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Abstract

This paper studies high-frequency econometric methods to test for a jump in the
spread of bond yields. We propose a coherent inference procedure that detects a jump
in the yield spread only if at least one of the two underlying bonds displays a jump.
Ignoring this inherent connection by basing inference only on a univariate jump test
applied to the spread tends to overestimate the number of jumps in yield spreads and
puts the coherence of test results at risk. We formalize the statistical approach in the
context of an intersection union test in multiple testing. We document the relevance
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1 Introduction

News announcements generate significant discontinuities (jumps) in financial asset prices

and reveal important information about expectations and risks. The prevailing presence

and high information content of jumps have been demonstrated by the rich literature on

jumps in stock prices (Lee and Mykland, 2008; Lee, 2012), bond yields (Jiang et al., 2011;

Winkelmann et al., 2016) and currencies (Scaillet et al., 2020; Lee and Wang, 2020). How-

ever, the interplay in the jump behaviour of a pair of assets and the spread between them at

high-frequency is less known. In particular, yield spreads between a pair of bonds contain

economically relevant information. Negative term spreads indicate recessions (Henry and

Phillips, 2020; Yang, 2020), rising credit spreads inform about increasing default risks (Del

Negro and Schorfheide, 2013; Leombroni et al., 2021), and the yield spread between nom-

inal and inflation-indexed government bonds, commonly known as break-even inflation, is

a market-based measure of inflation expectation (Chernov and Mueller, 2012; Hanson and

Stein, 2015).

A natural approach to test for jumps in yield spreads is pursued by Boffelli and Urga

(2015). The authors consider credit spreads as an observable variable and apply a jump test

directly on the spread. However, investigating jumps in spreads between financial assets is

not as straightforward as it might seem, as an inherent multiplicity complicates the statis-

tical inference. Within the general class of continuous-time semimartingales with Brownian

and jump components, the yield spread jumps only if at least one of the underlying bond

yield processes jump contemporaneously. In practice, such coherent test results are not

guaranteed. Univariate jump tests applied to the yield spread may detect a jump while it

is possible that the same tests detect no jump when applied to the two individual bond

yields. As an example, Figure 1 shows confidence sets of the Lee and Mykland (2012) jump

test applied to the 10-year break-even inflation rate (diagonal corridor) and the underlying
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Figure 1: Confidence sets of Lee-Mykland jump tests on two bond yields and the yield
spread at Initial Jobless Claims release time on Oct 24, 2019.
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Note: We implement the Lee-Mykland test (Lemma 1 of Lee and Mykland, 2012) on 30-second bond
yields data at 8:30 a.m. EST. ‘×’ shows the estimated bond yield changes. The diagonal corridor outlines
the 99% confidence set for no jump in the yield spread. The square corresponds to the confidence set
of Bonferroni-adjusted Lee-Mykland tests applied to the two bond yields with a family-wise error rate
of 1%. The dotted areas are where incoherent test outcomes occur, i.e., a jump in the yield spread is
detected but no jump in the two bond yields. See Section 4.1 for more details of the underlying data.

nominal and inflation-indexed bond yields (square) on October 24, 2019, when the U.S.

Department of Labor Statistics released data on Initial Jobless Claims. The two dotted

areas correspond to pairs of contemporaneous yield changes with conflicting test results.

That is, neither of the two bond yields are tested to contain a jump, but the spread between

them displays evidence of a jump. The estimated yield change at the news release time is

marked as a red cross in Figure 1, which falls into the area of incoherent test results.

The incoherency is a direct consequence of the fact that multiple nested hypotheses are

involved when testing for jumps in yield spreads. It is therefore not a feature exclusive

to the Lee-Mykland test, but a property shared by all univariate jump tests applied to

spreads. Furthermore, conflicting test results are not limited to finite-sample but persist

asymptotically. Coherence is one of the most important concepts in the multiple testing

literature (Finner and Strassburger, 2002), which motivates the so-called closed or stepwise

test procedures. The closure principle of Marcus et al. (1976) is a well established criterion

in different areas of application, including clinical trails and multiple endpoint studies, see
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Liu and Hsu (2009) for example.

This paper proposes coherent tests for jumps in yield spreads. We study intersection

union tests (IUT) that are based on two elementary hypotheses: (i) the hypothesis of no

jump in both bond yields; and (ii) the hypothesis of equal yield changes in the two bonds.

The first step uses a bivariate jump test to test for a jump in at least one of the two

underlying bond yields. If the first step is rejected, we proceed with the second step to test

the equality of the two yield changes. The rejection of both elementary hypotheses detects

a jump in the spread. The proposed IUT is a special case of step-wise tests that are nested

in sequence, and hence controls the joint error rate without multiplicity adjustment, see

Hsu and Berger (1999) and further generalizations by Goeman and Solari (2010). The IUT

procedure fulfills the closure principle, which guarantees coherent test results.

Univariate tests for the presence of jumps in discretely observed semimartingale models

have been proposed by Aı̈t-Sahalia and Jacod (2009) and Lee and Mykland (2008), for ex-

ample. Dumitru and Urga (2012) provide an overview and empirical comparison of existing

tests. Hansen and Lunde (2006) highlight that trading frictions, such as price discreteness

and bid-ask bounces, play a non-trivial role at high observation frequencies. Commonly re-

ferred to as the market microstructure noise, these frictions keep observed prices and yields

away from discretely observed semimartingales, and distort simple estimators of volatility

and jumps. Therefore, Podolskij and Ziggel (2010), Aı̈t-Sahalia et al. (2012), Lee and

Mykland (2012) and Bibinger et al. (2019) provide noise-robust, univariate jump tests

in latent observation models. Extensions of the univariate methods to contemporaneous

jumps (cojumps) in bivariate semimartingale models are proposed by Jacod and Todorov

(2009) and Bibinger and Winkelmann (2015).

The first step of the IUT can be accomplished in two different ways. The first approach,

used in the construction of Figure 1, implements univariate jump tests on each of the two

bond yields with a Bonferroni correction. The Bonferroni approach is conservative in
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detecting a jump, and can be improved especially when the joint distribution of changes

in bond yields under the null is available. We propose a χ2-jump test as a more powerful

alternative by extending the local pre-averaging jump test of Lee and Mykland (2012) to

the bivariate case. While Lee and Mykland (2012) use a jump-diffusion model, their local

jump test has been generalized by Bibinger et al. (2019) to semimartingale models with

stochastic volatility and leverage. We use the same setup as Bibinger et al. (2019) but

in the two-dimensional space. A feasible central limit theorem for changes in a pair of

bond yields at a given event time under the hypothesis of no jumps forms the basis of the

χ2-jump test. Bivariate jump tests are conceptually different to cojump tests, because they

have power against jumps in only one of the two bonds.

The limiting distribution of the two bond yields is also used in constructing the test

for equal yield changes in the second step of the IUT. Since the spread is the difference of

the two underlying bond yields, testing for equal yield changes is the same as testing the

spread for a jump. Therefore, the second step of the IUT applies the Lee-Mykland jump

test to the spread. The two-step IUT procedure makes use of the information on the two

underlying bond yields when testing for jumps in the spread. In contrast, a single-step

univariate jump test on the spread ignores information on the two bond yields and treats

all combinations of bond yield changes that result in the same yield spread equally.

We quantify the benefit of guarding against incoherency via simulations. Across differ-

ent significance levels and correlations between the two bond yields, the Bonferroni-based

IUT reveals that up to 90% of the falsely detected spread jumps by the univariate proce-

dure are incoherent. The percentage reduces to around 50% for the χ2-based approach.

Although asymptotically, incoherent test results can only occur under the global null hy-

pothesis, simulations show that in finite sample, incoherent results also occur under the

alternative of a jump in the yield spread with non-negligible probabilities. While guarding

against incoherency appears desirable under the global null hypothesis of no jumps, it is
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costly under the alternative as it reduces the power of the jump test on the spread. By the

consistency of the elementary tests, such costs in the form of power losses vanish in large

sample while the benefit of coherent test results remains.

We demonstrate the spread jump tests using high-frequency data on U.S. government

bond yields from 2017 to 2019. High-frequency data of U.S. government bonds have been

studied by Jiang et al. (2011), Hördahl et al. (2020), and the references therein. In contrast

to previous papers, we study the occurrence of conflicting test results by focusing on term

spreads and break-even inflation rates at major macroeconomic news release times. Using

the same Bonferroni-based IUT procedure as in Figure 1, up to 25% of the locally detected

spread jumps do not have corresponding jumps in the two underlying bond yields. Such

probabilities decrease to around 5% when using the χ2-based IUT. The empirical results

confirm that the proposed IUT based on the χ2-jump test appears to be a good compromise

in establishing coherence of the test at a minimum reduction in the detection of spread

jumps.

The remainder of the paper is structured as follows. Section 2 introduces the econo-

metric model for the bond yields and the tests for a jump in the yield spread. Section 3

compares the IUT and the Lee-Mykland test applied to the yield spread via simulations.

Section 4 demonstrates the usefulness of the proposed IUT using high-frequency bond yields

data. Finally, Section 5 concludes. Detailed technical assumptions and proofs are delegated

to the online appendix, as well as additional simulation results and empirical analyses.

