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A B S T R A C T   

The electrification of the transportation sector leads to an increased deployment of lithium-ion batteries in ve-
hicles. Today, traction batteries are installed, for example, in electric cars, electric buses, and electric boats. 
These use-cases place different demands on the battery. In this work, simulated data from 60 electric cars and 
field data from 82 electric buses and six electric boats from Germany are used to quantify a set of stress factors 
relevant to battery operation and life expectancy depending on the mode of transportation. For this purpose, the 
open-source tool SimSES designed initially to simulate battery operation in stationary applications is extended 
toward analyzing mobile applications. It now allows users to simulate electric vehicles while driving and 
charging. The analyses of the three means of transportation show that electric buses, for example, consume 
between 1 and 1.5 kWh/km and that consumption is lowest at ambient temperatures around 20 ◦C. Electric buses 
are confronted with 0.4–1 equivalent full cycle per day, whereas the analyzed set of car batteries experience less 
than 0.18 and electric boats between 0.026 and 0.3 equivalent full cycles per day. Other parameters analyzed 
include mean state-of-charges, mean charging rates, and mean trip cycle depths. Beyond these evaluations, the 
battery parameters of the transportation means are compared with those of three stationary applications. We 
reveal that stationary storage systems in home storage and balancing power applications generate similar 
numbers of equivalent full cycles as electric buses, which indicates that similar batteries could be used in these 
applications. Furthermore, we simulate the influence of different charging strategies and show their severe 
impact on battery degradation stress factors in e-transportation. To facilitate widespread and diverse usage, all 
profile and analysis data relevant to this work is provided as open data as part of this work.   

1. Introduction 

The market introduction of lithium-ion battery technology in the 
1990s and its advancement since then is considered as enabler for the 
widespread electrification of the transportation sector [1]. Cars, buses, 
and boats are increasingly powered by electricity, replacing internal 
combustion engine-based propulsion systems [2–4]. Sales of electric cars 
(e-Cars) worldwide doubled to a total of 6.6 million from 2020 to 2021 
[2]. In the same timeframe, sales of electric buses (e-Buses) increased by 
40% worldwide, although the total number of buses remained constant 
[2]. For example, Hochbahn Hamburg, the operator of Hamburg’s 
subways and buses, plans to electrify its entire bus fleet by 2030 [5]. The 
global market for electric boats (e-Boats) is also expected to double in 
volume from 2022 to 2028 [4]. These three modes of transportation vary 
in several aspects, such as average travel distance and frequency. In 
addition, vehicle usage also varies within a mode. For example, e-Buses 

typically travel longer distances than e-Cars, and e-Cars themselves may 
be used for daily commuting or just for leisure activities. Accordingly, 
the load on the battery system and the time available for charging the 
vehicles differs. 

The present work analyzes the battery system load of different e- 
transportation modes. For this purpose, field data were collected from 
industry partners for the e-Buses and e-Boats. For e-Car data, a simula-
tion tool is used, which is based on mobility data and simulates driving 
behavior. The collected data is used to emulate trips and charging 
behavior of the mobile applications with the help of SimSES, an open- 
source simulation tool extended for this purpose [6,53]. In an energy 
consumption analysis, the consumption of the vehicles is compared, 
and, for the e-Buses, the influence of the outside temperature is also 
shown. Various battery parameters such as the average state of charge 
(SOC), are then derived and compared. In addition, the parameters of 
the mobile battery storage systems (BSSs) are compared with those of 
stationary BSSs in three applications. We also consider the influence of 
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the charging strategy by emulating the load profiles using three different 
charging strategies. Finally, part of this publication is an open-data re-
pository including all BSS load profiles for each of the three modes of 
transportation. 

In the following, we first describe the state of the art and existing 
literature before defining the research questions and presenting the 
scope of the work. In this work, the term e-Cars is used for cars instead of 
the often-used “electric vehicles” to distinguish between the electric 
vehicles of e-Cars, e-Buses, and e-Boats. 

1.1. Summary of existing literature 

In recent years, the electrification of cars, buses, and boats has been 
advancing [2–4]. Accordingly, research interest in these topics is also 
increasing. In the following, we summarize the literature on e-Cars, 
e-Buses, and e-Boats relevant to this paper. We then address vehicle 
charging strategies and the state of the art on relevant storage and 
battery KPIs. 

E-Cars are a relevant topic, as they change not only the mobility 
sector but also the energy sector [2]. For this reason, research interest 
focuses on various issues of e-Cars, such as charging strategies, including 
fast charging and vehicle-to-grid (V2G), the influence on the distribution 
grid [7] and battery thermal management systems [8]. However, 
research also addresses the use of e-Cars and typical car loads. For 
example, an analysis of the user behavior and energy consumption of 
e-Cars was conducted by De Cauwer et al., in 2015 [9]. In their work, the 
authors analyzed GPS data from the EVA and Move platforms in Belgium 
and measured the energy consumption of a Nissan Leaf. For the e-Cars of 
their dataset, a range of 5000 to 6000 km per year was derived, which is 
less than the annual distances covered by internal combustion vehicles. 
They also showed that real energy consumption on the road might ac-
count for between 18 and 23 kWh/100 km – a value 30%–60% higher 
than the consumption measured by the New European Driving Cycle 
(NEDC). Similar trends were obtained by Hao et al., in 2020, who 
analyzed data from 197 e-Cars and determined energy consumption 
levels that were 7%–10% higher than those determined using NEDC 

[10]. A study by Chen et al., in 2020 evaluated data sets of 8000 e-Cars 
and plug-in hybrid electric vehicles (PHEVs) in Shanghai over a week 
and concluded that the e-Cars travel less than the PHEVs, averaging 
32.6 km per day (compared to 36.3 km per day for the PHEVs) which is 
nearly 12,000 km per year [11]. Moreover, Tansini et al. conducted their 
tests on three e-Cars and determined consumption between 15 and 29 
kWh/100 km with an average consumption of about 20 kWh/100 km 
[12]. In 2016, Zou et al. analyzed the driving behavior of taxi fleets 
consisting of 34 electrically powered taxis in Beijing [13]. On average, 
the taxis drove almost 118 km daily and consumed 11 to 30 kWh/100 
km. The authors also analyzed battery charging characteristics and 
determined that 59% of the charging processes began between 30 and 
50% SOC, and 74% were charged to an SOC higher than 90%. Conse-
quently, the cabs were discharged by 40–70% during the trips. In the 
same year, Weldon et al. published a study of e-Car use in Ireland in 
which they evaluated eight privately used and seven commercially used 
e-Cars [14]. In contrast to Zou et al., the Weldon et al. study showed a 
wider distribution of SOCs at the start of charging: 58.7% of charging 
events started at an SOC between 50 and 100% [14]. However, this 
study used 2010 Mitsubishi i-MiEVs, which have a range of only 130 km. 
In addition, Zou et al. analyzed cabs, while Weldon et al. studied private 
and other commercially used e-Cars. Zhang et al. determined in a study 
of 55 e-Cars in Beijing that energy consumption depends on the outdoor 
temperature and that consumption is lowest at 15–20 ◦C [15]. They also 
showed that in Beijing, energy consumption was up to 10.26% higher for 
identical trips in winter than in the other three seasons. The descriptions 
of the state of research regarding e-Cars relevant to this work show that 
in practice they consume between 11 and 30 kWh/100 km and often 
cover smaller annual distances than internal combustion vehicles. Our 
work also presents the consumption and distances of a dataset of e-Cars 
but goes beyond this by evaluating and presenting further 
battery-relevant parameters. 

In the literature, there are also studies of mobility behavior based on 
surveys. One is the “Mobility in Germany” study [16,17]. Results of the 
2017 study were, for example, that on average, 3.1 trips and 39 km per 
person and day were made [17]. In addition, an e-Car in Germany is 

Nomenclature 

Abbreviations 
BSS Battery storage system 
e-Boat Electric boat 
e-Bus Electric bus 
e-Car Electric car 
EMS Energy management system 
EPA Environmental Protection Agency 
EV Electric vehicle 
eVTOL Electric vertical take-off and landing 
FCR Frequency containment reserve 
KPI Key performance indicator 
LMP Lithium-metal-polymer battery 
NEDC New European Driving Cycle 
NMC Nickel-manganese-cobalt lithium-ion battery 
PHEV Plug-in hybrid electric vehicle 
PV Photovoltaic 
PS Peak-shaving 
RQ Research question 
SCI Self-consumption increase 
V2G Vehicle-to-grid 
WLTC Worldwide harmonized Light-duty vehicles Test Cycles 

Parameters and variables 
b(t) Binary value indicating connection to electricity grid 

C-rate Charge rate 
Cact(t) Currently charged electrical charge 
Ctotal(t) Currently total possible capacity 
Crate, abs(t) Currently absolute C-rate 
Consumptiontrip Energy Consumption of a trip 
ΔSOEtrip Change in SOE 
Δdtrip Change in distance 
DOC Depth of cycle 
DOD Depth of discharge 
EBSS Energy content of battery 
Epos

year Charged energy in the year 
EFC Equivalent full cycles 
|I(t)| Currently absolute current 
n Total number of time steps 
P(t) Current power 
SOE State of energy 
SOC State of charge 
SOCcycle, start(t) State of charge at the beginning of a cycle 
SOCcycle,end(t) State of charge at the end of a cycle 
u(t) Binary value of current temporal utilization 
μutilization Temporal utilization ratio 
μV2G Temporal V2G-ready ratio 
v(t) Binary value of current V2G-ready ratio  
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used for 45 min per day on average, which means that it is not used 
almost 97% of the time [16]. Furthermore, the authors published sta-
tistics and probability distributions on mobility behavior in addition to 
these overall results. This data is used by emobpy, an open-source Python 
tool that can simulate the mobility behavior of e-Cars [18]. Since this 
tool is used in our work, we describe the simulation procedure and its 
parameters in chapter 2. 

