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A B S T R A C T

Lithium-ion cells are subject to degradation due to a multitude of cell-internal aging effects, which can
significantly influence the economics of battery energy storage systems (BESS). Since the rate of degradation
depends on external stress factors such as the state-of-charge, charge/discharge-rate, and depth of cycle, it
can be directly influenced through the operation strategy. In this contribution, we propose a model predictive
control (MPC) framework for designing aging aware operation strategies. By simulating the entire BESS lifetime
on a digital twin, different aging aware optimization models can be benchmarked and the optimal value
for aging cost can be determined. In a case study, the application of generating profit through arbitrage
trading on the EPEX SPOT intraday electricity market is investigated. For that, a linearized model for the
calendar and cyclic capacity loss of a lithium iron phosphate cell is presented. The results show that using
the MPC framework to determine the optimal aging cost can significantly increase the lifetime profitability of
a BESS, compared to the prevalent approach of selecting aging cost based on the cost of the battery system.
Furthermore, the lifetime profit from energy arbitrage can be increased by an additional 24.9% when using
the linearized calendar degradation model and by 29.3% when using both the linearized calendar and cyclic
degradation model, compared to an energy throughput based aging cost model. By examining price data
from 2019 to 2022, the case study demonstrates that the recent increases in prices and price fluctuations
on wholesale electricity markets have led to a substantial increase of the achievable lifetime profit.
1. Introduction

Stationary battery energy storage system (BESS) are used for a
variety of applications and the globally installed capacity has increased
steadily in recent years [1,2]. In behind-the-meter applications such
as increasing photovoltaic self-consumption or optimizing electricity
tariffs through peak shaving, BESSs generate cost savings for the end-
user. In front-of-the-meter applications such as frequency regulation
and energy arbitrage, operators generate revenue by marketing BESSs
in the respective energy and power markets. Lastly, in microgrids using
a BESS with a renewable energy source can be a cost-competitive option
over relying on diesel generators [3].

Following the cost reductions and technological advances of recent
years, lithium-ion cells are now the predominant battery technology
for BESS installations [1,4]. However, like other battery types as well,
lithium-ion batteries are subject to degradation due to a multitude of
cell internal aging mechanisms. This leads, among others, to a decrease
in cell capacity and an increase of the cell’s internal resistance. Multiple
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reviews are available that focus on the aging mechanisms in lithium-ion
cells [5–7].

On a system level, battery aging manifests itself in decreasing usable
capacity and increasing charge/discharge losses over a BESS lifetime
[8,9]. This in turn directly affects the economic viability of a BESS,
as less profit from the application can be generated in later years
compared to the beginning of life [10,11]. Furthermore, it is often
assumed that after a certain extent of battery aging, the BESS will
reach its end-of-life (EOL). A common assumption is to set the EOL
to the point at which a certain level of remaining capacity, often
named state of health [.] (SOH), is reached, for example at a SOH of
70% [12] or 80% [13–15] of the initial battery capacity. The physical
rationale behind this assumption is that many lithium-ion cells show
a rapid increase in their degradation rate following this SOH range,
which is referred to as an aging knee or nonlinear aging [16,17]. In
addition, manufacturers often provide warranties that cover batteries
vailable online 18 July 2023
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Abbreviations

BESS battery energy storage system
Crate charge-discharge rate
DOC depth of cycle
EOL end-of-life
FEC full equivalent cycle
LFP lithium iron phosphate
MILP mixed integer linear programming
MPC model predictive control
NPV net present value
SimSES Simulation Tool for Stationary Energy Storage

Systems
SOC state of charge
SOH state of health [.]

General parameters

Caging Total aging cost over the full optimization
horizon [EUR]

Caging,cyc,cal Total aging cost over the full optimization
horizon for aging cost model (iii) [EUR]

Caging,FEC Total aging cost over the full optimization
horizon for aging cost model (i) [EUR]

Caging,FEC,cal Total aging cost over the full optimization
horizon for aging cost model (ii) [EUR]

Caging
𝑡 Total aging cost in timestep 𝑡 [EUR]

𝛥FEC𝑡 Number of FECs in timestep 𝑡 [.]
i Interest rate [.]
Parb
𝑚 Profit gained from energy arbitrage in year

𝑚 [EUR]
P𝑡 Profit gained in the respective application in

timestep 𝑡 [EUR]
SOH state of health [.]

Optimization constants

𝜂 Charge/discharge efficiency of the BESS assumed
for the optimization model [.]

𝑐aging Aging cost per unit of capacity loss for the
optimization model [EUR/kWh]

𝑐id𝑡 Electricity price on the intraday electricity market
in timestep 𝑡 [EUR/kWh]

𝐸batt Remaining rated energy after accounting for
degradation [kWh]

𝐸𝑛 Nominal battery capacity at the beginning of
life [kWh]

𝑃AC,max Maximum charge and discharge power of the
BESS [kW]

𝑄loss,cal Total calendar capacity loss at the beginning of
the optimization horizon [.]

𝑄loss,cyc Total cyclic capacity loss at the beginning of the
optimization horizon [.]

𝑋cal
𝑖 x-values of the linearized calendar aging function

in point 𝑖 [.]
𝑋cyc

𝑗 x-values of the linearized cyclic aging function in
point 𝑗 [kWh]

𝑍cal
𝑖 z-values of the linearized calendar aging function

in point 𝑖 [.]

dropping below a specified SOH threshold within the warranty period
[18], which is why these thresholds can act as a reference for the
techno-economic assessment and operation of BESSs.
2

𝑍cyc
𝑗 z-values of the linearized cyclic aging function in

point 𝑗 [.]
𝛥𝑡 Optimization timestep length [h]
FECEOL Totals FECs until end-of-life is assumed [.]
SOCstart SOC at the beginning of the optimization hori-

zon [.]
SOHEOL SOH at which end-of-life is assumed [.]

