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ABSTRACT Automated vehicles use light detection and ranging (LiDAR) sensors for environmental
scanning. However, the relative motion between the scanning LiDAR sensor and objects leads to a distortion
of the point cloud. This phenomenon is known as the motion distortion effect, significantly degrading the
sensor’s object detection capabilities and generating false negative or false positive errors. In this work, we
have introduced ray tracing-based deterministic and analytical approaches to model the motion distortion
effect on the scanning LiDAR sensor’s performance for simulation-based testing. In addition, we have
performed dynamic test drives at a proving ground to compare real LiDAR data with the motion distortion
effect simulation data. The real-world scenarios, the environmental conditions, the digital twin of the scenery,
and the object of interest (OOI) are replicated in the virtual environment of commercial software to obtain
the synthetic LiDAR data. The real and the virtual test drives are compared frame by frame to validate the
motion distortion effect modeling. The mean absolute percentage error (MAPE), the occupied cell ratio
(OCR), and the Barons cross-correlation coefficient (BCC) are used to quantify the correlation between the
virtual and the real LiDAR point cloud data. The results show that the deterministic approach matches the
real measurements better than the analytical approach for the scenarios in which the yaw rate of the ego
vehicle changes rapidly.

INDEX TERMS LiDAR sensor; motion distortion; point cloud distortion; false positive; false negative;
open simulation interface; functional mock-up interface; functional mock-up unit; highly automated driving,
simulation-based testing

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) sensors have be-
come a key technology for autonomous driving due to

their outstanding angular resolution and higher ranging accu-
racy than automotive radio detection and ranging (RADAR)
sensors [1]. Autonomous vehicles use LiDAR sensors to ob-
tain the environment’s 3D point cloud, which can be used for
obstacle detection and avoidance, simultaneous localization
and mapping (SLAM), object recognition and tracking [2]–
[5]. Commercially available automotive LiDAR sensors can
be classified into two categories, non-scanning and scanning,
based on their 3D imaging strategies, as shown in Figure 1

[6]. Flash LiDAR sensors are non-scanning types of LiDARs.
They illuminate their entire field of view (FoV) at once by
the laser source and do not contain any mechanical moving
parts to steer the beam [7]. Non-scanning LiDAR sensors
can measure up to 50m and are used for forward collision
warning (FCW) and blind spot detection (BSD) [8]. The
scanning LiDAR sensors steer the laser beam in the FoV by
using the mechanical moving parts to obtain the complete 3D
view of the vehicle’s surroundings at a specific frame rate
[11]. Moreover, scanning LiDAR focuses the laser beam in
a particular area in one shot. Therefore, depending on the
frame rate, they can measure the objects at a 200m distance
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FIGURE 1. Classification of LiDAR sensors based on their imaging strategies.

with a typical horizontal and vertical resolution of 0.1◦ [12].
So far, the scanning LiDAR sensors are more suitable for
automotive applications than flash LiDARs due to their higher
angular resolution, broader FoV, and long-distance estimation
capability [8]. That is why they are used for lane departure
warnings (LDW), SLAM, FCW, and BSD [8]. Scanning Li-
DAR sensors require a specific duration to scan the complete
environment. Therefore, fast relative motions between the Li-
DAR sensor and the objects in its FoV can lead to a distortion
of the point cloud and a shift of the detected points of the
objects, as shown in Figure 2. In addition, it is also possible
that the LiDAR sensor may not be able to scan the intended
object at all due to the fast relative motion. Once the 3D
LiDAR data obtained during fast relative motion is provided
to the LiDAR-based object recognition algorithm, such as
PointPillars [17], it may detect the same object multiple times
in the same frame, resulting in a false positive on object

recognition level or it may fail to detect the intended object at
all, resulting in a false negative. Figure 3 shows an exemplary
false positive object recognition by the LiDAR-based object
recognition algorithm from the motion-distorted LiDAR data.
LiDAR systems use various approaches, including sensor
fusion and data filtering using KALMAN filtering to detect
these false positive and false negative detections. It should be
noted that this work focuses only onmodeling this effect. This
motion-based distortion is known as the motion distortion
effect, motion blur [9], and fast motion scan effect [10]. In
the following, this effect is referred to as motion distortion.
The magnitude of this effect increases with the increase in the
relative translatory and rotatory motion between LiDAR and
objects, as well as a decrease in the scanning frequency. For
instance, if the relative velocity between the LiDAR sensor
and object is 42.0ms−1, and the LiDAR scanning duration
is 0.1 s, then the motion distortion from the first LiDAR scan

FIGURE 2. Motion distortion effect due to the change in ego vehicle’s yaw rate ψ. Specification of the scan pattern: horizontal FoV ± 36◦ and vertical FoV
± 15◦, frame rate 5.4Hz, horizontal angular resolution 0.4◦, vertical angular resolution 0.3◦, frame mode up and down scanning, and relative longitudinal
velocity −11.1ms−1. The up-and-down scanning mode means the sensor will scan the environment twice in one frame to achieve higher vertical angular
resolution [16]. For instance, if the frame mode is only up scanning, the vertical resolution will be 0.6◦. The change in the ego yaw rate ψ moves the LiDAR
sensor’s origin, resulting in a shift and dilation of the LiDAR points obtained from the traffic light in the horizontal direction. The traffic light appears twice
in one frame due to the up-and-down scanning of the environment, leading to the shift of the point cloud of the same object. The sensor coordinates are
represented by subscript S.
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FIGURE 3. Exemplary visualization of a false positive object recognition
by PointPillar using the simulated motion-distorted LiDAR data as shown
in Figure 8 (c) with ground reflection. In this work, the closest position of
the object relative to the ego vehicle predicted by PointPillar is considered
an actual object, and the other position of the same object in the frame is
regarded as a false negative.

point till the last will be 4.2m in the worst-case scenario. The
distorted point clouds lead to localization problems for the
mapping [13] and a decrease in the point-to-point distance
measurement accuracy that can negatively impact the object
recognition algorithm’s performance [14].

The scanning LiDAR sensors are part of the vehicle’s
safety-critical system; motion-related effects must be consid-
ered while designing the LiDAR system. In addition, their
operational performance must be evaluated before using them
for automotive applications. However, validating LiDAR sen-
sors in the real world is costly and time-consuming [15].
Therefore, the automotive industry has started considering
the type of approval based on simulation-based testing [14].
Consequently, it is required that motion-related effects should
be modeled in the virtual LiDAR sensors with a high fidelity
so they can exhibit the complexity and behavior of real Li-
DAR sensors. So, the obtained synthetic data can be used to
evaluate the functional performance of the motion distortion
correction algorithm and the LiDAR-based object detector.

