this claim
in Appendix C, where we also restate NRC using our Definition 1, which allows us to shed new light on
the results of Green and Laffont.

18For works introducing “Dye evidence” see also Farrell (1985) and Jung and Kwon (1988). It takes
the following form: The set of types is Θ = {θi,0, θi,1}

n
i=1

for some n ≥ 1, where θi,0 and θi,1 have the
same private information “θi”, except that θi,0 has no evidence whereas θi,1 could perfectly prove it,
i.e., E(θi,0) = {e0} and E(θi,1) = {e0, ei}, i ∈ {1, . . . , n}. This satisfies both WET and NOR, because
each ei is maximal with respect to type θi,1 whereas e0 is maximal with respect to all the other types
{θi,0}

n
i=1

. In recent work, Ben-Porath et al. (2019) demonstrate a close connection between Dye evidence
and costly verification, and Asseyer and Weksler (2022) show how Dye evidence also arises endogenously
when quality certification is offered by a profit-maximizing third party.
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3.3.2 Type-Independent Worst Options (TIWO)

Example 1 shows that there is value to contractually controlling the presentation of evi-

dence by ruling out what is otherwise costly evidence. WET identifies costly evidence as

non-maximal evidence and removes the value of control by directly requiring that no such

evidence exists. If the set of allocations includes one that is sure to be the least preferred

by the agent, however, there is also an indirect way for the principal to control evidence,

even if, formally, evidence is non-controllable. We explore this idea next.

Definition 4. A preference structure (X, u) satisfies the type-independent worst op-

tions condition (TIWO), if there exists an allocation xw ∈ X such that

u(x, θ) ≥ u(xw, θ), ∀(x, θ) ∈ X ×Θ.

Intuitively, if the principal controls an allocation that is the least preferred for any

type, then the principal can simply deter the agent from presenting any evidence she wants

to deter, by imposing this worst allocation in the event that the agent were to present

it. Example 1 serves to illustrate this point. In this example, each allocation is preferred

over the other for some type, whereby it violates TIWO. Suppose now that the principal

additionally had a third allocation x3 ∈ X at her discretion, and u(x3, θi) = −1 for both

i = {1, 2}, so that TIWO is satisfied. Then, the social choice function fX considered there

would be implementable also with non-controllable evidence; simply setting γN
X (e0|θi) = x3

for both i = {1, 2} deters evidence e0, and together with γN
X (ei|θi) = x3−i and γN

E (θi) =

ei defines a mechanism in ΓN that satisfies ICN and implements fX . The following

proposition generalizes this observation.

Proposition 5. Fix the type structure (Θ, p) and preference structure (X, u) of any evi-

dentiary implementation model. Then, the preference structure (X, u) satisfies TIWO if

and only if control has no value for any evidence structure (E, E).

The proposition establishes that, analogous to WET, TIWO is not only sufficient

but also necessary for control to have no value, when we require this to hold for any

evidence structure. We prove this result in Appendix B.2. Sufficiency is straightforward

based on the deterrence argument above. We prove necessity by showing that, given a

failure of TIWO, there is an evidence structure such that each type only has evidence

required for his least preferred allocations, plus some null evidence e0 that every type has

(which is non-maximal evidence because every type has a least preferred allocation and

therefore some other evidence as well, violating WET). Thus, a social choice function such

that every type of agent receives his worst allocation is implementable with controllable

evidence, whereas this is impossible with non-controllable evidence, as no matter which
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allocation follows evidence e0, there is always a type for whom it is not least preferred.

(This construction again generalizes Example 1.)

Remarks: Deneckere and Severinov (2008) introduce TIWO in their analysis of evidence

structures violating NOR. Their results suggest a role similar to NOR, though they are

concerned with non-controllable evidence only and consider the question of when mecha-

nisms with a single stage of evidence presentation are sufficient. We show here that, with

regards to the value of control for d-implementability, NOR and TIWO have different

implications – TIWO guarantees that there is no such value, while NOR does not.

TIWO is trivially satisfied in settings where the agent’s (ordinal) preferences are type-

independent, hence known to the principal. This is a defining feature of the “persuasion”

settings analyzed by Glazer and Rubinstein (2004, 2006); Sher (2011, 2014), as well as the

general class of “evidence games” analyzed by Hart et al. (2017). While this literature

studies non-controllable evidence, our result that TIWO is sufficient for control not to have

value shows that one can significantly simplify the mechanism design part of such analyses,

in that it suffices to study the structurally simpler mechanisms γC with controllable

evidence (see also Ben-Porath et al., 2019). This literature permits randomization by

the receiver, however, which we cover—for the case of commitment—in our extension to

stochastic mechanisms below.

Looking beyond mechanism design with evidence, Proposition 5 explains why, in the

agency and contracting literature, “verifiable moral hazard” is considered an oxymoron,

and the controllability of verifiable actions has not received serious attention. Agency

theory examines the extent to which monetary transfers can provide incentives, and these

monetary transfers naturally lead to type-independent worst options; specifically, the prin-

cipal can always deter any undesirable verifiable action simply by requiring a sufficiently

large payment from the agent in the event the agent were to take this action.19

Indeed, the result links contractual control with (off-path) deterrence, similar to the

shadow of the law perspective in contract theory, where contractual control obtains be-

cause large penalties by the court system deter parties from not abiding by the contract.

In the context of evidence, controllability means that if the agent presents any evidence

other than that stipulated in the contract, he is punished by the court system. A type-

independent worst option allows the principal to achieve the same deterrence herself also

when evidence is non-controllable.

19For analyses of mechanism design with evidence as well as transfers, see, e.g., Singh and Wittman
(2001), Sher and Vohra (2015), Koessler and Perez-Richet (2019), Ali, Lewis, and Vasserman (2023),
Pram (2023), Lang (2020), or Dasgupta, Krasikov, and Lamba (2022).
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4 Stochastic Mechanism Design with Evidence

The generalized revelation principle of Myerson (1982) explicitly allows for stochastic

mechanisms and stochastic implementation. Our evidence-extended utility and social

choice functions render this principle directly applicable to evidentiary implementation

problems (see Appendix A, in particular Theorem A). More specifically, and in line

with our analysis of canonical mechanisms under d-implementability, this principle yields

canonical mechanisms of the form γ̃C : Θ → ∆(X × E) subject to honest report-

ing for controllable evidence, whereas for non-controllable evidence, they take the form

γ̃N : Θ → ∆(XE × E) subject to honest reporting and obedient evidence presentation.20

4.1 The Value of Randomization

Maintaining our focus on implementing deterministic social choice functions fX : Θ → X,

the question that we explore in this section is the extent to which stochastic mechanisms

are helpful and even indispensable for implementing such social choice functions. In par-

ticular, we address whether and when there is a value of randomization (allowing to

implement deterministic social choice functions that are not d-implementable), how this

depends on the controllability of evidence presentation, and how results on the value of

control that we have established for d-implementability extend when allowing for stochas-

tic mechanisms.21

While the revelation principle does not generally guarantee that the restriction to

d-implementability is without loss, deterministic mechanisms often turn out optimal in

popular applications of mechanism design, including settings with evidence.22 With regard

to the implementability of deterministic social choice functions, this may suggest that

randomization has no value, so considering only deterministic mechanisms is without

loss. The following two examples show that such a view would be incorrect, both with

controllable evidence and with non-controllable evidence. Moreover, they also indicate

how the role of randomization differs depending on whether evidence is controllable or

not.

Example 2. (Controllable evidence) The principal has to decide between two allocations

20As is standard, we denote by ∆(S) the space of all probability distributions over the (finite) set S.
21Since deterministic mechanisms are contained in the class of stochastic mechanisms, the analogue

of Proposition 2—which shows that control could only ever allow the principal to implement more—is
immediate for the value of randomization: d-implementability implies implementability.

22For instance, Strausz (2003) shows that the revelation principle fails when restricting attention to
deterministic direct mechanisms even with a single agent, while Strausz (2006) shows that in the “regular”
versions of the classic monopolistic screening problem the optimal direct mechanism is deterministic. For
mechanism design settings with evidence and verifiability, where randomization has no value, see Glazer
and Rubinstein (2004, 2006), and Ben-Porath et al. (2019).
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X = {xb, xg}, and the agent has three possible types Θ = {θ1, θ2, θ3}. The agent’s

preferences over allocations are type-independent, such that u(xg|θ) = 1 and u(xb|θ) = 0

for all types θ. The evidence structure consists of three possible elements E = {e0, e1, e2}

distributed over types according to

E(θ1) = {e0, e1}, E(θ2) = {e0, e2}, and E(θ3) = {e0, e1, e2}.

Note that E(θ1) ∪ E(θ2) = E(θ3) = E, so any evidence that type θ3 might present is

evidence that also another type might present.

Consider now the social choice function fX : Θ → X with fX(θ1) = fX(θ2) = xb and

fX(θ3) = xg. The first claim is that fX is not d-implementable. Following Theorem 1,

this would require that it is implemented by an incentive compatible direct mechanism

γC : Θ → X×E, where, in particular, γC(θ3) = (xg, ei) for some ei ∈ E(θ3) = E. However,

any evidence ei ∈ E can be presented also by θ1 or θ2, whereby regardless of which evidence

we specify, the mechanism cannot be incentive compatible with the requirement that

both of these other types shall obtain the worse allocation, i.e., fX(θ1) = fX(θ2) = xb:

γC(θ3) = (xg, e1) would enable type θ1 to obtain xg, whereas γC(θ3) = (xg, e2) would

enable type θ2 to obtain xg, and γC(θ3) = (xg, e0) would enable both types to obtain xg.

The second claim is that fX is implementable, once we allow for randomization. Con-

sider the stochastic “menu” mechanism giving the agent the choice of either the contract

(xb, e0), or the stochastic contract of a 50:50 randomization between (xg, e1) and (xg, e2).

Choosing the latter means that the principal must provide allocation xg, while the agent

must present either evidence e1 or evidence e2, depending on the result of a coin flip.23

While type θ3 is then certain to be able to present the evidence required, each of the other

two types would face a positive probability of violating the contract due to lacking the

required evidence. Given arbitrarily large costs of doing so, this menu implements fX . �

Example 2 shows that implementation of a deterministic social choice function with

controllable evidence may require randomization. The randomization pertains here only

to the evidence that the agent must present. As we show below, this is a general feature for

the implementability of deterministic social choice functions with controllable evidence:

It then suffices to consider stochastic direct mechanisms that randomize only the evidence

component, i.e., mechanisms of the form γ̃C : Θ → X ×∆(E).

The next example illustrates that, with non-controllable evidence, it is not sufficient to

consider stochastic mechanisms that randomize only in the evidence component, however.

23This menu corresponds to a 50:50 randomization over the two deterministic direct mechanisms
(fX , f1

E) and (fX , f2

E), where f i
E has f i

E(θ1) = f i
E(θ2) = e0 and f i

E(θ3) = ei, for i ∈ {1, 2}. Choos-
ing contract (xb, e0) in the menu mechanism thus corresponds to reporting θ1 or θ2 in the stochastic
direct mechanism, while choosing the stochastic contract, which we may write as (xg, (

1

2
: e1,

1

2
: e2)),

corresponds to reporting θ3.
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In particular, the example shows that the implementability of a deterministic social choice

function may then require randomization also with respect to the allocation rule.

Example 3. (Non-controllable evidence) The principal has to decide between three al-

locations X = {xw, xb, xg}, and the agent has three possible types Θ = {θ1, θ2, θ3}. The

agent’s preferences over allocations are type-independent, such that

u(xw|θ) = 0, u(xb|θ) = 3, and u(xg|θ) = 4,

for any type θ. The evidence structure is the same as in Example 2.

Consider now the social choice function fX : Θ → X with fX(θ1) = fX(θ2) = xb

and fX(θ3) = xg. As in the previous example, fX is not d-implementable, because any

deterministic mechanism would allow one (or both) of the types {θ1, θ2} to mimic type θ3

and thus obtain the preferred allocation xg that fX would reserve for this type.