Optimization index sets

𝐻 Index set of timeblocks for the linearized cyclic
aging model, ℎ ∈ 𝐻

𝐼 Index set of points for the linearized calendar
aging model, 𝑖 ∈ 𝐼

𝐽 Index set of points for the linearized cyclic aging
model, 𝑗 ∈ 𝐽

𝑇 Index set of timesteps for the current optimization
horizon, 𝑡 ∈ 𝑇

𝑇ℎ Index set of all timesteps in timeblock ℎ, 𝑡 ∈ 𝑇ℎ

Optimization decision variables

𝜆cal𝑡,𝑖 SOS-type 2 variables for linearization of calendar
aging [.]

𝜆cyc,chℎ,𝑗 SOS-type 2 variables for linearization of cyclic
aging in charge direction [.]

𝜆cyc,disℎ,𝑗 SOS-type 2 variables for linearization of cyclic
aging in discharge direction [.]

𝑒chℎ Energy throughput in charge direction in time-
block ℎ [kWh]

𝑒disℎ Energy throughput in discharge direction in
timeblock ℎ [kWh]

𝑝ch𝑡 Charge power of the BESS in timestep 𝑡 [kW]
𝑝dis𝑡 Discharge power of the BESS in timestep 𝑡 [kW]
𝑞loss,cal𝑡 Calendar capacity loss in timestep 𝑡 [.]
𝑞loss,cyc,chℎ Cyclic capacity loss in charge direction in time-

block ℎ [.]
𝑞loss,cyc,disℎ Cyclic capacity loss in discharge direction in

timeblock ℎ [.]
𝑠𝑜𝑐𝑡 BESS state-of-charge at timestep 𝑡 [.]

The rate of battery aging itself depends on multiple external stress
factors [19], which enables the operator to influence the aging behavior
through the operating conditions. For the purpose of BESS operation,
battery aging can be grouped into calendar and cyclic aging. Calendar
aging refers to those mechanisms that occur regardless of the battery
being cycled or not, for example the continued growth of the solid
electrolyte interphase [19]. Calendar aging generally progresses faster
at a high storage temperature and a high state of charge (SOC) [20,21].
Cyclic aging refers to those aging mechanisms that occur as a con-
sequence of cycling the battery cells, such as particle cracking, solid
electrolyte interphase re-formation at newly exposed anode surface
areas, and lithium plating [19]. Cyclic aging progresses with the grow-
ing number of charge/discharge cycles and tends to accelerate when
cycling at a high charge-discharge rate (Crate) and a high depth of cycle
(DOC) [22,23]. In addition, both high and low temperatures [23] and
cycling a battery in particularly straining SOC ranges can accelerate
cyclic aging [20].

Operating a BESS under consideration of the relevant stress factors
provides an opportunity to slow down battery aging. Aging aware
operation therefore promises higher profits over the BESS lifetime and
more resource-efficient use of the battery cells. In this contribution,

we propose a model predictive control (MPC) framework for aging
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aware operation of BESSs. The MPC framework allows benchmarking
the performance of different aging aware optimization models on a
digital twin of a BESS. Thereby, the operation strategy can be designed
and validated before being deployed on the real-world BESS. While we
focus on the application of energy arbitrage, the framework is trans-
ferable to other applications as well. In the following two subsections
of this introduction, we will first present the literature review before
describing the structure and highlighting the main contributions of this
work.

1.1. Literature review

The process of deriving a series of charge and discharge signals
for a BESS under consideration of technical constraints and economic
benefit is referred to with different terms in the literature: operation
strategy [24], energy management [25], scheduling [26], control [27],
or dispatch [28]. We here refer to this process as an operation strategy
in the following. A distinction is then made between simple, rule-
based operation strategies and optimization-based operation strategies,
which also differ in how battery aging can be incorporated, i.e. how
the operation strategy can be made ‘‘aging aware’’ [10]. Examples of
rule-based, aging aware operation strategies are variable limits for the
maximum Crate of the BESS [29], or forecast-based rules such as to only
harge a home-storage system with the amount of surplus photovoltaic
nergy during the day, that is forecasted to be needed during the night,
hereby reducing calendar aging [24].

Optimization-based operation strategies generally aim to find an
ptimum to an objective function, which is also referred to as a fitting
r reward function for some methods. The methods used to deter-
ine the optimum can be classified into exact solution approaches

e.g. linear programming), heuristics (e.g. reinforcement learning), and
eta-heuristics (e.g. particle swarm optimization) [25]. A particularly

ommon approach for considering battery aging in an optimization-
ased operation strategy is to define a monetary value that represents
he effects of battery aging, i.e. aging cost [19]. This approach allows
o link the short-term scheduling problem to long-term degradation
ffects:

ax
∑

𝑡∈𝑇

(

P𝑡 − Caging
𝑡

)

(1)

ere, P𝑡 is the profit gained in the respective application for timestep
∈ 𝑇 and Caging

𝑡 the total aging cost for timestep 𝑡 ∈ 𝑇 . The total aging
ost Caging

𝑡 is then either calculated based on each percentage point of
OH loss in each time step 𝛥SOH𝑡 as in Eq. (2) [12–15,28] or based on
he number of full equivalent cycles (FECs) in each time step 𝛥FEC𝑡 as

in Eq. (3) [30–34].

