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ABSTRACT

A higher share of cycling in cities can lead to a reduction in greenhouse gas emis-
sions, a decrease in noise pollution, and personal health benefits. Data-driven
approaches to planning new infrastructure to promote cycling are rare, mainly be-
cause data on cycling volume are only available selectively. By leveraging new
and more granular data sources, we predict bicycle count measurements in Berlin,
using data from free-floating bike-sharing systems in addition to weather, vaca-
tion, infrastructure, and socioeconomic indicators. To reach a high prediction ac-
curacy given the diverse data, we make use of machine learning techniques. Our
goal is to ultimately predict traffic volume on all streets beyond those with coun-
ters and to understand the variance in feature importance across time and space.
Results indicate that bike-sharing data are valuable to improve the predictive per-
formance, especially in cases with high outliers, and help generalize the models
to new locations.

1 INTRODUCTION

Promoting bicycle mobility in cities has several benefits: Cycling contributes to individual (Oja
et al., 2011) and public health (Woodcock et al., 2009). However, more importantly, already a
shift of 5% of vehicle kilometers from cars to bicycles would reduce transport-related greenhouse
gas emissions by 0.4% (Lindsay et al., 2011). More detailed information on current bicycle use is
needed for promoting cycling through infrastructure changes, such as new bike lanes or adjusted
traffic light phases, in an evidence-based, locally and timely targeted manner (Heesch & Langdon,
2016), especially given scarce resources, or when assessing accident cycling safety (Strauss et al.,
2015). Given the spatiotemporal complexity of cycling data, machine learning (ML) algorithms
have created many new research opportunities in this context (Klemmer et al., 2018; Rolnick et al.,
2023; Xie et al., 2020).

Long-term stationary bicycle counters provide data on sub-hourly, hourly, daily, or annual traffic
volumes. As such counters are costly, they are only installed in limited numbers across a road net-
work (Romanillos et al., 2016). While also often complemented with short-term (manual) counts
(Ryus et al., 2014), the availability of bicycle traffic counts remains temporally and spatially limited.
Accordingly, understanding how the observed counter measurements can be predicted to interpolate
traffic volume beyond those eventually is key. In the literature, counter-measurements are so far
analyzed through two main approaches. Firstly, studies detect unreliable data and interpolation
missing entries (Beitel et al., 2018). Secondly, research focusing on the contributing factors behind
the counter measurements, including simultaneous or lagged weather conditions and time factors,
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such as the day of the week and the season, (Miranda-Moreno & Nosal, 2011), public and school
holidays Holmgren et al. (2017), and bike-sharing and app-based data in predicting counter mea-
surements Miah et al. (2022). However, it has yet to be explored how the various features used for
the prediction of the counters, but especially the number of bike-sharing rides, vary in their feature
importance across time and between counters. As Yi et al. (2021) argues, this knowledge is of im-
portance for traffic planners when they want to predict traffic volumes under financial constraints. It
allows prioritization of which data should be acquired, given their cost. If a higher prediction accu-
racy is required at specific times or places, this also gives an indication of which further indicators
should be obtained for the given time or location.

Therefore, we first implement and benchmark various ML algorithms for predicting the hourly
counts of stationary counters within a city, using inputs that have been shown to be pertinent in
previous studies. The models are evaluated using RMSE. Secondly perform further experiments
to explore how the feature importance for various inputs varies over time and space. Based on
these findings, it shall thirdly be evaluated whether bike-sharing data would permit interpolating the
predictions to generate city-wide estimates of cycling volume on the hourly and street level.

2 DATA AND METHODS

2.1 DATA

We use the city of Berlin as a case study. Bicycle counter data is available for 19 long and 12 short-
term counter locations at the hourly level (SenUMVK). The dockless bike sharing data comprises
nine months from 2019 for the providers Nextbike and Call-a-bike (CityLab Berlin). Additionally,
we scrap the equivalent data for seven months in 2022 from Nextbike (Nextbike, 2020). The data
contains the departure and arrival points and times of bike trips. We interpolate the trajectories us-
ing the bicycle routing algorithm from OpenStreetMaps (OpenStreetMap contributors, 2017). From
the data, we exclude trips shorter than 100m and longer than 50km as well as trips shorter than 90
seconds and longer than 10 hours. In addition to cycling data, we use the hour, the weekday, and the
month as features, data on public and school holidays (SenBJF), weather indicators (precipitation,
sun, snow, temperature, wind speed, humidity, pressure at both the hourly and daily level) (meteo-
stat), infrastructure information indicating the maximum speed, the type of bike lanes, the number
of industry/shops/education within a 1km radius to the counter, and the distance to the city center
(OpenStreetMap contributors, 2017), as well as socioeconomic indicators, such as the population
density, average age and distribution of gender within the surrounding planning area. These plan-
ning areas are defined and used by the city for urban planning and are, on average, around 2 km2 in
size (Amt für Statistik Berlin-Brandenburg, 2020).

