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Abstract

This paper studies the spread of compliance behavior in neighborhood networks involving

over 500,000 households in Austria. We exploit random variation from a field experiment, which

varied the content of mailings sent to potential evaders of TV license fees. The data reveal

a strong treatment spillover: untreated households, who were not covered by the experiment,

are more likely to switch from evasion to compliance in response to mailings received by their

network neighbors. The overall size of the indirect effect is comparable to the direct impact of

the mailings, implying a social multiplier of roughly two. Digging deeper into the properties of

the spillover, we find (i) that it is concentrated among close neighbours of the targets, (ii) that

it increases with the treated households’ diffusion centrality and that (iii) local concentration of

equally treated households implies a lower spillover.
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1 Introduction

Interacting with individuals and firms that are suspected of violating laws is an important challenge

for many governmental agencies and regulators. Over the last decade, a significant body of research

has experimentally tested numerous strategies to improve efficacy in such interactions (see, e.g.,

Kleven et al., 2011; Dwenger et al., 2016; Shimeles et al., 2017, on mailing campaigns to enforce taxes

and other payments). While progress has been made in understanding what type of enforcement

strategies work, it is less well understood if and how such interventions generate spillovers on

untreated actors within a given social or economic network (Rincke and Traxler, 2011; Pomeranz,

2015; Brollo et al., 2017). Gaining more knowledge on how treatment-induced information diffuses

among friends, neighbors or co-workers – thus influencing the behavior among a broader population

– is important from a policy perspective: it enables authorities to target enforcement interventions

to maximize their overall impact (i.e., direct effects plus spillovers on the untreated population) and

offers, as we are going to show, a new perspective on the debate about ‘concentrated’ versus ‘widely

spread’ enforcement actions.

This paper exploits a large administrative dataset and a large-scale field experiment to study

spillovers from enforcement mailings in neighborhood networks in Austria. We explore how com-

munication among neighbors affects the compliance decision of untreated households. Our analysis

addresses the policy questions from above and contributes to the growing literature on information

transmission in networks (e.g., Banerjee et al., 2013, 2019; Alatas et al., 2016; BenYishay and

Mobarak, 2019).

We build on an experiment that tested different strategies to enforce compliance with TV license

fees (Fellner et al., 2013). The experiment introduced exogenous variation in the treatment of

50,000 potential license fee evaders. In a baseline treatment, households received a mailing that

asked them why they were not paying fees. In a threat treatment, the mailing communicated an

imminent inspection and emphasized possible financial and legal consequences from non-compliance.

Relative to a control group that did not receive any mailing, the two mailing treatments significantly

increased compliance. Mediated by a higher perceived detection risk, the threat triggered the largest

effect (Fellner et al., 2013).

This paper now studies the treatments’ impact on the compliance behavior of the untreated

population. Since neither receiving a mailing nor compliance is observable to the other neighbors,

behavior can only spread via treatment-induced communication. We first explore communication

patterns in a large online-survey. The survey documents high communication frequencies among
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neighbors, especially in rural areas. The intensity of communication declines with the distance to

the next neighbor – a pattern that matches with other studies documenting the role of geographic

proximity for social interaction (e.g., Marmaros and Sacerdote, 2006). Our survey further highlights

people’s willingness to share information on TV license fee enforcement with their neighbors.

To test whether communication generates a spillover, we use precise micro data and geo-coded

information on the full population of small Austrian municipalities to compute neighborhood net-

works based on geographic distance. Motivated by the results from our survey, we assume two

households are linked if they live within a distance of 50 meters.1 A network is composed of all

households that are directly or indirectly linked. Identification of the treatment effects on untreated

neighbors is achieved by the fact that, conditional on the number of households covered by the

experiment, the treatment of these ‘experimental households’ varies exogenously. Several pieces of

evidence offer ample support for this conditional independence assumption.

We find a pronounced spillover effect: untreated households, who were not part of the ex-

perimental sample, are more likely to switch from evasion to compliance in response to mailings

received by neighbors in the same network. Our estimates suggest that sending one additional

threat [baseline] mailing into a network increases each untreated evader’s propensity to comply

by 7 [5] percentage points. A back of the envelope calculation implies that 1,000 additional

threat [baseline] mailings spread over 3,764 neighborhood networks would induce 68 [48] untreated

households to start complying. While the comparison between direct and indirect treatment effects

is complicated by different sample compositions, it is worth stressing that the overall spillover is

similar in magnitude to the direct treatment effect. Hence, the implied social multiplier is roughly

two (and thus comparable to findings on social interaction in other domains; Glaeser et al., 2003;

Bruhin et al., 2014), meaning that the diffusion process doubles the impact of the enforcement

intervention.

The evidence on treatment spillovers turns out to be very robust. Only if we increase the distance

threshold that defines a network link to above 500 meters, or if we analyze treatment spillovers at the

level of (fairly small) municipalities, the effects vanish. The same holds for placebo tests that ignore

the geographic structure within municipalities: allocating households from the same municipality to

randomly generated networks, we again obtain a null result. Our basic findings therefore highlight

the crucial role neighborhood networks play in shaping the diffusion that underlies the spread

of compliance. Moreover, we show that behavioral changes among targeted households are not

necessary to induce compliance spillovers. While behavioral interdependencies (related, e.g., to

1We document that our main results are qualitatively robust to distance cutoffs up to 500 meters.
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the strength of social norms) do play some role, informational channels (e.g., the updating of risk

perceptions) are crucial in shaping the indirect treatment effects.

To shed more light on the properties of the communication-induced spillover and the role

of the network in the behavioral adaptation process, we approach three questions of significant

policy relevance: (i) Which households are reached by the communicated information? (ii) Which

households in the networks are ‘best targeted’ to maximize the spillovers? (iii) Are spillovers higher

when treatments are locally concentrated rather than broadly spread?

Regarding the first question, we find that the spillovers from the baseline treatment are mainly

limited to first-order (i.e., directly linked) neighbors of treated households. For the threat treatment,

the spillovers reach further into the networks. To address the second question, we study how network

centrality of targeted households (the ‘injection points’) amplifies the spillovers. Consistent with our

first finding and with theoretical models of diffusion (Banerjee et al., 2019), the data reveal strong,

positive interactions with the treated households diffusion centrality. Hence, the network structure

matters for the spillover beyond mere geographic proximity. From a policy perspective, this result

means that targeting a network’s most ‘diffusion central’ households will cet.par. maximize the

intervention’s indirect effects.

As for the third question, treatment concentration allows fewer households to learn about a

mailing, but those that do are more likely to hear about it repeatedly. Which of these two effects

dominates is ultimately an empirical question. The data show that local treatment concentration

is associated with substantially smaller treatment spillovers. The potential gains from repeated

exposure to treatment induced information are thus dominated by the ‘loss’ from reaching fewer

households. Again, this finding has a straightforward policy implication: to maximize the spillovers,

mailing campaigns should avoid local concentration.

Our study contributes to several important strands of literature. First, we advance the research

on enforcement and compliance by linking it to the networks literature (Jackson, 2008). Our results

document that communication can mediate evasion and avoidance decisions not only within firm-

(Pomeranz, 2015) or family- (Alstadsæter et al., 2018), but also within neighborhood networks.

The key innovation compared to earlier studies (e.g., Rincke and Traxler, 2011; Brollo et al., 2017)

— and research on spillovers on geographically proximate agents more general (e.g., Bayer et al.,

2008; Kuhn et al., 2011) – is that we analyze different network structures to assess how the diffusion

process induces the spillovers in an experimental setting. The network analysis as well as the

identification strategy also distinguishes the present paper from Rincke and Traxler (2011), who
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rely on an instrumental variable approach to identify enforcement spillovers from door-to-door

audits. Moreover, the focus on indirect treatment effects differs fundamentally from Fellner et al.

(2013), who solely explore the direct effects of the mailing intervention.

Our findings point out how geographic information – which is readily available in many applica-

tions – could be incorporated in algorithms that are used to target audits or inspections. Rather than

relying solely on a node’s isolated characteristics, one could account for the nodes’ positions within a

network (e.g., to put more weight on highly diffusion central actors while avoiding local concentration

of targets). Geographic information should thereby be particularly relevant when enforcement

activities are local and geographically correlated (as is the case with many door-to-door inspections

at households or firms; e.g., Olken, 2007; Khan et al., 2016). The present paper has already spurred

tax authorities and public finance researchers to start examining how non-geographic networks

contribute to enforcement spillovers (see, e.g., Boning et al., 2018).

The results from this paper also speak to a much broader set of applications that might exploit

neighborhood communication, e.g., to effectively seed fundraising (Landry et al., 2006), technologies

(Bollinger and Gillingham, 2012), health programs (Miguel and Kremer, 2004), or to improve

the effectiveness of marketing campaigns (Aral and Walker, 2011). The relevance of geographic

proximity will certainly depend on the type of communities (proximity tends to be more important

in smaller municipalities) and on the types of issues considered (whether the issue is a relevant topic

of conversation among geographic neighbors). Geographic networks have been shown to matter in

such diverse domains as households’ energy consumption (Allcott, 2011), blood donations (Bruhin

et al., 2014) or the diffusion of knowledge of the tax code (Chetty et al., 2013). Beaman et al.

(2015), who study technology adoption, show that seeding based on geographic networks works

fairly well. While seeding based on a complex model of elicited social networks increases spillovers,

the geographic network approach is cheaper and easier to implement.

Finally, our results on local treatment concentration – which builds on an inbreeding homophily

index (Coleman, 1958; Currarini et al., 2009) to capture whether neighbors are ‘similar’ in terms

of receiving the same treatment – relates to the literature on homophily (e.g., Jackson et al.,

2012; Jackson, 2015). We discuss that a local concentration of a given treatment translates into a

higher level of congruence of, e.g., neighbors’ post-treatment beliefs. Random treatment assignment

thereby ensures that, conditional on having neighbors in the experiment sample, their treatments

(and thus local treatment concentration) varies exogenously. Unlike other dimensions of similarity,

this measure is exogenous to unobserved household characteristics. We can therefore isolate the
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effect from similarity-in-treatment on the size of the spillovers. Our estimates show that local

treatment concentration reduces the spillovers. The finding is in line with the idea that similarity

of neighbours’ beliefs hampers social learning (Golub and Jackson, 2012).

The remainder of the paper is organized as follows. Section 2 provides further information

on the institutional background and the field experiment. Section 3 reports survey results on

communication patterns among neighbors. Our main data are described in Section 4. In Section 5

we present our basic results. Section 6 discusses additional results on the nature of diffusion in our

setting. Section 7 concludes.

2 Background of the Field Experiment

2.1 License Fees

Obligatory radio and television license fees are a common tool to fund public service broadcasters.

A typical license fee system is operated by Fee Info Service (henceforth FIS), a subsidiary of the

Austrian public broadcasting company. In Austria, the Broadcasting License Fee Act prescribes

that all ‘households’ (including apartment sharing communities, etc.) owning a TV or a radio must

register their broadcasting equipment with FIS. The authority then collects an annual license fee

of roughly 230 euro per household.2 Households face an incentive to evade the fee because public

broadcasting programs can be received without paying.

FIS takes several actions to enforce compliance. Using official data from residents’ registration

offices, they match the universe of residents with data on those paying license fees. Taking into

account that 99% of all Austrian households are equipped with a radio or a TV (ORF Medi-

enforschung, 2006), each resident who is not paying fees is flagged as a potential evader (unless

another household member has been identified as paying). Potential evaders are then contacted by

mail and asked to clarify why they have not registered any broadcasting equipment. Data on those

who do not respond are handed over to FIS’ enforcement division. Members from this division

personally approach households and make door-to-door inspections (see Rincke and Traxler, 2011).

A detected evader is registered and typically has to pay the evaded fees for up to several past

months. In addition, FIS can impose a fine of up to 2,180 euro. If someone does not comply with

the payment duty, legal proceedings will be initiated.

2The fee is independent of the number of household members and varies between states. In 2005, the year covered
by our data, the fee ranged between 206 and 263 euro.
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The enforcement efforts are reflected in the compliance rate: in 2005, around 90% of all Austrian

households had registered a broadcasting equipment and paid a total of 650 million euro (0.3% of

GDP; see Berger et al., 2016). The number of registered households is in constant flux. New

registrations emerge from mailing campaigns, door-to-door inspections as well as from unsolicited

registrations. The latter originate from households who register, for instance, using a web form or

by calling a hotline.

2.2 Field Experiment

Fellner et al. (2013) tested different enforcement strategies in a field experiment. In cooperation

with FIS they randomly assigned more than 50,000 potential evaders, who were selected following

the procedures described above, to an untreated control group or to different mailing treatments.

All mailings, which were sent out during September and October 2005, included a cover letter and

a response form with a prepaid envelope. The experiment varied whether or not the cover letter

included a threat. The cover letter in the baseline mailing treatment simply clarified the legal

nature of the interaction and asked why there was no registered broadcasting equipment at this

household. In the threat treatment, the letter included an additional paragraph which communi-

cated a significant risk of detection and emphasized possible financial and legal consequences from

non-compliance (see the Online Appendix).

Fellner et al. (2013) found that the mailings had a significant impact on compliance. Most of

the treatment responses occurred during the first weeks: within the first 50 days of the experiment,

only 0.8% registered their broadcasting equipment in the control group. In the baseline mailing

treatment, the fraction was 6.5pp higher. The threat treatment raised the registration rate by one

additional percentage point. Beyond 50 days, there were no observable differences in registration

rates. Complementary survey evidence suggested that, in comparison to the control group, all

mailings had a strong positive impact on the expected detection risk. Relative to the baseline, the

threat mailing further increased the expected sanction risk. This pattern is consistent with the

larger effect of the threat treatment.

The present paper studies whether the treatments triggered any spillover effects on the untreated

population that was not covered by the experiment. More specifically, we exploit the experimental

variation to analyze if the mailing interventions affected untreated neighbors of those that were

targeted. Given that neither the intervention itself (receiving a mailing3) nor the behavioral response

3Similar as in other countries, the privacy of correspondence is a constitutional right in Austria. Violations are
punished according to the penal code (§118).
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(registering with FIS and starting to pay license fees) is observable to neighbors, communication is

necessary for any spillover from treated households to untreated neighbors. In a first step, we will

therefore discuss survey evidence on communication patterns.

3 Communication among Neighbors

To study communication between neighbors we ran a survey with a professional online survey

provider. The company maintains a sample that is representative for Austria’s adult population.

From this pool we surveyed a subsample of almost 2,000 individuals. Participants were asked about

the geographic distance to and the communication frequency with their first, second and third

closest neighbors in terms of geographical (door-to-door) distance. We also elicited the relevance of

TV license fees in the communication among neighbors. Details of the survey are relegated to the

Online Appendix.

