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Abstract
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1 Introduction

The economics of externality-correcting interventions typically focuses on smooth, Pigouvian

incentive schemes. It is quite common, however, for such subsidies, taxes, or penalty schemes to

include ‘kinks’ or ‘notches’ (Slemrod 2013; Kleven 2016). In North America and some continental

European countries, for instance, vehicles are subject to a tax that is a step function of a car’s

fuel economy or CO2 emission level (Sallee and Slemrod 2012; D’Haultfœuille et al. 2016).

Notches are also ubiquitous in many domains of law enforcement. Fines and penalties often

change discontinuously with small variations in the ‘nuances’ of a legal violation. Compared to

minor fraud, theft, or tax evasion, major cases are punished in very different ways – and the

differences between minor and major are commonly defined along cutoffs in a continuous metric

of damage (Rasmusen 1995). A further example is driving under the influence, which triggers a

penalty that discontinuously increases at certain cutoff levels of blood alcohol content (Hansen

2015). Similarly, many countries use penalties for speeding which are stepwise increasing in the

speed level (Goncalves and Mello 2017).

From a Pigouvian perspective, such notched taxes or enforcement schemes seem puzzling.

Given that the underlying externalities are typically smooth functions of a given action, corrective

interventions should build on smooth incentives, too. The marginal cost imposed by a Pigouvian

scheme should reflect the marginal social cost of the action – and it is unclear why the latter should

discontinuously change at certain cutoffs (such as, e.g., speeding at 30 mph above the limit).

Admittedly, the exact marginal externality may depend on a vast number of factors.1 A ‘correct’

Pigouvian solution would thus become quite complex. A high level of complexity, in turn, might

hamper – in this case desired – behavioral responses to the policy (e.g., Abeler and Jäger 2015).

Notched Pigouvian schemes could, therefore, represent constrained approximations to the optimal

penalties that account for decision makers’ limitations in their attention, awareness, or cognition

(Ericson 2011; Taubinsky and Alex Rees-Jones 2017; Altmann et al. 2017). The simplicity of, e.g.,

stepwise increasing penalty schemes might assure its salience and individuals’ awareness about

the scheme (Chetty et al. 2009; Finkelstein 2009). In the presence of externalities, the salience

gains related to simplicity could then dominate the welfare costs from deviating from the correct

Pigouvian scheme.

We examine this idea in the context of speed limit enforcement in Germany, where drivers are

confronted with a notched – and, as we are going to show, quite salient – penalty scheme. The

core of our analysis exploits detailed data on more than 150,000 speeding tickets recorded on the

German Autobahn. In addition, we examine complementary data on 290,000 (non-ticketed) speed

measures from single-lane roads. Like in many other countries, fines and other penalties jump

discontinuously at several speed levels. Hence, drivers face numerous ‘notches’ in the penalty

structure.

1Consider, e.g., the marginal accident risks associated with a marginal increase in speeding under different
weather, road, traffic and car conditions.
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To set the stage for our analysis, we first introduce a simple analytical framework in the

spirit of Kleven and Waseem (2013) and study the effect of the penalty notches on drivers’ op-

timal speed choices. The analysis, which differs in several ways from a deterministic taxation

framework, highlights conditions under which drivers bunch at different notches. Before exam-

ining bunching responses, we present evidence from a survey that assesses whether drivers know

and understand the penalty scheme’s structure. The survey reveals that respondents are quite

knowledgeable about the scheme’s stepwise shape, its discontinuous jumps and the location of

the cutoffs. This finding is by no means trivial and – potentially due to the penalty scheme’s

simplicity – different from studies documenting limited knowledge (e.g., Chetty et al. 2013)

and misconceptions of non-linear or non-convex budget sets (De Bartolome 1995; Liebman and

Zeckhauser 2004; Feldman et al. 2016).2 At the same time, the survey indicates considerable

heterogeneity across drivers, suggesting that bunching might not be very sharp. Variation in

the speed indicated by speedometers as well as ambiguities regarding the computation of the

fine-relevant speed measure might further limit the scope for bunching.

Studying the distribution of measured speed, we do find bunching for some of the notches in

the penalty scheme. Disproportionately more drivers are speeding exactly at (or slightly below)

certain cutoffs of the penalty scheme. Quantitatively, however, the observed bunching mass

is quite small and – similar to findings in several tax bunching studies (Saez 2010; Chetty et

al. 2011; Bastani and Selin 2014) – varies considerably along the speed distribution.3 Given the

optimization frictions noted above, it is not too surprising that we do not detect massive bunching

responses. The fact that we do find some evidence on bunching indicates that at least some

drivers do respond despite the frictions they face. By exploring a reform of the penalty system

we provide further evidence on behavioral responses. The reform increased the size of several

notches, without shifting their location. Our results indicate that some speeders responded to

the reform by avoiding speed ranges which triggered significantly higher penalties after the reform.

Overall, the data suggest that the reform produced a sizable shift in the speeding distribution,

with a 25% drop in the fraction of vehicles driving more than 20km/h above the limit.

Based on our empirical results we finally get back to the analytical framework and derive

an upper bound on the ‘salience gap’ – the maximum difference in salience between a notched

and a more complex Pigouvian penalty scheme, for which the latter scheme would be superior

to the notched one. Our results suggest that if at most 12 percent of drivers turn inattentive

after switching from a notched to a smooth Pigouvian scheme, the hypothetical reform would be

welfare enhancing. For a higher salience gap, the notched approximation would be superior to a

Pigouvian scheme that is poorly understood by drivers.

2Further evidence is discussed in Congdon et al. (2011; Ch. 2).
3Using the data that cover the full distribution of measured speed (rather than the distribution conditional on

receiving a speeding ticket), for instance, we find no evidence on bunching at the speed limit itself. Moreover, in
both sets of data, we observe no bunching at very high speed level cutoffs. Drivers in this speed range might either
have a very ‘sharp’ preference for speeding or they might expect very low detection probabilities. In either case,
such drivers seem fairly insensitive to the penalty notches.
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Our study relates to several strands of research. First, we contribute to the law and economics

of speeding and speed control.4 One million lives are lost worldwide each year due to motor vehicle

accidents (Peden et al. 2004), with speeding being a major contributor to the number of traffic

fatalities. It is therefore important to advance our understanding of speed control policies. Several

quasi-experimental studies document the impact of police enforcement (DeAngelo and Hansen

2014), speed limits (van Benthem 2015) and speeding tickets (Dusek and Traxler 2017) on travel

speed, accidents, fatalities and air pollution externalities. The present study differs from these

contributions since it analyzes drivers’ responses to the specific structure of speeding penalties.

By focusing on an electronic (i.e., automated) enforcement system, our study also differs from

Goncalves and Mello (2017), who study racial bias in police officers’ (not drivers’) responses to

similar notches.

Conceptually, our paper closely relates to the work by Sallee and Slemrod (2012), who study

automakers’ responses to notches in the (fuel economy based) taxation of automobiles. They offer

an interesting welfare discussion, in which they quantify the welfare loss due to the inaccurate

incentives of a notched scheme. Our analysis contributes to this discussion by (i) explicitly

modeling the benefit of a notched scheme being more salient and by (ii) empirically approximating

the tradeoff between these costs and benefits. In this vein, we also offer a new perspective on

related welfare discussions of notched schemes (e.g., Blinder and Rosen 1985; Gillitzer et al.

2017).

In terms of methods, we use tools from public finance to analyze behavioral responses to

law enforcement (Kleven 2016). Applying the bunching framework to speeding responses, our

analysis clarifies several key differences between the law enforcement and the taxation context.

In our application, bunching is proportional to expected notches – the discontinuous increase in

penalties weighted with the detection probability. Hence, there are two policy parameters that

jointly determine the incentive to choose a corner solution: the jump in penalties at a given

speed (analogous to, e.g., increases in average tax rates at certain income levels) and the risk of

punishment. This latter dimension, which is not present in most taxation studies but crucial if one

explores notches in law enforcement, impedes the translation of bunching mass into behavioral

response elasticities. The reason is that objective variation in law enforcement and subjective

priors about detection risks (speed controls) essentially add an additional layer of heterogeneity.

Without common knowledge about the enforcement parameters (or subjective risk assessment

data), notches in penalty schemes cannot readily be used to identify behavioral elasticities.5

4For early, theoretical contributions in this field see, e.g., Jondrow et al. (1983), Lave (1985), and Graves et al.
(1993).

5A further, more technical difference to the taxation literature is related to the close proximity of potential
bunching points. In our context, it is reasonable to consider drivers who are indifferent about speeding 20 or
25 km/h above the limit. Our analysis therefore considers the joint influence of multiple, potentially inter-related
notches on behavior – a point which advances and generalizes the theoretical bunching literature.
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The rest of the paper is structured as follows. Section 2 describes the institutional framework

for speeding in Germany. Section 3 presents evidence from our survey on drivers’ knowledge of

the penalty scheme’s structure. Section 4 introduces a simple model of speeding and discusses

several predictions. After presenting the data (Section 5) we turn to the empirical analysis of the

different speed measurement data (Section 6). Section 7 offers a welfare comparison between a

notched and a smooth penalty scheme and Section 8 concludes.

2 Institutional Background

Despite common prejudices about German highways being the great dream of speeders, there are

speed limits on more than 85% of the 13,000 kilometers of Autobahn. Speed limits are primarily

imposed for safety reasons: high speed is the leading cause of roughly 4,000 annual traffic deaths

and 400,000 annual traffic injuries in Germany. For most of the accidents, speeding is the chief

cause.6

The enforcement of speed limits is based on permanently installed and on mobile speed cam-

eras, which are set up by an officer for a few hours. (On-board speed measurement in unmarked

cars are extremely rare.) If a vehicle passes with a speed above a certain enforcement level (see

Section 5 below), a picture is automatically taken and the speed is recorded. The vehicles’ owners

are identified from the number plates and receive a ticket by mail. Penalties for speeding offenses

– i.e., fines, ‘penalty points’ and possible driving bans – are a function of the measured speed:

the speed camera’s measure s is first rounded down to the next integer; a tolerance value of

3% is subtracted and the result is again rounded to the next lower integer.7 The outcome from

this so-called ‘tolerance rule’ (which serves as a concession to prevent appeals against speeding

tickets), the speed level x, determines the penalty according to Table 1.

Monetary fines range from 10 to 623.50 euro. The fines discontinuously increase at cutoffs of x

being, e.g., 20, 25, 30 or 40 km/h above the speed limit. Within each speed bracket, i.e., between

two cutoffs, the fine is constant. The same holds for temporary driving bans: a one-, two- or

three-month ban is imposed for speeding in the range 40–60, 60–70, and more than 70 km/h above

the limit, respectively. The penalty point scheme follows a stepwise pattern, too. Speeding in the

range 20–25, 25–50, or above 50 km/h results in one, two or three penalty points, respectively.

The repeated accumulation of points, which are recorded in a register of traffic offenders, can

result in the revocation of a driver’s license.8

6See Deutsches Statistisches Bundesamt (2017; Fachserie 8/7, Verkehr).
7Consider the following example: a speed camera measures s = 140.6km/h. The recorded speed is first rounded

down to 140km/h. Thereafter, it is reduced by 3% to 135.8km/h and further rounded down to x = 135km/h.
Note that a similar (but informal and less institutional) rounding in favor of the speeder is frequently applied in
institutional contexts that include face to face interactions with police officers.

8Offenders who have accumulated between 14 and 17 points are obliged to participate in a costly seminar on
traffic safety. Drivers that end up at 18 or more points get their driver’s license revoked. Older points are deleted
two years after collecting them if no additional tickets were issued since then. For a theoretical analysis of combining
monetary fines with penalty points, see Bourgeon and Picard (2007).
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In 2009 there was a significant reform of the penalty schedule. Starting with February 2009,

fines for speeding with more than 20 km/h above the limit were increased considerably. All other

penalties (points and driving bans) remained unchanged. An overview of the fines before and

after the reform as well as the stable components of the penalty system is provided in Table 1.

The table illustrates the key property of the penalty system: the penalty scheme is char-

acterized by what the Public Finance literature calls ‘notches’ (Slemrod, 2013): discontinuous

increases in fines, penalty points and/or driving bans at each speed bracket’s cutoff.9 Before 2009,

speeding with e.g. 20km/h above the limit triggered a fine of 30 euro and no penalty point; for

21km/h, it was 63.50 euro and one penalty point. The table further shows that the reform not

only increased the level of the fines but also the magnitude of several notches. At the 20km/h

cutoff, for instance, the increase in the fine amounted to 33.50 euro before (∆̃pre) but 63.50 euro

after the reform (∆̃post). The notch in fines thus increased by 90 percent. Similar increases oc-

curred at other cutoffs. Further dimensions of penalties beyond fines (i.e., driving bans, penalty

points) remained the same.

