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Abstract—Scenario-based testing is essential for Highly Auto-
mated Driving (HAD) vehicles to determine the safety-related in-
put parameters and their boundaries. The increasing complexity,
vehicle functions, and operational design pose new challenges for
scenario-based testing, as the number of scenarios is enormous.
Therefore, an efficient and systematic process is required in
the various stages of scenario-based testing. The contribution of
this study is to provide sensitivity information of safety-related
parameters and support logical scenario reduction. This paper
presents an approach that supports to optimize the safety-related
parameters boundary towards logical scenario reduction. Addi-
tionally, sensitivity analysis is applied by computing Variance-
Based Sensitivity Analysis (VBSA) indices and prioritize the input
parameters. Two datasets are investigated by VBSA based on the
input parameters. One dataset is based on the samples from real-
world scenarios and other dataset is derived from the samples
considering statistic distributions with a specific parameter range.
Moreover, the proposed approach is applied to an exemplary use
case and the outcomes are demonstrated.

Index Terms—lane change, sensitivity analysis, scenario reduc-
tion, simulation, highly automated driving

I. INTRODUCTION

Highly Automated Driving (HAD) vehicles are equipped
with advanced functions to increase human comfort and
reduce traffic accidents [1]. The HAD vehicles (SAE level
3 and/or higher automation levels) requires safety assurance
by scenario-based testing to identify the safety-critical sce-
narios [2], [3]. According to Society of Automotive Engi-
neers (SAE) J3061 the term, automated driving system is
intended to describe the driving automation systems of level
3 (Conditional Driving Automation) to level 5 (Full Driving
Automation) automation [4]. In this paper, the HAD vehicles is

Research Project: New Multi-Layer Platforms for Security- and Safety-
Relevant Automated Driving Function (MLPaSSAD) founded by Federal
Ministry of Education and Research.

used to define that, not entire Dynamic Driving Task (DDT) by
means of operational and tactical function but a specific sub-
task from the DDT has been considered. The sub-task that
has been focused on this study is a vehicle maneuver during a
lane change. Additionally, the study has been performed on a
limited Operational Design Domain (ODD) for a lane change
function of HAD vehicles.

Traditional validation procedures are not practical for HAD
vehicles due to the complexity of the system, the decision-
making process, and the human machine interface while
driving on the road. Millions of test kilometers are not enough
to ensure the safety of the HAD vehicle on the road [5].
Additionally, the trustworthiness of HAD vehicles has not yet
been achieved in terms of safety, cybersecurity, assurance and
others [6]. To ensure the safety of HAD vehicle, new test
technologies and test strategies are in demand to revealing
the unknown unsafe scenarios and developing the safety
measures. Therefore, scenario-based testing is commonly used
in automated vehicles for safety assessment [7]. Moreover,
the resulting exploration of scenarios is still a challenge for
ensuring the safety of HAD vehicles. Hereby, a sensitivity
analysis has been carried out in a specific use case to optimize
and reduce the input parameter boundaries for the logical
scenarios.

The main contribution of the paper are as follows:
• Providing the sequence of input parameters by applying

several variance-based sensitivity analysis methods. In
other words, prioritize the input parameters for scenario
simulation.

• Investigating the samples extracted from real-world sce-
narios and samples from statistic distribution with a
specific parameter range to identify the sensitivity indices
of each parameter.



• Optimization of the safety-related parameter boundary to
support logical scenario reduction through scenario-based
testing.

The outline of this paper is as follows: First, section II
explains the key terminologies and the related background
of sensitivity analysis. Next, section III describes the datasets
used for scenario reduction, including the scope of ODD and
an exemplary use case. After that, the results of the sensitivity
analysis are presented with identified safe boundary of input
parameters in section IV. Finally, section V summarizes and
discusses the results of this study, including further work.

II. BACKGROUND

A. Scenarios and Operational Design Domain

A scenario describes the actions or events with additional
information in a sequence of scenes and a snapshot of envi-
ronment, scenery and other entities are defined as scene [8].
According to ISO 21448, Scenario is the description of the
temporal relationship between several scenes in a sequence
of scenes, with goals and values within a specified situation,
influenced by actions and events [8]. The term scenario has
been applied not only in the context of safety analysis but also
in verification and validation of HAD vehicles [9].