2.2 METHODS

We predict the hourly long-term counter measurements using the above-stated data, treating each
hourly observation individually. We use feature engineering for the bike-sharing data to create six
features: The total count of bikes each taken, returned, or rented during a given hour in the city.
Following Miah et al. (2022), we also create features of the same counts but within a 1km radius
around the counter. Several algorithms are employed to predict the counter measurements, including
multi-linear regression, regression tree, random forest, gradient boosting, XGBoost, support vector
regression, and a shallow neural network. The performance is evaluated with the root mean squared
error (RMSE). We validate using 10-fold cross-validation (leaving out a random set of hours) and
with leave-one-group-out cross-validation using only the permanent counters (leaving each counter
out once). The short-term counter serves as out-of-sample testing data.

In order to evaluate how the importance of bike-sharing features, and others, vary over time and
space, we conduct several experiments. Firstly, we want to control how features vary in importance
over time. We hypothesize, that bike-sharing might follow different usage patterns than other bike
traffic; for example, because bike-sharing users differ from average cyclists, such as that they do not
ride for leisure (Buck et al., 2013). Therefore, we train 24 separate models, one for each hour of
the day. We repeat the same experiment training seven models, one for each weekday. Secondly,
we want to control how feature importance varies over space. We hypothesize that bike-sharing is
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used predominantly in the city center (Fishman et al., 2013). Therefore we train models separately,
grouping counters by the distance to the city center.

3 RESULTS

On Train On Short-Term

CV LOGO CV LOGO

Lin. Reg. 221.25 354.27 635.19 635.19
Dec. T. 144.10 163.15 255.89 224.28
RF 118.37 142.70 224.65 218.43
SVM 143.53 154.41 173.42 176.80
Grad. Boo. 51.50 142.07 253.42 223.50
XGBoost 62.16 147.07 213.36 257.30
NN 106.46 184.85 192.50 198.15

Figure 1: Predictive RMSE for various models, trained via 10-fold cross-validation and leave-one-
group-out cross-validation. Both models are also evaluated via RMSE on the short-term counters as
testing data. The histogram depicts the hourly long-term and short-term counter measurements.

Figure 2: Feature importance across the hours, weekdays, and distance to the city center based on
the random forest models which were hypertuned with LOGO cross-validation.

Figure 1 shows the predictive RMSE of models hypertuned and evaluated with a 10-fold cross-
validation (CV) and a leave-one-group-out (LOGO) cross-validation, with the latter splitting the
data such that each training set comprises all data except those belonging to one held-out counter
of the 19 permanent counting stations. The table also reports RMSEs of the model tested on the
short-term counters. The models perform reasonably well in the regular CV, but the errors remain
high in the LOGO evaluation, which requires generalization to new locations. Further analysis
shows that this is due to the models not capturing strong positive outliers well at specific counters.
Figure 2 depicts each of the four most important features and their importance score of the random
forest models trained separately for every hour, weekday, and distance to the city center. It becomes
apparent that the count of passing bike-sharing riders within a 1km radius is the most important
feature across days and during the morning commute. On Sundays and around 6 to 9 km from the
city center, the city’s overall count of bike-sharing users is the most important feature.

4 CONCLUSION AND FUTURE WORK

By providing data-driven insights into urban bike traffic volumes, we aim to aid infrastructure plan-
ning to promote sustainable urban mobility. Here, we focused on the importance of various features,
in particular, on novel bike-sharing data, for the prediction of bicycle counts in order to enable a city-
wide time-varying interpolation of bicycle volume at the street level. We propose to use our case
study to evaluate how valuable different data sources are for this aim, in particular high-resolution
bike-sharing data. Our preliminary results indicate that bike-sharing usage is an important feature for
improving the prediction during commuting hours, which is also when the models tend to perform
the worst due to high outliers.

In our future work, we plan to better understand and predict bicycle counts by evaluating the models
at the daily level (Miah et al., 2022) and further analysis of spatial feature importance variation. Also,
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further features indicating stationary similarities among the counters shall be included to possibly
improve cross-location prediction. Additionally, we will conduct explainable time-series modeling
and resulting feature importance analysis to control for temporal local dependencies (Afrin & Yodo,
2022). For example, this could give hints if short-term counts could be used in a temporally and
spatially targeted way to improve prediction models.

We expect that the results of such analysis can be used to create temporally and spatially resolved
maps of bike traffic counts. Moreover, they may provide insights into which data sources are most
valuable for such predictions and allow cities to prioritize data collection. We aim for the results to
inform urban infrastructure planning for net zero mobility in Berlin, and the approach and insights
generalize beyond the case study.
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