Table 1: Penalties for speeding (outside built-up areas)

Speed bracket Cutoff Fines (in euro) Penalty Driving
(speed above limit in km/h) pre-reform post-reform change Points Ban

xi f̃pre
i ∆̃pre

i f̃post
i ∆̃post

i
∆̃post−∆̃pre

∆̃pre
(Months)

x ≤ 10 10 10.0 10.0 10.0 10.0 0.00 0 –
10 < x ≤ 15 15 20.0 10.0 20.0 10.0 0.00 0 –
15 < x ≤ 20 20 30.0 33.5 30.0 63.5 0.90 0 –
20 < x ≤ 25 25 63.5 10.0 93.5 10.0 0.00 1 –
25 < x ≤ 30 30 73.5 15.0 103.5 40.0 1.67 3 (1)
30 < x ≤ 40 40 98.5 25.0 143.5 40.0 0.60 3 (1)
40 < x ≤ 50 50 123.5 50.0 183.5 80.0 0.60 3 1
50 < x ≤ 60 60 173.5 125.0 263.5 200.0 0.60 4 1
60 < x ≤ 70 70 298.5 100.0 463.5 160.0 0.60 4 2
70 < x ≤ 70 − 398.5 − 623.5 − − 4 3

Notes: The table presents the fines (f̃i) and other penalties (penalty points and temporary driving bans) for

different speed levels over the speed limit on the German Autobahn. The columns labeled by ∆̃pre and ∆̃post

capture the pre-/post-reform notches in the fines, respectively (i.e., the increase in the fine associated with moving

from a ‘lower’ to a ‘higher’ speed bracket). The notation uses tilde to indicate that these variables (i.e., f̃i and ∆̃i)
only refer to the monetary component of the penalty. In the model section, fi and ∆i refer to the disutility from
all different types of penalties for a given speed x. The duration of temporary driving bans indicated in brackets
are only imposed the second time a driver is detected speeding by more than 25 km/h within one year.

3 Survey Evidence

Let us first study whether the simplicity of the stepwise penalty structure is reflected in a good

knowledge of the penalty scheme. To approach this question, we conducted an online survey. The

survey was implemented in June 2013 in cooperation with a professional survey company which

9Notched penalty structures can be found in many other countries. For evidence from Italy, Spain, and the
Czech Republic, see De Paola et al. (2013), Castillo-Manzano et al. (2010) and Montag (2014), respectively.
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maintains a large sample of German individuals that is representative in several dimensions (age,

gender, education and occupational structure). We invited a random subset of this sample (con-

ditional on having a driver’s license) to participate in the survey. The key survey questions and

summary statistics for the approximately 1,000 participants are provided in the Online Appendix

(see Table A.4). 48% of the respondents are male and the average age is 43 years. 54% drive on

daily basis and more than 60% drive on the Autobahn several times a month. Over a third of the

respondents have experience with the penalty system: 28% report that they were caught speeding

during the last two years and 12% indicate that they hold a positive penalty point record in the

register of traffic offenders (see above).

To elicit people’s knowledge about the penalty system, we first asked survey participants to

indicate the level of speeding fines for a randomly drawn sequence of speed levels (see Online

Appendix). Comparing answers within and between respondents, we thus obtain information on

the expected fines as a function of the speed without mentioning the stepwise fine structure in the

question. It is important to note that this way of asking the question (i.e., by exposing subjects

to randomly drawn speed levels) gives the survey a hard time to reveal a clear step function in the

expected fines. Moreover, the randomization approach implies that Figure 1 – which illustrates

the results – is not simply comparing answers for a given set of speed levels but it pools variation

within and between respondents.

Figure 1: Expected and actual fines (in euro) for a given speed above the limit.

Note: The figure illustrates survey responses regarding the expected fines (in euro, vertical axis) for a given speed
above the limit (in km/h, horizontal axis). The blue dots capture median expectation, the upper and lower ‘bounds’
on the blue dots indicate the 33rd- and 66th-percentile, respectively. The dashed red lines and the green dotted line
depict the fines for the post- and pre-reform period, respectively. (See the Online Appendix, Survey Question 1.)
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In the light of these qualifications, Figure 1 offers a relatively clear picture. The blue dots

indicate the median expected fines (together with the 33rd- and 66th-percentile) for the surveyed

levels of speeding. The dashed red (dotted green) line shows the actual fine for the post- (pre-)

reform period. The figure provides two insights. First, respondents reveal a good knowledge

of the stepwise structure and the increase of fines at the cutoffs.10 While there is no jump in

the median response at the 30/31 threshold, the lower and top terciles (as well as the average,

not depicted) strongly increase at the cutoff. Second, the expected level of the speeding fines is

much closer to the pre-reform level. A possible interpretation of this observation is that drivers’

expectations converge only slowly to the post-reform levels.

A relatively good understanding of the stepwise shape of the penalty function is further

captured in Figure 2. The graph displays responses to a more direct question that explicitly

asked whether there is an increase in penalties at a certain speed level. For each of the five

surveyed thresholds, the mode of the response distribution – typically accounting for half of all

answers – coincides with the true cutoff. This corroborates the first finding from above.

Figure 2: Expectations regarding the cutoff points

Notes: For each of the five cutoffs (21, 26, 31, 41 and 51km/h above the speed limit), the bar graphs represent the
fraction of respondents who expect an increase in the penalties at one (or none) of the indicated speed levels. (See
the Online Appendix, Survey Question 2.)

We also asked whether drivers know about the tolerance rule for computing the speed level

which is relevant for determining the penalty (see Section 2). 93% answered that they were aware

of this rule. Among them, 36% – again the mode of the response distribution – indicated the

correct rule (see Online Appendix). Hence, there is quite some variation in the expectations

regarding the tolerance rule, but one out of three drivers seems to perfectly know the rule.

10The average survey duration, as well as the question specific response times indicate that responses do not
stem from ad-hoc online research on the questions.
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Overall, the survey suggests that the simplicity of the penalty scheme is reflected in a relatively

good understanding of the system. The majority of respondents understand well the scheme’s

stepwise shape with its discontinuous changes at cutoffs. This finding is by no means trivial and

– potentially due to the simplicity of the penalty structure – sets it apart from a growing body

of evidence on individuals’ limited knowledge and misperception of non-linear budget sets (e.g.,

De Bartolome 1995; Liebman and Zeckhauser 2004; Chetty et al. 2013; Feldman et al. 2016).

The solid understanding of the notches observed in our set-up implies that drivers should

respond to the penalty structure. In fact, we asked participants if they would speed on highways

and, if at all, whether they would try to avoid higher fines by staying under a certain cutoff.

Among those that admitted speeding (almost three out of four respondents), 85% indicated

they would drive at a speed level slightly below one of the cutoffs in the penalty scheme. It is

important to stress, however, that respondents’ knowledge is far from being perfect. In fact, due

to misconceptions regarding the location of the cutoff points and the generosity of the tolerance

rule, drivers might simply target the ‘wrong’ speed levels.

4 Theoretical Framework

To set the stage for our empirical analysis, we analyze a risk neutral driver’s optimal speeding

response to a stepwise penalty scheme. Let the monetary equivalent of the net benefits from a

given speed x (time spent on the trip, net of costs for fuel consumption, experienced ‘pleasure’

from driving at speed x, etc.) be given by a twice differentiable function v(x, θ), where the

parameter θ captures heterogeneous preferences. Drivers’ types θ are distributed continuously

with density g(θ) and the c.d.f. G(θ). For every type θ, v(., θ) is concave in x and satisfies the

single-crossing property, i.e. ∂2v(x,θ)
∂x2

< 0 and ∂2v(x,θ)
∂x∂θ > 0∀x, θ.11 With probability p, the driver’s

speed is measured by a speed camera. In this case he may get a penalty f(x) which is a step

function of the observed speed x:

f(x) =



f0 = 0, if x ≤ x0, with x0 capturing the speed limit;

...

fi, if xi−1 < x ≤ xi,

...

fI , if xI−1 < x,

(1)

with xi denoting the cutoff for speed bracket i = 1, . . . , I, and fi expressing the costs of the

penalties for a given speeding bracket i.12 A notch at a cutoff speed xi is given by ∆i := fi+1−fi >

0. Assuming that the drivers’ utility functions are quasi-linear, their objective functions are given

11For a less stylized model of speeding choices (in which, however, drivers’ preferences are homogeneous) see
Jondrow et al. (1983).

12As the penalty may include non-monetary components (e.g., a driving ban or penalty points), f(x) denotes the
average present value of the monetary equivalent of the penalty. Allowing for heterogeneity in the penalty across
different drivers would complicate the following discussion without yielding additional insights.
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by the net benefits from driving v(x, θ) and the expected penalties f(x):13

max
x

EU(x, θ) = v(x, θ)− pf(x). (2)

As f(.) is a step function which is ‘flat’ between the different cutoffs xi, the first-order condition

for an interior optimum x∗ is ∂v(x∗; θ)/∂x = 0. With the additive separable utility function,

the interior option is independent of the enforcement parameters. x∗ is thus equal to the driver’s

optimal speeding decision absent any penalty scheme. Our assumptions on v(.) further imply

that x∗ = x∗(θ) is continuously increasing in θ.

While the interior solution does not depend on the penalty, the stepwise shape of f(x) gives

rise to possible corner solutions. Figure 3 illustrates this point graphically, plotting x on the

horizontal and expected utility (EU) on the vertical axis. The stepwise penalty scheme implies

that the inverted-U shape of EU discontinuously drops at each cutoff xi (in the graph: x1 and

x2), as penalties increase at these speed level cutoffs (∆i > 0). As illustrated in the left panel

of Figure 3, a notch does not necessarily imply a corner solution. Only if the expected notch,

p∆i, is sufficiently large (for a given driver θ), the driver’s optimal speed corresponds to a corner

solution at a cutoff. This case is depicted in the right panel of the figure.

Figure 3: Optimal speed level with notches: Interior optimum and corner solution

 

 

EU(x) 

x1 x2 x1 = x* x2 x* x* 

Note: The figure displays the mapping of speed x into expected utility, EU , for a given θ-type and notches at two
cutoffs, x1 and x2. For the case depicted in the left panel, the expected notch is small and the driver’s optimal
speed corresponds to the interior solution. In the right panel, the expected notch at x1 is larger, thus turning this
cutoff into the driver’s optimal speed level.

13Risk aversion would not qualitatively affect our analysis as long as cross derivatives of Bernoulli utility functions
with respect to the net benefits of driving and penalties are zero: In this case, the interior optimum x∗ would remain
unchanged; only the slopes of indifference curves for speed levels other than the optimum would be affected. The
more risk averse a driver (and the larger the fine), the steeper the indifference curve. As a consequence, we
would expect to observe less bunching for more risk averse drivers. Things would look different, however, if the
aforementioned cross derivatives are non-zero: A driver’s interior optimum x∗ would then depend on her type and
the size of the penalty.
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Figure 4: Bunching at notch xi.
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Note: The figure displays the mapping of speed x into expected utility for heterogeneous θ-types and one notch at
the cutoff xi. For the driver with type θ = θi, the corner solution at the cutoff is identical to her interior solution.
The driver with θ = θi is indifferent between her the interior solution x∗(θi) and the corner solution at xi. All
drivers with θi < θ < θi will prefer the speed xi over their interior optimum x∗(θ).

4.1 Responses to Notches

To study the impact of a penalty scheme with notches more formally, we follow the theoretical

analysis in Kleven and Waseem (2013). Note first that, absent any penalties, the function x∗(θ)

would simply map types of drivers into speed choices. The observed distribution of speed, H(x),

would be continuous. In the presence of notches this will generally not be the case. This point

is illustrated in Figure 4, which plots expected utility for two types who face a notch at xi. The

interior solution for the driver of type θi exactly corresponds to the cutoff, x∗(θi) = xi, i.e.,

he would choose the cutoff xi even absent any penalty scheme. Drivers with slightly higher θ

are strictly better off when choosing their corner solution xi rather than their interior solution

x∗(θ) > xi which would trigger a penalty fi+1 > fi. In contrast, the driver with θi is indifferent

between his interior solution, x∗(θi) > xi and the corner solution at xi. For the case depicted

in Figure 4, all types above θi and below θi strictly prefer the corner solution xi over any speed

x > xi. The set of drivers who bunch at the cutoff xi is thus given by the type interval [θi, θi]. The

following Lemma generalizes this observation for a penalty scheme with more than one notch:14

Lemma 1 Consider a notch ∆i > 0 at speed cutoff xi that is used by a non-empty set of types.

