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A B S T R A C T   

Carsharing is an integral part of the transformation toward flexible and sustainable mobility. New 
carsharing programs are entering the market to challenge large operators by offering innovative 
services. This study investigates the use of generative machine learning models for creating 
synthetic data to support carsharing decision–making when data access is limited. To this end, it 
explores the evaluation, selection, and implementation of leading-edge methods, such as gener
ative adversarial networks (GANs) and variational autoencoders (VAEs), to generate synthetic 
tabular transaction data of carsharing trips. The study analyzes usage data of an emerging car
sharing program that is expanding its services to include free-floating electric vehicles (EVs). The 
results show that augmenting real training data with synthetic samples improves predictive 
modeling of upcoming trips by up to 4.63%. These results support carsharing researchers and 
practitioners in generating and leveraging synthetic mobility data to develop solutions to real- 
world decision support problems in carsharing.   

1. Introduction 

Carsharing has gained traction as a sustainable concept to address the immediate challenges of urban mobility (Ferrero et al., 2018; 
Hu et al., 2018a). It has been found to reduce CO2 emissions, noise pollution, congestion, and parking shortages by decreasing car 
ownership or postponing vehicle purchase decisions (Nijland and van Meerkerk, 2017; Kim et al., 2019; Vélez, 2023), lowering fuel 
consumption and annual vehicle kilometers traveled (Chen and Kockelman, 2016; Meng et al., 2020), and fostering intermodal 
transportation (Amatuni et al., 2020; Chicco and Diana, 2021). As a prominent example of the sharing economy, carsharing induces 
changes in the mobility behavior of its users toward short-term vehicle access as a service that can complement public transport and 
active travel (Münzel et al., 2018; Vanheusden et al., 2022). Further, carsharing can accelerate the transition to green transport 
through the increasing integration of electric vehicles (EVs) in modern carsharing fleets (Hu et al., 2019; Luna et al., 2020; Prinz et al., 
2020a; Shaheen et al., 2020; He and Chen, 2021; Hoerler et al., 2021). Fueled by these benefits, the demand for carsharing services is 
projected to continue to grow (Mounce and Nelson, 2019; Shaheen and Cohen, 2020). While carsharing programs were previously the 
preserve of large operators from the private sector, public institutions and small operators are increasingly entering the market (Zhang 
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et al., 2020; Baumgarte et al., 2022). In the course of this development, emerging programs are coming up with innovative service 
offers and tapping into new markets that are no longer limited to metropolitan areas but increasingly include rural and suburban areas 
(Rotaris and Danielis, 2018; Lagadic et al., 2019; Illgen and Höck, 2020). 

To succeed in this competitive market, carsharing operators and policy makers are required to continuously realign service offers 
and policies with user needs (Hu et al., 2018a; Münzel et al., 2019). Consequently, the introduction of new carsharing programs as well 
as the implementation of innovative service offers involve a variety of operational and strategic decisions that benefit from under
standing and anticipating user behavior (Golalikhani et al., 2021a). Prescriptive research aims to provide data-driven decision support 
in areas related to the business model and operating area (Perboli et al., 2018; Hahn et al., 2020), the location, number, and capacity of 
stations and charging possibilities (Zhang et al., 2020; Abbasi et al., 2021; Ma and Xie, 2021), the ideal fleet size and distribution of 
vehicles (Hu and Liu, 2016; Jian et al., 2017; Illgen and Höck, 2019; Brendel et al., 2022), user demand (Jorge and Correia, 2013; Yoon 
et al., 2019; Cheng et al., 2021), and pricing schemes (Yang et al., 2022; Brendel et al., 2023). As the number of carsharing users and 
the demand for more flexible service offers grow, decision-making for carsharing operators becomes ever more complex (Laporte et al., 
2018). Hence, insights and predictions of user behavior and trip characteristics from machine learning (ML) models have become 
indispensable for carsharing operators to make informed decisions and optimize their systems. Previous literature highlights the high 
value of ML for predicting, inter alia, trip distances (Baumgarte et al., 2022), user demand (Cocca et al., 2020; Cheng et al., 2021; Prinz 
et al., 2022), and supply imbalances (Willing et al., 2017; Wang et al., 2021). Consequently, large carsharing operators increasingly 
leverage their rich database to generate insights for improving the efficiency and sustainability of their operations, reduce costs, and 
provide a better service experience for their users (Golalikhani et al., 2021a; Yao et al., 2022). 

Emerging carsharing programs are mostly excluded from this frontline industrial development. While ML models promise high 
prediction accuracy and flexible adaptation to a variety of decision support problems, their practical value is also highly dependent on 
their deployment and on the available input data (Albrecht et al., 2021; Shrestha et al., 2021). In addition to budget constraints and 
lower technological expertise, many small carsharing operators struggle with limited data availability and quality (Lagadic et al., 
2019). Further, municipal operators in particular must comply with strict data protection regulations (Vanheusden et al., 2022). In this 
connection, synthetic data created by generative ML models such as generative adversarial networks (GANs) and variational 
autoencoders (VAEs) present a promising path to overcome the challenge of restricted access to high-quality and privacy-preserving 
input for the training of data-intensive ML models. 

In transportation research, generative ML has lately been successfully employed for population synthesis and activity scheduling 
(Garrido et al., 2020; Kim et al., 2022), urban vehicle trajectory modeling (Zhang et al., 2019; Choi et al., 2021), and learning 
probabilistic dependencies in travel behavior data (Wong and Farooq, 2020). First steps have also been made to investigate the use of 
synthetic training samples for prediction tasks like travel mode detection (Li et al., 2020) and road traffic forecasting (Boquet et al., 
2020). While these studies offer valuable insights on traffic management and public planning, an in-depth understanding of the use of 
generative ML and synthetic data for innovative mobility options like carsharing is needed to foster their development. 

Against this backdrop, this study aims to explore the use of synthetic data to support carsharing decision–making by overcoming 
the barrier of limited data access during the introduction and expansion of new services. To this end, it means to investigate the 
evaluation, selection, and implementation of generative ML models to create synthetic tabular transaction data of carsharing trips for 
more accurate predictions of user behavior when data access is limited. Thus, this study raises the following research questions: Can 
synthetic data created by generative ML models support decision-making in carsharing? And what are appropriate methods? 

To pursue this research objective, we employ a systematic ML workflow (Kühl et al., 2021; Shrestha et al., 2021) as a rigorous 
approach to the generation of synthetic data as well as to the evaluation of their fidelity and their utility in the context of real-world 
prediction tasks. Consistent with the application–oriented nature of our study, we consider the case of an emerging carsharing program 
that is expanding its services to include free-floating EVs and aims to obtain more reliable predictions of trip distances and usage times 
during the service’s ramp-up. In this connection, we analyze how well synthetic data generated by GANs, VAEs, and benchmark models 
serve the purpose of enhancing the available database to improve the training and performance of prediction models. We investigate 
the use of synthetic data for replacing, rebalancing, and augmenting real training data drawing on two evaluation protocols that 
correspond to the prediction of two different target variables. 

The findings of this study contribute to research by presenting novel insights on the use of generative ML for the creation of 
synthetic mobility data. They help understand the methods and approaches for generating and leveraging synthetic tabular transaction 
data of carsharing trips for more accurate predictions of user behavior. In this way, the results advance current studies concerned with 
developing methodological solutions to the prevalent decision support problems in carsharing (Golalikhani et al., 2021a) and 
particularly add to the body of knowledge on small, municipal, and emerging carsharing programs as well as on the introduction and 
expansion of EV carsharing services (Xu and Meng, 2019; Luna et al., 2020). In addition to its theoretical contribution, our study 
supports practitioners with limited data access in using generative ML models to enhance their available database, achieve more 
accurate predictions of user behavior, and make more informed operational and strategic decisions when launching or expanding 
carsharing services (e.g., developing user incentives or dynamic pricing models). 

