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Abstract – This paper estimates the welfare-optimal market share of wind and solar power, explicitly taking into account their output 

variability. We present a theoretical valuation framework that consistently accounts for the impact of fluctuations over time, forecast errors, 
and the location of generators in the power grid on the marginal value of electricity from renewables. Then the optimal share of wind and 

solar power in Northwestern Europe’s generation mix is estimated from a calibrated numerical model. We find the optimal long-term wind 

share to be 20%, three times more than today; however, we also find significant parameter uncertainty. Variability significantly impacts 

results: if winds were constant, the optimal share would be 60%. In addition, the effect of technological change, price shocks, and policies 

on the optimal share is assessed. We present and explain several surprising findings, including a negative impact of CO2 prices on optimal 

wind deployment. 
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1. Introduction 

Many jurisdictions have formulated quantitative targets for energy policy, such as targets for greenhouse gas 

mitigation, energy efficiency, or deployment of renewable energy sources. For example, the European Union 

aims at reaching a renewables share in electricity consumption of 35% by 2020 and 60-80% in 2050;1 similar 

targets have been set in many regions, countries, states, and provinces around the globe. Implicitly or explicitly, 

such targets seem to be determined as the welfare-maximal or “optimal share” of renewables, however, it is 

often unclear how targets are derived. This paper discusses the socially optimal share of wind and solar power 

in electricity supply. It provides a theoretical analysis that is focused on the variability of these energy sources, 

a structured methodological literature review, and numerical estimates for Northwestern Europe. 

The optimal amount of wind and solar capacity is determined by the intersection of their marginal benefit and 

marginal cost curves. Both curves are not trivial to characterize, since they are affected by many drivers. Mar-

ginal costs are impacted by technological learning, raw material prices, and the supply curve of the primary 

energy resource. Marginal benefits are driven by the private and social costs of alternative electricity sources, 

such as investment costs, fuel prices and environmental and health externalities. They are also affected by the 

variability of wind and solar power. This paper discusses the impact of variability on solar and wind power’s 

marginal benefit curve and their welfare-optimal quantities. 

Wind and solar power have been labeled variable renewable energy (VRE) sources (also known as intermittent, 

fluctuating, or non-dispatchable), since their generation possibilities vary with the underlying primary energy 

source. Specifically, we refer to “variability” as three inherent properties of these technologies: variability over 

time, limited predictability, and the fact that they are bound to certain locations (cf. Milligan et al., 2011; Sims 

et al., 2011; Borenstein, 2012). These three aspects of variability have implication for welfare, cost-benefit, 

and competitiveness analyses. For example, the marginal value (or price) of electricity depends on the time it 

is produced, and hence the marginal benefit of solar generators might be increased by the fact that they produce 

electricity at times of high demand. For unbiased estimates of the optimal amount of wind and solar capacity, 

their variability has to be accounted for. This paper explains theoretically why variability matters, how it can 

be accounted for, and presents an empirical application. While this paper focusses on VRE, the theoretical 

arguments apply to all generation technologies. 

This study contributes to the literature in four ways. Firstly, we theoretically explain why variability has eco-

nomic consequences. We present a framework that allows accounting comprehensively and consistently for of 

all aspects of VRE variability, but is simple enough to allow for quantifications. Secondly, we provide an 

extensive review of the existing empirical model landscape to explain which kind of modeling approaches are 

able to capture which driver of marginal costs and benefits, and specifically, which models are able to represent 

variability. Thirdly, we present new numerical model results. Results are derived from the power market model 

EMMA that has been developed to capture variability appropriately. Variability is shown to have a large impact 

on the optimal share of VRE. Finally, we test the impact of price, policy, and technology shocks on the optimal 

share numerically. We find and explain a number of unexpected results, for example that higher CO2 or fuel 

prices can reduce the optimal VRE share under certain conditions. 

The paper is structured as follows. Section 2 discusses welfare analysis theoretically. Section 3 reviews the 

literature. Section 4 introduces the numerical electricity market model EMMA that is used in section 5 to 

estimate optimal penetration rates of wind and solar power for Northwestern Europe. Section 6 summarizes 

the numerical results and section 7 concludes. 

 

 

2. Theory: the economics of variability 

This section discusses the economics of variable renewables theoretically. It applies microeconomic theory to 

electricity markets to derive the welfare-optimal quantity of wind and solar capacity. This paper focuses on 

different aspects of variability. Other economic issues such as endogenous learning, externalities, or political 

economy issues of security of supply are important, but beyond the scope of this paper. The theoretical argu-

ments put forward in this section are not restricted to variable renewables, but apply to all generation technol-

ogies. 

                                                           
1 National targets for 2020 are formulated in the National Renewable Energy Action Plans. Beurskens et al. (2011), Eurelectric (2011a), 

PointCarbon (2011) and ENDS (2010) provide comprehensive summaries. EU targets for 2050 have been formulated in European 

Comission (2011). 
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As common practice in economics, we determine the “optimal amount” of wind and solar power as the welfare-

maximizing amount. Elsewhere, the optimal VRE capacity has been determined by minimizing curtailment 

(Bode 2013), minimizing storage needs (Heide et al. 2010), or optimizing other technical characteristics of the 

power system. Danny & O’Malley determine the “critical amount” of wind power, where net benefits become 

zero. 

As for all other goods, the welfare-optimal quantity of wind or solar capacity is characterized by the intersection 

of its long-term marginal costs and marginal value (benefit). However, deriving wind power’s marginal cost 

and marginal benefit is not trivial. Economic cost-benefit analyses of electricity generation technologies require 

careful assessment and appropriate tools, because electricity as an economic good features some peculiar char-

acteristics that make it distinct from other goods. In this section, we identify those peculiarities (2.1), derive 

the marginal cost (2.2) and marginal value (2.3) of VRE, and determine its optimal quantity (2.4). Throughout 

the paper, we expressed VRE quantities as share of total electricity consumption. 

 

2.1. Electricity is a peculiar commodity 

Electricity, being a perfectly homogeneous good, is the archetype of a commodity. Like other commodities, 

trade of electricity often takes place via standardized contracts on exchanges. In that sense, it seems straight-

forward to apply simple textbook microeconomics to wholesale power markets. However, the physical laws of 

electromagnetism impose crucial constraints, with important economic implications: i) storing electricity is 

costly and subject to losses; ii) transmitting electricity is costly and subject to losses; iii) supply and demand 

of electricity need to be balanced at every moment in time to guarantee frequency stability. These three aspects 

require an appropriate treatment of the good “electricity” in economic analysis. 

As an immediate consequence of these constraints, the equilibrium wholesale spot electricity price varies over 

time, across space, and over lead-time between contract and delivery: 

i) Since inventories cannot be used to smooth supply and demand shocks, the equilibrium electricity 

price varies dramatically over time. Wholesale prices can vary by two orders of magnitudes within 

one day, a degree of price variation that is hardly observed for other goods. 

ii) Similarly, transmission constraints limit the amount of electricity that can be transported geograph-

ically, leading to sometimes significant price spreads between quite close locations. 

iii) Because demand and supply has to be balanced at every instant, but fast adjustment of power plant 

output is costly, the price of electricity supplied at short notice can be very different from the price 

contracted with more lead-time. Hence, there is a cost to uncertainty. 

Across all three dimensions, price spreads occur both randomly and with predictable patterns. While the eco-

nomic literature has emphasized temporal heterogeneity (Bessiere 1970, Stoughton et al. 1980, Bessembinder 

& Lemmon 2002, Lamont 2008, Joskow 2011), the other two dimensions have not received similar attention. 

In other words, electricity indeed is a perfectly homogenous good and the law of one price applies, but this is 

true only for a given point in time at a given location for a given lead-time. Along these three dimensions, 

electricity is a heterogeneous good and electricity prices vary. Figure 1 visualizes the three dimensions of 

heterogeneity by displaying the array of wholesale spot prices in one power system in one year. 

 

 

 

 Figure 1: The array of wholesale spot electricity prices. The electricity price 

varies along three dimensions: time, space, and lead-time (uncertainty). At a 
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single point in the three-dimensional space of prices, electricity is perfectly ho-
mogeneous. 

 

This fundamental economic property of electricity is approximated in real-world power market design: at Eu-

ropean power exchanges, a different clearing price is determined for each hour and for each geographic bidding 

area. U.S. markets typically feature an even finer resolution, clearing the market every five minutes for each 

of several thousand transmission nodes. In addition, there is a set of power markets with different lead-times: 

in most European markets, there is a day-ahead market (12-36 hours before delivery), an intra-day market (few 

hours before delivery), and a balancing power market (close to real-time). As a consequence, there is not one 

electricity price per market and year, but 26,000 prices (in Germany) or three billion prices (in Texas).2 Hence, 

it is not possible to say what “the” electricity price in Germany or Texas was in 2012. 

The heterogeneity of electricity is not only reflected in market design, but also in technology. For homogenous 

goods, one production technology is efficient. In electricity generation, this is not the case: there exists a set of 

generation technologies that are efficiently used simultaneously in the same geographic market. There are nu-

clear and coal-fired so-called “base load”, natural gas-fired “mid load” combined cycle gas turbines, and gas- 

and oil-fired “peak load” open cycle gas turbines. These technologies can be distinguished by their fixed-to-

variable costs ratio: Base load have high capital costs but low variable costs. They are the most economical 

supply option for the share of electricity demand that is constant. Peak load plants have low fixed costs but 

high variable costs. They are the cheapest supply option for the few hours during a year with highest demand. 