E-Buses have also gained importance in recent years, so annual 
publications on this topic have increased more than tenfold from 2008 to 
2020 [19]. According to a review by Manzolli et al., the main trends of 
this research are vehicle and battery technology, fleet and energy 
management, and sustainability [19]. In the following, we focus on the 
research relevant to this paper on the driving behavior of e-Buses and 
the impact on battery systems. In 2015, Rogge et al. evaluated 1588 trips 
made by diesel buses operated by Stadtwerke Münster in Germany [20]. 
They used a method developed by Sinhuber et al. to dimension potential 
battery systems for the electrification of the buses and to simulate en-
ergy consumption [21]. The simulated energy consumption, including 
auxiliaries, ranged from 2.26 to 2.69 kWh/km, with a mean value of 
2.47 kWh/km [20]. Three years later, in 2018, Gallet et al. evaluated 
4135 e-Buses in Singapore, which traveled on average 186 km per day 
[22]. The mean value of the energy consumption was 1.75 kWh/km, 
with articulated e-Buses consuming an average of 2.47 kWh/km, 
double-decker consuming 2.34 kWh/km, and single-decker e-Buses 
consuming 1.62 kWh/km. At 1.35 kWh/km, Gao et al. also obtained 
similar consumption values [23]. In 2017, they published a framework 
evaluating diesel buses from Knoxville (USA) and using their driving 
patterns to simulate e-Buses. An evaluation of 99 e-Buses from seven 
cities in China was published by Wang et al., in 2020 [24]. They 
determined optimal speeds of 11–18 km/h to maximize battery effi-
ciency using a random forest algorithm. 

Furthermore, there is research on e-Buses that deals with charging 
management and associated degradation of the batteries. In 2018, Du 
et al. published an optimized control strategy for hybrid e-Buses to 
minimize life cycle costs by reducing battery aging [25]. Zhang et al. 
developed an optimized service and charging strategy for a fleet of 
e-Buses considering battery degradation and nonlinear charging pro-
files, which helped extend battery life by 47.2–96.1% [26]. They also 
found that the initial SOC when leaving the depot should be as low as 
possible for reduced degradation. In 2022, Manzolli et al. developed an 
optimization model for charging a fleet of e-Buses, including 
vehicle-to-grid (V2G) and consideration of battery degradation [27]. If 
battery replacement costs fall below 100 €/kWh, providing V2G with the 
e-Buses in the example country Portugal could become economically 
attractive. Analogous to the presentations of e-Cars, our work also ex-
tends the state of research on e-Buses concerning various 
battery-relevant parameters. 

E-Boats are less of a focus of research than e-Cars and e-Buses, ac-
cording to our research. Research focuses on designing and modeling 
pure and hybrid e-Boats [28–30]. In 2012, Spagnolo et al. published a 
design for an electric catamaran powered by photovoltaic (PV) and 
batteries [28]. Kabir et al. published a similar system for small ferries in 
Bangladesh in 2016 [29]. A year before, Soleymani et al. published a 
design and energy management of a 14-m hybrid e-Boat [30]. 

Another topic relevant to this work is vehicle charging strategies. 
The most straightforward charging strategy is the direct recharging of 
the vehicle after arrival at the charging station. We call this type of 
charging uncontrolled charging, analogous to our previous work and 
literature [31,32]. This type of charging places the vehicles in high SOC 
ranges, which has been shown to lead to higher calendar degradation of 
the batteries [33,34]. Smart charging of vehicles, in contrast, can reduce 
not only vehicle battery aging but also lower charging costs and reduce 
the concurrency of charging [35,36]. In 2016, Lacey et al. defined a 
delayed charging strategy where the vehicle was kept at low SOC after 
arrival and charged just before departure to reduce calendar degrada-
tion by lowering the average SOC [32]. In addition, the authors 

identified “less frequent charging” as another option to reduce calendar 
degradation by not charging after every trip. In 2017, Al-Karakchi et al. 
published a charging strategy with periodic pauses to reduce pressure 
and temperature [37]. This strategy reduced the capacity loss of exem-
plary LG 18650 cells by 2.5% after 350 cycles. Instead, Chen et al. let 
users choose between three charging strategies, in which users could 
obey or not obey grid scheduling depending on their risk preference 
[38]. Houbbadi et al. published a charging strategy for an e-Bus fleet in 
2019, in which they optimized the charging behavior considering bat-
tery degradation [39]. The optimized strategy performed even better in 
capacity loss than a delayed strategy, which they called postponed, and 
far better than an uncontrolled charging strategy, which they called 
greedy. In addition to the unidirectional charging strategies presented, 
there are also bidirectional charging strategies in which vehicles 
participate in electricity markets using V2G [40,41]. 

Analysis of battery health and performance is crucial to developing 
cost-effective electric vehicles. Several battery parameters are well- 
suited for deriving stress factors and health indicators. As described, 
for example, the SOC influences the aging of the batteries [32,34]. 
Furthermore, depths-of-discharge (DODs) and temperature are relevant 
for battery aging [42,43]. Especially for cyclic aging, the charge rate 
(C-rate) is another relevant parameter, which is the current divided by 
the nominal capacitance [44]. The energy throughput or, in relation to 
the battery capacity, the number of equivalent full cycles (EFCs) also 
contributes to this type of aging [44]. The parameters mentioned are 
generally relevant for batteries in mobile and stationary applications 
[45]. As proposed in previous work, the utilization ratio of mobile 
storage systems allows quantifying the proportion of time a vehicle 
battery is used, either to provide mobility or for V2G provision [31]. 

Research has already addressed driving patterns and energy con-
sumption of e-Cars and e-Buses. There is generally less research on e- 
Boats, and much of it relates to sizing and design. The research gap we 
have identified relates to the stress on the battery due to driving patterns 
in various modes of e-transportation. To the best of our knowledge, the 
impact of driving and charging behavior on parameters relevant to 
battery life and performance indication has been looked at with insuf-
ficient accuracy for e-Cars and e-Buses and not at all for e-Boats. This 
work aims to expand the publicly available knowledge about e-trans-
portation. In addition, we found that no simulation tool exists that can 
be used to simulate different modes of e-transportation and quantify the 
stress on the battery system. Furthermore, vehicle usage profiles are 
scarce and rarely available as open data. We want to contribute to 
covering these research gaps in this paper and answer the following 
research questions (RQs): 

RQ 1) How can various transportation modes be reproducibly 
simulated to obtain battery usage and health indications (Section 
3.2)? 
RQ2) How much energy do e-Cars and e-Buses consume in the 
exemplary datasets, and what is the influence of the ambient tem-
perature on consumption (Section 4.1)? 
RQ 3) What is the typical stress of mobile battery storage systems in 
various transportation modes regarding different parameters (Sec-
tion 4.2)? 
RQ 4) To what extent are battery-relevant parameters in mobile 
applications similar to stationary applications and could therefore 
similar cells be used in those applications (Section 4.3)? 
RQ 5) What’s the influence of charging strategies on the considered 
parameters (Section 4.4)? 

1.2. Contribution and scope of this work 

This work aims to analyze and compare various transportation 
means, which we also refer to as mobile storage applications, in the 
following. For this purpose, field data from e-Buses and e-Boats were 
collected, and data from e-Cars were simulated. The data is used to 
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emulate the three use cases in the simulation tool SimSES [6]. For this 
purpose, energy management systems (EMSs) were developed to track 
mobile storage systems’ power or SOC profiles and simulate charging 
strategies at parking times. This extension of the prior published SimSES 
tool enables the simulation of mobile storage applications by others so 
that the storage behavior can be simulated and evaluated. Furthermore, 
we derive and analyze various storage parameters that allow compari-
son between the three transportation means. We also show the impact of 
different charging strategies on the parameters. To enable the use of the 
data of the three battery applications, e-Cars, e-Buses, and e-Boats, we 
provide the profiles as open data as part of this publication. With the 
help of these profiles, researchers and industrial partners can make their 
own simulations or evaluations of transportation means. Accordingly, 
the work provides the basis for further research in the field of e-trans-
portation. Based on the work, battery technologies for the different 
means of transport can be compared and optimized for the respective 
application in the long term. 

Fig. 1 shows an overview of the work. After a presentation of the data 
basis in chapter 2, the data processing and the simulation in SimSES is 
done in chapter 3. Chapter 4 presents the results of the work before 
chapter 5 gives a summary and an outlook. 

2. Database 

For the present work, data on various mobile storage applications 
were collected and processed. The specifications of the raw data sets are 
shown in Table 1. To achieve a large number of data sets from privately 
used EVs, the simulation tool emobpy from DIW Berlin is used [18]. This 
tool uses statistics on the driving behavior of private individuals in 
Germany and the standardized driving cycles WLTC (Worldwide 

harmonized Light-duty vehicles Test Cycles) and EPA (Environmental 
Protection Agency) to simulate the use of e-Cars. For example, it can 
simulate effects on the electricity grid due to charging behavior. For the 
present work, emobpy was extended together with DIW Berlin so that the 
power demand during trips can now be tracked to the second. To 
determine different driving profiles and power requirements of the 
e-Cars, various trips were simulated in emobpy: First, the three driver 
types of commuters, non-commuters, and free-time drivers were 
selected. The driving behavior of each of these three driver types was 
simulated over one year in ten simulation runs to account for a wide 
range of driving profiles determined by probability distributions. A time 
resolution of 60 s was chosen to reduce the duration and memory re-
quirements of the simulations. Germany’s mean hourly resolved tem-
perature was used as the ambient temperature in the simulations. In 
general, emobpy allows the selection of one of 39 European countries as 
simulated ambient temperature [18]. 

Then, in the second step, the power profiles for the e-Cars were 
simulated for the two vehicle models, Volkswagen ID.3 (2020) and Tesla 
Model 3 (2020), using the three simulated driver types. These models 
were selected because they were among Europe’s top three best-selling 
e-Car models in 2021 [46]. The results are a total of 60 e-Car load 
profiles. In addition to the load profiles, binary profiles were extracted 
that indicate whether the vehicle is parked at home or on the road. These 
binary profiles are used in SimSES to map the charging behavior with 
different charging strategies. Table A1 in the appendix shows the 
characteristics of the vehicles used for the simulation of the three ap-
plications. The assumed charging power for the e-Cars is 11 kW. We 
describe the use of these parameters for the SimSES simulation in section 
3.2. 

