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Abstract— For district heating, heat demand forecasting is 

playing a key role for an optimised power plant dispatch. 

Machine Learning can help to significantly improve forecasts of 

thermal loads. The prediction quality of neural networks is 

higher than that of decision trees in most cases. However, 

compared to decision trees neural networks have weaknesses 

when extrapolating outside known ranges. This work presents a 

novel method called "Deep DHC" (Deep Learning for District 

Heating and Cooling), which combines these two approaches in 

order to benefit from strengths of both methods. On the one 

hand, the novel approach uses conventional decision tree based 

regression algorithms such as the AdaBoost and Random 

Forest, as well as artificial neural networks. In addition to 

common feed forward neural networks (FNN), a deep learning 

network structure, which consists of long short-term memory 

(LSTM) cells, is used for the first time. The LSTM method has 

already proven to be very powerful in modern speech 

recognition. In order to achieve best possible heat demand 

forecasts, the aforementioned methods for load forecasting are 

combined and weighted by an additional machine learning 

method. Results show that it is possible to achieve a further 

improvement in forecasting quality for district heating loads by 

purposefully combining individual forecasting methods. Hence, 

mean and absolute deviations are significantly reduced in 

comparison to the individual methods. 
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I. INTRODUCTION  

With total lengths of often several hundreds of kilometres, 
the efficient supply of district heating networks is a 
considerable challenge. Typically, heating network operators 
use multiple power plants with different technical and 
economic characteristics. The increasing use of thermal 
energy storage within the heating networks offers further 
optimisation options for plant operation, for example in order 
to avoid the frequent use of fossil-fuelled peak-load boilers. 
However, the diversity of plants increases the complexity of 
plant dispatch planning. A key boundary condition for an 
optimised operation is to know as precisely as possible the 
time and the amount of the expected heat load in the network. 

In recent years, a large number of different forecasting 
methods have been investigated. The focus of these 
investigations is on energy forecasting for buildings [1, 2, 3]. 
Common load forecasts for district heating networks are based 
on decision trees or simple neural networks [4, 5]. A decision 
tree is a hierarchical data structure, as shown in Fig. 1 using a 

simple example of district heating load forecasting. In the 
example shown, the first step is to differentiate between 
weekdays and weekends. In the second step, the temperature 
range is narrowed down, which results in the expected load. 
In the present study, classical decision trees of the type "Ada-
Boost" and "Random Forest" were used for load prediction [6, 
7]. "Ada-Boost" or Adaptive Boosting refers to a popular 
training method, in which incorrectly classified data points are 
given more weight during the next training step, i.e. the 
repeated comparison between measurement and forecast 
results. In contrast, the "Random Forest" method randomly 
generates several uncorrelated decision trees, from which the 
final configuration is determined during the learning process. 

Fig.1. Example of a heat demand forecast using a decision tree 

In addition to decision trees, artificial neural networks 
have increasingly been used for load forecasting since the 
early nineties.  

Fig. 2. Example of a heat demand forecast using an artificial neural 

network 

Fig. 2 shows the schematic structure of a neural network 
for load forecasting of a district heating network. For this 
purpose, a neural network is trained with the help of 
measurement data, so that the trained model can determine the 
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dependent output variable (heat demand) within a certain 
accuracy using the input variables (e.g. temperature, working 
day, etc.). Neural networks can have various structures, which 
usually differ in how many artificial neurons are located on 
how many layers and how they are connected to each other. In 
the present work, feed-forward neural networks (FNN) are 
considered from the group of classical neural networks [6]. In 
this topology, a layer is always only connected to the next 
higher layer in the direction of the output variable. 

II. MODERN LEARNING METHODS AND FURTHER 

DEVELOPMENT "DEEP DHC" 

Due to rapid developments in information technology and 
significantly faster computers, very powerful machine 
learning methods have become available. Algorithms from the 
field of so-called "deep learning" - and there of the type of 
recurrent neural networks such as Long-Short-Term-Memory 
(LSTM) - already dominate commercial speech and pattern 
recognition [8, 9]. In contrast to classical neural networks, 
these procedures can store information states for a longer 
period and they can decide independently when they are to be 
retrieved again. Thus, events that are separated by a longer 
period can be linked together more easily. In its structure, this 
type of neural network is characterized not only by its long-
term storage capacity, but also by the fact that connections 
from neurons of one layer to neurons of the same or a 
preceding layer are possible. This characteristic is very 
promising for load forecasting in heating networks, since the 
consideration of current as well as longer-term information - 
e.g. in the forecast over several days or over weekends - on 
heat loads or weather conditions is of great importance with 
respect to forecast quality. 

