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Abstract: Due to the rapid progress in the development of automated vehicles over the last decade,
their market entry is getting closer. One of the remaining challenges is the safety assessment and
type approval of automated vehicles, as conventional testing in the real world would involve an
unmanageable mileage. Scenario-based testing using simulation is a promising candidate for over-
coming this approval trap. Although the research community has recognized the importance of
safeguarding in recent years, the quality of simulation models is rarely taken into account. Without
investigating the errors and uncertainties of models, virtual statements about vehicle safety are mean-
ingless. This paper describes a whole process combining model validation and safety assessment. It is
demonstrated by means of an actual type-approval regulation that deals with the safety assessment
of lane-keeping systems. Based on a thorough analysis of the current state-of-the-art, this paper
introduces two approaches for selecting test scenarios. While the model validation scenarios are
planned from scratch and focus on scenario coverage, the type-approval scenarios are extracted from
measurement data based on a data-driven pipeline. The deviations between lane-keeping behavior
in the real and virtual world are quantified using a statistical validation metric. They are then
modeled using a regression technique and inferred from the validation experiments to the unseen
virtual type-approval scenarios. Finally, this paper examines safety-critical lane crossings, taking into
account the modeling errors. It demonstrates the potential of the virtual-based safeguarding process
using exemplary simulations and real driving tests.

Keywords: autonomous vehicles; data analysis; model validation; safety assessment; scenario
extraction; simulation; traffic safety; type approval; virtual methods

1. Introduction

Automated driving is a major trend in the automotive industry as it promises to
increase road safety and driver comfort. In 2018, more than one million people died in road
accidents [1]. National governments are striving to increase the level of vehicle automation
to reduce these figures. Advanced Driver Assistance Systems (ADAS) (Level 1 according to
SAE [2]) such as emergency braking or lane-keeping assists are common in modern vehicles
and will be mandatory in Europe beginning in 2022 [3]. On the one hand, car manufacturers
have a high responsibility to dedicate a significant part of the development process to
the safety assessment of those systems. On the other hand, the United Nations Economic
Commission for Europe (UNECE) is developing type-approval regulations to ensure that
these systems meet important safety requirements before they are finally released to the
market [4,5].
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In recent years, the safety assessment of automated vehicles (AVs) has been very much
addressed in the literature and large research projects [6,7], as it is a huge challenge due
to the complexity of the traffic environment. Conventional testing in the physical world
struggles with higher automation levels, since it requires an enormous amount of mileage
to prove that an AV is at least as safe as a human driver [8]. A promising solution is the
scenario-based approach. It discards the major part of the mileage that lacks interesting
actions and events and focuses instead on a selection of individual traffic situations [9].
There is a large number of publications that propose scenario generation approaches for
safety assessment of AVs. Some extract the scenarios from driving data [10,11], others gen-
erate the scenarios from scratch [12], for example using Design of Experiments (DoE)
techniques [13].

While conventional tests are physically performed on the road, more recent publi-
cations use pure simulations for their proof of concept. They convince by cost and effort
reduction, increased safety and possible parallelization through computing clusters. Nev-
ertheless, the simulations have to be accompanied by model validation activities in order
to achieve trustworthiness. The combination of model validation and virtual safeguarding
leads to an overall virtual-based process. This process uses physical tests to assess the
quality of the simulation during model validation in order to finally exploit the strength of
the simulation in virtual safeguarding [14]. The current literature focuses on safeguarding
and, within safeguarding, on the selection of scenarios. However, an overall virtual-based
process including model validation and including the selection of additional validation
scenarios is missing. We address these research gaps in this paper.

Our main contributions are as follows:

• an overview about methods to select test scenarios for AVs and methods to assign them to
testing environments,

• a novel approach to select both scenarios for model validation and for safeguarding,
• a methodology for virtual-based safeguarding of AVs based on real and virtual tests,
• first implementation with a real and virtual prototype vehicle using the type approval

of lane keeping systems as a representative safety assessment example.

Section 2 summarizes the state-of-the-art in type approval and model validation, as
well as scenario selection and assignment. It concludes with an analysis of the strengths and
weaknesses of the scenario generation methods and makes a reasoned selection. Section 3
embeds the scenario approaches in an overall, virtual-based safety assessment process.
It presents a coverage-based approach to generate validation scenarios and a data-driven
approach to extract safeguarding scenarios. It processes the validation results using a
probabilistic validation metric, learns an error model and takes the modeling errors into
account during the final decision making. Section 4 illustrates the methodology by an
exemplary type-approval regulation of a lane-keeping system across a real and virtual test
environment. Lastly, the conclusion in Section 5 summarizes the main research findings
and gives recommendations for virtual-based safety assessment.

2. Literature Overview

This section presents a literature overview in a top-down manner. It starts with the
type approval of lane-keeping systems as a representative example for safety assessment.
It continues with model validation references as they are crucial for virtual-based type
approval and safety assessment in general. The third subsection zooms into the model
validation methodology to introduce papers that select validation scenarios. Since these
papers are rare, we additionally present scenario selection approaches from virtual safe-
guarding. Finally, we analyze the scenario approaches to derive a systematic selection for
our subsequent methodology. Thus, this section gives the reader a compact overview of
scenario-based safety assessment and model validation. Complementary safety approaches
such as formal verification methods or macroscopic traffic simulations do not fall within the
scope of this paper. The interested reader is referred to [14] for a comprehensive overview.
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2.1. Type Approval of Lane-Keeping Systems

The UNECE specifies several mandatory type-approval regulations. Some of them
allow computer simulation if accompanied by model validation [15,16]. The future regula-
tion for Automated Lane-Keeping Systems (ALKS) of SAE Level 3 falls into this category
by stating:

Simulation tool and mathematical models for verification of the safety concept may be used
[...]. Manufacturers shall demonstrate [...] the validation performed for the simulation
tool chain (correlation of the outcome with physical tests).

[5] Section 4.2
The predecessor regulation R-79 [4], which deals with continuously intervening lane-

keeping systems as installed in many production vehicles of SAE Levels 1 and 2, is currently
carried out by physical tests. Nevertheless, we select R-79 as the most suitable use case
for a virtual-based type approval in this paper. We do not actually intend to release a
vehicle to the market by precisely implementing the regulation. We have a Level 2 vehicle
available and use the corresponding R-79 as a blueprint to develop a methodology for
future virtual-based type approval [5].

The regulation describes several tests for the lane-keeping assessment of several vehi-
cle classes and system states. The current Revision 4 of R-79 is supplemented by further
amendments that provide remarks on specific aspects such as signal filtering [17]. To il-
lustrate our methodology on a specific example that focuses on the intended functionality
of the lane-keeping assist, we choose the Lane-Keeping Functional Test (LKFT) shown
in Figure 1. One goal of this test is to guide the vehicle into a quasi-stationary condition
of the lateral acceleration ay within the range from 80% to 90% of the maximum lateral
acceleration ay,smax specified by the vehicle manufacturer. Nevertheless, the regulation
requires proof “for the whole lateral acceleration and speed range”([4], Section 3.2.1.3).
Therefore, we will directly focus on a good coverage of the entire scenario space across
both dimensions.

r

x
y

AV trajectory
vx = const.

Hands-off

lanewidth
2

yr

yl

Figure 1. Schematic overview of the Lane-Keeping Functional Test.

Within these quasi-stationary ranges, it has to be checked whether the vehicle crosses
or even touches the lane boundary and whether the change in movement is within defined
limits. In a previous publication [18], we presented an approach to determine the distance
to line y of the vehicle edges with high precision in post-processing. This makes it possible
to determine the position of the vehicle on public roads with an accuracy of a few centime-
ters [19]. According to the test specifications, the driver is taken out of the loop by briefly
removing his hands from the steering wheel. The criterion of crossing the lane boundary
represents an important safety aspect, since serious consequences can occur if the vehicle
leaves the lane.

2.2. Model Validation

Since models have a long history and are used in numerous application areas, there
is a myriad of literature on model validation. We gave a comprehensive survey about
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model Verification, Validation and Uncertainty Quantification (VV&UQ) approaches in [20].
We developed a generic modular framework and embedded most of the literature ap-
proaches and application areas within it. At this point, we highlight individual aspects
that are integral to this paper’s central theme and understanding. The interested reader
is referred to [20] regarding a more detailed introduction and theory. In the later sections,
we will present this framework in a specific manifestation for the virtual-based safeguard-
ing of AVs. In this section, we present approaches that can be used as a basis to configure
the framework.

