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Abstract

We explore the relationship between individuals’ disposition to cooperate and their incli-

nation to engage in peer punishment as well as their relative importance for mitigating social

dilemmas. Using a modified strategy-method approach we identify individual punishment

patterns and link them with individual cooperation patterns. Classifying N = 628 subjects

along these two dimensions documents that cooperation and punishment patterns are aligned

for most individuals. However, the data also reveal a sizable share of free-riders that pun-

ish pro-socially and conditional cooperators that do not engage in punishment. Analyzing

the interplay between types in an additional experiment, we show that pro-social punishers

are important for achieving cooperation. Incorporating information on punishment types

explains large amounts of the between- and within-group variation in cooperation.
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1 Introduction

An extensive body of research documents cooperation among humans (e.g., Andreoni, 1988;

Ledyard, 1994; Fischbacher and Gächter, 2010; Balliet et al., 2011; Chaudhuri, 2011, to name

only a few), pointing out that cooperation problems can be mitigated by appropriate institutional

settings (e.g., Ostrom et al., 1992; Kosfeld et al., 2009). Among these, the ubiquitous mechanism

of peer punishment plays a prominent role in the literature (e.g., Fehr and Gächter, 2000, 2002;

Carpenter, 2007; Reuben and Riedl, 2013). Even though peer punishment makes successful

cooperation much more likely to occur, there are still groups who fail to use decentralized

punishment in an effective and pro-social manner. This might be due to the fact that peer

punishment constitutes a cooperation problem in itself (Yamagishi, 1986). A breakdown in

cooperation that coincides with a failure of peer punishment could thus capture two sides of the

same coin (see, e.g., Ones and Putterman, 2007; Peysakhovich et al., 2014). This conjecture

raises two fundamental questions that we try to answer in this paper: Firstly, what is the

relation between an individual’s disposition to cooperate (Fischbacher et al., 2001; Fischbacher

and Gächter, 2010) and her individual inclination to engage in peer punishment? Secondly, if

these two dispositions do not coincide, which of the two is relatively more important in achieving

cooperative outcomes under peer punishment?

We study these questions employing a classical workhorse in the literature on cooperation

and punishment: a linear public-goods game (VCM) with decentralized punishment (Fehr and

Gächter, 2002). Subjects first make a contribution decision and can then assign costly punish-

ment points that reduce the other group members’ payoffs. Within this prominent paradigm,

we introduce a variant of the strategy-method at the punishment stage of the game that allows

identifying heterogeneity in peer punishment at the individual level.

When making her punishment decisions, each subject is confronted with a random sequence

of ‘scenarios’, i.e., combinations of others’ contributions. One of these scenarios corresponds to

the other group members’ actual contribution decisions. All other scenarios are randomly drawn

contributions that systematically cover relevant parts of the strategy space. Only the punishment

decisions for the scenario with the actual contributions become payoff-relevant. As subjects do

not know which scenario is the ‘relevant’ one, we have an incentive compatible strategy-method

that induces exogenous variation in others’ contributions to consistently estimate individual peer

punishment patterns in a one-shot game (see Bardsley, 2000, for a related approach eliciting

cooperation patterns).1

1An alternative approach, based on a conventional strategy-method together with a strongly restricted choice
set, is implemented by Cheung (2014) and Kamei (2014), who offer interesting complementary findings on coop-
eration and punishment patterns, respectively. Beyond method and sample size, the present paper also differs
from these studies in that we analyze the link between cooperation and punishment types as well as the role of
the different types for achieving cooperative outcomes in a repeated game.
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Using this strategy-method to elicit punishment patterns reveals substantial heterogeneity

between individuals. In our sample of N = 628 experimental participants two patterns dominate:

Almost every second subject (47.1%) is classified as a pro-social punisher. Their individual

punishment patterns are all significantly decreasing in the other’s contributions, i.e., they target

their punishment towards those contributing nothing or little to the public good. The second-

largest group (40.3%) are non-punishers (‘second-stage free-riders’), i.e., subjects that do not

at all engage in peer punishment. Beyond these two dominant types, there is only a small

fraction of subjects that displays either an unsystematic pattern or a pattern that is increasing

in the other’s contribution (in the spirit of ‘anti-social punishment’; see, e.g., Herrmann et al.,

2008). Moreover, we document that among pro-social punishment types, patterns are almost

exclusively ‘self-centered’ around the own contribution level.

Linking individual punishment patterns to the corresponding individual dispositions to co-

operate — which we obtain from a within-subject design using the measure of conditional

cooperation introduced in Fischbacher et al. (2001) — yields a two-dimensional classification

that reveals two behavioral archetypes. (i) For the majority of our subjects cooperation and

punishment types are aligned: we find that 55% of conditional cooperators punish pro-socially

and that 56% of free-riders are non-punishers. (ii) Consequently, this also implies that a signifi-

cant share of subjects have individual punishment- and cooperation-patterns that are diverging:

35% of conditional cooperators are non-punishers and 32% of free-riders do engage in pro-social

punishment.

The ability to identify these two behavioral archetypes — individuals whose cooperation and

punishment patterns are either aligned or diverging — is a major benefit from combining our

approach to classify punishment patterns at the individual level with the conditional cooperation-

measure from Fischbacher et al. (2001). Moreover, as the individuals’ inclinations to cooperate

and to punish are far from being perfectly correlated, we can assess their respective importance

for mitigating a social dilemma in the presence of punishment opportunities. To do so, we use

these individual type-classifications from two one-shot games to explain group outcomes in a

third game: a finitely repeated public-goods game with peer punishment — both among stable

groups where players interact repeatedly (partner design) and among steadily alternating groups

where a group’s type composition changes over time (stranger design).

In both conditions, we observe that groups with more conditional cooperators achieve higher

average contributions that are also more stable over time, than groups with fewer conditional

cooperators. While these observations mirror previous findings that highlight the important role

of conditional cooperators (e.g., Gächter and Thöni, 2005), we also obtain a similar picture with

respect to the group members’ punishment types. In fact, variation in punishers’ types seems to

be crucial in this richer environment: keeping constant the fraction of conditional cooperators,

average contributions are significantly higher in groups that contain more pro-social punishers.
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The presence of pro-social punishers induces higher contributions among both, subjects classified

as free-riders and among conditional cooperators.

These findings underline that (at least in the context of peer punishment) group outcomes

crucially depend on the presence of pro-social punishment types. To the best of our knowl-

edge, our paper is the first to present causal evidence on this link. The results complement

recent studies that have hinted at the importance of individuals’ inclination to punish. Ones

and Putterman (2007) rank lab subjects according to a composite index, which is based on

previous contribution and punishment decisions in a repeated VCM. Using the ranking to form

homogenous groups of similar types, they find that subsequent cooperation is higher in groups

with ‘higher-ranked’ subjects, i.e., among individuals that tend to be more cooperative and/or

willing to engage in pro-social punishment.

Studying field data, Rustagi et al. (2010) find a positive correlation between natural groups’

success in managing forest commons and the number of conditional cooperators in the respective

groups. They attribute this to the difference between conditional cooperators and selfish persons

in their self-reported statements about time spent on forest patrols.2 In a similar vein, the

correlational analyses by Kosfeld and Rustagi (2015) suggest that these natural groups are

also better at managing forest commons if the corresponding leader’s third-party punishment

behavior, as measured in a lab experiment, promotes equality and efficiency rather than being

arbitrary.

Rustagi et al. (2010) and Kosfeld and Rustagi (2015) focus either on cooperation or on

punishment patterns, whereas Ones and Putterman (2007) combine both patterns into a single

index. By contrast, Falk et al. (2005) study both individual punishment and cooperation be-

havior in isolation, but without exploring the relative impact of subjects’ types on mitigating

a social dilemma. They employ a strategy-method on the peer punishment-stage of a binary

prisoner’s dilemma-game between three persons and relate the punishment pattern to the sub-

ject’s actual cooperation decision in the prisoner’s dilemma. While the fraction of people who

cooperate and punish is similar to what we find, it differs for those who defect and punish. To

some extent, this is driven by the marked amount of anti-social punishment in their data. In

parts, though, this might also be due to the fact that they use the actual decision (cooperate

or defect) rather than eliciting cooperation types via a strategy-method. After all, a defector

might either be a selfish individual or a conditional cooperator that expects the other person to

defect. Our two-dimensional type classification suggests that this distinction makes a difference

for pinning down the linkage between cooperation and punishment patterns.

2The authors conclude that [...] “better forest management outcomes are not only a result of conditional
cooperators being more likely to abide by the local rules of the group but also being more willing to enforce these
rules at a personal cost” (p.964). The systematic causal evidence provided in this paper confirms this line of
reasoning.
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The classification of individuals along two dimensions offers additional insights on how the

interplay of different behavioral types drives group outcomes. Accounting for the heterogene-

ity in punishment types significantly improves our ability to explain the large and persistent

differences in cooperation across groups. Moreover, the identification of systematically differ-

ent punishment patterns at the individual level provides a novel contribution to the literature

which has mainly focused on variation in punishment and cooperation patterns at the aggregate

level.3 Our analysis complements these studies of group-level heterogeneity and thus constitutes

a potential micro-foundation that might prove useful for future studies.

It seems natural to explore several follow-up questions, especially (but by no means exclu-

sively) in the context of decentralized sanctioning and norm enforcement. Knowledge about

individuals’ (punishment) types might, for instance, help to better explain the effectiveness of

other institutional arrangements aimed at sustaining cooperation (see, e.g., our work on cen-

tralized punishment in Kube and Traxler, 2011). Currently, this literature is strongly focusing

on how different contribution types are affected by, or react to, the institutions at hand (e.g.,

Brekke et al., 2011). However, it might be worthwhile to extend this line of thinking to include

punishment types as well — namely as soon as the institution at hand relies on some form

of mutual monitoring, expression of preferences over certain norms, or other mechanisms that

are likely to appeal differently to different kind of punishment types. Moreover, if institutions

need to be adapted endogenously (e.g., via elections as in Kosfeld et al., 2009, Hamman et al.,

2011, or Kube et al., 2015, or via voting by feet as in Gürerk et al., 2006), information about

a population’s type composition might allow to anticipate the support for an institution for

a given population. Finally, knowledge about individuals’ cooperation and punishment types

might offer new solutions to optimal team composition problems (e.g., Burlando and Guala,

2005; Gächter and Thöni, 2005; Ones and Putterman, 2007).

The remainder of this paper is structured as follows. The next section discusses the design

and implementation of the experiment. Section 3 presents the results from the classification of

cooperation and punishment types. Section 4 shows how the presence of these different types

influence group outcomes and individual behavior in a repeated game. Section 5 concludes.

2 Design and Procedures

Our experiment consists of three independent games: (1) a one-shot public-goods game without

punishment (C-game), which allows us to identify individual cooperation patterns in the tra-

dition of Fischbacher et al. (2001); (2) a one-shot public-goods game with peer punishment

3Consider, for instance, Herrmann et al. (2008), who compare behavior in public-good games with peer pun-
ishment across 16 countries, or Henrich et al. (2006), who study third-party punishment in 15 diverse populations
and observe at the aggregate level that “costly punishment positively covaries with altruistic behavior across
populations” (p.1767).
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(P-game) that uses a strategy-method at the punishment stage to elicit individual peer punish-

ment patterns; and finally (3) a 10-period public-goods game with peer punishment (R-game).

In the latter, random assignment produces heterogenous group compositions of cooperation and

punishment types, as elicited from the C-game and P-game. We exploit this heterogeneity to

analyze the interplay between the different types in the R-game and the impact on groups’

abilities to overcome social dilemmas. In addition to these three games, subjects answered a

brief questionnaire.

2.1 C-Game

The C-game is a standard one-shot linear public-goods game (VCM) with the strategy-method

from Fischbacher et al. (2001). Subjects are randomly assigned into groups of four. Each subject

i ∈ {1, . . . , 4} is endowed with 20 tokens and decides how many tokens to contribute to the public

good, gi, and how many to keep for herself, 20 − gi. Each token allocated to the public good

yields a marginal per capita return of 0.4. The payoff function is given by

πCi = 20− gi + 0.4

4∑
j=1

gj . (1)

Under the assumptions of rational payoff-maximizing behavior, contributing zero is the dominant

strategy of the one-shot game. In contrast, the social optimum consists of all players contributing

their entire endowment to the public good.

Following the procedure of Fischbacher et al. (2001), subjects are first asked to make an

unconditional contribution decision, gi. Using the strategy-method, subjects then make their

conditional contribution decisions. They have to indicate their contribution for all 21 possible

whole numbers of average contributions among the other group members, gj := 1
3

∑
j 6=i gj , with

gj ∈ {0, 1, . . . , 20} rounded to integers. After all decisions are made, one group member is

randomly drawn. For this subject, the conditional contribution decision is implemented based

on the average unconditional contributions of the other three group members. Contributions

and payoffs are revealed to the subjects only at the end of the experiment.