The probability mass of drivers speeding at xi is given by Πi = G(θi) − G(θi), where θi satisfies

either

x∗(θi) = xi (3)

or ∃j < i : v(xi, θi)− v(xj , θi) = p(fi − fj), (4)

14All proofs are provided in the appendix.
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and θi satisfies either

∃j > i : v(x∗(θi), θi)− v(xi, θi) = p(fj − fi) and xj−1 < x∗(θi) < xj , (5)

or ∃j > i : v(xj , θi)− v(xi, θi) = p(fj − fi). (6)

Lemma 1 shows that there could be different characterizations of the boundaries of the interval

[θi, θi]. In Figure 4, the boundaries are characterized by (3) and (5) (with j = i+ 1). In the case

of multiple notches, however, the lower bound could also be given by (4). For this case, the type

with θi would be indifferent between a corner solution at xi and a cutoff at a lower speed bracket,

xj < xi. Similarly, the upper bound could be characterized by (6), which describes a type who

is indifferent between a corner solution at xi and a corner solution at a cutoff for a higher speed

bracket, xj > xi.

The key implication from Lemma 1 is that notches may push drivers into corner solutions.

Empirically, we should thus observe bunching of drivers at a speed level equal to a cutoff, x = xi,

and a sparsely populated (or even empty) range of speed levels slightly above a cutoff. The latter

‘density holes’ in H(x) stem from drivers in the interval [θi, θi] who would, in the absence of law

enforcement (for p = 0), choose a speed in the range x∗(θi) < xi < x∗(θi). We will discuss the

sensitivity of these predictions below.

4.2 Theoretical Responses to the Reform

To assess the impact of the 2009 reform on speeding, let us first consider a simple, hypothetical

reform: an increase in fh by a constant amount for all speed brackets h > `. Such a reform

increases ∆` at cutoff x` but leaves all other notches unaffected. All speed levels x > x` become

less attractive and drivers will choose a weakly slower speed. In terms of the distribution H(x),

some mass of drivers located above x` before the reform will be shifted towards lower speed levels.

Lemma 2 Consider a reform that increases one notch ∆` and leaves all other ∆j, j 6= ` un-

changed. Then every driver will drive weakly slower after the change.

The hypothetical reform will also affect bunching. On the one hand, some types of drivers

with an interior optimum x∗(θ) > x` before the reform will start to bunch at cutoff x` (or a ‘lower’

cutoff xl, l < `). Hence, bunching at x` (and lower cutoffs) tends to increase. On the other hand,

driver types who were initially bunching at a cutoff xh, h > `, will find it more attractive to drive

slower. Bunching at xh will then decrease.

Proposition 1 Consider a reform that increases one notch ∆` and leaves all other ∆j, j 6= `

unchanged. The probability mass Πi of drivers that bunch at a given cutoff xi will then (i) weakly

decrease if i > `, and (ii) weakly increase if i ≤ `.
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In a nutshell, Proposition 1 shows that bunching at a given cutoff xi increases in the size of

a notch above this cutoff. Vice versa, bunching at xi decreases if a notch at a lower speed cutoff

increases. Obviously, the reform described in Table 1 differs from our hypothetical case. The 2009

reform was characterized by an increase of the notch at 20km/h above the limit and of all notches

at 30km/h and above. The logic behind Proposition 1 thus predicts an increase in bunching

at the 20km/h cutoff (and at all lower cutoffs) after the reform. For all other cutoffs, however,

the impact of the reform is ambiguous. To see this point, consider the 30km/h cutoff, which

experienced the largest increase of the notch. The larger notch at 30km/h (and the increase of

‘higher’ notches) tends to induce more bunching at this cutoff, whereas the increase of the notch

at 20km/h works in the opposite direction. Without further assumptions, the overall effect on

the bunching mass at the 30km/h cutoff is therefore unclear. Independently of the bunching,

however, our analysis suggests that the reform should result in weakly slower speed levels (see

Lemma 2).

4.3 Discussion

The analysis from Section 4.1 suggests that we should expect bunching at cutoffs together with

density holes in the speed range above a cutoff. There are, however, several arguments why this

might not be borne out by the data. The most important arguments are based on the difficulties

in targeting a specific cutoff xi. First, there is substantial variation in the speed indicated by

speedometers of different automobiles. Hence, a driver who observes a speed of, for instance,

130km/h on the car’s speedometer will most likely not drive x = 130km/h.15 This also means

that cruise controls (which are fairly uncommon in Germany) do not necessarily facilitate the

targeting of cutoffs.

Second, our notation indicates that we model the drivers’ choice over a penalty-relevant speed

x, i.e., the actual speed after applying the tolerance rule (see Section 2). Choosing a speed which

corresponds to a cutoff xi thus requires drivers to correctly compute the way in which the tolerance

rule maps the measured speed s into the penalty-relevant speed x. While our survey suggests

that every third driver exactly knows the tolerance rule, two thirds either over- or underestimate

the rule’s generosity. As a result there might be a significant amount of optimization errors –

which are, presumably, more frequent than in the context of tax notches (Chetty, 2012; Kleven

and Waseem, 2013). These errors will work against bunching and will diminish any density holes.

A further and important reason why we might not see much bunching is based on the possibil-

ity that drivers – particularly those who choose to drive well above the speed limit – underestimate

the risk of a speed control. To see this recall that, cet. par., bunching will be proportional to the

expected notch, p∆i. The lower the drivers’ prior about the probability p, the more likely they

15The European Council Directive 75/443/EEC and §57(2) of the German Straßenverkehrs-Zulassungsordnung
allows a tolerance in the speed displayed by speedometer of up to 13% above the true speed level (for the relevant
speed range studied below). An indicated speed of 130km/h could therefore correspond to an actual speed of only
115km/h.
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are to choose their interior optima. If most speeders grossly underestimate the detection risk, we

should therefore observe no or little bunching. However, if there is a second type of speeders, who

drive above the limit despite a reasonably high prior about p, they will contribute to bunching.

In combination, heterogeneous priors might therefore produce bunching without any pronounced

density holes.

Note further that driving with very high speed (40km/h above the limit and more; see Table 1)

indicates that these drivers are willing to face temporary driving bans for one or several months

(as long as they expect p > 0). For such drivers, the increment in monetary fines that occurs

at, e.g., the 50km/h cutoff might not be all too relevant. Put differently, from these speeders’

perspectives, a local increase in fines by 100 Euro might be relatively small. Ultimately, this

suggests that there might be little bunching at ‘higher’ speed cutoffs. Within our model we

would obtain this prediction if the ‘taste for speeding’ (captured by the curvature of v(x, θ))

would become more ‘sharp’ for high values of θ (as reflected in ∂3v(x, θ)/∂x2∂θ). We will return

to this point below.

A last point worth discussing is the fact that our analysis – in contrast to the taxation

literature (e.g., Chetty et al. 2011; Kleven and Waseem 2013) – does not link the bunching

mass to the elasticity of speeders with respect to the fine. There are two important reasons for

not performing such an analysis. First, agents respond to two dimensions of policy: the penalty

scheme (reflected in f(x)) and the detection probability p. While information on the scheme are

available to drivers (just like tax rates and thresholds are observable for taxpayers), probabilities

are largely unknown. In the context of heterogeneous priors one would then need very strong

assumptions to identify the relevant elasticity.16 Second, the type range of drivers who bunch in

our context might be given by equations (4) and (6) from Lemma 1 – a case which is neglected in

tax studies, because tax thresholds are typically located in quite different (e.g., income) ranges.

Our set-up, however, is characterized by many ‘closely’ located notches. Technically, we would

need to identify both the highest and the lowest types of drivers bunching at a given notch, which

implies one additional identification requirement.

5 Data

5.1 Highway Data

To empirically evaluate speeding behavior, we use data from a highway police unit which is

responsible for monitoring 575 kilometers of Autobahn in the state of North Rhine-Westphalia.

The police unit provided us with information on all tickets that emerged from speed controls on

stretches of the Autobahn with a speed limit of 100km/h during the period 01/2005 to 12/2006

and 01/2009 to 03/2010. All these speed controls were conducted using mobile cameras during

16Note further that the elasticities which derive from bunching estimates are sensitive to the specific functional
form of preferences. While recent taxation research is characterized by an (implicit) consensus about the ‘right’
utility function, we are not aware of any consensus on drivers’ preferences over speeding and monetary well-being.
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periods of relatively low traffic, such that speeding is ‘technically feasible’ (i.e., there are no

traffic jams). The data cover 154,970 speeding tickets with an overall amount of 10.85m euros in

fines. For each ticket we observe the penalty-relevant speed x in integer values (i.e., the outcome

from applying the tolerance rule discussed in Section 2), the precise date, time and location of

the speed measurement as well as the weather (sunny, cloudy, rainy) and street conditions (dry,

damp, wet). For a subset of the tickets, we also observe the driver’s gender and several digits of

the vehicle’s license plate. The latter information allows us to identify local drivers.17

Table A.1, which provides summary statistics on our data, indicates that around 70% of the

observations come from the pre-reform period. The data cover speeding tickets from all days

of the week, with fewer tickets on weekends and slightly more on Wednesdays. More than 40%

of the speeding offenses were recorded in the morning (8am–12am), around 25% in the evening

(4pm–8pm) and less than 5% at night (8pm–12pm). For the sub-sample of tickets with slightly

richer information we find that around 80% of speeders are male and roughly 20–30% are locals.

It is important to note that these data only include drivers that were speeding (and received

a speeding ticket). Hence, the data do not allow us to observe the entire distribution of mea-

sured speed values. In fact, the police records reveal that not every speed measurement with

x > 100km/h resulted in a ticket. In 86% of all speed control sessions (covering 83% of all

speeding tickets), the police only recorded and enforced speeding offenses with x ≥ 116km/h.18

We therefore work with a truncated distribution of penalty-relevant speed measures. We can

nevertheless derive some results on the general distribution (thus addressing extensive margin

responses) by evaluating the data on speeders relative to the overall number of vehicles that is

measured in each speed measurement session. In this vein, we can compute the fraction of vehi-

cles speeding with more than 20km/h above the limit, and so on. We will exploit this metric in

Section 6.4.

Among the speeding tickets, the average speed x is 125.11 km/h, with a slightly lower speed

in the post- as compared to the pre-reform period. Moreover, the average fine is 63.82 euro in

the pre-reform sample. After the reform, this value increases by 35% to 86.29 euro. We will

return to these observations in more detail below. The table further indicates several differences

in the descriptives for the pre- and the post-reform sample. However, none of the differences in

observables appears dramatic.19

17A driver is coded as local if the Kreis (county) indicated by the license plate corresponds to the ‘home’ or a
neighboring Kreis of the location of the speed measurement.

18This practice is a response to the administrative costs of issuing and enforcing a ticket. These costs render
speeding tickets with small fines economically unattractive. However, our data indicate that sometimes the police
does enforce minor speeding violations (starting with 106km/h).

19Examining the data at the level of measurement sessions (rather than for single speeding tickets), we do not
find evidence on any radical change in the way when, where and for how long speed measures where conducted.
The average duration of a measurement session, for instance, is 212 minutes in our pre- and 210 minutes in the
post-reform data.
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5.2 Complementary Data

As pointed out above, the Autobahn data only allow us to observe a truncated speed distribution,

conditional on receiving a speeding ticket. In order to examine the full speed distribution, we

gathered additional data from a large, permanently installed traffic control network in the state

of Baden-Württemberg. The speed measures from this system are primarily used for the overall

monitoring of trends in traffic flows and traffic density over time. The measures are not used

for enforcing speed limits (i.e., a measure never triggers any legal consequences for drivers). The

penalty scheme from Table 1 applies nonetheless.

These data cover single-lane roads. As in our main data, a speed limit of 100km/h applies.

We observe around 290,000 speed measures from 107 measurement points for the (post-reform)

years 2010 until 2014. Comparing these data with the speeding ticket records, several points are

worth stressing. First, the complementary data only cover cars (i.e., they do not cover trucks,

larger buses or motorbikes). While the vehicle type is not recorded in the speeding tickets, it

is very likely that tickets almost exclusively cover cars, too. Second, the speeding ticket records

include information on the fine relevant speed x, whereas the complementary data directly provide

integer values of the measured speed s.

Third, the main data stem from speed measures with mobile (laser) cameras, whereas the

complementary data come from a fixed (visual and acoustic) system installed in, e.g., reflector

posts that measure the ‘average’ speed based on the ‘entry’ and ‘exit’ of a vehicle in a given

measurement range. Hence, even if we can retrieve the measured speed s from x (see below),

the technical differences in the two measurement systems imply that one should be cautious in

comparing the two sets of data. Fourth, the Autobahn data cover driving situations with two-

lanes and relatively low traffic densities (see above). The complementary data, in contrast, cover

speed measures for 24 hours a day (for up to 14 days) which will certainly include periods of heavy

traffic. This latter aspect, as well as the fact that the speed measure comes from an averaging

of speed over a certain measurement stretch, suggest that the targeting of a certain speed level –

and thus bunching – should be less pronounced in the complementary data-set.