Menzel has classified the scenarios into three cate-
gories: functional scenario, logical scenario and concrete sce-
nario [10]. The functional scenario can be generated based
on the knowledge, experience and publicly open scenario
databases including the defined ODD. Logical scenarios re-
quired the parameter space parametrized ODD that can be
used to model and simulate scenarios. Concrete scenario
considered a particular scenario with concrete values of each
parameter. Menzel defines, functional scenarios are described
in a linguistic way so that experts can talk about scenar-
ios in the beginning of the development process. Logical
scenarios specify parameters for the scenarios and define
parameter ranges. Concrete scenarios specify a concrete value
for each parameter and are thus, the basis for reproducible
test cases [10].

HAD vehicles are designed to operate in the defined opera-
tion can be expresses as ODD. An ODD is the fundamental for
scenario-based testing to build safety concept and to support
the verification and validation of HAD vehicle development.
The major keywords to define an ODD are scenery, environ-
mental conditions and other road users [11]. According to
SAE J3061, ODD is defined as operational conditions under
which, a particular automated driving system or a function
thereof is intended to operate, including, but not limited to,
environmental, geographic, and time-of-day constraints and/or
the required presence or absence of certain traffic or roadway
features [4].

Scenario-based testing is important to identify the unknown
unsafe areas for HAD vehicles. However, road testing of HAD
vehicles is not efficient in terms of time, cost, resources,
technologies, and safety risks. In addition, not all scenarios
in which HAD systems need to make driving decisions can

be tested on the road. Hence, simulation-based testing is
an efficient approach and applied in HAD vehicle develop-
ment [12], [13]. To confirm this statement, scenario-based
testing including sensitivity analysis is performed to optimize
the order of safety-related parameters and reduce the logical
scenario for HAD vehicle safety assessment.

B. Variance-Based Sensitivity Analysis

Sensitivity analysis methods are applied in scenario analysis
in various domains including automated driving systems [14]–
[16]. Sensitivity analysis has allowed to evaluate the relative
importance of inputs factors (e.g. parameters, initial assump-
tions). Three widely used approaches for sensitivity analysis
are factor screening, local, and global [17]. Global sensitivity
analysis methods have proven particularly useful in practice to
understand the importance of individual parameters in a model
and to compare different parameters [18]. In this investiga-
tion, Variance-Based Sensitivity Analysis (VBSA) as a global
approach has been considered to determine the influence of
the variation of the input parameters over the entire definition
range.

VBSA measures investigate how input parameters con-
tribute to the variance of the model output. The method can
be applied to models with high uncertainty, with unknown
linearity and non-additive models.

The “main effect index” or “first-order index” Si represents
the contribution of each input parameter to the variance of the
output as the main effect [18]:

Si =
V (E(Y |Pi))

V (Y )
(1)

Here, E(Y |Pi) represents the expected value of output Y with
condition of Pi. Y is a model output that can be illustrated as
Y = F (P1, P2, P3, ..., Pk) with uncertain input parameters
along decomposition of the variance V of Y by means of
parameters interactions. The decomposition of variance is
V (Y ) and the decomposition of variance for a ith parameter
(Pi) can be written as, V (E(Y |Pi).

The “total-order index” or “total effect index” STi has been
expressed as [18]:

STi = 1− V (E(Y |P∼i))

V (Y )
=

E(V (Y |P∼i))

V (Y )
(2)

The total effect index STi accounts for the total contribution
to the output variation due to parameter Pi, is the main effect
sensitivity index and higher-order effects due to interactions
of other parameters. P∼i denotes the matrix of all parameters
except Pi.

The set of Si and STi provides the description of model
behavior, if unknown beforehand. Based on these indices,
it is possible to determine which parameters are important
and which have no influence on the output. The indices are
represented as a number between 0 to 1 [19]. For the variance-
based sensitivity analysis various estimators exist [20], [21].
The estimator for Si is as following:



V (E(Y |Pi)) (3)

While for the STi, the estimator is defined as:

E(V (Y |P∼i)) (4)

The scenario reduction technique has been supported by
sensitivity analysis. Scenario reduction has been performed by
varying the input parameters in sequence. The order in which
the parameters have been applied in the scenario testing affects
the results of the simulated scenarios.