2 Econometric method

This section introduces the theoretical framework to investigate jumps in two bond yields

and their spread at some fixed point in time using intra-day data observed with market

microstructure noise.
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2.1 Underlying stochastic process

Let yt denote the time-t vector of bond yields that relates to the efficient prices of some

bond a and bond b.1 We consider yt on a normalized interval with some fixed start and

end time, surrounding a fixed and exogenous event time τ . In our empirical application,

τ is determined by some pre-scheduled macroeconomic news release. The bond yields can

be described by a continuous-time bivariate Itô semimartingale:

yt = y0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt, t ∈ [0, 1]. (1)

The continuous part consists of the starting value y0, a two-dimensional drift bt, the 2× 2

spot-covolatility Σt = σtσ
′
t, and a two-dimensional standard Brownian motion Wt. Jt is a

purely discontinuous process that can be completely characterized by its jumps. Assump-

tions on the different components of yt are further formalized in Appendix (A). Model (1)

is fairly general and includes most models for asset prices in financial econometrics, partic-

ularly those introduced by Duffie and Kan (1996) for bond yield processes. The occurrence

of jumps is not restricted to the event time τ , but can be distributed anywhere on [0, 1].

The statistical methods below remain valid, provided that the estimation of covolatility Σt

is robust to such jumps at t 6= τ .

If we were able to observe yt in continuous time, we could have observed all jumps

directly. The return ∆yt = yt−yt−, yt− = lims<t,s→t ys is zero in the case of no jump at time

t, and ∆yt = ∆Jt otherwise. However, in any practical applications we have only finitely

many observations of the two bond yields. We consider observation times tj, j = 1, ..., n,

that are discrete, synchronous, and equally spaced across bonds. The sampling interval

tj − tj−1 has length 1/n. Besides the finite n, we follow most of the market microstructure

1For a zero coupon bond the relationship between yields, yt, and prices, Pt, is y
(i)
t = − logP

(i)
t /m(i),

with time to maturity m(i), i = a, b. Detecting jumps in the bond yields and bond prices are interchange-
able. Given the focus of the paper, we refer to yields directly instead of log-prices.
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literature and posit an additive, latent observation model in discrete time:

ỹj = ytj + ǫj. (2)

ỹj is the observed noisy version of the efficient process ytj , where ǫj ∼ (0, η), j = 1, ..., n,

is the market microstructure noise with a 2 × 2-dimensional covariance matrix η. Aı̈t-

Sahalia and Yu (2009) find a negative relationship between the level of the noise variance

and different liquidity measures. Less liquid assets usually have larger noise variance.

Distorting effects through potential differences in the liquidity of bonds are captured by

the noisy observation model (2). Methods to test for significant noise are proposed by Aı̈t-

Sahalia and Xiu (2019), for example. Similar to the jump component, increments of the

noise term do not vanish asymptotically. Hence, covolatility estimators that are not robust

to market microstructure are asymptotically dominated by the noise. Jump detection is

more complicated in cases where jump returns are weakened by the noise while no-jump

returns are amplified. Lee and Mykland (2012) highlight the importance of noise-robust

jump tests compared to methods that do not account for market microstructure noise. The

market microstructure is assumed to be an i.i.d. process independent of yt. We extend to

a more general setup in the simulation with endogenous and heteroskedastic noise.

2.2 Bivariate distribution of pre-averaged event returns

Given the noisy observation model (2), smoothing the observed yields is the natural ap-

proach to diminish the impact of market microstructure noise. Following the general pre-

averaging approaches of Podolskij and Vetter (2009), Jacod et al. (2009) and Christensen

et al. (2010), we use the average of the observed yields over Mn discrete noisy observations

ỹj = (ỹ
(a)
j , ỹ

(b)
j )′,

ŷj = M−1
n

(j+Mn−1)∧n
∑

i=j

ỹi, j = 1, ..., n, (3)
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where the block length Mn = c
√
n is an integer, and c is a constant tuning parameter. The

block length balances the orders of the noise and continuous component of the efficient

yields. Since the microstructure noise is centered and serially uncorrelated, taking averages

of the noisy observations reduces the impact of the noise component. As a result, the

estimated return vector at announcement time τ ,

∆ŷ⌈τn⌉ = ŷ⌈τn⌉ − ŷ⌈τn⌉−Mn
, (4)

is close to the latent increment of the yield ∆yτ , and is no longer dominated by the noise.

The index ⌈τn⌉ denotes the smallest integer larger than τn, and accounts for the case where

the announcement time does not exactly match with the observation times of the processes.

The following proposition describes the limiting distribution of the estimated event return

of the two bonds ∆ŷ⌈τn⌉ = (∆ŷ
(a)
⌈τn⌉, ∆ŷ

(b)
⌈τn⌉)

′. It is a direct extension of Proposition 3.1 of

Bibinger et al. (2019) from the univariate to the bivariate case.

Proposition 2.1 In the model presented in Section 2.1 under Assumptions 1 and 2 in

Appendix (A), the return vector (4) of the pre-averaged yields satisfies

n1/4
(

∆ŷ⌈τn⌉ −∆yτ
) (st)−→ MN

(

0,Γτ

)

, (5)

where MN denotes a mixed normal distribution, and the covariance matrix Γτ has elements

Γ(i,j)
τ = 1/3

(

Σ(i,j)
τ + Σ

(i,j)
τ−

)

c+ 2c−1η(i,j), i, j = a, b. (6)

Proposition 2.1 shows that the simple pre-averaging approach consistently estimates the

event return. The limiting spot variances Σ
(i,i)
τ , i = a, b and covariance Σ

(a,b)
τ can be random

(in the case of stochastic volatility, for example), and therefore the limiting distribution

in (5) is a mixed normal. The return estimator has the optimal rate of n1/4, which is a

direct consequence of the choice of the block length Mn and the order of the continuous

components of the yield yt. As the variance-covariance matrix in (6) indicates, the diagonal

and off-diagonal elements of Γτ have the same structure, provided that the microstructure
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noise displays a non-zero covariation between bonds a and b, η(a,b) 6= 0. Γτ accounts for

contemporaneous jumps in (co)volatility by referring to spot (co)volatility before (Στ−)

and at (Στ ) the event time.2

Stable convergence in law (st) and a consistent estimator of the covariance Γ̂τ provide

a feasible, self-normalizing version of (5), which we will exploit below. Compatible esti-

mators for integrated (co)volatility and noise variance in the present modelling context are

proposed by Christensen et al. (2010) and Koike (2016).

2.3 Tests for jumps in bond yields

To study whether at least one of the two bond yields yt = (y
(a)
t , y

(b)
t )′ jump at event

time t = τ , we aim at distinguishing the (point) hypothesis H
B
0 (τ) : ∆yτ = 0 from the

alternative HB
1 (τ) : ∆yτ 6= 0, where the superscript B refers to the two bond yields. Under

H
B
1 (τ), the yields of either bond a or bond b, or both jump at time τ . We consider two

ways to approach this testing problem.

The first approach is to use the local Lee-Mykland jump test in Proposition 3.1 of

Bibinger et al. (2019) on the two bond yields separately with a Bonferroni adjustment:

ϕB
α(Bonf) = ✶

{∣

∣

∣

∣

n1/4 ∆ŷ
(a)
⌈τn⌉

√

Γ̂
(a,a)
⌈τn⌉

∣

∣

∣

∣

> q1−α/4(N) ∪
∣

∣

∣

∣

n1/4 ∆ŷ
(b)
⌈τn⌉

√

Γ̂
(b,b)
⌈τn⌉

∣

∣

∣

∣

> q1−α/4(N)

}

. (7)

We decide in favor of HB
1 (τ), if at least one of the univariate test statistics is larger than the

(1 − α/4)-quantile of the standard normal distribution, q1−α/4(N). While the Bonferroni

approach controls the family-wise error rate at α, it ignores the correlation between the two

test statistics. Thus, it is conservative in testing H
B
0 (τ), especially when the event returns

of the two bonds are highly correlated.

The second approach improves upon the Bonferroni test using the bivariate distribution

of event returns from Proposition 2.1.

2See, for example, Bibinger and Winkelmann (2018) and Li et al. (2021), for studies on jumps in
(co)volatility.
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Corollary 2.2 Given Proposition 2.1, under HB
0 (τ), the bivariate χ

2-jump test at the event

time τ ,

ϕB
α(χ

2) = ✶

{√
n ∆ŷ′⌈τn⌉Γ̂

−1
τ ∆ŷ⌈τn⌉ > q1−α

(

χ2(2)
)

}

, (8)

is an asymptotic level-α test. q1−α(χ
2(2)) denotes the (1 − α)-quantile of the χ2 distribu-

tion with two degrees of freedom. The test is consistent under the alternative H
B
1 (τ) with

divergence rate n1/2.

Corollary 2.2 shows a standard result in multivariate statistics for the sum of squares of

whitened event returns, zτ = Γ̂
−1/2
τ ∆ŷ⌈τn⌉. Under H

B
0 (τ), elements of the 2×1 vector n1/4zτ

are independent standard normal random variables. As a result, the sum of squares
√
n z′τzτ

in (8) has an asymptotic χ2 distribution with two degrees of freedom. The
√
n convergence

rate is a direct consequence of the n1/4 rate of pre-averaged returns in Proposition 2.1. The

χ2-jump test is efficient in the sense that its (1− α)-confidence set spans the smallest area

in the two-dimensional event-return space among all level-α tests of HB
0 (τ).