The remainder of this paper is structured as follows. In Section 2, we review relevant literature and provide theoretical background 
on carsharing decision support as well as on generative ML and synthetic data. We present our research design in Section 3. In Section 
4, we illustrate the results of our study before discussing them with a focus on their theoretical and managerial implications in Section 
5. Section 6 concludes by pointing out limitations and indicating avenues for future research. 
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2. Related work 

2.1. Carsharing decision support 

Carsharing programs rely on platform mediation to match provider resources and user mobility demands (Nansubuga and 
Kowalkowski, 2021). As such, they form an integral part of the ongoing shift from vehicle ownership to vehicle access as a service 
(Cohen and Kietzmann, 2014; Schmöller and Bogenberger, 2020). Carsharing provides registered users with short-term access to a fleet 
of shared vehicles distributed within a designated operating area and offers a pay-per-use model, usually based on the trip distance and 
the usage time (Shaheen et al., 2006). In general, carsharing programs can be classified into three main types: one-way, roundtrip, and 
free-floating carsharing (Ferrero et al., 2018; SAE International, 2021). One-way and roundtrip services are station–based (i.e., vehicle 
pick-up and drop–off are limited to stations provided by the operator). While one-way services allow users to end their trips at any 
given station, roundtrip services require users to return the vehicle to the same station they started from. Free–floating services provide 
more flexibility by allowing the users to start and end their trips anywhere within the operating area (Nourinejad and Roorda, 2015; 
Münzel et al., 2019). The added convenience of free–floating trips has led to the growing popularity of this type of service (Vanheusden 
et al., 2022), yet this trend also poses new challenges such as refueling (Meng et al., 2020), maintenance trips (Giordano et al., 2021), 
or vehicle relocation to counter supply and demand imbalances (Weikl and Bogenberger, 2015; Xu and Meng, 2019) which increase 
the overall decision-making complexity for operators. 

Moreover, carsharing programs can be categorized according to the type of engine used in their vehicles (i.e., electric or internal 
combustion engine). In recent years, improved technology and favorable policy have led to the rise of EV-based carsharing schemes 
(Shaheen et al., 2020). Encouraged by the positive impact of EV carsharing on the urban environment (Luna et al., 2020; Li et al., 
2021), public institutions aim to promote sustainable mobility by providing incentives for EV fleets (e.g., through tax reliefs, expansion 
of charging infrastructure, and access to bus lanes) (Xu et al., 2021) and operators strive to attract more environmentally aware users 
with EVs (Brendel et al., 2018; Giordano et al., 2021). In addition to the environmental benefits of conventional carsharing, EV 
carsharing further reduces CO2 emissions (Wappelhorst et al., 2014; Boyacı and Zografos, 2019) and has been shown to facilitate mass 
adoption of EVs by providing a positive driving experience and reducing potential skepticism such as range anxiety (Brendel et al., 
2018). Besides, the higher annual mileage of carsharing vehicles results in a shorter payback period of acquisition costs for operators 
and a more positive life cycle assessment (LCA) compared to private EVs (Burghard and Dütschke, 2019). In order to fully exploit the 
benefits of EVs, carsharing providers must also deal with new managerial challenges like the limited range of EVs per charging cycle 
and the associated need for frequent recharging (Hu et al., 2019; Cui et al., 2022; Yao et al., 2022). This entails new decision-making 
areas for operators such as the optimal location of charging points (Cocca et al., 2019; Lai et al., 2022) and the harmonization of EV 
charging with the driving habits of the users (Boyacı and Zografos, 2019; Shen et al., 2019). 

In addition to diversifying their services, carsharing operators are also beginning to expand to non-urban areas to attract new user 
segments beyond the saturated urban market (Wappelhorst et al., 2014; Illgen and Höck, 2020). While less developed public transport 
networks and the existing demand for individual and first-mile/last-mile mobility favor carsharing in rural and small urban areas, low 
population density as well as a higher car ownership level and different usage habits (e.g., infrequent but longer non-commuting trips) 
pose new challenges to carsharing programs (Rotaris and Danielis, 2018; Lagadic et al., 2019). To deal with these circumstances, 
carsharing operators are adapting their business models to be more socially oriented and to involve local authorities and municipalities 
(e.g., through subsidized pricing and cooperation with local public transport operators). Additionally, the number of carsharing 
programs operated directly by municipalities is growing (Rotaris and Danielis, 2018; Baumgarte et al., 2022). 

To thrive with new services and in new markets, both emerging and established carsharing operators need to focus on improving 
supply attributes related to vehicle availability and user convenience, as they directly influence perceived service quality and usage 
intention (Niels and Bogenberger, 2017; Hu et al., 2018b; Golalikhani et al., 2021b). This involves optimizing the number, types, and 
(re-)location of vehicles (Hu and Liu, 2016; Jian et al., 2017; Illgen and Höck, 2019; Prinz et al., 2020), charging or refueling policies 
(Weikl and Bogenberger, 2015; Meng et al., 2020), reservation and pricing (Molnar and Correia, 2019; Yang et al., 2022) as well as the 
location, size, and quantity of stations for station-based services (Correia and Antunes, 2012; Zhang et al., 2020; Abbasi et al., 2021). 
These decisions are often based on a thorough understanding of factors for carsharing adoption and demand, user groups, and travel 
behavior from descriptive research (Costain et al., 2012; de Lorimier and El-Geneidy, 2013; Hu et al., 2018a; Baumgarte et al., 2021) as 
well as on precise predictions of user demand and upcoming trip characteristics (Lei et al., 2020; Wang et al., 2021). Regarding the 
latter, operators and policy makers increasingly rely on state-of-the-art ML models for data-driven decision support (Willing et al., 
2017; Prinz et al., 2022). 

Previous research on carsharing demand modeling draws on various forms of ML like gradient boosting machines (GBM) to predict 
station-level vehicle demand for one-way carsharing programs (Wang et al., 2021) and to develop a spatial decision support system for 
demand imbalances in free–floating carsharing (Willing et al., 2017), recurrent neural networks (RNN) to optimize the proactive 
relocation policy for on-demand mobility services (Lei et al., 2020) or long short-term memory networks (LSTM) to predict service 
demand in free-floating carsharing (Cocca et al., 2020; Alencar et al., 2021a) and one-way station-based carsharing programs (Wang 
et al., 2020; Brahimi et al., 2022). Other studies aim to optimize vehicle relocation and positioning for free-floating services by 
predicting the time to pick-up (Kostic et al., 2021) and by designing a competitor-aware vehicle positioning model (Schroer et al., 
2022) based on deep feedforward neural networks (DNN). In this connection, convolutional neural networks (CNN) are employed by 
Zhu et al. (2019) for carsharing flow prediction and by Chang et al. (2022) for optimizing vehicle relocations and staff movements 
among different carsharing providers of one-way station-based programs. Ren et al. (2020) develop a station scheduling method for 
vehicle rebalancing based on reinforcement learning while Prinz et al. (2022) present vehicle relocation strategies for free-floating 
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services based on demand predictions using random forests (RF). To optimize the location of carsharing stations based on user demand, 
Zhu et al. (2017) developed a framework relying on edge computing and a stacked autoencoder. In this context, Ma et al. (2022) use 
CatBoost and shapley additive explanations (SHAP) to predict development patterns of one-way carsharing stations considering the 
occupancy rate and built environment. Baumgarte et al. (2022) and Cheng et al. (2021) employ gradient boosting approaches and 
SHAP to reveal the factors influencing carsharing trip distance and booking demand in station-based carsharing. 

The emergence of big urban mobility data has resulted in new opportunities for the application of ML and predictive analytics in 
carsharing (Schroer et al., 2022). Previous work draws on large data sets with at least several hundred thousand trips that they ac
quired through direct cooperation with established carsharing providers, via application programming interfaces (APIs) to the digital 
platforms of large carsharing companies that allow for automated and real-time data retrieval (car2go, 2019), or using data sharing 
standards (Open Mobility Foundation, 2023) and open data initiatives (Ciociola et al., 2017; Alencar et al., 2021b; Schroer et al., 
2022). While these trends are expected to continuously improve the real–time carsharing data availability, small and emerging car
sharing programs are mostly excluded from this development. Due to an initially small user base, limited financial and human re
sources as well as a lack of standardized systems and technological capabilities, emerging carsharing programs often face the challenge 
of restricted access to representative data of their services (Brendel et al., 2017; Lagadic et al., 2019). Limited expertise in dealing with 
data privacy restrictions and establishing data sharing policies often adds to these barriers. This is even more applicable to municipal 
carsharing programs that are increasingly being established in non-urban areas (Rotaris and Danielis, 2018; Vanheusden et al., 2022). 
Consequently, data acquisition and quality are still major challenges for many carsharing operators on the market, preventing them 
from keeping up with the latest technological developments and sophisticated business models of large established programs. How
ever, these challenges are not yet sufficiently addressed by previous research. 