In particular, fix any k ∈ {1, 2}, and take the deterministic direct mechanism γN,k =

(γN,k
X , γN,k

E ) ∈ ΓN with

γN,k
X (e|θ1) = γN,k

X (e|θ2) =







xb, if e = e0,

xw, if e 6= e0;
, and γN,k

X (e|θ3) =







xg, if e = ek,

xw, if e 6= ek.

γN,k
E (θ1) = γN,k

E (θ2) = e0, and γN,k
E (θ3) = ek.

Note that the mechanism depends on k only in terms of which evidence is recommended

as well as rewarded with xg after type report θ3. In any case, being deterministic, neither

γN,1 nor γN,2 is incentive compatible. Indeed, given mechanism γN,k, type θk would mimic

type θ3, for any k ∈ {1, 2}.

However, the stochastic direct mechanism that randomizes over γN,1 and γN,2 with

equal probability implements fX , satisfying honesty and obedience also for both types

θ1 and θ2. To see this, note that disobeying a recommendation results in the worst

allocation xw. If they are honest, they face no randomness: They are sure to receive

recommendation e0, which they will obey, to obtain the better allocation xb rather than

xw, yielding them utility 3. If they dishonestly report to be of type θ3, however, they are

subject to randomness: Either they will receive a recommendation they can and will obey

(for θi, i ∈ {1, 2}, this would be ei), to obtain the best allocation xg, yielding utility 4;

or they will receive a recommendation they cannot possibly obey (for θi, i ∈ {1, 2}, this

would be e3−i), resulting in the worst allocation xw, yielding utility 0. Each of these two

outcomes has probability one half so that dishonestly reporting type θ3 yields either type

an expected utility of 2. Hence, any type of agent maximizes his expected utility by being

honest and obedient here. The stochastic direct mechanism is incentive compatible, and
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it implements the deterministic social choice function fX , when it is not d-implementable.

Observe that both γN,1
E 6= γN,2

E and γN,1
X 6= γN,2

X . Hence, the randomization is with

respect to both the recommendation and the allocation rule, and it perfectly correlates

the two. Indeed, if the evidence-contingent allocation rule were independent of the recom-

mendation, the latter would be irrelevant, and even if the allocation rule were stochastic

in a way that depended on the agent’s type report, fX could not be implemented here, be-

cause the agent’s preferences are type-independent and θ3 would be mimicked by another

type. �

Deneckere and Severinov (2008, Example 5) present an example similar to Example

3. Our explicit formulation uncovers its special property that, in order to preserve its

deterministic allocation, it requires a perfectly correlated randomization between the ev-

idence that certain types are to provide, as represented by γN
E , and the way in which

evidence translates into an allocation, as represented by γN
X . This allows us to connect

this feature of (non-controllable) evidence to the contracting literature that studies moral

hazard, where this type of correlated randomization has also been identified as beneficial.

In particular, Rahman and Obara (2010) show the power of such correlation in the context

of moral hazard in teams, referring to such stochastic contracts as “mediated contracts.”

Strausz (2012) shows that these mediated contracts indirectly implement the required

correlated randomization of direct mechanisms in the framework of Myerson (1982). As

we show below, Example 3 expresses the fact that the obedience constraint under non-

controllable evidence does not allow us to further simplify the structure of canonical

stochastic mechanisms, even when restricting to deterministic social choice functions.

Finally, observe that the evidence structure common to both examples violates NOR.

Indeed, as we show below, NOR is both closely and delicately related to the value of

randomization. While it guarantees that deterministic recommendations are without loss,

it does not generally guarantee the optimality of deterministic mechanisms, but does so

only for controllable evidence. Moreover, NOR is also a sufficient condition for extending

our result on d-implementability, that with WET or TIWO control has no value, to general

implementability.

4.2 Additional Notation and Definitions

The following natural notation will be used. Let S0, S1 and S2 be any finite sets. First,

whenever we have a mapping σ : S0 → ∆(S1), we write σ (s1 |s0 ) for the probability of

s1 ∈ S1 conditional on s0 ∈ S0. Second, whenever we have three mappings σ : S0 →

∆(S1 × S2), σ1 : S0 → S1 and σ2 : S0 → ∆(S2) such that

σ (s1, s2 |s0 ) = I(s1 = σ1(s0)) · σ2 (s2 |s0 )
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for any (s0, s1, s2) ∈ S0 × S1 × S2, we write σ also as σ = (σ1, σ2) : S0 → S1 ×∆(S2).
24

In line with this notation, we define a stochastic evidence extension as any mapping

f̃E : Θ → ∆(E) such that, for all (θ, e) ∈ Θ × E, f̃E(e|θ) > 0 implies e ∈ E(θ), i.e., as

any randomization over evidence extensions. A natural special case, which will be useful

in our analysis of controllable evidence, is what we call uniform evidence extension and

denote by f̃U
E ; it is defined for all (e, θ) ∈ E ×Θ as

f̃U
E (e|θ) ≡







1
|E(θ)|

, if e ∈ E(θ),

0, if e /∈ E(θ),

where |E(θ)| is the cardinality of the (finite) set E(θ). It will also be useful to define a

maximal evidence extension fM
E as any (deterministic) evidence extension fE such that

fE(θ) is maximal with respect to type θ, for all θ ∈ Θ. Recalling that, by definition, any

evidence extension satisfies fE(θ) ∈ E(θ) for all θ ∈ Θ, maximal evidence extensions exist

if and only if the evidence structure satisfies NOR, and under this assumption, they will

be useful in our analysis of both controllable and non-controllable evidence.

We call any pair f̃ = (fX , f̃E), consisting of a social choice function fX and a stochastic

evidence extension f̃E, a (stochastic-evidence-) extended social choice function, and we

denote the space of all such extended social choice functions by F̃ . Extending our earlier

definitions of implementability by explicitly allowing stochastic evidence extensions, we

say that a mechanism implements the extended social choice function f̃ = (fX , f̃E) ∈ F̃ ,

if it implements the social choice function fX in a BNE whose outcome is such that an

agent of type θ presents evidence e ∈ E(θ) with probability f̃E(e|θ). Finally, we say that

an extended social choice function f̃ ∈ F̃ is implementable, if there exists a mechanism

that implements it.

4.3 Controllable Evidence

In the case of controllable evidence, stochastic direct mechanisms take the form γ̃C : Θ →

∆(X × E). The agent reports a type θ, and, conditional on this report, the mechanism

randomly chooses pair (x, e) with probability γ̃C(x, e|θ); the realization (x, e) means the

principal must provide allocation x and the agent must present evidence e. We denote

the set of all such mechanisms by Γ̃C . Observe that F̃ ⊆ Γ̃C .

A mechanism γ̃C ∈ Γ̃C is incentive compatible if it provides any type of agent with an

24I(a = b) denotes the indicator function, which is equal to 1 if a = b holds true, and equal to 0
otherwise.
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incentive to report honestly, i.e.,

˜IC
C
:

∑

(x,e)∈X×E

γ̃C (x, e |θ )·U (x, e |θ ) ≥
∑

(x,e)∈X×E

γ̃C (x, e |θ′ )·U (x, e |θ ) , ∀ (θ, θ′) ∈ Θ×Θ.

The following characterization of implementability shows that, with controllable evi-

dence, the need for randomization in direct mechanisms concerns only the evidence that

the agent must present and can without loss be taken to be uniform.

Theorem 3. Suppose evidence is controllable. Then, a social choice function fX is imple-

mentable if and only if the stochastic direct mechanism given by (fX , f̃
U
E ) : Θ → X×∆(E)

satisfies ˜IC
C
.

Proof. Only necessity requires proof, so suppose the stochastic direct mechanism γ̃C :

Θ → ∆(X × E) satisfies ˜IC
C
and implements fX . Clearly, the following must then hold

true:

E(θ′) ⊆ E(θ) ⇒ u(fX(θ)|θ) ≥ u(fX(θ
′)|θ). (4)

Consider now the stochastic direct mechanism (fX , f̃
U
E ). Since (4) is a property of fX

only, this mechanism satisfies it. For it to satisfy ˜IC
C
, it is then sufficient that, in

addition to (4), the mechanism (fX , f̃
U
E ) also satisfies that, for all (θ, θ′) ∈ Θ × Θ such

that E(θ′) 6⊆ E(θ),

u(fX(θ)|θ) ≥

(

1−
1

|E|

)

· u(fX(θ
′)|θ) +

1

|E|
· (−c). (5)

While, for c large enough, it is clear that (fX , f̃
U
E ) implies (5) whenever E(θ′) 6⊆ E(θ),

we next derive an explicit lower bound on c such that this is guaranteed.

Letting u ≡ max {u (x |θ ) : (x, θ) ∈ X ×Θ} and u ≡ min {u (x |θ ) : (x, θ) ∈ X ×Θ},

it suffices for (5) to hold that

u >

(

1−
1

|E|

)

· u+
1

|E|
· (−c),

which is equivalent to

c > c ≡ (|E| − 1) · (u− u)− u.

Hence, for any c exceeding the lower bound c, the stochastic direct mechanism (fX , f̃
U
E )

satisfies ˜IC
C
.25

The intuition behind the theorem is straightforward. Stochastic direct mechanisms

that put positive probability on every evidence that the agent claims to possess are ex-

25This derivation underlies the explicit lower bound on c stated in footnote 9.
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tremely powerful; given sufficiently high costs to violating the contract ex post, they

effectively create evidence corresponding to the entire evidence set E(θ) for every type of

agent θ. As a consequence, incentive compatibility reduces to (4), which is as weak as

possible, since type θ can perfectly mimic any type θ′ such that E(θ′) ⊆ E(θ) under any

conceivable mechanism. Thus, (the proof of) Theorem 3 delivers a simple characterization

result of implementability, which we state explicitly as a corollary.

Corollary 2. Suppose evidence is controllable. Then, a social choice function fX is

implementable if and only if fX satisfies (4).

In particular, this dispenses with any need for correlation between evidence and al-

location.26 The specification in Theorem 3, which pins down the direct mechanisms by

extending fX with the uniform evidence extension f̃U
E , is used only for convenience, though

it also appears natural, a priori.

Since, in terms of the model’s primitives, evidence does not directly affect the agent’s

utility, it is natural to consider economic allocations only at the level of (non-extended)

social choice functions fX , and the existing literature on evidence has done so exclu-

sively. Theorem 3 shows that any randomization required for implementing such social

choice functions could concern only the evidence that must be presented by the agent,

and Example 2 shows that such randomization has value, meaning some fX is imple-

mentable but not d-implementable. However, as is straightforward from Theorem 3, if we

restricted attention to deterministic extended social choice functions f = (fX , fE) ∈ F ,

implementability of f would be equivalent to d-implementability of f—i.e., randomization

would have no value—with controllable evidence. As we show below, this is different with

non-controllable evidence.

Corollary 3. Suppose evidence is controllable. Then, a deterministic evidence-extended

social choice function f is implementable if and only if f is d-implementable.

Proof. Only necessity requires proof. Simply observe that any stochastic direct mechanism

(fX , f̃E) : Θ → X × ∆(E) satisfying ˜IC
C
implements the stochastic-evidence-extended

social choice function (fX , f̃E).

This raises the question of whether there are natural conditions under which random-

ization concerning evidence can be dispensed with also for implementing (non-extended)

social choice functions fX . We next show that NOR is indeed such a condition, and that it

is also necessary if we require that randomization have no value for any preference struc-

ture (similar to how WET and TIWO are necessary for there to be no value of control

26Indeed, even if we were interested in implementing a stochastic social choice function f̃X : Θ → ∆(X),
it would be sufficient to consider incentive compatibility of the stochastic direct mechanism (f̃X , f̃U

E ) :
Θ → ∆(X)×∆(E).
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with respect to d-implementability). As a first step towards this result, we establish the

following lemma.

Lemma 1. Suppose evidence is controllable and the evidence structure satisfies NOR.

Then, a social choice function fX is implementable if and only if, for any maximal evidence

extension fM
E , the deterministic direct mechanism (fX , f

M
E ) ∈ ΓC satisfies ICC.

Proof. Only necessity requires proof. From Theorem 3, fX is implementable if and only

if it satisfies (4). From Theorem 1, fX is d-implementable if and only if it satisfies (2).