6 Results

6.1 Descriptive Evidence

We start out by examining whether the distribution of x among the speeding tickets provides any

evidence for bunching at the cutoffs of the penalty scheme. Figure 5(a) illustrates the density

distribution of the penalty-relevant speed x among the pooled sample of all speeding tickets with

x ≥ 116 relative to the total population of roughly 6 mio. measured drivers. The dashed green

lines indicate the cutoffs from the penalty function (see Table 1). The density distribution is

decreasing in the speed level and displays several major spikes. Two of these spikes are located
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right at cutoffs (120 and 125km/h), and one is located slightly below a cutoff (129 km/h). The

figure does not show any pronounced density holes ‘to the right’ of the spikes – a point that we

will return to below. For speed levels with x ≤ 122, we observe a lot of variation in the density

distribution.20 This makes it hard to evaluate the spike at the lowest cutoff (120 km/h). While

it is more clear that there is no visible evidence for bunching at higher speed cutoffs (140, 150

and 160km/h), the distribution shows several drops, some of which overlap with the cutoffs.

Recall that our data capture the penalty-relevant speed x after applying the tolerance rule.

Note further that the way in which the tolerance rule transforms the measured speed s into the

penalty-relevant speed x mechanically produces a concentration of tickets at some values of x.

In particular, all measures with 133 ≤ s < 135 [166 ≤ s < 168] will be recorded with x = 129

[x = 161] in our data. Hence, the spike at x = 129 [and at x = 161] which is illustrated in

Figure 5(a) might be a result of the tolerance rule’s non-injective mapping of s into x.21

To account for this mechanical effect, we empirically ‘revert’ the mapping. For each value of

x which maps one-to-one into s, we first assign the correct speed measured s (in integer values).

Omitting the values for s = {133, 134, 166, 167} we then estimate a higher-order polynomial

function that approximates the observed distribution of speed tickets over s. Based on the

estimated distribution we finally assign the density mass from x = {129} [x = {161}] to the speed

levels s = {133, 134} [s = {166, 167}]. The resulting distribution is presented in Figure 5(b). The

figure shows that the massive spike at x = 129 from Figure 5(a) considerably shrinks once we

account for the rounding rule. Nevertheless, the projected distribution includes a significant heap

at s = {133, 134} (corresponding to x = 129).22 Hence, the spike below the 130km/h cutoff is

only partially due to the rounding rule.

Next, we turn to the speed distribution in our complementary data on single-lane roads (i.e.,

not from the Autobahn). Recall from above, that these data contain the measured speed s. The

distribution, which is provided in Figure 6, offers several additional insights: First, there is no

evidence on bunching at the actual speed limit (x = 100km/h corresponding to s = 103km/h).

Second, there is some evidence on bunching at the cutoff with 10km/h and 15km/h above the

speed limit (corresponding to s = 114 and s = 119km/h, respectively). Third, there is no visible

evidence for bunching at higher cutoffs. We will return to these observations below.

20We discussed this observation with the police unit which provided us with the data. While we could not
identify any plausible explanation for the variation in the density for speed x ≤ 122, we can reject the hypotheses
that the variation is induced by different measurement techniques, rounding issues, or by overlapping enforcement
thresholds.

21To illustrate the problem, note that for any 133 ≤ s < 135 the tolerance rule – rounding down, subtracting 3%
of the speed and rounding down again – will transform s into x = 129. For 135 ≤ x ≤ 165, however, the tolerance
rule is bijective, mapping one value of measured speed s into one observed value of x.

22Note that our approach assumes that the distribution of the observations from one speed level x among the
two speed levels in s follows the estimated, ‘smoothed’ distribution. Hence, the projection ignores that rational
drivers could anticipate the property of the tolerance rule and locate predominantly at the higher of the two speed
levels s. If drivers indeed behave like this, the ‘excess mass’ would concentrate on s = 134. The following analysis
will account for the fact that we cannot determine the precise speed measure for the two pairs of s.
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Figure 5: Density distributions

(a) Observed distribution of penalty-relevant speed x

(b) Projected distribution of measured speed s

Notes: The figure illustrates the observed distribution of the penalty-relevant speed x (Panel a) as well as the
projected distribution of measured speed s (Panel b) among all tickets (pooling data from the pre- and post-reform
period). The vertical axes indicates the fraction of tickets observed for a given speed level, relative to the total
number of speed measures. The horizontal axes capture the penalty-relevant speed x (Panel a) and the measured
speed s (Panel b), respectively. The speed limit is 100km/h. The dashed green lines indicate the cutoffs xi from
the penalty function (Panel a); the dashed red lines (Panel b) express these cutoffs in terms of measured speed s.
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Figure 6: Density distribution of measured speed s (complementary data)

Notes: The figure illustrates the observed distribution of measured speed s among the complementary data (N =
289, 125 ; speed limit is 100km/h). The vertical axes indicates the fraction of speed measures observed for a given
speed level. The red lines indicate the speed limit as well as the cutoffs xi from the penalty scheme in the s space,
i.e., accounting for the tolerance rule. (The speed limit of x = 100km/h is thus located at s = 104, etc.)

6.2 Estimation Approach

To estimate the bunching mass at a cutoff xi, we start from the empirically observed mass of

tickets within the range [s(xi)− δ; s(xi)], where s(xi) indicates a cutoff from the penalty scheme

(in terms of measured speed s) and δ ≥ 0 defines the bunching area below the cutoff (in integer

km/h values of measured speed). Following the literature, we then assess this mass of speeders

relative to the expected mass from a counterfactual distribution for the hypothetical case without

a notched penalty scheme.

To obtain the counterfactual we approximate the speed ticket distribution from Figure 5.b by

a polynomial function. More specifically, we estimate

Cs =

q̄∑
q=0

βq s
q +

s(xi)∑
r=(s(xi)−δ)

γr · I[s = r] + εs (7)

where Cs indicates the share of drivers measured with speed s, q̄ defines the order of the polyno-

mial function, and I is the indicator function. Based on the estimated β-coefficients (but excluding

the γ-coefficients) we then predict Ĉproxs =
∑q̄

q=0 β̂q s
q. This initial proxy for the counterfactual

distribution neglects the excess mass of speeders from the range [s(xi) − δ; s(xi)] who would, in

the absence of a notched penalty scheme, choose a speed level ‘to the right’ of the cutoff s(xi).

To account for this fact, Ĉproxs is inflated for speed values s > s(xi), up to the point where the

counterfactual distribution of Ĉs satisfies
∑
Ĉs =

∑
Cs (i.e., when the empirical and the coun-

terfactual distribution cover an equal number of speeding tickets). The bunching mass b̂i in the
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speed range [s(xi)− δ; s(xi)] is then given by

b̂i =

s(xi)∑
s=(s(xi)−δ)

Cs − Ĉs
Ĉs/(1 + δ)

. (8)

b̂i indicates the excess mass, i.e., the difference between the observed and the predicted speed

tickets with s(xi) − δ ≤ s ≤ s(xi) (in the numerator) relative to the average mass in the coun-

terfactual distribution for this range (denominator). We estimate b̂i together with boot-strapped

standard errors using the iterative procedure from Chetty et al. (2011).

Several aspects of our approach deserve a closer discussion. Note first that we base our es-

timates on the projected distribution of speed s rather than the distribution of penalty-relevant

speed values x. By doing so, and by accordingly adjusting δ, we avoid potential problems with

the rounding rule. Second, we will report bunching estimates that locally approximate the coun-

terfactual distribution for the speed range around each cutoff. Our results remain qualitatively

unaffected when we estimate one counterfactual for the full range of s. In this case we also

included dummies for round numbers (see Kleven, 2016); our findings were again qualitatively

robust. The same holds true for more simple approaches to quantify bunching (in the spirit of

Saez 2010).

Last, the estimation of (7) accounts for the observations from the bunching area [s(xi) −

δ; s(xi)] but not for those in the range ‘to the right’ of a cutoff, with a potential missing mass

in the distribution (see Kleven and Waseem, 2013). This approach, which is closer to a ‘kink’-

rather than a notch-bunching analysis, is motivated by the fact that we face a high number of

nearby notches with only few (integer valued) observations between two notches. This prevents

us from jointly estimating a bunching and a missing-mass area (as in Kleven and Waseem, 2013).

Moreover, we do not observe any pronounced density holes (see Figure 5).

6.3 Bunching Estimates

Figure 7(a) and (b) present the results from bunching estimates for the main sample, focusing

on the cutoffs with 25 and 30km/h above the limit, respectively. For the moment, we pool the

data for the pre- and post-reform period. Figure 7(a) shows sharp bunching right at the cutoff

s(xi) = 129. The estimated bunching coefficient for the range s = {128, 129} (i.e., at xi = 125

with δ = 1) indicates an economically and statistically significant excess mass of 36% (relative to

the average counterfactual mass in that speed range). Figure 7(b), which presents the estimate

for the cutoff at s(xi) = 135, illustrates an excess mass which is located at least one km/h below

the cutoff. To account for the fact that we cannot distinguish the measured speed for s = 133

and s = 134 (see Section 6.1), we estimate bunching in the broader range s = {133, 134, 135}
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(i.e., we set δ = 2 for xi = 130).23 Just like for the first cutoff, we obtain a significant bunching

mass of 42%.

What can we say about bunching at the other cutoffs of the penalty scheme? Recall first that

the majority of the speeding tickets are based on violations with x ≥ 116. Hence, we cannot study

bunching at the first two cutoffs, at 110 and 115km/h. As discussed above, there is a sizeable

spike together with a substantial amount of unexplained variation in the distribution of tickets

around the cutoff at xi = 120km/h (see Figure 5). Our method to quantify bunching thus yields

a positive but imprecisely estimated coefficient for this cutoff (see Table A.3).

Consistent with the graphical evidence from Figure 5, we do not detect any bunching for

cutoffs at higher speed levels (see Table A.3).24 The null-results for these high speed cutoffs –

which would correspond to an actually measured speed of s = 145, 155 and 165km/h, respectively

– are consistent with the arguments discussed above: Those who drive 40km/h and more above

the limit might either have a very sharp ‘taste for speeding’ (as captured by ∂3v(x, θ)/∂x2∂θ > 0)

or they expect a very low detection risk p. In either case, they would be fairly insensitive to the

notches in the fines. Recall further that penalties for these levels of speeding include significant

driving bans, implying that the relative increase in the disutility associated with the changing

monetary component of the penalty at these notch is rather small.

Next we apply these different steps of analysis to our complementary data. Computing local

bunching estimates, we predict a modest (and insignificant) excess mass of 5% below the first

cutoff (10km/h above limit), and a slightly more pronounced (and statistically significant) 17%

at the second cutoff (15km/h above limit; both estimates for δ = 1, as above; see Figure A.3

in the Appendix). Once more, we do not find any density holes on the right of the cutoffs. On

the contrary, there seems to be an excess mass slightly above each cutoff. If we account for that

and estimate the bunching mass for a speed range around the cutoff (in the spirit of a ‘kink’-

estimator), we obtain significant excess masses of 12% for the first and 75% for the second cutoff

(see Figure A.3). Hence, in line with the contextual and measurement differences between our

main and the complementary data discussed in Section 5.2, we observe less sharp and more ‘fuzzy’

bunching in our complementary data. Finally, when we explore other possible bunching points,

we detect no further evidence for bunching – neither at the speed limit itself nor at any of the

higher cutoffs. The latter point, which was already noted while eyeballing Figure 6, appears to

be symmetric for the main and the complementary data.

We conducted several robustness checks and refinements (see Online Appendix, Section II).

For our main data, the bunching estimators for the speed cutoffs at xi = 125 and 130km/h turn

out to be highly robust to using alternative specifications (e.g., higher order polynomials) in

the approximation of the counterfactual distribution. (For ‘higher cutoffs’, this is not the case;

23With δ = 2, the estimated coefficient is insensitive to how the projection allocates speed tickets from x = 129
to s = 133 and s = 134 (see Section 6.2).

24For the cutoff at xi = 140km/h, we obtain a significantly negative value for b̂i. We have no explanation for
this puzzling finding (which is somewhat sensitive to the definition of the relevant local range).
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Figure 7: Empirical and counterfactual distribution of speeding levels

(a) Bunching estimation at the 125km/h cutoff

(b) Bunching estimation at the 130km/h cutoff

Note: Empirical and counterfactual distribution of measured speeding for a speed limit of 100km/h from pre- and
post-reform data (pooled). The counterfactual distributions for graphs (a) and (b) are based on a linear (i.e.,
q̄ = 1) and a quadratic fit (q̄ = 2 for s(xi) = 135), respectively. The horizontal axes indicates the empirical speed
above the limit. The vertical axes indicates the percentage share of observations for each speed level (relative to all
measured drivers). The red dashed vertical line in the top graph indicates the speed s = 129km/h (corresponding
to a penalty-relevant speed x = 125km/h). The red dashed vertical line in the bottom graph indicates the speed of
s = 135km/h (corresponding to x = 130km/h).
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here we do observe much more variation in the estimated b̂i.) Splitting the sample for different

hours of the day, different weekdays or seasons, we detect no significant differences in bunching

(or stable null-results). We also split the sample according to different levels of traffic density

(approximated by the number of measured cars per hour) and differentiated local and non-local

drivers. Again, the data do not indicate any significant differences in bunching behavior.