2.2. Synthetic data and generative machine learning 

In real-world settings, data access is often limited by privacy restrictions (e.g., disclosure of sensitive information) (Shrestha et al., 
2021), prohibitively expensive or time-consuming data collection (e.g., data labeling) (Zhou et al., 2017), or lack of data quality and 
representativeness (e.g., noise or class imbalance) (Gudivada et al., 2017). Synthetic data generation has emerged as a valuable 
technique to overcome these challenges. In contrast to data collected from real-world sources, synthetic data refers to data that is 
artificially generated by purpose-built models (Jordon et al., 2022). Going back to the early work on statistical disclosure control by 
Rubin (1993) and Little (1993), synthetic data has recently come to the fore as high-quality, privacy-preserving input for the training of 
data–intensive ML models (Nikolenko, 2021; Figueira and Vaz, 2022). The results of such ML models scale with the quality and 
quantity of training data (Sengupta et al., 2020). In this connection, the application potential of synthetic data includes replacing or 
augmenting training data when real-world data is unavailable, sensitive to data protection, noisy, or imbalanced (Tanaka and Aranha, 
2019; Carvajal-Patiño and Ramos-Pollán, 2022). 

When real data is scarce, augmenting training data with high-quality synthetic data can help make ML models more robust and less 
prone to overfitting by introducing new additional data points as variations or perturbations to the existing data (Nikolenko, 2021; 
Figueira and Vaz, 2022). As such, synthetic data can also complement underrepresented regions of the data space and mitigate data 
imbalances, providing a more comprehensive representation of the underlying patterns and structures in the data (Jordon et al., 2022). 
In contrast, simply duplicating the available training data creates identical samples that do not provide new information to the model, 
potentially leading to overfitting to duplicated instances, lack of data diversity, and the amplification of biases in the data (Zhou et al., 
2017). In addition, synthetic data can help develop and test models in a controlled environment (e.g., by introducing predefined 
distributions or characteristics to the data) (Bolón-Canedo et al., 2013) as well as ensure data privacy and enable data sharing (e.g., by 
controlling information release) (Snoke et al., 2018; Jordon et al., 2020). 

Synthetic data is created by generative models that are characterized by their ability to synthesize new data by learning a dis
tribution pmodel(x) from training samples x that approximates pdata(x) as closely as possible (Goodfellow et al., 2020). Generally, 
generative models are classified into two main types: explicit density models and implicit density models (Goodfellow, 2017). The 
former make explicit probabilistic assumptions of the data distribution in the form of a probability density function pmodel(x; θ). This 
density may be computationally tractable (e.g., deep belief networks (DBNs)) where the log–likelihood of training data can be 
maximized directly or intractable, meaning that either variational approximations (e.g., VAEs) or Monte Carlo approximations (e.g., 
restricted Boltzmann machines (RBMs)) are needed to maximize the likelihood. In contrast, implicit density models are trained without 
explicitly defining a density function of the data space. Instead, they interact with the distribution by learning only a tractable sample 

Fig. 1. Schematic VAE architecture.  
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generation process that may be incremental based on Markov chains (e.g., generative stochastic networks (GSNs)) or in a single 
generation step (e.g., GANs). Broadly, implicit density models define a way to stochastically transform an existing sample to obtain 
new samples from the same distribution (Goodfellow, 2017). Today, the most widely used approaches for generative modeling are 
VAEs and GANs due to their high performance in a variety of application areas with multimodal data such as images (Alqahtani et al., 
2021), process logs (van Dun et al., 2022), and natural language (Hsu et al., 2017). 

VAEs introduced by Kingma and Welling (2013) are currently gaining traction as one of the most popular models for synthetic data 
generation. Resembling standard autoencoders, VAEs are unsupervised learning algorithms consisting of two main components 
(Fig. 1): (1) an encoder network qϕ(z|x) with parameters ϕ that maps the input data x into a lower-dimensional latent space z with a 
prior distribution p(z) and (2) a decoder network pθ(x|z) with parameters θ that reconstructs the latent code as output x̂ to match the 
input data (Kingma and Welling, 2019). Generally, the distribution of the real data mapped to the latent space of a standard 
autoencoder is sparse. To enable sampling new data, VAEs force a continuous latent space by learning the parameters of a probability 
distribution representing the original data as vectors of means and standard deviations (i.e., μ and σ). New samples are then generated 
by sampling a point from this regularized latent space and passing it through the decoder. The loss function that is minimized during 
VAE training is then composed of the reconstruction error (i.e., the mean squared loss of the input and reconstructed output) and the 
Kullback–Leibler (KL) divergence (i.e., the divergence between the encoder distribution qϕ(z|x) and p(z)) as a regularization term for 

the latent space. It can then be written as L(x, x̂)+ DKL

(
qϕ(z|x)

⃦
⃦ p(z)

)
. VAEs have successfully been applied for synthetic data 

generation in different fields such as crash data analysis (Islam et al., 2021), construction management (Davila Delgado and Oyedele, 
2021), and breast cancer diagnosis (Inan et al., 2023). 

Introduced by Goodfellow et al. (2014), GANs are based on the idea of game theory. Their architecture consists of two neural 
networks: a generator G and a discriminator D (Fig. 2). The generator takes random noise z sampled from a prior distribution pz(z) as 
input to generate new data G(z). The discriminator then aims to distinguish between real data samples x and synthetic samples G(z). 
Thus, the objective of D is to correctly classify the data source with high accuracy, while G aims for an equal performance of D for x and 
G(z) (Wang et al., 2017). Formally, this results in a two–player minimax game with the value function V(D,G): 

min
G

max
D

V(D,G) = Ex∼ pdata(x)[logD(x) ] + Ez∼ pz(z)[log(1 − D(G(z) ) ) ]

GANs derive their name from the adversarial optimization process with opposing goals during model training, where the gener
ators’ and discriminators’ weights are alternately updated through backpropagation from their respective loss functions V until the 
Nash equilibrium (i.e., D(x) = 1

2 for all x) is reached (Ratliff et al., 2013). Based on the original architecture, numerous GAN variants 
have been proposed to address challenges in the learning process of the initial GAN algorithm. Most notably, CGAN introduces a 
conditional setting to direct the data generation process based on class labels (Mirza and Osindero, 2014), InfoGAN adds control 
variables to the learning process in an unsupervised manner (Chen et al., 2016), and WGAN addresses instability problems like mode 
collapse during model training (Arjovsky et al., 2017). While GANs have primarily been used in computer vision (e.g., for image 
generation, face synthesis, and image translation) (Alqahtani et al., 2021), their ability to learn probability distributions and draw 
high-quality realistic samples has encouraged the recent development of GANs for tabular data that requires modeling complex dis
tributions of diverse data types (Lei and Veeramachaneni, 2018; Park et al., 2018; Lei et al., 2019). 

The performance of generative ML models with respect to the quality of the created synthetic data sets can be evaluated in terms of 
privacy, fidelity, and utility (Jordon et al., 2022). Privacy measures notwithstanding, this task is equivalent to assessing the dissim
ilarity between the distributions pdata(x) and pmodel(x) (Borji, 2022). In this connection, fidelity refers to the extent to which the 
synthetic data accurately represents the characteristics and statistical properties of the real data. Typically, evaluating fidelity involves 
distance measures and visualizations to compare the distributions of real and synthetic data (Figueira and Vaz, 2022). The utility of a 
synthetic data set, on the other hand, refers to the usefulness or effectiveness of the synthetic data for a specific purpose or task. It 
assesses the extent to which the synthetic data can replicate, replace, or augment the real data for data-driven tasks (Snoke et al., 2018; 
Jordon et al., 2022). For instance, it evaluates whether the generated data can capture the underlying patterns and structures of the 
original data in a way that allows ML models trained on it to perform well on unseen real data (i.e., ML efficacy). 

In transportation research, generative ML approaches are on the rise but are still dominated by simulation-based approaches and 

Fig. 2. Schematic GAN architecture.  
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standard statistical models for synthetic data generation (Wong and Farooq, 2020). Previous studies in this area mainly focus on model 
development for domain-specific applications such as population synthesis for agent-based transport models and the generation of 
individual travel behavior data for trip forecasting. For instance, Etxandi-Santolaya et al. (2023) estimate EV battery capacity re
quirements based on synthetic driving cycles created via stochastic simulation from the empiric probability functions of real data. 
Brendel et al. (2017) generate rental data for carsharing relocation simulations using a combination of decision trees and a Gaussian 
mixture model (GMM) while Wong and Farooq (2020) propose an RBM-based model for analyzing and simulating travel behavior data 
for demand analysis. VAEs are applied by Islam et al. (2021) to augment roadway network data for crash prediction and by Yao and 
Bekhor (2022) for route choice set generation. Further, Boquet et al. (2020) draw on VAEs to generate and impute traffic data as input 
for road traffic forecasting systems and use their latent space for model selection and traffic anomaly detection. Garrido et al. (2020) 
apply VAEs and GANs to travel survey data for population synthesis as input for agent-based systems for long-term travel forecasts. 
GANs are also deployed by Li et al. (2020) who create synthetic GPS data to improve the accuracy of travel mode detection models. 
Choi et al. (2021) and Zhang et al. (2019) propose GANs for generating urban vehicle trajectory data as well as for learning its travel 
time distribution. In addition, Kim et al. (2022) find that conditional GANs outperform other models when imputing the socio- 
demographic attributes and trip purpose of transit passengers’ mobile data. 