2.4 Tests for jumps in yield spreads

The test for a jump in the yield spread can be translated into the composite hypothesis

H
S
0(τ) : ∆y(a)τ −∆y(b)τ = 0 against H

S
1(τ) : ∆y(a)τ −∆y(b)τ 6= 0,

where the superscript S refers to the spread. Under the null hypothesis, yield changes of

bond a and bond b at time τ are identical, which implies that either both bonds do not

jump or cojump with the same jump size. Therefore, HS
0(τ) is equivalent to no jump in

the yield spread at time τ . The alternative hypothesis states that there is a jump in the

spread at time τ . It reveals a necessary condition for a jump in the yield spread—a jump in

the spread occurs only if at least one of the underlying bond yields has a jump: ∆y
(i)
τ 6= 0

for i = a or i = b. This relationship imposes a multiple testing problem, since evidence

supporting H
S
1(τ) should be confirmed by rejecting H

B
0 (τ).
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The first and probably most natural approach to test HS
0(τ) in our model context is the

Lee-Mykland test applied to the spread. Using Proposition 2.1, we obtain the test function

ϕS
α(LM) = ✶







∣

∣

∣

∣

∣

∣

n1/4
∆ŷ

(a)
⌈τn⌉ −∆ŷ

(b)
⌈τn⌉

√

Γ̂
(a,a)
τ + Γ̂

(b,b)
τ − 2 Γ̂

(a,b)
τ

∣

∣

∣

∣

∣

∣

> q1−α/2(N)







. (9)

The test statistic has the change in the spread at the event time in its numerator and

the standard deviation of the change in the spread in the denominator. Notice that (9) is

analog to the difference-in-differences approach, where we test whether some “treatment”

at time τ results in significantly different responses of the two bonds. While ϕS
α(LM) is a

consistent level-α test, the following corollary states that it is not coherent.

Corollary 2.3 Assume Proposition 2.1 and the validity of the global null hypothesis HB
0 (τ).

Then, for significance levels 0 < α < 1, the test ϕS
α(LM) is not coherent for H

S
0(τ). That

is, for any level-α test ϕB
α of HB

0 (τ), the impossible event of HB
0 (τ)∩H

S
1(τ) is detected with

non-zero probability: P
(

ϕB
α = 0, ϕS

α(LM) = 1
)

> 0.

The non-zero probability in Corollary 2.3 is an immediate consequence from testing a

specific point in the event-return space, HB
0 (τ), jointly with a set of values, HS

0(τ), at the

same level α, while the former is a special case of the latter. The probability of conflicting

test results under the hypothesis of no jumps in Corollary 2.3 can be expressed as integrals

of bivariate normal distributions when replacing ϕB
α by either ϕB

α(χ
2) or ϕB

α(Bonf) from

Section 2.3. Appendix (A) provides the derivation for the Bonferroni case, which more

formally proves Corollary 2.3. Under the alternative H
B
1 (τ), the probability of conflicting

test results is zero because all three tests in (7), (8) and (9) are consistent. However,

contradictory test results can still occur under the alternative hypothesis in finite sample,

which we demonstrate via simulations in Section 3.

A coherent test for jumps in yield spreads takes into account the inherent multiplicity

by jointly testing for jumps in the underlying bond yields. A joint test considers different
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partitions of the event-return space and motivates the following intersection union test.

Proposition 2.4 Based on the elementary tests provided in (7), (8) and (9), the intersec-

tion union test (IUT) for jumps in yield spreads at time τ and significance level α,

ϕS
α(IUT, k) = ✶

{

ϕB
α(k) = ϕS

α(LM) = 1
}

, k = χ2, Bonf, (10)

is a coherent test of HS
0(τ) with strong error rate control, P

(

ϕS
α(IUT, k) = 1

)

≤ α.

In analog to the step-wise procedure of Hsu and Berger (1999), we first verify the more

restrictive hypothesis HB
0 (τ) using either ϕB

α(χ
2) or ϕB

α(Bonf) at level α in the first step. If

H
B
0 (τ) is rejected, we proceed to test HS

0(τ) at level α with ϕS
α(LM) in the second step. A

jump in the yield spread is detected if and only if the hypotheses in both steps are rejected.

The IUT in fact tests the union of both elementary null hypotheses against the intersection

of their alternatives. The two-step procedure controls the probability of a false rejection

to be α at most for all possible configurations of true null hypotheses without the need of

any multiplicity correction across the two steps. It follows the closed testing principle of

Marcus et al. (1976) to test hypotheses that are nested in sequence, starting with the most

restrictive one. In the current context, the closed testing principle requires rejecting the

intersection H
B
0 (τ)∩H

S
0(τ) at level α in the first step, before testing H

S
0(τ) at level α in the

second step. The two steps of the closed test procedure are compatible to those of the IUT

procedure, because H
B
0 (τ) is a special case of HS

0(τ), and H
B
0 (τ) ∩H

S
0(τ) is identical to the

more restrictive hypothesis HB
0 (τ). The closed test principle provides a link to the power

considerations in Finner and Strassburger (2002), see also Goeman and Solari (2010).

We illustrate the IUT using data on the U.S. nominal and inflation-indexed bond yields

on October 24, 2019, which are used in constructing Figure 1. Figure 2 depicts the accep-

tance and rejection regions of the IUT at level α = 0.01. The confidence set of the IUT

takes the union of the confidence sets in the two steps. Panel (a) combines the square-

shaped confidence set of the Bonferroni-adjusted test ϕB
α(Bonf) on the two bond yields in
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Figure 2: Partitions of the event-return space identified by the IUT.

(a) ϕS
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(b) ϕS
α(IUT, χ2)
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Note: The gray shaded area are the confidence sets of the respective IUT at α = 0.01. The white areas
form the intersection alternative, where both elementary tests reject their null hypotheses, and a jump
in the yield spread is detected. Data used in constructing these plots are the same as in Figure 1, i.e.
30-second observations on U.S. 10-year nominal and inflation-indexed bonds on October 24, 2019.

the first step, with the diagonal corridor, which is the confidence set for the univariate jump

test on the spread ϕS
α(LM) in the second step. Panel (b) uses the χ2 bivariate jump test

ϕB
α(χ

2) in the first step, which replaces the square in Panel (a) by an ellipse. The variance-

covariance matrix of the event return Γτ determine the shape of the confidence sets in

Figure 2. According to (9), the diagonal corridor is narrower (wider) if the estimated bond

returns have a larger (smaller) covariance. While the covariance has no effect on the square-

shaped confidence set of the Bonferroni-based test (7) in Panel (a), a smaller magnitude

of the covariance forms the widely stretched elliptical shape of the χ2 test (8) in Panel (b)

towards a circle.

It is evident from Figure 2 that the confidence set of the χ2-based IUT occupies a smaller

area in the event-return space. Hence, compared with the Bonferroni-adjusted approach,

the χ2-based IUT is more powerful in detecting jumps across combinations of event returns

of the two bond yields. Moreover, the cost of achieving coherent test outcomes for the

χ2-based IUT relative to the univariate jump test on the spread ϕS
α(LM) seems small, as

its rejection area in Panel (b) is close to that of the univariate jump test on the spread.
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We quantify these differences in finite sample in the simulation study.

Remark 1 Because the second step of the IUT applies the Lee-Mykland test ϕS
α(LM) on

the yield spread at level α, it directly follows that the joint probability that the test ϕS
α(LM)

detects a jump in the spread but no jump is detected in the individual bond yields using

ϕB
α(k), k = Bonf, χ2, is the same as the probability of conflicting test results of the coherent

and incoherent tests for spread jump ϕS
α(IUT, k) and ϕS

α(LM):

P
(

ϕS
α(LM) = 1, ϕS

α(IUT, k) = 0
)

= P
(

ϕS
α(LM) = 1, ϕB

α(k) = 0
)

, k = Bonf, χ2.

Remark 1 states that for comparing the coherent IUT procedure with the incoherent

Lee-Mykland test, we can focus on situations where the Lee-Mykland test finds a jump

in the yield spread, while at the same time, the jump test on the two bond yields, either

ϕB
α(Bonf) or ϕ

B
α(χ

2), does not detect a jump. This is because the second step of the IUT is

identical to the univariate Lee-Mykland test ϕS
α(LM). We use this strategy in the simulation

and the empirical study to evaluate the usefulness of the IUT in eliminating the incoherent

test outcomes.

3 Simulation study

The simulation compares the IUT against the Lee-Mykland test applied to the spread.

According to Remark 1, we focus on situations where we find no jumps in the two bond

yields but a jump in the yield spread. We also investigate the power and size properties of

the proposed IUT procedure. As these results are closely linked to the simulation studies

in Lee and Mykland (2012), we leave them in Appendix (B).

3.1 Simulation design

The simulation setup emulates that of Lee and Mykland (2012) in a bivariate factor stochas-

tic volatility model. We consider observations of the two bond yields on a normalized,
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three-hour interval centered around the event time τ . The two bond yields are specified as

dy
(a)
t = σt dWt + J

(a)
t dN

(a)
t ,

dy
(b)
t = ρσtdWt +

√

1− ρ2σtW̃t + J
(b)
t dN

(b)
t , t ∈ (0, 1],

(11)

with a Heston-type stochastic volatility

dσ2
s = 0.0162

(

0.8465− σ2
s

)

ds+ 0.117 σs dBs + J
(σ)
t dN

(σ)
t . (12)

The continuous component of the yields is driven by independent standard Brownian mo-

tions Bt, Wt and W̃t. ρ determines the correlation of the continuous component of the two

yields. The parameters in (12) are adopted from Lee and Mykland (2012). With 252 trading

days per year, the parameters in (12) imply a yearly volatility of
√
252× 0.8465 = 14.6

and a half-life of roughly two month ((log 2)/0.0162 = 42.79). We follow Aı̈t-Sahalia et al.