2.2 P-Game

The P-game is a one-shot linear public-goods game with costly punishment (Fehr and Gächter,

2000, 2002). At the first stage of the game, subjects make their contribution decision, facing the

same parameters as described above for the C-game. At the second stage of the P-game, each

subject i can assign a maximum of 10 punishment points to the other group members j 6= i,

0 ≤ dij ≤ 10. Punishment is costly. Assigning one punishment point costs one token for the
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punisher and reduces the payoff of the punished subject by three tokens (Fehr and Gächter,

2002; Herrmann et al., 2008). The payoff function is

πPi = 20− gi + 0.4

4∑
j=1

gj︸ ︷︷ ︸
VCM

− 1
∑
j 6=i

dij︸ ︷︷ ︸
Pun. given

− 3
∑
j 6=i

dji︸ ︷︷ ︸
Pun. received

. (2)

A fully rational, selfish agent would not engage in any punishment at the second stage of the

game. Hence, contributing zero would again be the dominant strategy.

While Fehr and Gächter (2000, 2002) and the subsequent literature let subjects decide on the

punishment levels for others’ actual contributions, we implement a modified strategy-method at

the punishment stage.4 The strategy-method confronts subjects with a sequence of contribution

triples: each subject i faces 11 screens, where each screen s presents one triple {gsj , gsk, gsl }, with

j 6= k 6= l 6= i and s ∈ {1, ..., 11}. One of the 11 triples comprises the actual contributions of

the other group members. The other ten triples are hypothetical combinations of contributions,

each being randomly drawn from a pre-defined set of combinations (see below). All 11 triples

are then presented in randomized order. For each triple, a subject has to decide how many

punishment points (if any) to allocate to the other subjects.

As we aim at identifying punishment patterns at the individual level, we wanted to assure

that subjects face combinations of contributions that cover different parts of the vast strategy

space (up to 213 potential triples). To do so, we partitioned contributions into three intervals:

low (L), intermediate (M), and high (H) contributions with gL ∈ {0, ..., 4}, gM ∈ {5, ..., 15},
gH ∈ {16, ..., 20}. We then considered the ten resulting combinations of low, intermediate and

high contributions:

{gL, gL, gL} {gL, gL, gM} {gL, gL, gH} {gL, gM , gM} {gL, gM , gH}

{gL, gH , gH} {gM , gM , gM} {gM , gM , gH} {gM , gH , gH} {gH , gH , gH}

Within each of the ten contribution combinations, we randomly generated eight different triples

(see Appendix A1 for further details). For all 10 contribution combinations, a subject would

then face one of these triples.5 Following this protocol, we observe 3× 11 punishment decisions

for each subject.

It is common knowledge that ten out of the 11 triples are hypothetical and that only the

punishment decisions for the real contribution triple become payoff relevant. However, subjects

4This strategy-method was first used in Kube and Traxler (2011). It can be seen as an instance of the
‘Conditional Information Lottery’ introduced by Bardsley (2000), who used it at the contribution stage of the
game. For a related but different approach, see Cheung (2014) and Kamei (2014).

5One subject might see, for instance, {0, 0, 0} for the combination {gL, gL, gL} and {0, 2, 8} for {gL, gL, gM}.
A different subject might face {0, 2, 3} for the former and {0, 2, 14} for the latter. Balancing tests indicate that
randomization at the individual level was successful.
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neither know which one is the ‘real’ triple,6 nor do they know the procedure to generate the

hypothetical triples. Only at the end of the experiment, the actual contribution triple and

punishment choices are revealed.

2.3 R-Game

The R-game is a public-goods game with costly peer punishment (Fehr and Gächter, 2000)

that is played repeatedly for ten periods. The payoff function is equivalent to the one from

the P-game, summarized in equation (2). Subjects play the R-game either under a stranger

(Rs) or under a partner protocol (Rp). At the beginning of the R-game, players are randomly

assigned into groups of four (partner protocol, with partners not identifiable between periods)

or matching-groups of eight (stranger protocol) and remain in these groups for all 10 periods.

In the stranger protocol, subjects are randomly re-matched each period within their respective

matching-group.7

2.4 Implementation

We evaluate data for 628 subjects that participated in 29 sessions. The large sample allows us

to study the role of heterogenous group compositions for group outcomes (see Section 4). For

each subject we observe 21 conditional contribution decisions in the C-game, 3× 11 punishment

decisions in the P-game as well as 10 contribution and 30 punishment decisions in the R-game.

452 subjects played the R-game under a partner protocol, 176 subjects under a stranger pro-

tocol. The experiments were conducted at the University of Bonn’s BonnEconLab, using the

experimental software zTree (Fischbacher, 2007). Subjects were recruited online using Orsee

(Greiner, 2015). To prevent strategic spillovers between games, subjects received the instruc-

tions for each subsequent part of the experiment once the previous part had been completed by

all participants. Standard experimental procedures were followed.8 Results and payoffs from

the C- and the P-game were only revealed at the end of the experiment. Results and payoffs

from the R-game were revealed after each period. Including a follow-up questionnaire, a session

lasted approximately 100 minutes. On average, subjects earned 19.88 Euro, including a 5 Euro

show-up fee.

6Testing whether subjects punish the (unknown) real versus the hypothetical contributions differently, we find
no significant differences whatsoever.

7The instructions under the stranger protocol explicitly informed subjects that groups are randomly re-shuffled
each period, without stating the total number of matching groups per lab session. (One session typically consisted
of 24 subjects spread over three matching-groups.) The implementation of multiple matching groups per session is
a common practice that balances the benefits from reducing reputational concerns and total implementation costs.
Moreover, since parts of our analyses exploit between matching-group variation in types, smaller matching-groups
are important to obtain sufficient between group variation.

8The instructions and further details on the procedure are available in the Online Appendix.
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3 Individual Patterns in Cooperation and Punishment

This section studies individual punishment (Subsection 3.2) and cooperation patterns (3.3).

Section 3.4 analyzes if and how these two patterns are aligned. Before doing so, we first discuss

behavioral predictions based on the related literature.

3.1 Behavioral Predictions

As the VCM with punishment is well studied in the literature, the baseline predictions (as well

as their limited predictive power) are well-known: As already noted above, the subgame-perfect

Nash equilibrium for selfish payoff-maximizing players is that nobody contributes to the public

good at the first stage since players anticipate that nobody will engage in costly punishment at

the second stage. In that case, we should observe contribution and punishment profiles that are

both ‘flat’ at zero, i.e., free-riders that do not punish.

Concerning the contribution profiles, previous studies have found a significant number of

conditional cooperators. The seminal paper by Fischbacher et al. (2001), for instance, classifies

50% of subjects in their sample as conditional cooperators and 30% as free-riders. Similarly,

heterogeneity has also been observed with respect to punishment behavior. For example, the

between-group comparison in Herrmann et al. (2008) reveals significant differences in both the

level and the targeting of punishment. Correspondingly, heterogeneity in individual punishment

behavior is observed in Falk et al. (2005), Kube and Traxler (2011), Cheung (2014), and Kosfeld

and Rustagi (2015). Although these articles differ in their specific elicitation methods and

underlying games, they all point to the existence of different punishment types: some subjects

do not use punishment, while others do engage in costly punishment. Among the latter, some

apply punishment in a pro-social manner (targeting free-riders or low cooperation levels) others

punish anti-socially (e.g., targeting high cooperation levels).

In light of the previous evidence, we therefore expect to observe individual-level differences in

contribution and punishment patterns, too. However, it still remains open if and how individual

contribution and punishment patterns are related.

Conceptually, one might argue that these patterns should be closely aligned, since both peer

punishment and voluntary contributions (in the C-game) constitute a cooperation problem. One

should thus expect that free-riders do not punish (as long as no monetary gains are expected to

arise from punishment, an argument already made by Oliver, 1980). Similarly, Fehr and Gächter

(2000, p.984) postulate that conditional cooperators are willing to engage in the costly punish-

ment of free-riders, arguing that this would be predicted by models of reciprocity and equity.

In fact, Leibbrandt and López-Pérez (2012, p.762) find that a “combination of inequity-averse

and selfish types can sufficiently capture ... punishment patterns”, as measured by conditional

responses to a dictator’s choices in ten binary allocation decisions. Likewise, the results in Che-
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ung (2014, p.130) on the determinants of peer punishment “are directionally consistent with the

predictions of the Fehr and Schmidt (1999) model of inequality aversion.”9

Similar notions of a close alignment of cooperation and punishment are developed in many

other contributions. The review by Gächter and Herrmann (2009) on human cooperation, for

instance, refers to voluntary contributions as positive and to punishment as negative reciprocity.

Likewise, Ones and Putterman (2007, p.498) implicitly assume that positive and negative reci-

procity are “two sides of the same coin” when they explore the impact of punishment and

contribution behavior on group outcomes. A very different view is offered by Peysakhovich

et al. (2014), who use factor analyses to compare individual decisions across six different one-

shot games.10 They conclude that “punishment and cooperation may be separate phenomena,

rather than being driven by a common altruistic motivation” (p.2) and thus “may not be two

sides of the same coin” (p.3). If their findings were to extend to cooperation and punishment

behavior within a given situation, it might be that conditional cooperators do not necessarily

engage in (pro-social) punishment. Likewise, it might be that free-riders do spend resources on

(pro-social) punishment.

To wrap-up: on the basis of the existing evidence we clearly expect to observe heterogeneity in

both contribution and punishment patterns. However, the literature offers competing conjectures

regarding the outcome of the two-dimensional classification approach: behavioral patterns might

be fully aligned or (at least partially) diverging. Our two-dimensional classification offers an

explorative approach that seeks to clarify whether or not cooperation and punishment are indeed

two sides of the same coin. While we can offer a novel take on this question, we do not offer a

specific test of the underlying motivation. To convincingly sort out different channels emphasized

in competing models (e.g., of other-regarding preferences), one would require much richer data

on individuals’ beliefs and decisions under very different payoff functions (i.e., from different

games and different parametrization).

3.2 Individual Peer-Punishment Patterns

3.2.1 Primary Classification of Punishment Types

In a first attempt to classify individual peer-punishment patterns, we model punishment dij as

a linear function of player j’s contribution to the public good (with j 6= i):

dij = αi + βi(20− gj) + εi. (3)

9For the underlying intuition see footnote 22 below and, for a more formal analysis, the supplementary Online
Appendix of Leibbrandt and López-Pérez (2012, p.A42).

10Among others, the authors observe an unconditional contribution decision in a VCM and a punishment
decision in a binary prisoners’ dilemma.
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The regressor in eq. (3), 20 − gj , is j’s deviation from contributing the full endowment (20

tokens). This linear transformation will facilitate the interpretation of the coefficients (see

below).11 Using the data from the strategy-method in the P-game (for the punishment decisions

of the one-shot game), we separately estimate αi and βi for each of our 628 subjects. The

estimated coefficients capture individual-level heterogeneity in punishment patterns.

It is important to realize that conventional observational data would not allow for a proper

identification of the coefficient βi at the individual level. In one-shot public good games with

peer punishment, one would only observe three punishment choices per subject. Similarly,

in repeated games like our R-game, contributions shape punishment and punishment shapes

contributions simultaneously.12 Our strategy-method breaks this simultaneity by introducing

exogenous variation in gj . Following this line of reasoning, we focus on the subjects’ punishment

choices for the 10 × 3 exogenous contribution triples of the P-game, i.e., we exclude the triple

with the actual contributions, leaving us with 30 observations per subject.13

Running 628 regressions with Ni = 30, we obtain the estimates α̂i and β̂i (along with robust

standard errors) for each subject. Based on these estimates, we then classify the subjects’

punishment patterns. Our classification distinguishes between subjects that do not punish,

‘pro-social’, and ‘anti-social’ punishers:

1. A subject is classified as a ‘Non-Punisher’ (NPun) if she assigns zero punishment points

in each case, i.e., dij = 0 for all gj . In equation (3), this is depicted by α̂i = β̂i = 0.

2. Subjects that target their punishment towards those that contribute little or nothing to

the public good have a punishment pattern that is upward sloping in (20 − gj). These

subjects, with β̂i > 0 and p ≤ 0.01, are classified as ‘Pro-social Punishers’ (Pun).