For the mobile application of e-Buses, data was exchanged with 
Hochbahn Hamburg, which is converting its entire bus fleet to e-Buses 
by 2030 [5]. Hochbahn Hamburg provided the SOC profiles of 82 
e-Buses over up to 14 months for this work. The mileage, speed, and 
outside temperature were also measured and transmitted with the SOC 
data. The SOC profiles have a sampling rate of 10 s once the e-Bus is 
switched on. If the e-Bus is switched off, the SOC is not recorded. Thus, 
the charging behavior is not tracked. The six e-Bus models available in 
the dataset are listed in Table A1. For example, there are nine e-Buses 
from the manufacturer Evobus with Nickel–Manganese–Cobalt (NMC) 
lithium-ion batteries and a useable capacity of 190 kWh each. The total 
number of e-Buses in the table is 52, as 30 e-Buses are filtered out by the 
data processing described in section 3.1. We apply 150 kW as the 
maximum charging power at the bus depot for e-Buses with NMC battery 
and 80 kW for e-Buses with Lithium-metal-polymer (LMP) battery, as 
these are the charging power values of Hochbahn Hamburg. As the 
maximum power that can be charged and discharged from the batteries, Fig. 1. Structure of the work and respective chapter number.  

Table 1 
Datasets of the different transportation means.   

e-Car e-Bus e-Boat 

Number of 
datasets 

60 82 6 

Origin Simulated Measured Measured 
Available 

data 
Power, distance SOC, milage, 

ambient 
temperature 

SOC, power 

Length of 
datasets 

One year One day to 14 
months 

3–9 months 

Time 2021 2021–2022 2021 
Sampling rate 60 s 10 s 5 s 
Data 

resolution 
Power: values derived from 
trips’ energy consumption 
distance: 1 km for trips 

SOC: 
0.01% to 0.5% 
mileage: 0.1 km 
temperature: 0.1 
◦C 

SOC: 1% 
power: 10 W 

Industry/ 
Research 
Partner 

emobpy (DIW Berlin) [18] Hochbahn 
Hamburg 

Torqeedo  
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we apply 350 kW. 
The third mobile application of batteries considered in this work is e- 

Boats. To analyze this application, we collaborated with Torqeedo, who 
develops and sells electric propulsion systems for e-Boats. Torqeedo 
provided data from six e-Boats over three to nine months (see Table A1). 
These six e-Boats represent a smaller database compared to the e-Cars 
and e-Buses. However, the datasets include ferries and private boats, so a 
range of exemplary electric boats can be represented. The data includes 
the SOC and the power balance with a resolution of 5 s. In contrast to the 
e-Cars and e-Buses, no information is available about the distances 
traveled. Table A1 also shows the battery capacity and power of the e- 
Boats. The capacities of the small e-Boats (1–2 t) are 30–40 kWh. In 
contrast, the large e-Boats (7.5–37 t) have capacities between 80 and 
160 kWh. Regarding technical implementation, the 160-kWh e-Boats 
consist of four 40-kWh battery packs and the 80-kWh e-Boat consists of 
two 40-kWh battery packs. In the field, this allows variably connecting 
or disconnecting packs. We neglect this flexibility in this work and as-
sume 160 kWh and 80 kWh battery packs for our simulations. The 
maximum powers are between 100 and 250 kW. Since the charging 
power of the e-Boats depends on the respective user and varies over 
time, we take the most frequently occurring charging power resulting 
from the load profiles as the standard charging powers. However, the 
most frequently occurring charging powers for Boat B and Boat C are 40 
W and 630 W, respectively. For these two e-Boats, we specify 7 kW as the 
minimum power, so the most frequently occurring charging powers are 
7.82 kW and 32.53 kW, respectively. These charging powers appear 
realistic for e-Boats with capacities of 80–120 kWh. 

3. Methodology 

This chapter focuses on the methodology of the work. First, section 
3.1 deals with the preprocessing of the raw data. Then, section 3.2 ex-
plains the simulation of mobile storage applications in SimSES, 
including the charging strategies. Finally, section 3.3 describes relevant 
storage parameters used in the results to compare the mobile applica-
tions with each other and with stationary applications. 

3.1. Preprocessing and analysis of raw data 

As described in chapter 2, emobpy is extended to simulate the e-Cars 
so that the load during trips is also recorded and saved. The output of 
emobpy is 60 annual power profiles and binary profiles for the two ve-
hicles and three driver types (compare Table 1 and Table A1). For the 
preprocessing, the software MATLAB was used. A first analysis of the 

raw data is provided in Fig. 2, which shows two histograms of the 
average daily distances traveled by the e-Cars. In light orange, the 
annual distance driven by each e-Car is normalized to the total number 
of 365 days. In orange, the yearly distance is normalized to the number 
of days with driving activity. Overall, the simulated e-Cars travel 21–31 
km per day on average. On a day with vehicle usage, the average dis-
tance is between 36 and 50 km. The distances traveled by the e-Cars in a 
year consequently range between 7700 and 11,100 km. Compared to the 
average mileage in Germany, which is 13,000 km, the private e-Cars 
simulated have relatively small mileages [47]. According to the de-
velopers of emobpy, one reason could be that the study Mobility in Ger-
many, whose data the tool uses, only asks for distance categories of 
individual trips, e.g., “trip over 150 km”. Moreover, studies have shown 
that e-Cars often drive shorter distances than internal combustion ve-
hicles. For example, De Cauwer et al. determined around 5500 km as the 
annual distance of two pure electric vehicle fleets in 2015 [9]. In their 
study from Ireland, Weldon et al. obtained 26–33 km per day (9490 to 
12,045 km per year) [14]. Chen et al. found 32.63 km per day (11,900 
km per year) for e-Cars in Shanghai [11]. Based on these study results, 
we accept the deviation from the mean value of the annual distance 
driven by e-Cars in Germany at this point. 

The original e-Bus data is partitioned by day and is divided into 
individual CSV files for each e-Bus as a first step. Those files contain a 
timestamp and the SOC. In addition, a CSV is formed from timestamp 
and outdoor temperature, which allows an analysis of the influence of 
temperature on energy consumption in the further course of the present 
work (see section 4.1). Moreover, the following metadata is saved for 
each e-Bus: Bus number, bus manufacturer, battery type (NMC or LMP), 
useable battery capacity, average distance driven per day in kilometers, 
start time, and end time. Next, a data cleansing was performed in which 
requirements were defined that the individual e-Bus data records must 
fulfill to filter out small records and records with significant gaps (see 

Fig. 2. E-Car dataset (60 e-Cars): Histograms of e-Car average trip distance in 
km per day normalized to total number of days (light orange) and normalized to 
only days with driving activity (orange), respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 3. E-Bus data analyzed - cleansing (a) and cleaned data analysis (b). (a) 
Scatter plot showing the days without data between the first and last day of a 
dataset over the total length of the dataset. (b) Histograms of the average driven 
distance in km per day for days with driving activity. 
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Fig. 3 a). Each e-Bus record must therefore contain at least 100 days of 
data. In addition, at most 20% of those days may be without recorded 
activity. On the one hand, days without activity may be due to the 
normal break days since fewer city e-Buses are used on weekends 
compared to workdays. On the other hand, the e-Buses may also be in 
the repair shop on these days. In addition, errors could also have 
occurred during data acquisition. For this reason, all e-Buses with more 
than 20% of inactivity are filtered out. This data cleansing leaves 52 e- 
Buses that meet the requirements. Fig. 3 b shows a histogram of the 
distances driven per day with driving activity, analogous to Fig. 2. The 
52 filtered e-Buses travel between 113 and 207 km per day with 
recorded trips. If the e-Buses were used daily, this would correspond to 
an average of 56,210 km per year. Including the non-operating days, the 
e-Buses travel 94–189 km per day. This would correspond to 50,735 km 
per year. 

To simulate mobile applications, SimSES requires a binary profile in 
addition to a power or SOC profile. This binary profile indicates whether 
the vehicle is connected to the grid at a certain point in time (1) or not 
(0). When the vehicle is connected, it can then be charged according to 
charging strategies, further explained in the following section. The raw 
data already includes information on whether the e-Car is currently not 
at home but on the road, at work, shopping, or at home. In this work, 
only at-home times are interpreted as possible charging times. Since the 
binary profile does not exist for the e-Buses and e-Boats, it is generated 
for each SOC respectively load profile separately, as explained in ap-
pendix section 6.2. 

The six e-Boat datasets include three to nine months of data. The e- 
Boat types with battery capacity and power are shown in Table A1. 
Analogous to the e-Cars and e-Buses, the raw data of the e-Boats is 
evaluated in the following. Fig. 4 shows the distribution of recorded 
driving activity for all six e-Boat types. The white spots in between 
describe periods (days, weeks, or months) without recorded data. After 
consultation with Torqeedo, the gaps are not errors but show regular 
periods without activity. In contrast to the e-Car and e-Bus data, the e- 
Boat data does not include traveled distance measurements. The storage 
simulation tool SimSES, described in the following section, allows the 
simulation of the storage behavior in different temporal resolutions. If 
gaps occur in the data, SimSES interpolates between the last and the next 
data point. In the e-Boat simulations, this results in e-Boats being 
continuously discharged over several days and weeks when no data was 
available. To prevent this, power values of 0 W were inserted at the 
beginning and end of gaps with more than 1-h durations. This causes the 
simulated boot to stay idle in accordance with the original data. 

3.2. Simulation of mobile applications in SimSES 

The storage simulation tool SimSES has been developed at the Chair 

of Electrical Energy Storage Technology at the Technical University of 
Munich [6]. It enables the simulation of stationary energy storage sys-
tems in various applications. The time series simulation is com-
plemented by a techno-economic analysis in which, e.g., efficiency and 
battery degradation are evaluated. SimSES can be used, for example, to 
simulate stationary home BSSs in self-consumption-increase (SCI) 
application and large-scale stationary BSSs in the frequency contain-
ment reserve (FCR) application. For the present work, SimSES is 
extended toward mobile BSSs. Mobile BSSs are, for example, e-Cars, 
e-Buses, and e-Boats that are temporarily used for mobility and are 
temporarily connected to the power grid. For this reason, SimSES first 
requires the binary profile to simulate the vehicles. Next, it requires the 
load or SOC profile during times when the vehicle is not connected to the 
grid. This is especially relevant since vehicles are not always connected 
when they are parked. For the simulation of mobile applications, SimSES 
follows the load profile during the on-the-road times. The resolution 
used in the simulations is the resolution of the original data shown in 
Table 1. If the vehicle is connected, charging occurs according to a 
specified charging strategy. This fundamental principle applies to all 
mobile applications considered in this work. However, since data on the 
e-Buses is only available as SOC values, an energy management system 
(EMS) based on SOC data (SOC-EMS) is developed in addition to a 
power-based EMS (Power-EMS). In this strategy, the storage system 
follows the SOC data when the binary value is zero and allows charging 
according to similar charging strategies as in the power-based EMS when 
the binary value is one. For this purpose, the EMS calculates the required 
battery power from the SOC value to reach the desired SOC in each 
timestep. This approach approximates the real battery power but de-
pends on the resolution of the SOC and the sampling rate. Real power 
peaks are thus not captured on the one hand, and unrealistic power 
peaks can occur on the other hand due to short peaks in the SOC profile. 
The resolution of the e-Bus SOC models is given in Table A1 in the “other 
info” column. A difference between the Power-EMS and SOC-EMS is that 
the charging strategies in SOC-EMS charge to a target SOC at the time of 
departure. This is necessary because otherwise, more significant dis-
crepancies between the SOC in SimSES and the original SOC could occur 
during the next trip, which SimSES compensates for with high-power 
charging or discharging. In the case of the Power-EMS, the battery is 
charged to 100% SOC until departure since the target SOC is unknown. 

