TY - JOUR A1 - Ruhnau, Oliver A1 - Stiewe, Clemens A1 - Muessel, Jarusch A1 - Hirth, Lion T1 - Natural gas savings in Germany during the 2022 energy crisis JF - Nature Energy N2 - Russia curbed its natural gas supply to Europe in 2021 and 2022, creating a grave energy crisis. This paper empirically estimates the crisis response of natural gas consumers in Germany—for decades the largest export market for Russian gas. Using a multiple regression model, we estimate the response of small consumers, industry, and power stations separately, controlling for the non-linear temperature-heating relationship, seasonality, and trends. We find significant and substantial gas savings for all consumer groups, but with differences in timing and size. For instance, industry started reducing consumption as early as September 2021, while small consumers saved substantially only since March 2022. Across all sectors, gas consumption during the second half of 2022 was 23% below the temperature-adjusted baseline. We discuss the drivers behind these savings and draw conclusions on their role in coping with the crisis. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b1570-opus4-49445 N1 - This is a post-peer-review, pre-copyedit version of an article published in Nature Energy. The final authenticated version is available online at: https://doi.org/10.1038/s41560-023-01260-5 ER - TY - RPRT A1 - Ruhnau, Oliver A1 - Stiewe, Clemens A1 - Muessel, Jarusch A1 - Hirth, Lion T1 - Gas demand in times of crisis. The response of German households and industry to the 2021/22 energy crisis N2 - Europe is in the midst of the most severe energy crisis in a generation, at the core of which is the continuously plummeting supply of Russian natural gas. With alternative supply options being limited, natural gas prices have surged. This paper empirically estimates the response of natural gas demand to the price increase, using data from Germany—the so far largest consumer of Russian natural gas. We identify the crisis response of small and large consumers separately, controlling for temperature, gas-fired power generation, and economic activity. For small consumers, including mostly households, we find a substantial demand reduction of 6% from March onwards—most likely due to political and ethical considerations after the start of Russia’s invasion of Ukraine. For industrial consumers, demand reductions started much earlier in August 2021, when wholesale prices for natural gas started to surge, with an average reduction of 11%. We conclude that voluntary industrial demand response has played a significant role in coping with the energy crisis so far. KW - Energy Demand KW - Demand Response KW - European energy crisis KW - Natural gas KW - Centre for Sustainability Y1 - 2022 ER - TY - JOUR A1 - Hirth, Lion A1 - Khanna, Tarun M. A1 - Ruhnau, Oliver T1 - How aggregate electricity demand responds to hourly wholesale price fluctuations JF - Energy Economics N2 - Electricity needs to be consumed at the very moment of production, leading wholesale prices to fluctuate widely at (sub-)hourly time scales. This article investigates the response of aggregate electricity demand to such price variations. Using wind energy as an instrument, we estimate a significant and robust short-term price elasticity of about −0.05 in Germany and attribute this to industrial consumers. As the share of consumption that is exposed to real-time prices (currently less than 25%) expands, we expect the aggregated price elasticity to grow. Y1 - 2024 U6 - https://doi.org/10.1016/j.eneco.2024.107652 SN - 0140-9883 VL - 135 PB - Elsevier BV ER - TY - JOUR A1 - Ruhnau, Oliver A1 - Eicke, Anselm A1 - Sgarlato, Raffaele A1 - Tröndle, Tim A1 - Hirth, Lion T1 - Cost-Potential Curves of Onshore Wind Energy: the Role of Disamenity Costs JF - Environmental and Resource Economics N2 - Numerical optimization models are used to develop scenarios of the future energy system. Usually, they optimize the energy mix subject to engineering costs such as equipment and fuel. For onshore wind energy, some of these models use cost-potential curves that indicate how much electricity can be generated at what cost. These curves are upward sloping mainly because windy sites are occupied first and further expanding wind energy means deploying less favorable resources. Meanwhile, real-world wind energy expansion is curbed by local resistance, regulatory constraints, and legal challenges. This presumably reflects the perceived adverse effect that onshore wind energy has on the local human population, as well as other negative external effects. These disamenity costs are at the core of this paper. We provide a comprehensive and consistent set of cost-potential curves of wind energy for all European countries that include disamenity costs, and which can be used in energy system modeling. We combine existing valuation of disamenity costs from the literature that describe the costs as a function of the distance between turbine and households with gridded population data, granular geospatial data of wind speeds, and additional land-use constraints to calculate such curves. We find that disamenity costs are not a game changer: for most countries and assumptions, the marginal levelized cost of onshore wind energy increase by 0.2–12.5 €/MWh. KW - Centre for Sustainability Y1 - 2022 U6 - https://doi.org/10.1007/s10640-022-00746-2 ER - TY - JOUR A1 - Eicke, Anselm A1 - Ruhnau, Oliver A1 - Hirth, Lion T1 - Electricity balancing as a market equilibrium: An instrument-based estimation of supply and demand for imbalance energy N2 - Frequency stability requires equalizing supply and demand for electricity at short time scales. Such electricity balancing is often understood as a sequential process in which random shocks, such as weather events, cause imbalances that system operators close by activating balancing reserves. By contrast, we study electricity balancing as a market where the equilibrium price (imbalance price) and quantity (system imbalance) are determined by supply and demand. System operators supply imbalance energy by activating reserves; market parties that, deliberately or not, deviate from schedules create a demand for imbalance energy. The incentives for deliberate strategic deviations emerge from wholesale market prices and the imbalance price. We empirically estimate the demand curve of imbalance energy, which describes how sensitive market parties are to imbalance prices. To overcome the classical endogeneity problem of price and quantity, we deploy instruments derived from a novel theoretical framework. Using data from Germany, we find a decline in the demand for imbalance energy by 2.2 MW for each increase in the imbalance price by EUR 1 per MWh. This significant price response is remarkable because the German regulator prohibits strategic deviations. We also estimate cross-market equilibriums between intraday and imbalance markets, finding that a shock to the imbalance price triggers a subsequent adjustment of the intraday price. KW - Electricity balancing, Intraday electricity market, Imbalance energy KW - Centre for Sustainability Y1 - 2021 U6 - https://doi.org/10.1016/j.eneco.2021.105455 ER - TY - RPRT A1 - Stiewe, Clemens A1 - Ruhnau, Oliver A1 - Hirth, Lion T1 - European industry responds to high energy prices: The case of German ammonia production. N2 - Since September 2021, European natural gas prices are at record-high levels. On average, they have been six to seven times higher than pre-pandemic price levels. While the post-pandemic recovery of global natural gas demand has driven up prices around the world, the most important drivers for European gas prices were Russia's less-than-usual supply since mid-2021 and its invasion of Ukraine in February 2022. Western efforts to abandon Russian gas imports altogether mean that high natural gas prices are likely to stay for longer. While high gas prices may be the new normal, there is uncertainty about the economic reaction to this shock. How do energy-intensive industries react? Do global value chains collapse if intermediate goods produced in Europe become uneconomic because of high energy prices? Our preliminary analysis shows that industry response to has in fact been visible from the very onset of the energy crisis. A closer look at German fertilizer production, which heavily relies on natural gas as fuel and feedstock to produce ammonia as an intermediate product, reveals that increased ammonia imports have allowed domestic fertilizer production to remain remarkably stable. KW - Energy Demand KW - Demand response KW - European energy crisis KW - Natural gas KW - Centre for Sustainability Y1 - 2022 UR - https://www.econstor.eu/handle/10419/253251 ER -