The state-of-the-art in automotive model validation tends to focus on single compo-
nents such as environmental sensor models [21–23] or vehicle dynamics models [24,25],
but rarely on the overall closed-loop behavior [26,27]. Since these exemplary references
all focus on specific effects such as the influence of sensor artifacts, they are important
for increasing the credibility of the models, but are not sufficient for the virtual safety
assessment of the entire vehicle. Therefore, with respect to scenario selection, we build on
the automotive literature of the previous subsections. However, we consider advanced
methods from other application fields as a basis for our validation methodology. In general,
one promising example is the work of Oberkampf and Roy [28] on Probability Bound
Analysis (PBA) in the field of Computational Fluid Dynamics (CFD).

Several validation metrics are available to quantify the difference between simula-
tion and reality in the form of scalar values [25], time series [29] or probability distribu-
tions [30]. In addition, there are various metamodeling techniques such as polynomial
regression [28] or Gaussian processes [31] to represent the validation errors. Finally, recent
references [28,32,33] focus on the aggregation of modeling errors and uncertainties from
validation experiments to the intended use of the model. This is quite a challenge [34],
but especially important since the application-specific decisions are made based on the
erroneous simulation models. We will consider these central aspects in the further course
of this paper.

2.3. Scenario Assignment Methods

There are a few references that assign scenarios to real and virtual test environments.
Since they are relevant for the selection of validation scenarios, we present them in more
detail. The paper by Schuldt et al. [35] presents a first idea of how a use case can be assigned
to different X-in-the-Loop (XiL) approaches. The authors use components of the AV as
dimensions in a Kiviat diagram and distinguish three steps for each component: simulated,
emulated and physically present. In addition, they propose quality functionals to consider
and weight certain influencing factors such as the quality of results or costs. They describe
both the XiL approaches and the use case of a construction site assistant using the Kiviat
diagrams. Since only the Vehicle-in-the-Loop approach meets the requirements of their use
case, they choose this approach as their test environment.

Böde et al. [36] aim to find an optimal split between the number of scenarios in
simulation and the real world. They decompose the probability that the system satisfies its
requirements into two terms based on the law of total probability. The first term describes
the probability that the model satisfies the system requirements. It is conditioned on the
second term with the probability that the model is a valid representation. They consider
also a statistical uncertainty due to sampling of test scenarios. They propose three notions
of model validity: all observed trajectories are possible in simulation and lead to the same
decisions, each virtual trajectory has at least one physical counterpart, or the likelihood of
the virtual and physical trajectories is identical. They select the first and weakest notion
and assume that both probabilities are one, which means that all tests are passed and
the model is valid, so that only the statistical uncertainty remains. Then they calculate
the optimal number of scenarios in simulation and the real world for different costs of
both environments.

Beyond automated driving, there is generally little literature available regarding the
split between test environments. Morrison et al. [37], Terejanu [38] find an optimal split
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between physical data to be used for model calibration and validation. Mullins et al. [39]
similarly find the optimal number of calibration and validation tests considering both
the costs at each test condition and the prediction uncertainty of the simulation model.
They use a probabilistic simulation in a Bayesian framework. Model calibration reduces
the uncertainty in the posterior distribution of the model parameters. In contrast, model
validation again adds uncertainty to the parameters using an overall reliability metric to
account for model inadequacy and sparse data, but it reduces the uncertainty about the
model prediction itself. They formulate a joint optimization that selects the number of tests
so that the costs and the future prediction uncertainty of the model are minimized.

2.4. Scenario Selection Methods

Since there are only a few references addressing the assignment of scenarios to test
environments, but quite a variety of methods for generating scenarios for safeguarding,
we extend the literature review to the latter area of research. This subsection provides an
overview about four types of scenario selection approaches. Each of these approaches has
already been implemented in different variants in several references. We select representa-
tive references from these to provide a common basis for this paper. Detailed information
can be found in [14] and in the respective papers.

2.4.1. Knowledge-Based Methods

Knowledge-based approaches use abstract information in the form of standards, guide-
lines or expert knowledge as a source for the generation of scenarios. An exemplary source
is the German guideline for the construction of motorways [40]. Most knowledge-based
approaches are based on ontologies. They can represent knowledge, model properties
and relationships and automatically generate test scenarios that constitute valid combina-
tions. This is a crucial advantage compared to simpler approaches like pure combinatorial
testing. Chen and Kloul [41] combine a motorway, a weather and a vehicle ontology and
also model the relationships between the three ontologies. Bagschik et al. [9] concentrate on
German highways and represent all five layers of their environmental model. Li et al. [42]
use an ontology as input for combinatorial testing in a multi-step process.

2.4.2. Data-Driven Methods

Data-driven methods extract scenarios from data that are normally recorded during
test drives with a fleet of vehicles equipped with special measurement technology. In the
post-processing step, machine learning and pattern recognition techniques are applied to
the recorded data. Some papers extract concrete scenarios from the data that have a high
novelty value. For example, Langner et al. [10] use an autoencoder, as its reproduction
error can be interpreted as a novelty indicator. Krajewski et al. [11] extend the idea and
use generative neural networks such as a Generative Adversarial Network (GAN) and a
Variational Autoencoder (VAE) to not only extract existing scenarios, but also to generate
new ones from them.

Further papers aimed to parameterize scenarios with parameter ranges and distribu-
tions. Therefore, similar scenarios are grouped together in a first processing step. Either
specific scenario classes such as following, lane change or cutting-in are defined to use
supervised learning techniques to assign the data to the classes [43,44], or the data are
clustered based on similarity using unsupervised learning techniques [45,46]. Afterwards,
the grouped data can be used to parameterize the scenarios. Zhou and del Re [47] parame-
terize a lane-change maneuver with a hyperbolic tangent function. Similar work fitting
a distribution to a car-following scenario using Kernel Density Estimation (KDE) can be
found in [48].

2.4.3. Coverage-Based Methods

Coverage-based methods generate a set of test scenarios that cover the scenario space
well. They sample concrete scenarios [49] either from parameter ranges or parameter



Appl. Sci. 2021, 11, 35 6 of 24

distributions. The latter has the advantage that the distributions provide the occurrence
probability of a scenario and thus its relevance in the real world. A wide variety of sampling
techniques was already applied to generate scenarios from parameter ranges, for example,
Design of Experiments (DoE) [13], Satisfiability Modulo Theory (SMT) solvers [50], Rapidly
Exploring Random Trees (RRTs) [12] or the In-Parameter-Order-Generalized (IPOG) algo-
rithm [51]. Distributional sampling techniques are based on Monte Carlo methods. Most
papers use accelerated techniques to cope with the fact that critical traffic scenarios are rare
events. For instance, Zhao [52] uses Importance Sampling (IS) to speed-up the computation,
and Åsljung et al. [53] use Extreme Value Theory (EVT).

2.4.4. Falsification-Based Methods

Falsification-based methods focus on optimization techniques in order to obtain more
challenging scenarios. Some papers use accident databases as a starting point [54]. Other
papers define criticality metrics or complexity metrics to quantify scenario properties.
For example, Klischat and Althoff [55] calculate the safe area next to the AV as the measure
of criticality. Afterwards they use evolutionary algorithms for optimization by minimizing
the safe area and thus maximizing the criticality. Ponn et al. [56] built phenomenological
sensor models to identify complex test scenarios for the AV’s perception capabilities.
In addition, some papers do not perform the optimization in advance, but include the
AV in the feedback loop. In each iteration, they take the assessment results of the actual
AV from the current and previous scenarios to determine the subsequent scenario. Thus,
they get more and more critical scenarios with each iteration. Koren et al. [57] apply
reinforcement learning techniques for optimization, Beglerovic et al. [58] use a model-
based kriging approach with an iterative zooming-in algorithm and Tuncali et al. [59] apply
simulated annealing to falsify formal system requirements.