Three charging strategies have been implemented in the adapted 
version of SimSES, as depicted in Fig. 5: An uncontrolled charging 
strategy (a), a mean-power charging strategy (b), and a paused charging 
strategy (c). In uncontrolled charging, the vehicle is charged at 
maximum power up to 100% SOC (Power-EMS) or to the target SOC 
(SOC-EMS) immediately after connection to the electricity grid. In 
mean-power charging, perfect foresight determines when the vehicle 
will leave and charge accordingly with the power required to reach 
100% SOC or the target SOC at departure time. In paused charging, the 
vehicle is charged to a minimum SOC immediately upon arrival (e.g., 
60%), and subsequently, the charging process is paused. If the SOC at 
arrival is already above the specified minimum SOC, the current SOC is 
kept constant, as displayed in the night of January 26th in Fig. 5. During 
the pause, the EMS determines in perfect foresight when the vehicle will 
depart. Accordingly, the charging process continues at maximum power 
so that the vehicle reaches 100% SOC or the target SOC (SOC-EMS) at 
the time of departure. If 100% is set as the minimum SOC during the 
pause, this corresponds to the uncontrolled charging strategy. The other 
extreme is 0% minimum SOC during the pause. In this case, the vehicle 
would always hold the current SOC after arrival and only charge to 
100% SOC or the target SOC shortly before departure. This work’s se-
lection of charging strategies represents a sample of possible non- 
optimized charging strategies. In the field, aggregators of vehicles 
would develop optimized charging strategies. Examples of charging 
strategies with optimization algorithms would be minimizing electricity 
costs, minimizing distribution grid load, or minimizing battery degra-
dation [32,33,35]. 

Fig. 4. E-Boats database - days with driving activity are green, and days 
without driving activity or no data are white. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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The Power-EMS has a unique feature: If the SOC drops below 2% 
during a long drive, a fast charge with 150 kW to 80% SOC is simulated. 
For this purpose, a fast-charging station is assumed to be available on 
these trips. The trip is postponed by the charging time and is continued 
after the charge. With the SOC-EMS, implementing fast charging is not 
required since the SOC profile would already have included the fast- 
charging process during a long trip. For the Power-EMS, the simula-
tion of fast charging is necessary because, with small vehicle batteries, 
the desired driving distance might not be achieved with only home 
charging. 

For the simulation of the mobile applications, the battery model of a 
lithium-ion NMC cell was used [42]. In addition, an inverter model by 
Notton et al. was applied [48]. The technical specifications of the battery 
cell are shown in Table A2 in the appendix. 

3.3. Relevant mobile storage parameters 

Storage systems can be characterized and evaluated in different ap-
plications with various parameters (see Section 1.1). In the following, 
we define the parameters used in this work. 

The SOC of a storage system is defined as the fraction of the currently 
charged electrical charge (Cact(t)) to the total possible capacity (Ctotal(t)) 

as displayed in equation (3.1). Ctotal(t) is also time dependent since the 
total capacity of the battery reduces over time due to degradation ef-
fects. Over the entire duration of the simulation or the profile, there is a 
value for the SOC at every point in time. In our evaluations in section 4, 
we determine each vehicle’s mean SOC for the different transportation 
modes. We also determine the SOC at the end of each trip, before the 
vehicle is connected to the electricity grid, i.e., the binary value becomes 
one. The SOC is relevant for lithium-ion batteries because both calendar 
and cyclic degradation depend on it [42–44]. High SOCs tend to lead to 
accelerated calendar aging [42,43], while cycling in high and low SOC 
ranges may lead to accelerated cyclic aging compared to a mid-range of 
45–55% SOC [42]. In general, battery degradation depends on the in-
dividual cell type, but the SOC is often a relevant stress factor in battery 
degradation modeling [49]. For the e-Buses, the useable capacity is used 
as Ctotal(t), as the tracked SOC data ranges from 0 to 100%. However, the 
tracked SOC could deviate from the real battery SOC if the bus manu-
facturer only releases a certain voltage range to be used. 

The following parameter is the depth of cycles (DOCs), determined 
according to equation (3.2). For this purpose, it is calculated for each 
cycle how deep the battery was charged or discharged. The cycles can be 
determined in different ways. In SimSES, a half-cycle detector is imple-
mented [6]. Another possibility would be, for example, the use of a rain 
flow counting algorithm [50]. Here, a distinction can also be made be-
tween the charging and discharging direction. The term depth of 
discharge (DOD) is often used in the discharging direction. Analogous to 
the mean SOC at the end of trips, we determine the mean DOD of the 
trips by subtracting the SOC at the beginning of each trip from the SOC 
at the end of the trip. 

Another relevant parameter is the C-rate, which describes the current 
(I) at which the battery is charged or discharged in relation to its total 
capacity (Ctotal). The calculation of the C-rate is shown in equation (3.3). 
It can be calculated as an absolute value as in the equation or separately 
in charge and discharge direction. As described in section 2, the e-Bus 
data consists of SOC values. In SimSES, these SOC values are tracked 
during the trips, and the power is determined in each time step that must 
be charged or discharged to reach the target SOC. The current can then 
be used to determine the C-rate. We use the original power profiles for 
the e-Car and e-Boat data to determine the current directly from the 
power, not from a SOC profile. The cycles that the battery completes 
over a period of time are often referred to as equivalent full cycles (EFCs) 
or full equivalent cycles (FECs). Equation (3.4) describes the EFC 
calculation as implemented in SimSES [45]. For this purpose, the 
charged energy in the year (Epos

year) is divided by the energy content of the 
battery (EBSS). 

Especially for mobile applications, another parameter is of relevance: 
The temporal utilization ratio μutilization, the calculation of which is given 
in equation (3.5) and described in detail in [31]. This parameter rep-
resents the proportion of time a battery is charged or discharged in an 
application. For this purpose, the sum of the time steps at which the 
power p(t) is not equal to zero is divided by the total number of time 
steps n. For vehicles, this ratio means the proportion of time the vehicle 
is discharged due to trips or charged. The rest of the time, the vehicle is 
not used and is either parked somewhere on the road or at the charging 
point without being charged. In Germany, for example, a study found 
that private cars are parked for more than 23 h per day on average, 
resulting in a utilization ratio of less than 5% [16]. For stationary BSSs, 
the temporal utilization ratio describes the proportion of time that the 
BSS is charged or discharged. The rest of the time, the BSS is connected 
but not in use. 

The final parameter relevant to the transportation means is the 
temporal V2G-ready ratio μV2G. This parameter indicates the proportion 
of the time the vehicle is connected to the electricity grid but not being 
charged. The calculation of μV2G is shown in equation (3.6). Accordingly, 
the auxiliary variable v (t) is one if the vehicle is neither charged nor 
discharged (P(t) = 0) and the binary value is one (b(t) = 1). For the e- 

Fig. 5. Illustration of the three charging strategies for an exemplary time 
snapshot. a) Uncontrolled charging, b) mean-power charging, c) 
paused charging. 
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Bus, b(t) = 1 means that the e-Bus is in the depot, for the e-Car that it is 
at home, and for the e-Boat that it is at the dock. The variable μV2G is not 
simply one minus μutilization, since the vehicles can also be on the road 
without being charged or discharged or without being connected to the 
electricity grid. With the help of μV2G, it is possible to estimate the 
temporal V2G potential of the vehicle. At this point, V2G is represen-
tative of all forms of power feedback from the vehicle, including vehicle- 
to-home (V2H), for example. 

SOC(t) =
Cact(t)
Ctotal(t)

(3.1)  

DOC= SOCcycle,start − SOCcycle,end (3.2)  

Crate,abs(t)=
|I(t)|

Ctotal(t)
(3.3)  

EFC =
Epos

year

EBSS
(3.4)  

μutilization =

∑n
t=1u(t)

n
(3.5)  

μV2G =

∑n
t=1v(t)

n
(3.6) 

With: u(t) =

{
1,P(t) > 0 ∨ P(t) < 0
0,P(t) = 0 . 

v(t)=
{

1,P(t) = 0 ∧ b(t) = 1
0, otherwise  

3.4. Procedure for determining e-bus energy consumption in dependence 
on the ambient temperature 

The e-Bus data includes not only the SOC profiles but also data on the 
mileage and the ambient temperature of the e-Buses. In Section 4.1, the 
energy consumption of the e-Buses is determined as a function of 
ambient temperature. Therefore, a combination of raw data (mileage 
and ambient temperature) and simulation results (energy consumption) 
from SimSES is used. To obtain a complete dataset for the e-Bus mileage, 
forward filling is used since the mileage is not recorded at each time 
sample. The SimSES simulations are performed with a resolution of 10 s, 
which can be directly matched with the raw data samples. Thus, the 
entire dataset contains the ambient temperature, e-Bus mileage, battery 
SOCs, and states of energy (SOEs). Here, the SOE indicates the total 
amount of electrical energy in kWh contained in the battery. For further 
analysis, the data is split into individual trips. Trips are time intervals 
during which the e-Buses are not connected to the grid, and an increase 
in mileage is observed. To disregard times when the e-Buses are con-
nected to the grid, we check the binary value for b(t) = 0. Additionally, 
we defined the following criteria for a valid trip:  

- 2 h < trip duration <24 h  
- 20 km < trip distance <300 km 

Trips of less than 2 h and 20 km are neglected to ensure no service or 
test drives are considered. In regular operation, e-Buses are charged 
each night. Trips of more than 24 h are disregarded to disregard unusual 
operation. Finally, a bug in logging the mileage led to unreasonable 
jumps in the mileage counter. Overall, the analyzed e-Buses usually 
cover between 84 and 130 km in a complete shift of 8 h. Thus, an upper 
limit of 300 km is appropriate to filter out faulty mileage readings 
without neglecting valid trips. This procedure yields more than 22,000 
trips for all 52 e-Buses. 