Classical power market economics translates this differentiation into graphical approaches to determine the 

optimal fuel mix (section 3.2). 

Any welfare, cost-benefit, or competitiveness analysis of electricity generation technologies need to take het-

erogeneity into account. It is in general not correct to assume that i) the average price of electricity from VRE 

(its marginal value) is identical the average power price, or that ii) the price that different generation technol-

ogies receive is the same. Comparing generation costs of different technologies or comparing generation costs 

of a technology to an average electricity price has little welfare-economic meaning. Specifically, marginal cost 

of a VRE technology below the average electricity price or below the marginal costs of any other generation 

technology does not indicate that this technology is competitive; still this is repeatedly suggested by lobby 

groups, policy makers, and academics (BSW 2011, EPIA 2011, Kost et al. 2012, Clover 2013, Koch 2013). 

Instead, the marginal cost of VRE has to be compared to its marginal value. To derive that marginal value, one 

needs to take into account when and where it was generated and that forecast errors force VRE generators to 

sell their output relatively short before real time. After discussing the marginal cost of VRE in the following 

subsection, we will derive its marginal value taking these aspects into account. 

 

2.2. Marginal costs: levelized electricity costs 

It is common and convenient to report long-term marginal value and marginal cost in energy terms (€/MWh). 

We will follow this convention here. Long-term marginal costs are the discounted average private life-cycle 

costs (fixed and variable, including the cost of capital) of the last VRE generator built. We will assume there 

are no externalities in wind turbine manufacturing or construction (supported by Hoen et al. 2013), hence 

private costs equal social costs. In the field of energy economics, average life-cycle costs are commonly called 

levelized costs of electricity or levelized electricity costs (LEC). We define the LEC of a generator as 

 

𝐿𝐸𝐶 = ∑
1

(1 + 𝑖)𝑦
𝑐𝑦

𝑔𝑦

𝑌

𝑦=1

 (1)  

where 𝑐𝑦 are the costs that occur in year 𝑦, 𝑔𝑦 is the amount of electricity generated in that year, 𝑖 is the real 

discount rate, and 𝑌 is the life-time of the asset in years.  

Onshore wind LEC are globally currently in the range of 45-100 €/MWh, depending on wind resource quality, 

turbine market conditions, and discount rate. Offshore wind costs might be at 100-150 €/MWh and solar pho-

tovoltaic costs have reached similar levels after dramatic cost reductions during the past years. For an overview 

of LEC estimates for various generation technologies, see IPCC (2011, Figure 5), Borenstein (2012), and 

                                                           
2 The German spot market EPEX clears for each hour of the year as a uniform price; the ERCOT real-time market of Texas clears every 

five minutes for all 10,000 bus bars of the system  
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Schröder et al. (2013). IEA (2013) provides recent global investment cost estimates for wind and solar power. 

Seel et al. (2013) point out the considerable differences between solar costs in Germany and the US. 

In economic analyses, marginal costs are often a function of quantity. In the case of VRE, levelized costs might 

increase with penetration because land becomes scarce, or might decrease because of learning-by-doing and 

economies of scale. Nemet (2006), Hernández-Moro & Martínez-Duart (2013) and Brazilian et al. (2013) dis-

cuss and quantify the drivers for solar cost reductions and Schindler & Warmuth (2013) report recent market 

data. Lindman & Söderholm (2012) and van der Zwaan et al. (2012) estimate wind learning curves. Nordhaus 

(2009) provides a critique of the specification of econometric models to estimate learning curves. NREL (2009) 

and 3Tier (2010) provide estimates of resource-constrained supply curves for wind power in the US. Baker et 

al. (2013) provide an extensive literature survey on both topics. 

Both learning and resource constraints happen outside the electricity market and a detailed analysis is beyond 

the scope of this paper. The electricity market determines the marginal value, which we will discuss in turn. 

 

2.3. Marginal value: market value 

We define the “market value” of a generation technology as the average discounted private life-time income 

from electricity sales, excluding any direct subsidies such as feed-in-tariffs, green certificates, or investments 

subsidies (Joskow 2011, Hirth 2013). We will assume perfect and complete power markets in long-term equi-

librium, hence the (private) market value coincides with the (social) marginal value, and we will use both terms 

interchangeably. The market value of wind power can then be written as 

 

𝑀𝑉𝑤 = ∑
𝑝
𝑦

𝑤

(1 + 𝑖)𝑦

𝑌

𝑦=1

 (2)  

where 𝑝
𝑦

𝑤
 is the average specific price (€/MWh) that wind generators received in year 𝑦. We will use “wind” 

for simplicity in the rest of this section. All analytics apply to solar power and any other generation technology 

as well.  

 

a) An exact definition of market value 

Assuming there exists one representative year, the wind market value equals the discounted average specific 

price of wind power in that representative year  𝑝
𝑤

. This value can be written as the wind-weighted electricity 

price of all 𝑇 time steps in all 𝑁 price areas at all 𝛵 lead-times: 

 
𝑝
𝑤
=∑ ∑ ∑ 𝑤𝑡,𝑛,𝜏 ∙ 𝑝𝑡,𝑛,𝜏

Τ

𝜏=1

𝑁

𝑛=1

𝑇

𝑡=1
 (3)  

where 𝑤𝑡,𝑛,𝜏 is the share of wind generation in time 𝑡 at node 𝑛 that was sold at lead-time 𝜏 and 𝑝𝑡,𝑛,𝜏 is the 

respective price, one of the elements of the price array displayed in Figure 1. 

In some cases the relative price of electricity from wind power is of interest. We define the “value factor” 

(Stephenson 1973, Hirth 2013) of wind power 𝑉𝐹𝑤 here as the market value over the load-weighted electricity 

price: 

 𝑉𝐹𝑤 = 𝑝
𝑤

𝑝
𝑑

⁄  (4)  

 
𝑝
𝑑
=∑ ∑ ∑ 𝑑𝑡,𝑛,𝜏 ∙ 𝑝𝑡,𝑛,𝜏

Τ

𝜏=1

𝑁

𝑛=1

𝑇

𝑡=1
 (5)  

where 𝑑𝑡,𝑛,𝜏 is the share of load in time 𝑡 at node 𝑛 at lead-time 𝜏. Hence the market value can be written as 

the average price times the value factor 

 𝑝
𝑤
= 𝑝

𝑑
∙ 𝑉𝐹𝑤 (6)  
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In principle the market value 𝑝
𝑤

 can be estimated directly either from observed market prices or modeled 

shadow prices 𝑝𝑡,𝑛,𝜏 - to the extent that models can be regarded as realistic and markets can be treated as being 

complete, free of market failures, and in equilibrium.  

However, estimating the full array of shadow prices 𝑝𝑡,𝑛,𝜏  (Figure 1) would require a stochastic model with 

sufficient high temporal and spatial resolution. Such a “supermodel” might not be always available or actually 

impossible to construct. In the following, we propose a feasible approximation to determine  𝑝
𝑤

 from several 

specialized models or data sources. 

 

b) An approximation of market value 

Hirth et al. (2013) have proposed an approximate derivation of market value. The idea of the approach is to 

estimate the impact of temporal variability, spatial variability, and forecast errors separately using specialized 

models or empirical datasets where a direct derivation is impossible. Along each dimension of heterogeneity 

there exist established modeling traditions that can be used for quantifications. We call the impact of timing 

on the market value of wind power “profile cost”, the impact of forecast errors “balancing cost” and the impact 

of location “grid-related cost”. Depending on the market design, these “costs” appear as reduced revenue or 

actual costs.  

 𝑝
𝑤
≈ 𝑝

𝑑
− 𝑐𝑝𝑟𝑜𝑓𝑖𝑙

𝑤 − 𝑐𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔
𝑤 − 𝑐𝑔𝑟𝑖𝑑−𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝑤  (7)  

 

Figure 2 illustrates how profile costs, balancing costs, and grid-related costs reduce the wind market value vis-

á-vis the average load-weighted electricity price. This is typically the case at high penetrations. At low pene-

trations, the costs components might become negative, increasing the market value above the average electric-

ity price, for example if solar power is positively correlated with demand. 

 

 

 

 

 Figure 2: From the average electricity price to wind’s market value (illustra-

tive). At high penetration, timing and location as well as forecast errors typi-

cally reduce the market value. 