2.5. Analysis of the Literature

The current state-of-the-art regarding the assignment of scenarios to test environments
focuses either on a scenario-independent level of the entire use case [35] or on the number
of test scenarios based on budget constraints [36,39]. However, this is not sufficient to select
how concrete validation scenarios shall be distributed across the scenario space. Therefore,
we analyze the four categories of scenario methods from safeguarding with regard to their
suitability as validation scenarios. The coverage-based approach

• focuses on exploration of the entire scenario space,
• requires relatively low effort,
• is suitable for execution in the real and virtual world,
• and offers several test repetitions for reproducibility.

Thus, the coverage-based approach fulfills central requirements of model validation.
The falsification-based approach focuses more on exploiting a few critical scenarios and
lacks scalability to the real world—in particular, with the feedback loop. The randomness of
the data-driven approach contradicts the reproducibility requirement and the knowledge-
based approach can be quite complex.

In addition to the coverage-based validation scenarios, we select a scenario method for
safeguarding. This is not the focus of this publication and is already heavily addressed in
the literature and research projects, but we require it to cover the entire virtual-based safety
assessment process. We select the data-driven approach since it is realistic and contains
unforeseen test scenarios due to its randomness. We also pay attention to the coverage
of the scenario space in the data-driven approach. The difference is, however, that in the
coverage-based approach the scenarios are defined completely a priori, whereas in the
data-driven approach they are determined in post-processing.

3. Methodology

This section begins by giving an overview about our entire process for virtual-based
homologation. In the following subsections, the individual process steps are described in
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more detail and illustrated by means of the R-79 use case. We focus especially on scenario
design as the first step in the process and then complete it with the actual model validation
and homologation.

3.1. Virtual-Based Homologation Process

Our process is illustrated in Figure 2 for the LKFT use case. It builds on the previous
use case independent work in [20]. It distinguishes the validation from the application
domain. The former is responsible for assessing the quality of the simulation models,
the latter for the actual type approval. During model validation, a comparison between the
simulation models and reality is carried out. This enables a subsequent type approval in
the virtual world without the need for further physical tests. In this paper, the physical
validation experiments were carried out on the German highway A7 and the federal road
B19, since they include varying curve radii. Digital maps of both road segments were
imported into the simulation tool in the standardized OpenDRIVE format for the virtual
tests. The virtual environment contains both simulation models and hardware components.
Thus, it is actually a hybrid environment and shows non-deterministic behavior with
scatter. In this paper, we will refer to it briefly as simulation. It is not yet in a final stage of
maturity. However, this is not a disadvantage. On the contrary, the focus of this paper is to
demonstrate the validation methodology by means of an exemplary setup. The results are
sent back to the developers to improve the virtual environment.
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Figure 2. Virtual-based homologation process based on previous work in ([20], Figure 1).



Appl. Sci. 2021, 11, 35 8 of 24

Both the validation and the application domain consist of several process steps,
which extend from left to right in Figure 2 and are described in the following subsections.
The two subsequent ones deal with the data-driven extraction of application scenarios from
the simulation and the coverage-based design of validation scenarios for comparison of
simulation and reality. We start with the application scenarios, since the design of the vali-
dation scenarios is directed towards them and shows methodological synergies. The actual
order of scenario execution is usually inverted. The assessment subsection describes the
post-processing of the results using safety measures. Subsequently, the validation results
are compared and finally integrated into the actual type-approval decisions in the last two
subsections in order to consider the validity of the simulation models.

3.2. Data-Driven Application Scenarios

We present a data-driven approach to extract scenarios from data that meet the re-
quirements of the regulation. The data processing pipeline follows a rule-based algorithm:

1. It partitions the scenario space into 1D acceleration bins and contiguous velocities.
2. It filters the noisy lateral acceleration signal using a Butterworth filter according

to [17].
3. It calculates a reference lateral acceleration signal.
4. It transforms the continuous time signals via thresholds to binary masks by applying

condition checks.
5. It merges neighboring events of ones in the masks via a connected components

algorithm [60].
6. It combines all binary masks using Boolean algebra.
7. It extracts events from the resulting mask and represents them with start and stop

time indices.
8. It transforms each binary event to a scenario with mean velocity and bin-centered

lateral acceleration.

We also refer to the algorithm as the event finder to highlight the data-driven condition
checks. The steps of the event finder algorithm are illustrated in Figure 3 and will be
explained in detail in the following. This is accompanied by the respective equations to
ensure the reproducability of this paper. We define symbols for the scenario and assessment
quantities of Sections 3.2–3.4 inspired by their written names. The longitudinal velocity is
called vx, the lateral acceleration ay, the road radius r, the curvature κ, the lateral distance
to line y, the time t, a binary mask b and the lower and upper acceleration ranges rl and ru.
Further indices are required to make distinctions. Vectors are denoted as bold symbols and
matrices as upper case letters.

In the first step, we partition the lateral acceleration dimension into stationary interval
ranges (bins) [rl,i, ru,i] with

rl,i ∈ rl = [0.1, 0.2, . . . , 0.9] ∀ i ∈ {1, . . . , 9} (1)

ru,i ∈ ru = rl + 0.1 ∀ i ∈ {1, . . . , 9} (2)

consisting of 10% steps of ay,smax = 2.5 m/s2 in the manner of R-79. We dispense with an
analog partitioning into velocity bins, since it can be set very precisely in the experiment.
Figure 3a contains the lateral acceleration signal ay(t) of the vehicle after applying the
Butterworth filter of the second step and the “necessary lateral acceleration to follow the
curve” [4]. We refer to the latter as reference lateral acceleration

ay,re f (t) =
v2

x(t)
r(t)

= v2
x(t) · κ(t) with κ(t) =

1
r(t)

. (3)
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Figure 3. Data-driven condition checks and assessment at the exemplary application scenario
vx = 107 km/h and ay,re f = 0.85 · ay,smax. The continuous signals in (a) are inputs to the conditions
checks, whereas the binary signals in (b) are its outputs. The signals shown in (c) refer to the distance of
the vehicle edges to the left and right lane markings and their minimum value over time. For decision
making, we only consider the global minimum highlighted in red.

Figure 3. Data-driven condition checks and assessment at the exemplary application scenario vx = 107 km/h and
ay,re f = 0.85 · ay,smax. The continuous signals in (a) are inputs to the conditions checks, whereas the binary signals
in (b) are its outputs. The signals shown in (c) refer to the distance of the vehicle edges to the left and right lane markings
and their minimum value over time. For decision making, we only consider the global minimum highlighted in red.
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In contrast to the former, it is not based on the vehicle trajectory, but on the road radius
r and curvature κ from maps. We aggregate all time steps in vectors and denote them as
bold symbols, for example, ay,re f ∈ RNt with Nt time steps. Figure 3b contains multiple
binary mask signals b ∈ BNt from the fourth processing step. The velocity mask

bv = (vx ≥ vx,smin) ∧ (vx ≤ vx,smax) (4)

is derived by comparing the velocity signal vx with the lower and upper velocity limits
vx,smin and vx,smax from the vehicle manufacturer. Multiple lateral acceleration masks

ba,i = (ay,re f ≥ rl,iay,smax) ∧ (ay,re f ≤ ru,iay,smax) (5)

are derived by checking whether the acceleration signal ay,re f lies within the stationary
interval ranges [rl,i, ru,i]. In the fifth step, we apply the connected components algorithm
to pull-up short gaps between separated islands in the acceleration masks ba,i to get the
updated masks b̃a,i. According to the proposed amendment [17], the gaps may be up to 2 s
if the additional condition

badd = (ay ≤ 1.4 · ay,smax) ∧ (ay < 3.3 m/s2) (6)

is fulfilled. Combining all masks with a logical AND-operator yields the resulting masks

bi = bv ∧ b̃a,i ∧ badd ∀ i ∈ {1, . . . , 9} . (7)

In the seventh step, we extract all events from the entire data set whose duration is
larger than the threshold ∆tmin. Each event j is characterized by its start time step ts,ij and
its end time step te,ij. We represent the scalar velocity parameter vx ∈ R as the mean value
during the start and end time steps and the acceleration parameter ay,re f ∈ R as the center
of the selected bin:

vx,ij =
1

te,ij − ts,ij

∫ te,ij

ts,ij

vx(t)dt , (8)

ay,re f ,ij = (rl,ij + ru,ij)/2 ·m/s2 . (9)

After presenting the rule-based algorithm, we select a data set for the proof of concept.
We take the same road network—with selected curve sections of the German roads A7
and B19—as prepared anyway according to the coverage-based algorithm of the following
subsection. However, we let the virtual vehicle drive the route several times at arbitrary
speeds instead of predefining them according to a special pattern. Figure 4 shows the
resulting application scenarios. They are positioned in the center of the acceleration bins
and their velocities are distributed contiguously. The distribution of points is random due
to the velocities and will be discussed in the results section in more detail.
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Figure 4. Coverage-based validation scenarios and data-driven application scenarios. The 2D grid
cells are used by the coverage-based algorithm. The data-driven algorithm uses only the acceleration
grid and has contiguous velocities with a maximum resolution of 1 km/h.

