• search hit 276 of 278
Back to Result List

Functional properties of foamed and/or stretched polypropylene-films containing sodium chloride particles for humidity regulation

  • The relative humidity level in the immediate vicinity of objects such as foods and technical items has an influence on transpiration and undesired relative humidity dependent reactions on their surfaces such as water vapour condensation, chemical reactions and microbial growth. Desirable are therefore materials that regulate the relative humidity to predefined levels in closed spaces such as in packagings and also in housing spaces. Such materials should be able to adjust the surface humidity of objects via water vapour diffusion in the gas phase without being in direct contact. A strategy to create such humidity regulating materials is the use of substances that absorb and desorb high amounts of water vapour, such as sodium chloride. Sodium chloride (NaCl) particles absorb water vapour at a relative humidity above 75% at 23 degrees C and then they form NaCl solution. NaCl solution desorbs water vapour when the relative humidity in the immediate vicinity decreases below the equilibrium relative humidity of that salt solution.The relative humidity level in the immediate vicinity of objects such as foods and technical items has an influence on transpiration and undesired relative humidity dependent reactions on their surfaces such as water vapour condensation, chemical reactions and microbial growth. Desirable are therefore materials that regulate the relative humidity to predefined levels in closed spaces such as in packagings and also in housing spaces. Such materials should be able to adjust the surface humidity of objects via water vapour diffusion in the gas phase without being in direct contact. A strategy to create such humidity regulating materials is the use of substances that absorb and desorb high amounts of water vapour, such as sodium chloride. Sodium chloride (NaCl) particles absorb water vapour at a relative humidity above 75% at 23 degrees C and then they form NaCl solution. NaCl solution desorbs water vapour when the relative humidity in the immediate vicinity decreases below the equilibrium relative humidity of that salt solution. Therefore, this system is able to regulate the relative humidity in its immediate vicinity. A strategy to provide free space in polymeric structures for the NaCl solution is the creation of cavities by foaming and stretching. However, only little knowledge exists about the influence of the combination of both processes on the functional properties of humidity regulating films with salt as active substance. Hence, the aim of this study was to investigate how and to which extend foaming and/or stretching affects the functional properties, i.e. water vapour sorption and mechanical properties, of polypropylene (PP) films containing NaCl particles. For this study, foamed and non-foamed PP with 3 and 6 weight-% NaCl were extruded into films. In the next step, some of these samples were biaxially stretched and their structures, water vapour absorption, porosities and mechanical strengths were analysed. The only-foamed films had a porosity of 0.3, the porosity of only-biaxially stretched films was between 0.1 and 0.2. The porosity increased to 0.7 when the films were first foamed and stretched afterward. Foamed and then stretched films with 6 wt.-% NaCl absorbed a high amount of water vapour from air with a value of 0.8 g H2O/g film at 97% relative humidity. Stretching of filled and non-filled foamed films also resulted in higher mechanical strength of the pure matrix polymer in comparison to the pure matrix polymer of non-stretched films. By the results of this study is shown that humidity regulating films with high water vapour sorption capacity can be produced via extrusion, foaming and stretching processes which are established processes in the polymer industry.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Sven SängerlaubORCiDGND, Karoline Seibel, Oliver Miesbauer, Astrid F. PantORCiD, Sandra Kiese, Rodler Norbert, Markus Schmid, Kajetan MüllerGND
DOI:https://doi.org/10.1016/j.polymertesting.2017.12.002
Identifier:0142-9418 OPAC HS OPAC extern
Identifier:1873-2348 OPAC HS OPAC extern
Parent Title (English):Polymer Testing
Publisher:Elsevier Science
Place of publication:Amsterdam
Document Type:Article
Language:English
Date of Publication (online):2017/12/07
Year of first Publication:2017
Volume:65
Issue:February 2018
Number of pages:13 Seiten
First Page:339
Last Page:351
Institutes:Fakultät Maschinenbau
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 66 Chemische Verfahrenstechnik
Publication Lists:Müller, Kajetan
Publication reviewed:begutachtet
Release Date:2019/11/25
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.