 

 

We define profile costs as the price spread between the load-weighted and wind-weighted day-ahead electricity 

price for all hours during one year. Profile costs arise because of two reasons. On the one hand, demand and 

VRE generation are often (positively or negatively) correlated. A positive correlation, for example the seasonal 

correlation of winds with demand in Western Europe, increases the value of wind power, leading to negative 

profile costs. On the other hand, at significant installed capacity, wind “cannibalizes” itself because the extra 

electricity supply depresses the market price whenever wind is blowing. In other words, the price for electricity 

is low during windy hours when most wind power is generated. Fundamentally, profile costs exist because 

electricity storage is costly, recall physical constraint i). A discussion of profile costs and quantitative estimates 

are provided by Lamont (2008), Borenstein (2008), Joskow (2011), Mills & Wiser (2012), Nicolosi (2012), 

Hirth (2013), and Schmalensee (2013). 
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We define balancing costs as the difference in net income between the hypothetical situation when all realized 

generation is sold on day-ahead markets and the actual situation where forecast errors are balanced on intra-

day and real-time or balancing markets. Fundamentally, balancing costs exist because frequency stability re-

quires a balance of supply and demand and short-term plant output adjustments are costly, recall iii). Balancing 

costs are reviewed by Smith et al. (2007), Obersteiner et al. (2010), Holttinen (2011), and Hirth et al. (2013). 

Hirth & Ziegenhagen (2013) discuss to what extend balancing markets reflect marginal costs. 

We define grid-related costs as the spread between the load-weighted and wind-weighted price across all price 

areas of a market. Grid-related costs exist because transmission is costly and wind speeds as well as land 

availability constrain wind power to certain sites, recall ii). Grid-related costs are estimated by Brown & Row-

lands (2009), Lewis (2010), Hamidi et al. (2011), and Baker et al. (2013). 

 

c) Market value as a function of penetration 

The three cost components are not fixed parameters, but typically increase with penetration (Figure 3). This is 

no coincidence, but a consequence of the market-clearing role of prices: During windy times the additional 

electricity supply depresses the price; at windy locations, the additional supply depresses the price; and corre-

lated wind forecast errors systematically lead to balancing costs. All three effects are stronger with larger in-

stalled capacities. In other words, both 𝑉𝐹 and 𝑝
𝑑

 are in general a function of the wind share  𝑞. 

 

 

 

 Figure 3: Average electricity price and market value as a function of the quantity of wind power in 

the system. At low penetration, the wind market value can be higher than the average power price, 

because of positive correlation between generation and load. 

 

 

 

d) Market value and “integration costs” 

A number studies discuss the costs that variability induces at the level of the power system under the term 

“integration costs” (Milligan et al. 2011, Holttinen et al. 2011). Ueckerdt et al. (2013a) discuss the “integration 

cost” literature in relation to the “market value” literature and Ueckerdt et al. (2013b) and Hirth et al. (2013) 

propose to define integration costs as the difference between market value and demand-weighted average elec-

tricity price. 

 

 

2.4. The optimal share of wind power 

 

a) Static (For a Given Power System) 

The optimal wind capacity 𝑞∗ in a price-quantity-diagram is given by the point where marginal costs and mar-

ginal benefits intersect (Figure 4). The marginal benefit is not the average power price, but the market value of 

wind power. The market value can be either estimated directly (from a “supermodel”) or via the approximation 

proposed in section 2.3. 
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𝐿𝐸𝐶(𝑞∗) = 𝑝

𝑑
(𝑞∗) ∙ 𝑉𝐹(𝑞∗) (8)  

An immediate consequence is that, even if marginal costs were flat and the average electricity price constant, 

competitiveness is not a “flip-flop” behavior. In the policy debate it is often suggested that, one cost of wind 

turbines have reached a certain level, “wind is competitive”. This is misleading: at a certain cost level, a certain 

amount of wind power is competitive. 

 

 

 

 Figure 4: Static partial equilibrium of the electricity market. The optimal share of wind 
power is given by the intersection of the market value of wind power (marginal benefits) and 

its levelized electricity costs (long-term marginal costs). The LEC curve can be upward-slop-
ing because of limited land or downward-sloping because of endogenous learning. The mar-

ket value curve is always downward-sloping. Installing more wind power than optimal, for 

example 𝑞0 , leads to dead weight losses (DWL). Dynamic effects (grey) such as technologi-
cal learning and price shocks can reduce marginal costs and benefits, shifting the optimal 

wind share 𝑞∗ . 

 

 

 

b) Dynamic (For a Changing Power System) 

Dynamic effects change the optimal wind share. Such effects can affect either shift the marginal cost curve or 

the marginal benefit curve. Technological learning of wind turbine technology shifts the LEC curve down-

wards. Increasing fuel or CO2 prices increase the electricity price level and shift the market value curve up-

wards. Introducing “system integration” measures such as more flexible thermal plant fleet, electricity storage, 

more price-elastic demand, and more interconnector capacity typically pivot the marginal value curve clock-

wise without affecting the electricity price level much (Hirth & Ueckerdt 2013a). 

For a given set of conditions, there exists always a certain optimal amount of wind power. Figure 5 displays 

such a set of market equilibria, the “optimality frontier”. If the wind share is below its equilibrium point, it 

increases until it reaches the frontier. If higher shares shall be reached under the same conditions, wind power 

requires subsidies. In the numerical analysis (section 5) we estimate optimality frontiers: we estimate the opti-

mal share as a function of cost reductions, and take additional dynamic effects into account via sensitivities. 

 

 

 

 

 Figure 5: Dynamics of the market equilibrium. Under better conditions, such as reduced 

costs or increased costs of substitutes, a higher share of wind power is competitive (and 
welfare-optimal).Competitiveness is not a “flip-flop” behavior, but an equilibrium con-

dition. Higher shares require subsidies and cause dead weight losses. 
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The following section reviews the model-based literature that estimates the optimal share of wind and solar 

power. Model approaches are assessed regarding their ability to estimate the three factors of equation (8): 

marginal costs, average electricity price, and value factor of VRE. 

 

 

3. Review of the quantitative literature 

The welfare-optimal electricity generation mix is one of the most researched topics in numerical model-based 

energy economics. This study identifies three strands of this literature: Models with low temporal and spatial 

resolution (integrated assessment and energy system models), models with high resolution that optimize the 

conventional mix for a given amount of VRE (power market or investment planning models), and high-reso-

lution models with endogenous VRE capacity (like the one employed for this study), see Table 1. Electricity 

network models and pure dispatch or unit commitment models are not covered by this survey. These are some-

times used to test if a certain amount of VRE can be “accommodated” in a power system, but do not optimizes 

VRE capacity. The borderline between model classes is gradual, such that classification is to some degree 

subjective.  

Table 1: Overview of vRES model approaches. 

 Exogenous VRE capacity Endogenous VRE capacity 

Low resolution 

(years / continents) 
- 

Integrated Assessment Models 

Energy System Models 

High resolution 

(hours / countries) 

Power Market Models /  

Investment Planning Models 
This study 

 

Different classes of models have different merits and caveats when estimating the optimal VRE share. In the 

following, we structure the discussion along equation 8, which expresses the optimal share of, say, wind power 

as an equilibrium between marginal costs (𝐿𝐸𝐶(𝑞∗)) and the average electricity price or electricity price level 

(𝑝
𝑑
(𝑞∗)) times the value factor or relative price of wind power (𝑉𝐹(𝑞∗)). Some models are well suited to 

estimate marginal costs, others are well suited to estimate the average electricity price, and some are good in 

estimating the value factor. 

Table 2 lists drivers behind these three factors, and names necessary model features to be able to model the 

respective driver endogenously. For example, the LEC is determined by technological learning. Modeling 

learning endogenously as an experience curve requires a global coverage, because VRE technology is traded 

globally and significant learning takes place at the level of equipment manufacturing. To model the prices of 

production factors such as steel, copper, fuel and carbon endogenously, these sectors have to be part of the 

model. To model electricity demand endogenously, consumption sectors such as industry, heating, and 

transport have to be represented in the model. To model the drivers of the value factor endogenously, models 

need to feature high temporal and spatial resolution, a consecutive representation of time, and engineering 

details of the power system such as operational constraints of thermal power plants. 

In general, low-resolution models with broad scope tend to be better suited to estimate the marginal cost and 

the average electricity price, while high-resolution models with narrow scope are better equipped to estimate 

the value factor. 

 

Table 2: Drivers and model requirements. 

 Driver Model requirement 

Levelized electricity cost 

𝐿𝐸𝐶 

technological learning of VRE global geographic scope 

VRE resource supply curve - (data issue) 

raw material prices global scope, multi-sector 
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Average electricity price 

(Electricity price level) 

𝑝
𝑑

 

fuel prices global scope, multi-sector 

carbon price regional scope, multi-sector 

electricity demand multi-sector 

Value factor  

(Electricity price structure) 

𝑉𝐹 

share of VRE - 

flexibility of thermal plants high temporal resolution, power system 

details 

hydro reservoir power consecutive time 

transmission grid constraints regional scope, high spatial resolution 

electricity storage high temporal resolution, consecutive 

time 

VRE forecast quality power system details 

VRE generation profile high temporal resolution 

 

 

3.1. Low-resolution models 

For numerical and complexity reasons, there is a trade-off between model scope and resolution. Broad multi-

sector models with a large geographic coverage have to limit temporal and spatial resolution.  