III. SCENARIO REDUCTION APPROACH

A. Scenario Simulation Setup

In order to investigate the safety-related input parameters
and determine the sensitivity of the input parameters, the sce-
narios are simulated to measure the Time-To-Collision (TTC).
For the reduction of the logical scenarios, the parameter
variation based reduction approach has been considered, in
which the collision detection is viewed as the result of the
simulation results.

a) Input Parameters: The input parameters set that are
considered for sensitivity analysis and scenario reduction
approach are:

• Ego vehicle speed (P1)
• Lane change gap (P2)
• Lane change duration (P3)
• Lagging Vehicle (V1) speed (P4)

b) use case: The use case defines an abstract description
of the scenarios including the actions performed by the ego
vehicle during the lane change as presented in Fig. 1. The
highway scenario has been modeled with a width of 3.5 me-
ters. The use case are modeled in CarMaker and simulated for
TTC determination and collision detection. The lane change
scenario is described as, ego vehicle turning from right lane
to left lane.

Fig. 1. Exemplary logical scenario-use case.

In other words, the change of the ego vehicle from the right
to the left lane is the only use case with a limited ODD (good
weather, straight road). While the ego vehicle is performing
the lane change, a following/lagging vehicle (V1) is present

and driving straight ahead in the left lane. The initial inputs
parameters and variation boundary of input parameters are
listed in Tab. I.

TABLE I.
INPUT PARAMETERS BOUNDARY FOR SCENARIO SIMULATION

Input Initial Simulation Variation
Parameters Value Boundary

Ego vehicle speed (P1) 130 km/ha 100 km/h to 160 km/h
Lagging vehicle speed (P4) 140 km/h 120 km/h to 160 km/h

Lane change gap (P2) 65 mb 0 m to 80 m
Lane change duration (P3) 3 sc 1 s to 3 s
akilometer per hour (km/h) and bmeter (m) and csecond (s).

B. Datasets

a) Real-World Samples: To examine the behavior of
the sensitivity analysis, real-world scenario catalog has been
considered for real world samples generation. The real world
samples have been extracted from the scenario database pro-
vided by Automatum [22]. The real-world scenario database
has been created based on the raw data collected by the drone
from a German highway [22]. The real-world samples (dataset
1) have been extracted from the scenario database using a list
of input parameters that are similar to the defined use case.

b) Statistic Distributed Samples: The identification of
corner case scenarios is a challenge in scenario-based as-
sessment and aims to achieve uniform coverage of test cases
with a parameter space [11]. The samples have been ran-
domly generated using the Latin-Hypercube Sampling. This
sampling method provides samples from equal divided parts
of input space, where the random sampling might leave some
areas uncovered. A random sample dataset based on Latin-
Hypercube Sampling method has been generated by a uniform
distribution. The bounds of the input parameters are shown
in Tab. I. The range of input parameters has been taken
into account during the generation of the logical scenario in
CarMaker.

C. Reduction Approach

Simulation-based testing is required to investigate and iden-
tify the safety range of input parameters for HAD vehicles.
The simulation-based techniques help to reveal the impact of
the input parameters on the collision [23]. However, dealing
with the number of scenarios at different stages of simulation
is a major challenge and has yet to be solved. Therefore, this
paper presents an approach to scenario reduction that focuses
on the logical scenario stage. Scenario-based analysis can be
used in various areas, such as risk analysis, safety assessment,
and verification and validation processes. Sensitivity analysis
has the potential to reduce the number of observed scenarios
and is thus supporting scenario-based analysis.

The proposed approach has accounted for the order of input
parameters based on the VBSA results, and a further reduction
approach has been included on the basis of the parameter
variation-based reduction approach as mentioned in [23]. The
functional scenarios are reduced by addressing a limited ODD.



The reduction approach is presented in Fig. 2 that includes
the datasets, tools and methods that are applied to reduce the
logical scenarios.

Fig. 2. Scenario reduction approach with sensitivity analysis

a) The scenario reduction steps are:
• Step 1: data extraction and datasets preparation based on

input parameters.
• Step 2: scenario modeling and scenario simulation based

on the input parameters to collect the outcomes of the
scenarios in terms of TTC.