In this work, we have modeled the motion distortion ef-
fect using ray tracing-based deterministic and analytical ap-
proaches in a virtual LiDAR sensor developed by the authors
in their previous work [18]. The developed sensor model
considers the modeling of the scan pattern, the complete sig-
nal processing toolchain, and sensor-specific imperfections to
output the point cloud as realistic as possible. Such consid-
erable imperfections include optical losses, inherent detector
effects, effects generated by the electrical amplification, and
noise produced by sunlight. The sensor model is developed

using the standardized functional mock-up interface (FMI)
and the open simulation interface (OSI). So, the sensor model
can be tool-independent and easily integrated into any simu-
lation tool that supports these interfaces without intellectual
property infringement [18]. The presented approaches con-
sider the sensor rotation, the rotation and the translation of
the sensor mounting point, the sensor’s scan pattern, and the
rotation and the translation of objects in the sensor’s FoV
to model the motion distortion effect. In addition, we have
conducted dynamic test drives at the Jtown proving ground in
Japan [19] to obtain real data to validate the motion distortion
effect modeling approaches. We have introduced a toolchain
to bring real-world scenarios into the virtual environment and
to compare the real and the virtual test drives frame by frame.
Key performance indicators (KPIs) are defined to evaluate the
virtual LiDAR sensor performance on the point cloud level.
Moreover, we have used state-of-the-art metrics, including
the mean absolute percentage error (MAPE), the occupied
cell ratio (OCR), and the Barons cross-correlation coefficient
(BCC), to quantify the difference between the simulated and
the real data.
The paper is structured as follows: Section II describes

the scanning LiDAR sensor working principle and the origin
of the motion distortion effect. Then, an overview of the
related work is given in Section III. The proposed approaches
to model the motion distortion effects are given in Section
IV. Section V describes the toolchain adopted to validate
the motion distortion effect modeling and results. Finally,
Sections VII and VIII provide the conclusion and the outlook.

II. WORKING PRINCIPLE OF SCANNING LIDAR SENSORS
AND ORIGIN OF MOTION DISTORTION
Scanning LiDARs can be further classified into two cate-
gories, including 360◦ mechanical rotating and back-and-
forth scanning LiDARs. The rotating scanning LiDAR sen-
sors use a mechanical rotation system to spin the scan-
ning part through the entire horizontal FoV. In contrast, the
back-and-forth scanning LiDAR sensors do not have any
mechanical rotating parts. Micro-electro-mechanical systems
(MEMS), micro motion, scan/rotating mirror, and rotating
prism-based LiDAR sensors have back-and-forth scanning
patterns [20]. The motion distortion affects the rotating scan-
ning LiDARs’ operational performance less than back-and-
forth scanning LiDARs [20]. Therefore, this work investi-
gates the motion distortion effect for the MEMS LiDAR, a
type of back-and-forth scanning LiDAR.

A. WORKING PRINCIPLE OF MEMS LIDAR SENSOR
A MEMS-based LiDAR consists of a laser and detector
module (LDM) and a beam deflection unit (MEMS mirrors),
as shown in Figure 4. The laser source emits laser pulses,
so-called beams, and the beam deflection unit deflects the
beam in different directions to obtain the point cloud of
the environment. The photodetector receives the laser light
partly reflected from the object’s surface. The LiDAR sensor
measures the time of flight (ToF) the laser light takes to hit an
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object and to return to the detector to calculate the range. The
measured range R can be written as [14]:

R =
c · τ
2
, (1)

where c is the speed of light, and τ is the ToF.

FIGURE 4. Block diagram of MEMS LiDAR sensor [14].

B. ORIGIN OF MOTION DISTORTION FOR SCANNING
LIDAR

SCAN PATTERN
The automotive LiDAR sensors can adjust their scanning
mode to the vehicle’s driving situation [21]. Choosing the
scan pattern is a trade-off between the frame rate, angular
resolution, maximum detecting range, and 3D imaging. For
example, if a use case is to detect a small object, then a
LiDAR scan with high angular resolution will be required,
which means more points and higher duration are needed to
scan the environment, resulting in motion distortion. Figure
5 shows the exemplary scan pattern of the state-of-the-art
MEMS-based LiDAR sensor Cube 1 from Blickfeld used in
this research.

MOVING EGO VEHICLE
Figure 6 depicts the used vehicle and the sensor coordinate
system with the different translatory and rotatory moving
directions. This work uses the ISO 8855:2011 [22] conven-
tions to describe the vehicle, sensor, and world coordinate
system. The sensor coordinates are denoted by XS ,YS ,ZS ,
vehicle coordinates by XV ,YV ,ZV , and world coordinates as
XW ,YW ,ZW . The magnitude of the motion distortion effect
is more significant when the yaw rate ψ of the ego vehicle
changes rapidly, for instance, while taking a left or right turn.
The yaw rate ψ of the ego vehicle also rotates and translates
the reference frame of the LiDAR sensor, which results in the
motion distortion effect.

MOVING OBJECTS
The fast-moving object’s lateral and longitudinal movement
relative to the sensor is also a source of the motion distortion
effect, for example, when an object crosses an intersection.

III. RELATED WORK
The degradation in the LiDAR sensor’s performance due to
the motion distortion effect is well described in the literature.
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FIGURE 5. Exemplary scan pattern of Cube 1: ± 36◦ horizontal and ± 15◦

vertical FoV, 50 scan lines, 0.4◦ horizontal and 0.6◦ vertical angle spacing,
frame rate 10.8Hz, maximum detection range 250m, and minimum detec-
tion range 1.5m. The scan pattern contains 9050 points.

FIGURE 6. Vehicle, sensor, and world coordinate systems.