The main findings from the survey are the following: First, the average intensity of commu-

nication among neighbors is fairly high, averaging about 60% of the respondents’ communication

intensities with their best friends from work/school. This finding is in line with other evidence

suggesting that neighbors form an important part of people’s social capital. The International

Social Survey Programme’s 2001 survey, for instance, shows that 11.2% of Austrians would turn to

their neighbors as first or second choice to ask for help in case they had the flu and had to stay in

bed for a few days. Similar rates are observed for other central and north European countries (e.g.,

Switzerland: 16.0%, Germany: 9.4%, Great Britain: 10.6%). (For southern European countries

(e.g., Italy: 4.7%) and the US (6.3%) the data document lower rates.)

Second, the intensity of communication declines with geographic distance. This result, which

is again consistent with other research documenting the important role of geographic proximity for

social interaction (e.g., Marmaros and Sacerdote, 2006), is depicted in Figure 1. Communication

frequencies monotonically drop from first-, to second- and third-closest neighbors. A similar corre-

lation is observed when we explore variation in the door-to-door distance to the closest neighbor:

the further away this neighbor lives, the lower is the reported communication frequency. Once the

distance surpasses 200 meters, communication levels drop. We will return to this point below.

Figure 1 about here.

Third, the positive link between geographic proximity and communication intensity is systemat-

ically violated in larger, more urban municipalities. The survey evidence indicates that this is due
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to households living in apartment buildings. By definition, these households live very close to each

other but, at the same time, communicate fairly infrequently with their neighbors.4 This problem

does not seem to occur in more rural areas: The survey data show that in small municipalities –

where apartment buildings tend to be smaller and less anonymous – the ‘closeness’ of neighbors in

apartment buildings is not aligned with lower communication frequencies (see the Online Appendix).

Fourth, concerning the content of communication among neighbors, we observe that, in general,

TV license fees are a relatively uncommon topic (similar to neighbors talking about job offers or

financial opportunities). However, the survey reveals that people are willing to pass on license fee

related information to their neighbors, once some relevant news arrives: for a scenario where a

household receives a FIS mailing which indicates a possible inspection, almost two out of three

respondents say that they would share this information with their neighbor and ‘warn’ them.

This seems reasonable, as field inspections are locally correlated. The evidence thus suggests that

households are willing to initiate communication with their neighbors after receiving a mailing.

4 Data

To evaluate the impact of the experiment on the non-experimental population we build on several

unique sets of data provided by FIS. The first data cover the universe of all Austrian households

and includes precise address information from official residency data together with FIS’ assessment

of the households’ compliance before the implementation of the field experiment. FIS derives this

information – compliant or not (and thus potentially evading) – from data on all households paying

license fees, data on past mailing campaigns and field inspections as well as administrative data

from the residents’ registration office.

A second dataset covers the population from the field experiment (a subset of the first data) and

indicates the treatment condition households were assigned. The third dataset contains information

on all incoming registrations – unsolicited registrations, responses to mailings, and detections in

door-to-door inspections – after the experiment. Using these data we can observe behavioral changes

in compliance, in particular, registrations among the population from the field experiment and

unsolicited registrations among those not covered by the field experiment. Our analysis will focus

on the latter population.

4For details, see the corresponding discussion of Figure S.3 in the Online Appendix. It is worth noting that the
evidence supports arguments made by Jacobs (1961), who criticized the urban planning policy of the 1950s/60s with
its emphasis on large apartment blocks – precisely because it prevents many types of social interaction common in
smaller municipalities.
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4.1 Sample

The survey documents that geographic proximity is positively correlated with communication

frequencies among neighbors in small but not necessarily in large municipalities (see Section 3).

In line with this finding, we focus on municipalities with less than 2,000 households (corresponding

to a population size of approximately 5,000 – the cutoff for small municipalities in the survey). The

restriction is further motivated by the fact that these jurisdictions are predominantly characterized

by detached, single-family houses. Less than 20% [5%] of households in these municipalities live

in buildings with three [ten] or more apartment units.5 For the geographical network approach

introduced below, this is an important attribute.

Full sample. The sample restriction leaves us with 2,112 municipalities (out of 2,380) with an

average of 1,700 inhabitants, covering almost half of the Austrian population. We geocoded the

location of each single household from these municipalities. In a few cases we failed to assign

sufficiently precise geographic coordinates; we then excluded the affected parish (‘Zählsprengel ’).

With this procedure we arrive at a sample of 576,373 households. Among these, one can distinguish

three types: (I) potential evaders from the experimental sample, (II) potential evaders that were not

covered by the experiment, and (III) compliant households (not part of the experiment). Figure 3,

which is further discussed below, gives an overview and illustrates the different types’ role in our

research design.

Type I: Experimental participants. Our sample includes 23,626 households that were part

of the field experiment. Summary statistics for these type I households, which will serve as

‘injection points’ in our analysis of indirect treatment effects, are provided in Table 1. The table

splits the experimental sample according to the three treatment groups: 1,371 households were

in the untreated control group, 11,117 in the baseline mailing and 11,078 in the threat mailing

treatment. Consistent with Fellner et al. (2013), we observe three patterns: (i) The observables

are balanced across the treatments; this holds for age, gender, as well as network characteristics

(degree and Eigenvector and Diffusion Centrality; see below).6 (ii) The registration rates for the

mailing treatments is significantly higher than in the untreated group. After the first 50 days of the

experiment, 1.09% of all households in the control group registered for license fees. For the baseline

mailing treatment it was 7.01%. (iii) The threat mailing has a stronger effect: Table 1 indicates a

registration rate of 7.65%.

5Among municipalities with 2,000 – 3,000 households, the share jumps to 39% [15%].
6Table 1 does not include any point estimates for the between treatment-group difference. However, as it is clear

from the summary statistics, no variable turns out to be statistically different across the three groups. Note further
that the high share of males is due to FIS’ procedure treating male individuals as household heads.
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Table 1 about here.

Type II: Potential evaders not covered by the experiment. In addition to the experimental

participants, the sample includes 128,059 type II households who where classified as potential

evaders at the time of the experiment. There are at least three reasons why these households

were not part of the experimental sample. First, FIS excludes those who were ‘unsuccessfully’

contacted with mailings in the past from future mailing campaigns. Second, all households that

first appeared in the official residents’ registration record during the experiment’s setup time could

not be included in the experiment (e.g., recently formed households). Hence, some type II households

might be long-time, others short-term evaders. Third, the classification of potential evaders is also

based on information that was not available to FIS during the experiment’s setup phase (see below).

It is worth noting that type I and II households together account for a fourth of the total sample.

This high fraction, which is well above the overall rate of non-compliance, reflects the fact that FIS’

method to identify potential evaders is imperfect and delivers many ‘false positives’: compliant

households that are wrongly flagged as evaders.7 This point is also reflected in Table 1 which shows

that the ex-ante compliance rate (before the experimental intervention) among type I households

was roughly 36%. A non-negligible fraction of the mailing targets could therefore not respond by

switching from evasion to compliance – a fact that we will exploit below (see Section 5.4). Finally,

note that the classification of potential evaders in the non-experimental sample should be more

accurate: for the geo-coding procedure we thoroughly cleaned the address data, which allowed us

to eliminate many false positives within FIS’ data base (see fn. 7). As a consequence, the ex-ante

compliance rate in the type II sample should be considerably lower than in the type I sample.8

4.2 Geographical Networks

Our analysis studies if potential evaders who were not covered by the experiment (type II house-

holds) start to comply with license fees in response to experimental interventions (the treatment of

type I households) in their geographical network of neighbors. We therefore focus on networks that

cover at least one type I and at least one type II household. We call these the relevant networks.

To derive geographical networks we first compute Euclidean distances between all households in

each municipality. Whenever the distance between two households i and j is below an exogenous

7For instance, FIS’ data base frequently fails to account that households are already complying as they omit
compliant household members (i.e., an individual that pays and one that does not are treated as different households),
mainly due to typos in names and addresses.

8Note further that cheaters, who got detected in field inspections before the experiment, are classified as type III
households.
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threshold z, we say there is a link between i and j. A network then consists of all households that

are either directly or indirectly linked. Households that are directly linked to i are referred to as i’s

first-order neighbors (FONs), households one link further away as second order neighbors (SONs).

Figure 2 illustrates this approach and shows how it produces disjoint networks.

Figure 2 about here.

A reasonable choice for the threshold z can be motivated by the survey evidence which suggests

that communication frequencies with FONs decline sharply once the geographical distance exceeds

200 meters (see Figure 1). This suggests z ≤ 200 meters. Note further that larger thresholds leave

us with fewer but larger networks. This point is illustrated in Table A.1 in the Appendix. The table

displays the number of relevant networks as well as the number of different household types per

networks for different thresholds z. For z = 50 we observe the largest number of relevant networks.

Since this will facilitate any between-network analysis, we will use a threshold of 50 meters as a

benchmark for our analysis. To assess the robustness of our findings with respect to z, we rerun all

our main estimations for networks based on thresholds between 25 and 2000 meters.

With a 50-meter threshold we arrive at 3,764 relevant networks that were covered by the exper-

iment. The networks come from 771 different municipalities and include about 68,000 households

(of type I, II and III; see Table A.1). Among these, there are 14,987 type II households. Summary

statistics for this group are provided in Panel A of Table 2. The variable degree shows that the

median [mean] type II household is linked to 6 [11] FONs that live within 50 meters distance. 33.04%

[33.34%] of type II households have a FON treated with a baseline [threat] mailing in the experiment.

Finally, the variable registration rate indicates that 8% of type II households unsolicitedly registered

within 50 days after the experiment. This is more than twice the average registration rate among all

non-experimental potential evaders (i.e., type II households inside and outside of networks covered

by the experiment; in this population, the registration rate is 3%).9 Below we will show that the

higher registration rate can be explained by the presence of spillover effects from experimental to

non-experimental households in these networks.

Table 2 about here.

Panel B reports descriptive statistics at the network level. The network size, in the following

denoted by Nk, has a median [mean] of 6 [18] households. For each network k, we computed

9 One cannot directly compare these registration rates to those observed among type I households. As pointed
out in Section 4.1, the latter sample contains a high fraction of households who were already complying before the
experiment.
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variables that measure the treatment coverage: Totalk captures the rate of other households in the

experiment sample divided by Nk−1. Similarly, Basek, Threatk and Controlk indicate the ratios of

other households targeted with a baseline, a threat mailing and untreated experimental households,

respectively. (For a numerical example, see Figure 3 below.) Using (Nk−1) as denominator assures

that the treatment rates vary between zero and one.10 Table 2 shows that, from the perspective of

a type II household in an average network, 45% of the other households in a network were covered

by the experiment; 21, 22 and 3% of the other network members were in the baseline, threat or

control treatment, respectively.11 While these numbers also reflected the small control group from

the original experiment, it is important to note that 528 networks (14% of all networks) contain at

least one untreated experimental household (i.e., Controlk > 0). As we further discuss below, these

networks are important for the identification of our main model.

Panel C of Table 2 presents summary statistics for census data at the municipality level. An

average municipality (with a relevant network) is populated by 1,790 inhabitants with a mean labor

income (wages and salaries) of 27,250 euro. 82% of households live in single- and two-family homes.

Household heads are on average 48 years old. The fraction of non-Austrians citizens is low (5%)

and a large majority of the population is Catholic (88%). We also observe a high voter turnout at

the 2006 national elections (77% on average).

5 Spillover Effects

This section studies the indirect effects from the experiment on the non-experimental population.

We want to identify if and how a type II household’s probability to register for license fees changes

in response to the experimental interventions in their neighborhood networks. Recall that in our

setting neither the treatment nor compliance behavior is publicly observable (see Section 2.2). Any

spillovers must therefore stem from communication rather than from direct observability of others’

behavior.

5.1 Conceptual Framework

Each household i has a latent propensity to comply pi, which depends on numerous factors governing

compliance (including, for instance, the perceived sanction risk or the strength of social norms).

10 Our estimates focus on the responses of type II households. Computing treatment rates relative to Nk would
impose an upper bound (at (Nk − 1)/Nk) which mechanically varies with the network size.

11The high treatment ratios reflect our focus on (relevant) networks with at least one experimental household. The
small share of households in the control group are a result of FIS’ pressure to keep the untreated group fairly small.
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We will discuss these different factors in Section 5.4. For the moment we focus on how propensity

pi evolves over time as a function of information acquired via communication in networks.

Each household is located in one network defined as a collection of nodes N = {1, ..., N} and

a set of edges (links between the nodes) defined as Ξ ⊆ {(i, j)|i 6= j ∈ N}, where an element

(i, j) indicates that i and j are linked. The set of i’s first order neighbors (FONs) is denoted

by Ni = {j ∈ N|(i, j) ∈ Ξ}. In each round of communication t, households i transmit to their

FONs some information Iti with probability q, independently across neighbors. The first round

of communication, t = 1, takes place after treatment has occurred. Receiving a mailing directly

increases a treated household’s pi (i.e., there is a direct treatment effect). In addition, the mailings

affect the information that is passed on to a treated household’s neighbors.12

After receiving information, households update their propensities and start to comply as soon

as pti exceeds a given, household specific threshold p̂i. In each further round of communication

t, households communicate with probability q with their FONs, again pass on information Iti and

update p. Indirect treatment effects then arise as the different mailing treatments can (differentially)

alter the communicated information, which in turn influences the compliance decision of untreated

households within the network.

In the following, we will first establish the existence of indirect treatment effects, i.e., compliance

spillovers within networks (Sections 5.2 and 5.3). We then discuss evidence on what type of

information Iti is communicated (Section 5.4). Section 6 investigates the role of the network (N ,Ξ)

in structuring the communication process.

5.2 Identifying Indirect Effects from the Experiment

A graphical illustration of our research design and how it relates to the different types introduced

in Section 4.1 is provided in Figure 3. The figure depicts three networks of equal size and structure,

which all include three experimental households (type I), two potential evaders (type II) and two

compliant (type III) households. For any given rate of experimental households, our strategy exploits

variation in the randomly assigned treatments among experimental households.

The spillover effects from the experiment are estimated with the following model:

yik = δTotalk + β1Basek + β2Threatk + εik, (1)

12Here we do not specify what information exactly is transmitted as our institutional setting does not constrain
Iti . For the moment, one may simply consider that Iti refers to statements like ‘I received a mailing’ or ‘household j
received a mailing’. Iti could, however, contain further information, e.g., about i’s propensity to comply, her perceived
sanction risks or any other dimension affected by the mailings. Note further that all households can communicate but
one may find it natural to think of communication being initiated by treated households.
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where yik indicates if a type II household i from network k starts to comply with license fees within

50 days after the intervention. The specification non-parametrically controls for the total rate of

experimental participants in the networks by adding δTotalk , a set of fixed effects for each level of

Totalk (with Totalk = Controlk + Basek + Threatk; see Section 4.2). The key regressors measure

the treatment rates at the network level, i.e., the fraction of Type I households in the network that

were in the baseline (Basek) or in the threat treatment (Threatk).
13 For the examples from the top,

middle and bottom of Figure 3, we would obtain Basek [Threatk] equal to 1
6 , 2

6 , and 1
6 [1

6 , 1
6 , and

2
6 ], respectively. For all three cases, Totalk equals 1

2 . Clearly, equation (1) exploits also variation in

rates related to variation in network size. This is not captured in Figure 3 which keeps the size of

the networks and the number of experimental participants constant.