We also estimated the probability of speed controls occurring at a given time (hour, week-

day, month) and stretch of the Autobahn. This allows us to distinguish between ‘unlikely’ (or

more surprising) and ‘likely’ (less surprising) speed controls. Similar to the results from other

split-sample exercises, we only find minor, insignificant differences. What seems much more pro-

nounced, however, is an overall adjustment in the drivers’ behavior: when speed controls are

more likely to occur, we find considerably fewer violations of the speed limit in the first place.

Comparing, for instance, the most- and least-surprising speed measurement sessions (the bottom-

and top-tercile of predicted probability), the fraction of vehicles driving with more than 20km/h

above the speed limit (relative to all measured vehicles) drops from 1.41 to 1.09%. Hence, there

seem to be pronounced extensive margin responses, suggesting that many drivers do respond to

the variation in the objective detection risk. This also implies that the composition of the (self-

)selected sample of speeders changes, which makes it hard to assess why bunching varies only

modestly across measurement conditions.

To sum up, we find evidence for modest levels of bunching at some of the penalty scheme’s

notches. For the Autobahn data, there is bunching at the cutoffs 30, 25, and (less clearly)

20km/h above the limit. The speed measures for single-lane roads contain weaker and more fuzzy

bunching at cutoffs 10 and 15km/h above the limit. In the light of the (i) difficulties in targeting

the ‘right’ speed level (optimization errors), (ii) imperfect knowledge about the tolerance rule

and the location of the cutoffs, and (iii) the impact from underestimating the detection risk, the

evidence provides reasonable evidence on bunching. Several observations (and additional results

discussed below) point to drivers’ responsiveness and reject the case that drivers are unaware of

the scheme (or ‘fully schmeduling’ in the sense of Liebman and Zeckhauser 2004).

A striking difference to the literature on tax notches is the absence of density holes. In

fact, the bunching observed for the complementary data looks more like the response to a kink

rather than to a notch. As discussed above, this might be explained by optimization frictions

and heterogeneous beliefs about p. On the one hand, drivers who anticipate a sufficiently high

detection risk but nevertheless decide to speed might choose their optimal speed only among

different cutoffs. For these drivers, the expected notches, p∆i, would be large and a corner solution

would dominate all interior solutions. Speed levels between two cutoffs xi and xi+1 would only be

observed due to optimization errors. On the other hand, drivers who believe that a speed control

is unlikely to occur would choose their interior optima, which are smoothly distributed all over

the speed range. The combination of drivers with heterogeneous beliefs could then produce some
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bunching without having any density holes in the distribution of speeding tickets. We will return

to this discussion in Section 7.

6.4 Actual Responses to the Reform

Let us now turn to the impact of the reform. As we build on a pre/post-comparison, one should

interpret the following results with caution. To start out, recall that the descriptive statistics

from above revealed that, among the speeding tickets, the average speed x declined from 125.16

to 124.99km/h (see Table A.1). These numbers are clearly affected by other time-varying factors,

i.e., when and under which conditions the speed was measured (see Section 5).25

To account for this issue, we only includes data for which the observable dates and circum-

stances of the post-reform measurement sessions have an equivalent in the pre-reform period.

Based on these data we run a propensity score matching exercise to arrive at a pre- and post-

reform sample that is comparable regarding the time (hour of day, weekday, month), the enforce-

ment limit, as well as street and weather conditions. The results from this matching exercise

are presented in Table A.2. Similar to the basic descriptives, the results indicate that the re-

form is associated with a modest 0.23% decline in the penalty-relevant speed x, from 125.36 to

125.07km/h. It turns out, however, that these numbers, which solely indicates that the average

speed among speeding tickets is lower in the post-reform period, give a misleading picture on

the impact of the reform. This point becomes obvious once we analyze the change in the speed

distribution beyond the selected sample of speeders. To do so, we computed the share of speeding

tickets with a recorded speed x above a given cutoff xi, relative to the total number of vehicles

(speeding and non-speeding) which were measured during each speed control session. The results

from this exercise are presented in Table 2.

The table reveals a pronounced shift in the speed distribution. Relative to all drives, the

fraction of speeders with x > 120km/h – i.e., cars driving in the speed range for which the reform

increased the fines (see Table 1) – drop from 3.0 to 2.3%. Considering the cutoffs xi at 125, 130

and 140km/h, we observe a similarly strong decline of roughly 25% in the fraction of speeders

who got ticketed with x > xi. While these pre/post-reform differences may relate to other time-

varying factors, the pattern from Table 1 is again confirmed by propensity score matching. Hence,

the data are consistent with the prediction from Lemma 2: increasing the fines at xi = 120km/h

(and ‘higher’ cutoffs) renders speeding in this range less attractive. We observe a pronounced

shift in the speeding distribution: the fraction of speeding tickets with x > 120km/h drops by

25We do not detect any evidence suggesting that speed limit enforcement activities were massively increased
after the reform. In fact, we observe a modest drop in the frequency of mobile speed control sessions (from 33.7
monthly sessions in our pre-reform sample to 24.9 monthly sessions for the year 2009). The average duration of a
single session did not change much either (212 minutes in the pre- and and 210 minutes in the post-reform period).
The only noticeable change we observe is a less frequent use of fairly high enforcement thresholds (like 121km/h,
see Table A.1) that is mirrored in a more frequent use slightly lower enforcement cutoffs (in the range between 100
and 115km/h). The following analysis will account for these changes, which appear plausible given the incentive
structures noted above (see fn. 18).

23



23%, alluding to non-trivial extensive margin responses. The simplicity and high salience of the

penalty scheme might thereby contribute to this level of responsiveness.

Table 2: Fraction of speeders relative to all measured cars

Speed measure with... Pre-reform Post-reform

x > 120km/h 0.030 0.023
(0.028) (0.021)

x > 125km/h 0.019 0.014
(0.020) (0.012)

x > 130km/h 0.011 0.008
(0.013) (0.008)

x > 140km/h 0.004 0.003
(0.006) (0.003)

N (speed control sessions) 843 296

Notes: The table presents the fraction of speeding tickets with a speed x above different cutoffs from the penalty
function, relative to all (speeding and non-speeding) cars measured per speed control session. Standard deviations
are in parenthesis.

In a next step we study whether bunching at cutoffs changed between the pre- and the

post-reform period. Graphical evidence suggests that bunching at the two cutoffs xi = 125

and 130km/h is equally observed in the pre- and the post-reform sample (see Figure A.1 in the

Appendix). To assess the changes in the speed distribution, we first consider a simple estimation

framework,

Bunchingj = ρ0 +
∑
`

φ`

(
Postj × I`j

)
+
∑
`

ρ` I
`
j + Xjκ+ εj , (9)

where Bunchingj is a dummy indicating whether a ticket j with speed xj falls into the range at

or slightly below a given cutoff x`, x` − δ ≤ xj ≤ x`. Postj indicates whether the ticket is from

the post-reform period, I`j captures if a speed ticket with xj is located around a given cutoff,

x` − δ ≤ xj < x` + δ, and Xj is a vector of control variables (including dummies for the hour,

day, month, as well as street and weather conditions during the speed measurement).

For each cutoff `, the coefficients ρ` then captures the fraction of tickets (among those in

x` − δ ≤ xj < x` + δ) that are located at or slightly below x`. Hence, the ρ-coefficients will not

capture bunching; they solely reflect the local slope of the (pre-reform) distribution around each

cutoff (as captured in Figure A.1). The coefficients of interest are the φ’s, which indicate how

the fraction of tickets at or slightly below a cutoff changed after the reform. Linear probability

model estimates of the φ’s from equation (9) are presented in Table 3.26

Consistent with our theoretical prediction on the impact of the reform, we observe an increase

in the mass of tickets at or slightly below the cutoff at 120km/h. The estimates from Table 3

suggest that after the reform there is a 5 percentage point higher chance of seeing a ticket with

a penalty-relevant speed just below 120km/h in the data. While our theoretical framework does

not offer any clear predictions regarding the reform’s impact on bunching at other notches (see

26Estimates using non-linear models, which are available from the authors, yield almost identical results.
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Table 3: Impact of reform on bunching

(1) (2) (3) (4) (5) (6)

Reform × I120 0.047*** 0.050*** 0.057*** 0.047*** 0.047*** 0.054***
(0.005) (0.005) (0.006) (0.006) (0.006) (0.006)

Reform × I125 -0.014** -0.022*** -0.023*** -0.020*** -0.027*** -0.027***
(0.006) (0.006) (0.007) (0.007) (0.007) (0.008)

Reform × I130 -0.013** -0.024*** -0.026*** -0.017** -0.027*** -0.026***
(0.007) (0.007) (0.008) (0.008) (0.008) (0.009)

Reform × I140 -0.025* -0.038*** -0.037** -0.013 -0.024 -0.030
(0.014) (0.014) (0.016) (0.017) (0.017) (0.019)

Reform × I150 0.013 -0.005 -0.014 0.023 0.007 0.008
(0.025) (0.025) (0.028) (0.027) (0.027) (0.030)

Reform × I160 0.062 0.036 0.007 0.066 0.045 0.021
(0.039) (0.039) (0.044) (0.047) (0.047) (0.051)

Control variables: No Yesa Yesb No Yesa Yesb

N 154,970 154,970 128,644 154,970 154,970 128,644
R2 0.665 0.668 0.668 0.571 0.574 0.573

Note: The table presents the outcome from LPM estimates of equation (9). All specifications include (non-
interacted) cutoff specific dummies I`j . In columns (2) and (5), we control for the year and the enforcement
limit of the speed control session. Columns (3) and (6) add further control variables (for the weather conditions,
location, month, day of the week and hour of the day). Columns (1)–(3) are based on δ = 2, i.e., we set I`j = 1 if
x` − 2 ≤ xj < x` + 2. Columns (4)–(6) employ δ = 1 and δ = 2 and thus set I`j = 1 if x` − 1 ≤ xj < x` + 2. The
bunching dummies are adjusted accordingly. Robust standard errors are in parenthesis.

Section 4.2), it is interesting to note that the estimates point to a decline in the frequency of

tickets below the cutoffs at 125 and 130km/h – the two cases for which we found strong and robust

bunching evidence above. There also seems to be a decline in the mass of tickets below the cutoff

at 140km/h, however, the estimate is sensitive to the precise specification and not robust when

we vary δ. For the other cutoffs, the regression analysis does not indicate any significant impact

of the reform.

To further assess the change in bunching, we also estimated the coefficient b̂i from equation

(8) for the pre- and post-reform period. The results (which are presented in columns 2 and 3 of

Table A.3) capture again an increase in the mass of tickets right at the 120km/h cutoff.27 For the

125 and 130km/h cutoffs, we observe a decline in bunching. For the former cutoff, the estimated

excess mass drops from 39 to 26%; for the latter cutoff we estimate a more modest decline, from

43 to 40% (see Figure A.2 and Table A.3 in the Appendix).

To wrap up, the second part of our analysis points to a non-trivial impact of the 2009 reform,

which considerably increased all notches starting with 20km/h above the speed limit (see Table 1).

In line with theoretical predictions, we observe a 25% drop in the fraction of drivers speeding

27Note that the bunching estimates use δ = 1. If we set δ = 2, as in the LPM, the bunching estimates show a
more pronounced increase in the excess mass at the 120km/h cutoff from 9 to 36%.

25



with 120km/h or above. At the same time, the fraction of speeding tickets slightly below the

120km/h cutoff increases in the post-reform period.28

7 Welfare

From a welfare perspective, one might argue that a notched penalty scheme might be inferior

to the ‘correct’ Pigouvian correction mechanism. The latter would account for the marginal

externalities from speeding (accident risk, air and noise pollution, etc.) as a continuous function

of speed. Hence, a notched scheme is, at best, only a rough approximation to a Pigouvian scheme

(Sallee and Slemrod 2012). The simplicity of the stepwise scheme, however, might raise drivers’

awareness and attention, thus contributing to a higher salience of and responsiveness to the

penalty system (Abele and Jäger 2015). Different from other tax applications (Chetty et al.,

2009; Finkelstein, 2009), this might be good from a social point of view.29 Depending on this

latter ‘salience effect’, the notched scheme could therefore dominate a more complex (but less

salient), smooth penalty function. To examines this possible welfare advantage in more detail, we

extend our formal analysis and impose additional structure. Building on our empirical findings,

we then assess the tradeoff between the notched and a hypothetical, smooth penalty scheme.