Suppose now that the evidence structure (E, E) satisfies NOR, and consider any maximal

evidence extension fM
E , which exists by NOR. Now observe that, for any pair of types

(θ, θ′) ∈ Θ×Θ, E(θ′) ⊆ E(θ) implies fM
E (θ′) ∈ E(θ), whereby (4) implies (2).

Proposition 6. Suppose evidence is controllable. Fix the type structure (Θ, p) and ev-

idence structure (E, E) of any evidentiary implementation model. Then, the evidence

structure (E, E) satisfies NOR if and only if randomization has no value for any prefer-

ence structure (X, u).

Proof. Sufficiency is immediate from Lemma 1. For necessity, suppose the evidence struc-

ture (E, E) violates NOR. Let then θ̂ be a type such that, for every e ∈ E(θ̂), there exists

another type θ′ such that e ∈ E(θ′) and E(θ̂) * E(θ′). The violation of NOR implies

existence of θ̂.

Consider then the preference structure (X, u) given by X = {x1, x2} and u : X×Θ →

R such that u(x1|θ) > u(x2|θ) for all types θ, together with the social choice function fX

such that

fX (θ) =







x1, if E(θ̂) ⊆ E(θ),

x2, if E(θ̂) * E(θ).

Recalling the characterization of implementability by (4), fX is clearly implementable.

Recalling the characterization of d-implementability by (2), take any (deterministic) ev-

idence extension fE and observe that, by construction via θ̂, there exists a type θ′ such

that fE(θ̂) ∈ E(θ′) and E(θ̂) * E(θ′). This implies u(fX(θ
′)|θ′) = u(x2|θ

′) < u(x1|θ
′) =

u(fX(θ̂)|θ
′) while fE(θ̂) ∈ E(θ′), violating (2), whereby fX is not d-implementable.

NOR means that every type of agent θ can actually prove his full evidence set E(θ)

by presenting some evidence e ∈ E(θ) that is maximal with respect to θ. Recalling that

the value of randomization with controllable evidence arises from allowing to effectively

create such evidence, it becomes clear why this value vanishes under NOR: This property

renders redundant the randomization that requires types to present any of their evidence

with a strictly positive probability. Thus, implementability of a social choice function fX

then implies its d-implementability.

32



Lemma 1 additionally establishes that, under NOR, the characterization of imple-

mentability reduces substantially: To determine whether a social choice function fX is

implementable it is sufficient to check ICC only for a single evidence extension, where we

may pick any maximal one fM
E . Hence, under NOR and controllable evidence, the revela-

tion principle does not only state which type the agent is to reveal—his actual type—but

also which evidence he is to present—his maximal evidence.

4.4 Non-controllable Evidence

In the case of non-controllable evidence, stochastic direct mechanisms take the form γ̃N :

Θ → ∆(XE × E), and we denote the space of such mechanisms by Γ̃N . The agent

reports a type θ̂, and, conditional on this report, the mechanism randomly chooses pair

(d0, e) ∈ XE × E with probability γ̃N(d0, e|θ̂), informing the agent of e (the realized

recommendation) but not of d0 (the realized allocation rule), upon which the agent may

present any evidence ê ∈ E, and the principal then must provide allocation d0(ê), as

under the realized allocation rule d0.
27,28

The agent’s strategy in such a mechanism specifies, for any type θ, a pair (θ̂, δ̂) ∈

Θ × EE, which consists of a type report θ̂ ∈ Θ and rule δ̂ ∈ EE for presenting evidence

as a function of the evidence recommended (i.e., δ̂ : E → E). The strategy is honest and

obedient for type θ, if it specifies (θ̂, δ̂) ∈ Θ × EE such that θ̂ = θ and δ̂(e) = e for all

e ∈ E with
∑

d0∈XE γ̃N(d0, e|θ) > 0. A mechanism γ̃N ∈ Γ̃N is incentive compatible if it

provides any type of agent with an incentive to be honest and obedient, i.e.,

˜IC
N
:

∑

(d0,e)∈XE×E

γ̃N(d0, e|θ) · U(d0(e), e|θ) ≥
∑

(d0,e)∈XE×E

γ̃N(d0, e|θ̂) · U(d0(δ̂(e)), δ̂(e)|θ),

∀(θ, θ̂, δ̂) ∈ Θ×Θ× EE.

Note that for checking ˜IC
N
, we may ignore any strategy that, for some type θ and

some recommendation e that occurs with positive probability
∑

d0∈XE γ̃N(d0, e|θ̂) > 0,

specifies (θ̂, δ̂) ∈ Θ × EE such that δ̂(e) /∈ E(θ): Replacing δ̂(e) by any ê ∈ E(θ) yields

a greater expected utility.29 Hence, incentive compatibility requires that the mechanism

27Following Myerson (1982), when the agent’s presentation of evidence is a non-controllable action
by the agent, the principal’s decision is a mapping from evidence presented by the agent (recall its
verifiability) into allocations provided by herself, and we adopt Myerson’s notation d0 for a particular
such decision; see also Appendix A.

28The agent should not observe the realized d0 before choosing his evidence ê, because revealing d0 only
makes incentive compatibility more difficult to meet. By contrast, the mechanism might as well publicly
reveal the realized d0 after the agent has presented his evidence ê.

29While we may simply consider the limiting case c → ∞ in using evidence-extended utility U , which
would imply that the expected utility of type θ under any such strategy approaches −∞, see footnote 9
for explicit lower bounds on c. Under non-controllable evidence, c > −u is actually sufficient even when
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only recommends evidence that would have to be available to the agent if he were honest,

i.e., that
∑

d0∈XE γ̃N(d0, e|θ) > 0 only if e ∈ E(θ), for any type θ ∈ Θ.

Example 3 already shows that, in contrast to the case of controllable evidence, the de-

terminism of social choice functions affords no further structural simplification of canonical

mechanisms within Γ̃N for characterizing implementability with non-controllable evidence,

in general. A social choice function fX is implementable with non-controllable evidence

if and only if there exists an incentive compatible stochastic direct mechanism γ̃N ∈ Γ̃N

that implements it.

Theorem 4. Suppose evidence is non-controllable. Then, a social choice function fX is

implementable if and only if there exists a stochastic direct mechanism γ̃N ∈ Γ̃N such that

(i) γ̃N(d0, e|θ) > 0 implies d0(e) = fX(θ) for all (θ, e) ∈ Θ×E, and (ii) γ̃N satisfies ˜IC
N
.

In light of Proposition 6, a natural conjecture might be that NOR would remove

any potential need for randomization, as it does with controllable evidence. Intuitively,

unlike in Example 3, which violates NOR, it should then be clear what evidence to

recommend to the agent, namely evidence that is maximal with respect to the type he

reports. Given a deterministic allocation objective, randomization would therefore seem

pointless under NOR also with non-controllable evidence. However, the following example

shows that this is not true. Indeed, despite NOR, randomization here has value even for

the implementability of deterministic extended social choice functions f = (fX , fE) ∈ F ,

in contrast to controllable evidence (Corollary 3).

Example 4. The principal has to decide between three allocations X = {x1, x2, x3},

and the agent has three possible types Θ = {θ1, θ2, θ3}. The agent’s type-dependent

preferences over allocations are as in the following table:

u(x|θ) θ1 θ2 θ3

x1 2 3 0

x2 0 2 3

x3 3 0 2

The evidence structure is given by E = {e0, e1, e2, e3}, such that for each i ∈ {1, 2, 3},

E(θi) = {e0, ei}; i.e., the agent can always either prove his type or prove nothing. This

evidence structure clearly satisfies NOR.

Consider now the social choice function fX such that fX (θi) = xi, for all i ∈ {1, 2, 3}.

We will now show that fX is not d-implementable, which is most readily established using

Proposition 1. Take then any (deterministic) mechanism gN : Θ× E → X, and consider

its allocation in the event that the agent presents the “null-evidence” e0, where it will

allowing for stochastic mechanisms.
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suffice to consider the allocation gN(θ1, e0) for concreteness: Either gN(θ1, e0) = x1, in

which case type θ2 could obtain allocation x1, which θ2 prefers over fX(θ2) = x2; or

gN(θ1, e0) = x2, in which case type θ3 could obtain allocation x2, which θ3 prefers over

fX(θ3) = x3; or g
N(θ1, e0) = x3, in which case type θ1 could obtain allocation x3, which

θ1 prefers over fX(θ1) = x1. Hence, no such mechanism could implement fX , and, by

Proposition 1, fX is therefore not d-implementable.

Let then, for all i, j ∈ {1, 2, 3}, the evidence-contingent allocation rule d0,i,j : E → X

be given by

d0,i,j(e) ≡







xi, if e = ei,

xj, if e 6= ei,

and consider the stochastic direct mechanism γ̃N = (γ̃N
X , γN

E ) : Θ → ∆(XE)×E such that,

for all i ∈ {1, 2, 3}, γN
E (θi) ≡ ei and γ̃N

X (d0,i,j|θi) ≡
1
3
for all j ∈ {1, 2, 3}. From the agent’s

perspective, this means that upon report θi he is sure to receive recommendation ei, and

then also sure to obtain allocation xi if he is obedient, while any disobedience results in the

stochastic allocation (1
3
: x1,

1
3
: x2,

1
3
: x3). If this mechanism is incentive compatible—

i.e., the agent is always honest and obedient—it implements the (deterministic) extended

social choice function f = (fX , fE) that has fE(θi) = ei, for all i ∈ {1, 2, 3}. Now observe

that the agent can only obey the recommendation after an honest type report, because

ej ∈ E(θi) if and only if i = j, for any pair (i, j) with i, j ∈ {1, 2, 3}. Since any disobedience

results in the stochastic allocation (1
3
: x1,

1
3
: x2,

1
3
: x3), with expected utility 5

3
for any

type of agent, while honesty and obedience yields type θi the sure allocation xi, with utility

2, for any i ∈ {1, 2, 3}, the mechanism γ̃N is indeed incentive compatible. It therefore

implements the (deterministic) extended social choice function f , and, in particular, the

social choice function fX is thus implementable even though it is not d-implementable. �

Despite satisfying NOR, Example 4 exhibits a value of randomization. This ran-

domization is only with respect to the allocation rule, however, and not the evidence

recommendation. Moreover, the randomization only occurs off-path, following disobedi-

ence. Its value arises from the agent’s type-dependent preferences, where randomization

allows to create an allocation lottery that every type of agent finds worse than his allo-

cation according to the social choice function. Thus, the example establishes that, even

under NOR, additional assumptions are generally required for randomization to not have

any value; revisiting the value of control with stochastic mechanisms will allow us to de-

rive two general sufficient conditions for this to be the case, see Corollary 5 in the next

section.30

30Relatedly, Ben-Porath et al. (2019) obtain this for a class of optimal mechanism design problems
by assuming NOR together with “simple type dependence” of agents’ preferences. This generalizes the
commonly used assumption of type-independence of preferences, which would imply TIWO and also yield
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At the same time, NOR is indeed sufficient for determinism with respect to evidence

recommendations; i.e., restricting direct mechanisms to mappings γ̃N : Θ → ∆(XE)×E is

then without loss, where we say that randomization with respect to recommendations has

no value. Moreover, NOR is also necessary for this property to hold for any preference

structure. To show this, we first establish a useful lemma, analogous to Lemma 1 for

controllable evidence.

Lemma 2. Suppose evidence is non-controllable and the evidence structure satisfies NOR.

Then, a social choice function fX is implementable if and only if there exists a mapping

γ̃N
X : Θ → ∆(XE) such that, for every maximal evidence extension fM

E , (i) γ̃N
X (d0|θ) >

0 implies d0(f
M
E (θ)) = fX(θ) for all θ ∈ Θ, and (ii) the stochastic direct mechanism

(γ̃N
X , fM

E ) ∈ Γ̃N satisfies ˜IC
N
.

Proof. Only necessity requires proof, so suppose the stochastic direct mechanism γ̃N ∈ Γ̃N

is such that (i) γ̃N(d0, e|θ) > 0 implies d0(e) = fX(θ) for all (θ, e) ∈ Θ × E, and (ii) γ̃N

satisfies ˜IC
N
; i.e., γ̃N is incentive compatible and implements fX .