Caging,SOH𝑡
𝑡 = 𝑐aging ⋅ 𝐸n

1 − SOHEOL
⋅ 𝛥SOH𝑡 (2)

Caging,FEC
𝑡 = 𝑐aging ⋅ 𝐸n

FECEOL
⋅ 𝛥FEC𝑡 (3)

Here, SOHEOL and FECEOL represent the SOH threshold and number
of FECs after which the EOL of the battery is reached. 𝐸𝑛 is the
ominal battery capacity at the beginning of life in kWh. The aging
ost 𝑐aging in EUR per kWh is then typically set to a cost value that
elates to the battery system, such as the full storage system investment
ost [14,33,34], battery investment cost [11,35,36], battery replace-
ent cost [12,15,37], battery cell replacement cost [13,30], or generic

attery cost [28,31,38].
This common practice of setting the value of aging cost 𝑐aging

qual to battery system cost has a shortcoming: The profit generated
n a given application, e.g. performing energy arbitrage through an
lectricity exchange, is generated after the BESS has been installed and
as no dependence on the original system cost. Instead, 𝑐aging can be
een as a penalty factor for operating a BESS. As we will show, by using
he proposed MPC framework to determine the optimal value for 𝑐aging
3

based on the application and battery aging behavior, a higher lifetime
profitability can be achieved.

Furthermore, different approaches are found in the literature for
modeling battery aging as part of the optimization problem. The dif-
ferent degradation modeling approaches vary in their degree of com-
plexity and the solution methods required to solve the resulting opti-
mization problem. In relation to Eqs. (2) and (3), these degradation
models are additional constraints that define how 𝛥SOH𝑡 and FECEOL

re calculated based on the operating conditions.
Table 1 shows an overview of related publications that propose ag-

ng aware operations strategies for energy arbitrage with BESSs. Hesse
t al. [28] and Kumtepeli et al. [39] both used semi-empirical degrada-
ion models as part of their mixed integer linear programming (MILP)
ptimization, the originally nonlinear, calendar and cyclic degradation
odels were linearized in order to be solved in the MILPs. Englberger

t al. used an MPC approach, in which no other stress factors than
he charge throughput are considered in the optimization model, but a
eparate nonlinear, semi-empirical degradation model is run to validate
he optimization results and update the SOH [34]. Cao et al. used a
einforcement learning approach in which a reinforcement learning
gent is trained on both predictions and a nonlinear battery model
hat accounts for calendar and cyclic capacity loss [38]. Reniers et al.
ompared three different degradation models with a sliding horizon
ptimization over a one-year timeframe, the most complex model being
single particle physicochemical model, which required a complex

radient-based nonlinear solution approach to solve [27].
Optimization models for BESS operation can get complex and timely

o solve even without incorporating battery aging, for example when
sing stochastic programming to consider forecast uncertainty or when
ptimizing for multi-use applications, in which multiple applications
re served by the same BESS [40]. The question that remains is what
enefit can be gained by using more complex degradation models
s part of the optimization model when considering the entire BESS
ifetime. This requires the determination of the lifetime optimal aging
ost of each model for a fair comparison. Maheshwari et al. used
ifferent weighting factors which are to be set by the operator to link
ging cost to the profit from the application and investigated only a 1-
eek timeframe [41]. He et al. notably proposed an optimization model

hat determines the optimal aging cost value [42]. The optimization
odel however, includes a simplified aging model that only accounts

or the DOC dependence of cyclic aging.
In contrast to previous contributions, the MPC framework proposed

ere allows the comparison of different optimization models on a
igital twin of a BESS. By finding the optimal aging cost value 𝑐aging for
ach optimization model and by considering the entire BESS lifetime,
he optimal lifetime profit of different aging aware operation strategies
an be quantified. Thereby, the proposed MPC framework can be used
o benchmark different aging aware operation strategies on a digital
win, before deploying the optimal strategy on the real-world BESS.

.2. Structure and main contributions

In the following sections, we first describe the proposed MPC frame-
ork. In addition, the electricity price time series used for the case

tudy, the different aging aware optimization models, and the software
hat is used as a digital twin of the BESS are presented. In the subse-
uent case study, the application of energy arbitrage on the intraday
lectricity market is investigated. We thereby showcase the function-
lity of the MPC framework and investigate the increase in lifetime
rofitability that can be achieved by determining the optimal aging
ost value and by using different degrees of complexity for modeling
attery aging as part of the optimization model. We summarize our
ain contributions as follows:

• Open-source MPC framework for designing aging aware operation

strategies on a digital twin of a BESS
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Table 1
Publications that propose aging aware operation strategies for energy arbitrage with BESSs, compared to this contribution.

Reference Stress factors considered in optimization model Optimal aging cost Investigated timeframe MPC approach

Kazemia [37] 𝑄loss,cyc(FEC,DOC) no (𝑐aging: replacement cost) 1 day no
Hesse [28] 𝑄loss,cal(𝑡,SOC); 𝑄loss,cyc(FEC,Crate) no (𝑐aging: battery cost) 1 month no
Reniers [27] Various (physicochemical model) no (𝑐aging: battery cost) 1 week no
Caoa [38] 𝑄loss,cal(𝑡,SOC, 𝑇 ); 𝑄loss,cyc(FEC,DOC,SOC,𝑇 )a no (𝑐aging: battery cost) 1 year no
Maheshwari [41] 𝑄loss,cyc(FEC,DOC,SOC,Crate) no (𝑐aging: weighting factors) 7 days no
Wankmuller [9] 𝑄loss,cyc(FEC) no (𝑐aging: different values) 10 years no
He [42] 𝑄loss,cyc(FEC,DOC) yes full lifetime no
Englbergera [34] 𝑄loss,cyc(FEC) no (𝑐aging: battery cost) full lifetime partially
Kumtepeli [39] 𝑄loss,cal(𝑡,SOC, 𝑇 ); 𝑄loss,cyc(FEC,Crate , 𝑇 ) no (𝑐aging: battery cost) 1 year yes
This contribution 𝑄loss,cal(𝑡,SOC); 𝑄loss,cyc(FEC,DOC,Crate) yes full lifetime yes