3. Subjects are classified as ‘Anti-social Punishers’ (APun), if their punishment is either

increasing in the other’s contribution gj , i.e., if β̂i < 0 and p ≤ 0.01, or if they display a

significant positive but unsystematic level of punishment: α̂i > 0 with p ≤ 0.01 and an

insignificant slope coefficient β̂i with p > 0.01.14

11Estimating a model with dij = α′i + β′igj + ε′i would yield equivalent estimates with β̂i = −β̂′i.
12Due to serial correlation in choices within subjects and (matching-)groups, one cannot easily avoid endogeneity

problems (e.g., by using lagged values). In fact, our classification approach produces quite different results if we
use the exogenous variation from our strategy-method or the endogenous variation in the repeated game data
(see Table S.5 in the Online Appendix).

13Our results are insensitive to including the three punishment decisions for the real contribution triple.
14The literature typically defines anti-social punishment in reference to a subject’s own contribution, i.e., if the

punishment-receiving subject contributed a larger or equal amount to the public good compared to the punishing
individual (e.g., Herrmann et al., 2008). Our primary classification approach deviates from this self-centered
notion of anti-social punishment as we do not consider punisher i’s own contribution gi. Still, APun-types reflect
patterns of punishment that are targeted towards high contributors.
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Punishment patterns that cannot be assigned to one of these three types are summarized in

a group of non-classified (NCL) patterns. The different types and their stylized punishment

patterns are illustrated in Figure A1 in the Appendix.

The results from our classification approach are presented in Figure 1. 47.1% of our subjects

are classified as pro-social punishers, 40.3% are non-punishers, 2.6% display an anti-social pat-

tern, and 10.0% are in the residual group of non-classified patterns (NCL). Subjects from the

latter group show very low levels of sporadic punishment (as illustrated in Figure A1). In fact,

if we relax the strict definition of NPun to include also subjects with α̂i ≈ β̂i ≈ 0, then every

single NCL type would be re-classified as NPun. These (de-facto) non-punishers would then

account for 50.3% of the sample.15

Figure 1: Primary Punishment Types and Patterns
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Type N %

Pun 296 47.1

NPun 253 40.3

APun 16 2.6

NCL 63 10.0

Total 628 100.00

Notes: Punishment type distribution and average punishment patterns (in the 20−gj-space) for the different
types: pro-social punishers (Pun), non-punishers (NPun), anti-social punishers (APun), and non-classified
punishment profiles (NCL). To ease illustration, the pattern for the latter is not plotted.

The results show that our sample is characterized by a high frequency of Pun types. The

average punishment pattern, indicated by the dashed black line in Figure 1, is therefore clearly

increasing in 20− gj . Note further that the slope of the punishment pattern is relatively steep.

The average β̂i among Pun types is 0.135 (the median is 0.124). This suggests that a player j —

who faces an average Pun type — receives around 0.14 punishment points for a one unit decline

in her contribution gj . If player j faces two [or even three] Pun types in her group, the marginal

punishment increases to 0.28 [0.42] points. Given the parameters of the game (see equation 2)

this translates into marginal costs of 0.84 [1.26] token — which weakly [strongly] dominates the

marginal payoff gains from free-riding (0.6 token).

15These results are documented in the Online Appendix (see Figure S.1). It is further worth noting that we
obtain very similar type distributions if we use Spearman’s rank correlation to classify punishment patterns (see
Tables S.1 and S.2).

11



3.2.2 Robustness and Classification of Self-Centered Punishment Types

How robust are our type classifications? Note first that the strategy-method introduces, by

design, random variation in gj . This renders the estimated coefficients from (3) fairly insensitive

to adding further control variables (e.g., controls for contributions gk and gl, k 6= l 6= j).16

Obviously, this statement does not imply that eq. (3) is the ‘best model’ to describe individual

punishment patterns. Moreover, it does not imply that we consider efficiency motives (to punish

any deviation from the socially optimal behavior, i.e., from contributing the full endowment)

as the primary driver of peer punishment. The point is simply that our primary classification

approach yields quite robust results (see Section II in the Online Appendix).

Motivated by earlier findings in the literature, we nevertheless explore one alternative, more

refined approach to classify patterns of peer-punishment. More specifically, we account for the

fact that individual i’s disposition to punish might be ‘self-centered’ around her own contribution

(from the first stage of the P-game). We thus consider a model that allows punishment patterns

to differ between the domain gj < gi and gj ≥ gi:

dij = α′i + β′i1 max(gj − gi; 0) + β′i2 max(gi − gj ; 0) + ε′i. (4)

Based on the estimates from this model (in particular, β̂′i1 and β̂′i2) one can differentiate be-

tween numerous, refined patterns of punishment (see Figure A2 in the Appendix). Our refined

classification will again focus on a limited set of types. (1) Subjects with a significant pro-social

punishment slope in the domain gj < gi (i.e., β′i2 > 0) but an insignificant slope coefficient for

gj ≥ gi (i.e., β′i1 with p > 0.01) are classified as ‘Self-centered Punishers’ (SPun ′-types). (2) All

further subjects with statistically significant, positive slope coefficients (i.e., with two positive

β-estimates or only β′i1 > 0) are subsumed in a class of (further) ‘Pro-social Punishers’ (Pun ′-

types). In addition, we distinguish between (3) ‘Non-Punishing’ (NPun ′; defined as above)

and (4) ‘Anti-socially Punishing’ (APun ′) types. The residual category are again non-classified

patterns (NCL′-types).17

Table 1 compares the results from this more refined type classification approach to our

primary classification outcomes. Among the 296 subjects labeled as pro-socially punishing (Pun)

according to our primary classification, 270 (more than 91%) do in-fact display a self-centered

pattern of punishment (SPun ′). Together with 11 further subjects (that were NCL according to

our primary approach) we obtain at a total of 281 self-centered punishment patterns (44.7% of

all 628 subjects). Beyond this large group, there are only six pro-social Pun ′-types with patterns

16A classification that builds, for instance, on the estimates α̂i and β̂i1 from the equation dij = αi + βi1(20 −
gj) + βi2(20− gk) + βi3(20− gl) + εi differs for a mere 11 subjects (1.8% of our sample). Adding dummies that
capture the sequence at which subject i faced a certain triple does not change this picture.

17In terms of the stylized illustration in Figure A2, the pattern from panel b would classify as SPun ′-type; the
pattern illustrated in panels a, c, and d would be all subsumed as Pun ′-types; and, finally, the patterns from
panels a.i to d.i would be classified as APun ′-types.
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that are not self-centered (as defined above). Hence, almost all pro-social punishment in our

sample is self-centered and these self-centered patterns constitute the most frequent punishment

type. We will return to these findings below.

Table 1: Primary and Refined (Self-Centered) Classification of Punishment Types

Primary Refined Type Classification Sum

Classification ↓ Pun′ SPun′ NPun′ APun′ NCL′ (N)

Pun 6 270 0 0 20 296

NPun 0 0 253 0 0 253

APun 0 0 0 5 11 16

NCL 0 11 0 0 52 63

Total 6 281 253 5 83 628

Notes: Row values display the outcome from our primary classification approach based on eq. (3). Column values
depict classification results for the refined (‘self-centered’) approach that builds on equation (4).

Regarding the other types we observe only minor changes in the number of anti-social pun-

ishers and a modest increase in the number of non-classified patterns (from 63 in our primary

to 83 in our refined classification approach). The latter observation is related to a conceptual

limitation of the refined classification method: for very low or very high contributions gi, there

will be few observations with gj < gi or gj ≥ gi, respectively. This certainly reduces the scope

to obtain precise estimates for both β coefficients of eq. (4).18

The methodological complications associated with the refined classification approach, to-

gether with the fact that pro-social punishment follows almost unanimously a self-centered

pattern (which, in turn, nullifies the scope for distinguishing among different types of pro-social

punishment), motivates us to work with the primary type classification throughout the remain-

der of the paper. Given the results from Table 1, however, it is unsurprising that the results

from the subsequent analyses are qualitatively insensitive to using the type distribution from

the self-centered classification approach.

3.3 Individual Cooperation Patterns

Next we analyze the strategy-method data from the C-game, where each subject states — con-

ditional on all potential values for the others’ average contribution — how much to contribute to

18In an attempt to cope with this limitation, we applied the classification only to individuals with 5 ≤ gi ≤ 15.
For this range of contributions, we obtain a very similar pattern as the one displayed in Table 1. A further
issue concerns the unbiasedness of the estimates: including gi in the estimation model mechanically re-introduces
endogeneity. To see this point, note that all unobserved individual factors ψi that shape punishment dij are
absorbed in the error term ε′i. As these unobserved factors ψi will also influence gi, we obtain Cov(gi, ε

′
i) 6= 0.

One can show, however, that this will mainly bias the estimates for α′i.
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Figure 2: Cooperation Patterns and Contribution Types
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Type N %

CC 382 60.8

FR 130 20.7

TC 54 8.6

NC 62 9.9

Total 628 100.00

Notes: The figure presents the distribution of contribution types, following Fischbacher et al. (2001) and Fis-
chbacher and Gächter (2010), and the average cooperation patterns for the different types: Conditional Cooper-
ators (CC), Free-Riders (FR), Triangular Contributors (TC), and Non-classified (NC) cooperation patterns. To
ease illustration, the pattern for the latter is not plotted.

the public good (Fischbacher et al., 2001). Based on these data we classify individual cooperation

types.

Consistent with our approach from above we separately estimate for each subject i the linear

model gi = ai + bigj + ei (with gj := 1
3

∑
j 6=i gj). Applying the type classification proposed by

Fischbacher and Gächter (2010) we distinguish between Conditional Cooperators (CC, with b̂i >

0 at p ≤ 0.01), Free-Riders (FR, with gi = 0 for all gj , i.e., âi = b̂i = 0), Triangular Contributors

(TC ), and Non-classified (NC ) cooperation patterns. Figure 2 presents the distribution of these

types among the 628 subjects from our sample. The observed type distribution, as well as the

cooperation patterns, are remarkably similar to those reported in Fischbacher et al. (2001) and

Fischbacher and Gächter (2010): 61% are conditional cooperators and 21% are free-riders. The

remaining 18% display a triangular or a non-systematic contribution pattern.19

3.4 Two-Dimensional Type Distribution

Finally, we combine the results from subsections 3.2 and 3.3 to arrive at a two-dimensional type

classification, which links punishment and cooperation patterns at the individual level. In this

vein, we can examine the relationship between individuals’ disposition to cooperate and their

inclination to engage in punishment. Table 2 presents the results from the two-way classification.

19Classifications based on Spearman’s rank correlation (as in Fischbacher et al., 2001) yield almost identical
results. (See Online Appendix, Table S.3.)
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Table 2: Two-way Distribution: Contribution and Punishment Types

Contrib. Punishment Types Sum

Types ↓ Pun NPun APun NCL (%) (N)

CC 33.4 21.2 1.4 4.8 60.8 382

FR 6.5 11.6 0.3 2.2 20.7 130

TC 4.3 2.9 0.0 1.4 8.6 54

NC 2.9 4.6 0.8 1.6 9.9 62

Sum (%) 47.1 40.3 2.6 10.0 100.0

Sum (N) 296 253 16 63 628

Notes: Within subject two-dimensional contribution and punishment type distribution in per-
cent, for 628 subjects respectively. N shows the absolute type distribution per game.

The table reveals that, overall, a third of our sample (33.4%) are conditional cooperators

with a pro-social peer punishment pattern (CC×Pun). Almost 12% are free-riders in the C-

game that do not punish in the P-game (FR×NPun). In addition to these types with aligned

patterns, we also observe a non-trivial fraction of subjects with diverging patterns: 21% of all

subjects are conditional cooperators that do not punish at all (CC×NPun) and more than 6%

are free-riders with a pro-social punishment pattern (FR×Pun).

A different way of presenting the distribution of these four types — which cover almost three

out of four subjects in our sample — is provided in Figure 3. The bar graphs indicate that roughly

every second conditional cooperator punishes pro-socially (55%) and that more than one out of

two free-riders do not punish at all (56%). In addition to these types, whose cooperation and

punishment patterns are aligned, there seems to be a second archetype of subjects with diverging

patterns: every third (35%) conditional cooperator does not punish and, analogously, almost

one in three (32%) free-riders punishes pro-socially. Hence, the overlap between conditionally

cooperative and (pro-social) punishing individuals is far from perfect.