Previous studies highlight the great potential of generative ML in transportation management and planning. However, most studies 
primarily focus on tailored methodological solutions for simulation tasks such as trajectory modeling and population synthesis, while 
research has just begun to investigate the use of synthetic training samples for prediction tasks. Thus, our work contributes to this body 
of knowledge by being the first to employ synthetic data created by generative ML models to support the prediction of user behavior 
during the introduction and expansion of innovative mobility options. 

3. Research design 

This study investigates approaches to effectively generate and leverage synthetic trip data in carsharing to mitigate the challenge of 
limited data access during the introduction and expansion of new services and enable more accurate predictions of upcoming trip 
characteristics. To this end, it analyzes the fidelity and utility of synthetic data in the context of real-world prediction tasks. This 
research examines the case of an emerging municipal carsharing program that is expanding its services to include free-floating EVs but 
lacks the large database necessary to make reliable predictions about user behavior and trip characteristics. To rigorously pursue our 
research goal, we draw on a four–phase research approach following a systematic ML workflow (Kühl et al., 2021; Shrestha et al., 
2021) that reflects the application–oriented nature of our study (Fig. 3). 

First, we obtained a thorough data and business understanding. For this purpose, we worked closely with the carsharing operator to 
understand its operational processes and business model. We evaluated the available database, reviewed related documents, and had 
several discussions with the operator to elaborate the status quo and the underlying problem statement from both a business and data 
perspective. The present carsharing program is located in a medium-sized German town with a population of just under 300,000. It is 
fully owned by the city and operated by its public utility. Compared to large-scale private sector programs, the municipal nature of the 
present carsharing program involves several particularities that affect its management and expansion. For instance, social and 

1

2

3

4

Iteration Research phase Research steps

Data preparation

Data generation

Evaluation and
deployment

• Business analysis Discussions with the operator, review of relevant
documentation, and derivation of the problem statement

• Data analysis Descriptive data analysis and quality check

• Data merging Aggregation of transaction data, user data, and weather data
• Feature engineering Geocoding and creation of variables related to prior usage
• Data preprocessing Feature selection, outlier detection, exclusion of operator trips
• Data splitting 80/20 split in training and test data

• Model creation CTGAN, TVAE, GC, and SMOTE -NC
• Model training 5-fold cross validation, random grid search

and optimization
• Synthetic data Synthetic data sets for replacing, rebalancing, and augmenting

generation the real training data

• Fidelity evaluation Statistical and graphical evaluation of data fidelity
• Utility evaluation Predictive evaluation of data utility (i.e., prediction of usage

times and trip distances using DNN, RF, and XGBoost)
• Model selection Selection of the best performing generative model
• Deployment Derivation of implications for model deployment

Data and business
understanding

Fig. 3. Iterative research process.  
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environmental responsibility is an integral part of its business model, and data processing and transfer are subject to strict data 
protection regulations. 

Established in 2015 as a small roundtrip station-based program, it has since increased its fleet to 300 vehicles and 110 stations. To 
encourage local sustainable mobility and to reach new user groups, the operator now aims to expand its services to include free- 
floating EVs. Following a successful trial period, the new EV fleet currently consists of 13 vehicles that are distributed throughout 
the downtown area and can be reserved or accessed directly via a mobile app. Without having to specify the duration of usage be
forehand, users can end their trip by parking the EV in any public parking space in the operating area. The usage fee is then calculated 
based on the usage time and the distance traveled. The basic pricing plan further includes a one-time subscription fee and a monthly 
membership fee. To optimize EV availability and the overall user experience, the operator aims to obtain reliable predictions of up
coming trip characteristics (i.e., trip distance and usage time). In this way, the program seeks to establish more efficient charging 
processes (i.e., provide users with real–time suggestions of charging stations and times based on the current battery level of the EV and 
predictions of the trip distance) and to improve its booking system (i.e., provide users with vehicle availability forecasts despite the 
open-ended nature of EV bookings). However, data availability is limited due to the short period of service and the restricted user base 
in a small urban area. Hence, the initially available data includes a transaction data set of 6,479 trips made with free–floating EVs 
between January and December 2021, a user data set with demographic and contract information of 771 active users who made at 
least one trip with an EV during the period of analysis, and hourly location-specific weather data for the analyzed period (Open
Weather, 2023). 

Second, during data preparation, we merge the transaction data, user data, and weather data to obtain one aggregated data set 
(Schmöller et al., 2015). In the course of feature engineering, we created new variables indicating the user-specific prior usage 
behavior (e.g., prior distance traveled), merged categorical values where appropriate, and geocoded the start and end locations of each 
trip (Wielinski et al., 2019). We further prepared the data by excluding maintenance and relocation trips, employing correlation-based 
feature selection and interquartile range for outlier detection (Kuhn and Johnson, 2019). The resulting data set includes 5,945 trips 
described by 20 explanatory variables from six categories (i.e., time-related, location-related, car-related, user-related, usage-related, 
and weather-related variables) and two different target variables (i.e., trip distance and usage time) used for the evaluation of synthetic 
data utility for the training of supervised ML models. Table 1 presents an overview of the data set and a description of the variables. 
Finally, we divide the data into training and test sets using an 80/20 split. 

Table 1 
Overview of explanatory and target variables.  

Category Variable Description Values Mean 
SD 

Min 
Max 

Time Time of day Time of day the trip starts (time intervals, e.g., early morning) 6 – –  
Day Day of the week the trip starts (e.g., Monday) 7 – –  
Non-working day The trip starts on a weekend or public holiday (i.e., 1 or 0) 2 – –  
Month Month the trip starts (e.g., July) 12 – – 

Location District District the trip is started from (e.g., downtown) 21 – – 
Car Vehicle ID Unique ID of every vehicle in the fleet (e.g., 101) 13 – – 
User Age Age of the user at the time of the trip (in years) – 34.35 

11.40 
17 
86  

Gender Gender of the user (i.e., female, male, or not specified) 3 – –  
Contract type Type of contract of the user (e.g., private, business, or internal) 13 – –  
Contract duration Duration of the user’s contract until the start of the trip (in months) – 19.86 

16.70 
0 

79  
Business Indicator for business clients (i.e., 1 or 0) 2 – –  
Student Indicator of the student status of the user (i.e., 1 or 0) 2 – –  
Public transport Indicator for a subscription to local public transport (i.e., 1 or 0) 2 – – 

Prior Usage Prior trips Aggregated number of trips by the user until the start of the trip (absolute 
number) 

– 18.34 
25.37 

0 
154  

Prior usage time Mean prior usage time per trip of the user (in minutes) – 111.36 
161.83 

0 
4100.5  

Prior distance 
traveled 

Mean prior distance traveled per trip of the user (in km) – 15.07 
18.46 

0 
401  

Prior drop-off 
distance 

Mean prior distance between start and end points per trip of the user (in m) – 998.95 
1127.49 

0 
15,487 

Weather Weather ID Main weather condition based on a group of weather parameters at the start of 
the trip (e.g., cloudy) 

5 – –  

Temperature Perceived temperature (windchill factor) at the start of the trip 
(in degrees Celsius) 

– 9.59 
9.28 

− 18.28 
30.9  

Rain Rain volume in the last hour before the start of the trip (in mm) – 0.11 
0.38 

0 
6.67 

Trip 
(target 
variables) 