3.3. Coverage-Based Validation Scenarios

After the extraction of application scenarios in the last section, the focus is now
on the generation of coverage-based validation scenarios. The approach uses both the
requirements of the regulation with regard to the scenario conditions as well as road maps
with radius r and curvature κ information. The coverage-based algorithm consists of the
following steps:

1. It partitions the velocity and acceleration dimension into 1D bins and the scenario space
into 2D bins.

2. It takes full-factorial samples within each velocity bin.
3. It calculates a reference lateral acceleration signal across the entire road for each

velocity sample.
4. It transforms the continuous signals into binary masks by comparison with the

acceleration bins.
5. It merges neighboring events of ones in the masks via a connected components

algorithm [60].
6. It combines all binary masks using Boolean algebra.
7. It extracts events from the binary masks and represents them with start and stop time

indices.
8. It selects the longest event for each 2D bin over all velocity samples and all road curves.
9. We manually select single 2D bins based on the event length and a coverage criterion.

10. It represents each selected 2D bin with its center as scenario parameters.
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The steps of the coverage-based algorithm will be explained in detail in the following.
The width of the velocity bins is 10 km/h and the width of the acceleration bins is 10% of
ay,smax. We distinguish combined 2D bins and separate 1D bins of both scenario parameters.
We take 10 full-factorial samples within each velocity bin to get several velocities vx,j.
In the third step, combining the radius information from the road maps with the sampled
velocities yields several reference lateral acceleration signals ay,re f ,j. The steps 4–7 are
similar to the steps 4–7 from the data-driven algorithm. To avoid repetition, we refer back
to the previous descriptions at this point. Due to the extension to 2D bins, we get three
indices (i, j, k) of the acceleration bin, the velocity bin and the event number within the bin
and ultimately the start and stop time steps ts,ijk and te,ijk of each event. The eighth step
reduces the amount of events by performing a maximum operation

arg max
k

(te,ijk − ts,ijk) (10)

over the event duration to use only the longest event per bin with the final duration
∆tij. In addition, we manually reduce the number of events by selecting individual bins
that excel with a high event length and a good coverage of the entire scenario space.
A coverage-based design of validation scenarios can be seen in Figure 4. The coordinates
of the scenario points result from the final tenth step that represents each selected bin with
its coordinate center. The distribution of points results from the availability of curves in the
used segments of the German roads A7 and B19 and will be discussed in the results section
in more detail. An exemplary scenario is projected on the corresponding road section
in Figure 5. Each validation scenario will be repeated several times to get information
about the reproducibility of the real and virtual (hybrid) experiments and to be able
to apply statistical validation metrics. According to [24], we will generally use at least
three repetitions if possible and ten to fifteen repetitions for individual scenarios for a
detailed analysis.

Figure 5. Vehicle trajectories from an exemplary real test drive (Road) and a simulation (Sim) at the
validation scenario vx = 169 km/h and ay,re f = 0.85 · ay,smax, located on a OpenStreetMap of the
German motorway A7. These trajectories of the vehicle’s center of gravity are shown at this point for
illustration purposes, but not to derive detailed distances from the vehicle edges to the lines.

If only larger measurement files can be stored after the tests have been carried out, it is
possible to use data-based techniques in post-processing to locate the planned coverage-
based scenarios. On the one hand, the measured vehicle coordinates can be compared with
the coordinates of the planned scenarios on the map. On the other hand, the data-driven
pipeline from Section 3.2 can be adapted by using, for example, the planned acceleration
bins as predefined ranges [rl,i, ru,i] in Equation (5).



Appl. Sci. 2021, 11, 35 13 of 24

3.4. Assessment

So far, the two scalar parameters vx and ay,re f characterize the coverage-based valida-
tion scenarios and the data-driven application scenarios. The subsequent framework block
called assessment deals with the lane-keeping behavior as output of the AV in dependence
of both scenario parameters as inputs to the AV. According to the regulation, the behavior
is characterized by the distance to line. Similar to the scenario parameters, we represent
the distance to line via a Key Performance Indicator (KPI). Since we are interested in any
lane crossing, we extract the minimum distance to line y ∈ R as worst-case behavior from
a safety perspective according to Figure 3c. If even the minimum value is greater than zero,
the entire trajectory (including the outer vehicle edges) will not cross the lane. In the first
step, we take the minimum value of both the distance to left line signal

yl,min = min
t∈[ts,ij ,te,ij ]

yl(t) (11)

and analogously the distance to right line signal during the time interval of the j-th event.
In the second step, we combine both minima to an overall minimum

y := min{yl,min, yr,min} (12)

in order to get one representative safety KPI for a consistent illustration in this paper.
In summary, the behavior of the AV can be described as the mapping

g : (vx, ay,re f ) 7→ y (13)

from the scenario parameters to the distance KPI.
The scenario parameters can also be combined to the input vector x =

[
1 vx ay,re f

]
∈

RNx+1 to get a compact notation for the remaining sections and to ensure consistency with
our previous paper [20]. Each coverage-based validation scenario xv yields for both the
simulation model gm and the physical system gs a minimum distance to line yv

m and yv
s ,

respectively. Similarly, each application scenario xa provides a minimum distance to line
ya

m for the simulation gm. In addition, we aggregate all Nv validation scenarios into the
matrix Xv ∈ RNv×(Nx+1) and all Na application scenarios into the matrix Xa ∈ RNa×(Nx+1).
The respective symbols are summarized in the framework in Figure 2 for a central overview.
Regarding the validation domain, we require an additional notation for the measurement
repetitions of the same validation scenario xv. All minimum distances along the repetition
dimension are represented in the form of an Empirical Cumulative Distribution Function
(ECDF) F(yv). The number of test repetitions determines the number of ECDF steps and
varies between different scenarios and both test environments.

3.5. Model Validation

After the assessment in the validation domain, the validation metric operator quan-
tifies the difference between the minimum distance to line from the physical system on
the road yv

s and from the simulation model yv
m. One option would be to average over

the test repetitions and then calculate the distance between the two averaged values.
However, we decide against this validation metric, because averaging causes a loss of
information. Instead, we calculate the area between the whole ECDFs. There are three
possibilities for each validation scenario. Either the ECDF of the simulation lies completely
on the left-hand side of the system ECDF, completely on the right-hand side, or both
intersect. The first case is most critical from a safety perspective, as the simulation suggests
safer behavior than would be the case in reality. Whereas the first case yields only a left
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area (and zero right area) and the second case only a right area (and zero left area), the third
case yields a separate left and right area

ev
l =

∫
F(yv

m)≥F(yv
s )
|F(yv

m)− F(yv
s )|dy , (14)

ev
r =

∫
F(yv

m)≤F(yv
s )
|F(yv

m)− F(yv
s )|dy . (15)

This occurs when simulation and measurement show a desired similar behavior,
but the simulation typically has less scatter, so that its steeper ECDF crosses the flatter one
of the system. The principle of two areas is visualized in Figure 6 for one scenario.

0.15 0.20 0.25 0.30
y in m

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Left Area = 0.04
Right Area = 0.01

Model
System

Left area
Right area

Figure 6. Area validation metric at the exemplary validation scenario vx = 118 km/h and
ay,re f = 0.65 · ay,smax. The left and right areas refer to the perspective of the model with the
system on its left or right side.