During each trip, the e-Bus undergoes a change of SOE and mileage. 
The average energy consumption for each trip is computed as the frac-
tion of change in SOE (ΔSOE) and distance driven (Δd): 

Consumptiontrip =
ΔSOEtrip

Δdtrip
(3.7) 

Additionally, the mean ambient temperature of each trip is 
computed to allow for the analysis of ambient temperature-sensitive 
energy consumption behavior. 

4. Results 

This chapter presents the results of our work. Section 4.1 describes 
the results on the energy consumption of the individual mobile appli-
cations. In addition, we provide an in depth-analysis of the consumption 
of the e-Buses depending on the ambient temperature. Section 4.2 
compares the effects of the applications on the batteries with each other 
using the parameters presented. Subsequently, we compare these with 
the parameters of stationary applications in section 4.3. Lastly, the in-
fluence of the charging strategies on the parameters is shown in section 
4.4. 

4.1. Energy consumption analysis of e-cars and e-buses 

This section shows the energy consumption results of the three 
transportation modes. At this point, the energy consumption refers only 
to the DC side and neglects, for example, charging losses. Fig. 6 a) shows 
the total energy consumption of the e-Cars over the distance traveled. 
The simulations were performed with emobpy over one year, and the 
models chosen are the Tesla Model 3 and the Volkswagen ID.3 (see 
section 2). As described in section 3.1, the distances traveled range from 
7700 to 11,100 km. The Tesla and the Volkswagen were simulated for 
each mobility behavior, resulting in each distance value occurring once 
in the diagram for each vehicle type. The energy consumed by the e-Cars 
was determined in SimSES and ranges from 1450 to 3200 kWh. The two 
lines in the graph indicate consumptions of 20 kWh/100 km and 30 

Fig. 6. a) Simulated e-Car energy consumption analysis separated by model. 
Tesla Model 3 avg. consumption: 26.78 kWh/100 km; Volkswagen ID.3 avg. 
consumption: 21.38 kWh/100 km. b) E-Buses energy consumption analysis 
separated by e-Bus types. 
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kWh/100 km. Per 100 km, the e-Cars’ energy consumption is between 
18 and 29 kWh. The Tesla Model 3 has a higher consumption than the 
Volkswagen ID.3, in line with previous results [18]. 

Fig. 6 b) shows the energy consumption of the e-Buses over the 
distances driven, broken down by the e-Bus types. In contrast to the e- 
Car data, the e-Buses were not all measured over the same period (see 
Fig. 3 a). This increases the differences in the distances traveled by the e- 
Buses. Consequently, the e-Buses have traveled between 17,400 and 
76,200 km. Analogous to Fig. 6 a), the two lines show exemplary energy 
consumption rates of 1 and 1.5 kWh/km. The diagram indicates that 
most e-Buses show an average consumption of 1–1.2 kWh/km. Four e- 
Buses show increased consumption of 1.4–1.6 kWh/km. These e-Buses 
are articulated buses, which explains the increased consumption. Apart 
from that, we did not find significant differences in average consump-
tion between the different e-Bus models. Compared to the literature, the 
studied e-Buses investigated in this work show relatively low energy 
consumption (see section 1.1). On the one hand, this may be because the 
studied e-Buses are from the construction years 2019–2021, while the 
cited papers were published between 2015 and 2018 and therefore show 
older bus models. On the other hand, our results show only DC-side 
consumption, while other articles include charging losses in some 
cases. Moreover, Rogge et al. used a simulation model, not field data 
from e-Buses, and came up with over 2.2 kWh/km energy consumption 
in 2015 [20]. In 2017, Gao et al. already determined consumptions of 
1.35 kWh/km for real e-Buses [23]. Lastly, the outdoor temperature 
significantly impacts energy consumption, as shown in more detail 
below. This can result in different energy consumption rates for identical 
e-Buses in different countries. 

Fig. 7 also illustrates the consumption of the e-Cars and e-Buses per 
kilometer as boxplots, classified according to the models. The Volks-
wagen ID.3 consumes, on average, between 0.184 and 0.25 kWh/km, 
while the Tesla Model 3 is between 0.25 and 0.29 kWh/km. The e-Buses 
consume, on average, between 0.89 and 1.58 kWh/km. E-Buses with 
smaller batteries tend to consume less energy than larger e-Buses, 
although the spread in the individual segments is relatively large in 
some cases. For example, the six 240-kWh e-Buses consume between 
1.06 and 1.11 kWh/km, while the six 309-kWh e-Buses consume be-
tween 0.96 and 1.46 kWh/km. The two outliers in the 397-kWh e-Bus 
segment are two articulated e-Buses from Fig. 6 b). The two other out-
liers in Fig. 6 b) form the maximum in the 309-kWh e-Bus segment. 
Other reasons for differences in individual e-Bus consumption could be 
external influences, such as the outside temperature or route- 
characteristics, in addition to the general driving style. We, therefore, 
perform an analysis of consumption depending on the outdoor temper-
ature in the following paragraphs. 

As described in section 2, the e-Bus data contains values for the 

ambient temperatures of the e-Buses. Therefore, we analyze the trip 
energy consumptions of the 52 e-Buses described in Section 3.1 in 
dependence on the ambient temperature according to the methodology 
explained in Section 3.4. Each trip thus yields an average trip con-
sumption and an average ambient temperature. All trips are weighted 
equally for the boxplots in Figs. 8 and 9. 

Fig. 8 shows the energy consumption of all trips in dependence on 
the average trip ambient temperature from 10 to 30 ◦C. Generally, e- 
Buses show minimal consumption at 20–22 ◦C. The analysis of all e- 
Buses and their respective trips yields the lowest median consumption at 
21 ◦C with a value of 0.98 kWh/km. Consumption increases for higher 
temperatures mainly due to air conditioning. The e-Buses show an in-
crease to a median consumption of 1.16 kWh/km at an ambient tem-
perature of 30 ◦C (+19%). For decreasing temperatures, electric heating 
shows an analogous increase in energy consumption. At 10 ◦C, a median 
consumption of 1.24 kWh/km (+27%) can be observed. Overall, the e- 
Bus energy consumption increase is almost symmetric regarding tem-
perature variation from 10 to 30 ◦C. As a rule of thumb, energy con-
sumption increases by 2–3% per 1 ◦C change in ambient temperature. 

Fig. 9 shows the resulting consumption behaviors depending on the 
ambient temperature for the two specific types of e-Buses, Solaris 240 
kWh and Evobus 309 kWh (excluding the two articulated buses of this 
type). The boxplots of the other four types are displayed in Appendix 
Fig. A2. The consumptions of the individual e-Bus categories reveal an 
almost identical behavior above 14 ◦C. At lower temperatures, the 
trends differ substantially. E-Buses of type Evobus 309 kWh show the 
expected behavior of increasingly higher consumption at lower ambient 
temperatures. The lowest median consumption of this type is found at 
22 ◦C with 0.89 kWh/km. At − 2 ◦C, the median consumption doubles to 
1.77 kWh/km. E-Buses of type Solaris 240 kWh have a minimum con-
sumption of 0.94 kWh/km at a temperature of 21 ◦C. The consumption 
climbs for decreasing temperatures to a maximum median value of 1.37 
kWh/km at 8 ◦C, an increase of 46%. A sudden drop to a median con-
sumption of 1 kWh/km is observable for temperatures below this 
threshold. The reason behind this divergence is the heating method. All 
E-Buses in this analysis contain a hybrid heating solution consisting of 
an electric heater and fossil fuel heating. The operation strategy of the 
latter differs between bus manufacturers. In this analysis, Solaris’ 240 
kWh e-Buses seem to switch to exclusive fossil fuel heating when the 
temperature drops below 8 ◦C. Such an operation strategy conserves 
battery to extend the driving range but has the disadvantage that these e- 
Buses remain dependent on fossil fuels. 

4.2. Comparison of mobile applications 

Following the analysis of e-Car and e-Bus consumption, this section 
compares the stress on the batteries in the three mobile storage appli-
cations. Fig. 10 (a) shows the distributions of the energy consumption of 

Fig. 7. Simulated e-Car (a) and field-data e-Bus (b) boxplots of the vehicle 
mean energy consumption per kilometer for the different models. The symbols 
next to the type correspond to the symbols in Fig. 6. The numbers below the 
types indicate the number of car or bus types in the data sets. 

Fig. 8. Boxplot diagram of the energy consumption depending on the ambient 
temperature for all e-Busses of all categories. Outliers are removed to not 
distract from the general trend. The complete diagram with outliers is displayed 
in Appendix Fig. A1. 
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the three means of transport as boxplots. The left boxplot indicates the 
average energy consumption of the vehicles per day over the respective 
dataset length. The boxplot on the right shows the average daily energy 
consumption on which driving activities occurred. The simulated e-Cars 
thus consume a median of 6.3 kWh per day. On days when the e-Cars are 
used, they consume a median of 10.1 kWh. In contrast, the e-Buses 
consume 99 to 220 kWh per day. Since the e-Buses drive more frequently 
than the e-Cars, the right boxplot of the e-Busses differs only slightly 
from the left boxplot. The energy consumption of the e-Boats shows the 
most significant spread. There are e-Boats that consume, on average, 
only 1 kWh per day and e-Boats that consume 32.5 kWh per day. One 
reason for this could be the significant differences in e-Boat sizes. For 
example, the lightest e-Boat weighs only 1 ton, and the heaviest is 37 
tons (see Table A1). In addition, the e-Boats drive with different 

frequencies. The e-Boat that needs only 1 kWh per day consumes 4.5 
kWh on days with trips and thus forms the minimum in the right box-
plot. In contrast, the e-Boat that consumes 32.5 kWh per day also travels 
almost daily, so the maximum of the right boxplot is 32.8 kWh. 