Trip distance Distance traveled per trip of the user (in km) – 16.26 
20.67 

1 
199 

Usage time Usage time per trip of the user (in minutes) – 115.18 
139.76 

2 
1065  
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Third, we proceed with synthetic data generation. Fig. 4 provides a conceptual overview of the steps in this and the subsequent 
research phase. We draw on conditional tabular GAN (CTGAN) and tabular VAE (TVAE) (Lei et al., 2019) as state-of-the-art generative 
ML algorithms to create synthetic data sets based on the training data. These models are specifically designed for the creation of 
synthetic tabular data and have lately been successfully employed in various domains (He and Zhou, 2022; Inan et al., 2023). 
Compared to standard GANs, CTGAN incorporates mode-specific normalization and conditional training–by–sampling to be able to 
deal with tabular data. Mode-specific normalization enables the modeling of multi-modal distributions in numerical columns. It uses a 
variational GMM (Bishop, 2006) to determine the number of modes per column and normalize its values according to the estimated 
distributions. The encoded values are then used during model training before being transformed back to the original scale for the 
synthetic data generated. Conditional training–by–sampling addresses imbalanced category-level frequencies by encoding categorical 
variables into condition vectors, sampling them according to the log frequency of the categories to incorporate rare categorical levels, 
and using them as generator inputs and as a filtering condition for sampling from the real data distribution (Lei et al., 2019). To 
improve learning stability and data quality, CTGAN leverages recent advances in GAN training from PacGAN (Lin et al., 2020) and 
Wasserstein GAN with gradient penalty (Gulrajani et al., 2017). The TVAE proposed by Lei et al. (2019) is an adaption of the standard 
VAE to fit tabular data. It learns the latent space distribution of the real training data before attempting to replicate the data while 
minimizing evidence lower-bound (ELBO) loss. For both models, we add sampling conditions to capture the business logic of the real 
data. We tune the models’ hyperparameters using random grid search (Bergstra and Bengio, 2012) and 5-fold cross-validation (Stone, 
1974) on the training data. We complement the generative ML models with a Gaussian Copula (GC) model (Li, 1999; Patki et al., 2016) 
and synthetic minority oversampling technique-nominal continuous (SMOTE–NC) (Chawla et al., 2002) as benchmark algorithms. For 
all models, we generate one data set (1) to replace the real training data, one data set (2) to rebalance selected explanatory variables in 
the real training data (i.e., ‘contract type’ and ‘district’), and several data sets of different sizes (3) to augment the real training data 
with synthetic samples (i.e., adding 0.5, 1, 2, 4, and 8 times the original amount of data). We choose this wide range of augmentation 
factors as the optimal size of training data for ML models is difficult to determine in advance and often depends on an ensemble of 
factors such as model complexity, data diversity, and task specifics. 

Fourth, we conclude with the evaluation and deployment phase where we aim to assess the quality of the synthetic data, select the 
best generative model for the present use case, and derive implications for the deployment of the model in the real-world setting. We 
start with basic quality checks on the synthetic data sets (e.g., avoidance of real data duplicates, adherence to the data boundaries, and 
coverage of all categories) before evaluating the fidelity of the synthetic data sets (i.e., the statistical similarity to the real data). To this 
end, we use descriptive statistics and graphical representations to evaluate the similarity of the marginal distributions. We draw on the 
complement to the two-sample Kolmogorov–Smirnov (KS) statistic for numerical variables (Massey, 1951) and on the complement to 
the Total Variation Distance (TVD) for categorical variables as distance metrics. We further assess pairwise Pearson correlations of the 
data sets’ numerical variables. Next, we evaluate the utility of the synthetic data sets (i.e., the suitability for training ML models) 
against the real training data baseline using three supervised ML algorithms (i.e., DNN, RF, and extreme gradient boosting (XGBoost)). 
For this purpose, we employ two evaluation protocols that correspond to the prediction of two different target variables (i.e., trip 
distance and usage time). In each case, we evaluate the performance of the prediction models for (1) replacing the real training data 
with synthetic data, (2) rebalancing the real training data with synthetic data, and (3) augmenting the real training data with synthetic 
data. For validation, we also investigate (2) and (3) using duplicates of the real training data for rebalancing and augmenting the real 
training data. We evaluate the model performance on the test data for the different training data sets drawing on mean average error 
(MAE): MAE = 1

n
∑n

i=1|Ŷ i − Yi|, where Yi are the observed values, Ŷ i are the predicted values, and n is the number of observations. We 
additionally report the root mean squared error (RMSE). Based on the results, we finally select the generative model that corresponds 
to the synthetic training data yielding the best prediction accuracy (i.e., the highest ML efficacy and utility for the given prediction 
tasks) and derive implications for its deployment. 

3 Data generation 4 Evaluation and deployment

Training
data

Test data

Model
predictions

Synthetic
training data

CTGAN
TVAE
GC
SMOTE

DNN
RF
XGBoost

Model
selection

Model
deployment

Fig. 4. Conceptual overview of the research phases 3 and 4.  
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4. Results 

In this section, we present the results and key insights of our study with a particular focus on the evaluation phase of our research 
approach. We first evaluate the fidelity of the synthetic data sets and thus determine to what extent they accurately represent the 
structural characteristics of the real data. Table 2 provides an overview of the data sets’ descriptive statistics while Fig. 5, Fig. 6, and 
Fig. 7 support the evaluation with graphical representations. Thereafter, we assess the utility of the synthetic data sets by analyzing if 
and how they can support the prediction tasks of the present use case, where the operator aims to obtain more reliable predictions of 
the trip distance and the usage time as a basis for its operational and strategic decisions for the expansion of its free-floating EV service. 
Table 3 presents the prediction performances for the two evaluation protocols as the basis for model selection. 

The fidelity of the synthetic data sets created by the four generative models (i.e., CTGAN, TVAE, GC, and SMOTE-NC) is first 
validated based on their statistical characteristics as indicators for similarity to the real training data. To this end, we compare the 
means, medians, standard deviations (SD), minima (min), and maxima (max) for the target variables as well as the overall compat
ibility of distribution functions and pairwise correlations of the real and synthetic data as presented in Table 2. In addition, we per
formed basic quality checks on the synthetic data sets to ensure that essential requirements were met (e.g., avoidance of real data 
duplicates, adherence to the data boundaries, and coverage of all categories). Overall, the statistical metrics indicate that all synthetic 
data sets are structurally similar to the original training data set. However, some peculiarities require closer analysis. 

Regarding the means and medians of the two target variables, the data generated by CTGAN, TVAE, and SMOTE-NC closely 
resemble the original data. In contrast, the mean and median of the GC data are significantly higher than expected. In terms of the SDs 
of the two target variables, the GC data also exhibit the greatest differences from the original data. Analyzing the min and max values of 
the data sets reveals that CTGAN and TVAE nearly cover the full range of the original data. However, the benchmark models’ max 
values do reach those of the real data. For the ‘trip distance’, the CTGAN data provide the closest resemblance to the real data, with 
their metrics being almost identical. Fig. 5 supplements the descriptive statistics with a graphical representation of the marginal 
distributions of the ‘trip distance’ for all synthetic data sets to allow a visual assessment. It confirms both the shift of the mean of the GC 
data and the restricted range of the data generated by both benchmark models. When it comes to the ‘usage time’, the SMOTE-NC data 
demonstrate the greatest statistical similarity to the real data, closely followed by the CTGAN and TVAE data. In addition to the in
spection of the target variables, Fig. 6 exemplarily visualizes the marginal distributions of selected explanatory variables for the 
CTGAN data and the real training data. 

We further evaluate the similarity of the distributions of numerical variables by computing the maximum differences between the 
cumulative distribution functions (CDF) of the real data and the synthetic data sets. Table 2 shows the average KS complement across 
all numerical variables and, analogously, the average TVD complement across all categorical variables. It can be seen that in this case, 
the CTGAN and GC data do not keep up with the other two data sets. Table 4 in the Appendix gives a detailed overview of the KS and 
TVD complements per variable. We observe that variable complexity (e.g., the number of categories in categorical variables) strongly 
affects the similarity of the marginal distributions to the original data. Accordingly, the marginal distributions of categorical variables 
such as ‘Contract type’ and ‘Vehicle ID’ in most synthetic data sets show a higher deviation from those of the real data. 

As a final check of the structural similarity, we examine the differences in pairwise correlations between the real and synthetic data 
sets. We find similar pairwise correlations of the numerical variables to the real data for all synthetic data sets. This suggests that the 
synthetic data captures important aspects of the correlation structure observed in the real data. Fig. 7 exemplarily illustrates the 
pairwise correlations of numerical variables of the real and CTGAN data in the form of parallel heat maps. From the evaluation of data 
fidelity, we conclude that the synthetic data sets of all analyzed models adequately captured the distribution of the real training data. 
However, this only seems to be true to a limited extent for the GC data. We find that deviations in data quality are indicated by both 
descriptive statistics and graphical representations. 

Thereafter we evaluate the utility of the synthetic data. Thus, we aim to test how well the generated synthetic data fit the purpose of 
enhancing the database for the training of prediction models and how they affect their performance. Table 3 presents the results for the 

Table 2 
Statistical metrics of the real and synthetic data sets.   

Metric Real data CTGAN TVAE GC SMOTE-NC 

Trip distance Mean 16.04 15.93 14.39 18.26 14.47 
Median 10 10 9 16 10 
SD 19.73 19.88 17.90 15.85 15.88 
Min 1 1 1 1 1 
Max 197 196 192 87 173 

Usage time Mean 115.32 86.84 93.09 131.82 106.30 
Median 66 49 56 118 64 
SD 140.45 122.30 117.30 114.04 125.20 
Min 2 2 2 2 2 
Max 1065 940 1065 606 919  
KS complement 
(numerical variables) 

0.8972 0.9234 0.8167 0.9410 

TVD complement 
(categorical variables) 

0.8825 0.9073 0.9046 0.9203  
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prediction accuracy across all generative models and prediction models for the two evaluation protocols (i.e., the target variables ‘trip 
distance’ and ‘usage time’) next to those of the real data. 