aKazemi et al. consider frequency regulation in addition to energy arbitrage while Englberger et al. consider energy arbitrage, frequency regulation and peak shaving. In Cao et al.
the stress factors are not explicitly considered in the operation strategy, but the reinforcement learning agent is trained on a battery model that considers these stated stress factors.
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Fig. 1. Depiction of the proposed MPC framework for designing and validating aging
aware operation strategies. Our implementation of the MPC framework is available
open-source under [43].

• Linearized lithium iron phosphate (LFP) cell degradation models,
suitable for MILP

• Increased lifetime profitability through determining the optimal
aging cost, thereby optimizing both short-term profit and long-
term degradation effects

• Quantification of the increase in lifetime profitability through
aging aware operation with different levels of degradation model
complexity

• Analysis of factors influencing the optimal aging cost : interest rate,
EOL-criterion, and intraday electricity price (2019 to 2022)

• A formulation for aging cost that accounts for the interest rate

. Model predictive control framework for designing aging aware
peration strategies

The proposed MPC framework is shown in Fig. 1. The digital twin
s a detailed model of the investigated BESS and should represent
he real-world BESS and its expected aging behavior accurately. We
se the in-house developed, open-source Simulation Tool for Station-
ry Energy Storage Systems (SimSES) as the digital twin, which is
escribed in detail in [44]. Optimization models have limitations in
heir complexity determined by the optimization method that is used.
or example, linear programming requires a linear objective function
nd constraints, while quadratic programming also allows quadratic
bjective functions. Generally, the optimization model will therefore
4

incorporate a simplified storage model, which in turn is a simplified
version of the digital twin.

The optimization model is solved for the selected optimization hori-
zon 𝑡horizon with a time resolution of 𝛥𝑡, after which the resulting power
targets 𝑃AC,target for the next 𝑛 timesteps are simulated with the digital
win. For 𝑛 = 1, the optimization model is solved at every timestep and
nly the power target for the next timestep is passed to the simulation
odel before the next optimization is called. The relevant MPC state

alues, that represent the new BESS state after these 𝑛 timesteps, are
anded back to the optimization model to solve the next optimization
orizon. Thereby the more accurate digital twin is used to validate
he operation strategy derived through the optimization model. Also,
his framework mirrors the real-world application, where the operation
trategy would be run in a similar MPC approach on a real BESS instead
f the digital twin.

The relevant MPC state values of the digital twin used in this
ontribution are the SOC and the capacity-based SOH, but further
alues could be used for the optimization model such as the system
emperature. Our implementation of the proposed MPC framework is
vailable open-source [43] and designed in a modular way, such that
ifferent use cases or optimization formulations can be added and
nvestigated. Here, we focus on the application of energy arbitrage
n the European intraday spot market. In the following, we will first
escribe the electricity price time series, before presenting the digital
win model and the investigated optimization models.

.1. Price time series

We investigate the application of generating profit through arbi-
rage trading on the intraday electricity market. For that, we use data
rom the largest European intraday power exchange, the EPEX SPOT,
ith price data obtained from [45]. The intraday electricity prices are

hown in Fig. 2. Price data from the year 2021 serves as the base
cenario in the later case study. Since the intraday market is designed to
ffer continuous trading, not one fixed price exists for a given delivery
eriod. The ID-1 price index is the weighted price average off all trades
xecuted within 1 h before delivery [46]. Because this index represents
he potential to market flexibility without inflating optimistic price
ssumptions, it has been used as a benchmark in previous publications
o develop and test energy arbitrage strategies [47] and is also adopted
or the later case study presented here. While the average ID-1 price for
he year 2021 is at 97.15 EUR/MWh, individual price peaks of up to
42.35 EUR/MWh and down to −122.92 EUR/MWh are found in the
ata.

.2. Digital twin

SimSES allows to conduct time series based simulations for station-
ry energy storage systems and includes equivalent circuit models and
egradation models for different battery systems [44]. It also includes
odels for periphery components such as the AC/DC converter. For
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Fig. 2. 15 min Intraday ID-1 electricity prices for the year 2021 with data obtained
from [45].

Table 2
Key parameters for the digital twin in SimSES.

Parameter Value

Cell type Sony/Murata LFP-graphite
Degradation model Semi-empirical by Naumann et al. [48,49]
AC/DC converter Notton et al. [50]
System sizing 1 MW, 1.2 MWh

the cell model, we use a model of a Sony/Murata LFP graphite cell
for which a semi-empirical degradation model by Naumann et al. has
been incorporated into SimSES [48,49]. For the AC/DC converter, an
efficiency curve by Notton et al. is used [50]. Table 2 summarizes the
key parameters.