(2020) in the modelling of jumps. The jump component of the two bond yields consists

of a systematic and an idiosyncratic part. The idiosyncratic part has jump size J
(i)
t which

follows a double exponential distribution,

J
(i)
t =



















exp(g
(i)
+ ) with probability p(i)

− exp(g
(i)
− ) with probability 1− p(i),

t ∈ (0, 1], i = a, b, (13)

with parameters (g
(i)
+ , g

(i)
− , p(i)) = (3

√

1/n, 3
√

1/n, 0.5). Therefore, the average size of the

idiosyncratic jumps is 3
√

1/n in absolute value. The timing of idiosyncratic jumps in yields

is determined by independent Poisson processes N
(i)
t , i = a, b, with 126 expected jumps per

year. In contrast to the idiosyncratic jumps, we restrict the systematic part of the jump

processes to the event time t = τ . We set J
(a)
τ = J

(b)
τ = 0 under the null hypothesis, and

J
(a)
τ = 0 and J

(b)
τ = 0.3 when examining the tests under the alternative hypothesis. The

latter leads to a jump size of 0.3 on the yield spread. Appendix (B) contains more results

on how different jump sizes affect the size and power of the IUT, where we set the jump

size as multiples of the estimation noise.

16



Jumps in volatility affect both bond yields. Therefore, we model volatility jumps at the

time of the systematic jump only, that is N
(σ)
t = ✶{t=τ}. The jump size J

(σ)
τ is exponentially

distributed with mean 0.04. According to (6), larger volatility jump at τ makes it harder

to detect jump in the bond yields and the spread between them. Thus, larger volatility

jumps elevate the level of the estimation noise in a similar manner as the microstructure

noise. The market microstructure noise is simulated as

ǫ
(i)
j = 0.0861∆y

(i)
tj + 0.06

(

∆y
(i)
tj +∆y

(i)
tj−1

)

+ Uj, j = 0, . . . , n, i = a, b, (14)

where (Uj)0≤j≤n is a sequence of normally distributed random variables with mean 0 and

variance q2 = 0.01. The cross-correlation between the yields yt and the noise violates one

of our theoretical assumptions. However, simulation results show that this correlation does

not affect the finite-sample performance of the test. Notice that if the noise in (14) has

variance 0.01, it contributes
√
2× 0.01 = 0.14 to each of the observed yield changes such

that a jump of size J
(b)
τ = 0.3 is about two-times this standard deviation. Appendix (B)

provides details on the estimation of the (co)volatility and noise using the approach of

Christensen et al. (2010) and Koike (2016).

3.2 IUT versus univariate Lee-Mykland test

The simulation uses R = 300, 000 repetitions for each combination of significance level α ∈

[0.01, 0.15] and correlation ρ ∈ (−1, 1). We start with a sampling frequency of 1-second,

which leads to n = 10, 800 on a three-hour interval. This mimics the asymptotic results

by using a large number of high-frequency observations. Figure 3 depicts the frequency of

conflicting test outcomes under the null HB
0 (τ) of no jump in the two bond yields (and the

spread) for varying α and ρ. For given values of α and ρ, the frequency of conflicting test

results is defined as the ratio

∑R
i=1 ✶{ϕB

α,i(k) = 0}✶{ϕS
α,i(LM) = 1}

∑R
i=1 ✶{ϕS

α,i(LM) = 1}
, k = Bonf, χ2, (15)
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Figure 3: Probability of incoherent test results for varying α and ρ.

(a) χ2 test (b) Bonferroni

Note: The two surfaces represent P
(

ϕB
α(k) = 0|ϕS

α(LM) = 1) under the global null hypothesis of no
jumps, k = χ2 in Panel (a) and k =Bonf in Panel (b). Simulations are based on R = 300, 000 repetitions,
n = 10, 800 and q = 0.1.

which estimates the probability that no jump is detected in the two bond yields, conditional

on a detected spread jump using the univariate Lee-Mykland test. According to Remark

1, the numerator in (15) is equivalent to the occurrence of incoherent test outcomes where

the IUT detects no jump while the Lee-Mykland test applied to the spread detects a jump.

The denominator in (15) estimates the probability of detecting a spread jump, which under

H
B
0 (τ) should be close to α.

We highlight two special cases in Figure 3: ρ = 0.8 combined with α = 1% and 10%,

respectively. When using the χ2 test to detect jumps in the two bond yields, Panel (a)

shows that the conditional probability of detecting no jump in bond yields but a jump in

the spread is 47% for α = 10% and 54% for α = 1%. That is, in the case where there

is no jump at event time τ and the Lee-Mykland jump test applied to the yield spread

detects a jump, roughly half of the false discoveries produce conflicting test outcomes.

Since the Bonferroni jump test is conservative, especially when the correlation is large, the

corresponding probabilities shown in Panel (b) of Figure 3 are even larger. With ρ = 0.8,

the conditional probability (15) is 85% for α = 10% and 91% for α = 1%.

The surfaces in Figure 3 show that conditional probability of conflicting test results
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increases as the significance level α decreases. For the χ2 test in Panel (a), the slope is

small and remains the same across different values of ρ. In contrast, the Bonferroni test

in Panel (b) displays an increasing slope when the correlation becomes higher. This is an

immediate consequence of the fact that the Bonferroni test does not take into account the

covariance of the pre-average returns, which is affected by ρ in the simulation. At the same

time, a larger correlation leads to a narrower confidence band for the Lee-Mykland test as

shown in (9), and hence smaller detected jumps in the spread. The combination of these

two tests therefore has an increasing probability of conflicting test outcomes as ρ increases.

The χ2 test depicted in Panel (a) does not suffer from this problem, because its confidence

set adapts as ρ changes. This makes the probability of conflicting test results invariant

across different correlations.

We next investigate how smaller sample sizes affect the conditional probability of con-

flicting test results. Setting the correlation ρ = 0.8, Panel (a) of Figure 4 is simulated under

the global null hypothesis of no jump, and Panel (b) is simulated under the alternative hy-

pothesis of a spread jump. The x-axis shows different sample sizes n, with n = 360 and

n = 10, 800 corresponding to the 30-second and 1-second sampling schemes, respectively.

The y-axis shows the frequency of conflicting test outcomes for a given significance level

(α = 0.1 or α = 0.01) and jump test (k = χ2 or k =Bonf). Panel (a) shows that the

conditional probability of conflicting test results under the global null is not affected by

smaller sample sizes. Consistent with results shown in Figure 3, the χ2 bivaraite jump test

has conditional probabilities of around 50% contradicting the Lee-Mykland test outcome

on the spread, while the conditional probabilities for the Bonferroni approach is over 80%.

Panel (b) of Figure 4 imposes a jump on the yield spread. The probability of conflicting

test results shown in Panel (b) can be interpreted as the power loss of using the IUT over

the Lee-Mykland test on the spread alone. The power loss is the larger in smaller samples.

For example, with α = 0.01 and 15-second to 30-second sampling frequencies, among all
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Figure 4: Probability of incoherent test results for varying sample size n.

(a) Null hypothesis: No jump

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n

360 432 540 720 1080 2160 10800

α = 0.1, k=Bonf

α = 0.1, k = χ
2

α = 0.01, k=Bonf

α = 0.01, k = χ
2

(b) Alternative hypothesis: Spread jump

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n

360 432 540 720 1080 2160 10800

Note: The y-axis shows the frequency of conflicting test outcomes P
(

ϕB
α(k) = 0|ϕS

α(LM) = 1), k = χ2,
Bonf, when the sample size along the x-axis varies. Panel (a) is simulated under the global null HB

0 (τ)
of no jump in the two bond yields, and Panel (b) is simulated under the alternative H

S
1(τ) of a jump in

the yield spread. The jump sizes in Panel (b) are J
(a)
τ = 0, J

(b)
τ = 0.3, resulting in a spread jump of size

0.3. Simulations are based on R = 300, 000 repetitions for each sample size n. q = 0.1 and ρ = 0.8.

jumps that the Lee-Mykland test finds in the yield spread, more than 50% of the times

the Bonferroni approach does not find jumps in the two bond yields. The probability of

conflicting test results reduces for larger values of α, and is much smaller when using the

χ2 jump test. In fact the power loss in using the coherent χ2-based IUT is at most 9% for

α = 0.01 and 3% for α = 0.1. Dictated by the consistency of the Lee-Mykland test and the

IUT, the probability of conflicting test outcomes reduces to 0 as the sampling frequency

increases.

The simulations show that conflicting test results are non-negligible under both the null

and the alternative hypotheses. This underlines the benefit of coherent tests such as the

IUT from Proposition 2.4 which eliminate such contradictions. In addition, the IUT based

on the χ2 jump test comes at a relatively low cost, in that the power loss in small samples

vis-à-vis the Lee-Mykland test applied to the spread is small.
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4 Empirical evidence

This section demonstrates the usefulness of the proposed spread jump tests using high-

frequency data on U.S. government bond yields. We first use two events as examples to

illustrate the characteristics of the data and details of the proposed tests. The event study

is then extended to all major macroeconomic news releases from 2017 to 2019.

4.1 Data and two illustrative examples

Intra-day high-frequency data on U.S. government bonds are obtained from Refinitiv DataS-

cope Select. The selection procedure and entire list of bonds are given in Appendix (C).

For a given release time, we use 30-seconds mid-quotes on an interval spanning from 1.5

hour before to 1.5 hour after the news release time. Pre-averaged returns and (co)variances

build on the same methods as in the simulation, and are described in Appendix (B). Instead

of using Equation (4) to estimate the event return, we use a jump window of 1.5 minutes:

∆ŷ⌈τn⌉ = ŷ⌈τn⌉+1 − ŷ⌈τn⌉−Mn−2. This adjustment accounts for cases where the bond yields

pick up slightly before the announcement time or display delayed responses.

Figure 5 plots high-frequency break-even inflation rates (top figures) and their underly-

ing bond yields (bottom figures), as two examples. Panel (a) depicts the yield movements

around 8:30 am EST on October 24, 2019, which is also used in constructing Figure 1 in the

introduction. Panel (b) shows yield movements a few weeks later around 8:30 a.m. EST on

December 6, 2019, on which day the U.S. Bureau of Labor Statistics released the monthly

Employment Situation report. The report includes key labor market indicators such as the

non-farm payroll employment change. Although on both days the yield spread in the top

figures displays abrupt movements at 8:30 a.m., the bottom figures suggest that the events

are quite different. While in panel (b) both bond yields display a clear discontinuity, in

panel (a) such discontinuities are not as obvious.
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Figure 5: The 30-seconds bond yields and yield spread data on two event days.