 

a) Integrated assessment models 

“Integrated Assessment Models” (IAMs) are numerical macroeconomic models that typically cover the entire 

world and all sectors of the economy. They are used to determine the optimal share of wind and solar in the 

electricity generation mix for example as part of greenhouse gas mitigation studies. Well-known IAMs include 

GCAM (Calvin et al. 2009), IMAGE (van Vliet et al. 2009), MESSAGE (Krey and Riahi 2009), TIAM (Loulou 

et al. 2009), MERGE (Blanford et al. 2009), EPPA (Morris 2008), and ReMIND (Leimbach et al. 2010). While 

these models differ considerable in terms of methodology, they usually have a temporal resolution of one or 

several years and a geographic resolution of world regions, such as Europe. They usually have a temporal scope 

until 2050 or 2100. 

IAMs are capable to capture important drivers of marginal costs and the average electricity price. Cost drivers 

include global endogenous technological learning and, in the case of biomass, land use by other sectors. The 

average electricity price is impacted by macroeconomic growth, the carbon price, fuel prices, and the electricity 

demand for example driven by the electrification of the heat and transport sector, all of which are usually 

endogenous to these models. 

However, they are not able to explicitly represent the heterogeneity of the good “electricity” in any of its three 

dimensions. They typically treat electricity as one sector with one price. Variability needs to be approximated 

using parameterizations. Luderer et al. (2013) and Baker et al. (2013) present overviews of how VRE are 

modeled and Ueckerdt et al. (2010a, 2010b) and Sullivan et al. (2013) propose new approaches for variability 

representation. 

In a comprehensive survey of model inter-comparison studies, Fischedick et al. (2011, figure 10.9) report a 

median global VRE share of total electricity consumption of 10% by 2050 without climate policy and between 

15-20% under climate policy. 

 

b) Energy system models 

“Energy system models” have a more narrow scope and a somewhat finer resolution. They are partial equilib-

rium models of the energy sector of one world region. Some models, such as PRIMES (European Commission 

2011, Eurelectric 2013), MARKAL/TIMES (Loulou et al. 2004, 2005, Blesl et al. 2012), or the World Energy 

Model (IEA 2013) cover all three energy subsectors heat, electricity, and transportation. Others focus on the 

electricity sector, such as ReEDs (Short et al. 2003, 2011), US-Regen (Blanford et al. 2012), SWITCH (Nelson 

et al. 2012) and CAPEW (Brun 2011) for North America, and LIMES (Haller et al. 2012), PERSEUS (Rosen 

et al. 2007), and DEMELIE (Lise & Kruseman 2008) for Europe. Finally, some models cover the power and 

natural gas sectors and include a gas supply curve and gas infrastructure constraints, such as LIBEMOD (Aune 
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et al. 2001). These models typically have a geographical resolution of countries or states and represent temporal 

variability by modeling typical days or weeks or modeling ten to 50 non-consecutive time slices. They are 

often applied to time horizons between 2030 and 2050. 

The capabilities and shortcomings of IAMs discussed above in general apply to energy system models, but to 

a lesser extent. Global phenomena like technological learning or fuel markets, including carbon and biomass, 

cannot be modeled. However, regional carbon prices and electricity demand from the heat and power sector 

are often endogenous. Often these models have more detailed supply curves for wind and solar power than 

IAMs, allowing estimating their LEC quite accurately at a finer geographic resolution. Variability in the power 

sector can be modeled, but is subject to the models’ limited resolution. If variability is not parameterized some-

how, the low resolution introduces a bias towards too high VRE shares. Nicolosi (2011, 2012) reports estimates 

of the bias introduced by low resolution: the capacity mix is biased towards base load technologies, the capacity 

factor of VRE is overestimated, and the marginal value of VRE is overestimated. Some models use non-con-

secutive “time slices” to represent variability. However, time slices impedes to model electricity storage and 

hydro reservoirs, and selecting appropriate time slices is far from trivial given the multiple time series (wind, 

solar, load) in all model regions. Furthermore, these models often lack technical constraints of power systems, 

such as combined heat and power (CHP) generation, ancillary services, and ramping constraints of thermal 

generators. Typically, they are not back-tested to replicate historical power plant dispatch, electricity price, or 

interconnector flow patterns. 

Knopf et al. (2013) report on a European model intercomparison project that covers both IAMs and energy 

system models. They report median VRE shares of total electricity consumption in the European Union of 11% 

without and 25% with climate policy by 2050 in the reference scenarios, but shares of 50-60% if nuclear power 

is restricted or assumption on VRE are more optimistic. Nelson et al. (2012) report somewhat lower numbers 

for the Western Interconnection of the United States. 

Both IAMs and energy system models are tools that focus on estimating marginal costs and the average power 

price, but are not appropriate to estimate the value factor. Instead, parameterizations of 𝑉𝐹 have to be taken 

from high-resolution models. Moreover, these low-resolution models cannot be used to assess the impact of 

sectoral policies and technological changes. For example, the impact of heat storages on the marginal value of 

wind power via CHP plant flexibility can only be assessed if CHP generation is modeled, which is usually only 

the case in high-resolution models. We will discuss high-resolution models in turn. 

 

3.2. High-resolution models with exogenous VRE 

Vertically integrated utilities have used “investment planning models” of “expansion planning models” for 

decades to optimize their capacity mix. These models explicitly account for variable demand by applying a 

high, for example hourly, resolution. This comes at the price of reduced scope: these models are partial equi-

librium models of a single or few countries. In liberalized markets this class of models is often called “power 

market models” and used for fundamental long-term price projections. We discuss these models here for two 

reasons, even though they do not model VRE capacity endogenously: on the one hand, they are sometimes 

used to calibrate parameterizations of low-resolution models, on the other hand they are the precursors of the 

models discussed in section 3.3. 

The classical version of these models is based on screening curves and load duration curves and can be solved 

graphically to derive the cost-minimal capacity mix (Stoughton et al. 1980, Grubb 1991, Stoft 2002, Green 

2005). Because several constraints of power systems cannot be represented in load duration curves, numerical 

models were developed starting in the 1960s (Bessiere 1970), for instance WASP (Jenkins & Joy 1974, Co-

varrubias 1979).  

Current power market models account for more details and constraints of power systems, such as CHP gener-

ation, ancillary services, pumped hydro storage, price-elastic demand, imports and exports, start-up and ramp-

ing costs of thermal plants, and hydro reservoirs. These models have typically a temporal resolution of 15 to 

120 minutes and a spatial resolution of countries or bidding areas. They are usually able to reproduce hourly 

historical price, dispatch, and export patterns. Power market models are typically used in utility companies and 

consulting firms to forecast prices and guide investment decisions.  

While such commercial models are not published, we summarize VRE-related academic studies based on such 

models in the following. Krämer (2002), Bushnell (2010), Green & Vasilakos (2011), and Nagl et al. (2012) 

compare the optimal long-term thermal capacity mix with and without VRE. They find that overall thermal 
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capacity is only slightly reduced, but that there is a noticeable shift from baseload to mid- and peakload tech-

nologies with the introduction of VRE. Nagl et al. (2011), Tuohy & O’Malley (2011), and Lamont (2012) 

model the impact of VRE on storage. These models are also used estimate wind and solar market value, often 

as a function of penetration. Recent estimates are provided by Swider & Weber (2006), Lamont (2008), Fripp 

and Wiser (2008), Mills & Wiser (2012, 2013), Nicolosi (2012), and Hirth (2013), who also surveys the re-

spective literature. Early studies include Martin & Diesendorf (1983), Grubb (1991), and Rahman & 

Bouzguenda (1994). 

All these studies take VRE capacity as given and only optimize the thermal plant fleet. This can be explained 

by the fact that VRE played a marginal role at the times when these models were developed. Furthermore, 

since VRE were often owned by independent power producers and not the integrated utilities that operated 

such models, they were not subject to the utility’s optimization. Today’s commercial power market models 

usually still regard VRE investments as exogenous, since those are driven by subsidies and subject to political 

decisions rather than subject to market prices. 

 

 

3.3. High-resolution models with endogenous VRE 

Surprisingly few studies optimize VRE capacities based on high-resolution models. Those that do so usually 

stem from the tradition of power market models and have endogenized VRE capacity. These models en-

dogenized the VRE value factor by providing high resolution and power system details. However, for reasons 

of scope, technological learning, power demand, and fuel and carbon prices are typically exogenous. 

 

a) Pure long-term models (green field) 

Pure long-term models derive optimal VRE capacities “from scratch”, without taking existing infrastructure 

such as power plants into account, but they usually assume today’s demand structure. 

DeCarolis & Keith (2006) derive the cost-minimal electricity mix for Chicago, but consider only one thermal 

technology. They find that wind power needs a CO2 price of at least 150 $/t to be competitive. Doherty et al. 

(2006) apply a simple linear investment-dispatch model to Ireland, finding the optimal amount of wind capacity 

strongly dependent on the price of CO2 and gas. Olsina et al. (2007) derive the optimal capacity mix for Spain. 

They find that at investment costs of 1200 €/kW virtually no wind power is installed, but if costs drop by 50%, 

about 20 GW should be installed. One drawback of this study is that the simulated wind profiles do not capture 

spatial correlations well. Also, the electricity system is modeled as a merit-order approach that omits must-run 

constraints, storage, or international trade. Lamont (2008) finds that no wind power should be deployed if 

annualized fixed costs amount to 120 $/kW. If costs drop to 85 $/kW, a third of total capacity should be wind 

power. 