Thus, calculating the validation metric for all the validation scenarios Xv yields two
vectors ev

l and ev
r for the left and right areas of the minimum distance to line. We aggregate

this knowledge about the validity of the simulation in an error model in order to be able to
infer it to new scenarios in the application domain. This is particularly important because it
is risky to compare the deviations only with the permissible tolerances, but to neglect them
if they are considered suitable. These modeling errors can lead to wrong type-approval
decisions regarding the safety of the vehicle and ultimately to accidents in the real world.
We use a multiple linear regression model based on ([28], p. 657) to model the left area

êva
l = x ·wT

l =
[
1 vx ay,re f

]
·
[
wl,0 wl,1 wl,2

]T (16)

and the right area, respectively. The hat symbol emphasizes that the error model result
is an estimation from validation to application scenarios. The regression weights wl
are calculated using a least square optimization with the validation metric results ev

l
as training data.

Since the error model itself is not perfect, it remains a mean squared error s when com-
paring the estimations êv

l with the training data ev
l at the validation scenarios. This mean

squared error and a t-distribution with a confidence of α = 95% can be used to calculate a
non-simultaneous Bonferroni-type prediction interval function ([61], p. 115)

gp(xa) = tα/2
Nv−(Nx+1) · s ·

√
1 + xaT(XvT Xv)−1xa . (17)

The prediction interval (PI) contains the uncertainty of the error model—as does
a confidence interval—and additionally the uncertainty associated with the prediction
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to an unseen application scenario xa. Thus, both the regression estimate êva
l and the PI

predict from validation to application scenarios. Combining the regression estimate with
the upper bound of the PI for both the left and right area finally yields the modeling
uncertainty interval

I(êva) := [eva, eva] = [−êva
l − gp,l(x

a), êva
r + gp,r(xa)] (18)

with the left and right interval limits, denoted eva and eva. It can be seen as a statistical
statement that the unknown true error at unseen application scenarios

eva ∈ I(êva) (19)

lies with a high probability within those epistemic bounds [28].

3.6. Type Approval

This subsection combines the assessment results ya
m of the simulation at the data-

driven application scenarios xa from Section 3.2 with the estimated model uncertainties
I(êva) from the preceding subsection. It treats each application scenario individually, since
there are no test repetitions compared to the coverage-based validation experiments. We use
the uncertainties to expand the minimum distance to line to an interval-valued prediction

I(ŷa
s ) = ya

m + I(êva) = [ya
m + eva, ya

m + eva] (20)

I(ŷa
s ) = [ya

m − êva
l − gp,l(x

a), ya
m + êva

r + gp,r(xa)]

of the unknown true minimum distance to line from the real vehicle. As shown in Figure 7,
the lower bound of the left area metric estimate shifts the nominal simulation result ya

m to
the left, and the upper bound of the right area metric estimate shifts it to the right. It is
important to note that we use this interval prediction including uncertainties for type
approval instead of the nominal simulation results, which are imperfect by the nature of
the inherent models.
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Figure 7. Type approval at the exemplary application scenario vx = 81 km/h and
ay,re f = 0.35 · ay,smax. The shift to the left results from the error model of the left area met-
ric, parameterized over all validation scenarios and inferred to this application scenario, plus its
prediction interval. The shift to the right results analogously from the right error model and its
prediction interval.
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In the end, the minimum distance to line must exceed the threshold of zero to pass the
type approval. In the exemplary application scenario in Figure 7, this is the case for both
the nominal simulation and more importantly for the interval-valued prediction, including
the estimated model uncertainties. Figuratively speaking, exceeding the threshold value
means that the outer edges of the vehicle plus a buffer for the modeling errors do not
cross the lane markings. Since the distance requirement has only a lower threshold and
since we defined the minimum distance as the minimum over the left and right distances
in Section 3.4, we must only look at the lower bound eva and the left edge of I(ŷa

s ) from
a worst case safety point of view. Nevertheless, the methodology works in analogy for
quantities with upper thresholds.

4. Results and Discussion

This section presents and discusses the results for the exemplary R-79 LKFT use
case based on the described methodology. The structure of the section is similar to the
preceding one. It starts again with the data-driven extraction of application scenarios and
the coverage-based generation of validation scenarios. Subsequently, it focuses on the
model validation and type-approval results. Whereas we illustrated the methodology with
examples of individual scenario points, this section aims to gain knowledge about the
entire scenario space.

4.1. Data-Driven Application

This subsection begins with a pre-analysis of the minimum required event length
∆tmin to parameterize the event finder. The longer the minimum length is, the more
meaningful the events are, but the fewer are found. Therefore, we investigate the number
of extracted events, their duration and their coverage of the scenario space for varying
values of the minimum length hyperparameter and select 4.5 s as a reasonable trade-off.
After the data-driven extraction of application scenarios, the shortest event has a duration
of 4.55 s, the longest event of 40.38 s and the average event of 10.01 s. The distribution of the
data-driven application scenarios is shown in Figure 4. As desired, it contains randomness
to generate unforeseen test scenarios for type approval that do not follow a predefined
pattern. The rule-based algorithm extracts 62 application scenarios from the road data set.
The latter is reused from the coverage-based scenario design and consists of selected curves
from the German roads A7 and B19 and connecting straight sections in between. This
exploits the efficiency advantage of the virtual environment. Since the length of the road
data set is 153.86 km, this corresponds to a frequency of 0.88 events per kilometer. Due
to the randomness in the scenario distribution, the granularity of the points varies across
the scenario space and includes small holes. Nevertheless, the distribution and amount of
scenarios is suitable for a first proof of concept.

4.2. Coverage-Based Validation Scenarios

The coverage-based validation scenarios are based on an offline scenario design that
has to be executed afterwards at the real road and the virtual environment. Therefore,
it is important to analyze whether there are significant deviations between the planned
and observed conditions. After the test execution, we used the data-driven event finder
to check whether the measured velocity and the calculated reference lateral acceleration
matches the planned bin. Due to oscillations in the curvature of the real road and in the
velocity, a couple of test repetitions were lost due to the condition checks. Nevertheless,
the coverage-based design was accurate enough to preserve all distinct validation scenarios
with at least two repetitions and in some scenarios with more than ten repetitions. This
fits to the recommendation by [24] as described in Section 3.3. The number of validation
scenarios is smaller than the number of application scenarios to legitimize the model-based
process. The distribution of validation scenarios is shown in Figure 4. It is selected based
on maximizing both scenario coverage and scenario duration to obtain representative and
reproducible scenarios for a fair comparison between simulation and reality. The scenarios
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are distributed across the entire space with small holes in between and with gaps at
the edges at low velocities and low lateral accelerations. The validation methodology
including prediction intervals should be capable of dealing with this degree of interpolation
and extrapolation.

Furthermore, we analyze the reproducability of the hybrid test environment including
hardware components. There are many factors that have an influence on the repetitions,
such as the scenario environment and the localization of the event within the measurement
files by using the event finder. We illustrate the reproducability analysis in this paper both
with a qualitative comparison of time series and histogram data in Figure 8, as well as
with quantitative measures in Table 1. The similarity of the time signals in general and the
similarity in characteristic points like minima and maxima is clearly recognizable. This
demonstrates that the localization works accurately and the lateral driving behavior corre-
lates between repetitions. The distribution of the lateral acceleration in the histogram shows
narrow bands in the order of magnitude of the bins from the scenario design. The similar
values of the quantitative measures mean value, standard deviation and variance reinforce
the qualitative statements.
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Figure 8. Correlation analysis with (a) time series and (b) derived histogram data (15 bins). On the
one hand, both subplots contain the lateral acceleration signals ay of three repetitions. On the other
hand, they contain the averaged reference lateral acceleration signal āy,re f , as the three repetitions
almost coincide. The peaks at the beginning of the signals are caused by the transient passage
between the straight line and the curve entrance at the validation scenario vx = 118 km/h and
ay,re f = 0.85 · ay,smax.
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Table 1. Correlation analysis with statistical measures.

ay,1 ay,2 ay,3 āy,re f

Mean 2.153 2.188 2.179 2.025
Standard deviation 0.295 0.353 0.370 0.237
Variance 0.087 0.125 0.137 0.056

4.3. Assessment

The preceding subsection have already indicated that there is a correlation of the
scenario conditions across several test repetitions. This subsection goes two steps further
by looking at the assessment results and by performing an analysis across the entire
scenario space. Figure 9 shows a surface plot with uncertainty bands for both the (hybrid)
simulation in Figure 9a and the real world in Figure 9b. It includes both the scatter due
to the test repetitions by means of vertical lines and the trend across the entire scenario
space by plotting the mean value of all repetitions as the surface. At first, we look at the
length of the vertical lines to analyze the repeatability. Both plots include scatter due to the
complexity of the prototype vehicle, the testing environments and the scenarios. The scatter
of the simulation is on average of the same order of magnitude as in reality. Despite the
scatter, each mean surface indicates a clear tendency. Higher lateral accelerations and
higher velocities for constant curve radii lead to smaller distance to lines. This meets
the expectations for a characteristic cornering behavior. Both test environments include
scenario points with a distance to line of zero corresponding to a fail of the requirements
in the type approval later. The relative orientation of both surfaces is decisive for model
validation in the following subsection. The surface of the simulation is flatter and lower,
thus showing a significantly worse behavior of the lane-keeping assist in the virtual world.
This is already an important finding of the presented methodology that is used by the
developers of the virtual environment to enhance its maturity.
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Figure 9. Minimum distance to line across all validation scenarios. Each dot represents a test repetition, each line the
scatter across the repetitions and the entire surface the mean value of the repetitions interpolated across the scenario space.
The colors of the vertical lines are used for differentiation. They have no meaning in terms of content.

