@article{CreutzigAcemogluBaietal., author = {Creutzig, Felix and Acemoglu, Daron and Bai, Xuemei and Edwards, Paul N. and Hintz, Marie Josefine and Kaack, Lynn and Kilkis, Siir and Kunkel, Stefanie and Luers, Amy and Milojevic-Dupont, Nikola and Rejeski, Dave and Renn, J{\"u}rgen and Rolnick, David and Rosol, Christoph and Russ, Daniela and Turnbull, Thomas and Verdolini, Elena and Wagner, Felix and Wilson, Charlie and Zekar, Aicha and Zumwald, Marius}, title = {Digitalization and the Anthropocene}, series = {Annual Review of Environment and Resources}, volume = {47}, journal = {Annual Review of Environment and Resources}, doi = {10.1146/annurev-environ-120920-100056}, pages = {479 -- 509}, abstract = {Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically increased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: (a) planetary boundaries and stability, (b) equity within and between countries, and (c) human agency and governance, mediated via (i) increasing resource efficiency, (ii) accelerating consumption and scale effects, (iii) expanding political and economic control, and (iv) deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift human-digital-Earth interactions toward sustainability.}, language = {en} } @article{MilojevicDupontWagnerNachtigalletal., author = {Milojevic-Dupont, Nikola and Wagner, Felix and Nachtigall, Florian and Hu, Jiawei and Br{\"u}ser, Geza Boi and Zumwald, Marius and Biljecki, Filip and Heeren, Niko and Kaack, Lynn and Pichler, Peter-Paul and Creutzig, Felix}, title = {EUBUCCO v0.1: European building stock characteristics in a common and open database for 200+ million individual buildings}, series = {Scientific Data}, volume = {10}, journal = {Scientific Data}, doi = {10.1038/s41597-023-02040-2}, abstract = {Building stock management is becoming a global societal and political issue, inter alia because of growing sustainability concerns. Comprehensive and openly accessible building stock data can enable impactful research exploring the most effective policy options. In Europe, efforts from citizen and governments generated numerous relevant datasets but these are fragmented and heterogeneous, thus hindering their usability. Here, we present EUBUCCO v0.1, a database of individual building footprints for ~202 million buildings across the 27 European Union countries and Switzerland. Three main attributes - building height, construction year and type - are included for respectively 73\%, 24\% and 46\% of the buildings. We identify, collect and harmonize 50 open government datasets and OpenStreetMap, and perform extensive validation analyses to assess the quality, consistency and completeness of the data in every country. EUBUCCO v0.1 provides the basis for high-resolution urban sustainability studies across scales - continental, comparative or local studies - using a centralized source and is relevant for a variety of use cases, e.g., for energy system analysis or natural hazard risk assessments.}, language = {en} } @article{CreutzigJochemEdelenboschetal., author = {Creutzig, Felix and Jochem, Patrick and Edelenbosch, Oreane Y. and Minx, Jan C.}, title = {Transport: A roadblock to climate change mitigation?}, series = {Science (Policy Forum)}, volume = {350}, journal = {Science (Policy Forum)}, number = {6263}, issn = {0036-8075}, doi = {10.1126/science.aac8033}, pages = {912}, language = {en} } @article{CreutzigPoppPlevinetal., author = {Creutzig, Felix and Popp, Alexander and Plevin, Richard and Minx, Jan C.}, title = {Reconciling top-down and bottom-up modelling on future bioenergy deployment}, series = {Nature Climate Change}, volume = {2}, journal = {Nature Climate Change}, number = {4}, doi = {10.1038/nclimate1416}, pages = {320 -- 327}, language = {en} } @article{CreutzigMcGlynnMinx, author = {Creutzig, Felix and McGlynn, Emily and Minx, Jan C.}, title = {Climate policies for road transport revisited (I): Evaluation of the current framework.}, series = {Energy Policy}, volume = {39}, journal = {Energy Policy}, number = {5}, pages = {2396 -- 2406}, language = {en} } @techreport{CreutzigFlachslandMcGlynn, type = {Working Paper}, author = {Creutzig, Felix and Flachsland, Christian and McGlynn, Emily}, title = {CITIES: Car industry, road transport and an international emission trading scheme - policy options. A report commissioned by BMW}, language = {en} } @article{BaiocchiCreutzigMinx, author = {Baiocchi, Giovanni and Creutzig, Felix and Minx, Jan C.