Construct now a mapping γ̃N
X : Θ → ∆(XE) as follows: For any type θ, and any

allocation rule d0 ∈ XE, let αd0 ∈ XE be the allocation rule such that, for any e ∈ E,

αd0(e) ≡







fX(θ), if e = fM
E (θ) for some maximal fM

E ,

d0(e), if e 6= fM
E (θ) for any maximal fM

E ,

and let then, for any allocation rule d′0 ∈ XE,

γ̃N
X (d′0|θ) ≡

∑

d0∈XE :αd0
=d′

0

(

∑

e∈E

γ̃N(d0, e|θ)

)

.

This construction is well-defined: γ̃N
X (d′0|θ) ∈ [0, 1] for any d′0 ∈ XE, and

∑

d′
0
∈XE γ̃N

X (d′0|θ) =

1. Moreover, we clearly have that γ̃N
X (d′0|θ) > 0 only if d′0(f

M
E (θ)) = fX(θ) for any type θ

and any maximal evidence extension fM
E .

Now fix any maximal evidence extension f̂M
E and consider the stochastic direct mech-

anism (γ̃N
X , f̂M

E ) ∈ ΓN . To prove the lemma, it only remains to show that this mechanism

satisfies ˜IC
N
, because, by the above, it then implements fX , and in particular, random-

ization with respect to recommendations thus has no value.

Take then any type θ ∈ Θ and consider any strategy specification (θ̂, δ̂) for this type.

Since recommendations under the mechanism (γ̃N
X , f̂M

E ) ∈ ΓN are deterministic, following

the strategy with (θ̂, δ̂) results in recommendation f̂M
E (θ̂) with probability one, so only

that randomization has no value (given NOR, Corollary 5). It is easy to check that the preferences in
Example 4 indeed violate not only TIWO but also simple type dependence.
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δ̂(f̂M
E (θ̂)) is outcome-relevant about δ̂. Let then ê denote δ̂(f̂M

E (θ̂)), so that any strategy

specification for type θ is without loss described by a pair (θ̂, ê). By construction of γ̃N
X ,

if ê = fM
E (θ̂) for some maximal evidence extension fM

E , (θ̂, ê) results in sure allocation

fX(θ̂) and hence utility U(fX(θ̂), ê|θ); otherwise, it yields the following (expected) utility,

where we use that we can set αd0 = d0 in this case:

∑

d′
0
∈XE

γ̃N
X (d′0|θ̂) · U(d′0(ê), ê|θ) =

∑

d′
0
∈XE





∑

d0∈XE :αd0
=d′

0

(

∑

e∈E

γ̃N(d0, e|θ)

)



 · U(d′0(ê), ê|θ)

=
∑

d′
0
∈XE

(

∑

e∈E

γ̃N(d′0, e|θ̂)

)

· U(d′0(ê), ê|θ)

=
∑

(d0,e)∈XE×E

γ̃N(d0, e|θ̂) · U(d0(ê), ê|θ).

Suppose then that there exists a strategy in mechanism (γ̃N
X , f̂M

E ) ∈ ΓN that yields type

θ an expected utility greater than this type’s utility from being honest and obedient, i.e.,

greater than u(fX(θ)|θ). If this strategy specifies a pair (θ̂, ê) such that ê = fM
E (θ̂) for some

maximal evidence extension fM
E , then type θ obtains utility U(fX(θ̂), ê|θ) > u(fX(θ)|θ),

implying ê ∈ E(θ); since ê is maximal with respect to θ̂, we have that E(θ̂) ⊆ E(θ), whereby

type θ could perfectly mimic type θ̂ under mechanism γ̃N , resulting in a contradiction

to this mechanism’s satisfying ˜IC
N
. Otherwise, i.e., if this strategy specifies a pair (θ̂, ê)

such that ê 6= fM
E (θ̂) for any maximal evidence extension fM

E , then—by the above—type

θ obtains expected utility

∑

(d0,e)∈XE×E

γ̃N(d0, e|θ̂) · U(d0(ê), ê|θ),

which he could also obtain under mechanism γ̃N , by first reporting type θ̂ and then pre-

senting evidence ê regardless of the recommendation. Hence, we again have a contradiction

to this mechanism’s satisfying ˜IC
N
.

Proposition 7. Suppose evidence is non-controllable. Fix the type structure (Θ, p) and

evidence structure (E, E) of any evidentiary implementation model. Then, the evidence

structure (E, E) satisfies NOR if and only if randomization with respect to recommenda-

tions has no value for any preference structure (X, u).

We relegate the proof of this proposition to Appendix B.3. Lemma 2 establishes

sufficiency, and the intuition is similar to that for Lemma 1. Concerning necessity, the

construction of a preference structure and social choice function such that deterministic

recommendations are with loss whenever NOR is violated generalizes the logic of Example
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3.

When recommendations are deterministic, the (generally stochastic) allocation rule

is independent from the recommendation, for any type report. Thus, whenever NOR is

satisfied, evidence recommendations actually become redundant. This suggests that we

can then generalize Proposition 1 for d-implementability to (general) implementability,

though subject to the important caveat from Example 4 above that we cannot generally

dispense with randomization with respect to allocations.

To do so, consider therefore (indirect) stochastic mechanisms of the form g̃N : Θ×E →

∆(X), which specify stochastic allocations conditional on the agent’s type report and

evidence (θ, e), where g̃N(x|θ, e) denotes the corresponding probability of any allocation x;

G̃N will denote the set of all such mechanisms. Again, in the absence of recommendations,

obedience loses its literal meaning, while honesty requires that

˜IC
N

G : ∃fE : Θ → E with fE(θ) ∈ E(θ), ∀θ ∈ Θ, such that
∑

x∈X

g̃N (x|θ, fE(θ)) · U (x, fE(θ)|θ) ≥
∑

x∈X

g̃N (x|θ′, e′) · U (x, e′|θ) , ∀ (θ, θ′, e′) ∈ Θ×Θ× E.

We are now ready to state the generalization of Proposition 1 for d-implementability to

general implementability under NOR.

Proposition 8. Suppose evidence is non-controllable and the evidence structure satisfies

NOR. Then, a social choice function fX is implementable if and only if there exists a

mechanism g̃N : Θ×E → ∆(X) such that, for every maximal evidence extension fM
E , (i)

g̃N(x|θ, fM
E (θ)) = I(x = fX(θ)), for all (θ, x) ∈ Θ×X, and (ii) g̃N satisfies ˜IC

N

G for fM
E .

Proof. Only necessity requires proof, so suppose the social choice function fX is imple-

mentable. In view of Lemma 2, let mapping γ̃N
X : Θ → ∆(XE) be such that, for every

maximal evidence extension fM
E , (i) γ̃N

X (d0|θ) > 0 implies d0(f
M
E (θ)) = fX(θ) for all θ ∈ Θ,

and (ii) the stochastic direct mechanism (γ̃N
X , fM

E ) ∈ ΓN satisfies ˜IC
N
.

Define then the stochastic indirect mechanism g̃N : Θ×E → ∆(X) such that, for any

(θ, e, x) ∈ Θ× E ×X,

g̃N(x|θ, e) ≡
∑

d0∈XE

γ̃N
X (d0|θ) · I(d0(e) = x).

This construction is well-defined: g̃N(x|θ, e) ∈ [0, 1] for any (x, θ, e) ∈ X × Θ × E, and
∑

x∈X g̃N(x|θ, e) = 1 for any (θ, e) ∈ Θ×E. By (i), for every maximal evidence extension

fM
E , g̃N(x|θ, fM

E (θ)) = I(x = fX(θ)) for all (θ, x) ∈ Θ × X, so that it remains only to

establish that g̃N satisfies ˜IC
N

G for every fM
E .

Take then any type θ and consider any strategy specification (θ̂, ê) ∈ Θ × E for this
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type under the mechanism g̃N . By construction, it yields (expected) utility:

∑

x∈X

g̃N(x|θ̂, ê) · U(x, ê|θ) =
∑

x∈X





∑

d0∈XE

γ̃N
X (d0|θ) · I(d0(ê) = x)



 · U(x, ê|θ)

=
∑

d0∈XE

γ̃N
X (d0|θ) · U(d0(ê), ê|θ).

For every maximal evidence extension fM
E , using the above as well as (ii), we then have

that, for any type θ and any (θ̂, ê) ∈ Θ× E,

∑

x∈X

g̃N(x|θ, fM
E (θ)) · U(x, fM

E (θ)|θ) = u(fX(θ)|θ) =
∑

d0∈XE

γ̃N
X (d0|θ) · U(d0(f

M
E (θ)), fM

E (θ)|θ)

≥
∑

d0∈XE

γ̃N
X (d0|θ̂) · U(d0(ê), ê|θ) =

∑

x∈X

g̃N(x|θ̂, ê) · U(x, ê|θ),

whereby g̃N satisfies ˜IC
N

G for fM
E .

4.5 The Value of Control

We now revisit the value of contractual control over the agent’s evidence presentation,

allowing for stochastic mechanisms. First, we generally confirm the notion of controlla-

bility as (at least in a weak sense) enhancing the principal’s ability to implement various

social choice functions: Implementability with controllable evidence is necessary for im-

plementability with non-controllable evidence.

Proposition 9. A social choice function fX is implementable with non-controllable evi-

dence only if fX is implementable with controllable evidence.

Proof. By Corollary 2, implementability with controllable evidence is characterized by

(4), which is the weakest possible condition for implementability, since a type θ having all

the evidence of another type θ′ can perfectly mimic the latter under any mechanism.

In view of this result, for any given setting, we will say that control has value (resp.,

control has no value), if there exists a social choice function fX that is implementable

with controllable evidence but not with non-controllable evidence.

Recall then Example 1 and reconsider the case of non-controllable evidence while now

allowing for stochastic mechanisms. Since the evidence structure satisfies NOR, Lemma 2

tells us that we only need to consider randomization with respect to allocations. However,

there are only two allocations, and no randomization over the two allocations when the

agent presents the “null-evidence” e0 could simultaneously deter both types from doing so

39



in order to increase their chance of the preferred allocation. While d-implementable with

controllable evidence, fX is therefore not implementable with non-controllable evidence;

in particular, control has value.

Relatedly, Example 4 does satisfy NOR, and implementation of the social choice func-

tion considered there requires a stochastic mechanism with non-controllable evidence,

while it is d-implementable with controllable evidence. This raises the question whether

Proposition 9 can be strengthened, and d-implementability with controllable evidence,

though not sufficient, is generally necessary for implementability with non-controllable

evidence. Combining Propositions 9 and 6 immediately yields the following result.

Corollary 4. Suppose the evidence structure satisfies NOR. Then, a social choice function

fX is implementable with non-controllable evidence only if fX is d-implementable with

controllable evidence.

This result does not generalize beyond settings whose evidence structure satisfies NOR.

Example 3 violates NOR, and the social choice function considered there is implementable

with non-controllable evidence, whereas it is easy to see that it is not d-implementable

with controllable evidence, since any evidence that type θ3 has is evidence that also

another type has.

We are left with the question whether the two conditions WET and TIWO identi-

fied in Section 3 remain sufficient for control to have no value, even when stochastic

mechanisms are available. Again, in any setting satisfying NOR, we readily obtain these

generalizations. In fact, we obtain the following stronger result.

Corollary 5. Suppose the evidence structure satisfies NOR. If the evidence structure

additionally satisfies WET or the preference structure satisfies TIWO, then neither control

nor randomization have value.

Proof. Suppose the evidence structure satisfies NOR and take any social choice function

fX that is implementable with non-controllable evidence. By Proposition 9, fX is imple-

mentable with controllable evidence. By Proposition 6, given NOR, fX is d-implementable

with controllable evidence.

If the evidence structure additionally satisfies WET, then, by Proposition 4, fX is

d-implementable with non-controllable evidence. Since d-implementability implies imple-

mentability, all implications established are equivalences. The same obtains if we impose

TIWO instead of WET and invoke Proposition 5 instead of Proposition 4.