In addition, the correction of the motion distortion is also well
explained in the literature. Ballard and Vacherand [23] have
introduced a laser range finder scanning system simulator
called LRF3S to study the impact of vehicle motion and scan-
ning mechanism on the deformation of range images acquired
by the LiDAR sensor. Their results show that the deformation
of the range images acquired in fast motion is velocity-and
trajectory-dependent. However, they have not compared the
simulated and real measured range images acquired in fast
motion to validate their modeling approach. Ono et al. [24]
introduced an epipolar plane range image (EPRI) approach
to generate 3D geometric models of urban spaces using Li-
DAR data. The proposed approach estimates the ego mo-
tion to remove the distortion from the LiDAR data because
the motion-distorted LiDAR point cloud data can lead to
inaccuracies in the resulting 3D models. The experimental
data is used to demonstrate the working performance of the
presented methodology for the city modeling. Zhang and
Singh [25] present a real-time methodology for the odometry
andmapping simultaneously by using themechanical rotating
LiDAR data. The proposed approach estimates the velocity
of the LiDAR sensor to remove the distortion from the point
clouds. They used the KITI data set to show the accuracy
of the proposed approach. Gröll and Kapp [10] examine the
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motion distortion effect on the distance map of automotive
LiDAR sensors and quantify this effect by comparing it with
statistical errors. They developed a simple motion model of
the moving car’s contour using the time-varying line segment
to implement the motion distortion effect. The speed of the
ego vehicle is assumed to be known by using odometry to
accurately model and compensate for the motion distortion
effect. Their paper focuses on the mathematical and theoreti-
cal aspects of motion distortion on the LiDAR sensor perfor-
mance. Therefore, they did not show the visual representation
of the motion-distorted simulated point clouds. Renzler et al.
[26] have analyzed themotion distortion effect due to the fast-
moving automotive scanning LiDAR sensor and proposed
compensation. Their proposed methodology requires odom-
etry information for motion distortion correction. Byun et al.
[27] also presented a technique to correct the distorted LiDAR
point clouds by incorporating the ego vehicle motion and
posture information. Merriaux et al. [28] studied the impact
of ego vehicle motion on LiDAR sensors. In addition, they
also proposed the distorted LiDAR point cloud correction
based on the CAN-bus data. Yang et al. [20] have fused
LiDAR and camera data to estimate the velocity and to correct
the motion distortion for the moving objects. McDermott
and Rife [30] have introduced a velocity-corrected iterative
compact ellipsoidal transformation (VICET), an extension of
the normal distributions transform (NDT) algorithm to correct
the motion distortion from the LiDAR data. The advantage
of the proposed approach is that it does not require external
sensor data to correct the motion distortion. Instead, it only
requires a single LiDAR scan to remove motion distortion
from the LiDAR data. The accuracy of the invented ap-
proach is shown by removing the motion distortion from the
simulated and the real data of mechanical rotating LiDAR.
They considered the simulated motion distortion due to the
translation and rotational motion of the sensor. However,
they have not explicitly explained the methodology used to
obtain the simulated LiDAR data with motion distortion and
how they validate the modeling of this effect. Gentil et al.
[31] present a probabilistic framework to approximate the
extrinsic calibration parameters of LiDAR and inertial mea-
surement unit (IMU) to correct the motion distortion from
the LiDAR data. They demonstrate the working performance
of the proposed approach by correcting the motion distortion
from the simulated and real data of mechanical rotating Li-
DAR. However, they have not explained the modeling ap-
proach adopted to obtain the motion-distorted simulated data.
In [32], authors have presented inertial LiDAR localization
autocalibration and mapping (IN2LAAMA) for extrinsic cal-
ibration of LiDAR and IMU to remove the motion distortion
from the mechanical rotating LiDAR data. The presented
approach is evaluated using the simulated and real data for
the mechanical rotating LiDAR sensor. They used the Monte
Carlo simulation to generate the simulated motion-distorted
data. However, a detailed explanation of the motion distortion
effect modeling and validation approaches are not discussed.
Yoon et al. [33] introduced an approach to detect the dynamic

and static objects from the 3D LiDAR data. The proposed
approach does not require prior information about the object,
such as a map or training data, and it also compensates for the
motion distortion. The accuracy of the presented approach is
validated by removing the motion distortion from the simu-
lated and real mechanical rotating LiDAR data. They capture
the motion distortion in the simulated data by activating
each laser once in every simulation step. However, they have
not explicitly mentioned how they validated their modeling
approach. In addition, the simulated data does not consider
the intensity of the LiDAR measurements, making it difficult
to see the impact of material properties on the simulated
point clouds. Shi et al. [34] have introduced an algorithm
based on multioutput Gaussian process regression (MOGPR)
to remove themotion distortion from the LiDAR point clouds.
They have conducted the experiment on the simulated data,
publicly available KITI data, and the real measured data ob-
tained using their platform to show their proposed algorithm’s
effectiveness in eliminating motion distortion. They used the
Monte Carlo simulation to get the motion-distorted simulated
data. They consider motion distortion due to the circular and
linear motion. However, they do not explain the modeling
and validation methodology adopted to obtain the simulated
motion distorted data.
The state-of-the-art research papers mentioned above focus
on correcting the motion-distortion effect from the mechan-
ical rotating LiDAR data. However, there is little focus on
modeling and simulation of the motion distortion effect for
simulation-based testing, especially for the MEMS-based au-
tomotive LiDAR sensor. The contribution of this paper is as
follows:

• The introduction of the ray tracing-based determinis-
tic and analytical approaches to model the motion dis-
tortion due to the ego and target vehicles translation
and rotational motions for the simulation-based testing
of different LiDAR scan pattern modes, motion distor-
tion correction algorithms, and the LiDAR-based object
recognition algorithms at the early stage of development.

• The generation of the digital twin of the real-world
dynamic scenario and objects in the virtual world to vali-
date themotion distortion effect modeling. The real mea-
sured and simulated point clouds are compared frame by
frame to validate the proposed approaches, and the errors
are quantified at the point cloud level using the MAPE,
OCR, and BCC metrics.

IV. MODELING OF THE MOTION DISTORTION EFFECT
The modeling of the motion distortion effect is classified into
two categories: deterministic and analytical approaches. The
deterministic approach transmits the virtual LiDAR sensor
scan pattern point by point like a real LiDAR sensor, and
the motion distortion effect is modeled on the front end. In
contrast, the analytical approach simultaneously shoots the
complete scan pattern and directly models the impact of the
motion distortion effect on the ideal ray tracing detection in
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FIGURE 7. Co-simulation framework of the proposed deterministic approach to model the motion distortion effect in a virtual LiDAR sensor.

post-processing.