Figure 3 about here.

As long as communication takes place among all households, the treatment rates should be

positively associated with the information that household i receives. If i’s propensity to comply is

increasing in the obtained information, the spillover effects should then be captured by a positive

β1 and β2 in model 1. The two coefficients of interest measure the effects on type II households’

propensity to start paying fees in response to an increase in the network’s rate of baseline and

threat treatments while keeping constant Totalk. Put differently, these are the effects from moving

experimental households from the control group to one of the mailing treatments.

Identification. As pointed out above, β1 and β2 are identified from network-level variation in the

treatment rates for a given level of experimental coverage (Totalk). The identifying assumption is

that, conditional on Totalk, variation in Basek and Threatk is exogenous. Given our experimental

set-up, this assumption seems plausible: between networks with the same coverage, the assignment

of the experimental households to the different treatments varies randomly and thus supports this

conditional independence assumption (CIA).

Note that equation (1) accounts for selection into the experiment by including dummies δTotalk .

Networks that differ in experimental coverage are therefore allowed to be different in unobservables

that might affect the propensity to comply. One might expect, for instance, to see more experimental

participants in networks where the average propensity to comply is lower. There might also be

more ‘tougher’ evaders among the untreated households in such networks. By (non-parametrically)

controlling for Totalk, specification (1) accounts for such selection effects. Despite the small control

13Alternative specifications in levels yield almost identical results as those reported below. Estimations in levels,
however, turn out to be more sensitive to outliers related to a few very large networks.
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group in the original experiment, model (1) is identified because we have enough networks with a

positive share of control households within the experimental sample. (As reported in Table 2, 14%

of all networks have Controlk > 0.) In fact, identification rests on the cross-sectional variation of all

networks (even those with Controlk = 0) with the same rate of experimental coverage but different

baseline and threat rates (see Figure 3 for simple examples with a fixed network size).

To illustrate why the experiment supports our CIA, note first that randomization guarantees

the balance of type I households’ characteristics x across treatments:14

E(x|Base) = E(x|Threat) = E(x|Control) (2)

Evidence in Fellner et al. (2013) and in our Table 1 is consistent with orthogonality, suggesting that

randomization in the experiment was successful. For our CIA to be violated, it would take that,

after partitioning the experimental households into networks, some mailings are (for a given level

of Totalk) disproportionately sent to certain types of networks rather than others. This case can

be excluded if we still have orthogonality after condition on Totalk:

E(x|Base, Totalk) = E(x|Threat, Totalk) = E(x|Control, Totalk). (3)

Note further that the following identities hold:

E(x|Base) = E(x|Base, Totalk) · f(Totalk|Base),

E(x|Threat) = E(x|Threat, Totalk) · f(Totalk|Threat),

E(x|Control) = E(x|Control, Totalkl) · f(Totalk|Control).

If the probability density functions f(Totalk|.) are equal across the three treatments and if (2) holds,

it immediately follows that (3) must hold, too. Support for this case is provided in Figure A.1 in

the Appendix, which indicates that the probability densities for the three groups are indeed almost

identical.

To provide additional evidence in support of our identifying assumption we estimate models of

the following structure:

Basek = δTotalk + µbasexk + εbasek and Threatk = δTotalk + µthreatxk + εthreatk , (4)

14In the following, the variables Base, Threat and Control without subindex are dummies indicating which
experimental group a type I household was assigned to.
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where xk is an observable characteristic that varies at the network level. Our conditional in-

dependence assumption implies that, controlling for Totalk fixed effects, we should not find any

correlation between observable network characteristics and our key regressors: neither µbase nor

µthreat should be statistically different from zero. This is what we observe in Table A.2 in the

Appendix where we report the estimated µbase (column 1 and 2) and µthreat (column 3 and 4).

Neither for network characteristics nor for the characteristics of injection points (type I households,

averaged at the network level) do we obtain any economically or statistically significant coefficients.

The results support the notion that after controlling for experimental coverage there is no selection

on observables. Hence, both exercises lend support to the validity of our identifying assumption.

5.3 Basic Results

Using a linear probability model we estimate model (1) for all potential evaders from the non-experimental

population (type II households) in relevant networks with Totalk > 0.15 The results, together

with standard errors clustered at the network level, are reported in column (1) of Table 3. The

coefficients of interest are both positive and precisely estimated. The point estimates imply that a

one percentage-point increase in the rate of the baseline [threat] treatment increases the likelihood

that an untreated potential evader registers by 0.24pp [0.35pp], respectively. An F-test on the

equality of of the coefficients on the baseline and threat treatment rates rejects the null that the

two effects are equal. The estimates hardly change when we switch from a non-parametric to a

parametric control for the networks’ experimental coverage. In fact, specification (2) shows that the

coefficient on Totalk is small and only weakly significant. The negative sign indicates that a higher

experimental coverage in a network is correlated with a lower probability of unsolicited registration

among type II households.

Table 3 about here.

To illustrate the size of the spillover effect, consider the thought experiment where we move

one experimental household from the control to the threat treatment. For a median network with

N = 6, the additional mailing implies a 20pp increase in the threat treatment rate ( 1
6−1 = 0.2). Our

estimates imply that the additional threat mailing would increase the type II households’ probability

to register by 7pp (0.2 × 0.35 = 0.07). On average, type II households account for roughly 20%

of the network population (see Table A.1). Hence, in a network with N = 6, only one will be of

type II (20% of N − 1 = 5). We would therefore expect a total spillover of 0.07 × 1 unsolicited

15Including networks with Totalk = 0 does not change the results reported below.
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registrations for license fees.16 Keeping constant the experimental coverage, one additional threat

[baseline] mailing thus increases the probability of observing one additional registration among the

untreated evaders in the network by 7pp [5pp]. Although the comparison of registration rates

between the treated and the untreated sample is complicated (see footnote 9), it is worth noting

that the total spillover effect seems to be of similar magnitude as the direct treatment effects on

type I households (5.9pp and 6.6pp for the baseline and threat treatment, respectively; see Table 1).

The implied social multiplier is thus around two, meaning that the overall effect of the intervention

on compliance is twice the one observed by only looking at the targeted households.

Having detected a significant spillover from the experiment onto the non-experimental popula-

tion, let us point out that one would miss this indirect treatment effect if one estimates equation (1)

at the municipality rather than the network level. This is documented in column (3) of Table 3.

For this specification we assigned the sample from columns (1) and (2) (i.e., all type II households

from geographic networks with Totalk > 0) into one network per municipality and re-computed the

treatment rates. Despite the fact that these municipalities are still fairly small observational units

(with an average population of 1,790 individuals), we obtain estimated coefficients on the baseline

and threat treatment rates that are both statistically insignificant.

Robustness and heterogeneity. Column (4) reports the marginal effects from a Probit estima-

tion of the specification from Column (2). The spillover effects are similar to those indicated by

the linear probability model estimates and the effect size differs again significantly between the two

mailing treatments. In column (5) we augment the basic model (1) by adding fixed effects at the

municipality level. As expected, this leaves our results unchanged.

To account for possible effects from local enforcement activities (see Rincke and Traxler, 2011),

specification (6) controls for enforcement activities during the months before the experiment. More

specifically, we compute an enforcement rate at the network level which measures the number

of households detected in field inspections before the experiment (during the third quarter of

2005) relative to the network size. Consistent with Rincke and Traxler (2011), enforcement has

a significantly positive relationship with the propensity to register (coefficient reported in the notes

to Table 3). However, the point estimates for our coefficients of interest are essentially identical to

those from column (1) – suggesting that pre-trial enforcement was not correlated with the treatment

variation (as indicated in Table A.2, Panel A). In an additional step, we run our basic model

16For larger networks, the effect of one additional mailing on the treatment rates would be smaller but the spillovers
would spread to a larger number of potential evaders. It is straightforward to show that equation (1) implies that the
total spillover from sending one additional mailing into a network is independent of the network size.
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excluding networks in which at least one household was detected in field inspections before the

trial.17 The results reported in column (7) show that the estimated coefficients remain again almost

unchanged.

We also examined heterogenous spillover effects according to different municipality character-

istics. The analysis reveals significant interaction effects for only two variables: dwelling structure

and voter turnout. The magnitude of the spillover increases with the fraction of people living in

single- or two-family dwellings (as compared to multi-family homes) as well as with the turnout (see

Table A.3 in the Appendix). The latter interaction could reflect different levels of social capital and

communication intensities or stronger norms supporting pro-social behavior.

Different network assumptions. To understand the sensitivity of our findings with respect to

z, we computed geographical networks based on distance thresholds that vary between 25 and 2000

meters.18 We then replicate our estimates for the different samples of relevant networks. Panel A

in Table 4 reports the results from this exercise. The estimated coefficients turn out to be fairly

stable for z < 500 meters. For larger values of z, the coefficient on the baseline treatment starts to

decline whereas the one on the threat treatment remains substantial, however, with large standard

errors.

It is important to keep in mind that any change in z also varies the number of relevant networks,

the average network size, as well as the number of type II households (see Table A.1). This

clearly complicates the comparison and interpretation of the different point estimates as well as

the estimation of the model from (1). The last point is due to the fact that the number of

networks approaches the number of Totalk-fixed effects as z becomes larger. For large networks

(with z > 500), the δTotalk -dummies then absorb almost all variation across networks. For this

reason, Table 4 is based on the specification that linearly controls for experimental coverage (as in

column (2) of Table 3). Estimations from our preferred model (with non-parametric controls for

Totalk) yield almost identical results for networks with z < 500.

A first attempt to facilitate a meaningful comparison across samples is provided in Panel B of

Table 4. Here we normalize the estimated coefficients relative to the mean network size. With this

normalization, we get the effect from sending one additional mailing to each relevant network on the

register probability of an average type II household (in an average-sized network). Panel B shows

17This drops 176 networks from the sample. The number of non-experimental households drops by a larger share,
because the excluded networks tend to be larger ones. This is due to the fact that, cet. par., the probability to have
at least one household detected by a field inspector is increasing with the network size.

18Employing within-municipality distance matrices, we exclude links between networks from different municipalities.
This restriction becomes relevant for z ≥ 500 but affects only a small part of the sample.
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that the effect from one mailing monotonically declines with z. Given the results from Panel A,

this pattern is due to the fact that the average network size increases monotonically with z. One

additional mailing thus implies a smaller increase in treatment rates in the larger networks that

are obtained from higher values of z. However, the metric from Panel B neglects that the average

spillover applies to a larger population.

Table 4 about here

The latter point is accounted for in Panel C, which reports the results from a different thought

experiment. It considers sending a fixed amount of 1,000 additional baseline or threat mailings

to relevant networks. Based on our estimates and the network properties we then compute the

total number of additional registrations that we expect to be induced by the spillover effects from

these mailings.19 For z = 50, for instance, the number of expected spillover registrations that

indirectly emerge from 1,000 additional baseline [threat] mailings adds up to 44 [69], respectively.

As pointed out above, this is very similar to the direct compliance effect of 1,000 additional mailings,

implying a social multiplier of approximately two – which is not uncommon in the literature on social

interactions (Glaeser et al., 2003).20 Finally, Panel C indicates that the overall spillover from the

baseline mailing shrinks for z > 250. This observation fits the survey evidence which showed that

communication frequencies among FONs sharply decline in this range.

Spillovers within the experimental sample. Given our main results from above, it seems

natural to ask whether there are also spillovers within the experimental sample. If a type I

household’s treatment response depended on the treatment of other households in the network,

this would imply a violation of the stable unit treatment value assumption (SUTVA; see Imbens

and Wooldridge, 2009) for evaluating the direct effect of the experiment. To explore this case, we

focus on type I households and analyze whether the behavior of a treated household depends, in

addition to its own treatment, on the treatment rates in its network. Our analysis does not yield

evidence that treatment responses of type I households are influenced by the treatment of their

neighbors: controlling for the baseline and threat mailing rates does not alter the estimates for the

direct treatment effects of the mailings (see Table A.4 in the Appendix). The results suggest that,

19For the baseline mailings, this number is computed as follows: Number of Observations× 1,000
Number of Networks

× β̂0+β̂1
N−1

where β0 is the coefficient on Totalk and N is the mean network size (for each different z). The effect is weighted
with the total number of observations to account for the fact that the spillover applies to all type II households in the
networks.

20Based on Table 1, the average direct treatment effect would add up to 59 [66] registrations from 1,000 additional
baseline [threat] mailings. Hence, relative to this benchmark, diffusion and social interaction doubles the impact
of the mailings. Reassuringly, this ratio does not change that much if we consider lower (z = 25) or higher (e.g.,
z = 250) distance thresholds for computing the networks. For z = 25 [z = 250] the implied social multiplier would be
approximately 2.5 [1.75].
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for the experimental sample, the direct treatment effect dominates any indirect effects from the

experiment.

Permutation test on networks. In principle, columns (1)–(3) from Table 3 could be interpreted

in support of the idea that geographical networks of neighbors are a key unit for the information

transmission which shapes the spillover effects. A concern with this interpretation is that we

might simply have too little variation to detect any spillover when we estimate the regressions at

the municipality level (see column 3). To address this concern and to provide further evidence

that geographical networks are crucial in determining the spillovers, we perform the following

permutation test.

Within each of the 771 municipalities covered by the sample from our main specification from

Table 3, we randomly allocate all (type I, II and III) households into networks of size N = 10.21

With this procedure, households remain in their ‘true’ municipalities but they are randomly grouped

in different networks, irrespective of their geographic location within the municipality. For such

randomly generated networks we then compute our regressors and estimate equation (1). The

results from 1,000 iterations of this exercise are illustrated in Figure 4.

Figure 4 about here.

The figure displays the cumulative distribution functions of the estimated coefficients for the

baseline (β1, left panel) and the threat mailing (β2, right panel) and the point estimates from Table 3.

We obtain one single case (out of 1,000 iterations) for which an estimate from the permutation tests

is larger than the estimates from above. This suggests that the results from Table 3 are not simply

driven by partitioning municipalities into smaller units. Instead, the networks based on geographical

distance seem to pick up a systematic spillover effect that is shaped by communication within these

networks. Section 6 will study the micro-structure of the spillovers in more detail.