• Step 3: identification of input parameters sensitivity by
VBSA. Different estimators are applied to estimate the
input parameters impact.

• Step 4: applying the sequence of input parameters that has
been identified by the VBSA to the parameter variation
based method for logical scenario reduction. Additionally,
the safe boundary of the input parameters has been
realized.
b) The detailed description of the scenario reduction

steps are as follows: Step 1: The scenario data are obtained
from real-world samples and derived from statistic distributed
samples, referred as dataset 1 and dataset 2 in Fig. 2. Dataset 1
is extracted from publicly open scenario database and extracted
as a list of input parameters (Ego vehicle speed, lagging
vehicle speed and lane change gap) that are related to the
defined use case. Consecutively, only the upper and lower
bounds of each the input parameters (Ego vehicle speed,
lagging vehicle (V1) speed, lane change gap and lane change
duration) are regarded in dataset 2 and samples are generated,
which has been used to prepare test cases. The results for the
simulated scenarios are based on TTC. Based on the datasets,
the test cases have been generated and simulated to record the
TTC for each combination of the input parameters. A limited
scenarios are extracted from real-world by taking into account
the defined used case and a set of test cases has been prepared.

The open Automatum processing program for the Python
environment has allowed the extraction of parameters data for
a defined scenario, with the exception of the duration of the
lane change. The constraint of the real data is that the input pa-
rameter “Lane change duration” (P3) can not be extracted. For
this reason, only three input parameters have been considered
for VBSA. The extracted values have been converted to a text

file, which has been used in MATLAB to generate the script
for test cases. The randomly-generated samples have been
created with the help of the SAFE-Toolbox for MATLAB.
SAFE-Toolbox is a collection of tools for performing the
VBSA. Since the data have been randomly generated, four
input parameters are used in statistical distribution samples.

Step 2: The use case scenario (see in Fig. 1) has been
modeled and simulated in CarMaker with respect to TTC as
outcomes based on the input parameters. Each of TTC values
from CarMaker simulation have been stored into a vector. The
vector has been used to calculate the sensitivity indices to
identify the relative importance of input parameters.

Step 3: The calculation of sensitivity indices has required
the allocation and recombination of samples for test case
generation and simulation. Each of the input datasets has been
divided into three matrices (XA, XB, and XC) to estimate
the main effect and the total effect of each parameter. However,
the input parameters are independent and have been used to
create matrix XA and matrix XB. Matrix XC has been
formed by replacing the column in XA with the column of
XB. Therefore, the matrix XC has a size of XA or XB
multiplied by the number of input parameters. The matrices
XA and XA are represented in the estimators as matrix A and
B, respectively (See Tab. II). A(i)

B or B(i)
A is a part from matrix

XC where, column Pi of matrix A is replaced by column Pi of
matrix B or vice-versa. Different estimators have been applied
and outcomes of the VBSA in terms of ”main effect index”
and ”total effect index” are estimated. A list of estimators that
are applied in this study are listed in Tab. II.

TABLE II.
LIST OF ESTIMATORS APPLIED FOR SENSITIVITY INDICES ESTIMATION

First-order index (Si) Total-order index (STi)
Sobol/Saltelli Estimator [20]

1
N

∑N
r=1 f(A)rf(B

(i)
A )r − f2

0 1−
1
N

∑N
r=1 f(B)rf(B

(i)
A

)r−f2
0

V (Y )

Saltelli Estimator [21]
1
N

∑N
r=1 f(B)rf(A

(i)
B )r + f2

0 1−
1
N

∑N
r=1 f(A)rf(A

(i)
B

)r+f2
0

V (Y )

Janon Estimator [24]
1
N

∑N
r=1 f(B)rf(A

(i)
B

)r−f2
0

V (Y )
1−

1
N

∑N
r=1 f(A)rf(A

(i)
B

)r−f2
0

V (Y )

Jansen Estimator [25]

V (Y )−
1

2N

∑N
r=1(f(A)r−f(A

(i)
B

)r)
2

V (Y )
1

2N

∑N
r=1(f(B)r − f(A

(i)
B )r)2

The outcomes of VBSA have been realized in terms of
prioritization of the input parameters.