2.3. Optimization models

We investigate the increase in lifetime profitability achieved through
different degrees of complexity for modeling battery aging as part
of the optimization model. All three optimization model types are
formulated as either linear programs or mixed integer linear programs
and structured as follows:

max
∑

𝑡∈𝑇

(

(𝑝dis𝑡 − 𝑝ch𝑡 ) ⋅ 𝛥𝑡 ⋅ 𝑐id𝑡
)

− Caging (4)

The first part of the equation is the profit generated on the intraday
market. Here, 𝑝dis𝑡 and 𝑝ch𝑡 are the discharged and charged power of the
BESS and 𝑐id𝑡 the electricity price on the intraday electricity market at
time 𝑡. 𝛥𝑡 is the optimization timestep, which is set to 15 min. Caging

is the total aging cost over the optimization horizon. In addition to the
objective function, the constraints below ensure energy conservation
and provide upper and lower limits for the three sets of continuous
decision variables, 𝑝dis𝑡 , 𝑝ch𝑡 , and 𝑠𝑜𝑐𝑡 with 𝑡 ∈ 𝑇 :

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑡−1 +
𝛥𝑡

𝐸batt
⋅ (𝑝ch𝑡 𝜂 − 1

𝜂
𝑝dis𝑡 ) ∀ 𝑡 ∈ 𝑇 \{0} (5)

𝑠𝑜𝑐𝑡=0 = SOCstart + 𝛥𝑡
𝐸batt

⋅ (𝑝ch𝑡=0𝜂 −
1
𝜂
𝑝dis𝑡=0) (6)

0 ≤ 𝑝ch𝑡 , 𝑝dis𝑡 ≤ 𝑃AC,max ∀ 𝑡 ∈ 𝑇 (7)

0 ≤ 𝑠𝑜𝑐𝑡 ≤ 1 ∀ 𝑡 ∈ 𝑇 (8)

SOCstart and 𝐸batt are the SOC at the beginning of the optimization
horizon and the remaining rated energy of the BESS after accounting
for degradation, respectively. 𝑃AC,max is the maximum charge and
5

discharge power of 1 MW. 𝑠𝑜𝑐𝑡 is the energy based state of charge of
the BESS at every time step and 𝜂 the fixed charge/discharge efficiency.

Notably, one could use a linearized model for the efficiency that
follows the BESS efficiency curve [14,28] instead of a constant for 𝜂 We
found good results with a constant efficiency factor of 𝜂 = 0.9 and focus
here on modeling of battery aging in the optimization model. However,
the system model in SimSES as part of the MPC framework models
power losses in both the battery cells through the battery cell internal
resistance and the AC/DC converter through an efficiency curve.

For the total aging cost Caging, we investigate different models with
increasing complexity that are described in the following subsections.

2.3.1. Aging cost model (i) - Energy throughput
This aging cost model defines aging cost based on the energy

throughput of the BESS and the expected amount of FECs the system
can endure before reaching its EOL. This model does not explicitly
consider any other stress factors of either calendar or cyclic aging. The
aging cost Caging,FEC are defined as follows:

Caging,FEC =
∑

𝑡∈𝑇

(𝑝ch𝑡 + 𝑝dis𝑡 ) ⋅ 𝛥𝑡
𝐸n ⋅ 2

⋅
𝐸n ⋅ 𝑐aging

FECEOL

=
∑

𝑡∈𝑇

(𝑝ch𝑡 + 𝑝dis𝑡 ) ⋅ 𝛥𝑡 ⋅ 𝑐aging

2 ⋅ FECEOL

(9)

The first part of the top equation denotes the change in FECs, based on
the charge and discharge power, 𝑝ch𝑡 and 𝑝dis𝑡 , in the given timestep, the
timestep width 𝛥𝑡 and the rated energy of the BESS at the beginning of
life 𝐸𝑛. The second part expresses the aging cost per FEC, based on the
aging cost per kWh 𝑐aging and the expected number of cycles until EOL
FECEOL.

We here set FECEOL = 6000, as the 80% SOH limit is reached after
6000 FECs for the majority of cycling conditions in the LFP cell aging
study [49]. How to determine the optimal value for the aging cost 𝑐aging
will be investigated in the later case study. This aging cost model equals
the common definition from Eq. (3), with a fixed value for FECEOL.

2.3.2. Aging cost model (ii) — Energy throughput and calendar degradation
model

In addition to the energy throughput model, a linearized version
of the calendar degradation model from Naumann et al. [48] is imple-
mented in the optimization model. Thereby, this aging cost model with
the aging cost Caging,FEC,cal accounts for the SOC dependence of calendar
aging in the optimization:

Caging,FEC,cal =Caging,FEC

+
∑

𝑡∈𝑇

𝐸batt

1 − SOHEOL
⋅ 𝑐aging ⋅ 𝑞loss,cal𝑡

(10)

Caging,FEC is the definition of energy throughput based aging cost from
Eq. (9). SOHEOL is the SOH threshold at which the EOL is defined and
𝑞loss,cal𝑡 is the projected calendar capacity loss in the given timestep in
per unit as a continuous decision variable.

The calendar degradation model from Naumann et al. [48] is lin-
earized as detailed in Appendix A such that it can be solved as part of a
MILP. The resulting linearization is depicted in Fig. 3 and implemented
in the optimization model as below:
∑

𝑖∈𝐼
𝜆cal𝑡,𝑖 ⋅𝑋cal

𝑖 = 𝑠𝑜𝑐𝑡 ∀ 𝑡 ∈ 𝑇 (11)

∑

𝑖∈𝐼
𝜆cal𝑡,𝑖 ⋅𝑍cal

𝑖 = 𝑞loss,cal𝑡 ∀ 𝑡 ∈ 𝑇 (12)

∑

𝑖∈𝐼
𝜆cal𝑡,𝑖 = 1 ∀ 𝑡 ∈ 𝑇 (13)

𝐼 is the set of points used for the linearization of the calendar aging
function. 𝑋cal

𝑖 with 𝑖 ∈ 𝐼 are the x-values of the linearization from
Fig. 3, representing the SOC. 𝑍cal

𝑖 with 𝑖 ∈ 𝐼 are the z-values of the
linearization from Fig. 3, meaning the calendar capacity loss in a given
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Fig. 3. Linearized calendar degradation model. A set of 10 lines is used to represent
the SOC dependency of calendar aging. To account for the dependence of future
degradation on the total past capacity loss 𝑄loss,cal, a lookup table with 229 sets of
these 10 lines is used, such that the correct set of lines can be chosen at the beginning
of the optimization horizon based on 𝑄loss,cal. However, 𝑄loss,cal = 5% (marked in orange)
serves as the base scenario for the optimization.