4.4. Model Validation

For the comparison between the assessment results from simulation and real driving,
we use the area validation metric described in Section 3.5 and illustrated in Figure 6 for
one validation scenario. Performing the same area calculations for all coverage-based
validation scenarios yields the left and right error vectors ev

l and ev
r . The left error values
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are highlighted as points in Figure 10. Most points are zero indicating that the entire
system ECDF lies on the left side of the simulation ECDF. The highest value is located
at 0.04 m (see Figure 6). The right error counterparts are not visualized due to limited
space. They lie mostly in the range between 0.1 m to 0.3 m. Thus, the validation metric
successfully quantifies the findings from the previous subsection showing smaller distances
to line for the simulation compared to real driving.
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Figure 10. Validation errors, error regression estimates and additional prediction intervals.

The left errors are used to parameterize the corresponding left linear regression model.
It is visualized as the central response surface in Figure 10 across the entire application
space. It reflects the horizontal trend of the left error points. It is certainly not possible
and desired to match all points exactly, since they include some scatter. Therefore, we
introduced the prediction intervals that cover the uncertainties of regression and prediction
to the unseen application scenarios. These intervals are visualized as additional response
surfaces for a statistical confidence of α = 95%. They manage to bound the error points for
all validation scenarios except one. In the case of the visualized small left errors, the effect is
almost negligible. However, in the case of the larger right errors with significant scattering,
the prediction uncertainty adds on average another 0.2 m resulting in a range between
0.3 m to 0.5 m.

4.5. Type Approval

The type-approval decision making is shown in Figure 7 for an exemplary application
scenario. Both the nominal simulation and the one including the modeling errors are
passing the regulation threshold of zero distance to line. However, in many cases the
distance to line of the simulation is relatively small. Figure 11 contains the binary pass/fail
decisions across all data-driven application scenarios. In 30 out of the 62 scenarios the
simulation passes the type approval, in 32 out of the 62 it fails. Since the left modeling
errors—relevant from the safety perspective—were negligibly small, the decisions of the
nominal simulation and the one including the uncertainties are identical for all scenarios
except one. The passed scenarios show that the lane-keeping assist successfully masters
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many situations in this complex test environment. Nevertheless, from a safety perspective,
there is a big gap left to master all situations.
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Figure 11. Type-approval decisions at all application scenarios for the nominal simulation (Sim) and
for the error estimator and at all validation scenarios for the simulation and the real system.

We extend the analysis to investigate individual factors leading to the results. The val-
idation methodology already found that the simulation shows smaller distances to line
compared to reality. This insight is already being used by the developers of the virtual
environment to reduce the modeling errors, so that the number of unjustified failed cases is
significantly reduced. In addition, Figure 11 reuses the validation results from Figure 9 for
type approval to obtain further pass/fail decisions of the simulation, and in particular of
the real system. Since the validation scenarios include repetitions leading to several ECDF
steps, we can specify a confidence of decision making based on the granularity of the steps.
We select a fixed confidence of α = 50% resulting from two repetitions as the lowest number
of repetitions across all validation experiments. This corresponds to a true decision for an
entire scenario if at least half of the repetitions pass. This confidence is suitable for ensuring
comparability between validation scenarios with repetitions and application scenarios
without repetitions. However, it should be increased from a purely safety point of view, as
shown at the end of this paragraph. The simulation shows a ratio of 10 passed to 7 failed
cases. This indicates that the behavior of the simulation is safer for the coverage-based
validation scenarios than for the data-driven application scenarios. The reason is that the
lane-keeping assist is an ADAS not designed to drive without driver cooperation during
longer data-driven routes. Nevertheless, our focus is on the development of methods
with a view to higher automation levels anyway. Finally, we analyze the vehicle behavior
in the real world across all validation scenarios. For a confidence of α = 50%, the real
vehicle passes in 16 out of the 17 cases. Taking a closer look at the repetitions of each
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validation scenario (see Figure 9b), shows that further failed cases exist when increasing
the confidence.

In summary, the real vehicle drives more centered compared to the virtual environ-
ment, but still not centered enough in all scenarios so that individual fails occur. There are
two main possibilities to improve the results in the future. On the one hand, the driving
behavior of the controller can be more strongly adjusted for safety, so that it adds safety
buffers and avoids lane crossings. On the other hand, the modeling errors and uncertainties
of the simulation can be reduced compared to reality.

5. Conclusions

For credible type approval of automated vehicles based on simulations, an overall
process is essential that not only assesses the safety of the vehicle, but also the quality of
the models. We presented the corresponding validation and assessment methodology in
this paper using the exemplary type approval of a vehicle’s lane-keeping behavior. At
first, we focused on coverage-based and data-driven scenario design techniques that are
capable of dealing with the complexity of real-world effects. Afterwards, we quantified
the modeling errors and uncertainties of the simulation, represented them in the form of a
data-driven error model and evaluated the vehicle behavior compared to the type-approval
requirements considering these estimated errors.

The coverage-based validation scenarios were planned based on actual map data. Of
course, some real-world artifacts compared to the initial planning such as noisy signals
occurred. Nevertheless, a data-driven post-processing was mostly able to localize the theory
within the real signals. In the future, it will be possible to integrate further map information
such as the road profile and vehicle parameters to further improve the planning accuracy.
Analyzing the lane-keeping behavior across all scenarios results in a clear and realistic
tendency of lower distances to line at higher accelerations despite the scatter. The choice of
the coverage-based approach for model validation has been rewarded, because it allows
running multiple test repetitions for a fair comparison between real road and simulation.
The data-driven approach is able to identify many application scenarios with low effort
of cost and time. The distribution of the scenario points is both random and realistic due
to the selection of actual map data. The identified data-driven scenarios show a good
coverage of the application scenario space.

The validation methodology identified that both test environments show the same
trend on average, but also that there are deviations between simulation and reality. Mea-
sures are currently taken by the developers of the virtual environment to reduce the
modeling errors. In half of the application scenarios it can be shown that the simulation
still passes the type approval, although the estimated uncertainties have been added as
additional guarantees. The vehicle on the real road passes most of the scenarios, but also
fails in individual ones. Therefore, it is advisable to choose a more centered trajectory
with more safety buffers. Then, failed type-approval decisions can be avoided and in the
future even further uncertainties of scenario and vehicle parameters can be considered
to increase the statistical guarantees. It is of further interest to extend the use case from
the quasi-stationary lane keeping tests on the highway to higher automation levels and
operational design domains.

Author Contributions: S.R. and D.S. contributed equally to this publication. S.R. initiated this work
and wrote a large part of it. D.S. developed the coverage-based and data-driven scenario methods.
S.R. improved and formalized them and developed the presented validation and homologation
methodology. D.S. was responsible for the data acquisition. Both S.R. and D.S. wrote the correspond-
ing software parts, brought them together and improved the results in many joint discussions. D.W.,
F.D. and B.S. contributed to the conception of the research project and revised the paper critically for
important intellectual content. F.D. gave final approval of the version to be published and agrees to
all aspects of the work. As a guarantor, he accepts responsibility for the overall integrity of the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: The research project was funded and supported by TÜV SÜD Auto Service GmbH.



