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Abstract:
Decarbonisation of heat generation has become a priority for district heating network operators. In order to 
avoid the use of fossil-fired boilers, operators need to know peaks in heat demand in advance. Accurate 
thermal load forecasting is playing an increasingly important role in this respect.
This paper presents the final results of the research project “deepDHC” (deep learning for district heating and 
cooling) funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK). The three-
year project focused on systematically benchmarking thermal load forecasts for district heating networks, 
based on state-of-the-art machine learning methods. The analysis covers a variety of machine learning 
techniques, such as neural networks – including latest deep learning methods – (e.g. LSTM, TFT, ESN, RC), 
decision trees (random forests, adaptive boosting, XGB) and statistical methods (SARIMAX). In addition, the 
impact of combining methods by so-called “stacking” was investigated. Training and validation of the machine 
learning algorithms was based on historical operating data from the district heating network for the city of Ulm 
in Germany, in combination with historical weather data, and weather forecasts. Thermal load forecasts –
typically for three days ahead – are presented and compared against one another. An automatic tuning routine 
was developed as part of the project, which enables regular re-training of the machine learning algorithms 
based on the latest operating data from the heating network. Furthermore, a web interface for real-time 
forecasting was developed and implemented at the power station.
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1. Introduction
Half of Europe’s entire energy consumption is used for heating and cooling, with 75 percent derived from fossil 
sources. Thus it is important to provide heat as efficiently as possible, also producing the lowest possible 
greenhouse gas emissions. District heating networks play a key role in this context, as they are currently used 
to supply 60 million Europeans with heat.[1] However, with total lengths often spanning several hundred 
kilometres, supplying district heating networks efficiently presents a considerable challenge. Typically, heating 
network operators maintain several power plants with different technical and economic features. District 
heating or cooling can be provided more cost-effectively, efficiently and with fewer emissions, the more 
precisely the expected load can be estimated. In addition to a comprehensive understanding of individual 
power plants and a dispatch optimisation strategy, this requires a precise forecast of the thermal loads that 
can be expected in the network during the next few days. In industrial practice, however, generally only simple 
forecasting methods with comparably high uncertainties are used for district heating load forecasts
Previously established methods, which are based on typical days or reference load profiles, [2] currently lead 
to an estimated 15-30 percent load forecasting error rate over a 72-hour horizon. In addition, heating load 
forecasts have been considerably less intensively studied to date than, for example, electricity load forecasts.
Accurately predicting the district heating load is essential for district heating network operators in order to 
optimise the utilisation of available power plants, thermal storage facilities and “power-to-heat” plants, thus 
boosting efficiency. The quality of district heating load forecasting directly impacts plant dispatch quality, 
making it a critical factor to consider. Nevertheless, quantifying the economic advantage of reducing load 
forecasting errors is difficult, due to the fact that different load forecasts cannot be relied on to accurately repeat 
the actual plant dispatch during a specific period. The economic benefit of improved thermal load forecasting 
was shown in in a previous publication.[3]
New methods in the field of artificial intelligence, especially in machine learning and "deep learning", offer 
considerable potential for improvement, in particular since machine learning techniques have become easy to 
deploy due to increasing amounts of training data coupled with cheaper and improved computing power.[4–7]
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This work is based on operating data from the district heating network for Ulm, a medium-sized city in southern 
Germany with about 125,000 inhabitants, as provided by the local utility company “Fernwärme Ulm GmbH” 
(FUG), which operates a district heating network about 150 km in length supplying some 600,000 MWh of 
thermal energy per year, equivalent to 45 percent of the city’s heat requirements. Table 1 lists all the major 
heat generation units operated by FUG. In addition, a pressurised hot water thermal storage of 2,427 m³ 
volume, equivalent to 150 MWh thermal energy storage capacity, and with 20 MW discharge power, is used.

Table 1.  Heat generation units operated by FUG.