15 min timestep for the respective SOC. 𝜆cal𝑡,𝑖 𝜆cal𝑡,𝑖 with 𝑡 ∈ 𝑇 and 𝑖 ∈ 𝐼
each are continuous variables that are used to represent the linearized
calendar aging function in the optimization model. The set of variables
𝜆cal𝑡,𝑖 with 𝑖 ∈ 𝐼 is implemented as one special ordered set of type 2 for
each 𝑡 ∈ 𝑇 . This means that at most two variables of each set can be
nonzero, and they must be consecutive in their ordering. In addition,
the following constraints for the decision variable 𝑞loss,cal𝑡 and 𝜆cal𝑡,𝑖 are
implemented:

0 ≤ 𝑞loss,cal𝑡 ∀ 𝑡 ∈ 𝑇 (14)

0 ≤ 𝜆cal𝑡,𝑖 ≤ 1 ∀ 𝑡 ∈ 𝑇 , ∀ 𝑖 ∈ 𝐼 (15)

As Fig. 3 shows, calendar aging has a square root dependence on
past capacity loss due to the

√

𝑡 dependence of the original calendar
aging function. Multiple other calendar degradation models have this
sublinear dependency of calendar capacity loss on time as well [51],
which some authors also implement in the optimization model [13].
However, as we will show in the case study, implementing this depen-
dency in the optimization would lead to sub-optimal lifetime profit of
the BESS, as calendar aging cost would be significantly higher in earlier
than in later years of operation. Therefore, we choose the linearization
at 𝑄loss,cal = 5% as the base scenario in the later case study, which is
marked with an orange line in Fig. 3.

2.3.3. Aging cost model (iii) — Cyclic and calendar degradation model
Here, the calendar degradation model [48] and cyclic degradation

model [49] are both linearized and implemented in the optimization
model. The aging cost model thereby accounts for the stress factors of
both calendar and cyclic aging. The linearization is described in detail
in Appendix A. The resulting definition for the aging cost Caging,cyc,cal is
as follows:

Caging,cyc,cal = 𝐸batt

1 − SOHEOL
⋅ 𝑐aging ⋅ (

∑

𝑡∈𝑇
𝑞loss,cal𝑡

+
∑

ℎ∈𝐻
(𝑞loss,cyc,chℎ + 𝑞loss,cyc,disℎ ))

(16)

The objective function includes the calendar aging cost from Eq. (10)
of the previous subsection. The previous constraints Eqs. (13) to (14)
are included in this model as well.

The linearized cyclic degradation model is split in the cyclic ca-
pacity loss in charge and cyclic capacity loss in discharge direction,
i.e. 𝑞loss,cyc,ch and 𝑞loss,cyc,dis. As described in Appendix A, cyclic aging is
6

ℎ ℎ
Fig. 4. Linearized cyclic degradation model. A set of 27 lines is used to represent
the amount of cyclic degradation for a given 4 h time block, based on the number of
charge cycles or discharge cycles in that time block. To account for the dependence of
future degradation on the past total cyclic capacity loss 𝑄loss,cyc, a lookup table with
229 sets of these 27 lines is used, such that the correct set of lines can be chosen at
the beginning of each optimization based 𝑄loss,cyc. However, 𝑄loss,cyc = 5% (marked in
orange) serves as the base scenario for the optimization.

calculated separately for every 4 h time horizon ℎ in the optimization
horizon ℎ ∈ 𝐻 . This means for a 12 h optimization horizon, 𝐻 would
be an index set of three elements. For each of these 4 h time blocks, the
total energy throughput in charge direction 𝑒chℎ and discharge direction
𝑒disℎ are calculated:
∑

𝑡∈𝑇ℎ

𝑝ch𝑡 ⋅ 𝛥𝑡 = 𝑒chℎ ∀ ℎ ∈ 𝐻 (17)

∑

𝑡∈𝑇ℎ

𝑝dis𝑡 ⋅ 𝛥𝑡 = 𝑒disℎ ∀ ℎ ∈ 𝐻 (18)

Here, 𝑇ℎ is the set of all timesteps in each of the 4 h time blocks. Based
on this energy throughput, the cyclic aging for each 4 h time block is
calculated with the linearized cyclic degradation model, analogously to
the calendar degradation model from the previous subsection:
∑

𝑗∈𝐽
𝜆cyc,chℎ,𝑗 ⋅𝑋cyc

𝑗 = 𝑒chℎ ∀ ℎ ∈ 𝐻 (19)

∑

𝑗∈𝐽
𝜆cyc,disℎ,𝑗 ⋅𝑋cyc

𝑗 = 𝑒disℎ ∀ ℎ ∈ 𝐻 (20)

∑

𝑗∈𝐽
𝜆cyc,chℎ,𝑗 ⋅𝑍cyc

𝑖 = 𝑞loss,cyc,chℎ ∀ ℎ ∈ 𝐻 (21)

∑

𝑗∈𝐽
𝜆cyc,disℎ,𝑗 ⋅𝑍cyc

𝑖 = 𝑞loss,cyc,disℎ ∀ ℎ ∈ 𝐻 (22)