7.1 Pigou, Salience and Welfare

In the following, we have to account for the distinction between actual (s) and penalty relevant

speeds (x), as discussed above. Given that our empirical analysis mainly builds on s (which is

also the relevant speed for a driver’s utility and welfare), we carry out our analysis in terms of

this metric. We start out by assuming that the externality caused by speeding is proportionate

to the speed. Let the welfare impact from a ride of a θ-driver be given by

W (s, θ) = v(s, θ)− emax{s− s, 0}, (10)

where e is the marginal externality and s is a ‘safe’ speed, below which no externality occurs.

30 We assume that the actual speed limit reflects this save speed. The first-order condition for

type θ’s welfare maximizing speed se(θ) (provided it is above s) is then ∂v(se(θ), θ)/∂s = e.

If limited attention and salience effects played no role, the welfare maximizing smooth penalty

28Consistent with this pronounced shift in the speed distribution, we note a drop in aggregated accident statistics
after the reform, too. Comparing 12 or 24 months before and after the reform (using either 12-month-differentiated
estimates or estimates using month fixed effects with or without different pre- and post-reform trends), we find a
decline in accidents for the post-reform period. (Estimates based on data obtained from Deutsches Statistisches
Bundesamt, Fachserie 8/7, Verkehr (monthly data for 2007–2012).) A more careful analysis that aims at identifying
if this inter-temporal variation is associate with a truly causal impact of the reform, is beyond this paper’s scope.

29In the case of a distortive tax, a lack of salience implies a lower responsiveness of taxpayers and thus a lower
deadweight loss. By contrast, the purpose of an externality correcting penalty scheme is to induce a change in
drivers’ behavior, such that higher salience is beneficial.

30Of course, this is a gross simplification. In reality, any ride will generate an external effect.
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scheme would then be given by fs(s) = e′max{s−s, 0} with e′ := e
p (for p > 0).31 As we consider

a constant marginal externality, this scheme is fairly simple. Conceptually, however, one could

easily replace it with a more general (and more complex) externality function E(s).

Following Sallee and Slemrod (2012), we approximate the marginal individual net benefit from

speeding (∂v(.)/∂s) to be linear in s. In particular, we assume that

v(s, θ) = ν − 1

2
µ(θ − s)2. (11)

Without any enforcement (p = 0), this implies s∗(θ) = θ. For p > 0, a driver facing the

smooth, Pigouvian scheme fs(s) from above, will choose the welfare maximizing speed, se(θ).

By deviating from the unrestricted, individually optimal speed, s∗(θ), the driver’s disutility then

equals 1
2e(s

∗(θ) − se(θ)). At the same time, the externality imposed by the driver shrinks by

e(s∗(θ)− se(θ)), thus reflecting the overall welfare gain from moving from s∗(θ) to se(θ).

To compare the smooth, Pigouvian scheme with the notched penalties from Section 4, we

will assume that the marginal penalty e′ corresponds to the average notch-size (i.e., the average

increase in penalties at the different cutoffs) smoothed over the relevant range of a given speed

bracket (i.e., e′ ≈ 1
I

∑
i ∆i/(si−si−1), where I is the number of notches; see Section 4). Intuitively

speaking, this is saying that the notched scheme ‘approximates’ the slope of the smooth scheme.

Let us now turn to the salience aspect. Recall that we empirically observe many drivers with

a speed that is slightly above a speed level cutoff (i.e., choices in strictly dominated speed ranges;

compare Figure 3). Accounting for this fact, we assume that a fraction λn of drivers is inattentive

and acts as if p = 0 under the notched scheme. These drivers do not bunch but myopically choose

s = s∗(θ) = θ. In the following, we will refer to them as M -drivers. Vice versa, a share of 1− λn

rational R-drivers optimize as described in Section 4.

For the smooth penalty scheme, the fraction of M -drivers is denoted by λs. Allowing for a

lower salience of the smooth scheme, we consider λ := λs − λn ≥ 0; the fraction of M -drivers

might be higher under the smooth as compared to the notched scheme. We will now turn back to

our data to ask how large the ‘salience gap’ λ (i.e., the difference in the share of M -drivers across

both schemes) could at most be, such that the welfare costs from the lower salience of the smooth

scheme would be still outweighed by the gains from providing the correct Pigouvian incentives.

7.2 Smooth versus Notched Scheme

Let us first approximate the speed choices of drivers absent any penalty scheme. In doing so,

we make use of our bunching evidence. Recall that we observe bunching at two cutoffs, x = 125

and x = 130 (corresponding to the driving speeds s = 129 and s = 135). The speed levels

immediately above these cutoffs are strictly dominated. Hence, the drivers that we observe at

these dominated speed levels must be M -drivers. The upper boundary of this dominated area

31We treat p as exogenously given. Moreover, we neglect costs associated with providing a certain level of p and
consider penalties as welfare neutral transfers.
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would then be marked by a hike in observed drivers caused by R-drivers for whom that speed

level is the interior optimum x∗(θ). However, we do not observe such a hike. One explanation

that is consistent with this observation, is that the entire speed range above x = 125 is, except

for the cutoff at x = 130, dominated. In other words, among those observed with x ≥ 125,

all R-drivers bunch at one of the two cutoffs x = 125 and x = 130. In order to approximate

R-drivers’ speed choices s∗(θ) absent a penalty scheme, we have to find the R-driver of type θ̂

who would be indifferent between these two cutoffs.

To this end, we assume that the types (and therefore the interior optima) are distributed in

exactly the same way among R- and M -drivers. This implies that (i) the fraction of M -drivers

with 128 ≤ s ≤ s∗(θ̂) among M -drivers with s ≥ 128 is equal to (ii) the fraction of R-drivers

bunching at or below s = 129 relative to all R-drivers with s ≥ 128.32 Given our assumption that

all R-drivers are bunching at the two cutoffs, this latter fraction is then given by

∑129
s=128(Cs − Ĉs)∑129

s=128(Cs − Ĉs) +
∑135

s=133(Cs − Ĉs)
(12)

(where we account for the bunching range δ used in Section 6). Based on the observed distribution

Cs and Ĉs from our estimates for equation (7) from Section 6.3, one can easily compute this

fraction. Our data suggests that 19.25% of all drivers with s ≥ 128 are R-drivers who bunch

at cutoff x = 125 (the numerator in (12)), and 34.42% off all drivers who drive at s ≥ 128 are

R-drivers in total (the denominator in (12)). Based on this, we obtain λn = 1− 0.3442 = 0.6558.

Note that this high fraction of M -drivers – among those driving s ≥ 128 – reflects our strong

assumption that only those who bunch are R-driver. Neglecting optimization errors or rational

drivers with very ‘sharp’ preferences (in particular, for very high θs and speed levels), our approach

thus tends to overestimate λn.

Putting together these numbers, the fraction from (12) equals 55.93%. When we now examine

at which point the mass below the estimated polynomial (7) for the range above s = 128 equals

55.93%, we arrive at the cutoff speed s∗(θ̂) = 154km/h. This now approximates the speed, at

which an R-driver with θ̂ – who would be indifferent between both cutoffs from above – would

drive absent any penalty scheme.

In a second step, we now consider a ‘comparable’ smooth linear penalty scheme (comparable,

in the sense of e′ ≈ ∆i/(si − si−1) as explained in Section 7.1). Building on the finding from

above, we focus on a type θ̂ driver with an unconstrained optimum s∗(θ̂) = 154km/h. Using

the structure imposed in (11), Figure 8 plots this type θ̂’s marginal benefits as a function of s

(absent any penalties). The type’s utility loss from driving at s = 129 instead of s = 135km/h

is given by the shaded area under the line between s1 = 129 and s2 = 135. The size of this

32The latter point reflects that – among R-drivers with s ≥ 128 and under our assumptions from above – all
types with θ < θ̂ would bunch at the lower, whereas all those with θ ≥ θ̂ would bunch at the higher cutoff. Note
further, that we consider the speed range s ≥ 128 to reflect the estimates from Section 6 which use δ = 1 (at
x = 125).
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area equals (135 − 129)
(

1
26µ+ 19µ

)
= 132µ. The difference in the expected (smooth) penalties

between the two speed levels would be e(135 − 129) (where, by definition, pe′ = e). Hence,

under the linear scheme, a type θ̂ would still be indifferent between s1 = 129 and s2 = 135 if

e = 22µ. Substituting this level for e in the first-order condition µ(θ̂ − se(θ̂)) = e, we arrive at

the interior solution for this type’s optimal speed under the smooth linear penalty scheme, which

is se(θ̂) = s∗(θ̂)− 22 = 132 km/h.

Figure 8: Marginal Benefits from Speeding
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Note: Using the functional form introduced in (11), the figure illustrates the marginal benefits of speeding as as a
function of s for driver type θ̂ with an unconstrained optimum s(x∗(θ̂)) = 154km/h.

In a third step, we can now predict the effect of replacing the observed notched with a smooth

but less salient penalty scheme on speeding choices of types θ with s∗(θ) ≥ 128. The overall

(non-) response of drivers’ behavior to this hypothetical reform can be decomposed for three

different groups. (1) A share of drivers λ will become inattentive, i.e., they turn from R- into

M -drivers. These drivers will switch from bunching at one of the notches (x = 125 or x = 130) to

their unconstrained interior optima, s∗(θ). (2) The remaining R-drivers, who account for a share

1− λs of all drivers, will re-optimize to the Pigouvian scheme, choosing a welfare optimal speed

level, se(θ). Finally, (3) all M -drivers under the notched scheme will remain M -drivers under

the smooth scheme, again choosing s∗(θ). To examine the welfare implications from the first two

groups’ responses, one has to note that our assumptions regarding the linear marginal benefit of

speeding and the constant externality imply that any change in speed from sn to ss (indicating

the speed choice under the notched and the smooth scheme) has a welfare effect of

∆W =
µ

2

[
(s∗(θ)− sn)2 − (s∗(θ)− ss)2

]
− e(ss − sn)

= µ

[
s∗(θ)− sn + ss

2
− 22

]
(ss − sn). (13)
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Let us first consider the share 1−λs of R-drivers that rationally optimize under both schemes

(group 2 from above). From above we know that, under the smooth scheme, ss = s∗(θ)−22, which

implies ∆W2 = µ (ss−sn)2

2 . We use the estimated polynomial of the counterfactual distribution

(7) to assign R-drivers to s∗(θ) and, thus, to ss = s∗(θ) − 22.33 We weight the welfare gains

∆W2 with the relevant frequencies and add them up. This exercise indicates that the size of

the cumulative welfare increase for this group is 84.66µ. Note that every single driver from this

group causes a modest welfare gain, as the Pigouvian scheme induces them to drive at the welfare

optimal speed.

Next, consider the share λ of former R-drivers that turn inattentive and fall back to their

interior optimum, ss = s∗(θ), under the smooth scheme (group 1 from above). The welfare impli-

cations of their response is given by ∆W1 = µ
[
s∗(θ)− sn+ss

2 − 22
]

(ss−sn) = µ
(
ss−sn

2 − 22
)

(ss−

sn). Again, we calculate the welfare changes for all these types θ of R-drivers, weight them with

the same frequencies derived from the estimated polynomials as above, and sum them up. This

yields a welfare loss of 157.34µ for this group. As speeding choices of stable M -drivers remain un-

affected, we thus arrive at the overall welfare change from the hypothetical change in the penalty

scheme:

∆W = µ[84.66(1− λs)− 157.34λ] = µ[84.66(1− λs)− 157.34(λs − λn)]. (14)

The overall welfare from replacing the notched with a less salient smooth scheme is non-

negative if and only if λs ≤ 0.35 + 0.65λn = 0.78, where the last step uses the result λn = 0.66

derived above. As compared to a notched scheme, an ‘equivalent’ smooth penalty scheme would

thus be welfare enhancing if at most λ = 12 percentage points of drivers would turn inattentive

under the less salient scheme (implying λs ≤ 66 + 12 = 78%). As long as the salience gap λ is

smaller, a more complex Pigouvian scheme could be welfare enhancing.

7.3 Caveats and Discussion

It is important to emphasize that our analysis is based on several strong assumptions and should

be seen as a back-of-the-envelope calculation. We have already noted above that our approach

(which treats many potential R- as M -drivers) will most likely yield an upper bound for λn. From

(14) then follows, that the upper bound λ =12pp derived above might be fairly conservative. (As

λn → 0, the bound would approach λ =35pp.)