5.4 Discussion of Channels

As pointed out in Section 2.2, neither receiving a mailing nor compliance is observable to one’s

neighbors. The compliance spillovers must therefore stem from the dispersion of information via

communication (as, e.g., in the context of job referrals, see Beaman and Magruder, 2012; Dustmann

et al., 2016). This raises the question which type of information makes households update their

compliance propensity and ultimately comply. As in other studies on information diffusion, pinning

21For a municipality with, say, 1,017 households, we would randomly form 100 networks with 10 and one network
with the remaining 17 households. Note further that our analysis yields very similar results when we use N = 5 (close
to the median network size, see Table 2) or N = 15 (close to the 3rd quartile).
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down the precise piece of information that triggers behavioural responses is complex and not the

focus of this paper. Nevertheless, our data offer several insights on the micro-mechanisms related

to different dimensions of information.

In one broad class of mechanisms, the crucial information content is compliance behavior. After

receiving a mailing, a type I household might communicate her switch to compliance. Communi-

cation could then reinforce, among others, conformity pressure or social norms about compliance

(Akerlof, 1980; Bernheim, 1994), implying a potential spillover on type II’s compliance who later

communicate their compliance to their FONs, etc. Several pieces of evidence suggest that the

spillovers do not (solely) rest on this mechanisms but rather on the diffusion of information that

increase the perceived risk of detection.

If treatment spillovers were contingent on the compliance responses of treated households, the

indirect effects should be closely aligned with the direct treatment effects. Our results reject this

case. Table 1 shows that the threat produces roughly 12% more direct registrations than the baseline

mailing. By contrast, the estimates from Table 3 indicate that the indirect effect from the threat

is 45% larger than the one from the baseline mailings (β2/β1 = 0.35/0.24). The latter finding

points to the role of more ‘traditional’ enforcement channels: communication about the mailings

may change the perceived sanction risk. After all, learning about an enforcement activity that was

targeted at neighbor j might alter the subjective detection risk of an untreated cheater (see, e.g.,

Sah, 1991). This risk-channel appears particularly relevant for threat mailings, which announce

possible door-to-door inspections. Given the high spatial correlation in the inspections of FIS’

enforcement division (Rincke and Traxler, 2011), it seems plausible that type II households would

update their risk perceptions. This case is further supported by the evidence from Fellner et al.

(2013), who document that the larger direct treatment effect of the threat relative to a baseline is

driven by a higher perceived sanction risk. Additional support comes from our online survey, which

shows that people are willing ‘to warn’ their neighbors (see Section 3).

To further assess the role of direct treatment responses for the emergence of spillovers we make

use of the fact that many type I households were actually complying with license fees at the time of

the experiment (see Section 4.1). Hence, these treated households could, by definition, not switch

from evasion to compliance. If behavioral changes were necessary to induce an indirect effect, the

mailings sent to compliant households should not produce any spillover. To test this hypothesis,

we re-run our basic regression model on the sample of networks where all mailing targets were

already complying with license fees before the treatment. The results from this exercise (which are
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reported in the first column of Table A.5 in the Appendix) show that we do observe spillovers in

networks where the compliance rate of type I households is 100%. We also find, though, that the

spillovers, in particular those from the baseline mailing, decrease with the ex-ante compliance rate

among the injection points.22 Changes in compliance behavior thus seem to contribute to larger

indirect treatment effects, however, they are not necessary to induce the spillovers. Obviously, this

empirical design does not allow rejecting the case in which the shared information is not a change in

compliance but rather the (previously unknown) compliance status. Even if all treated households

were compliant, communicating their status might be sufficient to trigger spillovers among neighbors.

Conceptually, however, this communication content would represent an informational rather than

a pure behavioral imitation channel.

Summing up, our results indicates that, while behavioral interdependencies do play some role,

informational channels clearly contribute to the spillover. Moreover, the evidence is unambiguous

in that any channel must operate via communication.

6 Communication and Diffusion in Networks

This section explores the role of the geographic network in diffusing information. We ask how far

the spillover travels, i.e., whether the information of the mailing reaches only first-order neighbors

or whether it diffuses further (Section 6.1), which measures (if any) of injection points’ centrality

can be used for targeting (6.2), and whether it is more effective to locally concentrate mailings or

to spread treatments broadly within a network (6.3). While all questions are informative about the

role of the network in shaping the diffusion process, the last two questions are particularly important

from a policy perspective.

6.1 How Local are Spillovers?

Let us first study how far the spillover reaches into the network. If new information does not travel

very far in the network, then it can only affect (post communication) propensities to comply of

households located ‘near’ the injection points in terms of network distance.23 In this case, spillovers

would be limited to households that are ‘close’ to a treated household (compare the conceptual

framework from Section 5.1).

22This mirrors a result from Banerjee et al. (2013), who find that adopters of new technologies are crucial in the
diffusion of the technology. Note, however, that variation in the ex-ante compliance rate might be correlated with
relevant unobserved factors.

23Network distance, often also referred to as geodesic distance, refers to the length of the shortest path between
two agents (nodes).
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Figure 5, which presents a hypothetical network, illustrates a case of local spillovers. In this

network, only household k receives a mailing. Since only k can start to spread the word, it will

always first reach k’s FONs (first-order neighbors; panel (b) in Figure 5). If the FONs do not pass on

the information, then any spillover will be limited to the treated households’ FONs. If they do pass

it on, then the news will reach k’s SONs (second-order neighbors; panel (c) in Figure 5). Roughly

speaking, if a treatment induces more widespread communication, then more distant households

will be reached via the spillover.

Figure 5 about here.

To analyze how far the spillovers reach, we compute treatment rates that distinguish between the

treatments of a households’ FONs, SONs or higher-order neighbors (HONs). More specifically, we

count the number of i’s FONs, SONs, and HONs who received a given treatment. Normalizing these

numbers byNk−1, we obtain the treatment rates Basehik and Threathik for h ∈ {FON,SON,HON}.

This approach ensures the identities Basek =
∑

hBase
h
ik and Threatk =

∑
h Threat

h
ik. We then

estimate a refined version of equation (1), which now exploits variation between and within networks:

yik = δTotalk +
∑
h

βh1Base
h
ik +

∑
h

βh2Threat
h
ik + εik. (5)

The more locally confined diffusion is, the more sharply βh1 and βh2 should decline with the order of

vicinity of the treated neighbors.

Note that the estimated coefficients βh1 and βh2 are identified from the experimental variation

in treatment rates for a given level of Totalk. Conditional on Totalk, we argue that whether

and how a type II’s close (FON) or a more distant neighbor (SON or HON) is treated varies

exogenously. However, one might be concerned that the location of experimental households

(relative to type II households) is not random within networks. Accounting for this point, we also

consider an augmented specification which estimates the effects conditional on TotalFONk , TotalSONk

and TotalHONk :

yik =
∑
h

αhTotalhk +
∑
h

βh1Base
h
ik +

∑
h

βh2Threat
h
ik + εik. (6)

The identification of the β coefficients in this model rests again on the random variation in treatment

rates among FONs, SONs and HONs – but now we condition on the rate of experimental households
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Totalhk for each h ∈ {FON,SON,HON}.24 Note that these augmented specification will absorb

much variation in the data.

Linear probability model estimates of equations (5) and (6) are presented in columns (1) and

(3) of Table 5, respectively. The results show consistently that both mailing treatment trigger

sizable spillovers on the treated household’s FONs. For the baseline treatment, the spillover

seems mainly limited to FONs. To compare the size of coefficients in column 3 across FON,

SON and HON neighborhoods we need to sum the coefficients for Totalhk and Basehk for each

h ∈ {FON,SON,HON} as now Totalhk also differs across h. Doing so, the estimates indicate

spillovers from sending an additional mailing into each of these neighborhoods of 0.215 for FON

(= TotalFONk +BaseFONk ) as opposed to 0.086 for SON and -0.023 for HON, respectively. (Except

for the comparison of SON with HON, all spillovers are significantly different from each other; see

the F-statistics reported in Table 5.)

For the threat treatment, the spillovers are not limited to FONs or SONs but also extend

to HONs. The estimated βh2 coefficients from column (2) are statistically significant at the 1%- or

5%-level for all types of neighbourhoods (FON, SON, HON) and the F-tests indicate that we cannot

reject the hypothesis that spillovers are equally large for FONs as they are for HONs. All these

findings are robust when we control for a household’s Euclidean distances to the nearest household

in a given treatment (columns 2 and 4).

Table 5 about here.

The evidence from Table 5 indicates that the geographic network does shape diffusion. The

spillover is more concentrated among households with a smaller network distance to the targeted

nodes. At the same time, the spillover is not only confined to FONs: for the threat treatment, the

indirect effect clearly has a larger scope.

The result also offers insights about two basic reasons for why the threat treatment triggers a

larger spillover. On the one hand, the threat might induces more communication. On the other hand,

the treatment could – conditional on the level of communication – simply increase the propensities

to comply by a larger amount. (Note that our basic estimates did not allow us to distinguish

between these two interpretations; see Section 5.4.) If the difference in spillovers from the base and

the threat mailing were entirely due to the threat’s stronger impact on compliance propensities,

then we should see smaller spillovers for the baseline treatment – but those smaller spillovers should

24We linearly control for Totalhk as there would be a too large number of fixed effects for each rate Totalhk in
h ∈ {FON,SON,HON}.
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be equally distributed among FONs, SONs and HONs, the groups reached by the threat. The fact

that the spillover generated from the base mailing seems to be largely concentrated among FONs

suggests, though, that the threat induces indeed more communication.

This finding also has implications for which households to optimally target. If the spillovers were

limited to FONs, the indirect effect of the intervention would be maximized by simply targeting those

households with the highest number of FONs (households with the highest degree). If spillovers

travel beyond FONs, as it is the case for the threat mailing, then other centrality measures may be

more relevant for ‘optimal’ targeting. The next subsection explores this point is more detail.

6.2 Which Households to Target?

To study optimal targeting we focus on centrality measures that have been shown to play an

important role for diffusion. The first such measure is diffusion centrality, which captures a

household’s ability to spread information in a finite amount of time (Banerjee et al., 2019). A

special case of diffusion centrality is degree, which simply counts how many network neighbors

(FONs) a household has. The second measure is eigenvector centrality, which is focused on infinite

(or very long-lasting) communication (DeGroot, 1974; DeMarzo et al., 2003; Golub and Jackson,

2010).25

Figure 6 about here.

Figure 6, which shows a typical network from our sample, illustrates how different households

would serve as optimal injection points, depending on which centrality measure is key (see figure

notes). While these centrality measures tend to be strongly correlated, the variation among the

large number of networks in our sample allows us to differentially assess their role for mediating the

spillovers. We do so by exploring variation in the injection points’ (type I households’) centrality.

First, we compute the median centrality of all type I households in our relevant networks for each

centrality measure c introduced below. Based on this median, we then calculate new treatment rates:

Basec-Hk and Basec-Lk , which measure a network k’s fraction of type I households in the baseline

mailing treatment with an above or below median level of centrality, respectively. The rates for the

threat treatment, Threatc-Hk and Threatc-Lk , are defined accordingly. We then estimate the following

model:

yik = δTotalk + βH1 Basec-Hk + βL1 Base
c-L
k + βH2 Threatc-Hk + βL2 Threat

c-L
k + εik. (7)

25These measures are more closely discussed in Appendix B.1.
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Treatment rates are again defined relative to Nk−1. This ensures the identity Basec-Hk +Basec-Lk =

Basek, where Basek is the baseline rate from our basic model (1). The analogue holds for Threatk.

Equation (7) is thus nested in (1).

Intuitively, model (7) distinguishes the effect from treating nodes with relatively high or low

centrality (as captured by βH1 vs. βL1 , and βH2 vs. βL2 for the baseline and threat treatment,

respectively). For a given level of Totalk, the model exploits experimental variation in the treatment

of more or less central nodes. Still, one might argue that the treated households’ centrality is

correlated with unobserved network properties. In particular, having experimental households with

a relatively high or low centrality might correlate with the non-experimental households’ propensity

to comply. Hence, we also consider an augmented specification that responds to this concern.

Following the same strategy as in Section 6.1, we replace the Totalk-fixed effects from (7) and

instead condition on Totalc-Hk and Totalc-Lk , the rate of all experimental households in a given

network k that have an above or below median level of centrality.26 We then estimate:

yik = αH Totalc-Hk + αL Totalc-Lk + βH1 Basec-Hk + βL1 Base
c-L
k

+βH2 Threatc-Hk + βL2 Threat
c-L
k + εik. (8)

Controlling for both Totalc-Hk and Totalc-Lk ensures that the β coefficients from this model are

identified from the random treatment assignment, even if the potential injection points’ centrality

in network k were indeed correlated with unobservables.

We estimate (7) and (8) for three different measures of diffusion centrality (DC) as well as

eigenvector centrality (EC). Note that DC is a function of T , the time horizon of communication

(see eq. (B.1) in the Appendix). Our main analysis uses DC for T = 1 and T = 10 rounds

of communication, DCT=1 and DCT=10. For both measures, the second parameter of DC, the

probability to pass on information (see Section 5.1), is fixed at q = 1.27 In addition, we also

examine the DC benchmark proposed in Banerjee et al. (2019), with T equal to the network’s

diameter and the probability q equal to the inverse of the first eigenvalue of the network’s adjacency

26Note that the two rates obviously add up to Totalk from equation (1). Equation (8) is thus nested in
specification (2) from Table 3. Due to a too large number of fixed effects for each level of Totalc-Hk and Totalc-Lk , we
linearly control for the two rates (as in model 6 above).

27In the Appendix we provide results for alternative values of 0 < q < 1 (see Tables A.8). As mentioned above the
concept of degree centrality (the number of first-order neighbors) is nested in diffusion centrality. Specifically, DCT=1

(with q = 1) corresponds to the degree (up to normalization).
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matrix. This measure, DCTq , is thus based on network specific parameters qk and Tk. Finally, note

that all four centrality variables, c = {DCT=1, DCT=10, DCTq , EC}, are normalized.28

Linear probability models estimates of equations (7) and (8) for each of the four centrality

measures c are presented in Table 6. The results for the diffusion centrality measures are straight-

forward. For almost all combinations of treatments and DC-measures, the point estimates for βH

are higher than those for βL. The point estimates from column (1), for instance, suggest that

the spillovers from the baseline mailing might double if one targets injection points with relatively

high DCT=1. At the same time, sending baseline mailings to nodes with high DCT=10 does not

necessarily increase spillovers (the difference between βH
j and βL

j is not statistically significant in

column 3). This pattern also indicates that the diffusion process driving the spillover from the

baseline mailing is limited – which is consistent with the results described in section 6.1. (Recall

that the indirect effects of the baseline mailing are mainly confined to first-order neighbors.)

For the threat mailing, both DCT=1 and DCT=10 seem to matter, suggesting that treatment

induced diffusion is less limited and happens over multiple rounds of communication. Again, this

is consistent with the broader reach of the spillover documented in section 6.1. The results for

the network-specific DCTq are in between those for DCT=1 and DCT=10.29 Finally, for eigenvector

centrality, there is no clear pattern indicating that a higher EC of the injection points would increase

the spillover. Note that EC would be the decisive variable for targeting, if the diffusion process

would be unlimited (T →∞). The results from columns (7) and (8) do not support this case.