3.4.1 Further Analyses

In a next step, we examine the distribution of the underlying coefficients of the type classifica-

tions (in particular, β̂i and b̂i; see Figure A3 in the Appendix). The analysis reveals a positive

correlation between b̂i and β̂i: ‘stronger’ conditional cooperators tend to have ‘steeper’ punish-

ment patterns. However, the correlation is again far from perfect. Among CC×Pun-types, for

instance, we observe an insignificant correlation coefficient of ρ = 0.094 (p = 0.173).20

20The Spearman correlation is slightly stronger (0.128) and statistically significant (p = 0.064).
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Figure 3: Conditional Distribution of Punishment-Types among CC - & FR-Types
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55.0% 34.8%
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Notes: The graph depicts the conditional frequency of Pun- and NPun-types among con-
ditional cooperators (CC ) and free-riders (FR), respectively.

Making use of the data from our questionnaire, we further studied whether individual char-

acteristics, personality traits (big five, etc.) and attitudes (risk, trust, etc.) correlate with

the contribution and punishment types (extensive margin variation) or patterns within types

(intensive margin variation). Our analysis reveals three strong and robust predictors for the

type assignments. First, we find that subjects who express their willingness to impose social

sanctions on norm violators among their peers (e.g., drunk drivers; see the survey questions in

Traxler and Winter, 2012) are significantly more likely to be pro-social punishers (Pun-types).

This observation suggests that the survey measure on norm enforcement is consistent with the

behavioral measure that builds on the observed pattern of peer punishment. Second, we find

that subjects who see themselves as more reserved (see Rammstedt and John, 2007), are much

more likely to be a NPun-type. Third, considering the different contribution types, we detect

a strong gender effect: females have a much higher likelihood of being a conditional cooperator

and, vice versa, a much lower probability of being a free-rider.21

To study intensive margin variation within types, we examined correlations of observables

with the slopes of the subjects’ contribution and punishment patterns (β̂i and b̂i). Our analysis

reveals that, among Pun-types, the slope of the punishment pattern is lower for females as well

as for subjects with a high level of agreeableness in the big five (Rammstedt and John, 2007).

For the cooperation patterns of CC -types, we find that those who express a high level of trust

in others have a steeper contribution pattern: they are more likely to one-to-one match others’

contributions.

21Probit and LPM estimates underlying these results are available from the authors.
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3.4.2 Interim Summary

Summing up, our two-dimensional classification reveals the existence of two behavioral archetypes.

First, the largest group of subjects is characterized by an overlap in their pro-social behavioral

patterns. This group includes conditionally cooperative types that do engage in pro-social pun-

ishment (CC×Pun) and free-riders that do not invest in punishment at all (FR×NPun). For

these types, cooperation and punishment are indeed “two sides of the same coin” (Ones and

Putterman, 2007).

Second, our analysis also identifies a significant share of individuals that are conditional co-

operators which do not punish (CC×NPun) as well as free-riders that are classified as pro-social

punishers (FR×Pun). About every third conditional cooperator and, analogously, every third

free-rider displays such a divergence in cooperation and punishment patterns. The identifica-

tion of this second archetype therefore suggests that cooperation and punishment may indeed

be separate phenomena — at least for some individuals (see Peysakhovich et al., 2014).22 While

the latter finding seems interesting in itself, it further implies that individual inclinations to

cooperate and to punish are far from perfectly correlated in our sample. We can thus assess

the interplay between the different types and their role for explaining outcomes in another

independent situation: the R-game.

4 Group Composition and Contributions in the Repeated Game

In this section we demonstrate the benefits from identifying heterogenous punishment types for

explaining group and individual level heterogeneity in repeated public goods games with peer

punishment. To this end, we exploit the data from the 10 periods of the Rp- and the Rs-game

(partner and stranger design, respectively). We analyze the influence of group compositions

on group outcomes and individual behavior. Motivated by other studies which document the

benefits from grouping pro-social individuals in a repeated VCM (e.g., Gächter and Thöni, 2005;

Ones and Putterman, 2007), we start out by computing the number of conditional cooperators

(CC ) and pro-social punishers (Pun) for each group (and for each matching group of eight in

22One aspect that is beyond the scope of the present paper is the explanation of this second archetype based on
existing theories of other-regarding preferences. Self-evident models to structure our data are based on theories of
inequality aversion, in particular Fehr and Schmidt (1999) (F/S). (Obviously, we do not estimate coefficients from
self-centered models of punishment. As pointed out in Section 3.2.2, the overall picture from our type classifications
hardly changes for these more complex models.) Intuitively speaking, in F/S the decision to contribute is shaped
by the aversion against advantageous inequality (i.e., the parameter β in F/S), whereas pro-social punishment
is motivated by aversion against disadvantageous inequality (i.e., the parameter α). As such, F/S can easily
accommodate the ‘aligned’ type combinations CC×Pun (high α and β) and FR×NPun (low α and β). Given the
specific parameters of our experiment (4 players, MPCR of 0.4, and punishment technology of 1:3), also the less
intuitive CC×NPun-type is consistent with F/S-subjects with a sufficiently strong aversion against advantageous
inequality but only a mild aversion against disadvantageous inequality. Yet, using F/S to explain the combination
of free-riders that punish others with low-contributions (FR×Pun) is not that straightforward and would require
assumption regarding (players’ expectations about) the distribution of the parameters α and β in the population.
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the stranger design). Making use of the random assignment of subjects into groups — a point

which is discussed in detail in the Appendix A2 (see also Table A1) — we first evaluate the

impact of having more or less CC - or Pun-types on a group’s average contribution level.

Figure 4: Average (Matching)-Group Contributions by Type Prevalence

Partner (Rp-game) Stranger (Rs-game)
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Notes: Panels A and B show the average contribution per period among the (matching)-groups for different frequen-
cies of CC -types within the respective group. Similarly, panels C and D depict differences in average contributions
for different numbers of Pun-types. Panels A and C present results for the partner design (Rp, with groups of four
subjects), for groups with zero, 1 or 2, and 3 or 4 CC - and Pun-types, respectively. Panels B and D present results
for the stranger design (Rs, with eight-player matching groups), for matching groups with 1 or 2, 3 or 4, or 5 and
more CC - and Pun-types, respectively. The different categories reflect the different group sizes (four vs eight) as
well as the underlying variation of types across (matching-)groups (see Table A1).

18



4.1 Descriptive Evidence

A first glimpse at the results is provided by Figure 4. It depicts the average contribution per

group over 10 rounds for different group compositions.23 Panel A [B] compares contributions for

[matching-] groups with different numbers of CC -types. The figure shows a strong positive rela-

tionship between the number of CC -types and the average contribution level — an observation

that is fully in line with the results from Gächter and Thöni (2005).

Panel C [and D] compares [matching-] groups with different numbers of Pun-types. Similar as

above, we observe that contributions are higher in groups that contain more pro-social punishers.

However, the standard errors are now smaller and, what is more important, average contribution

in ‘good’ groups are higher in panel C as compared to panel A: During the last 5 periods of the

Rp-game, groups with 3 or 4 Pun-types have an average contribution of 17.2 tokens. Groups

with 3 or 4 CC -types ‘only’ reach 14.9 tokens on average. The difference is significant at the

5%-level (p = 0.036 in a two-sided t-test).

In the stranger design, we generally observe lower contribution levels. Comparing panel

B and D further shows that the differences among ‘top’ groups are less pronounced than in

the Rp-game. Matching-groups with either few CC - or few Pun-types show strongly declining

contributions over time, a pattern well documented for repeated public goods games without

punishment.24

4.2 Regression Analysis: Group Contributions

Figure 4 shows that the number of both CC - and Pun-types are important determinants of

average contributions at the group level. To investigate the role of the different types in more

detail, we conduct a regression analysis. We estimate models of the structure

ḡ`t = γ0 + γ1CCfew
` + γ2CCmany

` +
∑
t

δtDt + ε`t, (5)

where ḡ`t := 1
n

∑n
i=1 gi`t is the average contribution in group ` in period t. The explanatory

variables are dummies indicating if there are few (one or two) or many (three or four) CC -

types in a group.25 In addition, the specification accounts for period-fixed effects. The results

from linear random-effects estimations of equation (5) for the 113 groups in the partner design

(Rp-game) are presented in column (1) of Table 3.26

23To ease exposition, the figure pools groups with similar type compositions. The raw data are illustrated in
the Online Appendix (see Figure S.4).

24Figure S.2 in the Online Appendix replicates Figure 4 for average group payoffs rather than contributions.
This exercise delivers similar findings as those discussed above.

25The reference category are groups with zero CC -types. In the interpretation of the point estimates discussed
below, one should keep in mind that most groups are populated by at least some conditional cooperators (see
Table A1 in the Appendix).

26Tobit estimations yield almost identical results (see the Online Appendix, Table S.7).
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Consistent with the graphical evidence from above, and again in line with Gächter and Thöni

(2005), the estimates document that groups with a higher number of conditional cooperators

achieve higher contributions. The point estimates indicate that groups with one or two CC -types

reach contributions which are, on average, around 4 tokens higher than in groups with zero CC

types. For groups with three or four CC types, this difference increases to 7 token. In economic

terms, both coefficients are sizeable. Statistically speaking, however, the first coefficient, which

corresponds to γ1 from equation (5), is only weakly significant. A Wald test further rejects

γ1 = γ2 with p = 0.003.

Column (2) reports the results for a model that uses dummies indicating groups with few

or many Pun- (rather than CC -)types. The point estimates are of similar magnitude but

the coefficients are more precisely estimated: on average, a group with one or two [three or

four] Pun-types achieves contribution levels that are around 4 [7] tokens above those observed

for groups with zero Pun-types. Both dummies are now significant at the 1% and 5% level,

respectively (with the two estimates being significantly different from each other; p = 0.000).

Note further that all information criteria reported in Table 3 indicate that the estimated model in

column (2) clearly dominates the one from column (1): the R2 strongly increases and the Akaike

information criterion (AIC) declines, indicating a better model fit. This underlines the usefulness

of information about the number of Pun-types in a group for explaining the heterogeneity in

cooperation levels between groups.

The last point is further corroborated by the outcome reported in column (3). The specifica-

tion includes both sets of dummies from before and thus directly assesses the relative importance

of having more or less CC - or Pun-types in a group. These two dummies are certainly corre-

lated; nevertheless, the significant share of subjects with diverging cooperation and punishment

patterns (see above) in combination with our fairly large sample allows us to distinguish the role

of CC - and Pun-types.

The results reported in column (3) show that the model clearly yields a better fit than the

one using only information about CC -types (column 1); however, R2 and AIC only improves

modestly as compared to the specification from column (2). Put differently: once we account

for a group’s Pun-types, adding information about CC -types only weakly increases explanatory

power. The results further indicate that the estimated coefficients on the two CC -dummies

shrink in magnitude while standard errors increase: one coefficient (γ1) looses statistical sig-

nificance, the other one (γ2) remains significant at the 5% level. The precision of the two

Pun-dummies decreases slightly, too; however, both coefficients remain significant at the 1%

and 10% level, respectively.

The last specification, presented in column (4), adds dummies for the prevalence of CC×Pun-

types (in the spirit of an interaction term). The outcome shows that, for a given number

20



Table 3: Group Composition and Average Contributions

(1) (2) (3) (4) (5) (6) (7) (8)

Partner Design Stranger Design

Dependent variable: Average Group Contribution (ḡ`t)

CCfew 4.117∗ 3.114 3.168 6.602∗∗ 1.063 0.139

(2.319) (2.502) (2.540) (2.748) (2.091) (2.204)

CCmany 6.935∗∗∗ 5.246∗∗ 5.427∗∗ 8.187∗∗∗ 2.125 −0.118

(2.286) (2.507) (2.652) (2.042) (1.874) (3.365)

Punfew 3.841∗∗ 3.148∗ 3.261∗ 6.867∗∗∗ 6.512∗∗∗ 5.622∗∗∗

(1.582) (1.650) (1.847) (2.143) (1.692) (1.456)

Punmany 7.323∗∗∗ 6.367∗∗∗ 6.662∗∗∗ 8.150∗∗∗ 7.184∗∗∗ 5.473∗∗∗

(1.507) (1.614) (2.049) (1.258) (1.057) (1.546)

CC×Punfew −0.193 2.704

(1.375) (2.958)

CC×Punmany −0.523 5.190

(1.875) (3.862)

Obs. 1,130 1,130 1,130 1,130 220 220 220 220

R2 0.117 0.187 0.235 0.236 0.229 0.446 0.459 0.501

AIC 7057 6964 6898 6902 1295 1222 1221 1207

Notes: Estimates from linear random-effects models for the Rp- (columns 1–4) and the Rs-game (columns 5–8). Dependent
variable: average group contribution per period. The number of observations is N = 1, 130 (113 groups of the partner
design × 10 periods) and N = 220 (22 matching-groups of the stranger design × 10 periods), respectively. In the partner
design, we use dummies for one or two (few) versus three or four (many) CC - or Pun-types. The omitted category pools
groups with zero CC - or Pun-types. In the stranger design, we use dummies for matching groups with three or four (few)
and five or more (many) CC - or Pun-types. The reference groups are then matching groups with two or less CC - or
Pun-types. All specifications include a constant and a full set of period-fixed effects (coefficients not reported). Standard
errors, clustered at the (machting-)group level, are in parentheses; ∗∗∗ / ∗∗ / ∗ indicate significance at the 1%-, 5%-, and
10%-level, respectively.

of CC - and Pun-types, having more or less of these two-way types does not matter for the

groups’ average contribution levels. In fact, the AIC suggest that the simpler specification from

column (3) dominates the one from (4). Concerning the other type dummies, it is reassuring

to see that the estimates are almost unchanged — an observation that is consistent with the

random assignment of subjects to groups.27

In a next step, we consider the data from the stranger design. Columns (5)–(8) in Table

3 present the estimation output from an analogous set of regressions as those discussed above.

