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Although the focus of autonomous driving is on maximizing safety and efficiency, comfort and familiarity 

will play a key role in the adoption of autonomous driving. Therefore, it is important to develop algorithms that 

can mimic human driving skills and adapt to individual driving styles. 

The potential field method (PFM) is an obstacle avoidance algorithm for autonomous driving that uses a 

repulsive potential field, as a environment model, to navigate the vehicle to the lowest risk potential. In this 

paper, the PFM is used in a overtake scenario at high speed, to test the impact of using prediction when 

calculating the ideal yaw rate. Analysis is done on how the potential field can be used for lane keeping while 

following a car and then for overtaking it. 

A driving simulator is used to record human driving data and compare it with automated driving using a PFM 

as is proposed by [3], with modifications to enable future prediction.  
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1. Introduction 

The potential field method (PFM) is a collision avoidance 

algorithm, that was first introduced in robotics. The risk potential 

is an artificial measure of the danger of collision at any location. 

It was adapted for autonomous driving, to model the risk of 

collision with traffic participants, obstacles and road boundaries.  

The repulsive potential field can then be used to navigate the 

vehicle to the lowest risk potential, analogous to charged 

particles in an electromagnetic field [1]. This approach is 

intended to produce results, that are similar to human driving 

behaviour, while still providing the transparency of a whitebox 

model at a low computational effort. 

Where approaches to the potential field method differ, is in 

the mathematical basis for the potential functions, aswell as in 

the way vehicle control inputs are determined. The algorithm 

used in this paper isbased on the “intelligent driving system for 

safer automobiles”, proposed by [3] , with exception to the 

changes mentioned. 

We propose a temporal analysis, to distinguish the perception 

of moving and stationary hazard sources. This should improve 

the behaviour in situations, where high speed will increase the 

difference in the current location of hazard sources as compared 

to future positions.  When two cars are driving alongside each 

other, the static approach to the potential field, could lead to that 

vehicle being overlooked, because the risk is only evaluated in 

front of the ego car.  

 

2. Lateral Control Algorithm 

The potential field  is the sum of individual functions 

that model the repulsive potential of hazard sources (Eq. 2).  

Risk potential for road and vehicles use equations 3 and 4 

respectively.  

 

  (1) 

 

To determine the ideal steering behaviour, a set of yaw rate 

candidates is evaluated based on average risk potential on the 

ego vehicles resulting trajectory using J (Eq. 1). The term  is 

a penalty for exaggerated steering and  is the future time, at 

which the ego vehicles position is being evaluated (Eq. 1). 

Compared to [2] an additional weight function  is added, to 

reduce the impact of risk potential: contributions that are further 

in the future, should be considered less. 

 

2.1. Dynamic Potential Field 

Especially for overtaking at high speed, there might be a 

benefit to predicting the obstacle vehicles position and not only 

the ego position when evaluating the repulsive field.  

Using time-dependent ground truth information, equation 1 

can be calculated based on the ideal prediction.  at each 

point along the trajectory is calculated with the future obstacle 

states corresponding to the time the ego vehicle has to travel to 

reach that position (Eq. 2).  

This way, we can study the influence of time dependent risk 

potential, that takes the evolution of the scenario and all actors 

into account. 

We therefore  introduce a time dependent potential field 

evaluation with eqation 2, where the risk potential of all moving 

obstacles  is evaluated to their predicted position at the 

prediction time . The road including all lanes  is not time 

dependent. 

 

 (2) 
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Note that if   = 0, we obtain the original equation as 

proposed by [2], an additional modification is to introduce a 

different variance in x direction for the front and rear sections of 

the obstacle  and  in an effort to better model the human 

behavior.  
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2.2. Longitudinal Control 

Early versions of the algorithm also use the slope of the 

potential field to determine acceleration [1]. With this approach, 

the same environment model can be used for both longitudinal 

and lateral control. 

However, reducing the overall risk does not always lead to the 

ideal behavior. For example, when overtaking, closing the 

distance to the leading vehicle will cause a short term increase in 

risk potential. This has been solved by [4] using a separate 

algorithm to calculate a desired speed profile independent of the 

potential field. 