Fig. 3. Heat demand forecast using "Deep DHC" method 

In most cases, the prediction quality of neural networks is 
higher than that of decision trees. In contrast to decision trees, 
however, neural networks show weaknesses in extrapolation 
outside of known value ranges. Therefore, the research project 
has developed a novel method that can combine the strengths 
of both approaches. This method named "Deep DHC" (Deep 
Learning for District Heating and Cooling) combines the two 
approaches presented in order to make use of the strengths of 
both methods [10]. The "Deep DHC" method combines 
conventional machine learning methods of the decision tree 
type with artificial neural networks. In addition to simple feed 
forward neural networks (FNN), a deep learning network 
structure of long-short term memory (LSTM) cells is used. 
The core of the "Deep DHC" procedure is a combination and 
weighting of the above-mentioned initial procedures for load 
prediction by means of a further machine learning procedure, 
in order to achieve the best possible load predictions. This 
procedure is illustrated in Fig. 3. The machine learning 
procedure, which determines the best possible combination 
and weighting of the previously executed load predictions of 

the individual procedures through training, is called a "meta 
model". 

III. CONSIDERED DISTRICT HEATING NETWORK AND 

DATABASE 

The above-mentioned heat load forecasting methods were 
analysed based on a subnetwork of Fernwärme Ulm GmbH 
with a total length of 40 km, which covers the annual heat 
demand of 75 GWh or 1,100 households, on average. For this 
purpose, measurement data of the last 15 years were used in 
an hourly resolution, and hence a total of 131,400 data series. 
Each hourly data set consisted of 20 parameters, i.e. 
measurement data from the district heating network or 
weather information such as air temperature, wind direction or 
wind speed. The correlation between individual parameters 
and the associated district heating load was previously 
checked by means of a correlation analysis [11]. 

IV. TECHNICAL VALIDATION 

The results of the load forecasts of the various methods 
over 72 hours in advance were compared with corresponding 
measurement data from the operation of the subnetwork of 
Fernwärme Ulm GmbH described in the beginning. The input 
data records from plant operation used for this purpose had not 
previously been used for training, or for the validation of the 
individual processes. Archived weather forecasts were used 
for the weather data, so that the load forecast boundary 
conditions during the test were identical to those of a real 
power plant operation. For each of the various load forecasts, 
the mean absolute percentage error (MAPE) was determined, 
which indicates the mean (absolute) relative distance of the 
true measured values from the respective load forecast. 
Together with the maximum forecast error, this is compared 
in Table 1 for an exemplary test period of 72 h for the various 
load forecast procedures. 

TABLE I. Comparison of forecast and measured loads 

 
Ada-

Boost 
Random 
Forest 

FNN LSTM 
Deep 
DHC 

Maximum 
Error [%] 

20.53 17.69 19.7 13.84 8.53 

MAPE [%] 4.87 5.72 5.73 4.32 3.56 

 

All procedures show a comparatively high accuracy in the 
selected test period, with errors of less than 6 percent. 
However, the "Deep DHC" method described above can 
increase the average accuracy by almost one percentage point 
(3.56%) compared to the best single run LSTM (4.32%). The 
maximum deviation of the load forecast, which fluctuates 
between 14 % (LSTM) and 20 % (Ada-Boost) for the 
individual processes, can also be reduced to below 10 % with 
the new process, which is particularly important for power 
plant dispatch optimisation. These data on maximum and 
percentage deviations for all compared methods as well as a 
direct comparison of the load forecast of the "Deep DHC" 
method with the actually measured load is shown in Fig. 4 for 
a period of three days as an example. The load peaks as well 
as the basic course can be predicted very well with the new 
method. 
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Fig. 4. Comparison of forecast and measured heat demand 

