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Abstract

We develop a model of social norms and cooperation in large societies. Within

this framework we use an indirect evolutionary approach to study the endogenous

formation of preferences and the co-evolution of norm compliance. The multiplicity

of equilibria that emerges in the presence of social norms, is linked to the evolution-

ary analysis: individuals face situations where many others cooperate and situations

where cooperation fails. The evolutionary adaptation to such heterogeneous envi-

ronments favors conditional cooperators, who condition their pro-social behavior on

others’ cooperation. As conditional cooperators respond flexibly to their environ-

ment, they dominate free-riders and unconditional cooperators.
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1 Introduction

Starting with Keser and van Winden (2000) and Fischbacher et al. (2001), economic

research has pointed out the role of conditional cooperation in human behavior. People

who follow this behavioral pattern condition their cooperation on the cooperativeness of

others or on their beliefs about the behavior of others – they “are willing to contribute the

more to a public good, the more others contribute” (Fischbacher et al., 2001, p. 397). There

is now a solid body of empirical evidence which documents the prevalence of conditional

cooperation (Gächter, 2007). Motivated by this evidence, several social preference models

have been proposed (surveyed in Fehr and Schmidt, 2006) that are capable explaining

of conditionally cooperative behavior. The question under what circumstances evolution

fosters preferences, which then induce conditional cooperation, has gained little attention.

The focus of this paper is to address exactly this question.

One possible way to capture conditional cooperation is based upon social norms.1

Social norms are rules of conduct which are enforced by internal or external sanctions

(Coleman, 1990). As the sanctions for a norm deviation are harsher the more people

adhere to the norm (Traxler and Winter, 2009), a social norm for cooperation can trigger

conditionally cooperative behavior. The present analysis incorporates such a concept of

social norms into a model of voluntary public good provision in a large society. Within this

framework we study the evolution of a cooperation norm and the coevolution of behavior.

This allows us to discuss the prerequisites for the emergence of conditional cooperation.

Our analysis thereby provides several novel elements.

First of all, the strength of the social norm reflected in the impact of norm-enforcing

sanctions depends on the level of norm compliance in the society as well as on an individual

specific level of norm sensitivity: some agents suffer more from sanctions than others do.

For a given distribution of norm sensitivity in the population, the equilibrium level of

cooperation derives endogenously. Similar to other models of social norms, there is scope

for a multiplicity of equilibria: society could either coordinate on equilibrium states with a

strong social norm and far-reaching cooperation or on states with weak norm-enforcement

and widespread free-riding.

In a next step, we study the evolution of the norm. So far, the literature has mainly

focused on actual behavior as the determinant of an endogenous norm strength (Akerlof,

1980; Lindbeck et al., 1999). In addition to this channel, we also consider an individual

norm sensitivity as evolving endogenously. We model the evolution of the norm sensitiv-

1Other theoretical approaches which account for conditional cooperation are theories of conformity,
inequity aversion and reciprocity, surveyed in Fehr and Schmidt (2006).
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ity as an indirect evolutionary process.2 Heterogeneous levels of norm sensitivity induce

different behavioral patterns, which are associated with different levels of evolutionary

success. Next to the economic payoff from free-riding and cooperation, the success is also

determined by the norm-based costs for violating a norm. One might think of social disap-

proval as one mechanism behind these evolutionary costs. Depending on whether the level

of disapproval in the society is sufficiently strong to outbalance the cost of cooperation,

either the pro-social or the selfish behavior dominates in terms of evolutionary success.

Accordingly, either higher or lower levels of norm sensitivity are evolutionarily more suc-

cessful and spread within the society – e.g., by the vertical transmission of the social

norm (socialization and education). In this vein, the distribution of the norm sensitivity

evolves endogenously. Individual behavior, the level of cooperation within the population

and the associated strength of sanctions (disapproval) evolves indirectly, along with the

endogenous change in preferences. In an evolutionary equilibrium, the outcome is shaped

by preferences and – at the same time – the outcome shapes these preferences.

We first discuss the evolutionary transmission of norms within a homogenous environ-

ment, associated with one particular equilibrium state of the public good game. There

exists an evolutionary equilibrium with a distribution of norm-sensitivities such that free-

riders and cooperators coexist. However, this equilibrium is unstable. Evolution will typ-

ically induce a decline in the norm sensitivity and cooperation will break down. In the

evolutionary equilibrium the norm has eroded and nobody contributes to the public good.

This result changes once we incorporate the multiplicity of equilibria into the analysis.

We focus on the case of a heterogeneous environment, in the sense that the population

faces an equilibrium state with strong norm-compliance and a state with widespread norm

violations, where both states are supported by one given distribution of preferences. Agents

then interact in ‘cooperative’ and ‘non-cooperative’ situations, with a strong impact of

sanctions in the former and a weak norm in the latter environment. One can think of

many real-life situations which can be described as a heterogeneous social environment:

people walk through clean and littered public parks (and may stick to an anti-littering

norm), through nice and run-down neighborhoods (and are tempted to commit a crime,

see Funk, 2005, Glaeser et al., 1996); we visit parties where nobody smokes, but also face

some where people do smoke (Nyborg and Rege, 2003); we are confronted with charity

projects, some of which receive more and others fewer donations (Frey and Meier, 2004);

we sometimes give large tips and sometimes we completely avoid tipping (Azar, 2005);

we work in firms where many co-workers cheat but we are also engaged in projects where

others’ exert high efforts (Ichino and Maggi, 2000).

2The indirect evolutionary approach was pioneered by Güth and Yaari (1992) and Güth (1995).
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In a stylized model of such heterogeneous environments we observe three different types

of behavior: free-riders, who violate the norm in both situations, unconditional coopera-

tors, who always comply with the social norm, and conditional cooperators. These agents

cooperate in the ‘good’ state, where many others follow the norm, but defect in the ‘bad’

state, where a majority free-rides. In the environment with a strong social norm, condi-

tional cooperators avoid harsh sanctions, making them more successful than free-riders.

In the environment where the norm is weak they free-ride and earn a higher evolutionary

payoff than unconditional cooperators. Hence, the conditional strategy dominates both

unconditional strategies in terms of evolutionary success. Norm transmission will favor

conditional cooperators, since they react flexibly to their social environment. We charac-

terize conditions under which this dominance of conditional cooperation forms a stable

evolutionary equilibrium.

Rather than explaining the emergence of pro-social norms, our paper studies evolu-

tionary forces that shape conditional cooperation. While there are several approaches to

explain the origin of social norms and pro-social behavior (e.g., Corneo and Jeanne, 1997,

Fershtman and Weiss, 1998), only Mengel (2008) discusses conditional cooperation in a

similar context to ours. Her paper studies the impact of migration on an internalized norm

for cooperation. For some degrees of population viscosity – which can be neatly linked to

the level of integration in a society – she finds a stable evolutionary equilibrium, where

norm-sensitive and norm-insensitive agents coexist. As in our study, norm-sensitive indi-

viduals behave conditionally cooperative: they start to defect if norm-insensitive agents

become more frequent in the population. This protects conditional cooperators from get-

ting exploited and supports their evolutionary success. The result and its intuition is

similar to our findings for the case of heterogeneous environments. In Mengel’s analysis,

conditional cooperation is a response to the heterogeneity in selfish or norm-guided in-

teraction partners. In our model, it is the heterogeneity in social environments related to

different equilibrium states which supports the conditional behavior. This structural simi-

larity in the results suggests that the role of heterogeneous environments as a driving force

in the evolution of conditional cooperation provides a robust finding which generalizes to

different frameworks.