Appl. Sci. 2021, 11, 35 22 of 24

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors want to thank TÜV SÜD Auto Service GmbH for the support and
funding of this work. Additionally, the authors want to thank Tobias Tarne and Paul Weiner for their
contributions during the test execution. Further thanks to Thomas Ponn for proofreading the article
and for enhancing the content due to his critical remarks.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Global Status Report on Road Safety 2018; WHO: Geneva, Switzerland, 2018.
2. SAE International. SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles;

SAE: Warrendale, PA, USA, 2018.
3. European Commission. Road Safety: Commission Welcomes Agreement on New EU Rules to Help Save Lives; European Commission:

Brussels, Belgium, 2019.
4. United Nations Economic Commission for Europe (UNECE). Addendum 78: UN Regulation No. 79—Uniform Provisions Concerning the

Approval of Vehicles with Regard to Steering Equipment; UNECE: Geneva, Switzerland, 2018.
5. United Nations Economic Commission for Europe (UNECE). Proposal for a New UN Regulation on Uniform Provisions Concerning

the Approval of Vehicles with Regards to Automated Lane Keeping System (ECE/TRANS/WP.29/2020/81); UNECE: Geneva, Switzerland,
2020.

6. German Aerospace Center. PEGASUS-Project; German Aerospace Center: Cologne, Germany, 2019.
7. Leitner, A.; Akkermann, A.; Hjøllo, B.Å.; Wirtz, B.; Nickovic, D.; Möhlmann, E.; Holzer, H.; van der Voet, J.; Niehaus, J.;

Sarrazin, M.; et al. ENABLE-S3: Testing & Validation of Highly Automated Systems: Summary of Results; Springer: Berlin, Germany,
2019.

8. Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle
reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [CrossRef]

9. Bagschik, G.; Menzel, T.; Maurer, M. Ontology based Scene Creation for the Development of Automated Vehicles. In Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1813–1820, [CrossRef]

10. Langner, J.; Bach, J.; Ries, L.; Otten, S.; Holzäpfel, M.; Sax, E. Estimating the Uniqueness of Test Scenarios derived from
Recorded Real-World-Driving-Data using Autoencoders. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV),
Changshu, China, 26–30 June 2018; pp. 1860–1866.

11. Krajewski, R.; Moers, T.; Nerger, D.; Eckstein, L. Data-Driven Maneuver Modeling using Generative Adversarial Networks and
Variational Autoencoders for Safety Validation of Highly Automated Vehicles. In Proceedings of the 2018 IEEE 21th International
Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2383–2390.

12. Althoff, M.; Dolan, J.M. Reachability computation of low-order models for the safety verification of high-order road vehicle
models. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 3559–3566.

13. Beglerovic, H.; Ravi, A.; Wikström, N.; Koegeler, H.M.; Leitner, A.; Holzinger, J. Model-based safety validation of the automated
driving function highway pilot. In 8th International Munich Chassis Symposium 2017; Pfeffer, P.E., Ed.; Springer Fachmedien
Wiesbaden: Wiesbaden, Germany, 2017; pp. 309–329.

14. Riedmaier, S.; Ponn, T.; Ludwig, D.; Schick, B.; Diermeyer, F. Survey on Scenario-Based Safety Assessment of Automated Vehicles.
IEEE Access 2020, 8, 87456–87477. [CrossRef]

15. United Nations Economic Commission for Europe (UNECE). Addendum 139—Regulation No. 140—Uniform Provisions Concerning
the Approval of Passenger Cars with Regard to Electronic Stability Control (ESC) Systems; UNECE: Geneva, Switzerland, 2017.

16. Lutz, A.; Schick, B.; Holzmann, H.; Kochem, M.; Meyer-Tuve, H.; Lange, O.; Mao, Y.; Tosolin, G. Simulation methods supporting
homologation of Electronic Stability Control in vehicle variants. Veh. Syst. Dyn. 2017, 55, 1432–1497. [CrossRef]

17. United Nations Economic Commission for Europe. Proposal for Amendments to ECE/TRANS/WP.29/GRVA/2019/19; UNECE:
Geneva, Switzerland, 2019.

18. Schneider, D.; Huber, B.; Lategahn, H.; Schick, B. Measuring method for function and quality of automated lateral control based
on high-precision digital ”Ground Truth” maps. In 34. VDI/VW-Gemeinschaftstagung Fahrerassistenzsysteme und Automatisiertes
Fahren 2018; VDI-Berichte; VDI Verlag GmbH: Düsseldorf, Germany, 2018; pp. 3–16.

19. Keidler, S.; Schneider, D.; Haselberger, J.; Mayannavar, K.; Schick, B. Development of lane-precise “Ground Truth” maps for
the objective Quality Assessment of automated driving functions. In Proceedings of the 17 Internationale VDI-Fachtagung
Reifen—Fahrwerk—Fahrbahn, Düsseldorf, Germany, 16–17 October 2019.

20. Riedmaier, S.; Danquah, B.; Schick, B.; Diermeyer, F. Unified Framework and Survey for Model Verification, Validation and
Uncertainty Quantification. Arch. Comput. Methods Eng. 2020, [CrossRef]

http://dx.doi.org/10.1016/j.tra.2016.09.010
http://dx.doi.org/10.1109/IVS.2018.850-0632
http://dx.doi.org/10.1109/ACCESS.2020.2993730
http://dx.doi.org/10.1080/00423114.2017.1322705
http://dx.doi.org/10.1007/s11831-020-09473-7


Appl. Sci. 2021, 11, 35 23 of 24

21. Rosenberger, P.; Holder, M.; Zirulnik, M.; Winner, H. Analysis of Real World Sensor Behavior for Rising Fidelity of Physically Based
Lidar Sensor Models. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
pp. 611–616.

22. Schaermann, A.; Rauch, A.; Hirsenkorn, N.; Hanke, T.; Rasshofer, R.; Biebl, E. Validation of vehicle environment sensor models.
In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 405–411.

23. Abbas, H.; O’Kelly, M.; Rodionova, A.; Mangharam, R. Safe At Any Speed: A Simulation-Based Test Harness for Autonomous
Vehicles. In Proceedings of the Seventh Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy’17),
Seoul, Korea, 15–20 October 2017; pp. 94–106.

24. Viehof, M.; Winner, H. Research methodology for a new validation concept in vehicle dynamics. Automot. Engine Technol.
2018, 3, 21–27. [CrossRef]

25. International Organization for Standardization. Passenger Cars—Validation of Vehicle Dynamic Simulation—Sine with Dwell Stability
Control Testing; ISO: Geneva, Switzerland, 2016.

26. Riedmaier, S.; Nesensohn, J.; Gutenkunst, C.; Düser, T.; Schick, B.; Abdellatif, H. Validation of X-in-the-Loop Approaches for
Virtual Homologation of Automated Driving Functions. In Proceedings of the 11th Graz Symposium Virtual Vehicle (GSVF),
Graz, Austria, 15–16 May 2018; pp. 1–12.

27. Groh, K.; Wagner, S.; Kuehbeck, T.; Knoll, A. Simulation and Its Contribution to Evaluate Highly Automated Driving Functions.
In WCX SAE World Congress Experience; SAE Technical Paper Series; SAE International400 Commonwealth Drive: Warrendale,
PA, USA, 2019; pp. 1–11.

28. Oberkampf, W.L.; Roy, C.J. Verification and Validation in Scientific Computing; Cambridge University Press: Cambridge, UK, 2010.
29. Ao, D.; Hu, Z.; Mahadevan, S. Dynamics Model Validation Using Time-Domain Metrics. J. Verif. Valid. Uncertain. Quantif.

2017, 2, 011004. [CrossRef]
30. Voyles, I.T.; Roy, C.J. Evaluation of Model Validation Techniques in the Presence of Aleatory and Epistemic Input Uncertainties.

In Proceedings of the 17th AIAA Non-Deterministic Approaches Conference, Kissimmee, FL, USA, 5–9 January 2015; American
Institute of Aeronautics and Astronautics: College Park, MD, USA, 2015; pp. 1–16.

31. Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B 2001, 63, 425–464. [CrossRef]
32. Sankararaman, S.; Mahadevan, S. Integration of model verification, validation, and calibration for uncertainty quantification in

engineering systems. Reliab. Eng. Syst. Saf. 2015, 138, 194–209. [CrossRef]
33. Hills, R.G. Roll-Up of Validation Results to a Target Application; Sandia National Laboratories: Albuquerque, NM, USA, 2013.
34. Mullins, J.; Schroeder, B.; Hills, R.; Crespo, L. A Survey of Methods for Integration of Uncertainty and Model Form Error in Prediction;

Probabilistic Mechanics & Reliability Conference (PMC): Albuquerque, NM, USA, 2016.
35. Schuldt, F.; Menzel, T.; Maurer, M. Eine Methode für Die Zuordnung Von Testfällen für Automatisierte Fahrfunktionen auf X-In-The-Loop

Simulationen im Modularen Virtuellen Testbaukasten; Workshop Fahrerassistenzsysteme: Garching, Germany, 2015; pp. 1–12.
36. Böde, E.; Büker, M.; Ulrich, E.; Fränzle, M.; Gerwinn, S.; Kramer, B. Efficient Splitting of Test and Simulation Cases for the

Verification of Highly Automated Driving Functions. In Computer Safety, Reliability, and Security; Gallina, B., Skavhaug, A.,
Bitsch, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 139–153.

37. Morrison, R.E.; Bryant, C.M.; Terejanu, G.; Prudhomme, S.; Miki, K. Data partition methodology for validation of predictive
models. Comput. Math. Appl. 2013, 66, 2114–2125. [CrossRef]

38. Terejanu, G. Predictive Validation of Dispersion Models Using a Data Partitioning Methodology. In Model Validation and Uncertainty
Quantification, Volume 3; Atamturktur, H.S., Moaveni, B., Papadimitriou, C., Schoenherr, T., Eds.; Springer International Publishing:
Cham, Switzerland, 2015; pp. 151–156.

39. Mullins, J.; Mahadevan, S.; Urbina, A. Optimal Test Selection for Prediction Uncertainty Reduction. J. Verif. Valid. Uncertain. Quan-
tif. 2016, 1. [CrossRef]

40. Forschungsgesellschaft für Straßen- und Verkehrswesen. Richtlinien für die Anlage von Autobahnen; FGSV: Cologne, Germany,
2008.

41. Chen, W.; Kloul, L. An Ontology-based Approach to Generate the Advanced Driver Assistance Use Cases of Highway Traffic.
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, Seville, Spain, 18–20 September 2018; pp. 1–10.

42. Li, Y.; Tao, J.; Wotawa, F. Ontology-based test generation for automated and autonomous driving functions. Inf. Softw. Technol.
2020, 117, 106200. [CrossRef]

43. Beglerovic, H.; Schloemicher, T.; Metzner, S.; Horn, M. Deep Learning Applied to Scenario Classification for Lane-Keep-Assist
Systems. Appl. Sci. 2018, 8, 2590. [CrossRef]

44. Gruner, R.; Henzler, P.; Hinz, G.; Eckstein, C.; Knoll, A. Spatiotemporal representation of driving scenarios and classification
using neural networks. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–17 June
2017; pp. 1782–1788.

45. Kruber, F.; Wurst, J.; Morales, E.S.; Chakraborty, S.; Botsch, M. Unsupervised and Supervised Learning with the Random Forest
Algorithm for Traffic Scenario Clustering and Classification. In Proceedings of the 30th IEEE Intelligent Vehicles Symposium,
Paris, France, 9–12 June 2019; pp. 2463–2470.

46. Wang, W.; Zhao, D. Extracting Traffic Primitives Directly From Naturalistically Logged Data for Self-Driving Applications.
IEEE Robot. Autom. Lett. 2018, 3, 1223–1229. [CrossRef]

http://dx.doi.org/10.1007/s41104-018-0024-1
http://dx.doi.org/10.1115/1.4036182
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1016/j.ress.2015.01.023
http://dx.doi.org/10.1016/j.camwa.2013.09.006
http://dx.doi.org/10.1115/1.4035204
http://dx.doi.org/10.1016/j.infsof.2019.106200
http://dx.doi.org/10.3390/app8122590
http://dx.doi.org/10.1109/LRA.2018.2794604


Appl. Sci. 2021, 11, 35 24 of 24

47. Zhou, J.; del Re, L. Identification of critical cases of ADAS safety by FOT based parameterization of a catalogue. In Proceedings
of the 2017 11th Asian Control Conference (ASCC), Gold Coast, Australia, 17–20 December 2017; pp. 453–458.

48. de Gelder, E.; Paardekooper, J.P. Assessment of Automated Driving Systems using real-life scenarios. In Proceedings of the 2017
IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–17 June 2017; pp. 589–594.

49. Menzel, T.; Bagschik, G.; Maurer, M. Scenarios for Development, Test and Validation of Automated Vehicles. In Proceedings of
the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018.

50. Kim, B.; Jarandikar, A.; Shum, J.; Shiraishi, S.; Yamaura, M. The SMT-based automatic road network generation in vehicle simula-
tion environment. In Proceedings of the 13th International Conference on Embedded Software—EMSOFT ’16, Grenoble, France,
12–16 October 2016; pp. 1–10.

51. Rocklage, E.; Kraft, H.; Karatas, A.; Seewig, J. Automated scenario generation for regression testing of autonomous vehicles.
In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece,
20–23 September 2017; pp. 476–483.

52. Zhao, D. Accelerated Evaluation of Automated Vehicles. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2016.
53. Åsljung, D.; Nilsson, J.; Fredriksson, J. Using Extreme Value Theory for Vehicle Level Safety Validation and Implications for

Autonomous Vehicles. IEEE Trans. Intell. Veh. 2017, 2, 288–297. [CrossRef]
54. Stark, L.; Düring, M.; Schoenawa, S.; Maschke, J.E.; Do, C.M. Quantifying Vision Zero: Crash avoidance in rural and motorway

accident scenarios by combination of ACC, AEB, and LKS projected to German accident occurrence. Traffic Inj. Prev. 2019,
20, 126–132. [CrossRef] [PubMed]

55. Klischat, M.; Althoff, M. Generating Critical Test Scenarios for Automated Vehicles with Evolutionary Algorithms. In Proceedings
of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2352–2358.

56. Ponn, T.; Müller, F.; Diermeyer, F. Systematic Analysis of the Sensor Coverage of Automated Vehicles Using Phenomenological
Sensor Models. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1000–1006.

57. Koren, M.; Alsaif, S.; Lee, R.; Kochenderfer, M.J. Adaptive Stress Testing for Autonomous Vehicles. In Proceedings of the 2018
IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1898–1904.

58. Beglerovic, H.; Stolz, M.; Horn, M. Testing of autonomous vehicles using surrogate models and stochastic optimization.
In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017; pp. 1–6.

59. Tuncali, C.E.; Pavlic, T.P.; Fainekos, G. Utilizing S-TaLiRo as an Automatic Test Generation Framework for Autonomous Vehicles.
In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil,
1–4 November 2016; pp. 1470–1475.

60. Dillencourt, M.B.; Samet, H.; Tamminen, M. A general approach to connected-component labeling for arbitrary image representa-
tions. J. ACM 1992, 39, 253–280. [CrossRef]

61. Miller, R.G. Simultaneous Statistical Inference; Springer: New York, NY, USA, 1981.

http://dx.doi.org/10.1109/TIV.2017.2768219
http://dx.doi.org/10.1080/15389588.2019.1605167
http://www.ncbi.nlm.nih.gov/pubmed/31381430
http://dx.doi.org/10.1145/128749.128750

	Introduction
	Literature Overview
	Type Approval of Lane-Keeping Systems
	Model Validation
	Scenario Assignment Methods
	Scenario Selection Methods
	Knowledge-Based Methods
	Data-Driven Methods
	Coverage-Based Methods
	Falsification-Based Methods

	Analysis of the Literature

	Methodology
	Virtual-Based Homologation Process
	Data-Driven Application Scenarios
	Coverage-Based Validation Scenarios
	Assessment
	Model Validation
	Type Approval

	Results and Discussion
	Data-Driven Application
	Coverage-Based Validation Scenarios
	Assessment
	Model Validation
	Type Approval

	Conclusions
	References