The results are similar to those for the partner design. Again, we observe that a higher number

of CC - or Pun-types within a matching group is associated with higher average contributions.

Similar as above, specification (6), which controls for variation in the number of Pun-types, has

a higher explanatory power and a better fit than specification (5). In column (7), when we add

27Post-estimation tests following specifications (3) and (4) reject γ1 = γ2 (p = 0.013 and p = 0.039, respectively)
and, analogously, the equality of the two Pun-dummies (p = 0.000). However, we cannot reject CCfew = Punfew

and CCmany = Punmany (p = 0.732 and p = 0.708, respectively).
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dummies for both types, only the ones on the Pun-types remain significant. In addition, the

point estimates for the CC -dummies become much smaller now. In fact, post-estimation tests

for specifications (7) and (8) both reject CCfew = Punfew (p = 0.026 and p = 0.069, respectively)

as well as CCmany = Punmany (p = 0.026 and p = 0.089, respectively). The analysis therefore

confirms the picture from above: in the presence of peer punishment, having more Pun-types

in a group seems to be key for achieving high contribution levels, in particular, in the stranger

design.

4.3 Regression Analysis: Individual Contributions

Above we showed how variation in groups’ type composition affects average group contributions.

We now turn to the underlying individual behavior that is driving these results. To investigate

the influence of the group composition on individual contribution decisions, we estimate the

equation

git = λ0 + λ1CCfew
` + λ2CCmany

` + λ3Punfew` + λ4Punmany` + φPuni +
∑
t

δtDt + εit, (6)

The first set of dummies now captures whether individual i faces few or many CC - or Pun-

types among the other players in her group `.28 The λ-coefficients thus reflect the impact

from variation in the type composition among i’s peers on her contribution. The model further

includes a dummy Puni, which indicates if i has been classified as a Pun-type herself. As an

alternative, we will consider the dummy NPuni, which indicates that she did not punish in the

P-game. The coefficient φ then captures whether being a Pun (or NPun) type is correlated with

higher or lower contributions. Finally, note that we estimate equation (6) separately for subjects

classified as free-riders (FR) and conditional cooperators (CC ). Considering these two groups

separately allows for type-specific responses to variation in the group composition. Moreover,

any unconditional differences among these two contribution types will be reflected in different

constants (λ0).

The results from estimating eq. (6) for the partner design are presented in Table 4. Let us

first focus on the estimates for conditional cooperators. Columns (1) and (2), which present

specifications that separately include either the CC .
` or the Pun.

` dummies, suggest that a CC -

type’s contribution increases with the number of (other) conditional cooperators as well as with

the number of pro-social punishers in the group: post-estimation tests reject λ1 = λ2 (p = 0.080)

and λ3 = λ4 (p = 0.001). In terms of statistical and economic significance, however, an increasing

28More precisely, in the partners protocol, the dummies capture if there are few (one) or many (two or three)
CC - or Pun-types among the other three players in the group. For the strangers design, the dummies with
superscript few [many] indicate that two to four [five or more] subjects out of the seven other players in the
matching group were classified as CC - or Pun-type, respectively.
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Table 4: Group Composition and Individual Contributions (Partner Design)

(1) (2) (3) (4) (5) (6)

Conditional Cooperators (CC) Free-Riders (FR)

Dependent variable: Individual Contribution (git)

CCfew 1.464 0.551 1.673 1.925

(1.544) (1.569) (2.494) (2.640)

CCmany 3.089∗∗ 1.939 6.606∗∗∗ 6.648∗∗∗

(1.482) (1.498) (2.335) (2.483)

Punfew 2.440∗∗ 2.166∗∗ 4.288∗∗∗ 3.643∗∗

(0.975) (1.040) (1.583) (1.500)

Punmany 4.469∗∗∗ 4.194∗∗∗ 2.500 1.225

(0.988) (1.057) (1.781) (1.611)

Puni 2.982∗∗∗ 2.794∗∗∗ 2.641∗∗∗

(0.599) (0.487) (0.516)

NPuni −4.079∗∗∗ −4.020∗∗∗ −3.531∗∗∗

(1.106) (1.065) (1.052)

Constant 7.906∗∗∗ 7.571∗∗∗ 6.376∗∗∗ 6.744∗∗∗ 8.860∗∗∗ 4.620

(1.332) (0.884) (1.410) (2.339) (1.606) (2.853)

Obs. 2,790 2,790 2,790 950 950 950

R2 0.094 0.137 0.147 0.220 0.149 0.253

AIC 18248 18111 18082 6403 6499 6364

Notes: Estimates from linear random-effects models for the Rp-game. Dependent variable: individual
contribution per period. Dummies with superscript ‘few ’ indicate that one, and dummies with ‘many ’
indicate that two or three other subjects in the respective group are CC - or Pun-type. Columns (1)–(3)
are based on the sample of conditional cooperators: N = 2, 790 (279 CC -types over 10 periods); columns
(4)–(6) use the sample of free-riders: N = 950 (95 FR-types over 10 periods). All specifications include a
constant term and a full set of period-fixed dummies (coefficients not reported). Standard errors, clustered
at the group level, are in parentheses; ∗∗∗ / ∗∗ / ∗ indicate significance at the 1%-, 5%-, and 10%-level,
respectively.

number of Pun-types seems to exert a much stronger effect on contributions. This point is also

documented in column (3), where the CC .
` dummies become statistically insignificant, whereas

the coefficients on the effect from having few or many Pun-types in a group remain quantitatively

large and significant at the 1%- and 5%-level, respectively.29

Estimations for the CC -types in the stranger design, which are presented in Table 5, show

similar results. The CC .
` dummies are both insignificant (column 1), whereas the coefficients

on the Pun.
` dummies are both large and relatively precisely estimated (column 2). When the

two sets of dummies are combined, those for the prevalence of Pun-types in a matching-group

remain highly significant. In addition, we can reject λ1 = λ3 (p = 0.008) and find borderline

evidence when testing λ2 = λ4 (p = 0.1364).

29The Wald tests again reject λ3 = λ4 (p = 0.001). However, we do not detect a significant difference between
the coefficients on CCmany and Punmany (p = 0.270).
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Our results therefore show that — in the absence of group members who are willing to en-

force a contribution norm — conditional cooperators per se do not necessarily perform well in

coordinating on high contribution levels. Once pro-social punishers enter a group, conditional

cooperators are much more willing to make higher contributions. The presence of Pun-types

therefore seems to be essential for obtaining high contribution levels among conditional cooper-

ators.

Next we turn to the results for free-riders. Overall, the estimates from columns (4)–(6) in

Tables 4 and 5 provide a similar picture. However, due to the limited number of observations

(we only observe 95 free-riders in the Rp, and 35 in the Rs game), some of our findings are

less instructive and somewhat under-powered. For the partner design, columns (4) and (5) of

Table 4 suggest that FR-types’ contributions are, similar as those of CC -types, increasing in

the number of CC - and Pun-types in their group. For the sample of free-riders, the coefficients

on the CCmany dummy becomes larger and is now significant at the 1% level (despite a larger

standard error as compared to column (1)). Concerning the presence of pro-social punishers, we

only find a large and statistically significant effect from having few (as compared to no) Pun-

types. The Punmany dummy is insignificant (but not statistically different from Punfew; testing

λ3 = λ4 yields p = 0.144). Column (6), which presents the estimates for equation (6), suggests

that the largest effect comes from having many CC -types in a group. Having more Pun-types

further increases the free-riders’ contributions, but the effect is only statistically significant for

one of the Pun-dummies.

From these estimates it appears tempting to conclude that the contributions of FR-types

are more sensitive to the presence of conditional cooperators rather than pro-social punishers.

However, a closer look at the data from the partner design shows an almost perfect overlap of

CC - and Pun-types in the (few) groups of the free-riders.30 Hence, the high correlation among

types in this small sample impedes our ability to draw strong conclusions on the differential

impact of the two different types on free-riders’ behavior in the partner design.

For the stranger protocol (where the overlap of CC - and Pun-types in the matching groups

is smaller), the results for the free-riders are much closer to those observed for the conditional

cooperators. Columns (4) and (5) of Table 5 indicate that free-riders contribute significantly

more, the more CC - and Pun-types are in their matching groups. For the model specification

in column (6), the CC .
` dummies loose significance whereas the Pun.

` dummies remain large

and highly significant. Post-estimation tests reject λ3 = λ4 (p = 0.008) as well as λ1 = λ3

(p = 0.008) and λ2 = λ4 (p = 0.033).

To wrap-up, the estimates show that free-riders’ contributions are influenced by both, the

presence of CC - and Pun-types. While the data from the stranger protocol point to a clear

30In almost all cases when the Punmany dummy is equal to one, CCmany is one, too.
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Table 5: Group Composition and Individual Contributions (Stranger Design)

(1) (2) (3) (4) (5) (6)

Conditional Cooperators (CC) Free-Riders (FR)

Dependent variable: Individual Contribution (git)

CCfew 0.201 0.490 6.718∗∗∗ −0.0456

(2.398) (2.313) (2.360) (0.530)

CCmany 2.747 2.648 11.17∗∗∗ 0.489

(2.269) (2.227) (1.760) (2.937)

Punfew 7.584∗∗∗ 7.302∗∗∗ 6.538∗∗∗ 6.413∗∗∗

(1.386) (1.197) (1.535) (2.051)

Punmany 7.622∗∗∗ 6.837∗∗∗ 13.24∗∗∗ 12.82∗∗∗

(1.501) (1.277) (1.392) (3.026)

Puni 2.568∗∗∗ 3.275∗∗∗ 3.053∗∗∗

(0.868) (0.896) (0.928)

NPuni −2.863∗ −4.079∗∗∗ −4.014∗∗∗

(1.665) (1.334) (1.324)

Constant 8.398∗∗∗ 2.330∗ 1.387 1.216 1.691∗ 1.677∗

(1.901) (1.357) (1.823) (1.086) (1.016) (1.001)

Obs. 1,030 1,030 1,030 350 350 350

R2 0.115 0.159 0.197 0.294 0.417 0.418

AIC 6428 6375 6332 2263 2184 2180

Notes: Estimates from linear random-effects models for the RS-game. Dependent variable: individual
contribution per period. Dummies with superscript ‘few ’ indicate that two to four [three or four in columns
1–3], and dummies with ‘many ’ indicate that five or more subjects in the respective matching group are
CC - or Pun-type. (The pooling of dummies was based on the actual type allocation in the matching groups,
with the objective to minimize loss of information.) Columns (1)–(3) are based on the sample of conditional
cooperators: N = 1, 030 (103 CC -types over 10 periods); columns (4)–(6) use the sample of free-riders:
N = 350 (35 FR-types over 10 periods). All specifications include a constant term and a full set of period-
fixed dummies (coefficients not reported). Standard errors, clustered at the group level, are in parentheses;
∗∗∗ / ∗∗ / ∗ indicate significance at the 1%-, 5%-, and 10%-level, respectively.

enforcement result — a higher share of pro-social punishers in a matching group pushes free-

riders to contribute more to the public good — the data from the partner protocol highlight the

influence of conditional cooperators. While the latter observation is based on a small sample,

it is consistent with the idea that (at least some) free-riders act strategically in the repeated

game, playing high contributions that aim at encouraging reciprocal behavior of the CC -types

(e.g., Sonnemans et al., 1999; Keser and van Winden, 2000; Muller et al., 2008)

A last point worth discussing is the fact that the estimates from Tables 4 and 5 allow for

a comparison of the average contributions among the different types introduced in our type

classification from above (see, e.g., Figure 3). To see this, one has to recognize that the constant

term (λ0 from equation 6) captures a type’s average contribution. Focusing on the partner

design, the estimates from column (3) therefore suggest that an average conditional cooperator,

25



who is not classified as pro-social punisher (Puni = 0), contributes 6.4 tokens (in the first period

and with zero CC - and Pun-types among the group members). A CC×Pun-type, in contrast,

contributes significantly more: 9.0 tokens (λ0 + φ, based on column 3). From column (6) we

further learn that an average free-rider, who is not classified as non-punisher (NPuni = 0), makes

a contribution of 4.6 tokens. A FR×NPun-type would, cet. par., contribute significantly less: 1.1

tokens. The different cooperation patterns from the one-shot C-game as well as the heterogenous

punishment patterns from the one-shot P-game (which are used to classify these different types)

are therefore strong predictors of the sizeable differences in individual contribution levels that

are observed for the repeated game.