A. DETERMINISTIC MODELING APPROACH
Figure 7 depicts the toolchain and the signal processing steps
to model the motion distortion effect due to the scan pattern
and the ego and object motion in a virtual LiDAR sensor. The
LiDAR sensor model consists of two submodules: transmitter
and receiver. As mentioned earlier in Section I, the model is
built using the standardized interface FMI and integrated into
the virtual environment of the driving intelligence validation
platform (DIVP®) by V-Drive Technologies [29]. It should
be noted that the component that implements the FMI is
known as functional mock-up unit (FMU) [35]. The virtual
environment and LiDAR sensor model submodules, includ-
ing the scan and receiver module, communicate via the FMI.
DIVP®provides the ray tracing framework with a bidirec-
tional reflectance distribution function (BRDF) that considers
the direction of the incident ray θ, the material surface, and
the color properties [36]. The LiDAR FMU model uses the
ray tracing module of DIVP®. The material properties of the
simulated objects, the angle-dependent spectral reflectance
Rλ(θ), and the reflection types, including diffuse, specular,
retroreflective, and transmissive, are specified in the material
library of DIVP®.

1) Transmitter FMU
The virtual environment communicates with the transmitter
FMU in the defined communication step size (call frequency)
and passes the required input configuration via FMI. Then,
the transmitter FMU verifies the input configuration and
shoots the scan pattern point by point like a realMEMS-based
LiDAR sensor in the virtual environment via FMI. For this
use case, the transmitter FMU uses the scan pattern of the
Blickfeld Cube 1, as shown in Figure 5. A detailed description
of the Blickfeld Cube 1 scan pattern can be found in [16]. It
should be noted that for this use case, each scan point gets

shot after 0.0102ms (tsingle), and the complete scan pattern
gets shot in 185.2ms.

2) Receiver FMU
The receiver FMU obtains the ray tracing data point by point,
including the received power Pr(t) and the 3D Cartesian
coordinates of the detected echo of the ray. Then, the FMU
controller calculates the virtual sensor spherical coordinates
(d , θ, ϕ) from the Cartesian coordinates (XS , YS , ZS) and the
time delay τ of the detected echo as given in the following
equations

dS =
√

(XS)2 + (YS)2 + (ZS)2, (2)

θ = tan−1

(
YS
XS

)
, (3)

ϕ = tan−1

(
ZS√

(XS)2 + (YS)2

)
, (4)

τ =
2 d
c
, (5)

where d is the distance, ϕ shows the azimuth angle, and the
elevation angle is indicated by θ. Next, the FMU controller
calls the LiDAR simulation library and passes the ideal ray
tracing data, including time delay τ , azimuth ϕ, and elevation
angles θ, and received power Pr(t) to obtain the LiDAR point
cloud as realistic as possible. The central component of the
simulation library is the simulation controller. It is the primary
interface component to provide interactions with the library,
for instance, configuring the simulation pipeline, inserting ray
tracing data, executing the simulations’ steps, and retrieving
the results. [18]
The simulation controller calls and passes the ray tracing

data to the link budget module that implements the optics
effect, sunlight, and calculates the photons’ arrival over time
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FIGURE 8. Exemplary multiple simulated point clouds obtained with a deterministic approach at different instances of a scan pattern as shown in Figure
5. One frame’s scanning process is completed in 185.2ms. a) Point cloud obtained from the object of interest (OOI) after 20.5ms. b) Point cloud obtained
from the OOI after 163.7ms. c) Point cloud obtained from the vehicle after 185.2ms. We have removed the points from the ground and surrounding to
visualize the OOI better.

by sampling the received power Pr(t) with the time interval
of∆t . The detector module’s task is to capture these discrete
photons’ arrivals n[i] and convert them into a photocurrent
Id [i] signal. This work implements the silicon photomultipli-
ers (SiPM) as a detector. Next, the circuit module amplifies
and converts the detector’s photocurrent signal to a voltage
signal vc[i] processed by the ranging module. The last part
of the toolchain is the ranging module, which determines the
range R and the intensity I of the target based on the voltage
signal received from the circuit module for every reflected
virtual LiDAR ray. The effect engine (FX engine) is a se-
ries of interfaces that interacts with environmental conditions
or sensor-related effects and the blocks of the simulation
pipeline. These interactions involve, for example, considering
thermal noise in electrical components and increasing noise
floor due to sunlight intensity. [18]

The detailed principle of the LiDAR simulation library
can be found in the author’s previous work [18]. Exemplary
multiple point clouds obtained with a deterministic approach
are shown in Figure 8. This approach can replicate the exact
scanning behavior of the real LiDAR sensor, and the motion
distortion effect will appear similar to the real world. On the
other hand, this approach can be computationally expensive
depending on the number of points Npoints in the scan pattern
and the computer’s computational power. For instance, the
simulation with a deterministic approach takes more than four
hours to collect six minutes of virtual simulation data. The
simulation is carried out on a computer with an Intel Core i7-
9750H processor running at 2.60 GHz clock speed using 16
GByte RAM, running Windows 10 version Enterprise 21H2.

B. ANALYTICAL MODELING APPROACH
Primarily, the ray tracing modules provided by the simulation
platforms shoot the complete scan pattern simultaneously like
a flash LiDAR to offer real time sensor simulation. Therefore,

it is challenging to model the motion distortion effect in the
front end like a real-world LiDAR sensor. Consequently, an
analytical approach is introduced to directlymodel themotion
distortion effect on the ideal ray tracing detections in post-
processing. The following steps are adopted to implement the
motion distortion effect via the analytical approach to the ray
tracing detection.

1) The simulation platforms should provide the detected
ray identity number Pid to implement the motion dis-
tortion effect via an analytical approach. The identity
number Pid is used to calculate the detected beam scan-
ning duration tscan.

2) The virtual target and ego vehicle’s 3D position
(XW , YW , ZW ), the orientation (yaw rate γW , pitch rate
βW , roll rate αW ), and the velocity (vXW , vY W , vZW )
components are retrieved in world coordinates of the
driving scenario. In addition, the 3D components of
the relative radial velocity −→vr V of the target in the ego
vehicle coordinates are calculated by translation and
rotation:

−→vr V =
((−−→vtrgW −−−−→vegoW

)
Rrot
)
· d̂egoV , (6)

where −−→vtrgW denotes the 3D components of the target
vehicle velocity in the world coordinate system, −−−→vegoW
shows the 3D components of the ego vehicle velocity
in the world coordinate system, Rrot is the rotation
matrix to rotate the target vehicle coordinates to the
ego vehicle, · is the inner product of the two vectors
and d̂egoV is the unit vector pointing from the LiDAR
sensor to the target. The rotation matrix Rrot is obtained
by multiplying the ego vehicle rotation along the z-axis
or yaw rate γegoW , y-axis or pitch rate βegoW , x-axis or
roll αegoW and can be written as

Rrot = Rz,rotRy,rotRx,rot, (7)
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Rrot =

cos(γegoW ) −sin(γegoW ) 0
sin(γegoW ) cos(γegoW ) 0

0 0 1


 cos(βegoW ) 0 sin(βegoW )