Finally, our paper also contributes to the literature by introducing a technique from

quantitative genetics which – to the best of our knowledge – is novel in evolutionary

economics. The method, originally developed in Lande (1976), provides a simple tool to

analyze the evolution of a continuously distributed trait – in our case, the norm sensitivity.

We discuss the crucial assumptions of Lande’s approach and show that our main findings

are qualitatively robust to the application of standard replicator dynamics (Weibull, 1995).

The fact that we study the evolution of a continuous distribution of preferences, instead
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of a discrete number of types, also distinguishes our model from Mengel (2008) and other

contributions in the field.

The remaining paper is structured as follows. We first study a model of social norms and

cooperation in a large population. In Section 3, we introduce an evolutionary approach

from quantitative genetics. We then apply this method on our model and discuss the

evolution of social norms and cooperative behavior in a homogenous and in a heterogeneous

environment. Section 5 discusses our findings and Section 6 concludes.

2 Social Norms and Cooperation

Consider a large society represented by a continuum of individuals [0, 1]. Each agent i

chooses xi ∈ {0, 1}, to contribute to the public good (xi = 1, ‘cooperate’) or not to

contribute (xi = 0, ‘free-ride’). The payoff y(xi) for strategy xi is given by

y(xi) = −xic (1)

where c > 0 denotes the costs of the public good contribution. The action xi additionally

determines a payoff z(xi, n), where n denotes the share of free-riders in the society. This

payoff is defined as

z(xi, n) =
(
xi − 1

)
s(n) (2)

where s(n) relates to the sanctions (or the withdrawal of rewards) an agent incurs if she

violates the social norm. In principle, the origin of these sanctions could be internal, ex-

ternal or a mixture of both (Coleman, 1990). Within our framework, one might best think

of the sanctions as deriving from internalized social norms. If an agent has internalized a

cooperation norm, free-riding would be associated with emotions like guilt, remorse or the

loss of self-esteem (Elster, 1998). Alternatively, one could interpret sanctions also as being

external, e.g., deriving from social disapproval (Traxler and Winter, 2009).3 Throughout

our analysis we employ the following assumption:

Assumption A1: The function s(n) : [0, 1] → R+ is continuously differentiable on

n ∈ [0, 1] with s′(n) ≤ 0, s(0) > 0 and s(1) = 0.

Allowing the sanctions to depend on other agents’ behavior captures the idea that the

degree of norm compliance (co)determines the strength of the social norm and thereby the

strength of norm-enforcement. Motivated by the evidence in Traxler and Winter (2009),

3Note that the present paper studies neither the origin of social norms nor sanctioning mechanisms. As
explained above, we want to analyze conditions that – for exogenously given patterns of norm enforcement
– support the evolution of conditional cooperation.
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we follow the literature (Lindbeck et al., 1999, Mengel, 2008) and assume s(n) to be

non-increasing in n.4 A deviant agent is supposed to suffer from weaker sanctions, as

free-riding becomes more widespread: one feels less guilty about violating a norm, the

more others do the same. The equivalent is supposed to hold for external sanctions. For

the case of perfect norm compliance (n = 0), sanctions are strictly positive. In a society

where everybody free-rides, however, the social norm has completely eroded. The moral

connotation of ‘wrong’ (free-riding) and ‘right’ (contributing) – and so the sanctions for

free-riders – have vanished.

2.1 Preferences

Let the preferences of agent i, defined over y(.), z(.) and the public good payoff v(.), be

given by an additive separable utility function

ui(xi, n) = y(xi) + θiz(xi, n) + v(n), (3)

with the individual specific parameter θi ∈ R and v′ < 0. We can interpret the parameter

θi as the degree of internalization or norm sensitivity. While an agent with θi = 0 is solely

driven by the material payoff from the game, those with θi > 0 also consider sanctions in

their decisions.5

In a large population, a single decision maker takes n as given. Hence, agent i will

cooperate iff ui(1, n) > ui(0, n) which is equivalent to θis(n) > c. An individual contributes

to the public good if the utility loss from the sanction dominates the costs of cooperation.

This implies the threshold

θ̂(n) ≡ c

s(n)
, (4)

which divides society into norm-adhering and norm-breaking individuals. Those with θi >

θ̂(n) cooperate, while those with θi ≤ θ̂(n) free-ride.6 The action xi is then determined by

an individual’s norm sensitivity θi and the share of free-riders n,

xi = x(θi, n) =

0 for θi ≤ θ̂(n)

1 for θi > θ̂(n)
(5)

4For a micro-foundation of this pattern, see the signaling game in Corneo (1997) and the analysis in
Benabou and Tirole (2006).

5Agents with θi < 0 hold anti-social preferences, as they derive benefits from a norm-violation. As
will become clear in the following, we only include this latter group for technical convenience. Excluding
negative values of θ would not change any of our results.

6The assumption that agents with θi = θ̂(n) will free-ride is not crucial for any of our results.
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Note that the threshold θ̂(n) is non-decreasing in n,

∂θ̂(n)

∂n
≥ 0, (6)

since s′(n) ≤ 0. As more agents deviate from the norm, the sanctions associated with

a norm violation become smaller. Hence, an agent who cooperates for low levels of n

may turn into a free-rider for higher levels of n.7 Those with θi ∈ (θ̂(0), θ̂(1)) condition

their cooperation on the behavior of others. They act as conditional cooperators. Agents

with θi ≤ θ̂(0), however, would always free-ride, irrespectively of other subjects’ behavior.

Allowing for a heterogeneity in θ, the model therefore captures the two main patterns of

behavior typically found in experimental studies (Fischbacher et al. 2001).

2.2 Equilibrium

Let the cumulative distribution function of the parameter θ be given by Φ(θ). The corre-

sponding density function φ(θ) has full support.8

Assumption A2: (i) The inverse function of the cumulative distribution is given by

Φ−1(n) for n ∈ [0, 1], with Φ−1(n)→ −∞ for n→ 0 and Φ−1(n)→ c/s(n) for n→ 1. (ii)

∃ n′ ∈ (0, 1) : Φ−1(n′) > θ̂(n′).

A social equilibrium state in such a society is given by a share of free-riders n∗, char-

acterized by the fixed point equation

n∗ = Φ(θ̂(n∗)). (7)

Lemma 1 For any s(n) and Φ(θ) satisfying A1 and A2(i) there always exists an equilib-

rium with n∗ = 1. If A2(ii) holds, there always exists at least one further equilibrium with

0 < n∗ < 1.

Proof. See Appendix B.

An equilibrium constitutes a self-supporting share of norm-violators – the threshold

θ̂(n∗) is such that the share of agents with θi ≤ θ̂(n∗) is exactly n∗. There always exists

one equilibrium where nobody contributes, n∗ = 1. The cooperation norm has eroded

and everybody free-rides. Given that assumption A2(ii) holds, the strength of the norm

sensitivity is distributed such that there exists a level of free-riding 0 < n < 1, where the

7Assumption A1 implies θ̂(n)→∞ for n→ 1. Thus, there always exists a level of free-riding at which
cooperators turn into free-riders. Hence, universally unconditional cooperators cannot be present here.

8Assumption A2(i) assures technical properties of Φ(θ) that allow for an equilibrium and are in line
with the distribution considered in Section 4; A2(ii) is discussed after Lemma 1.
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maximum level of norm sensitivity among free-riders, Φ−1(n), is above the cooperation

threshold θ̂(n). In this case, the system is characterized by a multiplicity of equilibria. In

addition to the equilibrium with n∗ = 1, there is at least one equilibrium with a positive

share of contributors. A graphical representation of two possible scenarios is provided in

Figure 1. While assumption A2(ii) is fulfilled for the example depicted in panel (a) of the

Figure, it does not hold for the example in panel (b). In the first case, there are multiple

equilibria, in the latter there is a unique equilibrium at n∗ = 1.