Below, Fig. 10 (b) shows the EFCs of the three means of transport also 
as boxplots and once per day and once per day with driving activity. As 
the battery capacities of the three means of transport vary, the daily 
EFCs do not differ as much as the energy consumption in Fig. 10 (a). The 
simulated e-Cars make between 0.07 and 0.18 EFCs per day with a 
median of 0.102 EFCs. The median value corresponds to about 37 EFCs 
per year. If only the days on which trips occurred are considered, the 
EFCs increase by 50%–70% for the e-Cars. The e-Buses make more EFCs 
despite having larger battery capacities ranging from 190 to 397 kWh. 
The median here is 0.60 EFCs per day and 0.67 EFCs per day with 
driving activity. Since the e-Buses run on more days than the e-Cars, the 
EFCs per day of driving activity only increase by up to 23%. At the peak, 
there are even e-Buses that make a mean of 1.1 EFCs on the days they 
operate. Accordingly, if an e-Bus battery has a cycle life of, for example, 
3000 EFCs, the e-Bus could be operated for 13.7 years at 0.6 EFCs per 
day. With 1.1 EFCs per day, the operation time would be 7.5 years. The 
e-Boats, in turn, make fewer EFCs than the e-Buses. On median, e-Boats 
make 0.19 EFCs per day and 0.26 EFCs per day with activity. Thus, on 
average, the batteries in the six e-Boats complete more equivalent full 
cycles than the batteries in the 60 simulated e-Cars but fewer than the 52 
e-Buses. If the EFCs per day with driving activity are calculated for the e- 
Boats, they are only 0.8% higher for one e-Boat that drives almost every 
day than if the EFCs were calculated for all days. The other extreme is an 
e-Boat that only drives every fourth day, which results in 0.026 EFCs per 
day, then 0.1 EFCs per day with driving activity. 

Next to energy consumption and EFCs, other parameters are of 
relevance for the three modes of transport. For this purpose, Fig. 11 
presents further boxplots of the three mobile applications. The boxplots 
of the mean SOCs of the means of transportation for the uncontrolled 
charging strategy are shown in Fig. 11 (a). The e-Cars show little spread; 
all have mean SOCs of 97.6–98.8%. In contrast, the mean SOCs of the e- 
Buses range from 72.8 to 88.7% SOC with a median of 81.2%. The 
median of the mean boot SOCs is 91.9%. Overall, the analyzed e-Bus 

Fig. 9. Boxplots of the energy consumption of the e-buses “Solaris 240 kWh” 
and “Evobus 309 kWh” in dependence on the outside temperature. The red 
vertical line indicates the X-axis limit from Fig. 8. Outliers are removed to not 
distract from the general trend. The complete diagrams with outliers are shown 
in Appendix Fig. A2. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 10. Boxplots showing energy consumption (a) and equivalent full cycles 
(EFCs) (b) for all vehicle types analyzed. Data normalized per day and per day 
with driving activity. 

Fig. 11. E-Car (60, simulated), e-Bus (52, field data), and e-Boat (6, field data) 
boxplots of mean (a) and mean end of trip SOCs (b), mean C-rate (c), mean trip 
DOD (d), temporal utilization ratio (e) and temporal V2G-ready-ratio (f). The 
bus SOCs, C-rates, and DODs each refer to the useable capacity of the buses. 
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batteries are at the lowest average SOCs due to frequent and long trips, 
e-Car batteries are at the highest average SOCs, and e-Boat mean SOCs 
vary the most. For the selection of battery cells for vehicles, this means 
that in the case of uncontrolled charging, vehicle batteries should have 
comparatively low calendar degradation in high SOC ranges. This is 
especially relevant for private e-Cars. 

Fig. 11 (b) shows the mean end-of-trip SOC of the three trans-
portation means. For this parameter, the SOC is measured at the end of 
each trip, and then all these SOCs are averaged for each vehicle. The e- 
Cars have mean end-of-trip SOCs of 76–90% with a median of approx-
imately 85%. The e-Buses, in contrast, end their trips with a mean SOC of 
48–67% and a median of 56.5%. Last, the e-Boats have similar mean 
end-of-trip SOCs as the e-Cars of 72–90% (median 79.7%). 

Diagram (c) of Fig. 11 shows the boxplots of the mean absolute C-rate 
of the e-Cars, e-Buses, and e-Boats. The average C-rates, meaning the 
current at which the batteries are discharged and charged normalized to 
the battery capacity in Ah, are between 0.018 and 0.244 1/h for all 
means of transport. E-Cars have the highest average C-rates at 0.10 to 
0.244 1/h compared to e-Cars and e-Boats. The mean C-rates of the e- 
Buses range from 0.07 to 0.21 1/h, and that of the e-Boats is below 0.21 
1/h. Here, the six e-Boats can be separated into two groups according to 
their battery capacity: Group 1 is Boat 1–3 and has battery capacities of 
80–160 kWh. Group 2 is e-Boat 4–6 with battery capacities of 30–40 
kWh (see Table A1). Group 1 then has very low C-rates of 0.024–0.042 
1/h with an average of 0.033 1/h. Group 2, in contrast, shows an 
average C-rate of 0.119 1/h. Since the charging strategy influences the 
mean C-rate, we discuss this impact in more detail in section 4.4. 

Subfigure (d) of Fig. 11 shows the mean DODs of a trip for the three 
modes, respectively, analogous to the SOC in (b). The mean trip DODs of 
the e-Cars range from 9.8 to 21.4%, with a median of 13.7%. In contrast, 
the mean trip DODs of the e-Buses are with 26–46% and a median of 
35.3% higher than those of the e-Cars. Per trip, the mean DODs of the e- 
Boats range from 4.2 to 27.9% (d). Accordingly, the dataset includes e- 
Boats that complete only short trips and other e-Boats that consume 
more than a quarter of the batteries’ energy per trip on average. 

Last, the bottom two plots of Fig. 11 show the temporal utilization 
ratio μutilization (g) and the temporal V2G-ready ratio μV2G (h), presented 
in section 3.3. The temporal utilization ratio indicates the proportion of 
the time the vehicle is charged or discharged. The e-Cars in Fig. 11 (g) 
are used for charging or discharging only 4–6% of the time. This is in line 
with the statistics for private e-Cars in Germany, according to which 
they are used for trips only 3–4% of the time [16]. If the time spent 
charging the e-Cars is added, the 4–6% for μutilization is obtained. The 
e-Buses investigated in this study are used much more frequently 
compared to private e-Cars, showing values of 26–51% for μutilization. 
Consequently, the e-Buses are used a quarter to half of the time either for 
trips or for charging the batteries. The e-Boat datasets show the greatest 
variation for the temporal utilization ratio. Thus, some e-Boats are used 
only 7% of the time, and other e-Boats are used 62% of the time, which is 
more than the most used e-Buses. However, when analyzing the utili-
zation ratio of the e-Boats, it should be considered that the e-Boat data is 
available for three to nine months, mainly between May and November 
(see Fig. 4). Thus, actual utilization ratios of some rarely used e-Boats 
could be even lower over a whole year. 

The temporal V2G-ready ratio μV2G in Fig. 11 (h) represents the 
fraction of time a vehicle is parked at the depot/at home/at the dock and 
thus plugged but not charging. For example, the analyzed private ve-
hicles are at home 70–80% of the time and are not charged. Accordingly, 
the e-Cars could be used for V2G provision during this time. Consistent 
with Fig. 11 (g), e-Buses have less potential for V2G deployment. They 
are in the depot 30–54% of the time without being charged. However, e- 
Buses drive more predictable than private e-Cars, which means that e- 
Buses could also be used for V2G one-third to one-half of the time. 
Generally, e-Boats that are regularly docked in harbors could be used for 
V2G deployment. The e-Boats analyzed in this work differ significantly 
in μV2G, analogous to Fig. 11 (g). Some e-Boats are at the dock only 7% of 

the time without being charged. Other e-Boats, however, are idle up to 
75% of the time. Consequently, the V2G potential of these means of 
transport depends strongly on the individual e-Boat. 

Overall, the batteries in the means of transportation are stressed 
differently: E-Cars have relatively high mean SOCs with uncontrolled 
charging, are exposed to small DODs on average between charging 
events and undergo 0.1 to 0.2 cycles per day on average. For batteries in 
e-Cars, this means that calendar degradation is more relevant than cyclic 
degradation. Cells that exhibit accelerated calendar degradation at high 
SOCs appear less suitable for private e-Cars. In contrast, the average SOC 
of e-Buses is lower at around 80% when charging is uncontrolled. 
Furthermore, the e-Buses perform larger cycle depths between charging 
events and cope with 0.5–1 EFC daily. Accordingly, cyclic degradation 
appears more critical for the e-Buses than for the e-Cars studied in this 
work. Thus, cycle-stable battery cells should preferably be installed in e- 
Buses. The results for the e-Boats show the largest spreads, as there is a 
relatively large difference in driving patterns and usage among the six e- 
Boats. E-Boats should therefore be divided into subcategories when 
selecting battery cells. Generally, cycle depths between charging events 
are less than those of the e-Buses and may even be less than those of the 
e-Cars. The EFCs of the e-Boats are in the range of the e-Cars and, in 
some cases, below them. In view of the EFCs, mean SOCs, and C-rates, 
the use of typical e-Car batteries appears to make sense for most e-Boats. 
Regarding the temporal utilization ratio, especially private e-Cars are 
used rarely. This parameter is considerably higher for e-Buses. E-Boats 
also show a large spread here. The potential of vehicle utilization during 
idle times is demonstrated by the V2G-ready ratio: E-Cars and some of 
the e-Boats show the greatest potential, but the analyzed e-Buses are also 
parked in the depot for 30–54% of the time without being charged. Last, 
the estimated SOCs, C-rates, and DODs each refer to the useable capacity 
of the vehicles. By oversizing the battery and enabling specific voltage 
ranges, the actual battery SOCs might deviate from those shown, and the 
C-rates and trip DODs might decrease. 