0 1 0
−sin(βegoW ) 0 cos(βegoW )


1 0 0
0 cos(αegoW ) −sin(αegoW )
0 sin(αegoW ) cos(αegoW )


[37]. The unit vector d̂egoV pointing from the LiDAR
sensor to the target can be written as

d̂egoV =

−−−→
degoV∣∣∣−−−→degoV

∣∣∣ , (8)

−−−→
degoV =

(−−→
dtrgW −−−−→

degoW

)
Rrot , (9)

where
−−−→
degoV denotes the 3D components of the target

position in the ego vehicle coordinate system,
−−→
dtrgW is

the 3D position of the target in world coordinates,
−−−→
degoW

shows the ego vehicle 3D position in world coordinates
and Rrot is a 3D rotation matrix to rotate the target
coordinates into the ego vehicle. The relative radial
velocity −→vr V 3D components are used to calculate the
value of the relative radial velocity vr V , which can be
written this:

vr V =
√

(vr,XV )
2 + (vr,Y V )

2 + (vr,Z V )
2. (10)

3) In the next step, the analytical distance danalyS is calcu-
lated in the virtual sensor coordinates due to the motion
distortion effect for all the ideal ray tracing detections

received by simultaneously shooting the complete scan
pattern.

danalyS = dS + vr V tscan, (11)

where dS is the ideal ray tracing detection in the virtual
sensor coordinates, vr V is the relative radial velocity in
the ego vehicle coordinates, and tscan is the scanning
duration of the detected virtual LiDAR ray which can
be written as

tscan = Pid × tsingle, (12)

where Pid is the identity number of all the points re-
ceived from the virtual environment and tsingle is the
time required for a single ray or scan point to shoot.
Afterward, the cartesian coordinates are converted into
spherical, and the signal processing toolchain and the
sensor-specific imperfections, as given in Section IV-A,
are applied to obtain the point cloud as realistic as
possible. Figure 9 shows the exemplary simulated point
cloud obtained by simultaneously shooting the com-
plete scan pattern and analytically modeling the motion
distortion effect.

V. VALIDATION OF THE MOTION DISTORTION EFFECT
A. VALIDATION TOOLCHAIN
Figure 10 shows the toolchain to validate the motion dis-
tortion effect modeling. The proposed toolchain consists of
five steps: real-world scenario measurement, data analysis,
scenario generation, integration of the sensor model into the
virtual environment in a co-simulation framework, and vali-
dation of the simulated and real measured point clouds frame
by frame.

STEP 1
The ego vehicle is equipped with LiDAR and camera sensors.
The specification of the optical sensors used in this test cam-

FIGURE 9. Exemplary simulated point clouds obtained by simultaneously shooting the complete scan pattern and analytically modeling the motion distortion
effect. a) Simulated point cloud obtained by shooting the complete scan pattern simultaneously. b) Motion distortion effect modeled by using an analytical
modeling approach on the point cloud. The constant relative velocity vr V is −27.8m/s. The points from the ground and the surrounding are removed to
visualize the OOI better.
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FIGURE 10. Toolchain for the validation of the motion distortion effect.

FIGURE 11. Opposite-direction scenario performed at the proving ground
to investigate the LiDAR motion distortion effect. The relative longitudinal
velocity vr,x V between ego and target vehicles was −27.8ms−1. The cruise
control keeps ego and target vehicle velocities constant. The LiDAR sensor
frame rate frate is 5.4Hz.

TABLE 1. Specification of the sensors used in the test campaign.

Sensors Manufacturer FoV Range
IMX 490
(camera)

Sony Electronics Azimuth (± 15◦) & Elevation
(± 8◦)

300m

Cube 1
[40]

Blickfeld Azimuth (± 36◦) & Elevation
(± 15◦)

250m

paign is given in Table 1. In addition, the ego and the target
vehicles are equipped with a real-time kinematic (RTK)-
based global navigation satellite/inertial navigation system
(GNSS/INS) RT3000 v3 from OXTS [38] for reference mea-
surements. The opposite and the turning scenarios, as shown
in Figure 11 and Figure 12, are performed at the proving
ground to obtain real data to validate the motion distortion
effect modeling.

STEP 2

The recorded data of the sensors are stored via the Robot
operating system (ROS). The GNSS/INS and LiDAR sensor
data are analyzed to ensure all the sensor’s time stamps and
reference points are aligned.

FIGURE 12. Turning scenario to investigate the motion distortion effect due
to the ego vehicle movement. The ego vehicle moves with a velocity vegoV
of 11.1ms−1, and the target vehicle stands still. The LiDAR sensor frame
rate frate is 5.4Hz.

STEP 3
The LiDAR and GNSS/INS data are imported into the space
designed model generator (SDMG) tool to extract the ma-
neuver and description of each traffic object. The GNSS/INS
data is used to reconstruct the trajectory and the velocity
profile of the ego and the target vehicles. In addition, the
simulated scenario is exported as a test run infofile for the
DIVP®platform 1.0.0. It should be noted that the static traffic
objects, including poles and traffic lights, are modeled for this
use case, but the surrounding environment of the test track is
not modeled, such as grass, trees, etc.

STEP 4
The test run is constructed from the measurement of the real-
world environment and is imported into the DIVP®platform
1.0.0. In addition, the scenario modeling is validated by
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comparing the real and the simulated ego and target vehicle
velocities and trajectories before its integration with the co-
simulation framework. Afterward, the transmitter FMU is
parametrized according to the Cube 1 settings. Finally, the
LiDAR model and the simulation scenario are integrated
into the co-simulation framework, and the point clouds are
exported into .bag files.

STEP 5
The LiDAR FMU model and the real measured point clouds
are imported into MATLAB R2021b. The validation of the
complete toolchain and the motion distortion effect is per-
formed in two steps:

1) In the first step, the three KPIs are defined for the sanity
check of the motion distortion effect modeling, which
includes

• The number of received points Npoints from the
surface of the simulated and the real OOI in each
frame.

• The distance error derrorS of the point clouds ob-
tained from the real and the virtual OOI due to the
motion distortion effect. The distance error derrorS
is the difference between the reference distance
drefS and the mean distance of the reflections re-
ceived from the surface of the simulated and the
real OOI dmean, meas/simS and can be written as

derrorS = drefS − dmean, meas/simS . (13)

• The comparison between the mean intensity values
Imean of the received reflections from the simulated
and the real OOI surface in each frame is used to
validate the modeling of the OOI material proper-
ties.