Figure 1 about here

If the distribution Φ(θ) is common knowledge, society coordinates on one of the possible

equilibria. Alternatively one could consider Φ(θ) to be unknown, but assume that agents

can infer the behavior of other members in society from the public good level. Agents

could then learn about the share of free-riders. As long as players base their decision on

this share, society would converge into an asymptotically stable equilibrium, characterized

by
∂Φ−1(n∗)

∂n
≥ ∂θ̂(n∗)

∂n
. (8)

In the following we call an equilibrium n∗ an a-stable equilibrium state, if (8) holds for

n∗. In the scenario depicted in panel (a) in Figure 1, there are two unstable (the one with

n∗c and another one at n∗ = 1) and two a-stable equilibrium states: one with a low level

of free-riding n∗a and another one where free-riding is widespread, n∗b . In panel (b) the

only equilibrium, n∗ = 1, is also stable, since the cumulative distribution approaches the

θ̂(n)-curve ‘from below’ (thus condition (8) holds).

3 Evolutionary Quantitative Genetics

In the following, we will study the evolution of the distribution Φ(θ). For this purpose,

we introduce a technique from evolutionary quantitative genetics, first analyzed by Lande

(1976).9 The approach offers a tractable method to study an evolutionary process within a

continuously heterogeneous population. In particular, it will provide us with a parameter

that is easy to interpret – the mean value of θ – that characterizes the distribution Φ(θ) in

an evolutionary equilibrium. In Section 5, we will discuss the applicability of this technique

to our problem and the differences to standard replicator dynamics (Weibull, 1995).

Consider a large population which is heterogeneous along one trait α. The trait value

is normally distributed with mean ᾱ and variance σ2. To simplify notation, we write F (α)

9See Falconer and Mackay (1995) and Roff (1997) for an introduction to quantitative genetics.
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for the cdf F (α, ᾱ, σ2) and the density function is denoted by f(α). Let the fitness of

an α-type, i.e., an individual with a trait value α, for a given distribution with mean ᾱ

be given by w(α, ᾱ). Allowing individual fitness to depend on the distribution accounts

for frequency dependent fitness. Fitness is called frequency dependent if the fitness of an

α-individual also depends on the composition of the population.10 In economic terms,

frequency dependence is given if one group of agents – respectively the strategy played by

these individuals – creates an externality on other agents’ fitness.11

Within one generation, the change in the mean trait value in response to selection is

defined as

∆ᾱ = ᾱs − ᾱ, (9)

where ᾱs, the mean trait value after selection, is given by

ᾱs =
1

w̄

∫
αw(α, ᾱ) dF (α) (10)

and w̄, the mean fitness of the population, is

w̄ =

∫
w(α, ᾱ) dF (α). (11)

The selection described in (10) follows a replicator dynamic. While the initial frequency

of a type was f(α), the post-selection frequency of this type, w(α,ᾱ)
w̄

f(α), will be higher for

types with above-average fitness. Hence, in the computation of ᾱs, more successful types

will get more weight than less successful types.

The analysis so far describes selection within one generation. In order to address the

inter-generational evolution of the trait α, Lande (1976) introduces the following structure

of reproduction. First, only selected individuals produce the next generation of offspring.

Second, partner selection and genetic recombination transforms the post-selection distri-

bution into an offspring distribution which is again normal: it is characterized by the

10As we will consider the variance to be fixed, we have suppressed this variable in w(.) to ease notation.
11Consider, for instance, the decision to commit a crime where the likelihood of a criminal act to be

‘successful’ depends on the crime rate in the society. (E.g., the detection probability might be lower, the
more other agents become criminals.) If decisions depend on individual risk preferences, the distribution
of these preferences clearly influences the success of a criminal.
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initial variance σ2 but a different mean.12 According to this structure, selection will then

first lead to a distribution which deviates from the initial one. Starting from a norm dis-

tribution with mean ᾱ, the mean of the (non-normal) distribution after selection is given

by ᾱs from (10). After mating and reproduction, however, the distribution of α in the new

generation is again normal with F (α, ᾱs, σ
2). While the variance is preserved, the mean of

the distribution changes from ᾱ to ᾱs. The direction of evolution is therefore determined

by selection, characterized in (9) and (10). This allows us to analyze the evolutionary

process in more detail.

From (11) we can derive the change in mean fitness from a marginal change in ᾱ,

∂w̄

∂ᾱ
=

∫
w(α, ᾱ)

∂f(α)

∂ᾱ
dα +

∫
∂w(α, ᾱ)

∂ᾱ
dF (α). (12)

While the first term characterizes the direct change in the mean fitness due to a change in

the composition of the population, the second term depicts the indirect, frequency depen-

dent fitness impact. From the density of the normal distribution we can easily compute

∂f(α)/∂ᾱ. Substituting in (12) and rearranging yields

∆ᾱ =
1

w̄

∫
w(α, ᾱ) (α− ᾱ) dF (α) (13)

(see Appendix A). The right-hand side in equation (13) characterizes pace and direction

of the evolutionary process. As w̄ > 0 (per assumption), the direction of the evolutionary

change in the mean trait value ᾱ is determined by the sign of the integral in (13). Note

that the integral term represents only the direct change in mean fitness (the first term in

equation (12)). From (13) it therefore follows that the evolution of ᾱ is independent of

the frequency dependent fitness change associated with a change in ᾱ. If the direct fitness

impact is positive (negative), the distribution will evolve towards a higher (lower) mean

ᾱ. An evolutionary equilibrium is reached if ∆ᾱ = 0. Such an equilibrium is characterized

by ∫
w(α, ᾱe) (α− ᾱe) dF (α) = 0, (14)

where ᾱe denotes the mean trait value in equilibrium.

12The assumptions underlying this structure are justified by the observation that most metric traits have
a normal distribution, or that the distribution can be transformed to normal by a change in the scale of
measurement (e.g., by log transformation). Similar arguments are incurred to account for the independence
of the variance in respect to the mean, and for that the variance is assumed constant over evolutionary
time. Intuitively, mating among a large (selected) population would assure a constant variance as long
as the mating process is random with respect to α (for a closer discussion, see Lande, 1976, Falconer
and Mackay, 1995, and Roff, 1997). Admittedly, this case will be violated whenever assortative mating is
based on the trait α.
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4 Indirect Evolution of Conditional Cooperation

The method introduced in the previous Section is now applied to study the evolution of the

distribution Φ(θ) and the associated coevolution of cooperation in the model from Section

2. We interpret evolution as a cultural process, in the form of vertical norm transmission

(e.g., education and socialization within families and peers).13 Fitness measures the evo-

lutionary success of a certain θ-type. The higher the relative success associated with a

certain level of norm sensitivity, the more likely it is transmitted to the next generation.

In this way, the evolutionary process endogenously shapes preferences. Individual behavior

and thereby the level of cooperation within society evolves indirectly with the change in

preferences from one generation to the next. The term ‘generation’ thereby describes a

population with a given distribution of preferences.