The main additional insight from this corollary is that, given NOR, either WET or

TIWO is sufficient for there to be no value of randomization with non-controllable evi-

dence. To understand this result, recall Example 4, which shows that under NOR ran-

domization with non-controllable evidence could be required only off-path, where it would
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help mitigate the evidentiary moral hazard problem. Both WET and TIWO achieve this

perfectly, however, as WET means there is no “costly” evidence, and TIWO allows to de-

ter any “costly” evidence. When neither of the two holds true, whereas NOR is satisfied,

randomizing allocations works as an imperfect substitute for the control achieved under

WET or TIWO.

A final example, which satisfies both WET and TIWO but violates NOR, shows that

Corollary 5 does not hold without NOR.

Example 5. The principal has to decide between two allocations X = {xb, xg}, and

the agent has three possible types Θ = {θ1, θ2, θ3}. His preferences over allocations are

type-independent, such that u(xg|θ) ≡ ug > ub ≡ u(xb|θ) for all types θ, and the evidence

structure is given as follows:

E(θ1) = {e1}, E(θ2) = {e2}, and E(θ3) = {e1, e2} = E.

This setting satisfies WET, since each evidence ei is maximal with respect to type θi, for

both i ∈ {1, 2}, and it satisfies TIWO, since preferences are type-independent. Yet, it

violates NOR, since neither evidence e1 nor evidence e2 is maximal with respect to type

θ3.

Consider now the social choice function fX such that fX(θ1) = fX(θ2) = xb and

fX(θ3) = xg. With controllable evidence, fX is implementable, by Corollary 2, as it

satisfies (4), which here imposes only the restriction that type θ3 must weakly prefer

fX(θ3) over either of fX(θ1) and fX(θ2).

With non-controllable evidence, and despite WET and TIWO, fX is not implementable,

however. Given Theorem 4, it suffices to show that there is no incentive compatible direct

mechanism γ̃N ∈ Γ̃N that implements it. Suppose, by way of contradiction, that γ̃N is such

a mechanism, satisfying (i) γ̃N(d0, e|θ) > 0 implies d0(e) = fX(θ) for all (θ, e) ∈ Θ × E,

and (ii) ˜IC
N
. Denote by f̃E the stochastic evidence extension such that γ̃N implements

the stochastic-evidence-extended social choice function (fX , f̃E) ∈ F , which is given by

f̃E (e|θ) =
∑

d0∈XE

γ̃N (d0, e|θ) , ∀(θ, e) ∈ Θ× E.

Let then f̃E(e1|θ3) ≡ p, implying f̃E(e2|θ3) ≡ 1 − p. Incentive compatibility for types θ1

and θ2 then requires, respectively, that

ub ≥ p · ug + (1− p) · ub and ub ≥ (1− p) · ug + p · ub,

which is equivalent to p ≤ 0 and p ≥ 1, respectively, and cannot simultaneously hold true,
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a contradiction. �

5 Concluding Discussion

We conclude by summarizing how our work relates to the existing literature, and by

discussing the extent to which our insights generalize to settings with multiple agents,

sequential evidence presentation, and endogenous evidence structures.

5.1 Related Literature

The literature on mechanism design with evidence originates with Green and Laffont

(1986), who identified a failure of the revelation principle in settings where the evidence

structure violates their nested range condition. Their model fits our Myersonian approach

for non-controllable evidence, and their failure of the revelation principle arises from a

severe implicit restriction on mechanisms, which is to disallow any communication of

private information beyond the presentation of evidence.31

The most closely related works are Bull and Watson (2007), and Deneckere and Sev-

erinov (2008). Both characterize the implementatibility of deterministic social choice

functions via mechanism design with evidence, and both already clarify the restrictive as-

sumption in Green and Laffont (1986) (also closely related is Forges and Koessler (2005),

see the discussion below on sequential evidence presentation). Our analysis contains their

canonical mechanisms—the “special three-stage mechanism” in Bull and Watson (2007,

Theorem 6), and “revelation mechanism R” in Deneckere and Severinov (2008, Theorem

3)—as incentive compatible direct mechanisms from the generalized revelation principle

of Myerson (1982) for non-controllable evidence and thus provides an interpretation in

terms of standard incentive compatibility (honesty and obedience).32 Bull and Watson

(2007) then focus mainly on the question of when recommendations are unnecessary and

establish NOR as a sufficient condition (see their Theorem 5). Deneckere and Severinov

(2008) allow for a larger class of mechanisms, as their focus is different (sequential evidence

presentation, see discussion below) but obtain a similar result (see their Theorem 1). Both

of these results concerning the implications of NOR for simplifying the mechanism design

problem restrict attention to d-implementability, however (see their respective proofs).

Besides uncovering the contractibility assumptions underlying these analyses and deriv-

31Their motivation for doing so relates to lying aversion, such that agent-types might never report
certain other types; for applications in this vein see, e.g., Alger and Ma (2003), and Alger and Renault
(2006, 2007).

32Both of these works’ results allow for multiple agents, whereas we focus on a single agent. Concerning
this basic point, the difference is purely expositional, however; see also the discussion below for further
detail.
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ing standard notions of incentive compatible direct mechanisms, our Myersonian approach

leads us to extend the analysis to when any randomization is redundant, by allowing for

fully stochastic mechanisms in our setting: We show that randomization can still have

value even under NOR unless further restrictions are imposed (Example 4), we add a

necessity result for NOR regarding the redundancy of recommendations (Proposition 7),

and we offer sufficient conditions in addition to NOR for there to indeed be no value of

any kind of randomization (WET or TIWO, Corollary 5).

Generally, all existing derivations of canonical mechanisms are for non-controllable ev-

idence. Our Myersonian approach points out that this constitutes an implicit assumption

regarding the contractibility of evidence, and, in this respect, we contribute the novel

analysis of controllable evidence, including the value of control.33 Apart from raising

this contractibility issue for applied work, we find the comparison between these con-

tractual regimes also conceptually helpful for understanding the informational problem

and incentives. Maybe most importantly, even for analyses of non-controllable evidence

we contribute a significant analytical simplification device, whenever the setting satis-

fies WET or TIWO (see the characterization results in Section 3.3), though NOR may

additionally be required when allowing for fully stochastic mechanisms (see Section 4.5).

5.2 Extensions

Multiple Agents. Important applications of mechanism design with evidence involve

multiple agents (see, e.g., Ben-Porath et al. (2019)). Since the framework of Myerson

(1982) for which he establishes the generalized revelation principle is for any number

n ∈ N of agents, nothing fundamental stands in the way of extending our analysis. For

Bayes-Nash implementation, incentive compatibility for each agent-type takes as given

incentive compatibility for every other agent-type, and various conditions—WET, TIWO,

NOR, as well as (non)-controllability of evidence—would simply need to be applied at

the level of every agent.

Apart from noting that all of Examples 1 through 5 immediately generalize to in-

sights for any n ≥ 1, we point out here only two issues regarding d-implementability

with non-controllable evidence that arise when agents’ types are not independently dis-

tributed but such that some type profile has zero probability even though each individual

type in the profile has positive (marginal) probability (all of Forges and Koessler (2005),

33Kartik and Tercieux (2012) pursue a formally similar idea to controllable evidence in their analysis of
full implementation with evidence (see also Ben-Porath and Lipman (2012)), though with the important
difference that, for full implementation, the revelation principle is not helpful to begin with. Also,
Corollary 4 of Deneckere and Severinov (2008) considers a setting in which agents can be subjected to
“infinite” punishment upon disobeying the (possibly stochastic) recommendation, which is tantamount
to contractual control over evidence, see our Theorem 3.
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Bull and Watson (2007), and Deneckere and Severinov (2008) allow for this, while as-

suming evidence is non-controllable): First, the direct mechanisms for non-controllable

evidence can then not generally dispense with recommendations—i.e., Proposition 1 does

not generalize—because it may be valuable to tailor the evidence recommendation for

one agent to the report of another in order to incentivize the latter’s honesty; see the ex-

ample by Bull and Watson (2007, pp. 86–87), who also show that recommendations are,

however, generally redundant in the n-agent case under NOR. Second, and relatedly, it is

not clear when Bayes-Nash equilibrium is the appropriate notion in such settings. This

is because direct mechanisms have a dynamic structure, and an agent may then learn

from the recommendation he receives that another agent was dishonest, in which case

Bayes-Nash equilibrium allows for irrational (non-credible) behavior to support honesty;

see Gerardi (2004), and Gerardi and Myerson (2007) on this issue.

Sequential Evidence Presentation. We operationalize Myerson (1982) by modeling

evidence presentation as an action in this framework. Consequently, we formally allow but

a single stage where the agent chooses what evidence to present, after any communication

has taken place. One is naturally led to ask when this restriction is without loss of general-

ity upon allowing the principal to design the extensive form for both evidence presentation

and communication, as opposed to only communication, subject to the restriction that

evidence is exogenously given (in contrast to message spaces for communication).

First of all, with a single agent, it clearly is, both for controllable evidence and non-

controllable evidence, once we interpret (or redefine) the evidence structure as specifying

various combinations of atomic evidence that any agent-type could overall present (re-

latedly, see Sugaya and Wolitzky (2021) for the revelation principle in multistage games,

and Sher (2014) for optimal design of possibly dynamic persuasion rules in the sender–

receiver model of Glazer and Rubinstein (2006)). Furthermore, for controllable evidence,

a similar generalization argument applies with any number of agents, since their evidence

presentation is fully governed by the principal’s contracts. This reduces the question to

problems with non-controllable evidence and more than one agent, where note that, by

the argument just given, an analysis for controllable evidence with a single stage of ev-

idence presentation anyways provides an upper bound on what is implementable in this

case.

Both Forges and Koessler (2005), and Deneckere and Severinov (2008) consider mech-

anisms for multiple agents and non-controllable evidence with (finite) sequential evidence

presentation alongside communication.34 The former authors are interested in characteriz-

34Bull and Watson (2007) restrict their mechanisms to extensive forms such that along every path every
agent gets to present evidence only once. They establish the rather intuitive result from an incentive
point of view that having all communication of private information before a single stage of simultaneous
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ing (Bayes-Nash) equilibrium outcomes of a given game when allowing for any finite num-

ber of pre-play communication stages, each involving also verifying messages from fixed

type-dependent message spaces. The latter authors are interested in the closely related

question of whether and when a principal might benefit from designing evidence presenta-

tion as sequential. Of course, multiple rounds of evidence presentation may mechanically

expand what evidence is overall feasible to present. However, under the restriction that

any evidence that could be presented overall along any path could also be presented in

a single stage, these works show that each of NOR and TIWO is a sufficient condition

for a single stage (after any “soft” communication) to be without loss, while if both are

violated, then there exist settings where sequential design of evidence presentation has

value.35

The results of this paper naturally lead us to conjecture that WET, meaning every

evidence is maximal evidence, would be another such condition. A general analysis of

mechanism design with evidence where the extensive form of evidence presentation as well

as communication is subject to design is beyond the scope of this paper, however. We only

note that, conceiving of evidence presentation as an action rather than communication

that can be arbitrarily designed, as we do here, immediately indicates why this is a

challenging endeavour (see, however, Doval and Ely (2020), and Sugaya and Wolitzky

(2021) for recent related advances).

Endogenous Evidence Structures. While our evidentiary implementation problem

presumes an exogenously given evidence structure, some recent work extends the analy-

sis to agents’ endogenous acquisition of evidence (e.g., Ben-Porath, Dekel, and Lipman

(2021), and Ball and Kattwinkel (2023)). We expect our insights on controllability and

randomization—including how their respective value depends on properties of the setting

(WET, TIWO, NOR)—to carry over to such extensions, and that the framework of Myer-

son (1982) will generally be a useful starting point for analyzing also endogenous evidence

structures.
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Appendix

A The Revelation Principle

Here, we restate the revelation principle from Myerson (1982) and show how it applies to

our evidentiary implementation problem. First, we do so for the case where mechanisms

are allowed to be stochastic, as in the original. Subsequently, we derive the revelation

principle for the case of only deterministic mechanisms, as we use it in Section 3. Recall

here the notation introduced in the main text’s Section 4.2 for stochastic mechanisms, with

the exception that F̃ will here denote the set of all “fully stochastic” evidence-extended

social choice functions, i.e., all mappings f̃ : Θ → ∆(X × E) such that f̃(x, e|θ) > 0

implies e ∈ E(θ).