 

b) Models with existing power plants 

A few studies do take existing infrastructure into account. Neuhoff et al. (2008) apply an elaborated investment-

dispatch model with 1040 time steps per year to optimize gas-fired plant and wind investments in the UK until 

2020, also accounting for grid constraints. They report an optimal wind share of 40% based on very optimistic 

wind cost assumptions. Möst & Fichtner (2010) couple an investment model with a 15 min-resolution dispatch 

model. They find that both wind and solar cannot be efficiently deployed in Germany under current conditions. 

Müsgens (2013) applies a two-hourly model of Europe. Under a strict emission cap, a limit on nuclear power, 

and endogenous technology learning, he finds optimal shares of 25% wind and 10% solar power by 2050. 

The model EMMA, which will be introduced in the following section, belongs to this last class of models. It 

is comparable to Neuhoff et al. (2008), but covers a larger geographic region, like Müsgens (2013). While 

Müsgens uses his model to project the optimal amount of VRE capacity under today’s political constraints, we 

use EMMA to understand the impact of a variety of policy, price, and technology shocks on the optimal share. 

While Müsgens (2013) is comparable to this study in terms of modeling methodology, the research questions 

are quite complementary. 
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4. Numerical modeling methodology 

This section introduces the European Electricity Market Model EMMA, which is used in the following section 

to estimate the optimal share of wind and solar power both in the medium and long term. EMMA is a stylized 

numerical dispatch and investment model of the interconnected Northwestern European power system that has 

been applied previously in Hirth (2013) and Hirth & Ueckerdt (2013a). In economic terms, it is a partial equi-

librium model of the wholesale electricity market. It determines optimal or equilibrium yearly generation, 

transmission and storage capacity, hourly generation and trade, and hourly market-clearing prices for each 

market area. Model formulations are parsimonious while representing VRE variability, power system inflexi-

bilities, and flexibility options with appropriate detail. This section discusses crucial features verbally. Equa-

tions, GAMS code and input data are available online3 and as supplementary material of Hirth (2013).4 

 

4.1. The power market model EMMA 

EMMA minimizes total costs with respect to investment, production and trade decisions under a large set of 

technical constraints. Markets are assumed to be perfect and complete, such that the social planner solution is 

identical to the market equilibrium and optimal shares of wind and solar power are identical to competitive 

shares. The model is linear, deterministic, and solved in hourly time steps for one year. 

For a given electricity demand, EMMA minimizes total system cost, the sum of capital costs, fuel and CO2 

costs, and other fixed and variable costs, of generation, transmission, and storage assets. Capacities and gener-

ation are optimized jointly. Decision variables comprise the hourly production of each generation technology 

including storage, hourly electricity trade between regions, and investment and disinvestment in each technol-

ogy, including wind and solar power. The important constraints relate to energy balance, capacity limitations, 

and the provision of district heat and ancillary services. 

Generation is modeled as eleven discrete technologies with continuous capacity: two VRE with zero marginal 

costs – wind and solar –, six thermal technologies with economic dispatch – nuclear, lignite, hard coal, com-

bined cycle gas turbines (CCGT), open cycle gas turbines (OCGT), and lignite carbon capture and storage 

(CCS) –, a generic “load shedding” technology, and pumped hydro storage. Hourly VRE generation is limited 

by generation profiles, but can be curtailed at zero cost. Dispatchable plants produce whenever the price is 

above their variable costs. Storage is optimized endogenously under turbine, pumping, and inventory con-

straints. Existing power plants are treated as sunk investment, but are decommissioned if they do not cover 

their quasi-fixed costs. New investments including VRE have to recover their annualized capital costs from 

short-term profits. 

The hourly zonal electricity price is the shadow price of demand, which can be interpreted as the prices on an 

energy-only market with scarcity pricing. This guarantees that in the long-term equilibrium the zero-profit 

condition holds. As numerical constraints prevent modeling more than one year, capital costs are included as 

annualized costs. 

Demand is exogenous and assumed to be perfectly price inelastic at all but very high prices, when load is shed. 

Price-inelasticity is a standard assumption in dispatch models due to their short time scales. While investment 

decisions take place over longer time scales, we justify this assumption with the fact that the average electricity 

price does not vary dramatically between model runs. 

Combined heat and power (CHP) generation is modeled as must-run generation. A certain share of the cogen-

erating technologies lignite, hard coal, CCGT and OCGT are forced to run even if prices are below their vari-

able costs. The remaining capacity of these technologies can be freely optimized. Investment and disinvestment 

in CHP generation is possible, but the total amount of CHP capacity is fixed. Ancillary service provision is 

modeled as a must-run constraint for dispatchable generators that is a function of peak load and VRE capacity. 

Cross-border trade is endogenous and limited by net transfer capacities (NTCs). Investments in interconnector 

capacity are endogenous to the model. As a direct consequence of our price modeling, interconnector invest-

ments are profitable if and only if they are socially beneficial. Within regions transmission capacity is assumed 

to be non-binding. 

                                                           
3 www.pik-potsdam.de/members/hirth/emma 
4 For this paper, VRE cost figures and the model were updated: the ancillary service constraint is now also a function of VRE capacity; it 

used to be a function of peak load only. 
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The model is linear and does not feature integer constraints. Thus, it is not a unit commitment model and cannot 

explicitly model start-up cost or minimum load. However, start-up costs are parameterized to achieve a realistic 

dispatch behavior: assigned base load plants bid an electricity price below their variable costs in order to avoid 

ramping and start-ups. 

The model is fully deterministic. Long-term uncertainty about fuel prices, investment costs, and demand de-

velopment are not modeled. Short-term uncertainty about VRE generation (day-ahead forecast errors) is ap-

proximated by imposing a reserve requirement via the ancillary service constraint, and by charging VRE gen-

erators balancing costs. 

Being a stylized power market model, EMMA has significant limitations. An important limitation is the ab-

sence of hydro reservoir modeling. Hydro power offers intertemporal flexibility and can readily attenuate VRE 

fluctuations. Hence, results are only valid for predominantly thermal power systems. Demand is assumed to be 

perfectly price inelastic up to high power prices. More elastic demand would help to integrate VRE generation. 

However, it is an empirical fact that demand is currently very price-inelastic in Europe and possible future 

demand elasticities are hard to estimate. Technological change is not modeled, such that generation technolo-

gies do not adapt to VRE variability. Not accounting for these possible sources of flexibility potentially leads 

to a downward-bias of optimal VRE shares. Hence, results can be interpreted as conservative estimates. 

EMMA is calibrated to Northwestern Europe and covers Germany, Belgium, Poland, The Netherlands, and 

France. In a back-testing exercise, model output was compared to historical market data from 2008-10. Crucial 

features of the power market can be replicated fairly well, like price level, price spreads, interconnector flows, 

peak / off-peak spreads, the capacity and generation mix. 

 

4.2. Input data 

Electricity demand, heat demand, and wind and solar profiles are specified for each hour and region. Historical 

data from the same year (2010) are used for these time series to preserve empirical temporal and spatial corre-

lation of and between parameter as well as other statistical properties. These properties and correlations cru-

cially determine the optimal VRE share. VRE profiles are based on historical weather data from the reanalysis 

model ERA-Interim and aggregate power curves are used to derive profiles. Load data were taken from EN-

TSO-E. Heat profiles are based on ambient temperature. Based on Hirth & Ziegenhagen (2013), we assume a 

balancing reserve requirement of 10% of peak load plus 5% of installed VRE capacity. Based on a literature 

survey by Hirth et al. (2013), balancing costs for wind and solar were assumed to be 4 €/MWh, independent of 

the penetration rate. 

Fixed and variable generation costs are based on IEA & NEA (2010), VGB Powertech (2011), Black & Veatch 

(2012), and Schröder et al. (2013). Fuel prices are average 2010 European market prices, 9 €/MWht for hard 

coal and 18 €/MWht for natural gas, and the CO2 price is 20 €/t. Summer 2010 NTC values from ENTSO-E 

were used to limit interconnection capacity. CHP capacity and generation is from Eurelectric (2011b). A dis-

count rate of 7% in real terms is used for all investments, including transmission, storage and VRE. 

For wind power we assume investment costs of 1300 €/kW and O&M costs of 25 €/kWa. At 2000 full load 

hours, as in Germany, this equals LEC of 68 €/MWh. The corresponding numbers for solar power are 1600 

€/kW, 15 €/kWa and 180 €/MWh. Learning and resource constraints are assumed to roughly offset each other 

such that wind and solar supply curves are flat. 

 

4.3. Representing different aspects of variability in EMMA 

EMMA models endogenously important aspects of the three dimensions of heterogeneity of electricity and 

correspondingly the costs of VRE variability. Most importantly, the model features an hourly resolution, uses 

high-quality hourly input data, and accounts for several restrictions that limit the flexibility of the rest of the 

power system. In other words, the model accounts quite well for profile costs. Other costs of variability are 

added as cost mark-ups, as proposed in section 2.3. 