We are convinced that the evolutionary success associated with a certain behavior

is also determined by norm-based sanctions and rewards. Therefore we deviate from the

typical approach in evolutionary economics, which considers economic payoffs as the sole

determinants of evolutionary success (Fershtman and Weiss, 1998, Mengel, 2008). Apart

from the payoff y(xi), success is also shaped by the norm-based sanctions z(xi, n). One

might think of z(.) as the objective costs for a norm violation stemming from social

disapproval. These costs are non-increasing in the share of norm-violators n: in terms

of evolutionary success, it is less costly to free-ride in a population where norm violations

are widespread. For n = 1, the norm has completely eroded and norm violations have no

consequences. The evolutionary success for an action xi is then given by

w(xi) = y(xi) + z(xi, n). (15)

While z(xi, n) captures the objective costs of norm-based sanctions, the parameter θ mea-

sures the subjective sensitivity to theses sanctions – associated with heterogeneous levels

of norm internalization. In terms of evolutionary success, θ = 1 thus corresponds to the

optimal internalization level (see below).14

The basic structure of the evolutionary process is the following. An initial generation

with a given distribution Φ(θ) faces the public good game described in Section 2. After

the game is played, agents learn about the evolutionary success associated with different

actions. According to the relative success, different θ-levels are then transmitted to the

13As highlighted by a referee, one might also argue that any heterogeneity in feelings of guilt, remorse,
or other internal sanctions could be due to genetically determined personality traits that evolve in the
very long rung.

14Note that w(.) includes the payoff y(.), which corresponds to the subjective (utility) costs from the
public good provision. The utility formulation from (3) thus means that the two payoffs, that enter (15)
additively, have different effects on utility (for θ 6= 1).
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next generation. The resulting change in the Φ(θ) is assumed to be characterized by the

process from (13). (In Section 5, we discuss the crucial differences of this approach from

quantitative genetics to an adaptation process according to replicator dynamics.) This

structure is studied for two scenarios. First, we consider the case, where each generation

coordinates on one social equilibrium state n∗. Then we turn to the case, where – in the

context of multiple equilibria – one generation will face different equilibrium states. We

will call the first scenario a homogenous and the latter a heterogeneous environment.

4.1 Homogenous Environment

Let θ be normally distributed according to θ ∼ φ(θ̄, σ2), and the cumulative distribution

is given by Φ(θ, θ̄, σ2). Substituting for y(xi), z(xi, n) and xi = x(θi, n) from (1), (2) and

(5), we can express evolutionary success (15) as

w(θ, θ̄) =


−c for θ > θ̂(n∗)

−s(n∗) for θ ≤ θ̂(n∗)
(16)

where n∗ = Φ(θ̂(n∗), θ̄, σ2) is an a-stable equilibrium state as characterized by (7) and (8),

for a normal distribution with mean θ̄ and an exogenous variance σ2.

It is important to note three points here. First, it is only the heterogeneity in actions

– determined by different levels of θ – which results in differences in evolutionary success.

Within the group of cooperators or free-riders, the heterogeneity in θ does not result in

different levels of evolutionary success. The evolutionary success thus relies on behavior

which is in principle observable, rather than an unobservable θ. Second, evolutionary

success as described by (16) is frequency dependent. As the distribution of θ changes, the

share of free-riders n∗ and thereby the costs of a norm deviation will change. Recall that

the method introduced in Section 3 accounts for such spillovers. Third, we assume that

a generation always coordinates on one equilibrium state n∗. In this sense, we study the

evolution of norm sensitivities within a homogenous environment. Each new generation

(with a new distribution of θ) is assumed to coordinate on an equilibrium state in the

close neighborhood of the previous one – even if there exist multiple equilibrium states.15

15This assumption on equilibrium selection can be justified by the fact that after a small change in the
distribution (i.e., in θ̄) there always exists a new, a-stable equilibrium state in the close neighborhood
of the previous one if condition (8) holds with strict inequality. This close by equilibrium may be more
salient than more distant equilibrium states and thus serves as a focal point.
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The mean evolutionary success is defined by w̄ =
∫
w(θ, θ̄)φ(θ).16 Using (16), we

obtain

w̄ = −c+ (c− s(n∗))
θ̂(n∗)∫
−∞

dΦ(θ) (17)

with the integral expression being equal to n∗ = Φ(θ̂(n∗), θ̄, σ2). Following (13) and the

steps described in section 3, one can easily characterize the intergenerational change in θ̄

(see Appendix A). For 0 < n∗ < 1, the ‘direction’ of the evolution is determined by

sign
{

∆θ̄
}

= sign {s(n∗)− c} . (18)

This leads us to the following result:

Proposition 1 (i) An evolutionary equilibrium where cooperators and free-riders coexist

is characterized by s(ne) = c, where 0 < ne = Φ(θ̂(ne), θ̄e, σ2) < 1 constitutes an a-

stable equilibrium state, supported by a normal distribution with mean θ̄e. (ii) In such an

equilibrium, θ̂(ne) = 1 and all agents have the same success w(θ, θ̄e). (iii) An evolutionary

equilibrium where cooperation fails, ne1 = 1, is characterized by an a-stable equilibrium

state ne1 = Φ(θ̂(ne1), θ̄e1, σ2), supported by a normal distribution with mean θ̄e1.

Proof. See Appendix B.

The evolutionary equilibrium ne described in part (i) of the Proposition is characterized

by a positive share of cooperators such that there is no differential between free-riders

and cooperators with respect to evolutionary success. In equilibrium, the preferences of

agents with θi = θ̂(ne), who are indifferent between defection and cooperation, coincide

with the evolutionary success as given by (15) since θ̂(ne) = 1. In other words, these θ-

types are ‘perfectly adapted’ – their individual norm sensitivity perfectly accounts for the

evolutionary costs of a norm violation. In addition, there is also an evolutionary equilibrium

where everybody free-rides. While we know from Lemma 1 that n∗ = 1 constitutes a

possible equilibrium state for any distribution, condition (8) has to hold to guarantee the

asymptotic stability of the equilibrium state. Therefore, any level θ̄ for which (8) holds

at n∗ = 1 could be the mean of the distribution in an evolutionary equilibrium with zero

cooperation, ne1. By the time the whole society free-rides, the evolutionary pressure on θ̄

to decline vanishes and the system reaches a rest point.17

16In the following, we will assume w̄ > 0 which can be assured, e.g., by adding a sufficiently large
constant payoff to w(.), without changing any of our results.

17In principle, we could also describe an evolutionary equilibrium with full cooperation. However, an
equilibrium state with n∗ = 0 would only be supported by a distribution with θ̄ →∞. We do not include
this case in our analysis, as such a distribution would violate θ ∈ R.
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Let us now turn to the existence of these different types of equilibria.

Proposition 2 (i) Iff s(0) > c, there exists an evolutionary equilibrium with 0 < ne < 1.

(ii) For all distributions fulfilling (8) at n∗ = 1, there exists an evolutionary equilibrium

with ne1 = 1. (iii) If c > s(0) and (8) holds for n∗ = 1, this is the only equilibrium.

Proof. See Appendix B.

The result from Proposition 2 is straightforward. If the costs of cooperating are higher

than the loss from a norm violation even for the state where n∗ = 0, free-riding yields

a higher evolutionary success than cooperation for any n. Starting from any n∗ < 1, the

evolutionary process induces θ̄ to fall and society moves towards an equilibrium with full

defection, ne1 = 1. However, if sanctions are sufficiently strong such that cooperators have

a higher evolutionary success than free-riders for the full-cooperation state n∗ = 0, there

exists an equilibrium state 0 < ne < 1 where both actions yield the same evolutionary

success.

