• search hit 5 of 6
Back to Result List

Standard battery energy storage system profiles: Analysis of various applications for stationary energy storage systems using a holistic simulation framework

  • Lithium-ion batteries are used for both stationary and mobile applications. While in the automotive industry standard profiles are used to compare the performance and efficiency of competing vehicles, a similar comparative metric has not been proposed for stationary battery energy storage systems. Because standard profiles are missing, the comparable evaluation of different applications with respect to efficiency, long-term behavior and profitability is very difficult or not possible at all. This work presents a method to create these standard profiles and the results are available as open data for download. Input profiles including frequency data, industry load profiles and household load profiles are transformed into storage profiles including storage power and state of charge using a holistic simulation framework. Various degrees of freedom for the energy management system as well as for the storage design are implemented and the results are post-processed with a profile analyzer tool in order to identify six key characteristics,Lithium-ion batteries are used for both stationary and mobile applications. While in the automotive industry standard profiles are used to compare the performance and efficiency of competing vehicles, a similar comparative metric has not been proposed for stationary battery energy storage systems. Because standard profiles are missing, the comparable evaluation of different applications with respect to efficiency, long-term behavior and profitability is very difficult or not possible at all. This work presents a method to create these standard profiles and the results are available as open data for download. Input profiles including frequency data, industry load profiles and household load profiles are transformed into storage profiles including storage power and state of charge using a holistic simulation framework. Various degrees of freedom for the energy management system as well as for the storage design are implemented and the results are post-processed with a profile analyzer tool in order to identify six key characteristics, these being: full-equivalent cycles, efficiency, depth of cycles, resting periods, number of changes of sign and energy throughput between changes of sign. All applications examined in this paper show unique characteristics which are essential for the design of the storage system. E.g., the numbers for annual full-equivalent cycles vary from 19 to 282 and the efficiency lies between 83% and 93%. With aid of this work in conjunction with the open data results, users can test and compare their own cell types, operation strategies and system topologies with those of the paper. Furthermore, the storage power profiles and state of charge data can be used as a reference for lifetime and profitability studies for stationary storage systems.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Daniel KucevicORCiD, Benedikt Tepe, Stefan Englberger, Anupam ParlikarORCiD, Markus Mühlbauer, Oliver Bohlen, Andreas JossenORCiD, Holger C. HesseORCiDGND
DOI:https://doi.org/10.1016/j.est.2019.101077
Identifier:2352-152X OPAC HS OPAC extern
Parent Title (English):Journal of Energy Storage
Publisher:Elsevier
Place of publication:Amsterdam
Document Type:Article
Language:English
Year of first Publication:2020
GND Keyword:Batterie; Akkumulator
Volume:28
Article Number:101077
Number of pages:19 Seiten
First Page:1
Last Page:19
Institutes:Fakultät Maschinenbau
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften
Open Access:open_access
Research focus:FSP1: Energie
Publication Lists:Hesse, Holger
Publication reviewed:begutachtet
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International
Release Date:2022/09/16
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.