In this evaluation phase, we first examine the results of replacing the real training data with synthetic data sets of the same size (i.e., 
4756 trips). Regarding the prediction of the ‘trip distance’, training the prediction models with the CTGAN data yields the best average 
results, closely followed by the TVAE data which performs better than the SMOTE-NC and GC data. Except for the latter, the average 
prediction results across all prediction models using the synthetic training data are within an MAE range of 0.3457 or 3.01 % compared 
to the average results using the real training data. For the CTGAN and TVAE data, the results per single prediction model do not exceed 
an MAE difference of 0.5151 or 4.35 % to the results achieved when training the same models with real data. As for the benchmark 
models, the results per single prediction model are within an MAE range of 0.7089 or 6.22 % for the SMOTE–NC data and 2.2032 or 
19.56 % for the GC data when compared to the results with real data. 

For the prediction of the ‘usage time’, the best average results are achieved with the TVAE data just ahead of the CTGAN data. For 
these generative ML models, the average results across all prediction models using the synthetic training data are within an MAE range 
of 1.3123 or 1.64 % compared to the average results using the real training data. In contrast, the average MAE differences of the 
benchmark models are 2.2374 or 2.80 % for the SMOTE-NC data and 11.5546 or 14.45 % for the GC data. When comparing the results 
of the real and synthetic data per prediction model, the MAE difference does not exceed 2.8241 or 3.57 % for both generative ML model 
data sets, 3.1283 or 3.97 % for the SMOTE–NC data, and 14.1015 or 17.83 % for the GC data. Overall, we observe similar prediction 
accuracies when replacing the real training data with synthetic data sets of the same size. The CTGAN and TVAE data lead to the most 
promising results while the GC data lag behind the other data sets. 

In the next step, we analyze the outcomes of rebalancing selected explanatory variables in the real training data (i.e., ‘contract type’ 
and ‘district’) by purposefully adding synthetic data containing underrepresented values of these categorical variables (i.e., 1564 
synthetic trips added to 4756 real trips). For the prediction of the ‘trip distance’, rebalancing the original data using synthetic data 
created by the CTGAN and TVAE improves the training and accuracy of all prediction models investigated (i.e., six times out of six). 
This translates into an average improvement of 2.57 % for the CTGAN data and 0.67 % for the TVAE data across all prediction models 
compared to only using the real training data. In contrast, employing the benchmark model data for the same task yields a smaller 
improvement of 0.1740 % for the SMOTE-NC data and a decline of 0.10 % using the GC data. Overall, rebalancing the training data 
with synthetic samples always leads to better prediction results than rebalancing with real data duplicates, which does not improve 
performance compared to using only the real training data. 

For the prediction of the ‘usage time’, the results are even more distinct. Rebalancing the original data with CTGAN and TVAE data 
improves the prediction accuracy on average by 1.18 % and 0.44 %. This corresponds to an improvement over using the original 
training data alone in six of six cases. This is true in only one of six cases for the data generated by the benchmark models where the 
rebalancing results in an average performance decline of 0.75 % considering all prediction models. In this connection, rebalancing the 
training data with synthetic samples only leads to better prediction results than rebalancing with real data duplicates when using 
CTGAN and TVAE data. Overall, we find that rebalancing certain variables in the original training data by supplementing conditional 
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Table 3 
Prediction accuracy for the synthetic training data sets and the real data (MAE and RMSE).  

Target variable Evaluation mode  CTGAN data  TVAE data  GC data  SMOTE-NC data  Real data  

NN RF XGBoost  NN RF XGBoost  NN RF XGBoost  NN RF XGBoost  NN RF XGBoost 

Trip distance replacing  11.3196 11.5520 11.4922  11.8184 11.3487 11.5896  12.3650 13.4651 13.4392  11.8364 11.5884 12.0987  11.8347 11.2619 11.3898  
23.2087 22.6227 22.5921  22.0950 21.8802 21.8726  22.5965 22.8592 22.4730  21.8198 22.2567 22.2128  20.9877 21.2480 21.0495 

rebalancing  11.3523 11.0855 11.1611  11.7991 11.2125 11.2455  11.8883 11.2598 11.3729  11.6874 11.2754 11.4637  12.7694 11.3134 11.3543  
21.2471 21.4888 21.2945  21.1358 21.3523 21.0381  21.0460 21.3563 21.2242  21.3519 21.4206 21.1773  21.3496 21.3229 21.3265 

augmenting  11.0701 10.9784 10.8630  11.2406 11.1070 11.4500  11.6539 11.3464 11.1518  11.6143 11.2061 11.1693  12.5649 11.2968 11.5540  
22.3523 21.4341 22.7119  21.5538 21.2524 21.2246  21.6236 21.4064 21.3925  21.4031 21.2714 21.2983  22.5950 21.3258 21.1755 

Usage time replacing  81.2940 81.9108 80.6387  81.4213 77.6522 77.4637  87.6569 93.1882 93.7253  84.2916 80.5134 81.8139  82.1344 79.0867 78.6856  
128.0502 126.5895 127.8963  129.2339 124.1547 124.8255  128.5637 129.1983 129.4977  131.1395 123.2877 124.5412  122.8217 119.5922 119.2367 

rebalancing  80.0625 78.8520 78.1554  81.7888 78.5501 78.5069  84.6442 79.2452 78.6709  82.6343 79.2314 79.0084  82.1817 78.5650 78.9757  
119.9833 120.1922 119.5669  124.1220 118.5909 118.3571  122.7949 119.6962 119.2687  124.0749 119.7012 119.6470  125.0647 118.2102 119.6662 

augmenting  79.8870 77.9111 76.4161  80.7069 76.1038 77.9207  78.7016 79.4261 81.0885  84.0167 77.8619 79.4226  87.4603 78.7227 80.3747  
121.2118 118.2622 118.7290  123.9520 118.5167 118.8860  123.7068 119.0203 120.0561  129.6483 119.4801 120.4374  130.4195 119.7439 119.4032  
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synthetic data samples created by the generative ML models improves the training and accuracy of prediction models. For the 
benchmark model data, this applies to only one third of the constellations investigated. 

Finally, we analyze the impact of augmenting the real training data with synthetic data to increase the number of training samples (i. 
e., 2378, 4756, 9512, 19024, or 38,048 synthetic trips added to 4756 real trips). Table 5 in the Appendix presents the complete results 
for all augmentation quantities while Table 3 reports the best accuracy achieved per synthetic data set and prediction model. Starting 
with the prediction of the ‘trip distance’, we find that augmenting the original data set with synthetic data improves the training and 
accuracy of the prediction models in 10 out of 12 cases evaluated. This corresponds to an average improvement of the MAE of 0.5250 
or 4.57 % for the CTGAN data across all prediction models compared to the training with the original data. We further find an average 
improvement of the MAE of 0.2297 or 2.00 % for the TVAE data, 0.1656 or 1.44 % for the SMOTE-NC data, and 0.1115 or 0. 97 % for 
the GC data. 

Considering the prediction of the ‘usage time’, the data augmentation yields accuracy improvements in all of the prediction tasks 
supported with generative ML data and in 8 of 12 cases overall. The average MAE improvement across all prediction models compared 
to the training with the original data is 1.8975 or 2,37 % for the CTGAN data, 1.7251 or 2.16 % for the TVAE data, 0.6390 or 0.80 % for 
the SMOTE-NC data, and 0.2302 or 0.29 % for the GC data. Regarding the optimal augmentation quantity and ratio respectively, we 
observe that, in our setting, augmenting the training data by adding 0.5 to 2 times the original amount of training data (i.e., 2378 to 
9512 synthetic trips added to 4756 real trips) mostly yields the greatest performance improvement for all prediction models. We 
achieve the highest overall improvements with an augmentation factor of 2. As for the benchmark model data, the lower quality of 
synthetic data may imply a lower optimal augmentation quantity. Augmenting the real training data through duplication does not 
improve performance. From the results of both evaluation protocols, it is evident that increasing the amount of training data alone does 
not improve model training and prediction performance. Instead, the quality of synthetic data as well as the ratio of synthetic to real 
data are critical to maximizing data utility for ML prediction tasks. 