(a) October 24, 2019
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Note: Yields are in percentage points. The grey shaded area represents the jump window at the 8:30 a.m.
EST news release time. The horizontal bars before and after the jump window show the pre-averaged
prices used for estimating the yield changes at the announcement time.

Table 1 tabulates some key summary statistics of the local pre-averaged returns at the

event time along with the p-values of the jump tests. For the announcement at 8:30 a.m. on

October 24, 2019, the p-values for the univariate Lee-Mykland test on the two bond yields

are 0.49 and 0.046. Confirming the observation from Figure 1 in the introduction, with a

family-wise error rate of 1% neither the nominal nor the inflation-indexed (real) bond yields

display a jump. The more efficient χ2-jump test confirms the finding of no jump in the two

bond yields at 1% level. At the same time, with a p-value of 0.004, the Lee-Mykland test

applied to the yield spread detects a jump. A stylized pattern of incoherent test results

is a positive correlation between the two event returns combined with opposite directional

event returns of the two underlying bonds. The statistics shown for December, 6 2019,

contrast such conflicting test results. The 10-year nominal bond yield has a significantly
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Table 1: Local statistics for jump tests at news release times.

Event time τ Jump test

Day Bond
Return

Variance
Corr.

(p-values)

Γ
(i,i)
⌈τn⌉ η

(i,i)
⌈τn⌉ LM χ2

Oct 24
2019

nominal -0.130 0.689 0.007
0.546

0.494
0.015

real 0.497 1.180 0.013 0.046

spread -0.627 0.885 0.004

Dec 6
2019

nominal 6.260 1.611 0.015
0.727

0.000
0.000

real 4.473 1.392 0.017 0.000

spread 1.787 0.824 0.000

Note: The event returns are the pre-average yield changes in basis points. The event time τ is 8:30
a.m. EST for both days. The correlation (Corr.) of the pre-average event returns of the two bonds is

calculated as Γ
(1,2)
⌈τn⌉/

√

(Γ
(1,1)
⌈τn⌉Γ

(2,2)
⌈τn⌉). The sample size n = 360 for each news release.

larger jump than its inflation-indexed counterpart. Hence, the news release on that day

triggers a jump in the 10-year break-even inflation rate, suggesting a significant revision of

financial markets’ inflation expectation and the inflation risk premium.

4.2 Conflicting test results

We extend the analysis beyond the two examples from Section 4.1, and implement local

jump tests at times of various macroeconomic news releases from January 2017 to December

2019. The complete list of announcements is provided in Appendix (C). There are roughly

500 events that can be classified into four broad categories based on whether it is news

on the price level, output, employment, or consumption. In addition to the break-even

inflation rates, we also provide empirical evidence on jumps in term spreads.

We conduct local level-α tests at each and every event time and report summary statis-

tics of rejections and no-rejections. That is, our statistics are informative about each

specific news release and whether it is effective in moving the bond yields and the spread.

The empirical setup does not test any global hypothesis across different news releases. The
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Figure 6: Percentage of detected spread jumps without a jump in bond yields.

(a) Break-even inflation
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Note: Percentage is computed using the ratio (15). Local level-α tests are conducted at major macroe-
conomic news release times between 2017 and 2019. Spread jumps are detected using the univeriate
Lee-Mykland test in (9). Jumps in the two bond yields are tested using the Bonferroni-adjusted approach
(7) or the χ2 test (8).

testing of global hypotheses require a joint error-rate control across events with potentially

very small local level α. Because of limited data deep in the tails of return distributions,

an empirical assessment of locally incoherent test results is not feasible for α much smaller

than 1%.3

Using the same statistic (15) as in the simulations, Figure 6 illustrates the frequency of

incoherent test results occurring. These are the percentage of news events where no jumps

are identified in the two underlying bond yields, among all events with a locally detected

jump in the corresponding yield spread using the Lee-Mykland test. Panel (a) depicts the

percentage of incoherent test results for the break-even inflation rates at three different

horizons (5-year, 10-year, and 20-year), and Panel (b) for the three term spreads (2-year-5-

year, 2-year-10year, and 2-year-20-year). Two main results stand out from Figure 6. First,

for a given local level α, the Bonferroni-adjusted approach to detect jumps in bond yields

always leads to a higher percentage of incoherent test results than the χ2 test. For example,

3 Incoherent test outcomes are a subset of rejections at the rejection boundary. The smaller the α, the
more extreme we are in the tails of bivariate return distributions, and the fewer conflicting statistics are
detectable. A potential degeneracy is the consequence of data limitation far in the tail, and not because the
incoherent test results do not exist for small local α. In fact, the simulation results in Figure 3 demonstrate
that incoherent test outcomes become more likely with smaller α.
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using the Bonferroni-adjusted test at level α = 0.05, 14 of the 90 jump events (15.6%) in the

5-year break-even-inflation rate detected using the univariate Lee-Mykland test do not have

corresponding jumps detected in neither of the 5-year nominal and inflation-indexed bond

yields. Replacing the Bonferroni approach by the χ2 test, the percentage of conflicting test

results reduces to 6 out of 90 (6.7%) detected spread jumps. The difference between the

Bonferroni and χ2 test results is larger for the break-even inflation rates in Panel (a) than

the term spreads in Panel (b). For example, 11 out of 121 (9.1%) detected jumps in the

2-year-5-year term spread are incoherent if we apply the Bonferroni approach at the 10%

level, while this number is 10 out of 121 (8.3%) for the χ2 test at the same level. As shown

in Figure 3 in the simulation section, similar probabilities of incoherent test results for the

χ2 and Bonferroni approach at a given test level occur if pre-average event returns display

small correlations. In such cases confidence regions of the χ2 test and Bonferroni test

overlap the most. This is exactly what we observe in the data: the returns in two nominal

bond yields with different maturities are in general less correlated than the returns in a

pair of nominal and inflation-indexed bond yields with the same maturity.

The second main result compares across the different significance levels. For the Bon-

ferroni approach in Figure 6, Panel (a), a smaller test-level comes with a larger frequency

of incoherent results. The frequency peaks at 24.2% for the 5-year break-even rate and

α = 0.01, when 16 out of the 66 jumps in 5-year break-even inflation are not coherent. The

downward-sloping pattern for larger α is consistent with the simulation result shown in Fig-

ure 3. The slope decreases for the less correlated event returns in the term spreads shown

in Panel (b), where the frequency of incoherent test results is more equally distributed

than in Panel (a). The lower correlation in the event returns of term spreads than those

of break-even inflation is confirmed below in Table 2. In contrast to the Bonferroni-based

approach, the percentage of conflicting results using the χ2 approach remains stable across

different α. This is in line with the results shown in Figure 3 in the simulation, where the
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Table 2: Sizes of event returns for the bond yields and yield spreads.

Break-even inflation Term spread

BEI5Y BEI10Y BEI20Y 2Y5Y 2Y10Y 2Y20Y

Bonf

Incoherent cases

bond 1 0.27 0.23 0.32 0.26 0.27 0.33
bond 2 0.25 0.27 0.18 0.32 0.23 0.21
spread 0.52 0.48 0.45 0.58 0.50 0.55
corr. 0.47 0.71 0.74 0.20 0.19 0.21
Coherent cases

bond 1 1.22 1.21 1.00 1.00 1.00 1.18
bond 2 1.07 0.97 0.80 1.36 1.12 0.93
spread 0.65 0.65 0.73 0.68 0.72 0.75
corr. 0.51 0.56 0.58 0.25 0.26 0.25

χ2

Incoherent cases

bond 1 0.22 0.52 0.51 0.14 0.28 0.42
bond 2 0.23 0.20 0.08 0.31 0.20 0.13
spread 0.44 0.64 0.59 0.45 0.48 0.51
corr. 0.48 0.44 0.38 0.16 0.15 0.25
Coherent cases

bond 1 1.17 1.19 0.95 0.99 0.96 1.11
bond 2 1.02 0.95 0.76 1.35 1.07 0.88
spread 0.64 0.64 0.71 0.68 0.71 0.73
corr. 0.52 0.56 0.60 0.25 0.25 0.25

Note: Detected spread jumps are based on a local test level of 5%. Average absolute magnitude of
pre-average event return in basis points. Upper panel refers to the Bonferroni approach (7) to detect
jumps in bond yields, lower panel to the χ2 approach (8). Coherent cases detect a jump in bond yields
and the spread, while incoherent cases do not display a jump in bond yields. Corr. is the correlation of
pre-average event returns. Based on macroeconomic data releases between 2017 and 2019.

correlation has no effect on the probability of conflicting test results for the χ2 test.

Table 2 presents the average absolute magnitude of the event returns when a jump in

at least one of the two bond yields is detected and the Lee-Mykland test on the spread

displays a jump (coherent cases; IUT as defined in Proposition 2.4). This is contrasted

with jump sizes when conflicting test results between the Lee-Mykland test on the yield

spread and the underlying bond yields occur. There are several common features across the

Bonferroni-based approach in the top panel and χ2-based approach in the bottom panel.
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Firstly, when test results are coherent, the average event returns of the two bond yields

are larger than the average event return of the yield spread, suggesting jumps in the two

bond yields are usually towards the same direction. On the other hand, when test results

are incoherent, the average event return of the spread is larger than those of the two bond

yields. This indicates that in the incoherent cases, yield changes of the two bonds are

usually in opposite directions. Secondly, the average sizes of the event returns of the two

bond yields are much larger when test results are coherent compared to when conflicting

test results occur. Last but not least, the correlation between the nominal and inflation-

indexed bonds of the same maturity is always higher than the correlation between two

nominal bonds of different maturities. This confirms the discussion on the percentage of

incoherent results shown in Figure 6.