At the same time, however, one might argue that a truly Pigouvian scheme would be extremely

complex, e.g, accounting for the fact that externalities vary not only with speed but also with

33For instance, for the lowest type R-driver bunching at s = 129, the interior optimum corresponds to this speed

level, such that ss = 129 − 22 = 107. This yields a welfare gain of ∆W2 = µ (ss−sn)2

2
= 242µ. Maintaining our

assumption that θ types are identically distributed under R-types as under M -types, this is true for 2.30% of all
those driving at s ≥ 128. Similarly, we know that the highest type of R-driver bunching at x = 125 has an interior
optimum at s = 154; he would choose ss = 132 under the smooth scheme. This is true for 1.95% of those R-drivers
driving at s ≥ 128.
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driving conditions (weather, traffic density, etc.). For such a scheme, the ‘salience gap’ could

be enormous, potentially rendering first-best correction of external effects infeasible (at least, as

long as advanced automated driving systems do not yet fully take over speed choices). Hence,

even a more complex but smooth scheme (as, e.g., the penalty function used in the Netherlands)

would offer an imperfect correction of externalities. As a consequence, the welfare gains from

replacing the notched scheme (∆W2) might be smaller, which would cet.par. impose even more

tighter limits on λ.

Conceptually, our analysis omits a further point that should work in favor of the notched

system: Bunching tends to (locally) reduce the variance in speed. A lower variance, in turn,

could directly contribute to a reduction in the accident risk (Lave 1985), which would entail

positive welfare effects associated with the notches.

8 Conclusion

This paper studies drivers’ knowledge of and responses to a notched penalty scheme for speeders

in Germany. We provide survey evidence suggesting that many drivers have a good knowledge

of the scheme’s stepwise shape with its discontinuous jumps in penalties at certain speed cut-

offs. The survey also documents heterogeneity across drivers, which – in combination with other

optimization frictions – limits the scope for sharp bunching.

Exploiting micro-data from more than 150,000 speeding tickets from the German Autobahn

and 290,000 speed measurements from traffic flow systems on other roads, we nevertheless find

evidence on bunching at some of the penalty scheme’s cutoffs. However, the bunching mass is

fairly small. Moreover, at the speed limit itself and for notches at higher speed levels, we do

not detect any excess mass in the distributions. The latter observation is consistent with the

interpretation that excessive speeders might have underestimated the risk of a speed control.

This point also highlights one major difference between our analysis and the bunching studies

in the taxation literature. In our context, agents respond to expected notches which are jointly

shaped by two policy parameters: the (shape of the) penalty function and the detection risk.

With heterogeneous priors about the latter risk, one cannot directly translate the bunching mass

from these notches into a straightforward measure of behavioral elasticities.

The fact that some drivers’ speed choices seem suboptimal even under a salient, notched

penalty scheme reinforces the concern that the responsiveness under a more complex, smooth

scheme – that correctly accounts for externalities of speeding – might be even lower. To address

this idea, we conducted a welfare analysis that models behavioral responses to notches as stem-

ming from both salience and price responses. Based on our empirical results, we derive a bound

for the ‘salience gap’ between a notched and a more complex but less salient Pigouvian scheme.

If this salience gap – the fraction of drivers that turn inattentive under the more complex scheme

– is below 12 percentage points, the welfare gains from applying a smooth Pigouvian scheme
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dominate the benefits associated with the enhanced salience of the notched scheme. Empirically

evaluating the salience and behavioral consequences from introducing a smooth penalty scheme

– as it is used, for instance, in the Netherlands – is up to future research.
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Appendix

A1. Proofs

Proof of Lemma 1. The result that the set of types of drivers that bunch at a certain notch

xi must be an interval [θi, θi] is an immediate implication of the single crossing property: Let

θi := inf{θ : xi ∈ arg maxEU(x; θ)} and θi := sup{θ : xi ∈ arg maxEU(x; θ)}, and consider some

θ ∈ [θi, θi]. For all x < xi, [v(xi, θ)− pf(xi)]− [v(x, θ)− pf(x)] > [v(xi, θi)− pf(xi)]− [v(x, θi)−

pf(x)] ≥ 0, and for all x > xi, [v(x, θ)−pf(x)]−[v(xi, θ)−pf(xi)] < [v(x, θi)−pf(x)]−[v(xi, θi)−

pf(xi)] ≤ 0. Hence, all θ ∈ [θi, θi) strictly prefer xi over any other speed level.

Let us now turn to characterizing the boundaries of that interval. As discussed in the main

text, Figure 4 illustrates the case where θi fulfills (3). Alternatively, however, xi may be a corner

solution for type θi, i.e. x∗(θi) > xi. In this case, (4) claims that type θi is indifferent between

xi and some other cutoff xj , j < i. To prove this claim, suppose that type θi strictly preferred

xi over any xj , j < i. By continuity, there must be some type θ′ < θi that also strictly prefers

xi over any xj , j < i and for which x∗(θ′) > xi, which implies that θ′ strictly prefers xi over any

x < xi. Furthermore, by the single crossing property, [v(xi, θ
′) − pf(xi)] − [v(x, θ′) − pf(x)] >

[v(xi, θi) − pf(xi)] − [v(x, θi) − pf(x)] ≥ 0 for all x > xi. Hence, arg maxEU(x; θ′) = xi, a

contradiction to the definition of θi.

As for the upper boundary θi, recall first that all θ < θi strictly prefer xi over all x > xi.

Furthermore, for every θ > θi, there exists an x > xi which this type θ strictly prefers over xi.

Hence, by continuity, there must be some x̂ > xi such that v(x̂, θi)− v(xi, θi) = p(fj − fi), where

fj is the relevant fine for speed x̂, i.e. xj−1 < x̂ ≤ xj and j > i. As x̂ ∈ arg maxEU(x; θi), we

have either x̂ = x∗(θi) < xj , in which case (5) is satisfied, or x̂ = xj , in which case (6) holds.

Proof of Lemma 2. For every θ and every x, x′ ≤ x` or x, x′ > x`, EU(x; θ)−EU(x′; θ) is not

changed by the reform. However, the reform reduces EU(x; θ)− EU(x′; θ) for every x′ ≤ x` < x

and every θ. Hence, if the reform induces any change in behavior, it can only be that drivers who

drive at some speed x > x` before the reform, choose a speed x ≤ x` after the reform.

Proof of Proposition 1. Let us first discuss the impacts of changing ∆` on the θi and θi of

some cutoff xi. Consider the effect on θi and suppose that θi is determined by condition (3). This

equation is independent of f`, which implies that θi remains unchanged. Suppose now that θi is

determined by condition (4). Taking the total differentials w.r.t. θi and the difference fi − fj
yields

dθi
d(fi − fj)

=
p

∂v(xi,θi)
∂θ − ∂v(xj ,θi)

∂θ

> 0 (15)
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due to the single-crossing property. An increase in ∆` has, ceteris paribus, an effect on the

difference fi − fj if and only if j ≤ ` < i. Furthermore, if it has any effect, then such an increase

in ∆` will increase this difference fi − fj , thus increasing θi.

As for θi, suppose first that it is determined by (5). Taking the total differentials w.r.t. θi

and the difference fj − fi yields

dθi
d(fj − fi)

=
p

∂v(x∗(θi),θi)
∂θ − ∂v(xi,θi)

∂θ

> 0 (16)

due to the single-crossing property. Suppose now that θi is determined by (6). Taking the total

differentials w.r.t. θi and the difference fj − fi yields

dθi
d(fj − fi)

=
p

∂v(xj ,θi)
∂θ − ∂v(xi,θi)

∂θ

> 0 (17)

again due to the single-crossing property. An increase in ∆` has, ceteris paribus, an effect on the

difference fj − fi if and only if i ≤ ` < j. Furthermore, if it has any effect, then such an increase

in ∆` will increase this difference fλ − fi, thus increasing θi.

Using these results, we can complete the proofs:

Part (i): If i > `, an increase in ∆` has, ceteris paribus, no effect on θi and may sometimes

increase θi. Hence, such an increase in ∆j weakly reduces Πi.

Part (ii): If i ≤ `, an increase in ∆` has, ceteris paribus, no effect on θi and may sometimes

increase θi. Hence, such an increase in ∆j weakly increases Πi.
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A2. Complementary Figures and Tables

Figure A.1: Pre- and post-reform distribution of penalty-relevant speeding levels

Note: The figure illustrates the distribution of penalty-relevant speeding levels among speeding tickets from the
pre- and post-reform period. The horizontal axis indicates the speed above the limit. The vertical axis indicates
the percentage share of observations for each speed level. The green dashed vertical lines indicate the cutoffs at
the respective speed levels. The number of observations for pre-reform [post-reform] period is 89,520 [34,356] in
the displayed speed range.
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Figure A.2: Empirical and counterfactual distribution of speeding levels: pre- and post-reform
period

Note: The two panels on the left display the empirical and counterfactual distribution of measured speed for the
pre-period. The panels on the right show the distributions for the post-reform period. The top panels compares
the distribution around the cutoff xi = 125 (corresponding to a measured speed s = 129km/h), the panels at the
bottom consider the cutoff xi = 130 (corresponding to s = 135km/h). The horizontal axes indicate the measured
speed s. The vertical axes show the share of observations for each speed level in percent. The blue line captures
the empirical distribution and the red curve shows the estimated counterfactual distribution. The counterfactual
in the top [bottom] panels are estimated with a linear [quadratic] slope. The dashed vertical lines indicate the
cutoffs in terms of measured speed s.
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Figure A.3: Empirical and counterfactual distribution (complementary data-set)

Note: The figures present the empirical and different estimates for the counterfactual distribution of speed s in the
complementary data (speed limit of 100km/h). The counterfactual estimates are all based on a cubic fit. The two
graphs of the first row consider δ = 1 (i.e., bunching at the cutoff and one unit below). Accounting for the actual
allocation of observations, the graph on the bottom left and right compute the bunching mass for δ = ±1 and
δ = ±2 (in the spirit of a conventional ‘kink’-estimator), respectively. Horizontal axes indicate the empirical speed
s. Vertical axes indicate the percentage share of observations for each speed level (relative to all measured drivers).
The dashed, red vertical lines indicate the speed s = 114 and s = 119km/h (corresponding to a penalty-relevant
speed x = 110 and x = 115km/h), respectively.
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Table A.1: Summary statistics – Speeding tickets

Pooled data Pre-reform Post-reform
Variable Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.)

Speeding x 125.11 (9.20) 125.16 (9.04) 124.99 (9.60)
Monetary fine f 70.23 (49.72) 63.82 (39.01) 86.29 (67.02)
Enforcement limit: x = 116km/h 0.83 (0.38) 0.82 (0.39) 0.86 (0.35)
Enforcement limit: x = 121km/h 0.10 (0.30) 0.12 (0.33) 0.03 (0.18)

Male Drivers\ 0.83 (0.37) 0.84 (0.36) 0.80 (0.40)
Local Drivers\ 0.27 (0.44) 0.32 (0.47) 0.17 (0.37)

12:00 am – 7:59 am 0.00 (0.02) 0.00 (0.01) 0.00 (0.03)
8:00 am – 11:59 am 0.43 (0.50) 0.46 (0.50) 0.38 (0.48)
12:00 pm – 3:59 pm 0.28 (0.45) 0.24 (0.43) 0.36 (0.48)
4:00 pm – 7:59 pm 0.24 (0.43) 0.25 (0.43) 0.21 (0.40)
8:00 pm – 11:59 pm 0.05 (0.22) 0.04 (0.20) 0.06 (0.24)

January 0.09 (0.28) 0.11 (0.31) 0.04 (0.19)
February 0.07 (0.26) 0.06 (0.24) 0.11 (0.31)
March 0.10 (0.30) 0.09 (0.29) 0.11 (0.32)
April 0.09 (0.28) 0.07 (0.26) 0.13 (0.33)
May 0.11 (0.32) 0.11 (0.31) 0.12 (0.32)
June 0.08 (0.27) 0.07 (0.25) 0.11 (0.31)
July 0.07 (0.26) 0.08 (0.27) 0.06 (0.24)
August 0.09 (0.28) 0.09 (0.29) 0.07 (0.26)
September 0.11 (0.31) 0.12 (0.33) 0.07 (0.25)
October 0.09 (0.29) 0.11 (0.31) 0.06 (0.24)
November 0.06 (0.23) 0.06 (0.24) 0.05 (0.23)
December 0.04 (0.20) 0.03 (0.17) 0.07 (0.25)

Monday 0.16 (0.37) 0.16 (0.37) 0.15 (0.36)
Tuesday 0.15 (0.36) 0.16 (0.37) 0.12 (0.32)
Wednesday 0.21 (0.40) 0.20 (0.40) 0.23 (0.42)
Thursday 0.15 (0.36) 0.15 (0.36) 0.16 (0.37)
Friday 0.14 (0.34) 0.13 (0.34) 0.15 (0.35)
Saturday 0.09 (0.28) 0.08 (0.27) 0.09 (0.29)
Sunday 0.11 (0.31) 0.11 (0.31) 0.11 (0.31)

Number of speeding tickets 154,970 110,721 44,249
Number of speed control sessions 1,139 843 296

Notes: The table presents summary statistics – sample means and standard deviations in parenthesis – on the
speeding tickets from the pooled, the pre- and the post-reform sample. The pre-reform data cover the period
01/2005 to 12/2006 plus 01/2009; post-reform: 02/2009 to 03/2010. The small share of observations in post-reform
January is due to the fact that the reform was introduced on 1 February 2009. \ indicates that the variable is only
observed among a sub-sample of tickets.
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Table A.2: Propensity score matching of pre- and post-reform speeding

Sample Mean (Std. Dev.) 1st Quartile Median 3rd Quartile N

Pre-reform 125.33 (9.16) 119 123 129 90,486
Post-reform 125.09 (9.69) 118 122 129 32,315

Notes: The table reports the comparison of pre- and post-reform speeding levels from a propensity matching
exercise with the following confounders: time (hour of day, weekday, month), enforcement limits, location of speed
control, street and weather conditions.