Table 6 about here.

The estimates from Table 6 are further corroborated by models that linearly interact the

treatment rates with the treated households’ centrality c (see Table A.6). Consistently with the

evidence from above, the estimates reveal significant interactions of the baseline treatment with

DCT=1; for the threat, instead, one obtains significant interactions with DCT=10. In additional

robustness exercises, we ran specifications that further augment equations (7) and (8) by including

controls for the injection points’ centrality. The estimates (which are reported in Tables A.7), are

almost indistinguishable from those reported in Table 6. Finally, we also replicated results for

different DC measures with T ∈ {1, ..., 10} and q < 1. The results show again qualitatively similar

patterns (see Table A.8).

28For the diffusion centrality, we use the normalization suggested in Banerjee et al. (2019), i.e., we compare DCT (`)
to the hypothetical case of complete networks (for which one obtains the maximum possible entry for DCT (`) for
each node ` and any given T ).

29The measure DCTq can be considered as an intermediate case, as the (network-specific) diameter, which determines
T , is on average roughly 4.
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To wrap up, the results from this and the previous section consistently indicate that the diffusion

process driving the spillovers is (i) strongly limited for the baseline mailing but (ii) less limited for the

threat mailing. For the baseline treatment, mostly close neighbors of targeted nodes respond to the

intervention. The threat treatment, by contrast, induces compliance spillovers also on households

with higher network distance. In terms of which households an authority should target to maximize

spillovers, our results indicate that diffusion centrality serves as a good indicator. To operationalize

such a strategy, however, an authority would have to determine a value of T . Which value to use will

depend on the specific communication or enforcement strategy. For a rather innocent intervention

that is unlikely to lead to much communication (as our baseline mailing), a low value of T might

be best. If the intervention involves a message that is likely to induce much more communication

(as the threat mailing), a higher value of T seems more reasonable.

6.3 Local Treatment Concentration

Another important policy question concerns the effect of treatment concentration: is it more effective

to locally concentrate mailings or to spread treatments broadly within a network? The problem is

illustrated in Figure 7, which displays a case with high local treatment concentration, i.e., where

treated households are FONs (left panel), and another example where concentration is low (right

panel). Where should we expect larger spillovers? In the context of limited diffusion, both targeting

strategies could be reasonable. On the one hand, a low concentration cet.par. means that more

households will hear about the treatment. Each of these households, however, is likely to hear only

about one mailing and to talk to many other untreated households. Hence, while many households

will hear about a mailing, their propensities to comply might only increase marginally. High

concentration resolves the latter issue at the cost of reaching fewer households. High concentration

should hence be particularly desirable if households need to hear sufficiently often about a mailing

in order to change behavior, as is the case in e.g. threshold models (Granovetter, 1978; Centola and

Macy, 2007; Beaman et al., 2015).

Figure 7 about here.

To measure the extent to which mailings are locally concentrated, we define a measure called

local treatment concentration, which measures the extent to which households in the same treatment

are directly linked to each other in the network. This concept is reminiscent of the concept of

homophily that has received a lot of attention in recent years across a variety of fields, including

economics (Benhabib et al., 2010), sociology (McPherson et al., 2001) and management (Borgatti
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and Foster, 2003). There are two key differences, however, between our local concentration measure

and homophily. First, the notion of local treatment concentration considers two neighbors as

‘similar’ if they are in the same treatment, whereas homophily usually defines similarity in terms

of race, age or other characteristics. Second, the random assignment of treatments assures that,

conditional on being experimental participants, local concentration will not reflect other household

properties. In particular, whether or not experimental households are linked is exogenous to the

assigned treatment condition. By contrast, with homophily whether two households are linked can

be a result of the dimension of similarity considered.30 This is why homophily can be thought of as a

preference for being linked with similar others.31 This interpretation does not apply to our concept

of local treatment concentration. However, both the endogenous concept of homophily and the

exogenous concept of local treatment concentration measure to which extent neighbors are similar

to each other. Exogeneity in this sense can be seen as a strength compared to previous empirical

work, as it allows us to isolate the effects of similarity (in treatment and post-treatment beliefs) on

behavioral outcomes within networks.

We use the inbreeding homophily (IH) index to measure local concentration (Coleman, 1958;

Currarini et al., 2009, 2010).32 The IH index is defined at the network level for each treatment

group. It ranges in [−1, 1]. A value of zero indicates that on average within a given network the

share of a household’s neighbors in the same treatment group as the household itself corresponds to

what we would expect from random assignment. A positive value indicates that there is homophily

(high local concentration), i.e., households are linked over-proportionately with households from the

same treatment. A negative value indicates heterophily (low local concentration), i.e., households

are linked over-proportionately with households that are in a different treatment group.

Figure 7 shows a case of high (left panel) and low local treatment concentration (right panel).

As detailed in the caption, the IH indices would be positive for the one (left) and negative in the

other (right) case (see the caption to Figure 7 for computational details). To account for a potential

downside of the IH index (it is slightly biased downwards in small networks; see Appendix B.2) we

also consider a dummy indicating whether the IH index is positive. In 17% of networks we observe

at least one pair of FONs that receive the same mailing treatment. There is a lot of variation in the

30If, e.g., a single (white, old, etc.) person chooses to move next to other single (white, old, etc.) people.
31Many empirical studies, though, consider homophily as the mere statistical fact that similar people are more likely

to be linked to each other in the network (McPherson et al., 2001; Currarini et al., 2009).
32Inbreeding homophily of household i is defined as the difference between the fraction of links of household i to

others of the same treatment type and the fraction of i’s type in the network divided by the maximal amount of
homophily possible (1− the fraction of i’s type in the network). For a closer discussion, see Appendix B.2.
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IH index, with a majority of networks having a negative inbreeding homophily for the two mailing

treatments but also a substantial share of networks with a positive IH index.

We estimate the model

yik = δTotalk + β1Basek + β2Threatk + δ1 IH
base
k + δ2 IH

threat
k

+ δ3

(
IHbase

k ×Basek
)

+ δ4

(
IHthreat

k × Threatk
)

+ εik,

(9)

where IHbase
k and IHthreat

k capture one of the two local concentration measures (the IH index or

the IH dummy). Conditional on Totalk-fixed effects, random treatment assignment implies that the

variation in the treatment specific concentration measures will be exogenous. In addition, we also

consider an augmented specification that absorbs additional variation by including an IH measure

for the local concentration of all possible injection points (IHall
k ), irrespective of their treatment.

Estimation results for the simple and the augmented version of equation (9) are presented in Table 7.

Table 7 about here.

The estimates suggest that local treatment concentration is associated with smaller compliance

spillovers. While the interaction effects (δ3 and δ4) are statistically insignificant for the IH-index

(columns 1 and 2), they turn significant for the IH dummy (columns 3 and 4). Quantitatively, these

interactions are quite sizable: the point estimates from the last two specifications indicate that the

spillovers shrink by roughly 50% in networks with a positive IH-index. To assess the robustness of

these results, we replicated the estimations using IH measures that pool the two mailing treatments

(see Table A.9). The exercise confirms the negative interaction effects and improves statistical

power: with a higher treatment concentration, we find significantly smaller spillovers. The evidence

therefore suggests that spreading the interventions more broadly – and thus assuring that more

people ‘hear’ about the mailings – produces larger spillovers.

Our findings are consistent with evidence highlighting the role of one’s peers exposure to law

enforcement for the formation of one’s own risk perceptions and legal compliance (see Lochner, 2007,

and Section 2.2 in Chalfin and McCrary, 2017). The fact that a high local treatment concentration

reduces spillovers are also in line with theoretical results showing that similarity in beliefs hampers

social learning (Golub and Jackson, 2012). Facing the same treatment most likely implies similar

post-treatment beliefs (e.g., about the probability of detection). One can thus interpret our findings

as being consistent with the theoretical results.
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7 Conclusions

This paper studied the spread of compliance with TV license fees among neighbors in geographic

networks in Austria. We exploited exogenous variation from a field experiment which randomly

assigned potential license fee evaders into a control or different treatment conditions (baseline or

threat mailing). Building on this variation, we tested if untreated households, who were not covered

by the experiment, respond to mailings received by their network neighbors. Our analysis identified

strong and precisely estimated spillover effects. Controlling for the total number of households in

a network involved in the experiment, an increase in the fraction of treated neighbors significantly

raises the likelihood that an untreated cheater switches from evasion to compliance. Overall, the

magnitude of the indirect treatment effects is similar to the direct treatment impact, indicating

a social multiplier of roughly two (Glaeser et al., 2003). We also document heterogeneity across

treatments: the threat mailings trigger a spillover that is roughly 40% larger than the spillover from

the baseline mailings. As we focus on small municipalities, it is hard to assess if our results apply to

urban areas, too. On the one hand, one might expect smaller spillovers as neighborhood networks

are less relevant in larger towns and cities. On the other hand, Fellner et al. (2013) document

slightly larger direct treatment effects in urban areas (in particular, for the threat mailing). This,

in turn, could also boost spillovers, which might occur among friends or peers at work rather than

spatial neighbors.

The paper further studied how information on license fee enforcement diffused among neighbors

in geographic networks. By exploiting variation within and between over 3,750 networks, we derived

the following results: First, relative to the threat treatment, the spillover from the baseline is

more concentrated among households that are – in terms of network distance – closer to the

households targeted by the experiment (the ‘injection points’). Second, the spillovers from the

mailing treatments are increasing with the injection points’ diffusion centrality. Third, a higher

local treatment concentration results in a significantly smaller spillover – a finding which can be

interpreted in terms of homophily (Golub and Jackson, 2012). Together with several null results

from various placebo exercises, these findings indicate that the structure of our geographic networks

is useful to capture patterns of information diffusion among neighbors.

The results carry important implications for the optimal targeting of policies that play on

word-of-mouth diffusion among neighbors. Our findings suggest that one could, cet. par., greatly

improve the intervention’s impact by targeting central households and by spreading the treatment
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broadly within a network. The easy availability of geographic information facilitates the computa-

tion of neighborhood networks and allows to implement these strategies at fairly low costs.
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Tables

Table 1: Summary statistics for type I households

Experimental Condition

Control Baseline- Threat-

(No Mailing) Mailing Mailing

Registration rate 0.0109 0.0701 0.0765

(0.1041) (0.2553) (0.2659)

Ex-ante Compliance 0.3610 0.3628 0.3752

(0.4805) (0.4808) (0.4842)

Male 0.7644 0.7472 0.7588

(0.4245) (0.4346) (0.4278)

Age† 40.04 39.67 39.28

(13.00) (12.47) (12.11)

Degree 19.88 21.67 21.42

(52.09) (55.39) (55.83)

Eigenvector Centrality 0.3075 0.3031 0.3051

(0.2399) (0.2415) (0.2431)

Diffusion CentralityT=1 0.6443 0.6379 0.6372

(0.3776) (0.3790) (0.3798)

Diffusion CentralityT=10 0.4392 0.4349 0.4337

(0.4785) (0.4771) (0.4775)

Number of households 1,371 11,177 11,078

Notes: The columns present sample means (and standard deviation in parenthesis) for the experimental
sample, i.e., all type I households from the three treatment arms of the experiment: Control, Baseline
and Threat Mailing. † Information on age is only available for a subset of 2,778 households.

35



Table 2: Summary statistics for relevant networks, z = 50 meters

(A) Household level (14,987 type II households)

mean sd median 1st quart 3rd quart

Degree 11.11 22.22 6 4 11

FON in experiment 0.54 0.50 1 0 1

FON w/ Base 0.33 0.47 0 0 1

FON w/ Threat 0.33 0.47 0 0 1

FON w/ Control 0.08 0.26 0 0 0

SON in experiment 0.12 0.33 0 0 0

SON w/ Base 0.06 0.25 0 0 0

SON w/ Threat 0.07 0.25 0 0 0

SON w/ Control 0.01 0.09 0 0 0

Spatial distance to closest neighbor...

... in experiment 95.94 143.86 45.06 2.27 113.18

... w/ Base 291.01 734.07 84.54 32.27 240.34

... w/ Threat 315.89 739.32 90.67 34.15 270.87

... w/ Control 678.53 1081.36 295.58 114.66 732.02

Registration rate 0.08 0.27 0 0 0

(B) Network level (3,764 networks)

Network size (Nk) 17.98 45.48 6 3 14

Treatment Rates:

Totalk 0.45 0.33 0.40 0.39 0.67

Basek 0.21 0.28 0.10 0.00 0.33

Threatk 0.22 0.29 0.10 0.00 0.33

Controlk 0.03 0.11 0.00 0.00 0.00

Network w/ Controlk> 0 0.14 0.35 0.00 0.00 0.00

(C) Municipality level (771 municipalities)

Population 1,790 1,006 1,570 1,060 2,365

Labor Income 27,250 2,172 26,936 25,977 28,333

1- or 2-Family Dwellings 0.82 0.14 0.84 0.75 0.92

Average Age 47.95 1.55 47.92 46.85 48.97

Non-Austrian Citizens 0.05 0.04 0.04 0.02 0.07

Catholic 0.89 0.10 0.91 0.86 0.95

Voter Turnout 0.76 0.07 0.77 0.72 0.81

Notes: Panel A presents summary statistics at the household level for all potential evaders in the
non-experimental sample (type II households) that are located in networks with at least one experimental
participant (type I household). Panel B reports (unweighted) network level statistics for these relevant
networks. Panel C considers several municipality characteristics (unweighted, at municipality level). FON
and SON abbreviate First and Second Order Neighbors, respectively. Spatial distance is measured in
meters.
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Table 3: Basic results: Impact of mailings on compliance of non-experimental households

(1) (2) (3) (4) (5) (6) (7)

Networks with z = 50m Municipality Probit Municipality Field Inspections

level Fixed Effects

Basek 0.2431??? 0.2473??? -0.5672 0.1972??? 0.2219??? 0.2440??? 0.2486???

(0.0381) (0.0383) (0.8102) (0.0554) (0.0451) (0.0381) (0.0382)

Threatk 0.3496??? 0.3532??? 0.1157 0.2423??? 0.3376??? 0.3499??? 0.3566???