The detailed reasoning for choosing these KPIs can be
found in the author’s previous work [18].

2) For the detailed validation of the motion distortion
effect modeling, a 2D (YX S , XZ S) binary and prob-
abilistic occupancy grid (OG) map [39] of synthetic
and real data are constructed and state-of-the-art met-
rics, including OCR and BCC, are applied to compute
the correlation. An occupancy grid map represents an
environment or space in the FoV of a LiDAR sensor
divided into a grid of cells, with each cell indicating
whether it is occupied or free by LiDAR detection, and
the cell represents a small portion of the space being
considered.

B. RESULTS

OPPOSITE DIRECTION SCENARIO
The exemplary LiDAR points received from the simulated
and the real OOIs are shown in Figure 13. Figure 14 compares
the number of points Npoints and the mean intensity values
Imean of the real and the simulated vehicles. The results show
that the number of received points Npoints and the mean in-
tensity values Imean obtained from the OOI in the simulation
and the real measurements match for frame numbers one to
six. Still, a slight mismatch between these quantities can be
observed for frames 7-9. Although the simulation scenario
is constructed from the measurements of the real-world sce-
narios without manual interpolation, it is very challenging to
reconstruct the exact real dynamic ego and target vehicle’s
position, orientation, and velocity frame by frame in a virtual
environment. Therefore, the frames for which the simulated
and the real OOI orientation and position differ have a mis-
match between the number of received points. It can also
be seen from Figure 14 (b) that the standard deviation of
the real measured intensity values is higher than the stan-
dard deviation of the simulated intensity values. The possible
reason behind this mismatch is the difference between the
modeled and the real object material properties, which signif-
icantly influences the LiDAR sensor performance. However,

FIGURE 13. Comparison of real and simulated point clouds with the motion distortion effect. a) Exemplary real measured LiDAR point cloud. b) Exemplary
simulated point cloud obtained with a deterministic approach. c) Exemplary simulated point cloud obtained with the analytical approach. The scanning
frequency of the real and virtual LiDAR sensor is 5.4Hz, and the relative velocity vr V between the ego and target vehicles is −27.8m/s, which is why the
LiDAR points obtained from OOI are shifted due to the motion distortion effect.
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FIGURE 14. Frame by frame comparison of the number of points Npoints
and mean intensity values Imean received from simulated and real OOI.
a) Number of received points Npoints from OOI in simulation and real
measurement matches for frame number one to six. However, a slight
mismatch in the number of detections can be observed for frames 7-9.
b) Mean intensity values Imean of simulated and real target vehicle are
approximately the same for all frames. Still, the standard deviation of real
measured intensity values is higher than the standard deviation of the
simulated intensity values.
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FIGURE 15. Frame by frame comparison of reference, simulated, and
real target relative distance drelS and distance error derrorS . a) Reference,
simulated, and real OOIs relative distance drelS in each frame. b) Distance
error derrorS of simulated and real vehicle frame by frame. The results show
good agreement with each other, and a slight mismatch exists because it is
tough to replicate the exact real-world targets’ orientation and position in
a virtual environment. The reference distance dref S is calculated from the
sensor reference point to the center of the target vehicle’s front bumper.

the simulation results with the deterministic approach match
better with real measurements than those obtained with the
analytical method because the virtual LiDAR sensor with the
deterministic process shoots the complete scan pattern point
by point and updates the virtual scene after every scan point
shot.

Figure 15 a) shows the simulated and the real target vehicle
relative distance drelS , and Figure 15 b) gives the distance
error derrorS of each frame. The MAPE metric is used to
quantify the difference between these quantities. Because
it provides the magnitude of the errors relative to the real
measured values in percentage, enabling the interpretation of
the results to be more accessible compared to other metrics
like mean squared error (MSE) or root mean squared error
(RMSE) [41]. Mathematically, it can be written as

M =
1

n

n∑
i=1

| yi − xi
yi

|, (14)

TABLE 2. Opposite scenario: MAPE of Npoints, Imean, and distance error
derrorS for deterministic and analytical approaches.

KPI Deterministic approachMAPE Analytical approach MAPE
Npoints 8.90% 14.30%
Imean 8.83% 9.20%
derrorS 0.10% 0.08%
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FIGURE 16. Correlation comparison of simulated and real measured point
clouds 2D (YX S , XZ S ) binary and probabilistic OG maps. The frames for
which the simulated and the real OOI’s position and orientation differ
have low correlation. The deterministic approach results match better with
the real measurements than the analytical approach due to its virtual
environment scanning methodology.

where yi is the measured value, the simulated value is denoted
by xi, and n shows the total number of values in a data set [42].
Table 2 provides the MAPE of these KPIs for the determinis-
tic and the analytical approaches. Furthermore, the MAPE of
the relative distance drelS is 0.1% for the real measurement.
The 2D (YXS , XZS) binary and probabilistic OGmaps [39]

are constructed, and theOCR and the BCCmetrics are applied
to validate the motion distortion effect modeling further. The
OCR is applied to the binary OG map due to its simplicity
and intuitive interpretation of the occupied cells (OCC). It is
the ratio between the true cells classified as occupied (cells
that are occupied in the simulated map and the real map) in
the simulated map and the total number of OCC in the real
map. Mathematically, it can be written as [43]:

OCR =

∑
cellsim,map, occ true∑
cellreal,map occ

. (15)

BCC is used to compare the 2D probabilistic OG of the
simulated and the measured point clouds because of its sim-
plicity and intuition in interpreting the results and its ability
to handle noise and variation compared to Pearson correlation
[44]. It can be written as [45]:

BCC =

〈
OGs · OGr

〉
−
〈
OGs

〉〈
OGr

〉
σ(OGs)σ(OGr)

, (16)

where the average value of the occupied and the free space
cells of the simulated point clouds OG map is denoted by〈
OGs

〉
and the real OG map with

〈
OGr

〉
, the standard de-

viation of the simulated OG maps is shown by σ(OGs) and
the real with σ(OGr).
Figure 16 shows the OCR and the BCC metrics results for

the 2D (YXS , XZS) binary and probabilistic OGmap of the de-
terministic and the analytical approaches. It should be noted
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TABLE 3. Opposite scenario: OCR and BCC metrics average correlation for
all frames of deterministic and analytical approaches.

Metric Deterministic
appr. YXS -
axis OG map
avg. corr.

Analytical
appr. YXS -
axis OG map
avg. corr.

Deterministic
appr. XZS -
axis OG map
avg. corr.

Analytical
appr. XZS -
axis OG map
avg. corr.