Plant type Thermal load, MW Electrical load, MW Fuel type
Biomass CHP plant 1 58 9 Waste wood
Biomass CHP plant 2 25 5 Waste wood
Waste incineration CHP plant 30 11 Waste
Peaking boiler (w/ connection to turbine) 230 15 Coal, gas or oil

2. DeepDHC system structure
The DeepDHC system structure in Figure 1 below shows the developed process for load forecasting. The 
basis for training the models is historical data on the heat load of the district heating networks, as well as 
historical and current weather forecasts, which are obtained from the German Meteorological Service 
(Deutscher Wetterdienst, DWD) and stored in a database. In addition, the weather data currently measured 
for the Ulm site are obtained from the DWD’s Climate Data Center (CDC) and saved together with the actual 
district heating load in an hourly resolution. Operational data is rarely available in the correct format or ideal 
quality. Deviations such as missing measured values, outliers, or data with a different interval (time frames) 
must be corrected or optimised with statistical methods as part of a pre-processing step. During the machine 
learning process, features are generated, datasets are divided into test and training data, and the 
corresponding models are initially trained and optimised. Based on the trained model, a live forecast of the 
heat load is generated and made available to the power plant operator via a web interface. In addition, an 
automated learning routine was developed in the project. This routine helps to always provide the best model 
with optimal parameters, including retraining the forecasting models whenever new training data become 
available.

Figure 1. The deepDHC machine learning process for thermal load forecasting

3. Analysed machine learning methods
The objective of this chapter is to provide a concise overview of the analysed machine learning methods, 
including their characteristics, and to specify the software packages that were used for their implementation.
3.1. Seasonal Auto-Regressive Integrated Moving Average (SARIMAX)
In contrast to neural networks or decision trees, SARIMAX (“Seasonal Auto-Regressive Integrated Moving 
Average)” is based on statistical calculation models. SARIMAX extends the ARIMA model by adding a 
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seasonal counterpart to each component.[8] Compared to ARIMA, SARIMIX offers a “seasonal order”, which 
offers advantages for the type of forecasts examined. There are terms that capture the pattern of the data over 
a seasonal period, such as a week, a month, or a year. SARIMAX was implemented in this study using the 
“statsmodels” python library.[9] 
3.2. Echo-State Networks (ESN) 
Echo-State Networks (ESN) are one of the simplest implementations of a neuron-based reservoir computer. 
Reservoir computing is a machine learning approach to training recurrent neural networks (RNN). At its core, 
RNN cells contain an internal memory state which acts as a compact summary of past information. A unique 
characteristic of the ESN model is its efficiency in terms of the required computing power.[10, 11] Modern 
machine learning methods are becoming increasingly complex and require increasingly powerful hardware. In 
contrast, the development of reservoir computers focuses on reducing complexity and solving large machine 
learning tasks with minimal computing power. Recently, reservoir computers have proven to be a powerful and 
resource-efficient alternative in the field of classic forecasting of complex dynamic systems.[12] The Python 
package ReservoirPy was used in implementing this project.[11] 
3.3. Next Generation Reservoir Computing (NGRC) 
Like the “classic” ESN model, the NGRC model belongs to the group of neuron-based reservoir computers. 
[12] [13] In the background, a nonlinear vector autoregression (NVAR) algorithm automatically delivers the 
best possible classic ESN model with the associated hyperparameters. Like the classic ESN model, the NGRC 
model is very efficient and very easy for the programmer to implement. The Python package ReservoirPy was 
used in implementing this project.[11] 
3.4. Temporal Fusion Transformer (TFT) 
In the area of machine learning, transformers are a subtype of neural network. A common obstacle for machine 
learning algorithms is the inability to handle data in the dimension of time. Commonly, the algorithms weight 
the relevance of data at each location equally, thus preventing the extraction of usable knowledge in the time 
dimension. The architecture of the Temporal Fusion Transformer is specialised for performing such time-series 
prediction tasks. To learn temporal relationships on different scales, TFT uses recurrent layers for local 
processing and interpretable self-attention layers for long-term dependencies.[14] TFT offers powerful 
forecasts with customisation options, and unlike other machine learning methods it is not a “black box”. TFT is 
able to independently recognise dependencies within a data set and also includes tools for selecting relevant 
or irrelevant features. Originally developed by Google, several TFT implementations are now available. Further 
details of the TFT-related work in this study have been published separately.[14] The TFT used in this project 
was implemented using the PyTorch API.[15] 
3.5. Long Short-Term Memory (LSTM) 
LSTM is a gradient-based, recurrent neural network with feedback connections. LSTM neurons can hold 
values over any length of time, making them an attractive option for time-series prediction.[16] The standard 
recurrent neural network (RNN) architecture has difficulties in handling long-term dependencies, more 
precisely with the ability to adapt to recalling information late in the sequence. LSTM models address this 
limitation by introducing a memory cell, an internal state that can be updated and read by the network, and 
"gates" that control the flow of information in and out of the cell. This structure allows the LSTM to selectively 
store and update information across many time steps, making it well suited for time series forecasting.[16] The 
LSTM model was implemented using Keras LSTM layers.[17] 
3.6. Adaptive Boosting (Adaboost) 
Adaptive boosting, also known as AdaBoost, is a machine learning algorithm that belongs to the family of 
ensemble learning methods. Ensemble methods combine multiple models to improve their predictive power. 
The basic idea behind AdaBoost is to combine several “weak” learning models into a single “strong” model by 
iteratively learning from the mistakes of the weak learners. The algorithm can handle non-linear relationships 
between the input features and the target variable. It is also able to cope with missing data and outliers.[18] 
AdaBoost was implemented using the scikit-learn library.[19]  
3.7. Extreme Gradient Boosting (XGBoost) 
XGBoost is an open-source implementation of the decision tree gradient-boosting algorithm. The basic idea 
of gradient boosting is to train a series of weak models, where each model is trained to correct the previous 
model’s errors. By iteratively fitting the trees, XGBoost is able to build a highly accurate ensemble of decision 
trees that can capture complex nonlinear patterns in the data.[20] This ensemble of decision trees is based on 
gradient tree boosting, i.e. the trees grow sequentially with the knowledge gained from their predecessor. But 
this method is prone to overfitting, which XGBoost reduces by applying regularisation objects, shrinkage, and 
feature subsampling. XGBoost was implemented using the open-source python library XGBoost.[21] 
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3.8. Stacking 
With the stacking method, the strengths of multiple individual models are harnessed by combining them into a 
single meta-model.[22] In this project, different combinations of base forecasting models such as Random 
Forest, ESN, TFT and LSTM models were analysed. The individual base models’ predictions are fed as 
features into a meta-model, which then makes the final prediction.[22] This can be done in different ways. The 
stacking methods examined in this project were k-fold variation, bagging and averaging. All three methods 
were implemented via the scikit-learn library.[19] 