∑

𝑗∈𝐽
𝜆cyc,chℎ,𝑗 = 1 ∀ ℎ ∈ 𝐻 (23)

∑

𝑗∈𝐽
𝜆cyc,disℎ,𝑗 = 1 ∀ ℎ ∈ 𝐻 (24)

𝐽 is the set of points used for the linearization of the cyclic aging
function. 𝑋cyc

𝑗 with 𝑗 ∈ 𝐽 are the x-values of the linearization from
Fig. 4, representing the energy throughput for a 4 h time block. 𝑍cyc

𝑗 are
the z-values of the linearization from Fig. 4, meaning the cyclic capacity
loss for a 4 h time block in p.u. for the respective energy throughput.
The sets of continuous variables 𝜆cyc,chℎ,𝑗 and 𝜆cyc,disℎ,𝑗 with 𝑗 ∈ 𝐽 are
implemented as special ordered sets of type 2 for each ℎ ∈ 𝐻 . In
addition, the following constraints for the continuous decision variables
𝜆cyc,chℎ,𝑗 , 𝜆cyc,disℎ,𝑗 , 𝑞loss,cyc,chℎ , 𝑞loss,cyc,disℎ , 𝑒chℎ and 𝑒disℎ are implemented:

0 ≤ 𝜆cyc,ch, 𝜆cyc,dis ≤ 1 ∀ ℎ ∈ 𝐻, ∀ 𝑗 ∈ 𝐽 (25)
ℎ,𝑗 ℎ,𝑗
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0 ≤ 𝑞loss,cyc,chℎ , 𝑞loss,cyc,disℎ , 𝑒chℎ , 𝑒disℎ ∀ ℎ ∈ 𝐻 (26)

Analogously to the calendar degradation model, the cyclic degra-
dation model has a square root dependence on past cyclic capacity
loss due to the square root dependence of the original cyclic aging
function on the number of FECs, see Fig. 4. As we will highlight in the
case study, implementing this sublinear relationship in the optimization
model would lead to sub-optimal lifetime profit of the BESS as well,
since the cyclic aging cost would be significantly higher in earlier than
in later years of operation. Therefore, we choose the linearization at
𝑄loss,cyc = 5% as the base scenario in the later case study, which is
marked with an orange line in Fig. 4.

3. Simulation case study

In this chapter, we present and discuss the simulation results with
the proposed MPC simulation framework. Section 3.1 shows the depen-
dence of the lifetime cumulative arbitrage profit on the selection of the
aging cost 𝑐aging and highlights the increase in lifetime profitability that
can be achieved by finding the optimal value for 𝑐aging, i.e. the optimal
aging cost. In Section 3.2, we investigate the benefits of the different
aging cost model types. In Section 3.3, we show that the interest rate,
EOL criterion, and the price time series all affect the optimal aging cost.
Furthermore, Section 3.3 will highlight that the common practice of
defining battery aging cost based on the cost of the battery system (c.f.
Section 1.1) leads to reduced lifetime arbitrage profit, as opposed to
using the here proposed MPC simulation framework to find the optimal
aging cost. Section 3.4 proposes a novel definition of aging cost that
promises higher economic return by accounting for the interest rate.

In the following, the optimization models use a time horizon 𝑡horizon

f 12 hr, with a timestep 𝛥𝑡 of 15 min. For aging cost model type (i),
he optimization is called every 30 min (𝑛 = 2) and for aging cost model

type (ii) and type (iii) every 60 min (𝑛 = 4). The digital twin in SimSES
in all cases runs on a 3 min time resolution. The commercial solver
Gurobi Optimizer is used for solving the optimization models. Note that
the resulting optimization problem for cost model type (i) is a linear
program, while the special ordered sets in aging cost model type (ii)
and (iii) require a MILP solver. The simulations for the case study were
run on a workstation with an Intel Xeon W-2265 CPU and 96 GB RAM
with multiple simulations in parallel. Running one year of simulation
with the complete MPC framework took on average 23.4 min with aging
cost model type (i), 73.6 min with model type (ii), and 308.7 min with
model type (iii). Fig. 5 shows one exemplary day of operation with
the three different aging cost models. In general, the profit in the
energy arbitrage application is generated by charging at low prices and
discharging at high prices. However, the different implementations of
aging costs lead to different schedules. Aging cost model type (i) has
aging costs that only depend on the energy throughput and do not
explicitly consider any other aging stress factors, which results in the
BESS charging up early at a low ID-1 price. Implementing the SOC
dependence of calendar aging for model type (ii) results in the BESS
charging later and discharging earlier to keep the SOC low. The added
dependence of cyclic aging on DOC and Crate for model type (iii) entices
more shallow cycles at low DOC and Crate, such as for the small price
changes at 00:45 and 17:00 in Fig. 5.

3.1. Increased lifetime profit through the optimal choice of aging cost

To investigate the effect of aging cost 𝑐aging on the lifetime profit
from energy arbitrage, multiple 12-year simulations with different
aging cost values were conducted. Fig. 6 shows the resulting cumulative
profit and number of FECs for aging cost model (i), i.e. the energy
throughput model. The cumulative profit includes the gains and losses
from energy arbitrage, but no BESS investment cost. It therefore reflects
the profit gained in the application, which after installation of the BESS
is independent of the initial investment cost. The 12-year time horizon
7

o

Fig. 5. One exemplary day of operation with the three different aging cost models.