5 Concluding Discussion

Using a parsimonious strategy-method approach, we presented systematic evidence on the

heterogeneity of punishment patterns at the individual level. We linked our classification of

punishment-types to the popular cooperation-type classification from Fischbacher et al. (2001).

This allowed for an individual-level analysis of the relationship between subjects’ dispositions to

cooperate and their inclinations to enforce cooperation via peer punishment. The resulting two-

dimensional classification suggested the existence of two distinct behavioral archetypes. On the

one hand, we identified many subjects whose punishment and cooperation patterns are aligned.

On the other hand, our analysis uncovered a non-trivial fraction of subjects whose cooperation

and punishment patterns diverged: free-riders that punished pro-socially and conditional co-

operators that did not punish. Hence, for a majority of subjects cooperation and punishment

indeed seem like two sides of the same coin. However, for a significant part of our sample,

cooperation and punishment seem to be different behavioral traits.

The divergence between cooperation and punishment patterns further allowed us to assess

the role of the two-dimensional variation in types — which we identified in two independent

one-shot games — for explaining group outcomes and individual behavior in a third, repeated

game with peer punishment. Our analyses provided strong, causal evidence on the relative

importance of pro-social punishers for achieving and maintaining cooperation. While variation

in cooperation types within a (matching) group explains large parts of the variance in group

outcomes, similar variation in punishment types has a higher explanatory power.

The latter finding is relevant, since previous work has predominantly hinted at the impor-

tance of conditional cooperators for a group’s success (e.g., Gächter and Thöni, 2005; Burlando

and Guala, 2005). Except for Rustagi et al. (2010), however, the corresponding inferences are

usually drawn from situations that do not entail elements of punishment. Given that the absence

of sanctioning opportunities in natural environments is likely to be the exception rather than

the rule, actual group outcomes might not be determined by individuals’ cooperation types per

26



se, but rather by the concomitant inclination to engage in pro-social punishment. Our results,

in particular the identification of a behavioral archetype with diverging punishment and coop-

eration patterns, underline that this distinction indeed matters. It will be interesting to see in

future studies if a similar differentiation also applies to other forms of pro- (e.g., Falk and Szech,

2013) and anti-social (e.g., Abbink and Serra, 2012) behavior.

The results and the methodologies from our study open several avenues for follow-up research.

To advance our understanding of cross-cultural differences in cooperation (Henrich et al., 2006;

Herrmann et al., 2008), one could readily apply our approach to examine the underlying variation

in individual cooperation and punishment types. Exploring type variation in social dilemmas

beyond linear public goods games (see, e.g., Cason and Gangadharan, 2015) will also help to

reassess the underlying motivations of peer punishment. If, for instance, people solely punish to

reduce inequality in payoffs (in a self-centered way, e.g., following Fehr and Schmidt, 1999) this

could intuitively explain the aligned behavioral archetype (pro-socially punishing conditional

cooperators as well as individuals who free-ride in both stages of the game). Depending on

the parametrization of the game, self-centered models of inequality aversion might not be easily

reconcilable with free-riders that are pro-social punishers or with conditional cooperators that

do not punish. These diverging types would also be incompatible with a notion of strong

reciprocity, assuming cooperation and punishment to be responses that are triggered by positive

and negative reciprocity, respectively (Dohmen et al., 2008). Building on our design — e.g.,

by augmenting our strategy-method to account for a subject’s beliefs about others’ punishment

— future research might address this point and disentangle the influence of rational motives

(Casari and Luini, 2012), emotions (Falk et al., 2005; Reuben and van Winden, 2008; Hopfensitz

and Reuben, 2009) or inconsistency (Blanco et al., 2011) in explaining the different archetypes

and their punishment patterns.
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Gächter, S. and C. Thöni (2005). Social Learning and Voluntary Cooperation Among Like-
Minded People. Journal of the European Economic Association 3 (2), 303–314.

Greiner, B. (2015). Subject pool recruitment procedures: organizing experiments with ORSEE.
Journal of the Economic Science Association 1 (1), 114–125.
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Appendix

A1 Contribution Triples

Below we list the hypothetical contribution triples that were used within each of the ten com-

binations of gL, gM and gH (see Section 2.1). Before the experiment, these 10 × 8 triples were

randomly generated by sampling with replacement from the corresponding sets gL, gM , gH .

Each player then faced a randomly selected triple within each combination. If the selected triple

would by chance correspond to the real triple, the subject would not face this situation; instead

another one of the pre-defined contribution triples for the corresponding combination would be

drawn.

(1) (2) (3) (4) (5) (6) (7) (8)

(gL, gL, gL): (0,0,0) (0,2,3) (1,1,3) (1,2,2) (1,2,3) (1,2,4) (1,3,3) (1,3,4)

(gL, gL, gM ): (0,1,5) (0,2,8) (0,2,14) (1,2,10) (1,2,12) (1,3,14) (2,2,6) (2,3,12)

(gL, gL, gH): (0,3,18) (1,2,20) (1,3,19) (1,4,20) (2,2,18) (2,2,19) (3,3,18) (4,4,17)

(gL, gM , gM ): (0,9,11) (0,5,12) (0,13,14) (1,10,15) (2,6,8) (2,9,11) (2,10,15) (3,13,14)

(gL, gM , gH): (0,6,19) (0,14,17) (2,6,17) (2,8,20) (2,11,19) (3,7,18) (4,8,17) (4,10,20)

(gL, gH , gH): (0,18,19) (1,19,19) (2,18,19) (2,18,20) (2,19,19) (3,18,20) (3,19,19) (4,19,20)

(gM , gM , gM ): (5,7,12) (5,14,15) (6,6,9) (6,10,10) (7,8,9) (7,10,13) (7,14,15) (8,9,11)

(gM , gM , gH): (5,5,17) (5,8,16) (6,11,20) (8,15,17) (9,12,18) (9,15,18) (11,15,19) (12,15,19)

(gM , gH , gH): (5,18,20) (7,18,19) (9,18,20) (11,17,17) (12,17,18) (12,18,18) (14,17,20) (15,17,19)

(gH , gH , gH): (17,17,19) (17,18,19) (17,18,20) (17,19,19) (17,19,20) (18,18,19) (18,18,20) (20,20,20)

A2 Type Distribution among (Matching-) Groups

Table A1 illustrates the group composition that emerged from the random assignment of subjects

into different [matching-] groups. In addition, the table presents the expected distribution

(numbers in italics) based on the population frequencies of CC - and Pun-types as reported in

Tables 1 and 2, respectively. The chance, for instance, of having four CC -types in one group is

given by 0.6084. Among 113 groups, one should thus expect 15.4 groups with this composition.

Stated differently: the numbers in italics form the ‘perfect randomization’ benchmark. The

actual outcome is in fact very close to this benchmark.

The top part of the table illustrates the variation in the different types among the 113 four-

player groups in the partner protocol (Rp-game). Consistent with the high population frequency

of conditional cooperators (60.8 % of our sample, see Table 2) we observe that the majority of

groups are populated by two (35 groups) or three (48 groups) CC -types. In addition, there

are several groups with no (4), one (13) or even four CC -types (13 groups). A slightly more

symmetric distribution is observed for Pun-types — reflecting the fact that the population
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Table A1: Type Distribution per (Matching) Group

Number of subjects: 0 1 2 3 4 5 6 7 8 Sum

Rp-game

CC 4 13 35 48 13 113

2.7 16.6 38.5 39.8 15.4

Pun 15 30 34 30 4 113

8.8 31.5 42.1 25.0 5.6

RS-game

CC - 1 1 4 2 5 8 1 - 22

0.0 0.2 0.8 2.6 5.0 6.2 4.8 2.1 0.4

Pun - 1 4 4 2 4 6 1 - 22

0.1 1.0 3.0 5.3 5.9 4.2 1.9 0.5 0.1

Notes: In the Rp-game subjects are counted at the group level (with 4 subjects per observational unit).
In the Rs-game subjects are counted at the matching-group level (with 8 subjects per observational
unit). The depicted distribution of subjects occurred from randomly assigning subjects to groups
(matching-groups) at the beginning of the R-game. The numbers in italics present the expected
distribution based on the population frequencies of CC - and Pun-types as reported in Tables 1 and 2,
respectively.

prevalence is close to one half (47.1 % of our sample, see Table 1). There are between 30 to

34 groups, each with either one, two, or three Pun-types. In addition, there are 15 groups

with zero and four groups with four Pun-types. We use two-sided Fisher’s exact tests to assess

the hypothesis that the observed and the predicted distribution of groups with different type-

compositions stem from the same distribution. Consistent with random group assignment, this

H0 cannot be rejected (p = 0.812 for the distribution of CC -types, and p = 0.539 for the

distribution of Pun-types).

The lower part of Table A1 captures the variation in group compositions between the 22

matching groups (each with eight subjects) from the stranger protocol (Rs-game). Similar as

above, the data indicate quite some variation in the type composition across groups. Given

the limited number of matching groups, there appear to be larger deviations from the expected

number of groups with different compositions. However, the actual distribution is again not

different from the expected random distribution: the p-values from two-sided Fisher’s exact

tests are, exactly as above, p = 0.812 for the CC - and p = 0.539 for the Pun-types.
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A3 Complementary Figures

Figure A1: Primary Classification Approach: Stylized Illustration of Punishment Types

NPun Pun APun NCL

0

dij

20− gj 0

dij

20− gj 0

dij

20− gj 0

dij

20− gj

α̂i = β̂i = 0 β̂i > 0 with p ≤ 0.01 β̂i < 0 with p ≤ 0.01 or

α̂i > 0 (p ≤ 0.01) & β̂i insignif.

Notes: Type classifications based on α̂ and β̂ obtained from estimating eq. (3).

Figure A2: Self-Centered Classification Approach: Stylized Illustration of Punishment Types
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(d)
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(e)

0

dij

gi − gj

β̂′1 = β̂′2 > 0 with p ≤ 0.01 β̂′1 ≈ 0; β̂′2 > 0 with p ≤ 0.01 β̂′2 > β̂′1 > 0 with p ≤ 0.01 β̂′1 > β̂′2 > 0 with p ≤ 0.01 β̂′1 < 0; β̂′2 > 0 with p ≤ 0.01

(a.i)

dij

gi − gj

(b.i)

dij

gi − gj

(c.i)

dij

gi − gj

(d.i)

dij

gi − gj

(e.i)

dij

gi − gj

β̂′1 = β̂′2 < 0 with p ≤ 0.01 β̂′1 < 0; β̂′2 ≈ 0 with p ≤ 0.01 β̂′1 < β̂′2 < 0 with p ≤ 0.01 β̂′2 < β̂′1 < 0 with p ≤ 0.01 β̂′1 > 0; β̂′2 < 0 with p ≤ 0.01

Notes: Different types based on β̂′1 and β̂′2 from estimating eq. (4). Panels a to d show different patterns of
pro-socially punishing subjects. Panels a.i to d.i display anti-social patterns. The self-centered pattern b would
be classified as SPun’, whereas pattern a would be labeled Pun’. As long as β̂′1 is not significantly positive,
pattern c would be classified as SPun’, too. Empirically, we hardly observe patterns as those from panels c and
d. Patterns e and e.i are mechanically possible but are not observed in our sample. (Patterns for NPun’ - or
NCL’ -types are not illustrated here.)
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Figure A3: Distribution of β̂i and b̂i
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Notes: Scatter plot for individual level peer punishment pattern slope β̂i and contribution pattern slope b̂i for the
four most prevalent types, i.e., CC, FR, Pun, and NPun. The estimated correlation between the respective β̂i
and b̂i is depicted as a yellow line. To ease illustration FR×NPun-type values are not plotted. The concentration
of observations at b̂i = 0 and b̂i = 1 is due to ‘perfect’ free-riders and ‘perfect’ conditional cooperation, respectively.
The former never contribute in the C-game, whereas the latter types perfectly (i.e., 1:1) match the average group
contribution.
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I Instructions

Below we provide the instructions, translated into English, as they were handed out and read

aloud (in German) to the subjects. The first part of the instructions describes the C-game, the

second the P- and the third part the R-game (RP and RS , respectively).
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General Instructions for Participants

You are about to take part in an economic experiment. If you read the following instructions carefully, you can

earn a considerable amount of money, depending on your decisions and the decisions of the other participants. It is

therefore important that you read these instructions carefully and understand them well.

