• search hit 41 of 51
Back to Result List

Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids

  • Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimizationBattery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Holger C. HesseORCiDGND, Michael Schimpe, Daniel KucevicORCiD, Andreas JossenORCiD
DOI:https://doi.org/10.3390/en10122107
Identifier:1996-1073 OPAC HS OPAC extern
Parent Title (English):Energies
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Year of first Publication:2017
GND Keyword:Batterie; Akkumulator
Volume:10
Issue:12
Article Number:2107
Number of pages:42 Seiten
First Page:1
Last Page:42
Institutes:Fakultät Maschinenbau
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften
Open Access:open_access
Research focus:FSP1: Energie
Publication Lists:Hesse, Holger
Publication reviewed:begutachtet
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International
Release Date:2022/09/16
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.