4.3 Detected spread jumps

Table 3 summarized the test results using the three tests from Section 2.4 on the break-even

inflation rates and term spreads. The three tests are the Lee-Mykland test on the yield

spread, and the two IUTs with either the Bonferroni or the χ2 approach. The first row

of each panel reports the number of locally detected jumps across all news releases. As

expected from the discussion of the incoherent test results and Remark 1, the univaraite

Lee-Mykland test applied to the yield spread always finds the highest number of jumps,

while the IUT with the Bonferroni approach is the most conservative. Longer maturity

break-even inflation and term spreads tend to have more jumps than their shorter horizon

counter parts. Thus, longer term bond yields display a more distinctive local response to

the release of macroeconomic data.

We further classify the detected jumps in yield spreads according to the four news

categories, and calculate the percentage of news releases in each category that leads to a

jump in the spread. Although the specific number of detected jumps varies across the three
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Table 3: Frequencies of detected jumps in the yield spreads at macroeconomic news
release times.

Break-even inflation Term spread

BEI5Y BEI10Y BEI20Y 2Y5Y 2Y10Y 2Y20Y

LM 90 81 114 87 88 99

Price 31.6% 27.6% 35.6% 26.3% 22.4% 28.9%
Output 14.4% 14.1% 22.8% 17.1% 18.1% 22.1%
Employment 18.8% 16.6% 24.3% 18.8% 17.0% 17.0%
Consumption 17.0% 19.4% 25.5% 23.0% 21.0% 18.0%

IUT(Bonf) 76 76 100 80 77 86

Price 27.6% 27.6% 28.8% 26.3% 19.7% 26.3%
Output 13.9% 12.6% 20.1% 15.6% 15.6% 18.6%
Employment 15.2% 15.7% 22.4% 17.9% 15.2% 14.7%
Consumption 14.0% 18.4% 21.3% 21.0% 19.0% 16.0%

IUT(χ2) 84 78 110 84 82 91

Price 28.9% 27.6% 34.2% 26.3% 21.1% 27.6%
Output 14.4% 12.6% 22.3% 16.1% 17.1% 19.1%
Employment 17.9% 16.6% 23.4% 18.3% 16.1% 16.1%
Consumption 14.0% 19.4% 25.5% 23.0% 19.0% 18.0%

Note: Detected spread jumps are based on a local test level of 5%. The number given in the first row
of each panel breaks down to the four categories of news as reported in Table C.1. LM refers to the
Lee-Mykland test for spread jumps (9). IUT(·) refers to the intersection-union tests from Proposition
2.4, based on either the Bonferroni (Bonf) correction or the χ2 approach.

different tests, they all reflect that price-related news releases, including data on employ-

ment cost, consumer and producer price indices, lead to jumps in the yield spreads most

often. That is, the interpretation of what content causes most often a locally significant

revision in spreads is robust across the Lee-Mykland test and the two IUTs. For most

yield spreads it is not only that news releases about prices cause the most frequent local

responses, also the ranking of the other news categories with respect to their percentage is

robust across the three implemented spread jump tests. This suggests that the events that

produce incoherent test results almost equally distribute across the news categories and do

not cluster at one specific economic content.
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5 Conclusion

This paper argues that inference about jumps in the yield spread of two bonds requires a

joint approach that includes evidence on jumps in the two underlying bond yield processes.

This requirement is an immediate consequence of the high-frequency model, where a jump

in the spread exists only if at least one of the underlying yield processes has a jump. Ignoring

this inherent connection by basing inference only on a univariate jump test applied to the

spread tends to overestimate the number of jumps in yield spreads and puts the coherence

of test results at risk. We propose an intersection union test (IUT) for jumps in the spread,

which explicitly takes into account the joint jump behavior of the two bond yields and their

spread. The IUT uses a two-step procedure that includes testing the hypothesis of no jumps

in both underlying bond yields against a jump in at least one of the two yield processes. A

χ2 jump test is proposed for this task. We show using simulations and empirical examples

that the proposed coherent test is simple to implement and comes at a relatively small cost

of fewer jump classifications compared to a univariate (but incoherent) jump test applied

to the spread.

Although the methodology proposed in this paper is illustrated in the context of gov-

ernment bonds and yield spreads, it can be directly applied to other high-frequency asset

price data. For example, jumps in the value of a portfolio should occur only if the price of

at least one of the assets within the portfolio displays a jump. Similarly, stocks that are

cross-listed in different stock exchanges are expected to have the same movements under

the different listings. We can use the IUT procedure to discover mis-pricing or synergies

between them, especially at the time when earnings announcements are released. We leave

these for future research.
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ONLINE APPENDICES

A Assumptions and technical derivations

Assumptions of the underlying model

In this appendix, we are more precise about the underlying semimartingale model which

directly translates from Bibinger et al. (2019). The assumptions impose the maximal

degree of generality that still allow the estimation of pre-averaged yields (3) and returns

(4) in the context of Proposition 2.1. We consider (1) on some filtered probability space

(Ω,F , (Ft),P). The jumps Jt in (1) are split into compensated (small) jumps and finitely

many large jumps:

Jt =

∫ t

0

∫

R2

δ(s, z)✶{|δ(s,z)|≤1}(µ− ν)(ds, dz) +

∫ t

0

∫

R2

δ(s, z)✶{|δ(s,z)|>1}µ(ds, dz), (A.1)

with the jump size function δ, defined on Ω×R+×R
2, and the Poisson random measure µ,

which is compensated by ν(ds, dz) = λ(dz)⊗ds with a σ-finite measure λ. The smoothness

of the elements of the drift b
(i)
t and σ

(i,j)
t , i, j = a, b of spot squared volatility Σt = σtσ

′
t is

defined by the following assumption:

Assumption 1 In (1), for assets i, j = a, b, the drift (b
(i)
t )t≥0 is a locally bounded process.

The volatilities never vanish, inft∈[0,1] σ
(i,i)
t > 0 almost surely. For all 0 ≤ t + s ≤ 1,

t ≥ 0, some constants Cn, C̃n > 0, some β > 1/2 and for a sequence of stopping times Tn

increasing to ∞, we have that

∣

∣

∣
E
[

σ
(i,j)
(t+s)∧Tn

− σ
(i,j)
t∧Tn

|Ft

]

∣

∣

∣
≤ Cn s

β , (A.2)

E

[

sup
t∈[0,s]

|σ(i,j)
(t+t)∧Tn

− σ
(i,j)
t∧Tn

|2
]

≤ C̃n s . (A.3)

We impose the following regularity conditions on the (co)jumps
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Assumption 2 Assume for the predictable function δ in (A.1) that supω,x |δ(t, x)|/γ(x) is

locally bounded with a non-negative deterministic function γ that satisfies

∫

R2

(γr(x) ∧ 1)λ(dx) < ∞ , (A.4)

with jump activity index r, 0 ≤ r < 4/3.

The index r in (A.4) measures the (co)jump activity of the bond yields in (1). Smaller

values of r make (A.2) more restrictive. r = 0 results in finite-activity jumps and r = 1

implies jumps that are summable. The upper bound on r is proved by Bibinger et al.

(2019) to make the univariate version of Proposition 2.1 hold.

Proof of Proposition 2.1

We fill the missing part of the proof of Proposition 3.1 of Bibinger et al. (2019) for the

bivariate model. We state here only the crucial extensions of the covariance of the Brownian

component and the noise. The higher order n of the drift part allows us to neglect the

drifts. Properties of the pre-averaged estimator (drift, Brownian and jump parts) for the

individual bonds i = a, b, including the mixed normality is shown in Bibinger et al. (2019),

and carry over to the bivariate setting. Hence the missing part which proves Proposition

2.1 is the covariance between the Brownian components Ct and noise ǫ of the two assets at

some known stopping time τ , respectively.

We rewrite the vector of pre-averaged returns of the observed yields in terms of in-

crements ∆ỹj = ỹj − ỹj−1, and study the independent Brownian and noise component

separately,

M−1
n

(

Mn−1
∑

k=0

ỹ⌈τn⌉+k −
−1
∑

k=−Mn

ỹ⌈τn⌉+k

)

= M−1
n

Mn−1
∑

k=0

(

ỹ⌈τn⌉+k − ỹ⌈τn⌉+k−Mn

)

= M−1
n

(

Mn−1
∑

k=1

∆ỹ⌈τn⌉+k(Mn − k) +
Mn−1
∑

k=0

∆ỹ⌈τn⌉−k(Mn − k)

)

. (A.5)

The strategy of the proof in Bibinger et al. (2019) is then to exploit the above equation
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with respect to the individual signal parts of the process y
(i)
t , i = a, b in (2) and (1). For

the covariance of the increments of the Brownian components this gives:

Cov

[

Mn−1
∑

k=1

∆C
(a)
(⌈τn⌉+k)/n

Mn − k

Mn

+
Mn−1
∑

k=0

∆C
(a)
(⌈τn⌉−k)/n

Mn − k

Mn

,

Mn−1
∑

k=1

∆C
(b)
(⌈τn⌉+k)/n

Mn − k

Mn

+
Mn−1
∑

k=0

∆C
(b)
(⌈τn⌉−k)/n

Mn − k

Mn

]

=
Mn−1
∑

k=1

E
[

∆C
(a)
(⌈τn⌉+k)/n∆C

(b)
(⌈τn⌉+k)/n

]