We conclude that the synthetic data sets created by the generative ML models offer the greatest data utility for the prediction tasks 
at hand. In this respect, the CTGAN data have the edge over the TVAE data while both models outperform the benchmark models 
regarding average performance across all prediction models as well as best individual prediction results. Overall, comparing the best 
prediction results of the real training data baseline with those using the augmented training data across all models shows an 
improvement in prediction accuracy of 3.54 % for the ‘trip distance’ as the target variable and 3.28 % for the ‘usage time’. Opposed to 
the results for the same prediction models, these improvements rise to 4.63 % and 3.77 %. These results show that the training of 
prediction models can be notably improved by augmenting real training data with synthetic data to gain more accurate insights on 
upcoming trips. These improvements could not be achieved by duplicating the available real data. 

Although not the focus of this study, we also note that XGBoost yields the overall best prediction results and that, as expected for the 
present tabular data, the tree-based models outperform the NN. Considering the previous insights on the fidelity of the synthetic data 
sets, we find that basic descriptive statistics can be useful indicators for estimating the quality of synthetic data. As such, the statistical 
metrics previously indicated that the CTGAN data closely represent the ‘trip distance’ which translated to exceptionally high data 
utility for the prediction of this target variable. At the same time, the descriptive statistics also suggested a lower quality of the GC data 
which was confirmed by the utility evaluation. However, the KS and TVD complements as metrics for the overall compatibility of the 
distribution functions are not found to be accurate indicators of data utility for the present prediction tasks. 

In the present case, the operator aims to specifically make use of the finding for planning the charging cycles of its EVs (i.e., provide 
users with real-time suggestions of charging stations and times based on the current battery level of the EV and predictions of the trip 
distance) and for optimizing its booking system (i.e., provide users with vehicle availability forecasts despite the open-ended nature of EV 
bookings). While the integration of models into the existing infrastructure and systems of the operator (i.e., systems engineering) is out of 
the scope of this work, we share implications for model deployment for the present case based on the above findings. For the initial 
deployment, we propose to augment the available trip data with synthetic data generated by CTGAN to train a tree–based prediction 
model such as XGBoost. After the initial deployment, it is necessary to be able to regularly update the models to make sure they operate on 
the most recent database and include all available real data (e.g., scheduled regular retraining). In this connection, we suggest employing 
an expanding window that incorporates new training data as it becomes available. The ideal amount of synthetic training data aug
menting the real data should then be evaluated routinely. In addition, both generative and prediction models need to be updated 
regularly to incorporate potential changes in the joint distributions (i.e., concept drift). In the course of this, standard ML monitoring 
objectives such as data integrity checks, anomaly detection, and (re-)evaluation of performance metrics should be implemented. 

5. Discussion 

The results of our study present novel insights into the use of generative ML for the creation of synthetic mobility data. The findings 
show that augmenting real training data with synthetic samples created by generative ML models improves predictive modeling of 
upcoming trips when data are scarce. This study helps understand the methods and approaches for effectively generating and 
leveraging synthetic tabular transaction data of carsharing trips for more accurate predictions of user behavior. Thus, our work has 
implications that advance current research on decision support and the introduction of new services in carsharing and provide novel 
insights for decision–makers in practice (e.g., carsharing operators, municipal planners, and policy makers). 

First, this research presents a new application-oriented perspective on the use of generative ML in transportation research and stimulates 
further exploration of leveraging synthetic tabular mobility data. Recent research highlights the multi-faceted potential of generative ML 
for addressing transportation problems (Wong and Farooq, 2020). While most studies primarily focus on tailored methodological 
solutions for simulation tasks such as trajectory modeling (Zhang et al., 2019; Choi et al., 2021) and population synthesis (Garrido 
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et al., 2020; Kim et al., 2022), research has also started to analyze the use of synthetic training samples for prediction tasks (Boquet 
et al., 2020; Li et al., 2020). Our work contributes to this body of knowledge by being the first to investigate generative ML algorithms 
able to create synthetic tabular data (i.e., CTGAN and TVAE) to overcome the barriers faced during the introduction and expansion of 
innovative mobility options. The results of our study demonstrate that synthetic data can help to quickly reach the necessary database 
to obtain valuable predictions of user behavior. This adds a technological and data dimension to research on business aspects of 
carsharing in less-densely populated areas (Wappelhorst et al., 2014; Rotaris and Danielis, 2018; Baumgarte et al., 2022) and in 
emerging economies (Luna et al., 2020) as well as on new carsharing business models and services (Lagadic et al., 2019; Zhang et al., 
2020). In addition, our study presents a new application–oriented perspective on synthetic data creation using generative ML models 
by going through an iterative ML workflow including model evaluation, selection, and implementation based on a real–world case of 
an emerging carsharing program. The results highlight the high potential of state–of–the-art generative ML algorithms like CTGAN and 
TVAE for creating high-quality synthetic tabular data. Thus, we hope to present a blueprint to fellow scholars for investigating the use 
of synthetic mobility data in a broader range of domains and advance previous research building on statistical or simulation ap
proaches to generate synthetic data (Etxandi-Santolaya et al., 2023). We are confident that the insights of this study can be valuable to 
future research on other innovative mobility services (e.g., bike sharing, e-scooter sharing, or ride–hailing). 

Second, our results contribute to research on carsharing decision support by investigating approaches to effectively generate and leverage 
synthetic trip data to mitigate the challenge of limited data access. In the increasingly competitive market of innovative mobility, insights 
into user behavior and reliable predictions of trip characteristics through ML models have become indispensable for carsharing op
erators as well as policy makers (Cheng et al., 2021; Baumgarte et al., 2022). Previous literature is primarily concerned with devel
oping methodological solutions to the prevalent decision support problems in carsharing (Lei et al., 2020; Wang et al., 2021; Prinz 
et al., 2022). However, restricted access to enough high-quality real-world data is still one of the main limitations to the application 
and broad evaluation of many innovative models (Brendel et al., 2017; Lu et al., 2022). In this connection, the results of our study show 
that synthetic carsharing transaction data generated by GANs and VAEs improve ML training and model accuracy when the amount or 
quality of data is inadequate. The presented insights can advance prescriptive carsharing research that leverages predictions of user 
behavior, inter alia, for the optimization of fleet management, pricing schemes, and charging policies (Perboli et al., 2018; Xu and 
Meng, 2019). In addition, our research particularly connects to recent studies concerned with the practical issues faced by small and 
emerging carsharing programs that aim to break new ground and challenge established enterprises (e.g., by opening up small urban 
areas, offering all-EV fleets, or launching municipal programs), but lack a long-term data record (Rotaris and Danielis, 2018; Lagadic 
et al., 2019; Illgen and Höck, 2020). Our study assists fellow scholars with creating and using synthetic mobility data for developing 
solutions to real–world carsharing decision support problems. In this connection, it also specifically contributes to research on the 
introduction and expansion of EV carsharing services (e.g., the planning of charging cycles and infrastructure based on anticipated user 
behavior) (Cocca et al., 2019; Luna et al., 2020). 

Third, our work supports carsharing decision-makers in leveraging predictions of trip characteristics by providing a solution to limited data 
access for small and emerging operators. The results of our study show that the training of prediction models can be improved by up to 
4.63 % by augmenting real training data with synthetic samples when data are scarce. To put these results into practice, this research 
presents a feasible way for carsharing operators to evaluate and deploy generative ML models for qualitatively and quantitatively 
enhancing their database. This helps operators to obtain more accurate prior insights on trip characteristics during the introduction or 
expansion of their services where data access is a common challenge (Brendel et al., 2017; Lagadic et al., 2019). Such predictions are a 
valuable basis for operational and strategic decisions that enhance the overall customer experience or optimize business operations. In 
this regard, the results can contribute to bringing the technological capabilities of small and emerging operators and large carsharing 
companies closer together. More accurate predictions of trip distances and usage times during booking can be used, for instance, to 
provide customized service offerings in the booking process (e.g., individualized coupons or vehicle suggestions like switching to an EV 
for short trips), to incentivize EV charging activities performed by the users, or to develop dynamic pricing models that align with the 
predicted trip distance and usage time (Brendel et al., 2018; Cocca et al., 2019; Hu et al., 2021). Furthermore, operators can leverage 
accurate predictions of trip characteristics to support the planning of vehicle maintenance and inspections as well as to assist fleet 
rotation and replacement decisions which optimizes the utilization of vehicles and reduces the risk of breakdowns. In addition, high- 
quality synthetic data can contribute to a closer integration of carsharing and the public sector (e.g., municipalities) by facilitating data 
sharing and informed policy decisions. Robust public–private partnerships in turn foster policies that help make carsharing as a 
sustainable mobility option more attractive (e.g., expansion of the public charging infrastructure or designation of free parking zones) 
(Lagadic et al., 2019; Vanheusden et al., 2022). Finally, the results of this study cater to municipal carsharing programs which are 
particularly subject to strict data protection regulations that hinder data acquisition and transfer. 