However, other aspects are only modeled quite roughly. Geographically, EMMA features only moderate gran-

ular detail of countries. International trade is constrained, but internal grid restrictions are not modeled. Fur-

thermore, trade is restricted by NTCs and physical load flows are not modeled. Schumacher et al. (2013) esti-

mates grid-related costs to be small in Germany both for wind and solar, hence we set them to zero. 
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Forecast errors are not modeled explicitly. EMMA features a spinning reserve requirement that is a function 

of installed VRE capacity. In addition, VRE generators pay for reserve activation in form of a constant balanc-

ing cost charge of 4 €/MWh. 

 

 

4.4. Optimality at different time horizons 

The optimal share of VRE depends crucially on how flexibly the model is allowed to adjust (Ueckerdt et al. 

2013, Baker et al. 2013). A crucial point is the previously-existing capital stock, where the literature uses three 

different approaches. 

One option is to take the existing generation and transmission infrastructure as given and disregard any 

changes. The optimization reduces to a sole dispatch problem. We label this the short-term perspective. An-

other possibility is to disregard any existing infrastructure and optimize the electricity system “from scratch” 

as if all capacity was green-field investment. This is the long-term perspective. Finally, one can take the exist-

ing infrastructure as given, but allow for endogenous investments and disinvestments. We call this the medium 

term. Note that the expressions short term and long term are not used to distinguish the time scale on which 

dispatch and investment decisions take place, but refer to the way the capital stock is treated. While all three 

time horizons are analytical concepts that never describe reality entirely correctly, we believe the long term as 

defined here is a useful assumption to analyze European power systems in 2030 and beyond. In systems with 

a higher rate of capital turnover the assumption might be quite valid already in 2020. 

In section 5 we present mid-term and long-term results. Typically the long-term optimal share of VRE is higher 

than the mid-term value, since only in the long-term VRE saves capital costs. 

For the short, mid, and long-term framework corresponding welfare optima exists, which are, absent of market 

failures, identical to the corresponding market equilibria. It is only in the long-term equilibrium that all profits 

are zero, including those of wind and solar power (Steiner 1957, Boiteux 1960, Crew et al. 1995). EMMA 

estimates the short, mid, or long-term equilibrium, but not the transition path towards the equilibrium or out-

of-equilibrium situations. 

 

 

5. Numerical results 

In this section we use EMMA to estimate the optimal amount of wind and solar power at various levels of cost 

reduction of up to 30% for wind and 60% for solar. For each cost level, the power system is optimized, includ-

ing wind and solar capacity. Results are mostly reported as optimal shares of total electricity consumption. We 

focus on long-term optima, but also discuss the medium term in 5.7. The impact of different aspects of varia-

bility is reported and the effects of a number of price, policy, and technology shocks are examined. All findings 

should be interpreted cautiously, keeping model and data limitations in mind that have been highlighted in 

sections 3 and 4. 

Assuming that onshore wind costs can be reduced by 30% to 50 €/MWh in the long term, we find that the 

optimal wind share on Northwestern Europe is around 20%, three times today’s level, but lower than some 

policy targets. In contrast, even with solar costs 60% below today’s levels to 70 €/MWh, the optimal solar 

share would be close to zero. We find that variability dramatically impacts the optimal wind share. Specifically, 

temporal variability has a huge impact on these results: if winds were constant (flat), the optimal share would 

triple. In contrast, forecast errors have only a moderate impact: without balancing costs, the optimal share 

would increase by less than half. The large impact of variability indicates that models that cannot represent 

variability explicitly need to approximate it carefully, and it implies that analyses which ignore variability are 

strongly biased. These “benchmark” results assume 2011 market prices for inputs and full availability of all 

generation technology options. 

We then assess the effect of three shocks that are often seen as major determinants of VRE deployment: climate 

policy, technical integration measures, and fuel prices. We find that they do not change the picture qualitatively. 

Carbon pricing and higher fuel price can have a moderate positive impact on optimal wind shares, but some-

times even reduce it as they trigger baseload investments; storage has an insignificant impact; the impact of 

interconnector expansion and new turbine technology is positive, but moderate in size; flexibilizing thermal 

plants has the largest impact. The one case where we find very high optimal VRE shares (45% wind plus 15% 
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solar) is a combination of high VRE cost reductions with high carbon prices and unavailability of the low-

carbon technologies nuclear power and CCS.  

 

5.1. Optimal wind share 

The long-term market value of wind power is displayed in Figure 6. As theoretically discussed in section 2.3 

and empirically estimated in Hirth (2013), the market value is a downward-sloping function of wind penetra-

tion: it drops from about 71 €/MWh at low penetration to 40 €/MWh at 30% penetration. The intersection of 

the market value curve with LEC characterizes the optimal wind share. The demand-weighted average price 

declines, but only slightly from 76 €/MWh to 71 €/MWh. 

Figure 7 shows the optimal share as a function of decreasing costs (“optimality frontier”). At current cost levels 

of about 68 €/MWh, only marginal amounts of capacity are competitive in Northwestern Europe. However, if 

costs decrease by 30% to 48 €/MWh, wind power optimally supplies 20% of Northwestern European electricity 

consumptions, three times as much as today. In other words, if deployment subsidies are phased out, wind 

power will continue to grow, but only if costs decrease. We use these results that are based on best-guess 

parameter assumptions as benchmark. 

 

 

 

Figure 6: Wind’s market value falls with penetration. The in-

tersection between LEC and market value gives the optimal 

share (section 2.4). At LEC of 68 €/MWh the optimal share is 
around 3%; if generation costs fall by 30%, the optimal share 

is about 20%.  

Figure 7: The optimal share of wind power in total electricity con-

sumption as function of wind power cost reduction under bench-

mark assumptions. In Northwestern Europe, the share increases 
from 2% to 20%. 

 

 

5.2. Optimal solar share 

Solar power has a marginal value of about 75 €/MWh at low penetration, compared to LEC of currently 180 

€/MWh, hence its optimal share is zero. We model cost reductions of up to 60% (LEC of 70 €/MWh), but even 

then the optimal share is small (2%). However, in a few cases solar becomes competitive in significant amounts 

(section 5.5). Otherwise we will focus on wind power in the remainder of the section due to space constraints. 

Some authors claim that solar power becomes competitive once it reaches “grid parity”, which is usually un-

derstood as costs falling below end-consumer price. However, grid parity has little to do with economic effi-

ciency. Not only does this measure ignore electricity price heterogeneity (recall section 2), but also that retail 

electricity prices comprise mainly taxes, levies, and grid fees. Since decentralized solar generation saves at 

best marginal amounts of grid costs, the market value is the appropriate electricity price to evaluate solar power 

with. 
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5.3. The impact of variability 

As laid out in section 2, different aspects of variability impact the optimal amount of VRE capacity. Here we 

quantify two of them, temporal variability and forecast errors. EMMA lacks a representation of the transmis-

sion grid, such that the impact of locational constraints on the optimal share cannot be assessed. We find that 

variability has a dramatic impact (Figure 8). If wind generation was constant, its optimal share would rise above 

60%. The impact of forecast errors is much smaller: switching off the reserve requirement and balancing costs 

increases the optimal share by only eight percentage points. This endorses previous findings that temporal 

variability is significantly more important for welfare analysis than uncertainty-driven balancing (Mills & 

Wiser 2012, Hirth et al. 2013). Relaxing grid connections has minor impact, but recall that only cross-border 

constraints were taken into account in the first place. These findings indicate how dramatically results can be 

biased if variability is ignored. 

 

 

 

 

 Figure 8: The impact of temporal variability and forecast errors.  

 

 

5.4. The impact of integration options 

Many technical measures have been proposed to better integrate VRE into power systems, and specifically, to 

alleviate the drop of market value. Electricity storage, interconnector capacity, more flexible thermal plants, 

and a different design of wind turbines are the most prominent (Mills & Wiser 2013, Hirth & Ueckerdt 2013b). 

Both storage and interconnector capacity are endogenous to the model and hence deployed at their optimal 

level in the benchmark run. Here we test their impact of optimal wind shares by setting their capacities exoge-

nously to zero and twice current capacity.  

The first surprising result: wind deployment is only slightly affected by pumped hydro storage capacity (Figure 

9). Doubling storage capacity from existing levels results in an optimal share of 22%, setting storage capacities 

to zero results in 20%. This option would cost about € 1.4bn per year. The driver behind this outcome, besides 

the fact that doubling storage capacity means adding relatively little capacity compared to installed wind ca-

pacity, is the design of pumped hydro plants. They are usually designed to fill the reservoir in about eight hours 

while wind fluctuations occur mainly on longer time scales. Thus wind requires a storage technology that has 

a large energy-to-power ratio than pumped hydro storage. 

Higher long-distance transmission capacity helps to balance out fluctuations in VRE generation profiles and 

allows building where resources are best. Doubling interconnector capacity gives a four percentage point higher 

optimal wind share than setting interconnector capacity to zero (Figure 10). This measure would cost about € 

0.8bn per year. Hence, in terms of increased penetration per Euro, interconnector investments are several times 

more efficient as wind power integration measure than storage investments. 
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Figure 9: The effect of storage capacity on optimal wind de-

ployment. The effect is very small. 

Figure 10: The effect of interconnector capacity is moderate at 

all wind cost levels. 

 

Technical inflexibility of thermal plants impacts electricity prices and reduces the optimal share of VRE. 