Finally, we address the evolutionary stability of the system. Note that we apply two

stability concepts. In Section 2 we focused on stability within one generation (a-stability)

which – for a given distribution of θ – requires an equilibrium state to be robust to small

behavioral trembles. Evolutionary stability now demands that preferences remain stable

between generations. If this is the case, small mistakes in the transmission of norms will

not affect the equilibrium. We call an evolutionary equilibrium locally evolutionary stable

(e-stable) if d∆θ̄/dθ̄ < 0 holds in the close neighborhood of θ̄e (or θ̄e1). Consider, for

example, a positive shock on θ̄. One can derive from (7) that an increase in the mean

norm sensitivity would result in a drop in the share of free-riders below ne. The stability

condition would then demand that ∆θ̄ < 0 which provides a pressure on θ̄ to fall and

consequently on n∗ to increase, thereby adapting ‘back’ towards the initial equilibrium

θ̄e or ne. In turns out that an evolutionary equilibrium where cooperators and free-riders

coexist is never e-stable.

Proposition 3 An evolutionary equilibrium with 0 < ne < 1 is never e-stable. In contrast,

an evolutionary equilibrium with ne1 = 1 is locally e-stable.

Proof. See Appendix B.

Due to assumption A1, s′(n) ≤ 0. Hence, any small deviation from ne would tip the

balance in evolutionary success between the two strategies. After a positive shock on

θ̄e, the share of free-riders falls short of ne and we get s(n) ≥ c. Cooperators would be

more successful than free-riders, θ̄ would increase and n∗ would decline further. If, on the

13



other hand, the level of free-riding exceeds ne, the norm-based sanctions would become

less effective and we get c ≥ s(n). Free-riders, i.e., individuals with low values of θ, are

evolutionarily more successful than cooperators. Consequently θ̄ decreases and the system

moves into an equilibrium with ne1 = 1. Note that the system would return to such an

equilibrium ne1 after small shocks in θ̄, as in the neighborhood of ne1 = 1 there holds

c > s(ne1) due to A1. Hence, an evolutionary equilibrium with θ̄e1 and ne1 would be

stable.

The analysis provided so far yields an unsatisfactory result. While there can exist an

evolutionary equilibrium where free-riders and cooperators coexist, such an equilibrium

turns out to be unstable. The system either evolves towards an equilibrium where the

norm has eroded and everybody free-rides, or the society would evolve towards full coop-

eration. Despite the fact that losses follow the condition pattern s(n), the evolution of norm

sensitivities within a homogenous environment does not support conditional cooperators.

4.2 Heterogeneous Environment

So far, we have considered a homogenous environment. Agents encounter one particular

situation – one equilibrium state – and evolution shapes their preferences according to the

strength of the social norm in this equilibrium. In reality, however, we often face heteroge-

neous environments: people are guided by norms against littering or against crime, when

they walk through clean and littered parks, through nice and run down neighborhoods

(Funk, 2005, Glaeser et al., 1996); smokers might have a no-smoking norm in mind when

they are at parties at which people smoke, but also at those where nobody smokes (Ny-

borg and Rege, 2003); we might work in a firm where many co-workers cheat but also face

projects where others’ exert high efforts (Ichino and Maggi, 2000). In the following, we

discuss a stylized framework which capture such heterogeneous environments.18 In con-

trast to the case of a homogenous environment, we find (potentially) e-stable evolutionary

equilibria where cooperators and free-riders coexist.

Consider an initial distribution such that assumption A2(ii) is fulfilled. In this case,

there exists a multiplicity of equilibria (see Lemma 1). Within each generation, the pop-

ulation sometimes coordinates on an a-stable equilibrium state n∗a, sometimes on n∗b with

n∗j = Φ(θ̂(n∗j), θ̄, σ
2) for j ∈ {a, b}. Without loss of generality, we assume n∗a < n∗b . The

likelihood with which a generation coordinates on equilibrium state n∗j is exogenously given

18One might argue that different outcomes are simply due to population heterogeneity, e.g., different
distributions of θ in ‘good’ and ‘bad’ environments. While this heterogeneity obviously exists, it only
partially explains the diversity of observed behavior (see, e.g., the discussion in Glaeser et al., 1996). Our
analysis therefore abstracts from heterogeneity in population characteristics.
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by 0 < πj < 1.19 The actions an agent i with θi chooses according to (5) in the equilibrium

states n∗a, respectively n∗b , is denoted by (xia, x
i
b). The evolutionary success for (xia, x

i
b) is

now given by

w
(
xia, x

i
b

)
=
∑
j=a,b

πj
(
y(xij) + z(xij, n

∗
j)
)

. (19)

From n∗a < n∗b and (6) follows θ̂(n∗a) < θ̂(n∗b). Hence, we will observe three different

strategies: on the one hand, agents with θi ≤ θ̂(n∗a) will free-ride in both equilibrium

states. Agents with θi > θ̂(n∗b) on the other hand, will cooperate in both states. A third

group of individuals, those with θ̂(n∗a) < θi ≤ θ̂(n∗b), behaves conditionally cooperative.

They cooperate in equilibrium state a, where many others cooperate as well, but defect

in state b, as more of the others free-ride. Making use of (1), (2) and (5), we can express

the evolutionary success of agents with different norm sensitivities in the following way:

w(θ, θ̄) =


−c for θ > θ̂(n∗b)

−πac− πbs(n∗b) for θ̂(n∗a) < θ ≤ θ̂(n∗b)

−πas(n∗a)− πbs(n∗b) for θ ≤ θ̂(n∗a)

(20)

The crucial difference to the case of a homogenous environment is the fact that agents

with intermediate levels of θ obtain fitness payoffs from two different actions. The success

of the conditionally cooperative strategy consists of the cooperation payoff for equilibrium

state a plus the payoff from free-riding in state b.

Using (20) we can compute the mean evolutionary success of the population for a given

πa and πb = 1− πa,

w̄ = −c+ πa (c− s(n∗a))
θ̂(n∗a)∫
−∞

dΦ(θ) + (1− πa) (c− s(n∗b))
θ̂(n∗b )∫
−∞

dΦ(θ). (21)

From (13) one can easily show that the evolution of θ̄ is now determined by ∆θ̄ = 1
w̄

Ψ

with

Ψ ≡ πa (s(n∗a)− c)
(
θ̄n∗a − θ̄∗a

)
+ (1− πa) (s(n∗b)− c)

(
θ̄n∗b − θ̄∗b

)
, (22)

19At this point, one could extend the analysis in several directions. One could derive the likelihood
πj endogenously from the relative size of the basin of attraction for a particular equilibrium state n∗j .
Moreover, one could easily consider heterogenous environments with more than two stable equilibrium
states. These extensions do not effect our main results.
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and θ̄∗j captures the mean level of θ among the free-riders for equilibrium state n∗j .
20 The

evolutionary dynamics on θ̄ are now given by

sign
{

∆θ̄
}

= sign {Ψ} (23)

This leads to the following proposition:

Proposition 4 (i) An evolutionary equilibrium in a heterogeneous environment is char-

acterized by Ψ = 0, where the stable equilibrium states nea = Φ(θ̂(nea), θ̄
e, σ2) and neb =

Φ(θ̂(neb), θ̄
e, σ2) are supported by a normal distribution with mean θ̄e. (ii) If neb < 1, there

holds s(nea) > c > s(neb).

Proof. See Appendix B.

The Proposition characterizes an evolutionary equilibrium for a heterogeneous envi-

ronment. As long as neb < 1, the distribution in the evolutionary equilibrium supports two

equilibrium states such that s(nea) > c > s(neb).
21 In terms of evolutionary success, co-

operation dominates free-riding in equilibrium state a. For state b, however, the opposite

holds: free-riding is more widespread, and the losses from violating the norm are lower

than the costs of cooperation. This implies

Corollary 1 In an evolutionary equilibrium in a heterogeneous environment with neb < 1

conditional cooperators are evolutionarily more successful than free-riders and cooperators.