(0.0390) (0.0391) (0.7995) (0.0554) (0.0464) (0.0390) (0.0392)

Totalk – -0.0594? 0.3825 -0.0569 – – –

(0.0332) (0.7395) (0.0545)

Totalk Fixed Effects Yes No No No Yes Yes Yes

F-test: Basek = Threatk 13.44 14.01 5.16 13.32 14.34 13.31 13.58

Observations 14,987 14,987 14,987 14,987 14,987 14,987 13,395

Networks 3,764 3,764 771 3,764 3,764 3,764 3,588

R2 0.0946 0.0553 0.0144 0.0770 0.1873 0.0966 0.0994

Notes: This table estimates the impact of the mailings on the compliance of households outside of the experimental sample
(type II households). Column (1) presents the results from a linear probability (LPM) estimation of equation (1). Column
(2) replaces δTotalk (i.e., the 451 dummies for each value of Totalk) with a linear control for Totalk. Column (3) uses the
sample from the first two specifications but assumes that the network is defined by the municipality. Column (4) replicates
specification (2) using a Probit model. It reports marginal effects evaluated at the mean of the independent variables. The
remaining output comes again from LPM estimations including Totalk fixed effects. Column (5) adds fixed effects at the
municipality level. Column (6) controls for the enforcement rate (i.e., the rate of households detected in field inspections in
the period before the start of experiment); the estimated coefficient on the enforcement rate is 0.387 (SE 0.120). Column
(7) excludes all networks with an enforcement rate greater than zero. The table further reports F-statistics, testing Basek =
Threatk. Standard errors, clustered at the network (all Columns except 3) or municipality level (Column 3), are reported
in parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.

37



Table 4: Sensitivity Analysis: Different network (distance) assumptions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Threshold z = 25 50 75 100 250 500 1000 1500 2000

Panel A. Estimation results

Basek 0.2454??? 0.2473??? 0.2692??? 0.2761??? 0.2720??? 0.2641? 0.2210 0.0658 -0.0731
(0.0327) (0.0383) (0.0573) (0.0544) (0.0796) (0.1354) (0.2564) (0.3650) (0.4771)

Threatk 0.3144??? 0.3532??? 0.3954??? 0.3904??? 0.3564??? 0.5038??? 0.4816? 0.4196 0.2713
(0.0333) (0.0391) (0.0590) (0.0560) (0.0823) (0.1360) (0.2572) (0.3555) (0.4507)

Totalk 0.0160 -0.0594? -0.1095?? -0.1231??? -0.1237? -0.2050? -0.1867 -0.0863 0.0511
(0.0304) (0.0332) (0.0523) (0.0475) (0.0713) (0.1226) (0.2359) (0.3315) (0.4295)

Constant 0.0195?? 0.0306??? 0.0345??? 0.0384??? 0.0420??? 0.0430??? 0.0446??? 0.0446??? 0.0444???

(0.0078) (0.0027) (0.0021) (0.0020) (0.0018) (0.0016) (0.0015) (0.0015) (0.0015)

Observations 5,337 14,987 23,673 29,212 41,547 50,688 58,498 60,520 61,551
Networks 3,243 3,764 3,319 2,990 2,113 1,554 1,169 1,073 1,020
R2 0.0775 0.0553 0.0363 0.0258 0.0146 0.0110 0.0078 0.0075 0.0075

Panel B. Average individual effect from one additional mailing into each network:

Base 0.0533 0.0111 0.0050 0.0035 0.0017 0.0004 0.0001 -0.0001 -0.0001
Threat 0.0673 0.0173 0.0090 0.0061 0.0026 0.0020 0.0013 0.0013 0.0012

Panel C. Total spillover from 1,000 additional mailing, spread over all networks:

Base 87.68 44.04 35.68 33.89 32.60 12.76 7.41 -4.45 -4.77
Threat 110.80 68.87 63.86 59.19 51.18 64.55 63.63 72.10 69.84

Notes: Panel A reports the results from LPM estimations of the equation yk = β0Totalk+β1Basek+β2Threatk+εk (see specification (2)
in Table 3) for different samples that emerge for different distance thresholds z defining the networks. Standard errors, clustered at the
network level, are in parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.
Panel B presents the effect of sending one additional baseline [threat] mailing into each network on a type II household’s probability

to register. The effect is derived from the point estimates from Panel A and given by β̂0+β̂1
N−1

[ β̂0+β̂2
N−1

], where N indicates the average

network size for a given threshold z.
Panel C computes the expected spillover from sending a fixed number of 1,000 additional baseline [threat] mailings into the networks
covered by the respective sample. E.g. for the baseline treatment, the total number of expected spillover registrations is computed as

follows: Number of Observations× 1,000
Number of Networks

× β̂0+β̂1
N−1

. The effect is weighted with the total number of observations to account

for the fact that the spillover applies to all type II households in these networks.
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Table 5: Impact by network distance: How far-reaching are the spillovers?

(1) (2) (3) (4)

BaseFON 0.2568??? 0.2540??? 0.2541??? 0.2505???

(0.0387) (0.0390) (0.0399) (0.0400)

BaseSON 0.0922 0.0908 0.1426 0.1393

(0.0686) (0.0690) (0.1302) (0.1303)

BaseHON 0.0450 0.0378 0.2995 0.2946

(0.0878) (0.0886) (0.1922) (0.1927)

ThreatFON 0.3615??? 0.3648??? 0.3580??? 0.3609???

(0.0397) (0.0400) (0.0407) (0.0409)

ThreatSON 0.1396?? 0.1473?? 0.1550 0.1606

(0.0681) (0.0686) (0.1247) (0.1307)

ThreatHON 0.3884??? 0.3998??? 0.5889??? 0.6073???

(0.0948) (0.0955) (0.2044) (0.2107)

TotalFON -0.0391 -0.0397

(0.0341) (0.0341)

TotalSON -0.0568 -0.0590

(0.1162) (0.1162)

TotalHON -0.3222? -0.3304?

(0.1792) (0.1796)

Distance to nearest Base - -0.0000?? - -0.0000??

(0.0000) (0.0000)

Distance to nearest Threat - 0.0000 - 0.0000

(0.0000) (0.0000)

F-Tests: (See Table Notes)

Base: FON vs. SON 6.65 6.51 4.65 4.73

FON vs. HON 6.60 6.70 14.57 15.33

SON vs. HON 0.26 0.32 1.82 2.08

Threat: FON vs. SON 12.16 11.67 12.48 12.34

FON vs. HON 0.09 0.15 0.54 0.38

SON vs. HON 5.76 5.92 3.42 3.69

R2 0.0967 0.0974 0.0605 0.0610

Notes: FON, SON and HON abbreviates First-, Second- and Higher-Order Neighbors, respectively. Column (1) and (3)
present results from LPM estimations of equations (5) and (6), respectively. Columns (2) and (4) add controls for the
Euclidean distance to the nearest household treated with a baseline or a threat mailing, respectively. The F-Tests from
columns (1) and (2) are based on eq. (5) and report F-statistics for the H0: βhj = β`j for h 6= ` ∈ {FON,SON,HON} and

j = 1 (Base) and j = 2 (Threat), respectively. Hence, we test BaseFON =BaseSON , etc. Columns (3) and (4) are based
on eq. (6) and test the H0: αh + βhj = α` + β`j for h 6= ` and j = 1 (Base) and j = 2 (Threat), respectively. Put differently,

we are testing TotalFON+BaseFON =TotalSON+BaseSON , etc. Adding up coefficients in Columns (3) and (4) accounts
for the fact that Totalh differs across h. Number of observations: 14,987; number of networks: 3,764. Standard errors,
clustered at the network level, are in parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.
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Table 6: Impact by centrality of injection points

(1) (2) (3) (4) (5) (6) (7) (8)

Centrality measure c: DCT=1 DCT=10 DCTq EC

Basec-Lk 0.1233?? 0.1777 0.2150??? 0.1937 0.1763??? 0.2738? 0.1759 0.4187?

(0.0547) (0.1160) (0.0646) (0.1491) (0.0662) (0.1453) (0.1188) (0.2326)

Basec-Hk 0.2571??? 0.2601??? 0.2459??? 0.2552??? 0.2474??? 0.2486??? 0.2441??? 0.2444???

(0.0390) (0.0401) (0.0386) (0.0394) (0.0385) (0.0392) (0.0382) (0.0382)

Threatc-Lk 0.2620??? 0.2813?? 0.2782??? 0.2261 0.2985??? 0.3421?? 0.4415??? 0.6225???

(0.0607) (0.1177) (0.0691) (0.1482) (0.0729) (0.1460) (0.1183) (0.2403)

Threatc-Hk 0.3598??? 0.3632??? 0.3549??? 0.3651??? 0.3533??? 0.3554??? 0.3479??? 0.3468???

(0.0397) (0.0408) (0.0394) (0.0402) (0.0394) (0.0400) (0.0391) (0.0390)

Totalc-Lk -0.0970 -0.0604 -0.1552 -0.3774?

(0.1055) (0.1346) (0.1313) (0.2130)

Totalc-Hk -0.0463 -0.0520 -0.0444 -0.0378

(0.0342) (0.0337) (0.0335) (0.0327)

Totalk FEs Yes No Yes No Yes No Yes No

F-Tests: (See Table Notes)

Base: High vs. Low 7.662 10.92 0.279 2.255 1.397 3.184 0.346 5.152

Threat: High vs. Low 3.188 9.051 1.461 8.871 0.662 5.747 0.668 0.596

R2 0.096 0.059 0.095 0.058 0.095 0.058 0.095 0.058

Notes: The table presents results from LPM estimations of equations (7) and (8). The estimates explores how the impact of the
mailings on the compliance of non-experimental households varies with the centrality of the injection points. We differentiate
treatment rates according to the injection points’ having above or below media measures of centrality c for: diffusion centrality
for one (DCT=1, columns 1 and 2) and 10 rounds of communication (DCT=10, columns 3 and 4), diffusion centrality with T =
to the network’s diameter and probability q = to the inverse of the first eigenvalue of the network’s adjacency matrix (DCTq ,
columns 5 and 6), and finally eigenvector centrality (EC, columns 7 and 8). The F-tests reported in columns (1), (3), (5) and
(7) are based on eq. (7) and test the H0: βL

j = βH
j for j = 1 (Base) and j = 2 (Threat), respectively. We thus test Basec-Hk =

BaseC−L
k for the different centrality measures c (and analogously for the threat treatment rates). The tests from columns (2),

(4), (6) and (8) are based on the augmented eq. (8) and test H0: αL + βL
j = αH + βH

j for j = 1 (Base) and j = 2 (Threat),

respectively. Hence, we test Totalc-L + Basec-L = Totalc-H + Basec-H for the different centrality measures c (and analogously
for the threat treatment rates). Adding up coefficients here accounts for the fact that Totalc-L differs from Totalc-H (compare
Table 5). Number of observations: 14,987; number of networks: 3,764. Standard errors, clustered at the network level, are in
parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.
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Table 7: Impact by local treatment concentration

IH Index IH+ Dummy

(1) (2) (3) (4)

Basek 0.2053??? 0.2083??? 0.2755??? 0.2748???

(0.0582) (0.0628) (0.0428) (0.0429)

Threatk 0.2678??? 0.2708??? 0.3983??? 0.3980???

(0.0579) (0.0649) (0.0435) (0.0435)

Basek × IHIbasek -0.0359 -0.0334

(0.0806) (0.0823)

Threatk × IHIthreatk -0.1018 -0.0993

(0.0812) (0.0830)

IHIbasek -0.0121 -0.0106

(0.0639) (0.0658)

IHIthreatk -0.0076 -0.0061

(0.0574) (0.0603)

IHIallk -0.0036

(0.0330)

Basek × IHDbase
k -0.1527?? -0.1393?

(0.0745) (0.0781)

Threatk × IHDthreat
k -0.1861?? -0.1758??

(0.0742) (0.0775)

IHDbase
k 0.0176? 0.0173?

(0.0097) (0.0097)

IHDthreat
k 0.0277??? 0.0276???

(0.0093) (0.0093)

IHDall
k -0.0078

(0.0116)

R2 0.0951 0.0951 0.0958 0.0959

Notes: The table presents results from LPM estimations of equation (9). In Columns (1) and (2), local
treatment concentration is measured by the Inbreeding Homophily Indexes (IHI). In Columns (3) and
(4), we use a dummy indicating a positive inbreeding homophily (IHD = 1 if IHI ≥ 0). Specifications
(2) and (4) control for the local concentration of all experimental (type I) households in a network k.
All estimates are based on 14,987 observations from 3,764 networks. Standard errors, clustered at the
network level, are in parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.
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Figures

Figure 1: Survey results: Communication frequency with neighbors
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Notes: Chart (a) on the left presents frequencies of communication with the first-, second- and third-closest neighbor
(in geographical terms), respectively. Chart (b) illustrates communication frequencies with the first-closest neighbor for
different distance ranges to this neighbor.
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Figure 2: Illustration of geographical networks

Notes: The figure presents an example of two disjoint networks for a distance z = 50 meters.
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Figure 3: Illustration of research design: Household types and experimental treatments
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Notes: The figure provides an overview of the different household types (see Section 4.1) and illustrates the type of variation
across networks that is explored in Section 5. The illustrated networks have the same size and structure. All networks include
three type I households. For this given rate of experimental households (as captured by Totalk), our main specification
exploits the variation in the randomly assigned treatments. The three examples cover the case of (1) one Control, one
Baseline and one Threat treatment, (2) two B and one T, and finally (3) one B and two T. Treatment rates are computed –
from the perspective of type II households – relative to all other households, i.e., we divide the number of treated households
by N − 1 = 6. For the examples, all networks have a Totalk equal to 1

2
; Controlk equal to 1

6
, 0, and 0; Basek equal to 1

6
,

2
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, and 1
6

; and Threatk equal to 1
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, respectively.
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Figure 4: Permutation tests: Distribution of estimated coefficients
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Notes: The figures present the cumulative distribution function of the coefficients on the baseline (left panel) and threat
mailing rates (right panel), obtained from the permutation test described in Section 5.3. The red vertical lines represent
the coefficients on the baseline and the threat mailing rates obtained from estimating model (1).

Figure 5: Illustration: How local are spillovers?
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Notes: The figure shows targeted household k with its first-, second-, third-, and fourth-order neighbors (indicated by
numbers 1,2,3,4) in a hypothetical network. Panel (a) represents the time before communication starts where only k
knows about its letter, in (b) the news has spread to k’s FONs, in (c) to her SONs, etc. Note that each time the message
spreads its impact becomes smaller: in (c) for instance, the SON of k learns about the letters but also about the fact
that k’s FONs – with who she communicates – did not receive a letter.
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Figure 6: Illustration: Degree, Diffusion Centrality and Eigenvector Centrality

Notes: The figure shows a stylized representation of a typical network in our sample. Four nodes (indicated with a star) have
the highest degree: they all have three network neighbours. The black node uniquely has the highest diffusion centrality
after two rounds of communication (DCT=2). By targeting the black node the entire network can be ‘reached’ after two
rounds of communication (assuming that the probability to passing on information is equal to 1). This is not the case if the
patterned nodes are targeted. The latter nodes have the highest eigenvector centrality (EC), i.e., those are linked to nodes
who are linked to ‘more important’ nodes than the black node, thus contributing to their higher eigenvector centrality.