During the experiment, communication is absolutely forbidden. If you have any questions, please ask only us.

Raise your hand and we will come to you. Disobeying this rule will lead to exclusion from the experiment and

from all payments. 

This experiment consists of several independent parts. You will be randomly matched into groups of four in each

part. The make-up of your group of four will change as each new part begins. Participants cannot be identified

beyond the individual parts, and you do not interact with the same participants in each part of the experiment.

For your  participation today, you will  initially  receive  a show-up fee  of  5€.  This  amount  increases  by your

earnings from the individual  parts  of the experiment.  During the experiment,  however, we will  not  speak of

Euro, but of Token. Your total earnings are therefore initially calculated in Token. The total amount of Token you
earn in the course of the experiment will be converted into Euro at the end and paid to you in cash. The exchange
rate of Token to Euro will be told to you at the beginning of each part.

Now you will receive a description of the first part. You will receive the descriptions for the other parts later.



General Information on the First Part of the Experiment

In the first part of the experiment, the exchange rate from Euro to Token is: 5 Token = 1€.

The first part of the experiment consists of  one period only. At the beginning of the first part, you will be assigned randomly to a

group of four participants. Your group therefore consists of three other participants.

Each participant receives 20 Token. It is your task to decide how you will use your 20 Token. You can contribute all or part of your 20

Token to a project, or else put them in a private account. Each Token that you do not put towards to the project is automatically put

in your private account by you. For instance, if your contribution to the project is 5 Token, then 15 Token remain in your private

account.

Income from the private account:

For every Token that you put into your private account, you will earn exactly 1 Token. For example, if you put 20 Token in your 

private account (thus contributing nothing to the project), you will earn exactly 20 Token from the private account. If, for example, 

you contribute 12 Token to the project (thus putting 8 Token in your private account), you will earn 8 Token from your private 

account. Nobody except you receives earnings from your private account.

Income from the project:

For every Token that you or another participant from your group contributes to the project,  you and all other participants in your

group will earn 0.4 Token each. The income of each participant in your group from the project is therefore determined as follows:

Income from the project = Sum of contributions to the project * 0.4

Examples: If the sum of the contributions to the project by all participants from your group is 20 Token (e.g., if you and the three other

participants each contribute 5 Token), you and all the other participants in your group receive 20 * 0.4 = 8 Token from the project. If

the sum of the contributions to the project is 10 Token in total, then you and all the other participants earn 10 * 0.4 = 4 Token from the

project.

Your income from the first part is the sum of your income from your private account and your earnings from the project. Therefore:

    Income from your private account (= 20 – Contribution to the project)
+ Income from the project (= 0.4 * Sum of contributions to the project)
    Income from the first part of the experiment

The calculations can be illustrated easily with an example:

You contribute 15 Token to the project, as do the other three participants. The total sum of contributions to the project is therefore 15 +

15 + 15 + 15 = 60 Token. Your income in the example would be:

5 Token from your private account + 0.4 * 60 Token from the project = 5 + 24 = 29 Token.



However, if you contributed 0 Token to the project, for example, the total sum of contributions to the project would be 15 + 15 + 15 +

0 = 45 Token. Your income would therefore be:

20 Token from your private account + 0.4 * 45 Token from the project = 20 + 18 = 38 Token.

The earnings for the other participants are calculated in the same way. 

Do you have questions?



Additional Instructions for the First Part of the Experiment

You make your contribution decision as follows in the first part of the experiment:

First,  you  have  to  decide  how  many  Token  you  wish  to  contribute  to  the  project.  From  this  point  on,  we  will  call  this  the
unconditional contribution.

Afterwards you have to fill in a  contribution table. In the contribution table, you have to  enter how many Token you want to

contribute to the project for every possible (rounded) average contribution of the other participants in your group. So you can

decide  how  many  Token  you  want  to  contribute,  depending  on  how many  Token  the  others  have  contributed  on  average.  To

understand this better, please take a look at  the following screen.  It will appear directly after you have made you unconditional

contribution decision.

The numbers to the left of the blue input fields on the screen present the potential rounded average contributions to the project by the

other participants in your group. Now, simply enter, into every input field, how many Token you wish to contribute to the project –

assuming that the other participants have contributed on average the depicted amount. You have to make an entry into each input

field. You have to enter, for example, how many Token you contribute to the project if the other participants of your group contribute

on average 0 Token to the project; how many Token you contribute if the others contribute on average 1, 2, or 3 Token, and so forth.

You can enter all whole numbers from 0 to 20 into each field.



After all participants have made their unconditional contribution decision and filled in the contribution table, one participant is chosen

at random from each group. For the  randomly chosen participant only the  completed  contribution table is relevant for both the

decision and the payoff. For the other three participants in your group, who have not been chosen randomly, only the unconditional

contribution is relevant for both the decision and the payoff.  An example illustrates this:

Example: Assume that you have been chosen randomly, so that your contribution table is relevant for your decision. Thus, for

the other three participants, only the unconditional contribution decision is relevant. Assume this is given by 0, 2, and 4. The average

contribution of these three participants is therefore 2.

If you have stated in your contribution table that you will contribute 1 in case the others contribute 2 on average, then the total group

contribution to the project is 0 + 2 + 4 + 1 = 7. All participants in your group thus earn 0.4 * 7 = 2.8 Token from the project, plus the

individual earnings from each private account.

On the other hand, if you stated in your contribution table that you would contribute 19, in case the others contribute 2 on average, the

total contribution to the project is 0 + 2 + 4 + 19 = 25. All participants in your group thus earn 0.4 * 25 = 10 Token from the project,

plus the individual earnings from each private account.

Only at the end of the third part of the experiment do you learn whether the contribution table or the unconditional contribution was
relevant for you and how high your payoff is from this first part.

Do you have questions?  If you do, please raise your hand now.



General Information on the Second Part of the Experiment

In the second part of the experiment, the exchange rate from Euro to Token is: 5 Token = 1€.

The second part of the experiment consists of one period only. At the beginning of the second part, you are once again

assigned randomly to a group of four participants. 

The decision situation is similar to the situation in part one; however, in this part, an additional stage is introduced.

The process is now as follows:

In the first stage, as before, you have to decide how many Token you wish to contribute to a project.

Your income at the end of stage one is the sum of your income from the private account and your income from the

project. Therefore:

    Income from your private account (= 20 – Contribution to the project)
+ Income from the project (= 0.4 * Sum of contributions to the project)
    Income from the first part of the experiment

STAGE 2

At the beginning of stage 2, you will learn how many Token the other participants in your group have contributed to

the project. You will then have the opportunity to reduce the stage 1 earnings of each one of the other participants in

your group. The other participants can similarly reduce your earnings, if they choose to.

To reduce the earnings of a specific participant, you can assign so-called points to this participant.  

For each point that you assign to a participant in your group, you reduce the earnings of this participant by 3 Token.

Thus, if you assign 1 point to a participant, you reduce the earnings of this participant by 3 Token. If you assign 2

points to this participant, you reduce this participant's earnings by 6 Token, etc. If you do not want to reduce the

earnings of a participant, assign 0 points to this participant. 

The more points you assign to a participant, the larger is the reduction in the earnings of this participant. However,

your own earnings are also reduced with every point that you assign to a participant. For each point that you assign,

your earnings are reduced by 1 Token. For example, if you assign 2 points to a participant, you will incur costs of 2

Token; if you assign 4 points to a participant, you will incur costs of 4 Token; if you assign 0 points to a participant,

you will incur no costs for this.

You decide for each participant in your group by how many Token you want to reduce his earnings. You may assign a

maximum of 10 points to each participant. 



If and how many Token in total are deducted from a participant's earnings depends not only on how many points you

assigned to this participant, but also the other participants’ points. For example, if a participant receives 1, 0, and 2

points, respectively, from the other three participants in the group, his earnings are reduced by (1 + 0 + 2) * 3 = 9

Token. Simultaneously, the earnings of the other participants are reduced because of the costs incurred by assigning the

points by 1, 0, and 2 Token.

YOUR PAYOFF 

Your payoff is thus determined as follows: 

    Earnings from stage 1

− 3 x (The number of points from stage 2 that have been assigned to you)
−  The number of points from stage 2 that you have assigned to others

   Payoff



Additional Instructions for the Second Part of the Experiment

You make your decisions in the second part of the experiment as follows:

First, you decide once how many Token you want to contribute to the project in the first stage.

In stage 2, you are confronted with a number of decision situations.  In each decision situation, a combination of

possible contributions by the other participants in your group is presented. Above, we pointed out that you will learn

the precise contributions of the other three participants in your group in stage 2 – and after that you can assign points to

each participant. However, in this part of the experiment, the three presented contributions might possibly be fictitious

and do not represent the actual contributions of the other three participant.

After you decided about the assignment of points to the presented contributions, you will be presented with another

(possibly fictitious) combination of contributions by the other participants in your group. For this decision situation,

you also have to decide how many points you want to assign to each participant.

In total, you will be presented with eleven decision situations. Ten of these eleven decision situations are fictitious. In

exactly one situation, you will be presented with the actual contributions of the other three participants in your group.

How many points you assign to the other three participants in your group, and how large your payoff will be, will only

be  determined  by  the  decisions  in  this  one  decision  situation.  The  chosen  assignment  of  points  in  the  fictitious

situations has no influence on your payoff or on that of the other participants. When deciding on the assignment of

points in a decision situation, you will not know if the presented contributions are the actual contributions. Therefore

you have to consider your assignment of points in every decision situation, as every situation might be relevant for you.

You will learn which situation was the actual situation and how big your earnings are from the second part of the
experiment at the end of the third part of the experiment.

Do you have questions?  If so, please raise your hand now.
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General Information for the Third Part of the Experiment 

In the third part of the experiment, the exchange rate from Euro to Token is: 50 Token = 1€.

The third part of the experiment consists of ten periods. At the beginning of the third part, you will again be assigned

randomly to a group of four participants. The composition in all ten periods stays the same, which means  you will

interact with the same participants in each of the 10 periods.

The general decision situation is the same as in the second part of the experiment in each period, i.e., you will decide,

in stage 1, how many Token you wish to contribute to a project; in the second stage, you can assign points to the other

participants in your group. For each point that you assign to a participant, you reduce the earnings of this participant by

3 Token, and your own earnings by 1 Token.

In the first period, you will be confronted with eleven decision situations in stage 2. Ten out of the eleven decision

situations are made-up. In exactly one situation, you will be presented with the actual contributions of the other three

participants. Your payoff from the first period will only be determined by the decisions in this one decision situation

(you know this already from the previous part of the experiment).

At the end of the first period, all participants in your group will learn how many points they have received from the

other participants.

In the subsequent nine periods, and this is different from the previous part of the experiment, you will interact another

nine times with the same participants. However, in the subsequent nine periods, you will only be confronted with the

actual decision situation in stage 2.

After each of the ten periods, each participant will learn how many points he has received from the other participants in

the group. Further, he will learn his payoff from this period. After this, each participant is given a new, randomly drawn

number.  You  are  therefore  always  with  the  same  participants  in  one  group,  but  cannot  identify  the  individual

participants from round to round.

Do you have questions?  If so, please raise your hand now.



II Sensitivity of Type Classification Approaches

Figure S.1: Punishment Patterns and Punishment Types – Sensitivity Analysis

0
.5

1
1

.5
2

2
.5

3
m

e
a

n
 d

ij

0 5 10 15 20
20 − gj

 Total Avg. [N = 628]  Pun [N = 296] (47%)

 NoPun [N = 316] (50%)  APun [N = 16] (3%)

Type N %

Pun 296 47.1

NPun 316 50.3

APun 16 2.6

Total 628 100.00

Notes: Primary type distribution and average punishment patterns (in the 20−gj-space) for different punishment
types: pro-social punishers (Pun), non-punishers (NPun), anti-social punishers (APun). In contrast to our main
approach, NPun is here classified as those with insignificant (rather than exact zero-) coefficients: α̂i ≈ β̂i ≈ 0.
With this alternative definition of NPun, all subjects that were classified as NCL in Figure 1 now fall into the
extended NPun definition.