6. Conclusion 

This study explored the creation and use of synthetic data to support carsharing decision-making by overcoming the barrier of 
limited data access during the introduction and expansion of new services, enabling more accurate predictions of trip characteristics. It 
investigated the evaluation, selection, and implementation of state-of-the-art generative ML models (i.e., GANs and VAEs) to create 
synthetic tabular transaction data of carsharing trips. To this end, it examined the case of an emerging municipal carsharing program 
that is expanding its services to free–floating EVs but lacks the database to obtain reliable trip predictions. 

The results of this study show that augmenting real training data with synthetic samples improves the performance of prediction 
models by up to 4.63 % when predicting the usage time and distance of upcoming trips. In practice, these improvements are significant, 
as they mean that operators can, for instance, more accurately predict upcoming trip distances by more than 500 m. The findings of the 

T. Albrecht et al.                                                                                                                                                                                                       



Transportation Research Part D 127 (2024) 104067

15

analysis further reveal that the quality of synthetic data (i.e., using generative ML models such as CTGAN and TVAE compared to 
statistical benchmark models) as well as the ratio of synthetic to real data (i.e., using reasonable augmentation factors of 0.5 to 2) are 
critical to maximizing data utility for ML prediction tasks. The results present novel insights on the use of generative ML for the 
creation of synthetic mobility data and help understand the methods and approaches for leveraging synthetic tabular transaction data 
of carsharing trips for more accurate predictions of user behavior. Carsharing operators can draw on our study to enhance their 
available database when launching or expanding their services to achieve more accurate predictions of upcoming trips and align their 
service offers with anticipated user behavior. 

The present study is constraint by the following limitations that may point fellow scholars in the direction of further beneficial 
research. First, it should be noted that synthetic data and associated results should be treated with caution. Depending on the real- 
world database, model choice, and technical fine-tuning (e.g., model architecture, training procedure, and loss functions) the syn
thetic data may not fully capture the complexity and diversity of actual data, reproduce biases, and potentially compromise model 
generalizability to real-world scenarios. Further, the results and implications of this work are developed based on the case of one 
emerging carsharing program. Thus, the findings need to be validated for other use cases and environments (e.g., station-based services 
or completely new carsharing programs) to include potential contextual constraints. Nevertheless, we consider the application- 
oriented approach and real-world data to be a strength of this study and we are confident that the presented research design can 
serve as a blueprint to address this limitation in future research. In addition, future studies should build on our results and investigate 
the actual impact of the achieved improvements in prediction accuracy on specific decision-making areas and the strategic planning of 
carsharing operators. Finally, fellow scholars are encouraged to expand the scope of the present research to other generative ML 
models as well as to investigate the privacy benefits of synthetic data in carsharing and transportation research. 
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Appendix  

Table 4 
KS and TVD complements per variable.   

Variable CTGAN TVAE GC SMOTE-NC 

Numerical variables Usage time 0.8415 0.9205 0.791 0.9668 
Trip distance 0.9746 0.9308 0.7719 0.9704 
Age 0.8618 0.9155 0.9464 0.9076 
Contract duration 0.951 0.882 0.9022 0.9367 
Prior trips 0.8358 0.9212 0.8057 0.9357 
Prior trip distance 0.8898 0.909 0.7937 0.9624 
Prior usage time 0.9119 0.9302 0.7803 0.9695 
Prior drop-off distance 0.9087 0.9048 0.8621 0.9834 
Temperature 0.8921 0.9426 0.9546 0.9319 
Rain 0.9045 0.9769 0.5591 0.8452 

Mean  0.8971 0.9234 0.8167 0.9401 
Categorical variables Time of day 0.894 0.8158 0.8778 0.886 

Day 0.8516 0.8955 0.8877 0.9527 
Non-working day 0.9304 0.9729 0.9533 1.000* 
Month 0.8106 0.9035 0.8909 0.9638 
Vehicle ID 0.8293 0.8942 0.8884 0.9765 
District 0.9296 0.7075 0.9008 0.8139 
Contract type 0.7847 0.9058 0.8671 0.8806 
Business 0.9153 0.975 0.939 0.9447 
Public transport 0.9817 0.9933 0.9527 0.9487 
Student 0.9497 0.9809 0.9048 0.9073 
Gender 0.8793 0.9275 0.9026 0.8862 
Weather 0.8341 0.9159 0.89 0.8833 

Mean  0.8825 0.9073 0.9046 0.9131 

*Variable used to define the sampling strategy.  
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Table 5 
Prediction accuracy per augmentation factor for the real and synthetic training data sets (MAE and RMSE).  

Target 
variable 

Augment. 
factor 

CTGAN data  TVAE data  GC data  SMOTE-NC data  Real data 

NN RF XGBoost  NN RF XGBoost  NN RF XGBoost  NN RF XGBoost  NN RF XGBoost 

Trip  
distance 

0.5 11.5518 11.5190 11.2139  11.2406 11.2108 11.5628  11.6539 11.3464 11.1518  11.6383 11.2061 11.1693  12.5649 11.3533 11.5847 
21.6734 21.5736 21.3607  21.5538 21.3332 21.2258  21.6236 21.4064 21.3925  20.9795 21.2714 21.2983  22.5950 21.2792 21.2970 

1 12.3415 11.0811 11.1880  11.6267 11.3852 11.4500  11.6832 11.4623 11.7388  11.8701 11.4504 11.9608  13.5081 11.2968 11.5540 
21.3206 21.5401 21.4465  22.5738 21.5375 21.2246  21.5824 21.5770 21.3079  22.4179 21.2890 22.2181  23.5036 21.3258 21.1755 

2 11.0701 10.9784 10.8630  11.2944 11.1070 11.6146  12.2842 11.6670 11.9056  11.6143 11.3761 11.4569  13.9806 11.3331 11.5839 
22.3523 21.4341 22.7119  21.5708 21.2524 21.5624  21.6239 21.5522 21.5053  21.4031 21.4581 21.3131  23.6211 21.3885 21.1954 

4 11.2258 11.0166 11.0845  11.6463 11.1518 11.5070  12.4059 11.7770 12.0858  12.0885 11.3245 11.4488  15.1953 11.3385 11.5855 
21.7501 22.0809 21.7518  21.6216 21.4237 21.5522  21.4349 21.4929 21.5245  21.3162 21.4282 21.3659  24.7463 21.4240 21.1687 

8 11.1417 10.9786 11.0960  12.0344 11.2458 11.6128  12.6589 11.9042 12.3085  12.0435 11.4203 11.6557  15.2002 11.5697 11.6146 
22.6277 22.3583 21.8892  21.8159 21.2930 21.5330  22.0645 21.6740 21.6367  21.8965 21.5819 21.7079  24.7201 21.5069 21.2176 

Usage time 0.5 82.2489 78.0861 76.4161  82.9419 76.6101 78.3930  86.5024 79.4261 81.0885  88.0047 79.5212 80.7611  87.4603 78.8165 80.7569 
122.2467 118.8730 118.7290  124.0266 117.6743 118.9320  123.7227 119.0203 120.0561  130.5965 120.8799 121.1762  130.4195 119.7548 120.1860 

1 85.3850 78.8599 79.9373  80.7069 76.1038 77.9207  78.7016 80.6413 82.2907  98.7119 78.9635 83.8295  94.8528 79.2820 80.7582 
120.8096 119.2592 119.5011  123.9520 118.5167 118.8860  123.7068 120.1383 118.9183  141.3106 119.6050 126.4877  138.2004 120.1050 119.8980 

2 79.8870 77.9111 79.0568  81.5373 76.9555 78.4206  89.9604 81.4714 81.6627  96.9908 78.8619 79.4226  98.0506 78.7227 80.3747 
121.2118 118.2622 118.1067  121.7598 120.0734 120.4933  124.2410 119.1872 119.6950  136.2353 119.2565 120.4374  143.4132 119.7440 119.4032 

4 81.9803 78.5853 78.8677  82.1284 76.9810 78.3428  93.3835 82.4530 81.3385  84.0167 77.8619 79.5495  106.7233 79.0091 80.5591 
119.0491 120.4995 118.4787  124.2911 120.4239 120.8641  126.0798 119.2925 119.2959  129.6483 119.4801 121.3269  149.3471 120.0924 119.7103 

8 80.4887 78.5772 79.5752  82.5054 76.2563 78.1685  90.9449 83.7901 86.4541  87.7515 78.7626 80.0561  108.0623 78.7574 80.9026 
124.4496 121.4946 121.4854  128.8035 118.5909 119.8460  124.3727 120.9385 120.8589  128.4495 121.4952 122.9563  155.0767 119.7945 120.2366   
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