4.3. Comparison with stationary applications 

Batteries are used in stationary applications in addition to the three 
mobile applications discussed in this work. For example, BSSs can be 
installed with PV systems to store PV surplus energy during the day and 
discharge the storage at night. This application leads to an increase in 
self-consumption (SCI). In addition, stationary BSSs can also be used to 
provide balancing power. In Central Europe, for example, there is a 
market for FCR in which BSSs can participate to balance frequency 
fluctuations in the grid. Another application of stationary BSSs is peak 
shaving (PS). In this application, which is often used at industrial sites, 
peak loads of the industrial customers are covered by the BSS, which 
reduces the power price of the electricity purchase. In a previous work, 
we evaluated the behavior of BSS in these three stationary applications 
concerning several battery parameters [45]. Fig. 12 compares three 
selected parameters of BSSs in mobile applications and values obtained 
for stationary applications. For the SCI boxplots, 74 simulated home 
storage profiles were evaluated for which the BSS was charged using the 
“greedy strategy,” as is further explained in [45]. The FCR application 
shows the results of five BSSs with an LFP battery cell and modular 
inverter. Last, the PS boxplots show the distribution of 36 BSSs in the PS 
application that were divided into three clusters [45]. In [45], we have 
already shown the EFCs and mean DODs. For this work, we evaluated 
the power profiles of the stationary BSSs in terms of mean SOC and 
temporal utilization ratio. 

Fig. 12 a) shows the number of EFCs the batteries complete daily in 
the six applications. Stationary BSSs in SCI and FCR perform a similar 
number of EFCs, averaging 0.77 and 0.7, respectively, as e-Buses with an 
average of 0.66. In contrast, e-Cars and e-Boats make fewer EFCs per 
day, with averages of 0.11 and 0.17, respectively, and stationary BSSs in 
PS application make the fewest EFCs, with an average of 0.07. Fig. 12 b) 
represents the mean SOC of the batteries in the six applications. The 
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mean SOC of BSSs in the PS application is in a similar range as the mean 
SOCs of the private e-Cars when they are charged uncontrolled imme-
diately upon arrival. We show the influence of charging strategies on the 
mean SOC in section 4.4. In contrast, the BSSs in the FCR application 
have mean SOCs in the range of 49–53%. The mean SOCs of BSSs in SCI 
are the lowest, ranging from 25 to 37%. Fig. 12 c) shows the temporal 
utilization ratio as displayed in Fig. 11 f) for the transportation means. 
The temporal utilization of the stationary BSSs varies considerably: 
While FCR-BSS are used about 75–80% of the time, the ratio for PS-BSSs 
is, on average, only 9%. The utilization ratio of the SCI-BSS is between 
40 and 50%. The utilization ratios of the mobile applications are all 
below 62%, which is below or equal to the FCR and SCI-BSS temporal 
utilization ratios. 

In total, the parameters of the mobile and stationary applications 
show that, for example, in terms of equivalent full cycles and utilization 
ratios, e-Buses and SCI place a similar load on the battery. The impact on 
batteries in stationary PS-BSSs are similar to the load that e-Car batteries 
see in terms of the three parameters: Low number of cycles, high mean 
SOCs, and small usage times. Infrequently used e-Boat batteries expe-
rience similar loads as e-Cars and PS-BSS. As e-Buses, SCI BSS, and FCR 
BSS all post about a similar cycle load to a battery, those applications 
could aim for a similar type of cycle-stable battery. In contrast, e-Car, e- 
Boat, and PS BSS have low numbers of EFCs and could cope with a 
battery that does not provide high cycle stability. For the mean SOC, a 
similar interpretation is that calendar aging stability at high SOC values 
is relevant for e-Cars, e-Buses, e-Boats, and peak shaving, especially 
when the vehicles are charged uncontrolled. The temporal utilization 
ratio is of interest regarding V2G deployment. Thus, e-Cars could be 
combined with PS. However, a more detailed study is needed to deter-
mine whether e-Car use and PS demand coincide or at independent 
times of the day. The evaluation also suggests that discarded bus bat-
teries designed for high cycles and medium utilization ratios could be 
used for SCI or FCR in second life. If, on the other hand, an increased 
number of cycles is already achieved in the first life of bus batteries, 
subsequent use in the PS application could make sense since this requires 

fewer cycles. Discarded e-Car batteries, optimized for high energy and 
power density rather than high cycle life, could also be used in sta-
tionary PS applications in second life. 

4.4. Influence of charging strategies 

This section investigates the charging strategy’s impact on two pa-
rameters. For this purpose, the e-Cars, e-Buses, and e-Boats were simu-
lated with the three charging strategies presented in section 3.2: 
uncontrolled charging, which was used for the results of the previous 
sections; charging with mean power; charging with a pause at 60% SOC. 
Fig. 13 shows the mean SOC (a) and mean C-rate (b) for the three 
strategies and the three modes of transportation. If the departure time is 
determined with the help of perfect foresight and charging is carried out 
with the mean power required, the mean SOC decreases because the 
vehicles are not parked for a long time at high SOCs. This strategy re-
duces the median of all mean SOCs by 3.4 (boats) to 8 (buses) percentage 
points. Above all, however, the mean C-rate is drastically reduced dur-
ing charging. Thus, the C-rates of all vehicles are below 0.1 1/h. Espe-
cially the private e-Cars, with their long idle times between trips, show 
C-rates below 0.02 1/h with this strategy. In practice, this would 
correspond to charging rates of under 1.6 kW for the Tesla and under 1 
kW for the Volkswagen. These low charging powers would lead to 
considerable efficiency losses in a wallbox designed for 11 kW [51], for 
example, which is why an economically optimal charging power prob-
ably lies between the mean power and the uncontrolled charging 
strategy power. The paused charging strategy, therefore, takes a 
different approach: After arrival, the vehicle is charged to a minimum 
SOC for spontaneous trips (60% in Fig. 13). The charging process is then 
paused and resumed shortly before the next journey. The effects of this 
strategy are shown in Fig. 13 on the right. Compared with the other two 
strategies, the paused charging strategy reduces mean SOCs. Thus, the 
e-Cars have mean SOCs around 90%, the e-Buses between 65 and 80%, 
and the e-Boats 76–97%. The generally still high SOCs, despite the break 
at 60% SOC, are because trips often end at higher SOCs (see Fig. 11 b). 
Note that active discharging down to 60% is not enforced in the simu-
lations. The long idle time at high SOC increases the mean SOC despite 
applying the paused charging strategy. The mean charging rates of the 
vehicles in the paused strategy correspond to the rates of the uncon-
trolled strategy since charging is also performed at maximum charging 
power before and after the pause. 

The break at 60% SOC is used as an example at this point to have 

Fig. 12. Comparison of three parameters of mobile and stationary applications. 
SCI: self-consumption increase, FCR: frequency containment reserve, PS: 
peak-shaving. 

Fig. 13. Influence of charging strategies on mean SOC (a) and mean C-rate (b) 
for the three transportation means. 
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energy available for spontaneous departures. Generally, the setpoint 
value can vary between 0 and 100% SOC. A pause at 0% would mean 
that each vehicle is held at the arrival SOC and only charged shortly 
before departure. A delay at 100% SOC corresponds to the uncontrolled 
strategy. To show the impact of the pause SOC on the mean SOC, we 
have plotted the boxplots of all vehicle types for various pause thresh-
olds in Fig. 14. If the pause SOC value is reduced from 100% progres-
sively, the mean SOCs decrease. However, the potential of further 
reducing the pause SOC eventually saturates in all three vehicle cate-
gories. In the case of e-Cars, for example, reducing the pause SOC from 
80 to 60% results in only a one percentage point reduction in the median 
SOC. The negligible impact of the threshold on cars is because cars often 
end their trips at relatively high SOCs (see Fig. 11 b) and subsequently 
hold the arrival SOC when the threshold SOC is below. As a result, the 
mean SOC remains high even at lower threshold SOCs. E-Boats and e- 
Buses, in contrast, saturate at lower pause SOC values. This is because 
their arrival SOCs are often lower than the arrival SOCs of the cars. 

Overall, the evaluation shows the potential of charging strategies to 
reduce mean SOC and C-rate. For e-Cars, the results show that the mean 
SOC can be decreased by almost ten percentage points through paused 
charging. Due to the long idle times, this would certainly have a notable 
positive impact on calendar aging. The fact that the e-Cars often end 
their trips with a relatively high SOC means that a very low pause SOC 
does not significantly impact the mean SOC. Conversely, medium pause 
SOCs of 60% can also be selected without increasing the mean SOC 
significantly compared to a pause at 20%. For city e-Buses, the results 
imply that innovative charging strategies can reduce the mean SOC by 
over ten percentage points. E-Bus fleets often drive predictable routes. 
Furthermore, since trip DODs average below 50% (see Fig. 11), e-Buses 
could also be cycled in SOC ranges between 25 and 75%, thereby 
reducing calendar and cyclic aging of e-Bus batteries. The e-Boats can 
also reduce their mean SOC and C-rate depending on their driving style. 
Specifically, infrequently used e-Boats with small trip DODs could be 
cycled like the e-Buses by smart charging in medium SOC ranges. The 
same applies to frequent ferries as long as the route is foreseeable. Other 
charging strategies not simulated in this work could charge the vehicles 
to the SOC needed for the next day instead of 100%. This would further 
reduce the mean SOC but also require forecasting the required energy, 
which is more feasible for city buses than for private cars. In addition to 
these unidirectional strategies, bidirectional strategies could be devel-
oped to enable the deployment of V2G. Those strategies could build on 
the paused strategy, as the vehicle is charged to a minimum SOC for 
spontaneous trips and then paused until shortly before departure. Dur-
ing this pause, the vehicle could provide V2G services. 

5. Conclusion and outlook 

This work evaluated the impact of the operation of three electrified 
transportation modes on batteries using battery-relevant parameters. 
Simulated data from 60 e-Cars and field data from 82 e-Buses and six e- 
Boats were used. The data was pre-processed, analyzed, and filtered in 
the first step. Thus, 30 of the 82 e-Buses were filtered out due to insuf-
ficient data length or quality. For the analysis of the transportation 
modes, the simulation tool SimSES developed for stationary BSS was 
extended to mobile BSS by using vehicle availability as a binary value. 
The presentation of the SimSES extension in Section 3.2 answers RQ1, 
how various transportation modes can be simulated with an open-source 
storage simulation tool. 