Proof. From Proposition 4(ii) we know that s(nea) > c > s(neb). Using this in (20) proves

the Corollary.

Figure 2 graphically illustrates an example of such an evolutionary equilibrium. The

graph on the left-hand side captures a system with a distribution Φ(θ) and a function θ̂(n)

supporting two stable equilibrium states n∗a < n∗b < 1. The graph on the right-hand side

depicts the difference in evolutionary payoffs between the strategies for the two equilibria.

Figure 2 about here

20The definition is analogous to (A.10) in the Appendix. Equivalently, the derivation of ∆θ̄ and Ψ is
analogous to the one of (A.9), discussed in Appendix A.

21Another possible equilibrium would be ne
b = 1 and s(ne

a) = c. As this type of equilibrium has sim-
ilar properties to the one discussed in the previous section, we do not discuss this case. Moreover, the
equilibrium condition, Ψ = 0, would also be fulfilled for (i) ne

a = 0 and ne
b = 1 as well as for (ii) ne

a = 0
and ne

b < 1 with s(ne
b) = c. Note, however, that assumption A1 implies θ̂(0) > 0. Unless θ̄ →∞, there is

always a positive mass of individuals with θ ≤ θ̂(0) which makes an equilibrium state ne
a = 0 impossible.
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From Figure 2 and from the analysis above (compare Proposition 2) it is clear that

s(0) > c is a necessary condition for an evolutionary equilibrium to exist. In addition,

assumption A2(ii) has to hold in order to guarantee a multiplicity of equilibria. Analogous

to before, the necessary and sufficient condition for the local e-stability of an evolutionary

equilibrium is d∆θ̄/dθ̄ < 0. From this we derive

Proposition 5 Sufficient conditions for the e-stability of an evolutionary equilibrium with

neb < 1 are given by nea ≤ min {γa; δa} and γb ≤ neb ≤ δb, with

γj ≡

θ̂(ne
j)∫

−∞

φ(θ)

(
θ − θ̄e

)2

σ2
dθ,

δj ≡
θ̄∗j
θ̄e

+ φ(θ̂(nej)) θ̂(n
e
j)
(

1− θ̂(nej)
)(

1−
θ̂(nej)

θ̄e

)
.

Proof. See Appendix B.

As it is difficult to discuss the intuition behind the stability conditions, we conducted

a series of numerical simulations.22 Typically, we found two levels of θ̄ which supported

an evolutionary equilibrium. The one with the higher mean norm-sensitivity was always

stable, even for cases where the (sufficient) condition nea ≤ min {γa; δa} from Proposition 5

was violated. We are therefore confident that stable evolutionary equilibria within a het-

erogeneous environment exist for a wide range of parameters. Our conjecture is backed

by a straightforward intuition: small shocks in the norm transmission would not change

the result from Corollary 1 – conditional cooperation would still perform more successfully

than the two unconditional strategies. Since conditional cooperators have intermediate val-

ues of θ, preferences in the ‘middle’ of the θ distribution are evolutionarily more successful

and dominate against those with more extreme (either low or high) θ-values.

The evolutionary dominance of conditional cooperators is the main result of our anal-

ysis. Individuals who lack pro-social preferences (those with low θ values) as well as in-

dividuals with ‘overly’ pro-social preferences (very high values of θ) play one particular

strategy, irrespectively of the other agents’ behavior. In a stable evolutionary equilibrium

within a homogenous environment, one of these two strategies will dominate the other. In

a heterogeneous environment, i.e., when individuals face a ‘good’ state with high levels

of cooperation and a ‘bad’ state with widespread free-riding, a third strategy appears:

22In the Appendix, we analyze the stability conditions in more detail and show that they can both
be fulfilled. In the simulations, we mainly work with the functional form s(n) = λ(1 − r(na/a − nb/b))
and parameters in the range c = 1, λ ∈ (1, 2], r ∈ [1.5, 2.5], a ∈ [1, 2], b ∈ [2, 4], a standard deviation
σ ∈ [1.5, 2.5] and πa ∈ (0, 1). The program code is available from the authors upon request.
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conditional cooperation. In the adaptation to such a heterogeneous environment, the two

unconditional strategies prove less successful that the conditional strategy. Agents who

cooperate in the good but free-ride in the bad state dominate the free-riders in the former

and the cooperators in the latter environment. Thus, the evolutionary pressure to adapt to

heterogeneous environments provides a simple explanation for the success of conditionally

cooperative behavior.23

5 Discussion

5.1 Replicator Dynamics

Would our results still hold if evolution followed a conventional replicator dynamic rather

than the quantitative genetic process? Consider a population with N → ∞ possible

values of θ, indexed by ` ∈ {1, ..., N}, where an N -dimensional vector g = [g`] depicts

the distribution of θ (compare Bisin et al., 2009). Let the frequency of a type, g`, evolve

according to

ġ` = g`
(
w(θ`)− w̄

)
. (24)

From the analysis in Section 4.1 it immediately follows that any distribution which sup-

ports an equilibrium share ne with s(ne) = c also constitutes an evolutionary equilibrium

according to (24). If s(ne) = c holds, neither free-riders nor cooperators have any evolu-

tionary advantage (compare Proposition 1) and we would get w(θ`) = w̄ ⇒ ġ` = 0 for all

`. Similarly, the (a-)stability properties of such an equilibrium with 0 < ne < 1 carry over:

any small deviation from ne would either lead to a breakdown in cooperation or a move

towards full cooperation.

The analysis of Section 4.2 suggests that conditional cooperation will always dominate

the two unconditional strategies in a heterogeneous environment. This holds for any evo-

lutionary dynamics. Adaptation according to (24), however, would eliminate preferences

that induce unconditional strategies. In an evolutionary equilibrium, the whole population

would consist of conditional cooperators. Everybody would cooperate in one equilibrium

state (n∗a = 0), and free-ride in the other (n∗b = 1). Any distribution of θ with g` ≥ 0

for θ̂(0) ≤ θ` ≤ θ̂(1) and g` = 0 otherwise which supports these equilibrium states would

constitute an evolutionary equilibrium. Hence, the dynamics from (24) do not (in general)

lead to a society with one homogenous level of norm sensitivity.

23The intuition also applies for alternative behavioral models that capture conditional cooperation
(Fehr and Schmidt, 2006). Models of self-centered or group-centered inequality aversion, for instance,
predict unconditional free-riding (unconditional cooperation) for low (high) but conditional cooperation
for intermediate values of inequality aversion.
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5.2 Quantitative Genetics

The evolutionary model developed by Lande (1976) considers a normally distributed trait

that evolves according to the relative fitness differential w(θ)/w̄: the frequency of θ-type

with an evolutionary payoff above (below) the mean will increase (shrink). The resulting

non-normal distribution is transformed back to a normal distribution with a new mean. In

this vein, the mean trait value θ̄ evolves whereas the normal character and the variance of

the distribution are preserved. Our motivation to apply this method is mainly technical. On

the one hand, the method provides a tractable tool to study the evolution of a continuous

type distribution within the basic model from Section 2. On the other hand, the approach

seems perfectly suited to study a process with frequency dependence, i.e., externalities in

the different types’ evolutionary success created by the change in the type distribution.

Admittedly, the quantitative genetic method has several limitations.24 Within our

framework, it implies an imperfect evolutionary process, as the initial variance in θ is

maintained during the course of evolution. Hence, by using this method we neglect the case

where all agents adapt one unique θ value (e.g., θ = 1). One could justify this implication

by systematic disturbances that are embedded in any norm transmission process.25 In

the context of a cultural process, this appears more plausible than the case of perfect

adaptation to one unique level of norm sensitivity. Even if, e.g., the parents want to

‘install’ a certain level of θ among their offspring, other peer influences might affect the

actually transmitted level.