EMMA features two important must-run constraints for thermal plants, CHP generation and ancillary service 

provision. Heat storages or heat-only boiler can be used to dispatch CHP plants more flexibly. Batteries, con-

sumer appliances, or power electronics could help supplying ancillary services. Figure 11 shows the effect of 

taking these constraints out. Switching off CHP must-run increases the optimal share by three percentage 

points, switching off the ancillary service constraint by three percentage points, and both constraints by five 

points. 

Wind turbine technology is still evolving quickly (IEA 2012, MAKE 2013). Low wind-speed turbines with 

higher hub heights and larger turbine-to-generator ratios have entered the market, resulting in flatter generation 

profiles. We tested the impact of flatter profiles by using a more steady offshore profile (without changing 

costs). As a consequence, the optimal share rises by almost three percentage points (Figure 12). Assessing the 

cost of thermal plant flexibilization and advanced wind turbine is beyond the scope of this analysis. 

All integration measures increase the optimal wind share. The impact of doubling storage capacity on optimal 

wind deployment is very small, the impact of doubling interconnector capacity and changing the wind gener-

ation profile is moderate, and the impact of thermal plant flexibility is quite large. This does neither imply that 

these measures should be ignored or should be pursued, nor does it imply a ranking between these three options, 

as each measure comes at a cost. However, comparing storage and interconnector capacity in terms of cost and 

impact on wind deployment it seems that interconnector expansion is a more efficient integration option. 

 

  
Figure 11: The effect of thermal plant flexibility is large, espe-

cially at high cost reduction levels. 

Figure 12: The effect of a flatter profile is moderate. 
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5.5. The impact of climate policy 

Many observers suggest that CO2 pricing has a positive and significant impact on VRE competitiveness. Many 

European market actors argue that during the 2020s, renewable subsidies should be phased out, and expect 

VRE to continue to grow, driven by carbon prices. We estimate the optimal wind share at different CO2 prices. 

Figure 13 displays the optimal wind share at prices of 0 €/t, 20 €/t, and 100 €/t. As one would expect, a CO2 

price of zero results in less deployment than the benchmark price of 20 €/t. Lower costs of emitting plants 

reduce the marginal value of wind power, and optimal deployment is close to zero.  

Yet increasing the CO2 price from 20 €/t 100 €/t shows a surprising result: wind deployment is reduced. Figure 

14 shows in more detail the non-monotonic effect of CO2 pricing on VRE deployment, assuming high cost 

reductions: the optimal wind share increases initially steeply with higher CO2 prices, peaks at 40 €/t, and de-

creases afterwards. The optimal solar share rises until 40 €/t and remains relatively flat afterwards, such that 

the compound VRE share always remains below 25% and even decreases to 15% at 180 €/t CO2. This might 

look counterintuitive at first glance. 

The reason for this surprising behavior is investments in competing low-carbon technologies. Nuclear power 

and CCS are the only dispatchable low-carbon technologies in the model, and these two are base load technol-

ogies with very high investment, but very low variable costs. Baseload capacity reduces the marginal value of 

VRE and hence its optimal share. Carbon prices below 40 €/t do not trigger any nuclear or CCS investments, 

such that up to that point carbon pricing has a positive impact of VRE via higher costs of emitting plants. 

Beyond 40 €/t, the baseload investment effect dominates the emission cost effect. To benefit from stricter 

climate policy, VRE technologies would need low-carbon mid and peak load generators as counterparts. In this 

context it is important to recall that generation from biomass is not included in the model. If biomass would be 

available sustainably in large volumes, it could fill this gap and possible change results significantly. 

  
Figure 13: Optimal wind share under different CO2 prices. Ar-
rows indicate how curves shift as carbon prices increase. 

Figure 14: Optimal wind and solar share under different CO2 
prices, assuming high cost reduction. Shares increase with the 

carbon price up to the point where low-carbon baseload invest-

ments become profitable and decrease afterwards. 

 

Of course this effect can only appear if investments in nuclear and/or CCS are possible. However, uncertainty 

around costs, safety, waste disposal, and public acceptance could imply that these technologies are only avail-

able at prohibitive costs. Without nuclear power, the optimal wind share doubles at 100 €/t CO2 and without 

both technologies it reaches more than 45% market share (Figure 15). In addition, the optimal solar share 

reaches 15%, such that VRE would supply almost two thirds of electricity. However, the unavailability of 

nuclear and CCS comes at the price of increased emissions and welfare losses: CO2 emissions increase by 100-

200% (depending on VRE cost reductions), the electricity price increases by 15-35%, and total system costs 

by 13-25%. In absolute terms, welfare is reduced by 15-30 €bn per year, which would increase if the assump-

tion of price-inelastic demand was relaxed. 

Figure 16 shows which combination of LEC and carbon price would be needed to trigger a 40% wind market 

share in a contour plot. 
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Figure 15: Optimal wind share under 100 €/tCO2 and different 
technology assumptions. Excluding low-carbon alternatives 

leads to dramatically higher shares of wind (and solar) power. 

The top line decreases because solar power investments are trig-
gered. The combined VRE share keeps rising with cost reduc-

tions. 

Figure 16: Contour plot of the 40% wind share. The lines indi-
cate which LEC / CO2 price combination would be needed to 

achieve 40% wind penetration without wind subsidies. 

Above/left of the lines wind penetration is above 40%, be-
low/right of the lines it is below 40%. Without restrictions on 

technologies, wind LEC need to fall below 40 €/MWh to trigger 

40% penetration, no matter what the CO2 price is. The invest-
ment cost for nuclear is 4000 €/kW. 

 

Several conclusions can be drawn regarding the effect of CO2 pricing on the optimal amount of VRE deploy-

ment: while increasing the CO2 price from low levels increases optimal VRE shares, increasing it further re-

duces VRE deployment. The price that maximizes wind deployment is around 40 €/t, just before nuclear in-

vestments are triggered. Carbon pricing is not able to drive up the VRE share above 25%. These findings are 

obviously sensitive to the availability of alternative low-carbon generation technologies: excluding base load 

technologies like nuclear and CCS helps wind and solar dramatically. In general, this section indicates how 

important it is to take the adjustment of the capital stock into account when evaluation policies. 

 

 

5.6. The impact of fuel prices and investment costs 

Rising fuel prices are often believed to drive renewables expansion. At first glance, the situation seems to be 

straightforward: higher input prices increase the costs of fossil generation, and hence increase the marginal 

value of competing technologies including VRE. In this subsection, hard coal and natural gas prices are varied 

to understand the effect of higher fossil fuel prices on optimal VRE deployment. As in the case of CO2 pricing, 

results might come as a surprise. 

Increasing the price of coal has the expected effect: doubling coal prices increases optimal wind deployment 

by about five percentage points (Figure 17). Lowering gas prices by half (“shale gas”) has a similarly expected 

effect, dramatically lowering optimal wind deployment. Surprisingly however, doubling gas prices reduces the 

optimal wind share. As in the case of CO2 pricing, the reason for this seemingly counterintuitive result can be 

found in the capital stock response to the price shock. Higher gas prices induce investments in hard coal, which 

has lower variable costs, reducing the value of wind power and its optimal deployment. 

In economic terms, gas-fired mid- and peak-load plants are complementary technologies to VRE, since they 

efficiently “fill the gap” during times of little renewable generation. Hence, one can think of gas and wind 

generators as a gas/wind “package”. Coal plants are a substitute technology to the gas/wind package. Increasing 

coal prices increases both the share of gas and wind. Increase gas prices increases the share of coal and reduces 

the share of gas/wind. Of course, wind becomes more competitive versus gas as well, but this effect is too weak 

to make wind benefit from higher gas prices. This can also be expressed in terms of own-price and cross-price 

elasticities (Table 3). The elasticity of wind generation with respect to the coal price is positive, but the elas-

ticity with respect to the gas price is negative. 
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Table 3: Price elasticities at the benchmark. 

 
w.r.t. 

coal price 

w.r.t. 

gas price 

Coal generation -3.9  0.5 

Gas generation  1.5 -4.9 

Wind generation  1.0 -0.2 
 

Figure 17: The effect of fuel price shocks. As expected, lower 
gas prices reduce and higher coal prices increase the optimal 

wind share. However, higher gas prices reduce the optimal 
share. The reason is the investments in baseload technologies 

triggered by high gas prices. 

 

 

The cost of large investment projects is subject to high uncertainty, because projects are seldom conducted. 

Small, more industrialized projects can be assessed with more certainty because of more experience. Hence, 

uncertainty of nuclear investment cost is much higher than of wind or solar investment cost, where modularity 

and the high number of units allow reliable cost assessment. This is reflected in the broad range of cost esti-

mates reported in the literature (section 4.2) and in a higher discount rate for technologies with little investment 

experience (Oxera 2011). If capital costs of thermal plants are 50% higher than assumed in the benchmark, 

either because of higher investment costs or a higher discount rate, the optimal wind share jumps by 13 per-

centage points (Figure 19). 

 

 

 

 

 Figure 18: The impact of thermal plants’ investment cost is dramatic. This in-
dicates high parameter uncertainty of model results. 