}, title = {A spatial typology of human settlements and their CO2 emissions in England}, series = {Global Environmental Change}, volume = {34}, journal = {Global Environmental Change}, doi = {10.1016/j.gloenvcha.2015.06.001}, pages = {13 -- 21}, language = {en} } @article{MinxCreutzigAgostonetal., author = {Minx, Jan C. and Creutzig, Felix and Agoston, Peter and al., et.}, title = {Urban infrastructure choices structure climate solutions}, series = {Nature Climate Change}, volume = {6}, journal = {Nature Climate Change}, issn = {1758-678X}, doi = {10.1038/nclimate3169}, pages = {1054 -- 1056}, abstract = {Cities are becoming increasingly important in combatting climate change, but their overall role in global solution pathways remains unclear. Here we suggest structuring urban climate solutions along the use of existing and newly built infrastructures, providing estimates of the mitigation potential.}, language = {en} } @article{SmithDavisCreutzigetal., author = {Smith, Pete and Davis, Steven J. and Creutzig, Felix and Minx, Jan C.}, title = {Biophysical and economic limits to negative CO2 emissions}, series = {Nature Climate Change}, volume = {6}, journal = {Nature Climate Change}, doi = {10.1038/nclimate2870}, pages = {42 -- 50}, abstract = {To have a >50\% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.}, language = {en} } @article{FlachslandEdenhoferCreutzig, author = {Flachsland, Christian and Edenhofer, Ottmar and Creutzig, Felix}, title = {Closing the Emission Price Gap}, series = {Global Environmental Change}, volume = {31}, journal = {Global Environmental Change}, publisher = {Elsevier B.V.}, address = {Amsterdam}, doi = {10.1016/j.gloenvcha.2015.01.003}, pages = {132 -- 143}, abstract = {Even without internationally concerted action on climate change mitigation, there are important incentives for countries to put a price on their domestic emissions, including public finance considerations, internalizing the climate impacts of their own emissions, and co-benefits, such as clean air or energy security. Whereas these arguments have been mostly discussed in separate strands of literature, this article carries out a synthesis that exemplifies how policies to put a price on emissions can be conceptualized in a multi-objective framework. Despite considerable uncertainty, empirical evidence suggests that different countries may face quite different incentives for emission pricing. For instance, avoided climate damages and co-benefits of reduced air pollution appear to be the main motivation for emission pricing in China, while for the US generating public revenue dominates and for the EU all three motivations are of intermediate importance. We finally argue that such unilateral incentives could form the basis for incremental progress in international climate negotiations toward a realistic climate treaty based on national interest and differentiated emission pricing and describe how such an agreement could be put into practice.}, language = {en} } @article{FlachslandBrunnerEdenhoferetal., author = {Flachsland, Christian and Brunner, Steffen and Edenhofer, Ottmar and Creutzig, Felix}, title = {Climate Policies for road transport revisited (II): Closing the policy gap with cap-and-trade}, series = {Energy Policy}, volume = {39}, journal = {Energy Policy}, number = {4}, publisher = {Elsevier}, address = {Mexico}, issn = {1873-6777}, doi = {10.1016/j.enpol.2011.01.053}, pages = {2100 -- 2110}, language = {en} } @article{LehmannCreutzigEhlersetal., author = {Lehmann, Paul and Creutzig, Felix and Ehlers, Melf-Hinrich and Friedrichsen, Nele and Heuson, Clemens and Hirth, Lion and Pietzcker, Robert}, title = {Carbon lock-out: Advancing renewable energy policy in Europe}, series = {Energies}, volume = {5}, journal = {Energies}, number = {2}, issn = {1996-1073}, doi = {10.3390/en5020323}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:b1570-opus4-22972}, pages = {323 -- 354}, abstract = {As part of its climate strategy, the EU aims at increasing the share of electricity from renewable energy sources (RES-E) in overall electricity generation. Attaining this target poses a considerable challenge as the electricity sector is "locked" into a carbon-intensive system, which hampers the adoption of RES-E technologies. Electricity generation, transmission and distribution grids as well as storage and demand response are subject to important path dependences, which put existing, non-renewable energy sources at an advantage. This paper examines how an EU framework for RES-E support policies should be designed to facilitate