4. Data characteristics and their effects on forecasting performance 
When assessing a model’s ability to make predictions, it is not only the quality of the training data that must 
be considered, but also its relevance to the current situation. In the context of district heating supply, certain 
factors influence demand independently of the events that can be planned and modelled. The outbreak of the 
Covid-19 pandemic was a major unforeseeable event that impacted energy needs, shifting the demand from 
industrial areas and educational institutions to residential areas. This presents a challenge for cities that 
operate separate networks for different urban areas, since previous regularities in the data are no longer valid. 
Additionally, it is uncertain whether the end of an event will restore the previous conditions, or whether changes 
in energy requirements caused by increased working from home during lockdowns will persist. Old training 
data may no longer be suitable for training models based on weight adjustments when networks expand or 
new urban areas are connected, leading to an increase in demand. Seasonal effects, along with the energy 
consumption of industrial plants that require hot water for their processes, must also be taken into account. 
To account for these changes in the model, data must be collected for the altered consumption profile and 
used to train a new model. In addition to sudden changes such as grid expansion, primary energy shortages, 
and shifts in user behaviour, long-term global transformations such as climate change must also be 
considered. These changes occur continuously and can be compensated for with appropriate methods, as 
described in section 6. 
In summary, numerous factors strongly influence the demand presented by a supply network. This project only 
utilised quantifiable influences to train the models. While it would be possible to incorporate additional data 
e.g. from climate models, economic forecasts, political events, crisis models, stock prices, and other forms of 
news into a model, it would be a time-consuming process that would not guarantee long-term improvement. 
Nevertheless, these factors should be taken into consideration when evaluating and using a forecasting 
technique. While machine learning models can recognise patterns in data that humans cannot see, it is 
important to note that there are no conscious trains of thought behind these mathematical models and that 
only information contained in the machine learning features used can be taken into account. 