 

 

5.7. Mid-term: accounting for today’s power plants 

All results of sections 5.1 to 5.6 are long-term optimal wind shares. In this subsection, we briefly discuss the 

optimal wind shares in the medium term, when the existing capital stock (plants, storage, interconnectors) is 

taken into account and modeled as sunk investments. 

Typically, the optimal wind share is much lower in the mid-term than in the long-term. The reason is straight-

forward: in the mid-term, wind only reduces fuel and other variable costs, while in the long-term it also reduces 

capital costs (section 4.4). The benchmark optimal share is 7% at 30% cost reduction, less than half of the long-

term share. The impact of variability and integration options is qualitatively similar, but much smaller in size. 

In contrast to the long term, increasing the CO2 price from 20 €/t to 100 €/t increase the optimal share in the 

medium term, because the capacity mix adjusts much less. For the same reason, higher gas prices have virtually 

no impact in the medium term. 
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6. Discussion of numerical results 

All numerical findings should be interpreted cautiously, since the applied methodology has important short-

comings that potentially bias the results. Being a regional partial equilibrium model, the power market model 

EMMA does not account for endogenous learning or wind and solar resource supply curves. Moreover, it 

disregards hydro reservoirs, demand elasticity and internal grid bottlenecks. Taken together, these factors might 

result in a moderate downward bias on the estimated optimal share, meaning that our results can be read as 

conservative estimates. 

This section first summarizes the numerical findings, then discusses the impact of suboptimal wind shares on 

welfare, and finally compares findings to previously published studies. 

 

6.1. Summarizing findings 

Figure 19 summarizes the optimal long-term share of wind power in Northwestern Europe under all tested 

parameter assumptions (not including section 5.3). There is large uncertainty about the optimal wind share 

driven by parameter uncertainty (1% - 45% at low costs). Our benchmark assumptions fall in the middle of this 

range. Additional uncertainty might be introduced by model uncertainty, or by parameters that have not been 

tested here. Moreover, cost reductions play a crucial role. At current cost levels, the optimal benchmark market 

share is 2%, with a range of 0% - 13%. Reducing wind power’s levelized electricity costs is crucial to introduce 

significant volumes of wind power competitively. If costs can be decreased by 30%, we estimate the competi-

tive share at 20%, which is roughly three times today’s level. In other words, wind power can be expected to 

keep growing even without subsidies - but only if costs come down.  

 

 

 

 

 Figure 19: Long-term optimal wind shares in the benchmark run and the range of all sensi-
tivities. The range does not include the noNucCC run at 100 €/t, where the optimal wind 

share is above 40%. 

 

 

Figure 20 displays the optimal wind share at 30% cost reduction for all model runs. In 16 out of 20 runs, the 

share is between 16% and 25%, indicating somewhat more robust results than Figure 19 might suggest. 
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 Figure 20: Comparing all sensitivity runs for 30% cost reductions. 16 out of 20 runs are 
in the range of 16% - 25% optimal share. 

 

 

The results for solar are more disappointing: even at 60% cost reduction, the optimal solar share is below 4% 

in all but very few cases. This is consistent with previous findings that the marginal value of solar power drops 

steeply with penetration, because solar radiation is concentrated in few hours (Nicolosi 2012, Mills & Wiser 

2012, Hirth 2013). In regions that are close to the equator, the optimal solar share might be significant higher, 

both because levelized costs are lower and the generation profile is flatter. In 5.3 and 5.4 we presented results 

for wind power that show how dramatic the impact of a flatter profile can be. 

 

6.2. What is the cost of sub-optimal shares? 

Given the large uncertainty, it is highly likely that realized wind shares will ex post turn out to be sub-optimal, 

too high or too low. Here we briefly asses the costs of such sub-optimality. With perfectly inelastic demand, 

welfare losses are equivalent to increases in total system costs. Figure 21 displays the cost increase of sub-

optimal wind shares for two cases: current cost levels and 30% lower costs. Total system costs increase mod-

erately by 6% if instead of the optimal share of 2% a large share of 30% is installed. Similarly, costs increase 

by 2% if no wind is installed at low cost despite an optimal share of 20%. One percentage point of total costs 

is about € 1bn in absolute terms, or € 0.8 per consumed MWh of electricity. Note that welfare costs would be 

in general higher if demand is modeled price-elastically, because of the resulting quantity reductions. 

As discussed in section 5.5, excluding nuclear and CCS from the set of possible technologies increases total 

system costs by 13-25% under strict climate policy. Hence such a ban would be more costly than targeting sub-

optimal wind shares. 

 

 

 

 

 Figure 21: Cost increases for suboptimal wind shares. Under wind current costs, the op-

timal wind share is 2%; if instead 30% wind power is installed, total system costs in-

crease by 6%. At low wind costs, the optimal share is 20%; if no wind is build, system 
costs would be 2% higher than in the optimum. 
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6.3. Comparing with other studies: when do VRE shares become very high? 

Policy makers have sometimes set very high targets for VRE during the past years (European Comission 2011). 

Only in one model run, this study found such high shares to be optimal: a combination of significant cost 

reductions (30% for wind and 60% for solar), a strict climate policy (CO2 price of 100 €/t), and a restriction of 

low-carbon base load generators (nuclear and CCS).  

We compare this finding to two recent studies that have very high VRE shares to be optimal, Müsgens (2013) 

and PRIMES-based PowerChoices Reloaded (Eurelectric 2013). It turns out that these studies also assume 

these three conditions to be simultaneously fulfilled (Table 4). It seems a quite robust finding that very high 

VRE shares (>50%) are only optimal if those three premises are all satisfied. 

Table 4: Comparing Müsgens (2013), Eurelectric (2013), and the present study 

  
CO2 

price 
Nuclear assumptions Wind LEC Wind share 

Müsgens (2013) 110 €/t 
restricted to current level in 

country without phase-out 

low (precise level 

not reported) 
~40% 

PowerChoices Reloaded 300 €/t 
restricted to country without 

phase-out 

low (precise level 

not reported) 
~30% 

This study 100 €/t no nuclear allowed 50 €/MWh ~45% 

 

 

7. Conclusion 

The theoretical analysis of section 2 showed that electricity is a heterogeneous good along three dimensions: 

time, space, and uncertainty. As a consequence, wind and solar variability affects welfare analyses. Ignoring 

variability leads to biased estimates of the welfare-optimal amount of VRE capacity. 

The literature review of section 3 surveyed three classes of models that are in practice used to estimate the 

optimal VRE share: integrated assessment models, energy system models, and extended power market models. 

IAMs are appropriate tools to account for technological learning and global commodity markets. Energy sys-

tem models are strong when it comes to estimating electricity demand and wind and solar resource supply 

curves. However, both model classes have a too coarse resolution to explicitly represent variability. Power 

market models provide sufficient details, but are seldom used to optimize VRE capacity endogenously. 

The power market model EMMA was applied in section 5 to estimate the optimal share of wind and solar 

power. Assuming that onshore wind costs can be reduced to 50 €/MWh, we find the optimal wind share in 

Northwestern Europe to be around 20%. In contrast, even under further dramatic cost reductions, the optimal 

solar share would be close to zero. We find that variability dramatically impacts the optimal wind share. Spe-

cifically, temporal variability has a huge impact on these results: if winds were constant, the optimal share 

would triple. In contrast, forecast errors have only a moderate impact: without balancing costs, the optimal 

share would increase by eight percentage points. 

In terms of methodological conclusions, both section 2 and section 5 show that variability significantly impacts 

the optimal share of wind and solar power. Models and analyses that cannot represent variability explicitly 

need to approximate the impact of variability carefully. Furthermore, while both a long-term and a mid-term 

perspective have their merits, the stark differences in results indicate how important it is to be explicit about 

the time scale on which analysis takes place. Finally, several findings of section 5 are counter-intuitive at first 

glance, underlining the necessity for rigorous analytical methods that can challenge intuition and conventional 

wisdom. Specifically, numerical models are needed to capture adjustments of the capital stock and policy in-

teraction. 

In terms of policy conclusions, the numerical results point out the important role of onshore wind power as a 

competitive electricity generation technology. The long-term benchmark estimate of a market share of 20% is 

equivalent to three times as much wind power as today. However, the share would be higher if low-carbon mid 

and peak load technologies were available to supplement VRE in the transition to a low-carbon electricity 
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sector. Biomass as well as high-efficient gas-fired plants could play a crucial role in this respect. A second 

conclusion is that different wind turbine layouts with larger rotors relative to generator capacity could be quite 

beneficial, since they provide a flatter generation profile. Finally, system flexibility is key to achieve high VRE 

shares. Must-run units that provide heat or ancillary service severely limit the benefits of VRE. Relaxing these 

constraints through technological innovation increases optimal wind deployment, as does increasing intercon-

nector capacity. 

Significant methodological gaps have been identified that should be filled by future research. On the one hand, 

integrated modeling of hydro-thermal systems and a more explicit modeling of transmission grids are promis-

ing fields for power market model development. On the other hand, developing methods of how to integrate 

variability into large-scale, coarse models is needed to account for all significant drivers of optimal VRE quan-

tities. These are necessary conditions before final conclusions on optimal shares of variable renewables can be 

drawn. 
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