A.1 The Revelation Principle with Stochastic Mechanisms

Myerson (1982) formulates the economic problem in abstract terms, namely via a given

decision structure (D0, D1), such that the principal and the agent simultaneously decide

over d0 ∈ D0 and d1 ∈ D1, respectively. He defines preferences over decision profiles

(d0, d1) denoted by d ∈ D = D0×D1. Moreover, his revelation principle concerns the im-

plementability in pure Bayes-Nash equilibrium (BNE) of what we will call here stochastic

social decision functions φD : Θ → ∆(D).36 It can be stated as follows (see Myerson,

1982, Proposition 2, p. 73):37

Theorem A. A stochastic social decision function φD is implementable by some mecha-

nism if and only if φD is implementable by an incentive compatible direct mechanism.

For the formal definitions of the space of all feasible mechanisms, direct mechanisms

and incentive compatibility of the latter, see the original work. Informally, the space of

all feasible mechanisms is that of game forms which enrich the basic decision problem by

arbitrary communication via the mechanism; direct mechanisms reduce this communica-

tion to having the agent first privately report a type θ ∈ Θ to the mechanism and then

privately receive a decision recommendation d1 ∈ D1 in return; incentive compatibility

is the requirement that every type of every agent shall find it optimal to first honestly

report his type and then obediently take the recommended decision.

Theorem A allows for stochastic mechanisms. Doing so as well, we only need to

specify the decision sets for the present setting, derive the implied preferences over decision

36Myerson uses t ∈ T rather than θ ∈ Θ for the agent’s types, and he formally defines neither social
decision nor social choice functions.

37While the original statement is different, this is what is proven.
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profiles, and characterize the implementability of social choice functions in terms of the

implementability of social decision functions.

With controllable evidence, this is straightforward. The principal’s decision set isD0 =

X ×E, and the decision set D1 of the agent is a trivial singleton. We will abuse notation

by identifying the sets D and D0. The agent’s preferences over decision profiles are

immediate from his extended utility function: Denoting his utility under various decision

profiles by UD : D × Θ → R, we simply have UD (x, e |θ ) = U (x, e |θ ). Moreover, note

that the space of stochastic social decision functions φD is identical to that of stochastic

(evidence-extended) social choice functions f̃ .

With non-controllable evidence, the principal’s decision set is D0 = XE, and the

decision set of the agent is D1 = E. Again denoting the agent’s utility from various

decision profiles by UD : D × Θ → R, we have UD (d0, e |θ ) = U (d0 (e) , e |θ ). In this

case, the stochastic extended social choice function f̃ : Θ → ∆(X × E) is implementable

if and only if there exists an implementable stochastic social decision function φD : Θ →

∆(D0 × E) such that, for any (x, e) ∈ X × E,

f̃ (x, e|θ) =
∑

d0∈D0

φD (d0, e|θ) · I (d0 (e) = x) .

A.2 The Revelation Principle with Deterministic Mechanisms

We now restrict the design to deterministic mechanisms. We prove here a general reve-

lation principle for this case, from which Theorems 1 and 2 directly follow.38 Our proofs

rely on the formalism introduced in Myerson (1982) but are otherwise straightforward.

Say that a social decision function φD is d-implementable if there exists a deterministic

mechanism that implements it. (This corresponds to the notion of implementability we

use in Section 3.) Clearly, d-implementability implies implementability. The following

lemma makes the basic observation that deterministic mechanisms cannot implement

social decision functions that are not deterministic.

Lemma 3. A social decision function φD is d-implementable only if φD is deterministic.

Proof. Fix a mechanism ((R,M), π) and a strategy σ = (ρ, δ) of the agent in (the game

induced by) this mechanism. Then, for any (d1, θ) ∈ D1 ×Θ,

δ−1
σ (d1| θ) = {m ∈ M : δ (m, θ) = d1} (6)

is the set of messages such that the agent’s decision is d1 when his type is θ (this set may

38We maintain here the restriction to pure BNE. Otherwise, given their determinism, direct mechanisms
would generally be insufficient (see Strausz, 2003).
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be empty, of course).39 Using this definition, the distribution over decision profiles under

strategy σ in mechanism ((R,M), π) is given by

π∗
σ (d0, d1| θ) =

∑

m∈δ−1
σ (d1|θ)

π (d0,m |ρ (θ)) (7)

(if δ−1
σ (d1|θ) = ∅, then π∗

σ(d0, d1|θ) = 0 for any d0 ∈ D0, of course). A mechanism

((R,M), π) is deterministic if there exists a mapping π̃ : R → D0 ×M such that, for any

possible reporting strategy r ∈ R by the agent,

π (d0,m |r ) = I ((d0,m) = π̃ (r)) .

Suppose now that ((R,M), π) is deterministic and implements the social decision function

φD. Then, there exists a BNE σ = (ρ, δ) such that, for any (d, θ) ∈ D × Θ, π∗
σ(d|θ) =

φD(d|θ). Since ((R,M), π) is deterministic, there exists a mapping π̃ : R → D0 ×M such

that

π (d0,m |ρ (θ)) = I ((d0,m) = π̃ (ρ (θ))) ,

whereby, using (6) and (7),

φD (d |θ ) = π∗
σ (d |θ ) =

∑

m∈δ−1
σ (d,θ)

I ((d0,m) = π̃ (ρ (θ))) ,

which equals either zero or one.

We are now ready to state the deterministic version of the revelation principle.

Theorem B. A social decision function φD is d-implementable if and only if there exists

a deterministic incentive compatible direct mechanism that implements φD.

Proof. Only necessity requires proof. Suppose then that the social decision function φD

is d-implementable and the deterministic mechanism ((R,M), π) implements it in BNE

σ = (ρ, δ). Let π̃ : R → D0 ×M be such that, for any possible reporting strategy r ∈ R

by the agent,

π (d0,m |r ) = I ((d0,m) = π̃ (r)) .

Construct the direct mechanism ((Θ, D1), π
∗
σ) and note that it is deterministic, since

π∗
σ(d|θ) = φD(θ) and φD is deterministic by Lemma 3. Consider any type θ of the

agent. Suppose he could obtain greater utility by reporting θ′ and following decision rule

39In his definition, Myerson (1982, p. 74) uses entire decision profiles d instead of just the agent’s
decision d1, as we do here. Since the principal’s decision component d0 never affects the set that is
defined, this makes no difference.
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δ′ : D1 → D1 than by reporting honestly and deciding obediently; i.e.,

∑

d∈D

π∗
σ (d |θ )U

D (d |θ ) <
∑

d∈D

π∗
σ (d |θ

′ )UD (δ′ (d1)| θ) .

Note that the left-hand side equals the utility under BNE σ in the original mechanism,

and consider the following deviation in that mechanism:

ρ′′ (θi) = ρ (θ′) and δ′′ (m, θ) = δ′ (δ (m, θ′)) .

This deviation yields the same utility as the right-hand side in the above inequality and

hence the same gain, contradicting BNE.

Using similar arguments as in the case of stochastic mechanisms makes this result

directly applicable to our setting and yields Theorems 1 and 2.

B Proofs Omitted from the Main Text

B.1 Proposition 4

By proving the following proposition, we first establish the sufficiency of WET for control

to have no value.

Proposition 10. If the evidence structure satisfies WET, then control has no value.

Proof. In view of Proposition 2, we only need to show that any social choice function that

is d-implementable with controllable evidence is d-implementable with non-controllable

evidence. Suppose then that the evidence structure (E, E) satisfies WET and the social

choice function fX is d-implementable with controllable evidence. In view of Proposition

3, let gCR : Θ × R → X satisfy ICC
G for fR : Θ → R such that fR(θ) ∈ E(θ), and d-

implement fX , where R ⊆ E. Moreover, for any e ∈ E \ R, let t(e) ∈ Θ denote a type

such that e is maximal with respect to t(e), which exists by WET.

In view of Proposition 1, construct a mechanism gN ∈ GN as follows: For all (θ, e) ∈

Θ× E,

gN(θ, e) ≡







gCR(θ, e), if e ∈ R,

fX(t(e)), otherwise.

We will now establish the claim by showing that gN satisfies ICN
G for the evidence exten-

sion fR, from which it is immediate that gN d-implements fX .
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Take then any type θ ∈ Θ. First, observe that, for any (θ′, e) ∈ Θ×R,

U
(

gN(θ, fR(θ)), fR(θ)|θ
)

= U
(

gCR(θ, fR(θ)), fR(θ)|θ
)

≥ U
(

gCR(θ
′, e), e|θ

)

,

since gCR satisfies ICC
G for fR. Second, for any (θ′, e) ∈ Θ× E \R,

U
(

gN(θ′, e), e|θ
)

= U (fX(t(e)), e|θ)

=







u (fX(t(e))|θ) , if e ∈ E(θ),

−c, otherwise.

To see that U(gN(θ, fR(θ)), fR(θ)|θ) ≥ u (fX(t(e))|θ) in case e ∈ E(θ), note that be-

cause e is maximal with respect to t(e), e ∈ E(θ) implies that E(t(e)) ⊆ E(θ), so in

particular fR(t(e)) ∈ E(θ). Then, by the first observation and the fact that gCR d-

implements fX with evidence extension fR, it follows that U
(

gN(θ, fR(θ)), fR(θ)|θ
)

≥

U(gCR(t(e), fR(t(e))), fR(t(e))|θ) = u (fX(t(e))|θ), completing the proof.

By proving the following proposition, we establish the sense in which WET is also

necessary for control to have no value.

Proposition 11. Given any type structure (Θ, p) and associated evidence structure (E, E),

if (E, E) violates WET, then there exists a preference structure (X, u) such that control

has value.

The proof of this proposition exploits properties of two binary relations that we now

introduce. First, for any pair of types (θ, θ′) ∈ Θ×Θ, let θ ⊥e θ′ if and only if E(θ) 6⊆ E(θ′)

and E(θ′) 6⊆ E(θ), so the binary relation ⊥e expresses that each type has some evidence

that the other does not have. Note that, while symmetric and irreflexive, ⊥e is not

transitive, in general. Second, for any subset of types Θ̃ ⊆ Θ, we say that a pair of types

from this subset, (θ, θ′) ∈ Θ̃ × Θ̃, is ⊥e-connected in Θ̃, written as θ
⊥e

↔Θ̃ θ′, if and only

if there exists a finite sequence (θi)
k
i=1 ∈ Θ̃k, k ≥ 1, such that θ1 = θ, θi ⊥

e θi+1 for all

i ∈ {1, . . . , k − 1}, and θk = θ′. Note that
⊥e

↔Θ̃ defines a binary relation on Θ̃ that is

reflexive, symmetric and transitive.40 We now present two useful lemmas.

Lemma 4. Fix any finite sequence (θi)
k
i=1 ∈ Θk, k ≥ 2, such that θi ⊥e θi+1 for all

i ∈ {1, . . . , k − 1} and let type θ̂ ∈ Θ be such that θ̂ 6⊥e θi for all i ∈ {1, . . . , k}. Then,

either (i) E(θi) ⊂ E(θ̂) for all i ∈ {1, . . . , k}, or (ii) E(θ̂) ⊂ E(θi) for all i ∈ {1, . . . , k}.

40Reflexivity follows from the fact that we allow for k = 1. Symmetry follows from the symmetry of
⊥e, so we can “reverse” any sequence. Transitivity follows from the fact that we can concatenate any
two sequences that end and begin, respectively, with the same type.
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Proof. We prove the lemma by induction. First, we show that either (i) E(θ1) ⊂ E(θ̂) or

(ii) E(θ̂) ⊂ E(θ1): By definition, θ̂ 6⊥e θ1 says that E(θ1) ⊆ E(θ̂) or E(θ̂) ⊆ E(θ1); since

θ̂ 6⊥e θ2, however, E(θ1) = E(θ̂) would imply θ1 6⊥
e θ2, in contradiction to θ1 ⊥

e θ2.