5. Benchmarking results 
Fifteen years of operating and weather data in hourly resolution were used to train the machine learning 
algorithms. All eight subnetworks in the city of Ulm were analysed, each providing different challenges in terms 
of demand profiles, data quality and consumer structure. The data used in the following analysis came from a 
subnetwork of Fernwärme Ulm GmbH spanning a total length of 40 km and representing an annual heat 
demand of 75 GWh or 1,100 households. Hence a total of 131,400 data sets were used, each consisting of 
twenty parameters, i.e. measurement data from the district heating network and weather information such as 
air temperature, wind direction and wind speed. The correlation between individual parameters and the 
associated district heating load was previously checked by means of a correlation analysis.[23] 
When optimising and comparing the quality of forecasting algorithms, the characteristics of the metrics used 
must be taken into account. In this project, mainly the mean absolute percentage error (MAPE) was 
investigated because it is easy to interpret and dimensionless. However, a weakness of the MAPE becomes 
apparent when the forecast values are very low, as during the summer months. The metric is skewed at values 
close to zero.[24] Therefore, the mean average error (MAE) is used in addition. In the following analysis, the 
forecasting methods for the heating period winter 2021 (December 2020 and January and February 2021) are 
examined and compared using the MAPE. This period is also the economically most interesting part of the 
year for heating network operators. If precise forecasts make it possible to avoid operating fossil-fuelled 
peaking boilers, the largest proportion of fossil fuels and thus CO2 emissions can be saved during this period. 
The bar chart in Figure 2 below shows a final comparison of the forecasting errors of all analysed machine 
learning algorithms. 
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Figure 2. Final results of the 72 h forecast machine learning benchmarking

In the graph above, an estimated error of traditional forecasting methods where no machine learning algorithms 
is indicated for comparison. Although the SARIMAX model performs only slightly better than the estimated 
manual approach, it has the advantage of requiring only a small amount of data and still being able to produce 
a relatively good forecast (3.1 %-8.25 %) for a short time horizon of 12-24 hours (not shown in the graph). 
However, when predicting over a longer time horizon of 72 hours, the SARIMAX model performs significantly 
worse, with a MAPE of 19.09%. The NGRC and ESN recurrent neural networks show a similar performance, 
with NGRC slightly outperforming ESN with a MAPE of 12.99%. Similarly to SARIMAX, these algorithms also 
have other advantages besides a competitive forecasting error, such as the lower calculation power required 
and faster training time, which is briefly discussed at the end of this chapter. Throughout the project, it was
found that stacking does not necessarily lead to better forecasts than the best individual method. Among the 
various stacking methods that were examined, such as k-fold variation, bagging, and averaging, simple 
averaging led to the lowest error value of 8.8%. However, stacking was found to be computationally expensive 
and required careful tuning of hyperparameters in order to avoid overfitting. Of the examined learning methods, 
AdaBoost, XGB, and LSTM are amongst the best and most stable, with a forecasting error of around eight 
percent. The LSTM model, in particular, achieves excellent forecasting quality and has lower memory 
requirements compared to XGB and AdaBoost, making it one of the most attractive models, but it requires
significant implementation effort due to the many hyperparameter options and complex data pre-processing.
However, the LSTM model demonstrated excellent adaptability when it was faced with new data. For example 
in scenarios that were previously unknown to the model, such as the Covid-19 pandemic or the increase in 
gas prices in 2022, which caused a reduction in heat demand, the LSTM model showed consistent results.
Overall, TFT delivers the best result for the examined subnetwork, with approximately 5.5% MAPE. Figure 3
illustrates the forecasting quality by showing the actual thermal load, the load prediction of the best TFT 
algorithm, and the percentage deviation for this method over a 72-hour period.

TFT 5.46
LSTM 7.83

XGB 7.91
AdaBoost 8.32

Stacking 8.80
NGRC 12.99

ESN 13.73
SARIMAX 19.09

Manual approach (estimated) 25.00

0 5 10 15 20 25 30
Mean Absolute Percentage Error [%]

72 h forecast quality for winter heating period 
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Figure 3.  Example of a 72h thermal load forecast using the TFT model. 

During live operation at a different grid operator, similar successful forecasting results have been observed. 
TFT is also one of the most complex algorithms to implement. But on the other hand, TFT offers the ability to 
predict multiple time series with a single model. If a district heating supplier operates several networks, which 
is usually the case, a separate model would have to be trained for each network when using a classic machine 
learning model. With the TFT model, this would no longer be necessary, since the model can assign features 
to different target predictions by classifying features into groups.[25] As a result, it is only necessary to train a 
single model for several use cases, which ideally saves time and money. 
 