Figure 7: Illustration: Local treatment concentration
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Notes: The figure shows two networks with the same structure but different degrees of local treatment concentration. There
are 12 households of three types represented in this picture. Let the dark nodes represent threat-treated households, the
lighter nodes base-treated and the empty nodes untreated households (Type II or III). In the left panel, households of the
same type tend to be neighbors, while households in the right panel tend to be neighbors with households of a different type.
Based on the formula from Appendix B.2, it is straightforward to compute the inbreeding homophily (IH) index for the

different cases. In the left panel, the IH index for the threat treatment is given by IHThreat =
2
4
− 11

12
1
6

1− 11
12

1
6

≈ 0.41, reflecting

the fact that (i) there are two neighbors of a threat-treated node who are also threat-treated, (ii) threat-treated nodes have
four neighbors overall, (iii) there is a total of twelve nodes in the network, and (iv) the threat-rate is 1

6
. For the base

treatment, one analogously obtains IHBase =
6
10
− 11

12
1
4

1− 11
12

1
4

≈ 0.48. In the right panel there are no neighbors of threat- (base-)

treated households who are threat- (base-) treated. For this network, one gets IHThreat ≈ −0.18 and IHBase ≈ −0.30.
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Appendix A Additional Figures and Tables

Figure A.1: Density of the total rate of experimental participants
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Notes: The figure presents kernel density estimates of the total rate of experimental participants (Totalk) for experimental
households in the baseline, threat and control treatment (Epanechnikov kernel with optimal bandwidth).

Table A.1: Network properties of relevant networks for different distance thresholds z.

Network threshold z = 25 50 75 100 250 500 1000 1500 2000

Networks 3,243 3,764 3,319 2,990 2,113 1,554 1,169 1,073 1,020

Mean Network Size 5.90 17.98 32.93 45.13 90.40 151.95 232.91 261.66 279.54

Type I HHs 7,056 14,028 17,144 18,705 21,612 22,956 23,473 23,550 23,575

Type II HHs 5,337 14,987 23,673 29,212 41,547 50,688 58,498 60,520 61,551

Type III HHs 6,761 38,673 68,481 87,009 127,846 162,487 190,306 196,691 200,004

All HHs 19,154 67,688 109,298 134,926 191,005 236,131 272,277 280,761 285,130

Notes: The table reports the distribution of household types and the mean network size for relevant networks obtained
for different thresholds z. A network becomes relevant for studying spillovers if there is at least one type I and at least
one type II household.
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Table A.2: Balancing tests

(1) (2) (3) (4)

Basek Basek Threatk Threatk

(a) Network-level characteristics

Network Size 0.0000 -0.0001

(0.0001) (0.0001)

Clustering -0.0026 -0.0025

(0.0148) (0.0145)

Degree 0.0004 -0.0005

(0.0005) (0.0006)

Eigenvector Centrality 0.0309 -0.0261

(0.0315) (0.0314)

Enforcement Rate -0.0400 0.0359

(0.0490) (0.0502)

(b) Experimental HHs characteristics

Diffusion Centrality (T = 1) -0.0032 -0.0010

(0.0107) (0.0105)

Diffusion Centrality (T = 10) -0.0004 -0.0007

(0.0088) (0.0087)

Eigenvector Centrality 0.0095 -0.0074

(0.0278) (0.0275)

IH Index -0.0198 0.0075

(0.0242) (0.0239)

IH+ Dummy -0.0017 0.0018

(0.0108) (0.0110)

(c) Municipal variables

Population -0.0000 0.0000

(0.0000) (0.0000)

Labor Income -0.0000 0.0000

(0.0000) (0.0000)

Average Age 0.0073 -0.0161

(0.0160) (0.0162)

Catholic 0.1858 -0.1905

(0.2289) (0.2244)

Non-Austrian Citizens -0.3394 0.4487

(0.8703) (0.8657)

1- or 2-family dwellings 0.1464 -0.2451

(0.2587) (0.2581)

Voter Turnout -0.1665 0.1188

(0.5156) (0.5174)

Observations 3,764 771 3,764 771

Notes: The table reports estimates from the balancing tests from equation (4) at the network
level (columns 1 and 3) and at the municipal level (columns 2 and 4), respectively. Among
the former, we distinguish among network-level characteristics for all households in a network
(panel a) and network-level averages among all experiment (type I) households (panel b). Each
entry in the table presents the estimated coefficient from a separate regression based on 3,764
(network-level) or 771 observations (municipality-level) of the baseline treatment rate (column
1 and 2) and of the threat treatment rate (column 3 and 4) on each observable variable. Each
regression controls for the total experimental rate (Totalk) non-parametrically by including
Totalk fixed effects (see equation 4). Robust standard errors are in parentheses. None of the
coefficients is significant at conventional levels.
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Table A.3: Interactions with municipality characteristics

(1) (2) (3) (4) (5) (6) (7)
Variable M = Income Catholic Population Age Non-Austrians Turnout Dwellings

Basek 0.2194 0.6901?? 0.2376??? 1.6640?? 0.2602 -0.3015 0.0448
(0.2184) (0.2959) (0.0518) (0.7529) (0.3719) (0.2380) (0.1189)

Threatk 0.4018 0.5332?? 0.3380??? 0.4034 -0.1686 -0.0198 0.0541
(0.2184) (0.2660) (0.0564) (0.7824) (0.3444) (0.2584) (0.1351)

Basek × M 0.0000 -0.4963 0.0000 -0.0297? 0.0182 0.7614?? 0.2583?

(0.0000) (0.3247) (0.0000) (0.0157) (0.3990) (0.3318) (0.1491)

Threatk × M -0.0000 -0.2033 0.0000 -0.0011 -0.5560 0.5172 0.3868??

(0.0000) (0.2921) (0.0000) (0.0163) (0.3692) (0.3581) (0.1710)

M 0.0000 0.0025 -0.0000 0.0018 -0.1174 0.0672 -0.0104
(0.0000) (0.0482) (0.0000) (0.0029) (0.0822) (0.0722) (0.0276)

R2 0.0907 0.0953 0.0971 0.0952 0.0956 0.0973 0.0964

Notes: The table reports results from LPM estimates of extension of equation (1) where the treatment rates are interacted
with a municipality variable M (see Panel (C) in Table 2). All estimates are based on 14,987 observations from 3,764
networks. A constant term is included but estimates are not reported. Standard errors, clustered at the network level,
are reported in parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.

Table A.4: Spillover effects within the experiment

(1) (2) (3) (4)

Basei 0.0591??? 0.0609??? 0.0594??? 0.0621???

(0.0037) (0.0039) (0.0052) (0.0056)

Threati 0.0656??? 0.0658??? 0.0661??? 0.0656???

(0.0038) (0.0040) (0.0053) (0.0058)

Basek - 0.0119 - -0.0045

(0.0262) (0.0726)

Threatk - 0.0132 - -0.0145

(0.0255) (0.0702)

Constant 0.0109??? - 0.0137??? -

(0.0028) (0.0041)

Observations 23,626 23,626 14,028 14,028

Networks – 10,535 – 3,764

R2 0.0034 0.0331 0.0033 0.0606

Notes: The table reports LPM estimates for the direct treatment effects in the experimental sample (type I
households). Baselineti and Threati indicate a dummy equal to 1 if type I household i was in the baseline or
threat treatment, respectively. In columns (1) and (2) we run regressions on all type I households included in our
raw data, in column (3) and (4) we focus on type I households from relevant networks with z = 50 (as defined in
Section 4.2). Columns (2) and (4) add controls for the treatment rates at the network level and include Totalk fixed
effects. In column (1) and (3) robust standard errors are in parentheses, in column (2) and (4) standard errors are
clustered at the network level. ???/?? indicates significance at the 1%/5%-level, respectively.
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Table A.5: Spillover effects and ex-ante compliance rate of experimental households

(1) (2) (3)

Comp= 1 Comp< 1 Full Sample

Basek 0.1614*** 0.2571*** 0.2793***

(0.0421) (0.0463) (0.0412)

Threatk 0.3280*** 0.3531*** 0.3655***

(0.0484) (0.0473) (0.0421)

Ex-ante Comp Ratek 0.0007

(0.0115)

Basek × Ex-ante Compk -0.1614***

(0.0495)

Threatk × Ex-ante Compk -0.0620

(0.0557)

Observations 1,625 13,362 14,987

Networks 583 3,181 3,764

R2 0.1047 0.1000 0.0967

Notes: This table explores variation in the average ex-ante compliance rate among experimental (type I)
households of network k. The first two columns report the results from LPM estimations of equation (1) for
the restricted sample of networks with an average ex-ante compliance equal to one (column 1) and less than
one (column 2), respectively. In column (3) we include a variable measuring the ex-ante compliance rate and
its interactions with the two mailing treatment rates. Standard errors, clustered at the network level, are in
parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.
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Table A.6: Interactions with experimental households’ diffusion and eigenvector centrality

(1) (2) (3) (4) (5) (6) (7) (8)

Centrality measure c: DCT=1 DCT=10 DC
Tk
qk EC

Basek 0.0517 0.1090 0.1649??? 0.2035??? 0.1194? 0.1769?? 0.0910 0.2073?

(0.0798) (0.0949) (0.0511) (0.0611) (0.0642) (0.0758) (0.0899) (0.1179)

Threatk 0.2636??? 0.3221??? 0.2664??? 0.3047??? 0.2700??? 0.3266??? 0.2706??? 0.3881???

(0.0887) (0.1022) (0.0554) (0.0638) (0.0708) (0.0807) (0.0983) (0.1246)

Basek × cbasek 0.2163?? 0.1688? 0.1203? 0.0952 0.1420? 0.1011 0.2263 0.0866

(0.0867) (0.0960) (0.0619) (0.0645) (0.0734) (0.0777) (0.1397) (0.1671)

Threatk × cthreatk 0.1420 0.0935 0.1425?? 0.1191? 0.1305 0.0912 0.1831 0.0398

(0.0953) (0.1035) (0.0662) (0.0677) (0.0797) (0.0830) (0.1493) (0.1765)

cbasek -0.0053 -0.0145 -0.0180 -0.0342 -0.0016 -0.0174 0.0172 -0.0194

(0.0164) (0.0187) (0.0214) (0.0256) (0.0186) (0.0222) (0.0328) (0.0418)

cthreatk -0.0322?? -0.0415?? -0.0303 -0.0474? -0.0281 -0.0444?? -0.0378 -0.0727?

(0.0162) (0.0184) (0.0207) (0.0253) (0.0179) (0.0217) (0.0343) (0.0419)

callk - 0.0301 - 0.0326 - 0.0373 - 0.0955?

(0.0232) (0.0254) (0.0236) (0.0537)

F-Tests: Joint significance of interaction terms

Basek × cbasek = 3.956 1.675 3.466 2.103 2.689 1.148 1.729 0.134

Threatk × cthreatk = 0 [0.019] [0.187] [0.031] [0.122] [0.068] [0.317] [0.178] [0.874]

Notes: The table presents LPM estimates for the equation yik = δTotalk + β1Basek + β2Threatk + γc1 c
base
k + γc2 c

threat
k +

γc3
(
cbasek × Basek

)
+ γc4

(
cthreatk × Threatk

)
+ εik as well as for an augmented model that also controls for callk . The variable cjk captures

the mean centrality for centrality measure c among experimental households from network k, in treatment condition j = baseline mailing
or threat mailing, respectively. callk indicates the mean centrality among all experimental households (independently of their treatment).
The augmented models thus exploit variation in the randomly treated households’ centrality, conditional on the centrality of all possible
injection points in a network k. Note that we set cbasek or cthreatk equal to zero if, in a given network k, there are no households in either

the one or the other treatment. (However, callk is always defined, as each network hosts at least one experimental household.) The basic

and the augmented interaction model are estimated for four centrality measures c: diffusion centrality for one (DCT=1, columns 1–2)
and ten rounds of communication (DCT=10, columns 3–4), the network specific diffusion centrality measure proposed by Banerjee et al.
(2019), i.e., with network specific parameters Tk and qk, where Tk is set to the diameter of network k and qk equal to the inverse of

the first eigenvalue of the network’s adjacency matrix (DC
Tk
qk , columns 5–6); and, finally, the eigenvector centrality (EC, columns 7–8).

The lower part of the table presents F-statistics [with p-values in brackets] testing the joint significance of the two interaction terms
(i.e., γc3 = γc4 = 0). Number of observations: 14,987; number of networks: 3,764. Standard errors, clustered at the network level, are in
parentheses. ???/??/? indicates significance at the 1%/5%/10%-level, respectively.
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Table A.7: Impact by centrality of injection points: robustness check

(1) (2) (3) (4) (5) (6) (7) (8)

Centrality measure c: DCT=1 DCT=10 DCTq EC

Basec-Lk 0.1080? 0.1744 0.2375??? 0.1937 0.2205??? 0.2742? 0.3851??? 0.4280?

[0.0611] [0.1158] [0.0681] [0.1492] [0.0745] [0.1453] [0.1355] [0.2299]

Basec-Hk 0.2585??? 0.2603??? 0.2445??? 0.2551??? 0.2453??? 0.2489??? 0.2416??? 0.2436???

[0.0390] [0.0402] [0.0386] [0.0395] [0.0384] [0.0394] [0.0379] [0.0381]

Threatc-Lk 0.2456??? 0.2799?? 0.2994??? 0.2265 0.3415??? 0.3438?? 0.6475??? 0.6318???

[0.0657] [0.1174] [0.0719] [0.1483] [0.0807] [0.1461] [0.1326] [0.2381]

Threatc-Hk 0.3612??? 0.3640??? 0.3535??? 0.3652??? 0.3513??? 0.3564??? 0.3454??? 0.3471???

[0.0398] [0.0409] [0.0394] [0.0403] [0.0394] [0.0401] [0.0388] [0.0389]

Totalc-Lk -0.0934 -0.0567 -0.1484 -0.3580?

[0.1052] [0.1347] [0.1314] [0.2107]

Totalc-Hk -0.0662? -0.0704? -0.0728? -0.1028???

[0.0370] [0.0365] [0.0372] [0.0362]

(c)allk -0.0115 0.0178? 0.0169 0.0179 0.0238 0.0242?? 0.1523??? 0.0999???

[0.0168] [0.0107] [0.0129] [0.0114] [0.0154] [0.0117] [0.0397] [0.0217]

Totalk FEs Yes No Yes No Yes No Yes No

F-Tests: (See Table Notes)

Base: High vs. Low 7.024 7.208 0.0129 0.956 0.130 0.965 1.169 0.868

Threat: High vs. Low 3.513 5.720 0.665 5.824 0.0162 2.554 5.485 0.118

R-squared 0.096 0.060 0.095 0.058 0.095 0.059 0.096 0.060

Notes: The table replicates the LPM estimations of equations (7) and (8) presented in Table 6, now controlling for the median
centrality (c)allk of all experimental households in a network k. As in Table 6 we differentiate treatment rates according to the

injection points’ having above or below media measures of centrality c for: diffusion centrality for one (DCT=1, columns 1
and 2) and 10 rounds of communication (DCT=10, columns 3 and 4), diffusion centrality with T = to the network’s diameter
and probability q = to the inverse of the first eigenvalue of the network’s adjacency matrix (DCTq , columns 5 and 6), and
finally eigenvector centrality (EC, columns 7 and 8). The F-tests reported in columns (1), (3), (5) and (7) are based on eq. (7)
and test the H0: βL

j = βH
j for j = 1 (Base) and j = 2 (Threat), respectively. The tests from columns (2), (4), (6) and (8)

are based on the augmented eq. (8) and test H0: αL + βL
j = αH + βH

j for j = 1 (Base) and j = 2 (Threat), respectively.