Second, we show the induction step that, for any i ∈ {1, . . . , k − 1}, (i) E(θi) ⊂ E(θ̂)

implies E(θi+1) ⊂ E(θ̂), and (ii) E(θ̂) ⊂ E(θi) implies E(θ̂) ⊂ E(θi+1): By definition,

θ̂ 6⊥e θi+1 says that E(θi+1) ⊆ E(θ̂) or E(θ̂) ⊆ E(θi+1); if (i) E(θi) ⊂ E(θ̂), then E(θ̂) ⊆

E(θi+1) would imply E(θi) ⊂ E(θi+1), in contradiction to θi ⊥e θi+1, so we must have

E(θi+1) ⊂ E(θ̂); if (ii) E(θ̂) ⊂ E(θi), then E(θi+1) ⊆ E(θ̂) would imply E(θi+1) ⊂ E(θi), in

contradiction to θi ⊥
e θi+1, so we must have E(θ̂) ⊂ E(θi+1).

Lemma 5. Take any subset of types Θ̃ ⊆ Θ and let

P ≡ {θ ∈ Θ̃ : ∃θ′ ∈ Θ̃, θ ⊥e θ′} and Q ≡ Θ̃ \ P.

Then the following holds true:

(i) If Q is non-empty, it contains a type θ ∈ Q such that, for any type θ′ ∈ Q,

E(θ) ⊆ E(θ′).

(ii) If P is non-empty, it contains a subset P ∗ ⊆ P that has at least two types {θ, θ′} ⊆

P ∗ with E(θ) 6= E(θ′) and is such that, for any pair of types (θ, θ′) ∈ P ∗ × P ∗, we have

θ
⊥e

↔Θ̃ θ′, and for any pair of types (θ, θ′) ∈ P ∗ × P \ P ∗, we have E(θ) ⊂ E(θ′).

Proof. For (i), note that, it holds trivially if Q is a singleton. If it is not a singleton,

note that for any two types {θ, θ′} ⊆ Q, we have that θ 6⊥e θ′, implying E(θ) ⊆ E(θ′) or

E(θ′) ⊆ E(θ). Hence, the weak set inclusion ⊆ is complete on Q, and its finiteness implies

the claim.

For (ii), note that, whenever P is non-empty, the irreflexivity and symmetry of ⊥e

imply that it contains at least two elements, and the symmetry of
⊥e

↔Θ̃ implies that

(P,
⊥e

↔Θ̃) defines an undirected graph. If this graph is complete, then let P ∗ = P and the

claim follows immediately.

Otherwise, because
⊥e

↔Θ̃ is transitive, the maximal cliques of P in graph (P,
⊥e

↔Θ̃)

partition P into k ≥ 2 non-empty subsets {P1, . . . , Pk}. Moreover, note that each such

subset Pi contains at least two elements, because θ ∈ Pi implies existence of some θ′ ∈ P

such that θ ⊥e θ′, which implies both E(θ) 6= E(θ′) and θ
⊥e

↔Θ̃ θ′, so that θ′ 6= θ and

θ′ ∈ Pi. Lemma 4 implies that we can order/relabel the subsets {P1, . . . , Pk} such that,

for any i ∈ {1, . . . , k − 1} we have E(θ) ⊂ E(θ′) for any pair of types (θ, θ′) ∈ Pi × Pi+1.

Letting P ∗ = P1, the claim follows from transitivity of strict set inclusion ⊂.

With the help of the previous two lemmas, we next prove Proposition 11 in two steps.

In a first step, we show that a failure of WET implies that there is a non-empty set of
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types, which—in view of Lemma 5—we denote by P ∗, such that each type in P ∗ has the

non-maximal evidence ẽ, while every possible type θ ∈ Θ, hence including also the types

in P ∗, has some evidence that some type in P ∗ does not have. In a second step, we show

that this feature allows us to construct a preference structure (X, u) such that control has

value.

Proof. Fix any type structure (Θ, p) and associated evidence structure (E, E). Suppose

now that (E, E) violates WET, implying that there is some non-maximal evidence, say ẽ,

in E. Let

Θ̃ ≡ {θ ∈ Θ : ẽ ∈ E(θ)}

denote the (non-empty) set of all types that have the non-maximal evidence ẽ ∈ E.

Observe that non-maximality of ẽ means that for any type θ ∈ Θ, there exists a type

θ′ ∈ Θ̃ such that E(θ) 6⊆ E(θ′).

With reference to Lemma 5, consider the partition of set Θ̃ of all types that have

evidence ẽ into the two sets {P,Q} such that

P ≡ {θ ∈ Θ̃ : ∃θ′ ∈ Θ̃, θ ⊥e θ′} and Q ≡ Θ̃ \ P.

Non-maximality of ẽ implies that P is non-empty. If P were empty, then Q = Θ̃ so

that Q is non-empty and, hence, Lemma 5 (i) would imply that there exists a type θ ∈ Θ̃

such that E(θ) ⊆ E(θ′) for all θ′ ∈ Θ̃. Evidence ẽ would then be maximal with respect to

any such type θ, a contradiction.

Given P is non-empty, Lemma 5 (ii) implies that it contains a subset P ∗ ⊆ P with

at least two types that have different evidence sets and is such that, for any pair of types

(θ, θ′) ∈ P ∗ × P ∗, we have θ
⊥e

↔Θ̃ θ′, and for any pair of types (θ, θ′) ∈ P ∗ × P \ P ∗, we

have E(θ) ⊂ E(θ′).

Non-maximality of ẽ implies that for any pair of types (θ, θ′) ∈ P ∗ ×Q, we have that

E(θ) ⊂ E(θ′). This is vacuously true if Q is empty. Otherwise, by Lemma 5 (i), there

is a type θ̂ ∈ Q such that E(θ̂) ⊆ E(θ′) for any type θ′ ∈ Q. By Lemma 4, we have

that either E(θ) ⊂ E(θ̂) for all θ ∈ P ∗ or E(θ̂) ⊂ E(θ) for all θ ∈ P ∗. If the latter was

true, however, this together with Lemma 5 (ii) would imply that E(θ̂) ⊆ E(θ) for all

θ ∈ P ∗ ∪ (P\P ∗) = P and hence for all θ ∈ Θ̃, whereby ẽ would be maximal with respect

to type θ̂, a contradiction. Hence, we must have E(θ) ⊂ E(θ̂) for all θ ∈ P ∗, whereby

E(θ) ⊂ E(θ′) for any pair of types (θ, θ′) ∈ P ∗ ×Q.

Finally, non-maximality of ẽ then further implies that, for any type θ 6∈ Θ̃, there

exists some type θ′ ∈ P ∗ such that E(θ) 6⊆ E(θ′). Recall that non-maximality of ẽ directly

implies E(θ) 6⊆ E(θ̃) for some type θ̃ ∈ Θ̃. Fixing θ̃, the result trivially follows if θ̃ ∈ P ∗.

Hence, consider the non-trivial case that θ̃ ∈ Θ̃ \ P ∗, implying either θ̃ ∈ Q or θ̃ ∈ P\P ∗.
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Then, as shown above, in either case we have E(θ′) ⊂ E(θ̃) for all types θ′ ∈ P ∗, and

combining this with E(θ) 6⊆ E(θ̃) yields that E(θ) 6⊆ E(θ′) holds true for any θ′ ∈ P ∗.

This completes our first step, as we have shown that non-maximality of ẽ implies that

there is a non-empty set P ∗ of types that all have evidence ẽ and is such that every type

θ ∈ Θ has some evidence that some type in P ∗ does not have.

We are now ready to take our second step, which is to construct a particular pref-

erence structure (X, u) such that control has value. First, partition P ∗ into evidentiary

equivalence classes {Θ̃∗
1, . . . , Θ̃

∗
k} such that, for any {i, j} ⊆ {1, . . . , k} and any pair of

types (θ, θ′) ∈ Θ̃∗
i × Θ̃∗

j , we have that E(θ) = E(θ′) if and only if i = j; recall that, because

of Lemma 5 (ii), k ≥ 2. Also, let {E1, . . . , Ek} denote the evidence sets corresponding

to these equivalence classes, so that, for each i ∈ {1, . . . , k} and any θ ∈ Θ̃∗
i we have

Ei = E(θ). Now take (X, u) to be as follows:

X ≡ {x1, . . . , xk}, and u(xi|θ) ≡







1, if θ ∈ Θ̃∗
i ,

0, otherwise.

There are as many allocations as there are types with different evidence sets in P ∗, and

each type in P ∗ most prefers a unique allocation xi corresponding to his evidence set

Ei, whilst being indifferent over all others. Types not in P ∗ are indifferent among all

allocations.

Given this preference structure, there is no mechanism with non-controllable evidence

that could implement a social choice function fX such that no type in P ∗ obtains the

allocation they most prefer, i.e., that fX(θ) 6= xi holds for every i ∈ {1, . . . , k} and every

θ ∈ Θ̃∗
i . For, if there were, then, by Proposition 1, an indirect mechanism of the form

g : Θ×E → X would implement such a social choice function; however, fixing any report

θ ∈ Θ, whichever i ∈ {1, . . . , k} we choose, g(θ, ẽ) = xi implies that a type in Θ̃∗
i ⊂ P ∗

obtains his preferred allocation, a contradiction.

We complete the proof by finally showing that, with controllable evidence, there is

a mechanism that implements such a social choice function fX . Consider the (indirect)

mechanism such that the agent has to choose an element from the menu {{(xi, e)}e∈E\Ei
}ki=1.

For each i ∈ {1, . . . , k}, this menu associates the preferred allocation xi of all types in

Θ̃∗
i with all the evidence that these types do not have, which is E \ Ei. Note that

ẽ 6∈
⋃k

i=1 E \ Ei.

Recall that for every type θ (in the full type set Θ) there exists some type θ′ in P ∗ such

that E(θ) 6⊆ E(θ′), i.e., there exists some i ∈ {1, . . . , k} such that E(θ) 6⊆ E(θ′) for all θ′ in

Θ̃∗
i . Hence, E(θ)∩

⋃k

i=1 E \Ei is non-empty, and this menu mechanism implements some

social choice function. By construction, this social choice function satisfies fX(θ) 6= xi

for any θ ∈ Θ̃∗
i , for all i ∈ {1, . . . , k}, i.e., no type in P ∗ obtains his preferred allocation,
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because they have evidence Ei while xi requires evidence E \ Ei.

B.2 Proposition 5

By proving the following proposition, we first prove the sufficiency of TIWO for control

to have no value.

Proposition 12. If the preference structure satisfies TIWO, then control has no value.

Proof. In view of Proposition 2, only necessity requires proof, i.e., that any social choice

function that is d-implementable with controllable evidence is d-implementable with non-

controllable evidence. Suppose then that the preference structure (X, u) satisfies TIWO

and the social choice function fX is d-implementable with controllable evidence. TIWO

implies that there is a type-independent worst option xw ∈ X. By Proposition 3, d-

implementability of fX with controllable evidence implies that there there is some R ⊆ E

which together with gCR : Θ×R → X satisfies ICC
G for some fR : Θ → R with fR(θ) ∈ E(θ),

and d-implement fX .

In view of Proposition 1, construct a mechanism gN ∈ GN as follows: For all (θ, e) ∈

Θ× E,

gN(θ, e) ≡







gCR(θ, e), if e ∈ R,

xw, otherwise.

We will now establish the claim by showing that gN satisfies ICN
G for the evidence exten-

sion fR, from which it is immediate that gN d-implements fX .

Take then any type θ ∈ Θ. First, observe that, for any (θ′, e) ∈ Θ×R,

U
(

gN(θ, fR(θ)), fR(θ))|θ
)

= U
(

gCR(θ, fR(θ)), fR(θ)|θ
)

≥ U
(

gCR(θ
′, e), e|θ

)

,

since gCR satisfies ICC
G for fR. Second, for any (θ′, e) ∈ Θ× (E \R),

U
(

gN(θ′, e), e|θ
)

= U (xw, e|θ)

=







u (xw|θ) , if e ∈ E(θ),

−c, otherwise;

so that U
(

gN(θ, fR(θ)), fR(θ))|θ
)

= u (fX(θ)|θ) ≥ u (xw|θ) ≥ U
(

gN(θ′, e), e|θ
)

follows

from the fact that gCR d-implements fX and xw is a type-independent worst option. Hence,

gN satisfies ICN
G for the evidence extension fR, which completes the proof.
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By proving the following proposition, we establish the sense in which TIWO is also

necessary for control to have no value.