a carbon lock-out. For this purpose, we specify the major technological, economic and institutional barriers to RES-E. For each of the barriers, a policy review is carried out which assesses the performance of existing policy instruments and identifies needs for reform. The review reveals several shortcomings: while policies targeting generation are widely in place, measures to address barriers associated with electricity grids, storage and demand are still in their infancy and have to be extended. Moreover, the implementation of policies has been fragmented across EU Member States. In this respect, national policies should be embedded into an integrated EU-wide planning of the RES-E system with overarching energy scenarios and partially harmonized policy rules.}, language = {en} } @techreport{KhannaBaiocchiCallaghanetal., type = {Working Paper}, author = {Khanna, Tarun and Baiocchi, Giovanni and Callaghan, Max W. and Creutzig, Felix and Bogdan Guias, Horia and Haddaway, Neal and Hirth, Lion and Javaid, Aneeque and Koch, Nicolas and Laukemper, Sonja and Loeschel, Andreas and Del Mar Zamora, Maria and Minx, Jan C.}, title = {Reducing carbon emissions of households through monetary incentives and behavioral interventions: a meta-analysis}, doi = {10.21203/rs.3.rs-124386/v1}, abstract = {Despite the importance of evaluating all mitigation options so as to inform policy decisions addressing climate change, a systematic analysis of household-scale interventions to reduce carbon emissions is missing. Here, we address this gap through a state-of-the-art machine-learning assisted meta-analysis to comparatively assess the effectiveness of a range of monetary and behavioral interventions in energy demand of residential buildings. We identify 122 studies and extract 360 effect sizes representing trials on 1.2 million households in 25 countries. We find that all the studied interventions reduce energy consumption of households. Our meta-regression evidences that monetary incentives are on an average more effective than behavioral interventions, but deploying the right combinations of interventions together can increase overall effectiveness. We estimate global cumulative emissions reduction of 8.64 Gt CO2 by 2040, though deploying the most effective packages and interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation with energy demand reductions and realizing substantial co-benefits. }, language = {de} } @article{KaackRolnickDontietal., author = {Kaack, Lynn and Rolnick, David and Donti, Priya L. and Kochanski, Kelly and Lacoste, Alexandre and Sankaran, Kris and Ross, Andrew S. and Milojevic-Dupont, Nikola and Jaques, Natasha and Waldman-Brown, Anna and Luccioni, Alexandra S. and Maharaj, Tegan and Sherwin, Evan D. and Mukkavilli, Karthik and Kording, Konrad P. and Gomes, Carla P. and Ng, Andrew Y. and Hassabis, Demis and Platt, John C. and Creutzig, Felix and Chayes, Jennifer and Bengio, Yoshua}, title = {Tackling Climate Change with Machine Learning}, series = {ACM Computing Surveys}, volume = {55}, journal = {ACM Computing Surveys}, number = {2}, doi = {10.1145/3485128}, pages = {1 -- 96}, abstract = {Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.}, language = {en} } @article{MilojevicDupontHansKaacketal., author = {Milojevic-Dupont, Nikola and Hans, Nicolai and Kaack, Lynn and Zumwald, Marius and Andrieux, Fran{\c{c}}ois and de Barros Soares, Daniel and Lohrey, Steffen and Pichler, Peter-Paul and Creutzig, Felix}, title = {Learning from urban form to predict building heights}, series = {Plos one}, volume = {15}, journal = {Plos one}, number = {12}, doi = {10.1371/journal.pone.0242010}, abstract = {Understanding cities as complex systems, sustainable urban planning depends on reliable high-resolution data, for example of the building stock to upscale region-wide retrofit policies. For some cities and regions, these data exist in detailed 3D models based on real-world measurements. However, they are still expensive to build and maintain, a significant challenge, especially for small and medium-sized cities that are home to the majority of the European population. New methods are needed to estimate relevant building stock characteristics reliably and cost-effectively. Here, we present a machine learning based method for predicting building heights, which is based only on open-access geospatial data on urban form, such as building footprints and street networks. The method allows to predict building heights for regions where no dedicated 3D models