Note that a perfectly homogenous population would (in general) not constitute a sta-

ble evolutionary equilibrium according to the dynamic from (24) either. In contrast to

Lande’s approach, however, the process from (24) does not allow for a co-existence of

different strategies, i.e., free-riding, cooperation and conditional cooperation, in an evo-

lutionary equilibrium within a heterogeneous environment. The behavioral heterogeneity

that emerges in the equilibrium characterized in Proposition 4 is simply a consequence of

the constant variance. For the case of a normal distribution with an infinitesimally small

variance, however, the evolutionary equilibrium would consist of a population of condi-

tional cooperators (such that n∗a → 0 and n∗b → 1). For this special case, behavior (but

not necessarily the distribution of θ) in the evolutionary equilibrium would be equivalent

for replicator dynamics and the quantitative genetic approach.

24One crucial limitation of the method would be the case with evolutionary pressure on low and high
θ-types to grow. This would suggest an evolution towards a bimodal distribution which is excluded by
assumption in Lande’s approach. Such a disruptive evolution cannot occur in our set-up.

25If the errors in the norm transmission are normally distributed – i.e., if the influences in the education
and socialization of the next generation contain random elements – and remain constant during evolution,
these deviations from perfect adaptation in θ would maintain a normal distribution Φ(θ). This would also
apply for a genetically determined heterogeneity in θ (see footnote 13).
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6 Conclusion

While the impact of heterogeneous ‘habitats’ on evolutionary processes is well studied by

biologists,26 this idea has so far been neglected in evolutionary economics. In this paper,

we take a first step towards closing this gap in the literature. We develop a model of

voluntary public good provisions in the context of a social norm for cooperation. As the

strength of social norms depends on the level of cooperation, there is scope for multiple

equilibria. Society may coordinate on an equilibrium with a high level of cooperation,

where norm deviations would result in significant sanctions, or on a state with widespread

free-riding and weak norm-enforcement. We link this multiplicity of equilibria to the idea

of heterogeneous habitats, in the sense that the evolutionary success of a certain norm-

sensitivity, and the behavior induced by it, is evaluated for different equilibria of the game.

Following an indirect evolutionary approach, individual norm sensitivities are shaped en-

dogenously according to their performance in equilibrium states with a strong norm and

states with a weak norm. In such heterogeneous environments, conditional cooperation is

more successful than any unconditional strategy. In the ‘cooperative’ environment, condi-

tional cooperators follow the norm and avoid the loss that free-riders incur from violating a

strong norm. In the environment where the norm is weak and norm-based sanctions hardly

play a role, conditional cooperators reap the same payoff as free-riders, which dominates

that of an unconditional cooperator. Hence, the preferences underlying conditional coop-

eration are well adapted to heterogeneous environments. An intermediate level of norm

sensitivity allows individuals to react flexibly to different social situations. Thereby, they

dominate unconditional strategies which are specialized on one particular condition.

Members of modern human societies typically interact in various cooperation problems

where cooperation fails sometimes, but works quite well in other situations. We face both

cooperative and uncooperative environments, clean public parks and littered ones, projects

where co-workers exert high efforts and those in which others shirk. Our analysis suggests

that exactly such a heterogeneity in our social environments is a driving force in the

evolutionary success of conditional cooperation.
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Appendix

A.1 – Section 3

For the density of the normal distribution, f(α), one can easily derive

∂f(α)

∂ᾱ
= f(α)

α− ᾱ
σ2

. (A.1)

Making use of this term in (12) and rearranging, we get

∂w̄

∂ᾱ
=

1

σ2

∫
[αw(α, ᾱ) f(α)− ᾱ w(α, ᾱ) f(α)] dα +

∫
∂w(α, ᾱ)

∂ᾱ
dF (α). (A.2)

From (10), respectively (11), it follows that the first expression in the first integral equals

ᾱsw̄, and the second expression is ᾱw̄. We arrive at

∂w̄

∂ᾱ
=
w̄

σ2
(ᾱs − ᾱ) +

∫
∂w(α, ᾱ)

∂ᾱ
dF (α). (A.3)

Rearranging and making use of (9) yields

∆ᾱ =
σ2

w̄

(
∂w̄

∂ᾱ
−
∫
∂w(α, ᾱ)

∂ᾱ
dF (α)

)
(A.4)

which is equivalent to

∆ᾱ =
σ2

w̄

∫
w(α, ᾱ)

∂f(α)

∂ᾱ
dα. (A.5)

Substituting for (A.1) we arrive at (13).

A.2 – Section 4

The mean evolutionary success is given by

w̄ = −s(n∗)
θ̂(n∗)∫
−∞

dΦ(θ)− c
∞∫

θ̂(n∗)

dΦ(θ). (A.6)

As Φ(θ̂(n∗)) = n∗, we can rearrange w̄ and get

w̄ = − (1− n∗) c− n∗s(n∗). (A.7)

From this follows (17).
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As we have demonstrated in section 3, only the direct impact of a change in θ̄ is impor-

tant for the evolution of this variable. The indirect effect that arises since the equilibrium

state n∗ changes with any change in the distribution (which, in turn, affects s(n), the

‘frequency dependent’ element determining evolutionary success) is irrelevant. Hence, we

can follow (13) and obtain

∆θ̄ =
1

w̄
{−

θ̂(n∗)∫
−∞

s(n∗)
(
θ − θ̄

)
dΦ(θ)−

∞∫
θ̂(n∗)

c
(
θ − θ̄

)
dΦ(θ)}. (A.8)

Adding [
θ̂∫
−∞

c(θ − θ̄)dΦ(θ) −
θ̂∫
−∞

c(θ − θ̄)dΦ(θ)] = 0, rearranging terms and noting that

c
∞∫
−∞

(θ − θ̄)dΦ(θ) = 0, we get

∆θ̄ =
1

w̄
(s(n∗)− c)

(
θ̄n∗ − θ̄∗

)
(A.9)

where θ̄∗ represents the mean level of θ among the n∗ agents who free-ride in equilibrium,

θ̄∗ ≡
θ̂(n∗)∫
−∞

θdΦ(θ). (A.10)

As long as 0 < n∗ < 1, there holds θ̄n∗ > θ̄∗. As w̄ > 0 per assumption, we arrive at (18).

B – Proofs

Proof of Lemma 1. As we can rewrite condition (7) as Φ−1(n∗)− θ̂(n∗) = 0, it follows

immediately from A1 and A2(i) that there always exists an equilibrium with n∗ = 1. From

A1 we know s(0) > 0⇒ θ̂(0) > 0 which implies θ̂(n) > Φ−1(n) for n→ 0. From this follows

that A2(ii) assures that there must exist at least one n∗ ∈ (0, 1) where Φ−1(n∗) = θ̂(n∗)

holds, since both θ̂(n) and Φ−1(n) are continuously increasing functions defined over the

unit interval.

Proof of Proposition 1. The proof of (i) follows immediately from (A.9). From (4)

we know that c = θ̂(n∗)s(n∗) must hold for any equilibrium state. s(ne) = c then implies

θ̂(ne) = 1. Using this in (16) and substituting for (4) proves (ii). Part (iii) derives from

n∗ = 1 ⇒ θ̄n∗ = θ̄∗. Hence, for ne1 = 1 the term in the last brackets in (A.9) is zero and

∆θ̄ = 0.
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Proof of Proposition 2. (i) Since c > s(n) for n → 1 and s(.) is continuously

non-increasing in n, s(0) > c assures that there exists a level of n where s(n) = c holds.