OCR 88.8% 85.9% 87.1% 84.8%
BCC 82.4% 81.4% 81.5% 80.3%

that the OG map cell size is adjusted according to the beam
divergence of the real LiDAR sensor, which is 0.4◦ in the
horizontal and the vertical direction in this case. For example,
the OG map cell size width and height is 1.74m × 1.74m at
250m and 0.01m × 0.01m at 1.5m. Table 3 provides the
OCR and the BCC metrics average correlation for all frames
of the deterministic and the analytical approaches.

The deterministic approach shows a higher correlation with
the real measurements than the analytical approach because
the virtual LiDAR sensor with a deterministic method shoots
the scan pattern point by point like a real MEMS LiDAR
sensor. In addition, the mismatch between the results exists
because it is challenging to replicate the 100% real-world
dynamic ego and target vehicle orientation, position, and
velocity frame by frame in a virtual environment using the
GNSS/INS data. The results of the deterministic approach
can be further optimized by modeling the virtual environment
more realistically. Still, this work focuses on generating the
virtual environment using the sensor data without manual
interpolation. Table 4 provides the exemplary calculation to
show the real and the simulated vehicle orientation difference
and the distance error derrorS impact on the OCR and BCC
metric correlation. The BCCmetric shows more sensitivity to
the environmental and the motion distortion effect modeling

TABLE 4. Exemplary real and simulated vehicle orientation difference
and distance error derrorS impact on OCR and BCC metric correlation. The
simulated and real target vehicle is placed at 13m, and the OG map cell
size is 0.09m × 0.09m.

Yaw
diff.
ψdiff

Pitch
diff.
βdiff

Roll
diff.
αdiff

Distance
error
derrorS

OCR
corr.
YXS -
axis

BCC
corr.
YXS -
axis

OCR
corr.
XZS -
axis

BCC
corr.
XZS -
axis

0◦ 0◦ 0◦ 0m 86.4% 83.2% 95.1% 84.1%
2◦ 0◦ 0◦ 0m 84.3% 70.5% 85.4% 75.0%
0◦ 2◦ 0◦ 0m 82.5% 71.5% 85.2% 80.0%
0◦ 0◦ 0◦ 0.1m 81.6% 70.9% 94.6% 82.3%
2◦ 2◦ 0◦ 0.1m 79.2% 68.6% 89.6% 75.9%

than the OCR metric because it considers the average value
and the standard deviation of the simulated and the real OG
maps as given in Equation 16.
TURNING SCENARIO
The turning scenario shown in Figure 12 is replicated in the
virtual environment using the GNSS/INS data to verify fur-
ther the motion distortion effect modeling and the validation
toolchain. The exemplary simulated and real point clouds
obtained from the OOI for the turning scenario are shown in
Figure 17. The simulated and the real point clouds obtained
from the OOI are dilated due to the motion distortion effect.
Figure 18 compares the number of received points Npoints and
the mean intensity values Imean obtained from the simulated
and the real OOI frame by frame.
For the number of points Npoints, the simulation and the

real measurement match for frames 1-9. However, a high
mismatch in the number of points Npoints can be observed,
especially for frames 10-14, because when the ego vehicle
turns right, it changes the origin of the sensor multiple times
in one frame. Measuring the exact orientation of the sensor’s
origin while turning is challenging, so it is difficult to model

FIGURE 17. Comparison of real and simulated OOI point clouds. a) Exemplary real measured LiDAR point cloud for a turning scenario. b) Simulated point
cloud obtained with a deterministic motion distortion approach. c) The simulated point cloud obtained with an analytical motion distortion approach. The
asphalt and the static traffic object’s material properties are not modeled, so the road and poles’ reflections are removed to visualize the point clouds
better. The scanning frequency of the real and virtual LiDAR sensor is 5.4Hz and the relative velocity vr V between the ego and target vehicles is −11.1m/s,
so the simulated and real point clouds get dilated due to the motion distortion effect.
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FIGURE 18. Frame by frame comparison of the number of points Npoints
and mean intensity values Imean received from simulated and real OOI.
a) Number of received points Npoints from the OOI in simulation and real
measurement for each frame. (b) Real measured and simulated mean
intensity values Imean. The deterministic and analytical approach mean
intensity values Imean match the real measured intensity values. It can also
be observed that the standard deviation of the real measured intensity
values is higher than that of the simulated intensity values.
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FIGURE 19. Frame by frame comparison of reference, simulated, and real
target relative distance drelS and distance error derrorS . a) Simulated and
real target vehicle relative distance drelS in each frame. b) Distance error
derrorS of simulated and real vehicle frame by frame. The results show good
agreement with each other because the MAPE is less than 0.1% for the real
measured and simulated distance error derror S . The reference distance dref S
is calculated from the sensor reference point to the center of the target
vehicle’s front bumper.

it in a virtual environment using GNSS/INS data, as only
the ego vehicle orientation is recorded. It can be seen from
Figure 18 (b) that the real measured and the simulated OOI
intensity values match well. However, the standard deviation
of the real measured intensity values is higher than that of
the simulated ones. The possible reason behind this deviation
is the difference in the simulated and the real OOI material
properties. However, a high-fidelity digital twin of the real
OOI is used. It is still difficult to model the exact real OOI
material roughness in the virtual environment. Figure 19 a)
shows the reference, the simulated, and the real target vehicle
relative distance drelS for each frame. Figure 19 b) gives
the distance error derrorS of each frame. The MAPE metric
given in Equation 14 is used to quantify these quantities’
differences. Table 5 provides the MAPE of these quantities
for the deterministic and the analytical approaches.Moreover,
the MAPE of the relative distance drelS is 0.09% for the real
measurement.

TABLE 5. MAPE of Npoints, Imean, and distance error derrorS for the determin-
istic and analytical approach.

KPI Deterministic approachMAPE Analytical approach MAPE
Npoints 13.00% 22.30%
derrorS 0.07% 0.06 %
Imean 8.10% 8.80%
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FIGURE 20. Correlation comparison of simulated and real measured point
clouds 2D (YXS , XZS ) binary and probabilistic OG maps for the turning
scenario. The deterministic approach correlation with real measurements is
better than the analytical approach because, in the deterministic approach,
the ego vehicle orientation and position are updated every 0.0102ms,
while in the analytical method, the orientation of the ego vehicle gets
updated every 185.2ms.