Step 4: The sequence of input parameters based on priority
has been applied in the parameter variation based scenario
reduction approach. Based on the VBSA results the input
parameter sequence are considered for logical scenario re-
duction. Parameter variation based reduction approach has
been applied for logical scenario reduction [23]. Additionally,
input parameters boundary has been optimized based on the
outcomes from parameter variation based reduction approach.



TABLE III.
VBSA BASED ON REAL-WORLD (DATASET 1)

Para- 1000 4000 10000
meters Samples (N) Samples (N) Samples (N)

Si STi Si STi Si STi

Sobol/Saltelli Estimator
P2 0.0220 -0.1948 -0.0146 0.1041 -0.0093 0.0359
P1 -0.1116 1.0383 -0.1035 1.0552 -0.1001 1.0447
P4 -0.0557 1.0874 -0.0464 1.1074 -0.0344 1.1026

Saltelli Estimator
P2 0.0134 -0.1862 -0.0054 0.0950 -0.0060 0.0326
P1 -0.0384 0.9651 -0.0141 0.9659 -0.0064 0.9510
P4 0.0452 0.9865 0.0491 1.0120 0.0592 1.0090

Janon Estimator
P2 0.0123 0.0018 -0.0057 0.0021 -0.0060 0.0023
P1 -0.0501 0.9775 -0.0260 0.9556 -0.0173 0.9439
P4 0.0455 1.0043 0.0509 1.0169 0.0633 1.0164

Jansen Estimator
P2 -0.0769 0.0021 0.0366 0.0019 0.0070 0.0023
P1 0.0955 0.9298 0.1602 0.7405 0.1716 0.7557
P4 0.2416 0.8886 0.2361 0.7739 0.2382 0.8126

IV. RESULTS

A. Comparing the VBSA Methods

The test case scenarios have been simulated based on the
datasets. Around 168000 samples are collected from the real-
world dataset (dataset 1) that are corresponding to the defined
use case considering three input parameters. Whereas about
90000 samples are generated by uniform distribution (dataset
2) by taking into account the parameters boundary with four
input parameters. Each of the datasets are shuffled for test case
preparation to reveal the TTC as simulation results.

The number of samples is defined as N and samples are
used to generate the matrix XA and XB (the number of
samples to calculate the sensitivity of a single input parame-
ter). The number of test cases that are simulated is calculated
as, 2N + kN , where k is the number of input parameters as
described in section 3. In this investigation, N=1000, 4000 and
10000 samples have been considered for generating the matrix
XA and XB. Therefore, the total test cases for three sets of
samples are 75000 (5000 + 20000 + 50000) where, k=3) for
simulating the dataset 1 and 90000 (6000 + 24000 + 60000)
where, k=4) for simulating the dataset 2. The simulation
results are applied in VBSA.

The simulation results of the test cases have been used as in-
put for different VBSA methods. For the estimation of the sen-
sitivity indices, four estimators have been investigated namely
Sobol/Saltelli Estimator, Saltelli Estimator, Janon Estimator
and Jansen Estimator [20], [21], [24], [25]. The summary of
the VBSA results has been displayed in Tab. III that reflects
the real-world scenarios (dataset 1), it has been observed that
the samples of 1000 and 4000 are not plausible to estimate
the impact or sensitivity of the parameters. Nevertheless, the
Jansen estimator is more appropriate than other estimators.

For the samples for the statistical distribution (dataset 2), the
samples of 1000 and 4000 are unlikely because of the negative
values of the indices. Nevertheless, samples of 10000 yielded

TABLE IV.
VBSA BASED ON STATISTIC DISTRIBUTION (DATASET 2)

Para- 1000 4000 10000
meters Samples (N) Samples (N) Samples (N)

Si STi Si STi Si STi

Sobol/Saltelli Estimator
P1 0.1126 0.9185 0.0726 1.0029 0.1061 0.9530
P2 0.0863 -0.5485 -0.274 0.0456 -0.0163 0.1059
P3 0.0866 -0.5485 -0.0272 0.0456 -0.0163 0.1058
P4 0.0215 0.9002 0.003 0.9092 0.0648 0.9167