Adding up coefficients here accounts for the fact that Totalc-L differs from Totalc-H. Number of observations: 14,987; number
of networks: 3,764. Standard errors, clustered at the network level, are in parentheses. ???/??/? indicates significance at the
1%/5%/10%-level, respectively.
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Table A.8: Impact by injection points’ diffusion centrality: different T and q parameters

(A) q = 1 T = 1 2 3 4 5 6 7 8 9 10

Basec-Lk 0.1777 0.3026?? 0.2540? 0.2576? 0.2624? 0.2621? 0.2349 0.2339 0.2057 0.1937
(0.1160) (0.1366) (0.1406) (0.1444) (0.1446) (0.1448) (0.1454) (0.1447) (0.1467) (0.1491)

Basec-Hk 0.2601??? 0.2462??? 0.2503??? 0.2500??? 0.2496??? 0.2496??? 0.2518??? 0.2520??? 0.2540??? 0.2552???

(0.0401) (0.0393) (0.0393) (0.0393) (0.0393) (0.0393) (0.0394) (0.0394) (0.0394) (0.0394)
Threatc-Lk 0.2813?? 0.3880??? 0.3344?? 0.3165?? 0.3066?? 0.3054?? 0.2745? 0.2793? 0.2607? 0.2261

(0.1177) (0.1387) (0.1415) (0.1448) (0.1448) (0.1454) (0.1459) (0.1457) (0.1467) (0.1482)
Threatc-Hk 0.3632??? 0.3523??? 0.3568??? 0.3576??? 0.3584??? 0.3585??? 0.3609??? 0.3607??? 0.3620??? 0.3651???

(0.0408) (0.0401) (0.0401) (0.0401) (0.0401) (0.0401) (0.0401) (0.0401) (0.0401) (0.0402)
Totalc-Lk -0.0970 -0.1916 -0.1449 -0.1362 -0.1326 -0.1311 -0.1039 -0.1056 -0.0823 -0.0604

(0.1055) (0.1223) (0.1266) (0.1299) (0.1302) (0.1305) (0.1314) (0.1308) (0.1324) (0.1346)
Totalc-Hk -0.0463 -0.0414 -0.0449 -0.0456 -0.0460 -0.0462 -0.0483 -0.0483 -0.0501 -0.0520

(0.0342) (0.0337) (0.0336) (0.0336) (0.0336) (0.0336) (0.0336) (0.0336) (0.0336) (0.0337)

Base: H vs. L 10.92 3.821 4.218 3.123 2.549 2.442 2.491 2.691 3.015 2.255
Threat: H vs. L 9.051 4.860 5.866 6.793 7.788 7.615 8.253 7.775 7.119 8.871

(B) q = 0.75 T = 1 2 3 4 5 6 7 8 9 10

Basec-Lk 0.1777 0.3018?? 0.2593? 0.2574? 0.2612? 0.2944? 0.2682? 0.2147 0.2168 0.1959
(0.1160) (0.1368) (0.1406) (0.1450) (0.1447) (0.1618) (0.1618) (0.1461) (0.1465) (0.1487)

Basec-Hk 0.2601??? 0.2462??? 0.2497??? 0.2499??? 0.2496??? 0.2474??? 0.2490??? 0.2533??? 0.2532??? 0.2548???

(0.0401) (0.0393) (0.0393) (0.0393) (0.0393) (0.0390) (0.0390) (0.0394) (0.0394) (0.0394)
Threatc-Lk 0.2813?? 0.3896??? 0.3453?? 0.3085?? 0.3103?? 0.3164? 0.2909? 0.2674? 0.2681? 0.2400

(0.1177) (0.1386) (0.1418) (0.1456) (0.1450) (0.1620) (0.1625) (0.1460) (0.1463) (0.1484)
Threatc-Hk 0.3632??? 0.3522??? 0.3558??? 0.3581??? 0.3579??? 0.3578??? 0.3592??? 0.3615??? 0.3615??? 0.3636???

(0.0408) (0.0401) (0.0401) (0.0401) (0.0401) (0.0398) (0.0398) (0.0401) (0.0401) (0.0402)
Totalc-Lk -0.0970 -0.1923 -0.1514 -0.1328 -0.1334 -0.1489 -0.1246 -0.0901 -0.0908 -0.0679

(0.1055) (0.1222) (0.1266) (0.1307) (0.1302) (0.1469) (0.1470) (0.1317) (0.1321) (0.1343)
Totalc-Hk -0.0463 -0.0412 -0.0445 -0.0458 -0.0459 -0.0458 -0.0471 -0.0493 -0.0495 -0.0512

(0.0342) (0.0337) (0.0336) (0.0336) (0.0336) (0.0333) (0.0334) (0.0336) (0.0336) (0.0337)

Base: H vs. L 10.92 3.898 4.252 2.885 2.693 1.405 1.506 2.949 2.816 2.667
Threat: H vs. L 9.051 4.761 5.301 7.336 7.376 8.062 8.145 7.272 7.263 7.917

(C) q = 0.5 T = 1 2 3 4 5 6 7 8 9 10

Basec-Lk 0.1777 0.2893?? 0.3068?? 0.2867? 0.2416 0.2564 0.2681 0.2362 0.1839 0.1843
(0.1160) (0.1299) (0.1374) (0.1625) (0.1713) (0.1720) (0.1728) (0.1734) (0.1739) (0.1744)

Basec-Hk 0.2601??? 0.2474??? 0.2457??? 0.2478??? 0.2506??? 0.2497??? 0.2487??? 0.2509??? 0.2544??? 0.2543???

(0.0401) (0.0395) (0.0393) (0.0389) (0.0389) (0.0389) (0.0389) (0.0389) (0.0390) (0.0390)
Threatc-Lk 0.2813?? 0.3827??? 0.4018??? 0.3437?? 0.2825 0.3014? 0.3066? 0.2708 0.2304 0.2262

(0.1177) (0.1325) (0.1395) (0.1640) (0.1719) (0.1728) (0.1737) (0.1744) (0.1740) (0.1745)
Threatc-Hk 0.3632??? 0.3526??? 0.3512??? 0.3555??? 0.3595??? 0.3583??? 0.3576??? 0.3601??? 0.3627??? 0.3631???

(0.0408) (0.0403) (0.0401) (0.0398) (0.0397) (0.0397) (0.0397) (0.0397) (0.0398) (0.0398)
Totalc-Lk -0.0970 -0.1860 -0.1982 -0.1591 -0.1069 -0.1196 -0.1271 -0.0953 -0.0500 -0.0481

(0.1055) (0.1161) (0.1236) (0.1484) (0.1568) (0.1574) (0.1580) (0.1589) (0.1591) (0.1596)
Totalc-Hk -0.0463 -0.0410 -0.0412 -0.0449 -0.0484 -0.0481 -0.0473 -0.0495 -0.0526 -0.0528

(0.0342) (0.0338) (0.0336) (0.0333) (0.0332) (0.0332) (0.0332) (0.0332) (0.0333) (0.0333)

Base: H vs. L 10.92 4.817 4.009 2.419 1.893 1.793 1.542 1.569 1.947 1.813
Threat: H vs. L 9.051 5.050 4.172 5.703 6.584 6.021 6.215 6.674 6.089 6.324

(D) q = 0.25 T = 1 2 3 4 5 6 7 8 9 10

Basec-Lk 0.1777 0.2446? 0.2889?? 0.3838?? 0.3829?? 0.3899?? 0.3924?? 0.3588?? 0.2432 0.2122
(0.1160) (0.1397) (0.1446) (0.1588) (0.1642) (0.1688) (0.1704) (0.1759) (0.1930) (0.1929)

Basec-Hk 0.2601??? 0.2505??? 0.2467??? 0.2418??? 0.2423??? 0.2417??? 0.2417??? 0.2437??? 0.2497??? 0.2514???

(0.0401) (0.0393) (0.0392) (0.0389) (0.0388) (0.0388) (0.0388) (0.0388) (0.0386) (0.0387)
Threatc-Lk 0.2813?? 0.3385?? 0.3952??? 0.4476??? 0.4600??? 0.4869??? 0.4881??? 0.4683??? 0.3640? 0.3470?

(0.1177) (0.1372) (0.1412) (0.1597) (0.1656) (0.1708) (0.1727) (0.1771) (0.1883) (0.1883)
Threatc-Hk 0.3632??? 0.3557??? 0.3514??? 0.3490??? 0.3486??? 0.3467??? 0.3469??? 0.3482??? 0.3538??? 0.3548???

(0.0408) (0.0402) (0.0402) (0.0398) (0.0397) (0.0397) (0.0397) (0.0396) (0.0396) (0.0396)
Totalc-Lk -0.0970 -0.1415 -0.1844 -0.2533? -0.2596? -0.2687? -0.2700? -0.2425 -0.1358 -0.1123

(0.1055) (0.1246) (0.1281) (0.1429) (0.1482) (0.1523) (0.1542) (0.1590) (0.1739) (0.1738)
Totalc-Hk -0.0463 -0.0446 -0.0423 -0.0395 -0.0396 -0.0400 -0.0402 -0.0421 -0.0480 -0.0494

(0.0342) (0.0336) (0.0335) (0.0333) (0.0332) (0.0332) (0.0332) (0.0332) (0.0331) (0.0331)

Base: H vs. L 10.92 4.708 4.132 2.008 2.411 2.444 2.374 2.688 3.121 3.609
Threat: H vs. L 9.051 4.971 3.407 4.346 3.744 2.413 2.447 1.955 1.782 1.465

Notes: The table presents the results from LPM estimations of equation (8) for diffusion centrality measures with T ∈ {1, ..., 10} (columns
1–10) and q ∈ {1, 0.75, 0.5, 0.25} (Panels A–D). (Compare the results from columns (2) and (4) from Table 6.) Within each panel, the last two
lines report the F-Statistics testing the H0: αL + βL

j = αH + βH
j for j = 1 (Base) and j = 2 (Threat), respectively. All estimates are based on

14,987 observations from 3,764 networks. Standard errors, clustered at the network level, are in parentheses. ???/??/? indicates significance at
the 1%/5%/10%-level, respectively.
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Table A.9: Local treatment concentration – Pooled mailing treatments

IH – Index IH+ – Dummy

(1) (2) (3) (4)

Mailingk 0.3070??? 0.2853??? 0.3140??? 0.2992???

(0.0371) (0.0386) (0.0410) (0.0427)

Mailingk × IHmail
k -0.0234 -0.0229

(0.1046) (0.1047)

IHmail
k -0.0460 0.0577

(0.0643) (0.0849)

IHexp
k -0.1070?

(0.0634)

Mailingk × IHDmail
k -0.1463??? -0.1641???

(0.0507) (0.0540)

IHDmail
k 0.0109 -0.0007

(0.0126) (0.0147)

IHDexp
k 0.0216

(0.0170)

R2 0.0926 0.0928 0.0933 0.0934

Notes: The table replicates the estimates from Table 7 when we pool the two mailing treatment rates into one
(Mailingk = Basek+ Threatk). All estimates are based on 14,987 observations from 3,764 networks and account for
Totalk fixed effects. Standard errors, clustered at the network level, are in parentheses. ???/??/? indicates significance
at the 1%/5%/10%-level, respectively.
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Appendix B Theoretical Background

This section offers further details on the network characteristics used in Section 6.

Appendix B.1 Network Characteristics

Recall that we refer to A = [aij] as the adjacency matrix of a network, where aij = 1 if there is a

link between households i and j (i.e., if (i, j) ∈ Ξ) and zero otherwise.

Degree. The degree of household i is given by the number of its first-order neighbors (FONs), i.e.,

by the cardinality of the set Ni.

Clustering. The clustering coefficient is the fraction of neighbors of i who are neighbors themselves.

The clustering coefficient ci of household i is defined as follows: ci =
∑
j<k aijaikajk∑
j<k aijaik

.

Eigenvector Centrality. Eigenvector centrality (EC) is one of several measures that determine

the relative importance of a node within a network. The measure assigns relative scores to all nodes

in the network, assuming that connections to high-scoring nodes contribute more to the score of the

node in question than equal connections to low-scoring nodes. Eigenvector centrality is defined as

ECi =
1

λ

∑
j∈Ni

ECj =
1

λ

∑
j∈N

aijECj .

The equality can be rewritten as the eigenvector equation AEC = λEC. Newman (2006) shows

that only the highest λ satisfies the requirement of entirely positive entries of the vector EC and

thus, eigenvector centrality of agent i is uniquely determined as the ith entry of the respective

eigenvector EC.

Diffusion Centrality. Banerjee et al. (2019) have shown that in a simple model, where treated

households ` initiate the spread of information I1
` , which is then passed on ‘truthfully’ by network

neighbors in subsequent periods, the expected total number of times I` is heard by any other

household in the network after T rounds of communication is given by

DCT` :=

T∑
t=1

(qA)t~e`, (B.1)

where ~e` is the `-th unit vector (i.e. the vector with all entries zero and the `-th entry 1). DC`
is referred to as household `’s ‘diffusion centrality’ (DC) and q is the probability with which

information is passed on among neighbors, as defined in Section 5.1.

Appendix B.2 Local Concentration of Intervention

Let us denote with τ an agent’s treatment within the experiment, i.e., τ ∈ {base, threat, control}.
Define by inτk the average number of neighbors of type-τ agents in network k, who are also of type

τ . Define by outτk the average number of neighbors of type-τ agents in network k, who are not of

type τ . Obviously, inτk + outτk coincides with the average degree of type-τ households in network k,

i.e., with their average number of FONs.

We can then define the index Hτ
k =

inτk
inτk+outτk

(compare Currarini et al., 2009). Based on this,

we can now introduce:

(i) IH-Index: The inbreeding homophily index for type τ is given by IHIτk =
Hτ
k−

N−1
N

(τ−ratek)

1−N−1
N

(τ−ratek)
.

(ii) IH Dummy: IHDτ
k = 1↔ IHIτk ≥ 0.
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The IH-index is positive if there is homophily and negative if there is heterophily. Note that

in small networks the IH-index is slightly biased downwards in the sense that in the case of purely

random linking, the expected value of the index would be −1
N−1 . This expression converges to zero

as N becomes large, but it is clearly different from zero (and negative) for small network sizes.

The latter fact motivates us to consider the IH Dummy, which indicates simply whether there is

homophily in the network or not.
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