exist currently. We train our model using building data from four European countries (France, Italy, the Netherlands, and Germany) and find that the morphology of the urban fabric surrounding a given building is highly predictive of the height of the building. A test on the German state of Brandenburg shows that our model predicts building heights with an average error well below the typical floor height (about 2.5 m), without having access to training data from Germany. Furthermore, we show that even a small amount of local height data obtained by citizens substantially improves the prediction accuracy. Our results illustrate the possibility of predicting missing data on urban infrastructure; they also underline the value of open government data and volunteered geographic information for scientific applications, such as contextual but scalable strategies to mitigate climate change.}, language = {en} } @article{KhannaBaiocchiCallaghanetal., author = {Khanna, Tarun and Baiocchi, Giovanni and Callaghan, Max and Creutzig, Felix and Guias, Horia and Haddaway, Neal R. and Hirth, Lion and Javaid, Aneeque and Koch, Nicolas and Laukemper, Sonja and L{\"o}schel, Andreas and del Mar Zamora Dominguez, Maria and Minx, Jan C.}, title = {A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings}, series = {Nature Energy}, volume = {6}, journal = {Nature Energy}, doi = {10.1038/s41560-021-00866-x}, pages = {925 -- 932}, abstract = {Despite the importance of evaluating all mitigation options to inform policy decisions addressing climate change, a comprehensive analysis of household-scale interventions and their emissions reduction potential is missing. Here, we address this gap for interventions aimed at changing individual households' use of existing equipment, such as monetary incentives or feedback. We have performed a machine learning-assisted systematic review and meta-analysis to comparatively assess the effectiveness of these interventions in reducing energy demand in residential buildings. We extracted 360 individual effect sizes from 122 studies representing trials in 25 countries. Our meta-regression confirms that both monetary and non-monetary interventions reduce the energy consumption of households, but monetary incentives, of the sizes reported in the literature, tend to show on average a more pronounced effect. Deploying the right combinations of interventions increases the overall effectiveness. We have estimated a global carbon emissions reduction potential of 0.35 GtCO2 yr-1, although deploying the most effective packages of interventions could result in greater reduction. While modest, this potential should be viewed in conjunction with the need for de-risking mitigation pathways with energy-demand reductions.}, language = {en} } @article{KaackDontiStrubelletal., author = {Kaack, Lynn and Donti, Priya L. and Strubell, Emma and Kamiya, George and Creutzig, Felix and Rolnick, David}, title = {Aligning artificial intelligence with climate change mitigation}, series = {Nature Climate Change}, volume = {12}, journal = {Nature Climate Change}, doi = {10.1038/s41558-022-01377-7}, pages = {518 -- 527}, abstract = {There is great interest in how the growth of artificial intelligence and machine learning may affect global GHG emissions. However, such emissions impacts remain uncertain, owing in part to the diverse mechanisms through which they occur, posing difficulties for measurement and forecasting. Here we introduce a systematic framework for describing the effects of machine learning (ML) on GHG emissions, encompassing three categories: computing-related impacts, immediate impacts of applying ML and system-level impacts. Using this framework, we identify priorities for impact assessment and scenario analysis, and suggest policy levers for better understanding and shaping the effects of ML on climate change mitigation.}, language = {en} } @techreport{MinxCreutzigMedingeretal., type = {Working Paper}, author = {Minx, Jan C. and Creutzig, Felix and Medinger, Verena and Ziegler, Tina}, title = {Developing a pragmatic approach to assess urban metabolism in Europe: A Report to the European Environment Agency}, publisher = {TU Berlin}, pages = {83}, language = {en} } @techreport{CreutzigFlachslandMcGlynnetal., type = {Working Paper}, author = {Creutzig, Felix and Flachsland, Christian and McGlynn, Emily and Minx, Jan C.}, title = {CITIES: Car Industry, Road Transport and an international Emission Trading Scheme. Policy options}, pages = {130}, language = {en} }