We have found that using a regular Adaptive Cruise Control 

(ACC) system for longitudinal control in combination with the 

lateral control of the PFM comes very close to the desired 

behavior for overtaking and following. The use of an ACC 

system could allow the direct implementation of traffic rules and 

objectives [5]. 

The potential field could still be used to suggest a reduced 

speed if the overall risk potential ahead of the ego car is high, or 

to indicate whether overtaking is possible, but it does not directly 

affect the speed of the vehicle or the decision making process. 

 

3. Experiment in Simulation 
The scenario used to determine the ideal parameters of the 

algorithm is a single overtake scenario. This scenario consists of 

an infinite straight road with one travel lane and one passing lane. 

Each lane is represented by Equation 3 with separate weights for 

each lane type. The lead vehicle is placed in front of the ego 

vehicle in the travel lane (Fig. 1). The lead vehicle is modeled by 

equation 4. 

 

 
Fig. 1 Scenario for Training the model 

 

3.1. Maneuver 

The maximum speed of 100 km/h was chosen to ensure that 

the effect of prediction is noticeable in the results. As the 

difference between the two methods is expected to decrease at 

lower speeds, they will be equal when the hazards are stationary. 

The ego car will start at the maximum allowed speed, 100 m 

behind the lead cars, each at 80 km/h. The ego car will then 

follow the first car until the driver has approached his preferred 

distance. 

The scenario is run on a D3sim (Mitsubishi Presicion 
Company, Limited) powered driving simulator at Shibaura 

Institute of Technology to record human data for training and 

comparison. The simulation data is then converted to Open 

Simulation Interface (OSI)-compatible data, which is resimulated 

on Kehrmaker2, an OSI-based simulator developed at the 

University of Applied Sciences Kempten. Note that while the 

D3sim has a physics model for vehicle dynamics, the algorithm 

run on the OSI sim converts the requested yaw rate candidate  

directly into a circular trajectory. 

 

4. Results 

Human driving data was collected for both the following and 

overtaking portions of the scenario. In the following analysis, 

only data points starting 6 seconds before the overtaking request 

were used. A total of 10 runs were recorded, performed by one 

test subject, of which one was considered an outlier and was 

therefore removed (Fig. 2). 

 

 
Fig. 2: Recorded human trajectories relative to obstacle position. 

Outlier is highlighted in red. 

 

Using the regression procedure proposed in [3] but adapted to 

the new parameters. The parameters of the lead vehicle , , 
 and , where fitted, setting the road parameters to 

estimated values: 

 

 subject to  (5) 

 

Then the parameters of the travel lane  and  and the 

passing lane   and  are fitted using Equation 6: 

 

 subject to (6) 

 

Since the squared slope of the potential field in the y-direction 

is used as the cost function in Equation 6, the y-variances will 

tend to infinity. To keep the values in check, the variance of the 

travel lane is chosen so that twice the standard deviation is equal 

to the path width. This constrains  to 2.4 during optimization. 

A Non-Linear Least Squares method was used for the 

regression task. To avoid the computational burden of running 

the simulation for each evaluation of the cost function, the 

relative position of the ego vehicle to the hazard sources was 

calculated in a single simulation run for each recorded human 

trajectory. Training was performed using the relative position 

data on a static image of the potential field. This results in the 

potential field shown in Figure 3, with values listed in Table 1. 

 

 
Fig. 3: From the perspective of the obstacle: trajectories used for 

training (black trajectories) and the resulting repulsive field. 

 

Table 1 PFM parameters 

Symbol Value 

 

26606 

 

3190 

 

3864 

 2.06 

 -22236 

 2.4 

 -18430 

 130 

 

During initial testing of the training script, the difference in 

risk potential to the left and right of the lead vehicle seemed to 

be quite small, which sometimes led to overtaking to the left of 



the vehicle in non-ideal situations. The probable reason for this is 

that the human driver kept to the left of the center of the lane 

during lane keeping. This caused the optimization to reduce the 

weight of the passing lane. A solution to this problem could be a 

skew term in the equation of the lane potential field, or a 

different approach to training, this is left for future work. To 

avoid this issue for the scope of this paper, the driver was 

instructed to stay in the center of the lane when recording the 

data for this paper. 