Moreover, we can always find a distribution φ(θ, θ̄, σ2), a function s(n) and a level c, which

supports such an equilibrium share of free-riders ne. (ii) From Lemma 1 we know that

n∗ = 1 is supported by any distribution as long as A1 and A2(i) hold. Proposition 1(iii)

implies that any equilibrium with n∗ = 1 where (8) holds, constitutes an evolutionary

equilibrium ne1. (iii) From A1 follows that c > s(0) implies c > s(n) for all n ∈ [0, 1]. It

therefore follows from c > s(0) that there cannot exist an equilibrium with ne < 1, as @ n
with s(n) = c.

Proof of Proposition 3. From (A.9) one can derive

d∆θ̄

dθ̄
=

1

w̄
(s(n∗)− c)

θ̂(n∗)∫
−∞

φ(θ)− φ(θ)

(
θ − θ̄

)2

σ2
dθ

− 1

w̄2

[
∂w̄

∂θ̄
+
∂w̄

∂n∗
∂n∗

∂θ̄

]
(s(n∗)− c)

θ̂(n∗)∫
−∞

φ(θ)
(
θ̄ − θ

)
dθ (A.11)

+
1

w̄

s′(n∗) θ̂(n∗)∫
−∞

φ(θ)
(
θ̄ − θ

)
dθ + (s(n∗)− c) ∂θ̂(n

∗)

∂n∗
φ(θ̂)

(
θ̄ − θ̂(n∗)

) ∂n∗
∂θ̄

where we made use of the Leibniz Rule of integral differentiation to derive the last term

in the third line’s squared brackets. Rearranging and making use of (4), (7) and (A.10),

we arrive at

d∆θ̄

dθ̄
=

1

w̄
(s(n∗)− c)

n∗ − θ̂(n∗)∫
−∞

φ(θ)

(
θ − θ̄

)2

σ2
dθ


− 1

w̄2

[
∂w̄

∂θ̄
+
∂w̄

∂n∗
∂n∗

∂θ̄

]
(s(n∗)− c)

(
θ̄n∗ − θ̄∗

)
(A.12)

+
1

w̄

[(
θ̄n∗ − θ̄∗

)
+ (s(n∗)− c) θ̂(n

∗)

s(n∗)
φ(θ̂)

(
θ̂(n∗)− θ̄

)]
s′(n∗)

∂n∗

∂θ̄

From Proposition 1 we know that an evolutionary equilibrium with 0 < ne < 1 is charac-

terized by s(ne) = c. Therefore, the expressions in the first and the second line of (A.12)

equal zero for such an equilibrium ne. Using (7), one can easily show that ∂n∗/∂θ̄ ≤ 0 for

any stable equilibrium state n∗. As s′(n∗) ≤ 0 and θ̄n∗ > θ̄∗ for 0 < n∗ < 1, it follows that

the expression in the third line of (A.12) must be non-negative and we get d∆θ̄/dθ̄ ≥ 0 for
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any evolutionary equilibrium with 0 < ne < 1. Such an evolutionary equilibrium is never

stable.

Let us now consider an evolutionary equilibrium with ne1 = 1. Since θ̂(ne1) → ∞ for

ne1 = 1, the integral term in the first line of (A.12) equals the variance σ2 and the term

in the squared brackets becomes zero. For ne1 = 1 there also holds θ̄n∗ = θ̄∗ and the

expression in the second line of (A.12) also equals zero. From s(ne1) = 0, θ̂(ne1)→∞ and

θ̄n∗ = θ̄∗, it follows that the term in the third line’s squared brackets is strictly negative.

Together with ∂n∗/∂θ̄ ≤ 0 and s′(n∗) ≤ 0 this implies that d∆θ̄/dθ̄ < 0 holds for ne1 = 1.

Proof of Proposition 4. Part (i) follows immediately from (23). Part (ii) derives from

(22): Note that θ̄n∗j > θ̄∗j as long as n∗j < 1. Hence, the first term in (22) would be negative

if c > s(nea). Since nea < neb, (6) implies that the second term would be negative as well.

We would get Ψ < 0. Therefore c > s(nea) cannot hold in an equilibrium with neb < 1. Iff

s(nea) > c, the first term in (22) is positive. In order to get Ψ = 0 for neb < 1, the second

term in (22) must be negative, which holds for c > s(neb).

Proof of Proposition 5. Analogously to (A.12) we can derive from (21) and (22)

d∆θ̄

dθ̄
=

1

w̄

∑
j

πj
(
s(n∗j)− c

)n∗j −
θ̂(n∗j )∫
−∞

φ(θ)

(
θ − θ̄

)2

σ2
dθ


− 1

w̄2

[
∂w̄

∂θ̄
+
∑
j

πj
∂w̄

∂n∗j

∂n∗j
∂θ̄

]
Ψ (A.13)

+
1

w̄

∑
j

πj

[
θ̄n∗j − θ̄∗j +

(
s(n∗j)− c

) θ̂(n∗j)
s(n∗j)

φ(θ̂(n∗j))
(
θ̂(n∗j)− θ̄

)]
s′(n∗j)

∂n∗j
∂θ̄

Since in an evolutionary equilibrium Ψ = 0 (Proposition 4), the second line of (A.13)

equals zero. In an equilibrium as characterized in Proposition 4(ii), i.e., where neb < 1,

it holds that s(nea) > c > s(neb). If the squared bracket term in the first line is positive

for equilibrium state neb and negative for nea, the expression in the first line of (A.13) is

unambiguously negative. The two corresponding conditions are

nea ≤
θ̂(ne

a)∫
−∞

φ(θ)

(
θ − θ̄e

)2

σ2
dθ, and neb ≥

θ̂(ne
b)∫

−∞

φ(θ)

(
θ − θ̄e

)2

σ2
dθ. (A.14)

(Note that the integral term in (A.14) takes values in the range (0, 0.5] for 0 < nea ≤ 0.5

and [0.5, 1) for 0.5 ≤ nea < 1.)
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Let us now turn to the third line of (A.13). Remember that s′(n∗j) ≤ 0 and ∂n∗j/∂θ̄ ≤ 0

since both equilibrium states n∗j are stable as characterized by (8). It is therefore sufficient

for the expression in the third line to be negative, if the term in the squared brackets is

negative for both equilibrium states. Rearranging, we get the following condition

nej ≤
θ̄∗j
θ̄

+ φ(θ̂(nej)) θ̂(n
e
j)
(

1− θ̂(nej)
)(

1−
θ̂(nej)

θ̄

)
, (A.15)

where we have substituted for (4). The first term on the RHS of (A.15) is positive for any

n∗ > 0. Moreover, for n∗a ≤ 0.5 there holds θ̂(n∗a) ≤ θ̄. Since 1− θ̂(n∗j) = (s(n∗j)− c)/ s(n∗j),
s(n∗a) > c implies that the second term on the RHS is also positive for n∗a ≤ 0.5. For an

equilibrium state n∗b ≥ 0.5 we know that θ̂(n∗b) ≥ θ̄. From s(n∗b) < c then follows that the

RHS is again strictly positive. (As the first term approaches unity for n∗b → 1 and since

the second term is strictly positive, the RHS of (A.15) could be strictly larger than unity

for high levels of n∗b . For n∗a → 0, the second term will be positive, as θ̂(0) > 0 holds due

to assumption A1. Hence, condition (A.15) should hold for extreme levels of n∗j .)
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