Figure 20 shows the OCR and the BCC metrics results for
the turning scenario 2D (YXS , XZS) binary and probabilistic
OG maps of the deterministic and the analytical approach.
The deterministic approach results match better with the real
measurements than the analytical approach because once the
ego vehicle turns right, the ego vehicle’s yaw angleψ changes
multiple times in one frame and also changes the sensor’s
origin. Therefore, the changes in the real sensor origins in one
frame need to bemodeled to obtain the simulated results close
to the real measurements. The deterministic approach updates
the virtual scene, including sensor origin and orientation,
after every 0.0102ms in one frame, while on the other hand
the analytical approach updates the virtual scene and the
sensor origin and orientation every 185.2ms. That is why
the deterministic approach results correlate better with real
measurements. So, the analytical approach can only provide
realistic results in cases where the ego vehicle orientation
changes slowly. Table 6 provides the OCR and the BCC
metrics average correlation for all deterministic and analytical
approaches frames of the turning scenario.

TABLE 6. OCR and BCC metrics average correlation for deterministic and
analytical approaches frames of the turning scenario.

Metric Deterministic
appr. YXS -
axis OG map
avg. corr.

Analytical
appr. YXS -
axis OG map
avg. corr.

Deterministic
appr. XZS -
axis OG map
avg. corr.

Analytical
appr. XZS -
axis OG map
avg. corr.

OCR 88.6% 67.9% 84.8% 63.4%
BCC 82.5% 60.0% 78.6% 54.5%

VI. DISCUSSION
This work introduces a deterministic and an analytical ap-
proach to model the motion distortion effect on the LiDAR
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sensor performance. The deterministic approach shoots the
virtual LiDAR sensor’s scan pattern point by point like a real
scanning LiDAR sensor, and the virtual scene is updated after
each emitted ray. In the analytical approach, the complete
scan pattern of the LiDAR model is shot like a flash LiDAR
sensor, and the motion distortion effect is modeled on the
ideal ray tracing detections directly. In addition, the different
reasons that cause the motion distortion effect for the scan-
ning LiDAR sensor are discussed. For instance, the impact
of the motion distortion effect increases with the decrease
in LiDAR sensor scanning frequency and an increase in the
relative velocity between the LiDAR sensor and the target
vehicle.
Opposite and turning scenarios were performed at the proving
ground in Jtown to validate the motion distortion effect
modeling. In addition, a toolchain is introduced to replicate
the real-world scenarios in the virtual environment using the
GNSS/INS data to validate the motion distortion effect. The
motion distortion effect modeling is validated on the point
cloud level in two steps. In the first step, three KPIs are de-
fined, including the number of pointsNpoints, the distance error
derrorS , and the mean intensity values Imean obtained from an
OOI. Moreover, the 2D (YXS ,XZS) binary and probabilistic
OGmaps are constructed from the synthetic and the real point
clouds, and the OCR and the BCC metrics are applied to
check the correlation between them frame by frame.
The MAPE of the deterministic approach for the number of
points Npoints received from the OOI in the opposite scenario
is 8.9% and 13.0% in the turning scenario. On the other hand,
theMAPE of the analytical approach for the number of points
Npoints is 14.3% for the opposite scenario and 22.3% for the
turning scenario. The MAPE for the mean intensity values
Imean received from the OOI is less than 10% for the deter-
ministic and the analytical approaches for both scenarios.
In addition, the MAPE of the distance error derrorS for both
simulated approaches and scenarios is less than 0.1%. The
mismatch between the simulation and the real measurements
exists, although the real-world scenarios are generated using
the GNSS/INS data. However, it is still very challenging to
replicate the exact orientation, the position, and the velocity
of the ego and the target vehicles frame by frame in the
simulation. For instance, a difference of 2◦ in the simulated
and the real ego vehicle orientation can lead to a mismatch
of 10.7% for the XZS-axis correlation of the BCC metric and
9.1% for the OCR metric. In addition, it is also quite tough to
replicate the exact real OOI material properties in the virtual
environment including material roughness, which is why the
mean intensity mismatch exists.
The OCR metric average correlation for the deterministic
and the analytical approaches is above 84% for the oppo-
site scenario’s YXS-axis and XZS-axis OG maps. The BCC
metric average correlation for all deterministic and analytical
approach frames is above 80% for the opposite scenario’s
YXS-axis and XZS-axis OG maps. The difference between the
results of both approaches and metrics is less than 3% for the
YXS-axis and the XZS-axis OGmaps of the opposite scenario.

On the other hand, for the deterministic approach, the OCR
and the BCC metrics average similarity is above 78% for
the YXS-axis and the XZS-axis OG maps of the turning
scenario. But for the analytical approach, the OCR metric
average similarity is above 63% for the YXS-axis and the
XZS-axis OG maps of the turning scenario. However, the
BCC metric average correlation is more than 54% for the
turning scenario’s YXS-axis and XZS-axis OG maps. But, the
OCR metric shows a mismatch of 20.7% for the YXS-axis
OG map and 21.4% for the XZS-axis OG map between both
approaches results. The BCCmetric shows a 22.5%mismatch
between both approaches’ results for the YXS-axis OG map
and 24.1% for the XZS-axis OG map.

VII. CONCLUSION

The findings show that the simulation results with a deter-
ministic approach match better with the real measurements
than the analytical approach, especially for scenarios in which
the yaw rate ψ of the ego vehicle changes rapidly, because
the yaw angle changes the sensor’s origin and the LiDAR
sensor point cloud gets distorted and dilated. Therefore, the
changes in the real sensor origins and orientation in one frame
need to be modeled to obtain the simulated results close to
the real measurements. The deterministic approach updates
the virtual scene, including sensor origin and orientation,
after every 0.0102ms in one frame and is computationally
expensive. On the other hand, the analytical approach updates
the virtual scene and the sensor origin and the orientation
every 185.2ms and can compute in real time. If high-fidelity
virtual LiDAR data is required, then the user should use the
deterministic approach rather than an analytical one.
It can also be concluded from the initial results that the pro-
posed deterministic and analytical approaches can be used to
model the motion distortion effect on the performance of au-
tomotive LiDAR sensors. Firstly, the demonstrated approach
helps to study the effects of LiDAR’s scan pattern in different
real-world traffic conditions. Secondly, the obtained synthetic
data can also be used to test the motion distortion correction
algorithms and the LiDAR-based object detection algorithm
performance in the early stage of development.

VIII. OUTLOOK

In the next step, we will train the LiDAR-based detector with
synthetic data to evaluate the impact of the motion distortion
effect on the object list of virtual and real LiDAR sensors. In
this context, we also aim for a method to estimate the relative
velocity from the motion distortion effect.
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