Proposition 13. Given any type structure (Θ, p) and associated preference structure

(X, u), if (X, u) violates TIWO, then there exists an evidence structure (E , E) such that

control has value.

Proof. Fix any type structure (Θ, p) and associated preference structure (X, u) that vio-

lates TIWO. For each allocation x ∈ X, let

P (x) ≡ {θ ∈ Θ : x ∈ arg min
x′∈X

u(x′|θ)}, and Q(x) ≡ Θ \ P (x).

P (x) denotes the subset of types for whom x is a worst option, and Q(x) its complement,

containing all the types for whom x is not a worst option. Note that we have ∪x∈XP (x) =

Θ, because every type has some worst option.

A violation of TIWO implies that P (x) 6= Θ and hence Q(x) 6= ∅ for every x ∈ X.

Because ∪x∈XP (x) = Θ, this implies that the collection {P (x)}x∈X has at least two

(different) non-empty sets.

Consequently, we can find two natural numbers l ≥ k ≥ 2 and express X as

X = {x1, . . . , xk−1, xk, . . . , xl}

such that P (xi) 6= ∅ (i.e., allocation xi is worst for some type) if and only if i ∈ {1, . . . , k}.

Construct now the evidence structure (E, E) such that E = {e0, e1, . . . , ek} and

ei ∈ E(θ) ⇔ i = 0 or θ ∈ P (xi).

That is, each type θ has the evidence e0 and, additionally, any evidence ei with i > 0

where i is such that xi is a worst option for type θ, i.e., θ ∈ P (xi). Because ∪
k
i=1P (xi) = Θ,

for every type θ, there exists an i > 0 such that ei ∈ E(θ), i.e., every E(θ) contains at

least one other evidence besides e0. Moreover, because P (xi) 6= ∅, every evidence ei is

held by some type θ, i.e., E = ∪θ∈ΘE(θ).

Given preference structure (X, u) and the defined evidence structure (E, E), consider

the (indirect) mechanism with controllable evidence given by the menu {(xi, ei)}
k
i=1. This

mechanism implements a social choice function fX : Θ → X such that every type receives

an allocation that is a worst option for him, i.e., θ ∈ P (fX(θ)) for every θ ∈ Θ.

By contrast, there is no mechanism with non-controllable evidence that could imple-

ment such a social choice function. For, if there were, then, by Proposition 1, there would

in particular be an indirect mechanism g : Θ × E → X that implements it. However,

fixing any type report θ ∈ Θ, whichever i ∈ {1, . . . , l} we choose for g(θ, e0) = xi, any
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type θ′ ∈ Q(xi), who always exists, can obtain an allocation that is not a worst option by

reporting θ along with presenting e0, a contradiction.

B.3 Proposition 7

Proof. Sufficiency is immediate from Lemma 1. For necessity, suppose the evidence struc-

ture (E, E) violates NOR. Let the type θ̂ be such that, for all e ∈ E(θ̂), there exists a type

θ ∈ Θ such that e ∈ E(θ) and E(θ̂) 6⊆ E(θ). The violation of NOR implies that θ̂ exists.

Consider then a preference structure (X, u) such that there are three allocations X =

{x1, x2, x3}, and the agent has type-independent preferences such that

u(x1|θ) = 1 > u(x2|θ) = 0 > u(x3|θ) = −k

for all types θ and any k ≥ (|E(θ̂)| − 1)/|E(θ̂)|, together with the social function fX such

that

fX(θ) =







x1, if E(θ̂) ⊆ E(θ),

x2, if E(θ̂) 6⊆ E(θ).

This social choice function would discriminate between those types of agent that have all

the evidence that type θ̂ has, who would receive the best allocation x1, and those types

that do not, who would receive the intermediate allocation x2.

The violation of NOR implies existence of a type θ such that e′ ∈ E(θ) and E(θ̂) * E(θ).

Letting ρ(θ) = θ′′ and δ(γN
E (θ′′)) = e′′ be the report made and evidence presented by

type θ on the path of the supposed BNE, we must have that γ̃N
X (d0|θ

′′) > 0 implies

d0(e
′′) = fX(θ) = x2, where also e′′ ∈ E(θ). However, since e′ ∈ E(θ),

∑

d0∈XE

γ̃N
X (d0|θ

′)U (d0(e
′), e′|θ) = u(x1|θ) = 1 > 0 = u(x2|θ) =

∑

d0∈XE

γ̃N
X (d0|θ

′′)U (d0(e
′′), e′′|θ) ,

contradicting that σ = (ρ, δ) constitutes a BNE of the game induced by mechanism

γ̃N = (γ̃N
X , γN

E ).

The following stochastic direct mechanism γ̃N ∈ Γ̃N has stochastic recommendations

and implements fX for k sufficiently large: The marginal distribution over evidence rec-

ommendations is

∑

d0∈XE

γ̃N(d0, e|θ) ≡



















1

|E(θ̂)|
, if E(θ̂) ⊆ E(θ) and e ∈ E(θ̂),

1
|E(θ)|

, if E(θ̂) 6⊆ E(θ) and e ∈ E(θ),

0, otherwise;
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and the (conditional) allocation rules are given by

γ̃N(d0, e|θ) > 0 ⇒ d0(e
′) =



















x1, if E(θ̂) ⊆ E(θ) and e′ = e,

x2, if E(θ̂) 6⊆ E(θ) and e′ = e,

x3, if e′ 6= e.

The marginal distribution over evidence recommendations conforms to a uniform evidence

extension, except that any type report θ such that E(θ̂) ⊆ E(θ) is treated as if it was

report θ̂. Obedient evidence presentation then yields the allocation according to fX , so

that if the agent is honest and obedient the mechanism implements this social choice

function. Disobedience yields the worst allocation for ex-post utility −k. Since x1 is the

best allocation, incentive compatibility need only be ensured for those types that under

honesty and obedience would receive allocation x2, for a utility of zero (as opposed to

one, if they received x1). Consider then any such type θ, for whom E(θ̂) * E(θ): The only

potentially profitable deviation is to report a type θ′ such that E(θ̂) ⊆ E(θ′), in which case

the probability that θ could not obey the recommendation is at least 1/|E(θ̂)|, since type

θ̂ has at least some evidence that type θ does not have. This yields the following upper

bound on the expected utility under any deviation from being honest and obedient:

(

1−
1

|E(θ̂)|

)

−
1

|E(θ̂)|
k.

The assumed lower lower bound on k implies this is non-positive, establishing incentive

compatibility of the mechanism, and hence that fX is implementable.

C On Green and Laffont’s (1986) Model and NRC

Green and Laffont (1986) study a special case of evidence structures, relative to those con-

sidered in this paper. Specifically, for a given type structure (Θ, p) with Θ = {θ1, . . . , θn},

they consider evidence structures (E, E) satisfying E = {e1, . . . , en} and ei ∈ E(θi) for all

i ∈ {1, . . . , n}. In fact, Green and Laffont would identify every evidence ei with the type

report θi. Restricting attention to mechanisms of the form gE : E → X, they essentially

show that restricting to “truthful” such mechanisms in the sense that type θi will “report”

ei is without loss if (and, in a weak sense, also only if) the evidence structure satisfies

the so-called nested-range condition (NRC). Using our Definition 1 of maximal evidence,

NRC can be usefully (re-)stated as follows.
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Definition 5. An evidence structure (E, E) in the Green and Laffont (1986) model satis-

fies the nested-range condition (NRC), if evidence ei is maximal with respect to type

θi, for every i ∈ {1, . . . , n}.

NRC immediately implies that every evidence is maximal evidence (i.e., WET). More-

over, since ei ∈ E(θi) for every i ∈ {1, . . . , n}, it also implies that every type has evidence

that is maximal with respect to himself (i.e., NOR).

The following example shows that neither WET nor NOR generally implies NRC, by

showing the stronger result that they can even be jointly satisfied while NRC is violated:

Take n = 4, where E(θ1) = E(θ2) = {e1, e2, e4}, E(θ3) = {e1, e3, e4} and E(θ4) = {e1, e4}.

Both of evidence e1 and e4 are maximal with respect to type θ4, while e2 is maximal with

respect to both of types θ1 and θ2, and e3 is maximal with respect to type θ3. Hence, every

evidence is maximal evidence (i.e., WET), and every type has evidence that is maximal

with respect to himself (i.e., NOR), but evidence e1 is not maximal with respect to type

θ1, violating NRC.

We add two further examples, which show that also within the Green and Laffont

(1986) model, none of WET and NOR implies the other. (Given NRC implies both,

the two examples also re-iterate the above point that neither WET nor NOR implies

NRC.) First, take n = 3, where E(θ1) = {e1}, E(θ2) = {e2, e3}, and E(θ3) = {e1, e2, e3}.

Evidence e1 is then maximal with respect to type θ1, while both of evidence e2 and e3 are

maximal with respect to type θ2, and none is maximal with respect to type θ3. Hence,

every evidence is maximal evidence (i.e., WET), but not every type has evidence that is

maximal with respect to himself (i.e., not NOR). Second, take again n = 3, but where

E(θ1) = E(θ2) = {e1, e2}, and E(θ3) = {e1, e3}. Evidence e2 is maximal with respect to

both of types θ1 and θ2, while e3 is maximal with respect to type θ3, and e1 is not maximal

evidence. Hence, every type has evidence that is maximal with respect to himself (i.e.,

NOR), but not every evidence is maximal evidence (i.e., not WET).

Finally, observe that a violation of NRC means that for some i ∈ {1, . . . , n}, evidence

ei is not maximal with respect to type θi. Given Green and Laffont (1986) identify

evidence ei with type report θi, this means that an honest report by type θi would not

prove all this type could possibly prove. Hence, while a literal interpretation of “report”

ei by type θi would call it truthful, this has no factual foundation (see Bull and Watson

(2007) for a closely related treatment of Green and Laffont’s model, and also its discussion

in Ball and Kattwinkel (2023)). Two observations serve to clarify this point. First, recall

Proposition 1: It shows that, by extending the mechanisms gE : E → X considered in

Green and Laffont (1986) to mechanisms gN : Θ × E → X, where the agent also makes

an “unrestricted” type report, one recovers the property that truthfulness in the sense

of honest (unrestricted) type reporting is without loss. Second, consider the following
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example.

Example 6. The principal has to decide between two allocations X = {xb, xg}, and the

agent has three possible types Θ = {θ1, θ2, θ3}. His preferences over the two allocations

are type-independent, such that he (strictly) prefers xg over xb. (We will not consider any

randomization, so this is sufficient information.)

The evidence structure consists of three possible elements E = {e1, e2, e3} distributed

over types according to

E(θ1) = E(θ2) = {e1, e2} and E(θ3) = {e1, e3}.

This corresponds to the example above, showing that an evidence structure in Green

and Laffont (1986) may satsify NOR while violating WET, hence also violating NRC.

Evidence e1 is not maximal evidence—in particular not maximal with respect to type

θ1—while e2 is maximal with respect to and possessed by both of types θ1 and θ2, and e3

is maximal with respect to and possessed by type θ3.

Note that the agent’s private information effectively concerns only what he can prove,

his preferences are common knowledge. Consider then the social choice function fX :

{θ1, θ2, θ3} → {xb, xg} such that fX(θ1) = fX(θ2) = xg and fX(θ3) = xb. There is no

mechanism gE : E → X that implements fX such that every type θi presents evidence

ei: It would have to specify gE(e1) = gE(e2) = xg and gE(e3) = xb, but then type θ3

would deviate to presenting e1. However, the mechanism gE given by gE(e2) = xg and

gE(e1) = gE(e3) = xb clearly implements fX such that every type θi presents evidence

that is maximal with respect to himself. Finally, note that extending this mechanism gE

to a mechanism gN : Θ × E → X such that gN(θ, e) = gE(e) for all (θ, e) ∈ Θ × E, we

have gN implement fX such that every type both honestly reports his type and presents

such maximal evidence. �
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