Table S.1: Primary Punishment Classification using Spearman’s ρ

Type N %

Pun 307 48.9

NPun 253 40.3

APun 6 0.9

NCL 62 9.9

Total 628 100.00

Notes: Primary punishment type classification applying Spearman’s rank correlation in line with the conditional
cooperation classification proposed by Fischbacher et al. (2001). Pun are classified as positive ρ with p ≤ 0.01.
Subjects are NPun if all peer punishment decisions dij = 0. APun are classified as negative ρ with p ≤ 0.01. All
subjects that are not classified as one of the previous three, are classified as NCL.
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Table S.2: Comparing Primary Punishment Classifications: Spearman’s ρ vs. OLS estimates

OLS Sum

Spear. ρ ↓ Pun NPun APun NCL (N)

Pun 293 0 0 14 307

NPun 0 253 0 0 253

APun 0 0 6 0 6

NCL 3 0 10 49 62

Total 296 253 16 63 628

Notes: Comparison of our primary peer punishment classification using Spearman’s ρ and the OLS estimates.
The classification based on Spearman’s ρ shows only minor differences to our classification approach from the
main text.

Table S.3: Contribution Type Classification using Spearman’s ρ

Type N %

CC 388 61.8

FR 130 20.7

TC 54 8.6

NC 56 8.9

Total 628 100.00

Notes: Contribution type classification applying Spearman’s ρ as proposed by Fischbacher et al. (2001). CC
are classified as positive ρ with p ≤ 0.01. Subjects are FR if all 21 conditional contribution decisions gi = 0.
TC-types initially show a positive relation to the average contributions and a decreasing slope in the latter part
of the graph and are classified via eyeballing.
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Table S.4: Comparing Contributor Classification Spearman’s ρ and OLS

OLS Sum

Spear. ρ ↓ CC FR TC NC (N)

CC 381 0 0 7 388

FR 0 130 0 0 130

TC 0 0 54 0 54

NC 1 0 0 55 56

Total 382 130 54 62 628

Notes: Comparison of individual conditional cooperation classification using Spearman’s ρ and our approach
(based on OLS estimates). The Spearman’s ρ based classification shows only minor differences compared to our
classification approach from the main text.

Table S.5: Comparing P- & R-game Punishment Classification

R-game Sum

P-game↓ Pun NPun APun NCL (N)

Pun 177 16 4 99 296

NPun 45 105 5 98 253

APun 2 2 5 7 16

NCL 18 12 3 30 63

Total 242 135 17 234 628

Notes: Within subject comparison of primary punishment type classifications using P- vs. R-game data. Here we
apply our classification approach (based on estimating the equation dij = αi+βi(20−gj)+εi) to the observational
data on cooperation and punishment in the repeated game (R-game). The two approaches show strong deviations
in classification outcomes. Based on the R-game data, 234 subjects (more than a third of all) remain unclassified
and get labeled as NCL.
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III Group Composition and Payoffs in the Repeated Game

Figure S.2 replicates Figure 4 for the average group payoffs. The exercise delivers similar patterns

as those discussed above. It is remarkable to note that the gains from higher contributions that

groups with many Pun-types manage to achieve, are hardly offset by the costs from having more

punishment. These findings concur with those in Fehr and Gächter (2000). In groups with 3 or

4 Pun-types the average payoff over all periods is 27.7 tokens, with an average of 29.2 during

the last five periods. (Keep in mind that the maximum achievable group payoff is 32 tokens.)

Groups with 3 or 4 CC -types, in contrast, end up with an average payoff of 26.8, and 27.7 during

the last five periods. The payoff differences are significant at the 10 percent level (two-sided

t-tests).

Next we run regressions to explore the role of Pun-types for a group’s average payoff. We

build on equation (5) and use a (matching-)group’s average payoff, π̄`t, as an alternative de-

pendent variable. Estimation results for the partner and the stranger design are presented in

Panel A of Table S.6. Consistent with the positive effect of CC -types on group contributions,

column (1) shows positive and highly significant coefficients. In column (2), we find still positive

but smaller coefficients for the Pun-type dummies. Only the dummy for 3 or 4 Pun-types is

statistically significant. The point estimates from columns (1) and (2) imply that a group with

3 or 4 CC - [Pun-] types achieves a payoff per period that is on average 5.3 [3.7] tokens higher

than in a group with zero CC - [Pun-] types. The estimates thus offer a slightly different picture

than the one discussed in the main text: regarding average contributions, we have seen that

having more subjects that punish pro-socially was unambiguously ‘better’ than having more

conditional cooperators. For achieving higher payoffs, however, the positive role of Pun-types

is limited by the fact that their (stronger) inclination to punish — which is instrumental for

reaching high contribution levels — is costly and cet.par. lowers average group payoffs. This is

why CC -types have a stronger positive effect on average payoffs, an observation that is further

supported by the results from column (3).

Three things are worth noting. First, the results for the stranger design, which are presented

in columns (4)–(6) of Panel A in Table S.6, show again a much more positive impact of Pun- as

compared to CC - types. In fact, column (6) reveals statistically significant coefficients for the

two Pun but not for the CC dummies. The relative costs from having more Pun-types therefore

seem to be higher in stable groups of four (partner design) as compared to matching groups

of eight — a point we will return to below. Second, similar as above, the specification from

column (2) outperforms the one from column (1), and the one from column (5) does better than

the one from (4) in terms of explanatory power and information criteria. Thus, knowledge about

the prevalence of Pun-types is still crucial for explaining variation in payoffs across heterogenous

groups. Thirdly, when we replicate the estimates from column (1)–(3) for the last five periods of

the Rp-game, we observe again larger and more precisely estimated positive coefficients on the

Pun dummies for the partner design. (These estimates are presented in Panel B of Table S.6.)

Hence, excluding the early periods — where most punishment occurs (see Figure S.3) — the

regressions capture again the beneficial, cooperation inducing effect of having more pro-social

punishers in a group.
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Table S.6: Group Composition and Average Payoffs

Panel A. All 10 Periods

Partner Design Stranger Design

(1) (2) (3) (4) (5) (6)

CCfew 3.580∗∗∗ 2.989∗∗ CCfew 3.158∗∗ −0.112

(1.159) (1.351) (1.274) (1.137)

CCmany 5.254∗∗∗ 4.367∗∗∗ CCmany 4.431∗∗∗ 1.150

(1.137) (1.333) (0.818) (0.882)

Punfew 1.493 1.026 Punfew 3.826∗∗∗ 3.954∗∗∗

(1.011) (1.074) (1.221) (1.200)

Punmany 3.734∗∗∗ 3.051∗∗∗ Punmany 4.401∗∗∗ 3.803∗∗∗

(0.965) (1.054) (0.716) (0.900)

Obs. 1,130 1,130 1,130 Obs. 220 220 220

R2 0.135 0.146 0.189 R2 0.224 0.371 0.394

AIC 6472 6457 6402 AIC 1103 1057 1052

Panel B. Last 5 Periods

(1) (2) (3) (4) (5) (6)

CCfew 4.008∗∗∗ 3.166∗ CCfew 4.714∗∗∗ 1.205

(1.305) (1.624) (1.234) (1.122)

CCmany 5.889∗∗∗ 4.537∗∗∗ CCmany 6.006∗∗∗ 1.769∗∗

(1.265) (1.590) (0.791) (0.734)

Punfew 2.605∗∗ 2.137 Punfew 4.423∗∗∗ 3.979∗∗∗

(1.237) (1.338) (1.363) (1.381)

Punmany 5.612∗∗∗ 4.920∗∗∗ Punmany 5.906∗∗∗ 5.137∗∗∗

(1.184) (1.298) (0.794) (0.904)

Obs. 565 565 565 Obs. 110 110 110

R2 0.0795 0.149 0.190 R2 0.268 0.499 0.515

AIC 3339 3294 3270 AIC 556 514 514

Notes: Estimates from linear random-effects models. Dependent variable: average (matching-)group
payoff per period. Columns (1)–(3) for the Rp-game, columns (4)–(6) for the Rs-game. Panel A considers
all 10 periods, the lower Panel B only the last 5 periods of the game. Dummies with superscript ‘few ’
indicate that one or two [three or four], and dummies with ‘many ’ indicate that three or four [five, six,
or seven] subjects in the respective [matching]-group in models 1 to 3 [4 to 6] are CC - or Pun-type. In
columns (1)–(3) the number of observations is N = 1, 130 (Panel A) and N = 565 (Panel B; 113 groups
of the partner design × 10 and 5 periods, respectively). In columns (4)-(6) it is N = 220 and N = 110
(22 matching-groups of the stranger design × 10 or 5 periods, respectively). All specifications include
a constant and a full set of period-fixed effects (coefficients not reported). Standard errors, clustered at
the (matching-)group level, are in parentheses; ∗∗∗ / ∗∗ / ∗ indicate significance at the 1%-, 5%-, and
10%-level, respectively.
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Figure S.2: Average (Matching)-Group Payoffs by Type Prevalence

Partner (Rp-game) Stranger (Rs-game)
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Notes: Panels A and B [C and D] show the average payoff per period among the [matching]-groups for varying
frequencies of CC - (panel A and C) and Pun-types (B and D). Panels A and B consider the groups of four subjects
from the partner design (Rp), panel C and D are based on the eight-player matching groups from the stranger design
(Rs). The underlying variation of types across (matching-)groups is presented in Table A1.
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Figure S.3: Mean Observed Punishment per Period for Pun- & NPun- Types
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Notes: Mean observed punishment by Pun and NPun over the 10 periods of the R-game.
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Figure S.4: Average (Matching)-Group Contributions by Type Prevalence

Partner (Rp-game) Stranger (Rs-game)
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Notes: Graphs depict the average individual contribution per period averaged over all (matching)-groups contain-
ing the corresponding number of subjects of a respective type (CC; Pun). Given the distribution of (matching)
group compositions (See table A1.) the graph contains average contribution levels of single groups.
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IV Complementary Tables

Table S.7: Group Composition and Group Contributions: Tobit Estimates (Partner Design)

(1) (2) (3) (4)

CCfew 4.395 3.353 3.384

(2.829) (2.620) (2.749)

CCmany 7.645∗∗∗ 5.853∗∗ 6.044∗∗
(2.806) (2.614) (2.915)

Punfew 4.356∗∗∗ 3.551∗∗ 3.646∗

(1.498) (1.466) (1.876)

Punmany 7.937∗∗∗ 6.838∗∗∗ 7.184∗∗∗

(1.618) (1.594) (2.339)

Pun×CCfew −0.183

(1.690)

Pun×CCmany −0.662

(2.711)

AIC 5361 5352 5347 5350

Notes: Estimates from random-effects Tobit models (with a lower bound at zero (23 obs.) and an upper bound
at 20 (186 obs.)). Dependent variable: average group contribution per period. The observational unit is a group
(of 4 subjects) per period. Dummies with superscripts ‘few ’ indicate one or two, with superscripts ‘many ’ three
or four CC, Pun, and Pun×CC type subjects per respective group. Number of observations: N = 1, 130 (113
groups of the partner design × 10 periods). All specifications include a constant and a full set of period-fixed
effects (coefficients not reported). Standard errors in parentheses; ∗∗∗ / ∗∗ / ∗ indicate significance at the 1%-,
5%-, and 10%-level, respectively.
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Table S.8: Group Composition and Group Contributions: Tobit Estimates (Stranger Design)

(1) (2) (3) (4)

CCfew 6.602∗∗ 1.053 0.134

(3.318) (3.270) (3.364)

CCmany 8.221∗∗∗ 2.130 −0.101

(3.072) (3.074) (3.719)

Punfew 6.867∗∗∗ 6.517∗∗∗ 5.631∗∗

(2.024) (2.416) (2.447)

Punmany 8.193∗∗∗ 7.224∗∗∗ 5.520∗∗

(1.803) (2.196) (2.377)

Pun×CCfew 2.690

(2.926)

Pun×CCmany 5.166

(3.646)

AIC 972 963 967 968

Notes: Estimates from random-effects Tobit models (with a lower bound at zero (0 obs.) and an upper bound
at 20 (5 obs.)). Dependent variable: average matching-group contribution per period. Dummies with superscript
‘few ’ indicate that three or four, and dummies with ‘many ’ indicate that five, six, or seven subjects in the
respective matching-group are CC - or Pun-type. For two-dimensional types superscripts ‘few ’ indicate two or
four and ‘many ’ five or six Pun×CC per respective matching-group. The observational unit is a matching group
(8 subjects) per period. Number of observations: N = 220 (22 matching-groups of the stranger design × 10
periods). All specifications include a constant and a full set of period-fixed effects (coefficients not reported).
Standard errors in parentheses; ∗∗∗ / ∗∗ / ∗ indicate significance at the 1%-, 5%-, and 10%-level, respectively.
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