(

1− k

Mn

)2

+
Mn−1
∑

k=0

E
[

∆C
(a)
(⌈τn⌉−k)/n∆C

(b)
(⌈τn⌉−k)/n

]

(

1− k

Mn

)2

,

with uncorrelated increments on disjoint intervals in case of stochastic volatility. Itô isom-

etry,

E

[
∫ t

0

σ(a,a)
s dW (a)

s

∫ t

0

σ(b,b)
s dW (b)

s

]

=

∫ t

0

E[σ(a,a)
s σ(b,b)

s ]ρ(a,b)s ds,

and the smoothness of the volatility and correlation imply that

E
[

∆C
(a)
(⌈τn⌉+k)/n∆C

(b)
(⌈τn⌉+k)/n|Fτ

]

= E

[

∫ (⌈τn⌉+k)/n

(⌈τn⌉+k−1)/n

σ(a,b)
s ds|Fτ

]

+OP (n
−2)

=
ρ
(a,b)
τ σ

(a,a)
τ σ

(b,b)
τ

n
+OP

(

√

Mn

n
n−1

)

,

for k = 1, ...,Mn − 1. Similarly, we obtain to the left of τ

E
[

∆C
(a)
(⌈τn⌉−k)/n∆C

(b)
(⌈τn⌉−k)/n|Fτ

]

= E

[

∫ (⌈τn⌉−k)/n

(⌈τn⌉−k−1)/n)

σ(a,b)
s ds|Fτ

]

+OP (n
−2)

=
ρ
(a,b)
τ− σ

(a,a)
τ− σ

(b,b)
τ−

n
+OP

(

√

Mn

n
n−1

)

.

The increments in iid noise contribute

E
[

∆ǫ
(a)
⌈τn⌉−k∆ǫ

(b)
⌈τn⌉−k|Fτ

]

= E
[

(ǫ
(a)
⌈τn⌉−k − ǫ

(a)
⌈τn⌉−k−1)(ǫ

(b)
⌈τn⌉−k − ǫ

(b)
⌈τn⌉−k−1)

]

= 2η(a,b).

Finally, in conjunction with the identities

Mn−1
∑

k=1

(

1− k

Mn

)2

=
1

3
Mn −

1

2
+

1

6
M−1

n , and
Mn−1
∑

k=0

(

1− k

Mn

)2

=
1

3
Mn +

1

2
+

1

6
M−1

n ,
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we obtain the asymptotic covariance of event returns of asset a and b:

√

MnE
[

∆ŷ(a)τn∆ŷ(b)τn

]

→
(

ρ
(a,b)
τ σ

(a,a)
τ σ

(b,b)
τ

3
+

ρ
(a,b)
τ− σ

(a,a)
τ− σ

(b,b)
τ−

3

)

c2 + 2η(a,b). (A.6)

The positivity of Γτ is a direct consequence of the additive structure in (6) and the positivity

of the noise covariance matrix η.

Proof of Corollary 2.3

We provide a general analytic expression for the dotted region in Figure 1 that relates to the

area in the event-return space where incoherent test results occur. To simplify notation, we

consider random variables x = n1/4∆y
(a)
τ , y = n1/4∆y

(b)
τ . Symmetry allows us to focus on

the upper rejection area. Integration boundaries in the x and y dimension are determined

by the Bonferroni test (7) and the Lee-Mykland test (9). The integration bounds of x are

lower: x1(α,Γ
(a,a)
τ ) = (Γ(a,a)

τ )1/2qα(N),

upper: x2(α,Γτ ) = (Γ(b,b)
τ )1/2q1−α/2(N)− (Γ(a,a)

τ + Γ(b,b)
τ − 2Γ(a,b)

τ )1/2q1−α(N).

These are the x coordinates, where the upper border of the diagonal corridor crosses the

square. The corresponding coordinates of y determine the integration bounds for y:

lower: y1(x, α,Γτ ) = x+ (Γ(a,a)
τ + Γ(b,b)

τ − 2Γ(a,b)
τ )1/2q1−α(N),

upper: y2(α,Γ
(b,b)
τ ) = (Γ(b,b)

τ )1/2q1−α/2(N).

Equipped with those bounds and the bivariate normality result from Proposition 2.1, we

can express the joint probability of conflicting test results

P
(

ϕS
α(LM) = 1, ϕB

α(Bonf) = 0
)

= 2

∫ x2(α,Γτ )

x1(α,Γ
(a,a)
τ )

∫ y2(α,Γ
(b,b)
τ )

y1(x,α,Γτ )

φ(x, y,Γτ ) dy dx,

where φ(·) refers to the bivariate normal distribution function. The probability is positive

as soon as upper integration bounds are larger than the lower integration bounds, which is
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always true, given the α level of both tests.
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B Additional simulation results

This section contains the simulation results of the the spread jump tests. We report fre-

quencies of jump detection of the univariate Lee-Mykland jump test applied to the spread

(9), as well as the IUT in Proposition 2.4.

We use the same bivariate stochastic volatility model with price and volatility jumps

as introduced in Section 3. The (co)volatility is estimated using the pre-averaging method

of Christensen et al. (2010) with a window size of ⌈√n⌉. We apply the universal threshold

with the median absolute deviation of pre-averaged returns to truncate jumps in the esti-

mation of (co)volatilities (see Koike, 2016, immediately after Theorem 5.1). The market

microstructure noise is estimated based on equation (12) of Christensen et al. (2010). We

use the ‘yuima’ package in R for our computations.

The pre-average estimator of the event return at t = τ uses a block size of Mn =

⌈√n/18⌉. The constant c = 1/18 is chosen according to Table 5 of Lee and Mykland

(2012). The simulation results do not change much by slightly increasing Mn. We simulate

jumps at the event time t = τ whose sizes are multiples of the pre-average estimation noise

γ, defined as

γ = n−1/4(Γ(i,i)
τ )1/2, i = a, b, (B.1)

with Γ
(i,i)
τ as in (6). Since the estimation noise γ directly relates to the asymptotic distri-

bution of the pre-average return estimator, it determines the detection properties of the

jump tests. The detection of a jump in yields becomes more difficult if: (i) the noise level

q is higher; (ii) the volatility of the Brownian component is larger; and (iii) the sample size

n is smaller. However, as we define jump sizes as multiples of γ, the simulated jump sizes

increase in γ. This allows studying how estimation precision of the pre-average estimators

and the noise level affect the test decisions. Notice that the simulation setup provides both

bonds (i = a, b) with the same integrated volatility and noise level, and hence γ does not

6



depend on the specific bond.

Table B.1 shows the rejection frequencies of the three spread jump tests at level α = 1%.

The three different spread jump tests are the univariate Lee-Mykland test applied to the

spread alone, and the IUT with either the Bonferroni approach or the χ2 bivariate jump

test in the first step. We consider two different sampling frequencies, 30-second (n = 360)

and 5-second (n = 2160). The top panel of Table B.1 reports the simulation results when

the noise variance is low (q2 = 0.0001), and the bottom panel for high noise variance

(q2 = 0.01). Each simulation is repeated 3,000 times. The jump sizes reported in columns

three and four belong to the null hypothesis of no spread jump, while all other columns

correspond to the alternative of a jump in the spread.

Under the null of no spread jump, all three tests exhibit reasonable size properties, with

actual sizes below the nominal level of 1%. We conduct two experiments: (i) Neither of the

two underlying bond yields has a jump at time τ (column three of Table B.1); (ii) Both

bond yields have a jump of the same size (column four of Table B.1). In the latter case, the

IUT detects jumps in the bond yields with high probability in the first step, and its test

outcome is almost fully determined by the test for equal returns in the second step. As a

result, rejection rates of all three tests are almost identical across different noise levels and

sample sizes. In particular, there is little difference between the Bonferroni and χ2-based

IUT tests under the null hypothesis.

The Power advantage of the χ2-based IUT over the Bonferroni approach becomes appar-

ent when the spread jump is induced by a jump in only one of the two bond yields. These

results are shown in columns five to seven of Table B.1. The Bonferroni-based IUT always

has lower power than the χ2 approach, because it does not make use of the information on

the covariance between the two bond yields. When the jump size is small (2γ) and noise

level is high (q = 0.1), the power loss of using the Bonferroni-based IUT compared to the

univaraite Lee-Mykland test on the spread is well above 50%. These results are consistent

7



Table B.1: Rejection frequencies of spread jump tests.

Jump
size

Bond a 0 4γ 2γ 3γ 4γ 4γ 5γ

Bond b 0 4γ 0 0 0 2γ 2γ

Noise level: q = 0.01

30-sec
(n=360)

LM 0.009 0.009 0.309 0.679 0.926 0.302 0.670
IUT(Bonf) 0.000 0.008 0.044 0.168 0.415 0.168 0.486
IUT(χ2) 0.003 0.009 0.227 0.596 0.896 0.275 0.649

5-sec
(n=2,160)

LM 0.015 0.011 0.591 0.938 0.998 0.605 0.938
IUT(Bonf) 0.001 0.011 0.136 0.479 0.773 0.506 0.887
IUT(χ2) 0.009 0.011 0.506 0.914 0.996 0.596 0.937

Noise level: q = 0.1

30-sec
(n=360)

LM 0.000 0.000 0.776 0.999 1.000 0.782 1.000
IUT(Bonf) 0.000 0.000 0.085 0.560 0.960 0.757 0.999
IUT(χ2) 0.000 0.000 0.650 0.999 1.000 0.781 1.000

5-sec
(n=2,160)

LM 0.001 0.001 0.776 0.998 1.000 0.762 0.998
IUT(Bonf) 0.000 0.001 0.141 0.594 0.941 0.726 0.995
IUT(χ2) 0.000 0.001 0.670 0.995 1.000 0.760 0.998

Note: Jump sizes in the first two rows are given as a multiple of the estimation noise γ, which is defined
in equation (B.1). Each cell shows the frequency of rejections at significance level α = 0.01 across 3,000
repetitions. LM indicates the Lee-Mykland test applied to the spread (9). IUT(Bonf) is the Bonferroni-
adjusted IUT (7) that uses the Bonferroni-adjusted Lee-Mykland test to test for jumps in the two bond
yields in the first step. IUT(χ2) implements the χ2 bivariate jump test (8) in the first step.

with findings in Section 3 under the alternative of a spread jump. In contrast, the χ2-

based IUT does not suffer from such large power loss over the univariate Lee-Mykland test.