As the first part of the evaluation, we analyzed the energy con-
sumption of the e-Cars and e-Buses. Here, we found that the simulated e- 
Cars consume between 0.18 and 0.29 kWh/km, while the consumption 
of the e-Buses is between 0.9 and 1.6 kWh/km (RQ 2). For the e-Buses, 
consumption increases with larger e-Bus batteries, probably due to the 
larger and heavier vehicles. However, the scatter within the e-Bus cat-
egories showed that other influencing factors could lead to higher or 
lower consumption. One of these influencing factors is the ambient 
temperature. If trips occurred around 20–22 ◦C, the e-Buses showed an 
average energy consumption of approximately 1 kWh/km. At higher and 
lower temperatures, consumption increased by about 2–3% per 1 ◦C 
symmetrically. At temperatures below 10 ◦C, the e-Bus models showed 
varying behavior. For e-Bus models with electric heating, consumption 
below 8 ◦C increased as the temperature dropped. For e-Bus models with 
additional conventional heating systems, consumption below 8 ◦C 
decreased again because the battery was not utilized for heating. 

Next, we evaluated the stress on the vehicle batteries regarding 
various battery-relevant parameters (RQ 3). This analysis showed that e- 
Cars make between 0.07 and 0.18 EFCs per day, while e-Buses make 0.4 
to more than 1 EFC per day. The six e-Boats analyzed make 0.026 to 
0.28 EFCs per day. If only days with driving activity are considered, the 
EFCs increase by 50%–70% for e-Cars, up to 23% for e-Buses, and up to a 
factor of four for e-Boats. Regarding other parameters, the batteries in 
the means of transport are also differently stressed: Cars are often in high 
SOC ranges of 98% on average with uncontrolled charging and experi-
ence relatively small cycle depths of 10–22% during trips. E-Buses, in 
contrast, have mean SOCs of around 80% and experience larger mean 
trip cycle depths of up to 46%. The six e-Boats differ more in size and 
driving characteristics than the other two modes of transportation. The 
mean SOCs of the e-Boats range from 76 to 98.7%, and the trip cycle 
depths are between 4 and 28%. Accordingly, for the detailed charac-
terization of specific e-Boats, they could be divided into subcategories, 
such as ferries and recreational boats. Furthermore, the analysis of the 
temporal utilization ratio and the temporal V2G-ready ratio showed that 
e-Cars are parked and idle for 70–80% of the time. During these times, e- 
Cars could provide V2G services. In contrast, the temporal V2G potential 
of e-Buses is lower at 30–54%. However, due to the predictability of 
departure times of city e-Buses, they could also provide V2G services 
well. E-Boats again showed more significant differences between rec-
reational boats that are idle for extended periods and ferries that move a 
lot. 

The comparison with stationary applications showed that the three 
parameters evaluated can have similarities with mobile applications 
(RQ 4). E-Buses and stationary home BSS (SCI) stress the batteries 
similarly concerning EFCs and utilization ratios, although the mean 
SOCs differ. Stationary BSSs in PS application and e-Cars result in 
equally low numbers of EFCs and low utilization ratios. In addition, the 
mean SOCs are similar in these two applications. Next, our sensitivity 
analysis of charging strategies showed that the mean SOCs of vehicles 
could be reduced by 8–13.8% points through smart charging strategies 
like paused charging at 60% SOC (RQ 5). In contrast, charging at the 
lowest possible power reduces the C-rate that vehicle batteries face to 
below 0.1 1/h for all vehicle types. These evaluations demonstrate the 

Fig. 14. Charging strategy sensitivity analysis: a) Mean vehicle SOCs for the 
uncontrolled and the mean power charging strategy. b) Mean vehicle SOCs for 
the paused charging strategy in dependence on the pause SOC. In the e-Bus 
simulations, a time resolution of 60s is chosen. 
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potential of smart charging strategies to reduce battery aging stress 
factors. 

Moreover, as part of this study, an open data repository is provided 
for both e-Bus and e-Boat data [52]. On the e-Bus side, we have uploaded 
the raw data and simulation results of the 52 used e-Buses. On the side of 
the e-Boats, the raw data and simulation results of the six e-Boats have 
been uploaded. Moreover, the e-Car results and the parameters deter-
mined are part of the open data repository. Others are encouraged to use 
the data in research and industry for their simulations and evaluations. 

More in-depth analyses are possible building on our work. The six e- 
Boats represent only a small excerpt from the entire market of e-Boats. 
Due to the mix of ferries and private e-Boats, the results already show a 
range of the driving behavior of the e-Boats. Moreover, the e-Bus data 
and their consumption could be evaluated further, for example, based on 
speeds driven or weather conditions. If the vehicles were measured with 
a 1-s resolution, statements could also be made about the exact DOD, 
including recuperation, and not just about trip DODs. In addition, the 
work could be expanded to include other mobile applications. In this 
work, we have presented parameters that quantify the load on vehicle 
batteries. These parameters are partly stress factors that influence the 
degradation of batteries. Building on our work, aging models of specific 
battery cells could be used to quantify calendar and cyclic aging. 
Furthermore, the results can be used to explicitly optimize battery cells 
with respect to the load in the various transportation modes. In addition, 
all vehicle types have idle times in the depot or at home, during which 
the vehicles are not used. At these times, the vehicles could be used for 
V2G generation to utilize the resources used for battery production to 
the greatest extent possible. Finally, the evaluations can be used and 
extended to assess the second-life suitability of batteries from mobile 
applications for stationary applications. 
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Appendix 

Raw data details 

Table A1 shows detailed vehicle information about the three means of transportation 

Preprocessing – Creation of binary profiles  

Table A1 
Vehicle information about the e-Cars, e-Buses, and e-Boats. The second column shows the number of records of the respective vehicle type after filtering. The last 
column gives additional information (e-Car: Driver type, e-Bus: SOC resolution, e-Boats: weight).  

Data # Battery Capacity Max. Battery Power Charging Power Vehicle info Other info 

Car A_F 10 45 kWh 93 kW 11 kW VW ID.3 Driver type: Fulltime 
Car A_P 10 45 kWh 93 kW 11 kW VW ID.3 Parttime 
Car A_L 10 45 kWh 93 kW 11 kW VW ID.3 Leisure/Freetime 
Car B_F 10 79.5 kWh 358 kW 11 kW Tesla Model 3 Fulltime 
Car B_P 10 79.5 kWh 358 kW 11 kW Tesla Model 3 Parttime 
Car B_L 10 79.5 kWh 358 kW 11 kW Tesla Model 3 Leisure/Freetime 
Bus A 9 190 kWh 350 kW 150 kW Evobus NMC SOC res. 0.5% 
Bus B 6 240 kWh 350 kW 150 kW Solaris NMC 0.4% 
Bus C 5 291 kWh 350 kW 80 kW Evobus LMP 0.5% 
Bus D 6 309 kWh 350 kW 150 kW Evobus NMC 0.5% 
Bus E 3 316 kWh 350 kW 150 kW Solaris NMC 0.01% 
Bus F 23 397 kWh 350 kW 80 kW Evobus LMP 0.5% 
Boat 1 1 160 kWh 320 kW 8.93 kW – Weight: 7.5t 
Boat 2 1 120 kWh 320 kW 7.82 kW – 37t 
Boat 3 1 80 kWh 160 kW 23.53 kW – 18t 
Boat 4 1 30 kWh 80 kW 8.73 kW – 2t 
Boat 5 1 40 kWh 80 kW 2.66 kW – 1.5t 
Boat 6 1 40 kWh 80 kW 5.58 kW – 1t 
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For the creation of the e-Bus binary profiles, it is assumed that an e-Bus is connected to the grid if the SOC is greater than or equal to 99% or if the 
SOC increases, meaning the vehicle is charged (equation (6.1)). However, positive SOC deltas can also occur during journeys since the e-Bus can 
recuperate during braking while driving. In addition, there can be fluctuations in the SOC estimator so that the SOC increases slightly for a short time 
during trips. For this reason, we introduce as an additional condition that a contiguous depot time for charging the e-Bus must be at least 10 min long. 
Consequently, all binary values in the profile that are not part of a charging phase lasting at least 10 min are counted as journey times and set to zero. 
Finally, the binary profile is saved as CSV, together with the time stamp. 

b(t)=
{

1, SOC(t) ≥ 99% ∨ ΔSOC(t) > 0
0, otherwise (6.1)  

With: ΔSOC(t) = SOC(t) − SOC(t − 1). 
In addition, analogous to the e-Buses, binary profiles of the e-Boats are created, which indicate whether the e-Boat is connected to the electricity 

grid. Since SOC and power data are available for the e-Boats, the binary profiles are formed according to equation (6.2). First, analogous to the e-Buses, 
the binary value is set to one when the SOC is at least 99%. Furthermore, the e-Boat is defined as connected to the electricity grid if the power is 
positive. As for the e-Buses, we further use the condition that a contiguous grid connection time must be at least 10 min long. This way, short periods 
during driving with positive power values are not counted as “connected to the grid". 

b(t)=
{

1, SOC(t) ≥ 99% ∨ P(t) > 0
0, otherwise (6.2)  

Lithium-ion battery specifications  

Table A2 
Lithium-ion battery cell specifications [42,54].  

Manufacturer Sanyo 

Model UR18650E 
Capacity (minimum/typical) 2.05 Ah/2.15 Ah 
Allowed voltage range 2.5 V–4.2 V 
Proposed voltage range 3.0 V–4.1 V 
Cathode active material Li(NiMnCo)O2 
Anode active material Graphite 
Electrolyte material 1 M LiPF6 in an EC/EMC (1:1) solvent mixture  

Table A2 shows detailed vehicle information about the three means of transportation. 

E-Bus energy consumption – temperature analysis 

Fig. A1 depicts the boxplot diagram of the energy consumption of all buses depending on the ambient temperature, including outliers. In Fig. 8, the 
data is plotted without outliers. Moreover, Fig. A2 shows the energy consumption of all bus types separately depending on the ambient temperature.

Fig. A1. Boxplot diagram of the energy consumption depending on the ambient temperature for all e-busses of all categories. Outliers are shown in blue to not 
distract from the general trend.  
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Fig. A2. Bus temperature analysis detailed boxplots of all types of e-Buses. The number in the legend indicates the e-Bus battery capacities. Two articulated buses in 
the 309-kWh category and two articulated buses in the 397-kWh category are excluded. 
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