Table A.3: Bunching estimates for different cutoffs

Cutoff & Bunching Range Pooled data Pre-reform Post-reform

xi = 120 with δ = 1 −0.04 −0.07 0.03
(s = {123, 124}) (0.25) (0.24) (0.24)

xi = 125 with δ = 1 0.36 0.39 0.26
(s = {128, 129}) (0.01) (0.02) (0.03)

xi = 130 with δ = 2 0.42 0.43 0.40
(s = {133, 134, 135}) (0.03) (0.04) (0.08)

xi = 140 with δ = 1 −0.54 −0.55 −0.51
(s = {144, 145}) (0.15) (0.13) (0.19)

xi = 150 with δ = 1 −0.20 −0.30 0.06
(s = {154, 155}) (0.56) (0.57) (0.62)

xi = 160 with δ = 1 −0.50 −0.57 −0.35
(s = {164, 165}) (0.71) (0.72) (0.67)

Notes: The table displays the bunching estimates b̂i for the cutoffs analyzed in Figures 7 and A.2 as well as for
other cutoffs. xi indicates the cutoff (in terms of penalty-relevant speed), s is the measured speed and δ captures
the width of the bunching area.
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Online Appendix

Traxler, C., F.G. Westermaier, and A. Wohlschlegel (2017) ‘Bunching on the Autobahn?’

This Version: November 21, 2017

I. Online Survey: Complementary Material

I.1 Main Survey Questions

1. Consequences of Speeding

In four sequential questions, participants are confronted with four different levels of speed,

Xj , which are randomly and independently drawn fromX1 ∈ {19, 20, 21}, X2 ∈ {24, 25, 26}, X3 ∈

{29, 30, 31}, X4 ∈ {34, 39}.

Imagine you are notified about a speeding fine for a violation of the speed limit on a mo-

torway. What is your estimate of the speeding fine for exceeding the speed limit by Xj

kilometers per hour? (Indicate the monetary fine in euro; response in integer values.)

2. Penalty Increases

At which values, if any at all, do the penalties for speeding increase? For example, select 19

km/h when you think the penalty for driving 19 km/h above the limit is greater than for a

speed of 18 km/h above the limit. (Please select only one of the response options per line.)

19 km/h... 20 km/h... 21 km/h over limit none of these values

24 km/h... 25 km/h... 26 km/h over limit none of these values

29 km/h... 30 km/h... 31 km/h over limit none of these values

39 km/h... 40 km/h... 41 km/h over limit none of these values

49 km/h... 50 km/h... 51 km/h over limit none of these values

3. Avoiding a penalty

In case of speeding, do you try to avoid higher penalties by staying under a certain threshold?

Yes / More likely Yes / More likely No / No / I never speed

4. Relevant Speed for determining Penalty (1)

Do you know the official deduction rule (Toleranzabzug Regel) for computing the speed level

which is then relevant for determining the penalties?

Yes / Not exactly / No

5. Relevant Speed for determining Penalty (2)

Subjects who answered the previous question with ‘No’ skipped this one.

By how many percent does the official deduction rule subtract from the measured speed?

By 0% / 1% / ... / 9% / 10% (11 options)
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I.2 Complementary Survey Evidence

Table A.4: Summary statistics – Survey data

Variable Mean Std. Dev.

Age (in years) 43.324 13.986
Male 0.477 0.501
Drive car every day 0.541 0.499
Drive on Autobahn regularly 0.616 0.487
Speeding ticket within last 2 years∗ 0.275 0.447
Penalty point record∗ 0.122 0.327
Aware of tolerance rule 0.933 0.251
Speed at slightly below threshold∗ 0.848 0.359
Survey duration (minutes) 5.593 3.362

Notes: The table presents summary statistics for the online survey. The number of observations is N = 980.
∗ indicates variables which are only available for sub-samples.

Figure A.4: Expected tolerance rule deductions (in percent)

Notes: The bar graph represents the fraction of respondents who expect the tolerance rule to deduct 0, 1, ..., 10
percent of the measured speed. (See survey question 5 from Online Appendix, above.)
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II. Additional Evidence

Table A.5: Robustness of Bunching estimates

Cutoff & Polynomial Range for estimation Pooled
Bunching Range Degree in speed s data

xi = 125 with δ = 1 1 127 0.36
(s = {128, 129}) 132 (0.01)

xi = 125 with δ = 1 2 127 0.36
(s = {128, 129}) 132 (0.01)

xi = 125 with δ = 1 3 127 0.37
(s = {128, 129}) 132 (0.00)

xi = 125 with δ = 1 2 126 0.70
(s = {128, 129}) 131 (0.45)

xi = 125 with δ = 1 2 126 0.30
(s = {128, 129}) 133 (0.25)

xi = 125 with δ = 2 2 127 0.28
(s = {128, 129, 130}) 132 (0.00)

xi = 130 with δ = 2 1 130 0.30
(s = {133, 134, 135}) 143 (0.11)

xi = 130 with δ = 2 2 130 0.42
(s = {133, 134, 135}) 143 (0.03)

xi = 130 with δ = 2 3 130 0.47
(s = {133, 134, 135}) 143 (0.04)

xi = 130 with δ = 2 2 129 0.40
(s = {133, 134, 135}) 142 (0.31)

xi = 130 with δ = 2 2 129 0.27
(s = {133, 134, 135}) 144 (0.27)

xi = 130 with δ = 1 2 130 0.45
(s = {133, 134}) 143 (0.02)

Notes: The table displays the sensitivity of bunching estimates b̂i for the cutoffs analyzed in Figure 7. xi indicates
the cutoff (in terms of penalty-relevant speed), s is the measured speed and δ captures the width of the bunching
area.
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Figure A.5: Bunching estimates for sample splits: Local drivers

Note: The figure presents bunching estimates for the two cutoffs examined in the main sample. The two figures
from the top [bottom] row are based on data from drivers with a local [non-local] number plate (relative to the
location of the speed measurement; see footnote 19 in the paper).
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Figure A.6: Bunching estimates for sample splits: Gender

Note: The figure presents bunching estimates for the two cutoffs examined in the main sample. The two figures
from the top [bottom] row are based on data from female [male] drivers. Note that this sample split is only available
for the subset of observations that contain information about the drivers’ gender.
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Figure A.7: Bunching estimates for sample splits: Weather

Note: The figure presents bunching estimates for the two cutoffs examined in the main sample. The two figures
from the top [bottom] row are based on data from speed measurement sessions with good(sun) [bad(rain)] weather
conditions.
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Online Appendix

Traxler, C., F.G. Westermaier, and A. Wohlschlegel (2017) ‘Bunching on the Autobahn?’

This Version: November 28, 2017

I. Online Survey: Complementary Material

I.1 Main Survey Questions

1. Consequences of Speeding

In four sequential questions, participants are confronted with four different levels of speed, Xj ,

which are randomly and independently drawn from X1 ∈ {19, 20, 21}, X2 ∈ {24, 25, 26}, X3 ∈

{29, 30, 31}, X4 ∈ {34, 39}.

Imagine you are notified about a speeding fine for a violation of the speed limit on a motorway.

What is your estimate of the speeding fine for exceeding the speed limit by Xj kilometers

per hour? (Indicate the monetary fine in euro; response in integer values.)

2. Penalty Increases

At which values, if any at all, do the penalties for speeding increase? For example, select 19

km/h when you think the penalty for driving 19 km/h above the limit is greater than for a

speed of 18 km/h above the limit. (Please select only one of the response options per line.)

19 km/h... 20 km/h... 21 km/h over limit none of these values

24 km/h... 25 km/h... 26 km/h over limit none of these values

29 km/h... 30 km/h... 31 km/h over limit none of these values

39 km/h... 40 km/h... 41 km/h over limit none of these values

49 km/h... 50 km/h... 51 km/h over limit none of these values

3. Avoiding a penalty

In case of speeding, do you try to avoid higher penalties by staying under a certain threshold?

Yes / More likely Yes / More likely No / No / I never speed

4. Relevant Speed for determining Penalty (1)

Do you know the official deduction rule (Toleranzabzug Regel) for computing the speed level

which is then relevant for determining the penalties?

Yes / Not exactly / No

5. Relevant Speed for determining Penalty (2)

Subjects who answered the previous question with ‘No’ skipped this one.

By how many percent does the official deduction rule subtract from the measured speed?

By 0% / 1% / ... / 9% / 10% (11 options)

1



I.2 Complementary Survey Evidence

Table A.1: Summary statistics – Survey data

Variable Mean Std. Dev.

Age (in years) 43.324 13.986
Male 0.477 0.501
Drive car every day 0.541 0.499
Drive on Autobahn regularly 0.616 0.487
Speeding ticket within last 2 years∗ 0.275 0.447
Penalty point record∗ 0.122 0.327
Aware of tolerance rule 0.933 0.251
Speed at slightly below threshold∗ 0.848 0.359
Survey duration (minutes) 5.593 3.362

Notes: The table presents summary statistics for the online survey. The number of observations is N = 980.
∗ indicates variables which are only available for sub-samples.

Figure A.4: Expected tolerance rule deductions (in percent)

Notes: The bar graph represents the fraction of respondents who expect the tolerance rule to deduct 0, 1, ..., 10
percent of the measured speed. (See survey question 5 from Online Appendix, above.)
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II. Additional Evidence

Table A.2: Robustness of Bunching estimates

Cutoff & Polynomial Range for estimation Pooled
Bunching Range Degree in speed s data

xi = 125 with δ = 1 1 127 0.36
(s = {128, 129}) 132 (0.01)

xi = 125 with δ = 1 2 127 0.36
(s = {128, 129}) 132 (0.01)

xi = 125 with δ = 1 3 127 0.37
(s = {128, 129}) 132 (0.00)

xi = 125 with δ = 1 2 126 0.70
(s = {128, 129}) 131 (0.45)

xi = 125 with δ = 1 2 126 0.30
(s = {128, 129}) 133 (0.25)

xi = 125 with δ = 2 2 127 0.28
(s = {128, 129, 130}) 132 (0.00)

xi = 130 with δ = 2 1 130 0.30
(s = {133, 134, 135}) 143 (0.11)

xi = 130 with δ = 2 2 130 0.42
(s = {133, 134, 135}) 143 (0.03)

xi = 130 with δ = 2 3 130 0.47
(s = {133, 134, 135}) 143 (0.04)

xi = 130 with δ = 2 2 129 0.40
(s = {133, 134, 135}) 142 (0.31)

xi = 130 with δ = 2 2 129 0.27
(s = {133, 134, 135}) 144 (0.27)

xi = 130 with δ = 1 2 130 0.45
(s = {133, 134}) 143 (0.02)

Notes: The table displays the sensitivity of bunching estimates b̂i for the cutoffs analyzed in Figure 7. xi indicates
the cutoff (in terms of penalty-relevant speed), s is the measured speed and δ captures the width of the bunching
area.
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Figure A.5: Bunching estimates for sample splits: Local drivers

Note: The figure presents bunching estimates for the two cutoffs examined in the main sample. The two figures
from the top [bottom] row are based on data from drivers with a local [non-local] number plate (relative to the
location of the speed measurement; see footnote 19 in the paper).
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Figure A.6: Bunching estimates for sample splits: Gender

Note: The figure presents bunching estimates for the two cutoffs examined in the main sample. The two figures
from the top [bottom] row are based on data from female [male] drivers. Note that this sample split is only available
for the subset of observations that contain information about the drivers’ gender.
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Figure A.7: Bunching estimates for sample splits: Weather

Note: The figure presents bunching estimates for the two cutoffs examined in the main sample. The two figures
from the top [bottom] row are based on data from speed measurement sessions with good(sun) [bad(rain)] weather
conditions.
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