 

4.1. Algorithm Evaluation 

The automated trajectory was recorded using the lateral 

control algorithm described in sections 2.1 and 2.3. The speed 

recorded in D3sim was used as the open loop speed input. 

Automation was performed using static analysis with  = 0 

and predictive risk (equation 4).   For equation 1 J was calculated 

to future time =1s, q=200 and the weight function is 

constant =1. The potential field of the passing lane is 

initially disabled and gets activated at the same time, the human 

driver was instructed to initiate the overtake. 

 

Table 2 Resulting MAE values 

Run # Static [m] Predictive [m] 

1 0.880 0.348 

2 0.595 0.351 

3 0.777 0.217 

4 0.643 0.309 

5 0.707 0.275 

6 0.407 0.379 

7 0.437 0.243 

8 0.505 0.269 

9 0.369 0.306 

Avg. 0.591 0.299 

 

The automated trajectory is evaluated by the mean absolute 

error (MAE) to the human trajectory. The results are shown in 

Table 2. The results were consistently improved in each run by 

using prediction. The average MAE for the static risk trajectory 

over all nine runs is 0.591 meters. The same metric for predictive 

risk is 0.299. This shows that the ability to model human 

behavior can be improved by implementing a predictive 

performance  method.  Prediction generally shows an improved 

ability to navigate to a lower risk potential. On average, it is only 

9 cm away from the lowest risk position, compared to 54 cm 

without prediction. 

 

 
Fig. 4: Mean of the trajectories of both static(blue) and predictive 

(purple) PFM on top of the distribution of the human trajectories. 

 

Figure 4 shows the resulting path taken by both iterations. 

While the predictive algorithm is much closer to human driving 

than the static algorithm, there are still visible differences in how 

much of the passing lane is used and how quickly the ego vehicle 

returns to the lane. 

 

5. Conclusion 

In this paper, a predictive evaluation for the potential field 

method has been implemented and analyzed. When predicting 

the future ego position to sample the potential field, the future 

position of the obstacles is used for the potential field function. 

In the simulation, this was achieved by using the available 

ground truth knowledge of the position of the obstacles at any 

point in time, providing a perfect prediction. 

The method was trained on and compared to a set of human 

trajectories, of a single test subject. When the lateral control 

algorithm was compared to human behavior, the prediction 

provided better results, showing a large potential gain in using a 

predictive method. But the experiment needs to be repeated with 

different drivers to confirm the results. 

It should be noted that the prediction method used cannot be 

applied in real life, and the improvement provided by prediction 

is expected to decrease at lower speeds. Nevertheless, the results 

still show a promising potential for using prediction to 

significantly improve the performance of PFMs (ignoring the 

computational cost).  

An additional simulation was performed on a double 

overtaking scenario, inspired by the "Einscherer" scenario, to test 

the impact of overlapping risk potential and whether it is possible 

to re-enter the lane between two cars before overtaking again. 

However, with the chosen parameters, full re-entry was only 

possible at a distance of about 120 m between the two obstacle 

cars when using predictive risk. This suggests that the field 

parameters used in this paper are not robust enough to 

successfully navigate a wide range of situations.  

The initial finding that the algorithm is able to accurately 

navigate to the lowest risk, but that the lowest risk does not 

correspond to human behavior, suggests that large improvements 

are possible in the potential field itself. Future work will 

determine whether this is a limitation of the potential field 

functions, the training data, or the training method.  

Future work also includes the development of longitudinal 

control to best match the driver's behavior when following the 

lead vehicle. While following the lead vehicle, the risk potential 

parameters of the potential field are set to different values to 

prevent the vehicle from leaving the lane. The goal is to switch 

the weights of the hazard sources once the decision to overtake 

has been made. 
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