The difference in the rejection frequencies between these two tests are below 10%, and

approaches 0 as the jump size becomes larger.

The last two columns of Table B.1 show jump detection rates when the jump in the

spread is induced by jumps of different sizes in the two bond yields. Compared to situations

when the jump in the spread is induced by a jump in only one of the two bond yields, the

test power of the univariate Lee-Mykland test is not much affected. This is because it

does not take into account the properties of the underlying bond yields. In contrast, the

two IUT procedures have higher detection rate. This increase in test power is driven the

bivariate jump test in the first step of the IUT, where jumps in the two bond yields are

8



more easily detected than a jump in only one of them. For the same reason, the difference

between the Bonferroni and χ2-based IUT procedures also become smaller.

Under the alternative hypothesis, it is not surprising that larger sample size n almost

always leads to higher detection rate. Its effect is more evident when the noise level is low

(q = 0.01). Comparing the top and bottom panels of Table B.1, we see that the power of

all tests increases when the noise level is higher, keeping other parameters fixed. This is

because the simulated jump sizes are multiples of the estimation noise γ defined in (B.1),

which increases with the variance of the microstructure noise. As a result, the simulated

jumps has larger magnitudes in the bottom panel for higher noise level.
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C Data

Table C.1: Macroeconomic news releases examined in the empirical analyses.

Subject Category Frequency Release time

Consumer price index Price Monthly 8:30 am
Producer price index Price Monthly 8:30 am
Employment cost index Price Quarterly 8:30 am

Gross domestic product Output Quarterly 8:30 am
Durable goods orders Output Monthly 8:30 am
ISM manufacturing Output Monthly 10:00 am
Chicago PMI Output Monthly 9:45 am
Empire state manufacturing Output Monthly 8:30 am
Business inventories Output Monthly 10:00 am
Production and utilization Output Monthly 9:15 am

Employment report Employment Monthly 8:30 am
ADP employment change Employment Monthly 8:15 am
Initial jobless claims Employment Weekly 8:30 am

Personal spending Consumption Monthly 8:30 am
Advance retail sales Consumption Monthly 8:30 am
Consumer confidence Consumption Monthly 10:00 am

This section provides information on the U.S. macroeconomic news announcements

and Treasury bonds data used in the empirical analyses. Table C.1 presents the list of

macroeconomic news announcements we use to investigate jumps in bond yields and yield

spreads. These announcements are classified into four broad categories: price, output,

employment, and consumption.

The high-frequency data on U.S. Treasury bond yields are obtained from Refinitiv

DataScope Select provided by Thomson Reuters Tick History. Tables C.2 provides infor-

mation on the individual nominal (left column) and inflation-indexed bonds (right column).

We use maturities that are closest to 2, 5, 10, and 20 years at the time of each news release.

When there are several bonds available, we select the bond that has the highest number of

non-zero 30-second returns on the day of the announcement, which is considered to be the

10



Table C.2: The list of U.S. Treasury bonds and TIPS used in the empirical analyses.

Treasury bonds TIPS

CUSIP Coupon Maturity CUSIP Coupon Maturity

912810ED6 8.125 15/08/2019 912828JX9 2.125 15/01/2019
912810EM6 7.250 15/08/2022 912828TE0 0.125 15/07/2022
912810EY0 6.500 15/11/2026 912828S50 0.125 15/07/2026
912810PU6 5.000 15/05/2037 912810QP6 2.125 15/02/2041
912810EZ7 6.625 15/02/2027 912810QF8 2.125 15/02/2040
912810PT9 4.750 15/02/2037 912828JE1 1.375 15/07/2018
912810FT0 4.500 15/02/2036 912828SA9 0.125 15/01/2022
912810FA1 6.375 15/08/2027 912828QV5 0.625 15/07/2021
912810EK0 8.125 15/08/2021 912828LA6 1.875 15/07/2019
912810EN4 7.725 15/11/2022 912810PS1 2.375 15/01/2027
912810PW2 4.375 15/02/2038 912828X39 0.125 15/04/2022
912810EC8 8.875 15/02/2019 912828V49 0.375 15/01/2027
912810EE4 8.500 15/02/2020 912828C99 0.125 15/04/2019
912810EL8 8.000 15/11/2021 912828UH1 0.125 15/01/2023
912810FB9 6.125 15/11/2027 912828MF4 1.375 15/01/2020
912810EP9 7.125 15/02/2023 912810PV4 1.750 15/01/2028
912810FE3 5.500 15/08/2028 9128282L3 0.375 15/07/2027
912810PX0 4.500 15/05/2038 912810FQ6 3.375 15/04/2032
912810EF1 8.750 15/05/2020 912828VM9 0.375 15/07/2023
912810EQ7 6.250 15/08/2023 912810FD5 3.625 15/04/2028
912810EG9 8.750 15/08/2020 912828K33 1.375 15/04/2020
912810QA9 3.500 15/02/2039 912828NM8 1.250 15/07/2020
912810FF0 5.250 15/11/2028 912810PZ5 2.500 15/01/2029
912810ES3 7.500 15/11/2024 9128283R9 0.500 15/01/2028
912810EH7 7.875 15/02/2021 9128284H0 0.625 15/04/2023
912810QB7 4.250 15/05/2039 912828B25 0.625 15/01/2024
912810FG8 5.250 15/02/2029 912828PP9 1.125 15/01/2021
912810EJ3 8.125 15/05/2021 912828Y38 0.750 15/07/2028
912810FJ2 6.125 15/08/2029 912828WU0 0.125 15/07/2024
912810ET1 7.625 15/02/2025 912810FH6 3.875 15/04/2029
912810QC5 4.500 15/08/2039 912828Q60 0.125 15/04/2021
912810QD3 4.375 15/11/2039 9128286N5 0.500 15/04/2024
912810FM5 6.250 15/05/2030 912810FR4 2.375 15/01/2025
912810QE1 4.625 15/02/2040 912828YL8 0.125 15/10/2024
912810FP8 5.375 15/02/2031 912828XL9 0.375 15/07/2025
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most liquid bond at a given maturity.

Table C.3 presents some statistics of the nominal and inflation-indexed bond yields used

in the empirical analyses. These statistics are calculated using 30-second bond yields data

on 430 unique announcement dates from 7am to 5pm. Panel A summarizes some simple

descriptive statistics of the 30-second returns. The first row reports that the average

number of non-zero returns ranges from 230 to 450 for different bond types and maturities.

In general, long-dated bonds tend to have more movements in the yields, which partly

reflect the liquidity level of the bond. The average yield change is always very close to

zero. We also present the mean of the yield changes after taking the absolute value of the

change to show the typical size of a 30-second return. It varies between 0.03 to 0.05 basis

points for different types of bonds and maturities on these announcement days. Lastly, the

standard deviation of the yield changes ranges between 0.09 to 0.18 basis points, which is

much larger than the average size of the return.

Table C.3: Descriptive statistics of government bond yields and yield spreads.

Maturity
Nominal bonds Indexed bonds

2Y 5Y 10Y 20Y 5Y 10Y 20Y

Panel A: observed 30-second returns

# ∆ỹi 6= 0 269 252 300 387 233 270 442
Mean ∆ỹi -0.0001 -0.0004 -0.0001 -0.0001 -0.0002 -0.0002 -0.0001
Mean |∆ỹi| 0.0387 0.0366 0.0384 0.0431 0.0455 0.0471 0.0493
St.dev. ∆ỹi 0.1114 0.1809 0.0972 0.0976 0.1537 0.1263 0.1107

Panel B: microstructure noise

p-value 0.027 0.149 0.204 0.142 0.091 0.116 0.194
rejection rate 93.7% 64.2% 52.1% 61.2% 77.9% 71.9% 53.7%
noise level 0.105 0.103 0.092 0.094 0.131 0.123 0.105

Note: The bond data are 30-second observations from 7am to 5pm on 430 macroeconomic news release
dates from 2017 to 2019. The reported sizes of the return are in basis points. The p-value refers to the
autocorrelation based test for microstructure noise proposed by Aı̈t-Sahalia and Xiu (2019). The fraction
of rejecting the null of no noise using the same test at 5% significance level is reported in row labeled
rejection rate. The average noise level is estimated using Proposition 1 of Lee and Mykland (2012).
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Panel B of Table C.3 provides evidence on the prevalence of market microstructure

noise in the bond data. We report the median p-value and the percentage of rejections at a

5% level for the autocorrelation based noise test proposed by Aı̈t-Sahalia and Xiu (2019).

The small p-values and high rejection rates of no noise, particularly for shorter-term bond

yields and yield spreads, support the importance of our noise-robust method proposed in

Section 2. The noise level in the last row of Table C.3 reports the average value of the

estimated η, obtained using the noise estimator of Lee and Mykland (2012). The noise level

has similar magnitudes to the high noise level used in the simulation in Section 3 across

different bonds and spreads, and is comparable to the standard deviation of the 30-second

returns.
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