Saltelli Estimator
P1 0.0918 0.9394 0.0886 0.9869 0.1114 0.9477
P2 0.0521 -0.5143 -0.0241 0.0423 -0.0119 0.1015
P3 0.0523 -0.5141 -0.0239 0.0424 -0.0120 0.1015
P4 0.0350 0.8867 0.0069 0.9026 0.0700 0.9116

Janon Estimator
P1 0.0811 0.9849 0.1006 0.9817 0.1158 0.9381
P2 0.0402 0.0001 -0.0246 0.0001 -0.0125 0.0001
P3 0.0403 0.0001 -0.0244 0.0001 -0.0126 0.0001
P4 0.0411 0.9276 0.0069 0.8952 0.0722 0.8992

Jansen Estimator
P1 -0.0305 1.3359 0.2117 0.8410 0.1501 0.8561
P2 -0.1880 0.0001 -0.0047 0.0001 0.0366 0.0001
P3 -0.1877 0.0001 -0.0044 0.0001 0.0366 0.0001
P4 0.1922 1.0038 0.0284 0.8583 0.1024 0.8263

an acceptable results for the Jansen estimator as shown in Tab.
IV).

According to the VBSA outcomes of dataset 1, input param-
eter P4 (Lagging vehicle, V1 speed) has the highest sensitivity
compare to other input parameters P1 (Ego vehicle speed) and
P2 (Lane change gap). Moreover, the input parameter P1 (Ego
vehicle speed) has the highest sensitivity based on the VBSA
output of dataset 2, compared to other input parameters. Since
P2 (lane change distance) and P3 (lane change duration) have
the same sensitivity indices, another iteration of VBSA has
been conducted between P2 and P3 to determine the higher
sensitivity among them. For the scenario reduction approach,
the results of dataset 2 have been taken into account as four
parameters are involved for VBSA, and similar amount of
parameters have also been utilized in the scenario reduction
approach [23].

B. Input Parameters Boundary

Several studies and road vehicle standards have addressed
the topic of safety-critical scenario identification [3], [6], [8].

TABLE V.
INPUT PARAMETERS SAFE BOUNDARY OPTIMIZATION

Input Simulation Variation Safe
Parameters Boundary Boundary
Ego vehicle 100 km/h to 160 km/ha 100 km/h to 160 km/h
speed (P1)

Lagging vehicle 120 km/h to 160 km/h 120 km/h to 145 km/h
speed (P4)

Lane change 0 m to 80 mb 64 m to 80 m
gap (P2)

Lane change 1 s to 3 sc 1 s to 3 s
duration (P3)

akilometer per hour (km/h) and bmeter (m) and csecond (s).



For the HAD vehicle to identify such scenarios, the logical
scenarios have to be examined by a scenario simulation
process. To define the safe ODD, optimization of the input
parameter limits is essential. Based on the VBSA results,
including the scenario reduction approach, the safe boundary
of the considered input parameters for the defined use case
has been listed in Tab.V.

V. CONCLUSION

This paper has outlined the various steps and considerations
in conducting a sensitivity analysis. The structure of the logical
scenario reduction approach, with the tools and estimators
has been presented. Moreover, regarding the estimators, Janon
and Jansen are indeed fitted better than the Sobol/Saltelli and
Saltelli estimators. Janon is superior for a smaller number
of samples and Jansen for a larger number of samples and
for a more straightforward interpretation, as it is less prone
to generate negative sensitivity indices. The time required to
compute additional indices with other estimators is negligible
compared to the simulation time. The sequence of the input
parameters is “Ego vehicle speed (P1)”, “Lagging vehicle
(V1) speed (P4)”, “Lane change gap (P2)” and “lane change
duration (P3)”, based on the scenario simulation outcome with
dataset 2 and parameter variation based scenario reduction
approach.

Furthermore, the variation of input parameters is required
to explore the parameter space and unknown unsafe scenar-
ios identification. Therefore, the safe boundary of the input
parameters are optimized and presented in this paper as a
research outcome by focusing the VBSA and Logical scenario
reduction.

As future work, a verification process will be developed
to ensure the accuracy of the defined safe limits of the input
parameters. Moreover, the generated datasets and test cases
can be used as input for any artificial network.
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