Benchmarking in terms of calculation power and training time is not straightforward as it depends heavily on 
the complexity of the model and various other factors such as the size and quality of the data and the hardware 
used for computation. However, the ESN and NGRC models proved to be exceptionally efficient, even if they 
do not provide the best forecasting quality. A monthly forecast with approx. 60,000 training data sets can be 
carried out using a simple office notebook (Intel Core i7-6600U, 16GB RAM, Windows 10) in a period of a few 
seconds. In comparison, the TFT model computed on a server with comparatively powerful hardware (NVIDIA 
Quadro RTX 6000 graphics card) needs about 30 minutes for the same training and forecasting process. In 
addition, the ESN model is very easy to implement and is one of the most user-friendly algorithms analysed. 

6. Automated optimisation routine 
During the initial setup of each model, various parameters need to be determined such as the choice of 
subnetwork, training timeframe, and the suitable dataset features. Adjusting the model-specific 
hyperparameters is usually part of “fine tuning” process, which enables the model to be adapted to the specific 
network in question. Each district heating network presents its own issues and characteristic properties, such 
as consumer structure, data quality and consumption patterns (households, industrial customers). A model 
that delivered very good results for one network might possibly deliver poor to unusable results for a network 
unknown to the model. Hence a network-specific approach with an automated optimisation routine was 
developed. 
The developed routine is based on a random search algorithm.[26] The best model up to that point is loaded 
from the database and used as a reference. With the random search method, an n-dimensional parameter 
space is searched intelligently. By considering the effects of individual changes, parameters with a high impact 
are examined more intensively. This results in greater efficiency in contrast to a structured grid search. After a 
comparison, the best model is saved in the database and the process repeated. The system can use this 
routine to react to changes (network expansions, intensive savings measures, lengthy sub-network failures), 
in a limited scope, within a few intervals. 
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6. Live operation and web interface 
In addition to benchmarking thermal load forecasting itself, a software system and web interface for live 
forecasting at the operator’s site was developed. This covered a process of data aggregation, including a fully 
automated routine for regularly fetching required data from different sources, and combining them in a data 
warehouse. It included a step of screening and cleaning invalid data using methods such as imputation or 
other replacement strategies. Besides robust backend systems aiding the training and usage of machine 
learning models, a means of presenting the predictions and additional information to the operator of the district 
heating network is required. Thus a user-friendly web interface, capable of displaying 72-hour time frames of 
predictions together with corresponding data for any given date, was developed in cooperation with the district 
heating system operator. A screenshot of the thermal load forecasting web interface, which was installed at 
the operator’s facilities in summer 2021 and has been in operation since then, is shown in Figure 4 below. 
 

 
Figure 4.  Web-based user interface developed for live operation of load forecasting. 

7. DeepDHC user guide 
A short guide was created to show the basic steps necessary to implement any of the described models. It is 
accessible via the code hosting platform GitHub under the following link:  
https://github.com/deepDHC/deepDHC-user-guide  
This guide will go through an example scenario that will use the historic thermal load and weather data to train 
a LSTM model. This model will then be saved and loaded from disc to do load predictions for another 
timeframe. Moreover, it shows how to calculate errors of the predictions compared to the real load demand, 
thereby providing a brief overview about all basic components needed to create models for district heating 
demand predictions. 
 

8. Conclusion 
The research project deepDHC systematically benchmarked thermal load forecasts using state-of-the-art 
machine learning methods, such as neural networks, decision trees and statistical methods. The study utilised 
long-term historical operating data from the district heating network in Ulm, Germany, combined with historical 
weather data and weather forecasts. Thermal load forecasts were predicted for three days ahead, in 
comparison against one another, and an automatic tuning routine was developed to retrain machine learning 
algorithms based on the latest operating data. 
 
A key takeaway from the analysis is that a proper database has at least the same influence on forecasting 
quality as the model selection. Each and every district heating network is different and requires a model that 
is tailored to the specific network and database (see “No Free Lunch” theorem [27]). 
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Over a time period of 72 hours in advance, the developed forecasting tools were able to predict the thermal 
load within a mean average percentage error of five to eight percent for the investigated district heating subgrid. 
In summary, the TFT model performs best in the examined subnetwork with respect to forecasting accuracy. 
An attractive option is also the LSTM model, since it turned out to be computationally more efficient compared 
to the TFT model, whilst still ranking amongst the best and most stable algorithms in this study.  
 
As part of a plant dispatch optimisation process, the forecasting methods that were analysed in this study can 
help to operate district heating networks more efficiently and cost-effectively.[3] By developing a web interface, 
the best analysed forecasting models could be made available for use in live operation and optimisation by the 
district heating system operator. 
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