V. ECONOMIC ANALYSIS 

For operators of district heating networks it is crucial to 
know the expected district heating load as precisely as 
possible, as this enables a particularly efficient use of the 
available power plants, thermal storage facilities or even 
"power-to-heat" plants. Although it is intuitively obvious that 
the forecasting quality for the district heating load plays a key 
role for plant dispatch, an exact quantification of the economic 
benefit of a reduced load forecast error is a challenge, since 
the real plant dispatch of a certain period of time cannot 
simply be repeated based on different load forecasts. 
However, the economic impact of the load forecast quality can 
be assessed based on a numerical plant design optimisation 
tool, together with real district heating load data of past years 
of operation. A detailed plant dispatch planning tool based on 
mixed-integer linear numerical optimisation was developed in 
2015 for the entire district heating network and all plants of 
Fernwärme Ulm GmbH. The tool was further improved within 
the framework of the KWK-Flex research project.  

In order to assess the economic impact of the load forecast 
quality, the ideal plant dispatch of all generation or storage 
units is first determined for a reference year using the 
numerical plant dispatch optimisation tool. This reference 
case is determined under the boundary condition of a complete 
and exact knowledge of the expected district heating load 
three days in advance for the entire reference year, which 
reflects the best possible operating case. In order to estimate 
the influence of an increasingly inaccurate district heating 
load forecast, forecast errors are then randomly applied to the 
actually measured annual load profile at different levels, 
whereby the total amount of heat produced over the year under 
consideration is kept constant. Fig. 5 shows, in comparison to 
the measured load, correspondingly generated load profiles 
with forecast errors of 5 % and 15 % for a period of three days. 
Higher forecast errors cause higher expected load ramps and 
peaks in this evaluation. A more inaccurate forecast of the 
district heating load for the following three days hence results 
in a higher need for corrections in plant operation, which in 
practise is usually realized by an increased use of peak-load 
boilers. This changed plant dispatch due to a deteriorated 
forecast quality can be determined in each case using 
numerical plant dispatch optimisation. 

 

 

Fig. 5. Comparison of measured district heating load and heat load with 

forecast errors 

Over a whole year, the results of the numerical plant 
dispatch optimisation show that with a forecast error of 5 %, 
heat generation by peak-load boilers deviates by only 1 % 
from the reference case with exact knowledge of the district 
heating load. The change in the peak load boiler input relative 
to the reference case is therefore small. This is shown in Fig. 
6 for the period shown in Fig. 5. 

Fig. 6. Change in the peak load boiler insert compared to the reference 
case 

A forecast error of 15 % over a whole year leads to a 22 % 
increase in heat generation in the peak-load boiler compared 
to measured operation. This can also be seen in Fig. 7 from 
the curve "Change in peak-load boiler input in the event of a 
15% forecast error", which is exemplary for a period of three 
days. In principle, as shown in Fig. 7, numerical plant dispatch 
optimisation results in an increasing number of start-ups and 
full load operating hours of the peak-load boiler with 
increasing forecast error, and consequently an increasing heat 
generation in the peak-load boiler as a whole. 

Increased use of generally fossil-fired peak-load boilers is 
associated with increased consumption of fossil fuels and 
higher wear and tear. As this increases emissions and 
operating costs, the analysis illustrates the considerable 
benefits of improved forecasting accuracy for district heating 
loads. A comparable benefit should also be expected for the 
operation of district cooling networks. 
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Fig. 7. Changes in peak-load boiler operation compared to the reference 
case 

VI. CONCLUSION AND OUTLOOK 

Conventional and novel methods for load prediction in 
district heating or cooling networks, which are based on 
decision trees and neural networks, were presented. These can 
be beneficially used for plant dispatch optimisation. The 
strengths of the various individual load forecasting methods 
can be further boosted by combining and weighting the 
individual forecasts. This is done using the newly developed 
load forecasting method "Deep DHC", which allows a 
significant improvement in the forecast quality to a few 
percent compared to the measured district heating load. 
Simulation calculations show that this results in a considerable 
optimisation potential for the planning and operation of power 
plants, thermal energy storage or power-to-heat plants that are 
used for district heating or cooling. In particular, the use of 
fossil-fired peak-load boilers could be significantly reduced 
by means of improved district heating load forecasting. It is 
planned to further develop the methods from the KWK-Flex 
research project in further research work. 
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