Fig. 6. Top: Cumulative profit from energy arbitrage and lifetime in years after
12 years of operation for different aging cost values. The profit is stated in EUR/kWh
with regards to the initial nominal capacity (𝐸n = 1.2MWh). Here, aging cost model (i)
s used, i.e. the energy throughput model. The maximum cumulative profit is obtained
f aging costs are defined such that the EOL criterion is reached at the end of the
nvestigated 12-year horizon and an optimal aging cost of 𝑐aging = 538 EUR/kWh. Bottom:
ECs and profit per FEC for the different aging cost values.

s chosen arbitrarily to reflect an investor’s goal of achieving maximum
rofit over a fixed timeframe of interest, and will be varied in the later
ubsections.

The top of Fig. 6 shows the benefit of finding the optimal aging cost.
f 𝑐aging is chosen lower than optimal, the high amount of cycling will
ause the BESS to degrade quickly and reach its EOL before the end
f the 12-year time horizon. With aging cost of 0 EUR/kWh, the BESS
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reaches its EOL at 80% SOH after 3.0 years and 5525.7 FECs, while
obtaining a cumulative profit of 265.9 kEUR, or 221.6 EUR/kWh with
regards to the initial nominal capacity of 1.2 MWh. If 𝑐aging is chosen
higher than optimal, the low amount of cycling will cause the BESS
to forego energy arbitrage opportunities, leading to lower profit over
the 12-year time horizon. With aging cost of 1000 EUR/kWh, the BESS
obtains a cumulative profit of 256.1 kEUR or 213.4 EUR/kWh through
energy arbitrage after only 852.8 FECs over the 12 years, while still
having a remaining SOH of 86.7%. The highest cumulative profit is
obtained if aging cost are chosen such that the EOL threshold of 80% re-
maining capacity is reached at the end of the investigated 12-year time
horizon. With the optimal aging cost of 𝑐aging = 538 EUR/kWh, the BESS
generates a cumulative profit from energy arbitrage of 479.7 kEUR or
399.7 EUR/kWh, while reaching its EOL at the end of the 12-year time
horizon after 2476.7 FECs.

The bottom part of Fig. 6 highlights the diminishing marginal return
of additional cycles. When setting the aging cost to a high value, only
the most profitable energy arbitrage opportunities are part of the opti-
mization model’s solution, resulting in a profit per FEC of 300.3 EUR for
aging cost of 1000 EUR/kWh. On the other side, low aging cost lead
to a high amount of cycles and even less profitable energy arbitrage
opportunities being part the optimization model’s solution, with a profit
per FEC of 48.1 EUR for aging cost of 0 EUR/kWh.

3.2. Increased lifetime profit through advanced aging cost models

In this section, we investigate the benefit of the previously presented
aging cost models. The top of Fig. 7 shows the cumulative profit after
12 years for all three previously introduced aging cost models with
increasing complexity. In all three cases, the digital twin in SimSES
as well as the price time series remain the same and only the optimiza-
tion model formulation changes. Since the modeling approach differs
between the aging cost models, different optimal aging cost lead to the
maximum arbitrage profit when considering the entire BESS lifetime:
𝑐aging = 538EUR/kWh for model type (i) with only energy throughput
being considered, 𝑐aging = 275EUR/kWh for model type (ii) with energy
throughput and the linearized calendar degradation model, and 𝑐aging =
50EUR/kWh for model type (iii) with the linearized calendar and
inearized cyclic degradation model. The bottom of Fig. 7 depicts the
evelopment of the SOH and arbitrage profit for the identified optima
ver time. The results show that the more complex aging cost models
llow to generate more profit, while being subjected to similar SOH
rajectories, resulting in 80% SOH at the end of the investigated 12-year
ime horizon. Compared to aging cost model (i), the maximum profit
rom energy arbitrage is 24.9% higher with aging cost model (ii) and
9.3% with aging cost model (iii).

The analysis of the relevant aging stress factors in Fig. 8 high-
ights how this increase in cumulative profit is achieved. Including the
inearized calendar and cyclic aging cost models in the optimization
odel, leads to an improved aging aware operation strategy. In sum-
ary, the detailed aging cost models in the optimization model entice

he BESS to avoid those energy arbitrage opportunities that promise
igh arbitrage profit but would also cause high battery degradation.
his in turn enables the BESS to complete more FECs that are less
rofitable but also less straining for the battery and thereby achieve
higher profit over its total lifetime.

With the linearized calendar degradation model in aging cost model
ii), the BESS is able to complete 4378.6 FECs over the 12-year time
orizon before reaching its end of life, compared to 2477.8 FECs for ag-
ng cost model (i). The lower average SOC reduces calendar aging and
he coincidentally slightly lower average Crate and DOC cyclic aging,
hereby enabling this increase in FECs before the end of life. However,
he average cumulative profit per FEC decreases from 193.6 EUR with
ging cost model (i) to 136.8 EUR with aging cost model (ii). This
ighlights that the BESS engages in more, but on average less profitable
8

nergy arbitrage opportunities with aging cost model (ii).
Fig. 7. Top: Cumulative profit from energy arbitrage after 12 years of operation for
different aging cost values. All three aging cost models with increasing complexity
are depicted here: (i) Energy throughput model, (ii) Energy throughput and calendar
degradation model, (iii) Cyclic and calendar degradation model. Bottom: Arbitrage
profit and SOH over time for the optimal aging cost : (i) 𝑐aging = 538EUR/kWh, (ii)
aging = 275EUR/kWh, (iii) 𝑐aging = 350EUR/kWh.

Fig. 8. Distribution of the calendar aging stress factor SOC and the cyclic aging stress
factors Crate and DOC for the three different aging cost models (i), (ii) and (iii) with
he optimal aging cost from Fig. 7.
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With the additional linearized cyclic degradation model in aging
cost model (iii), the average SOC, Crate and DOC are further reduced.

nalogously to model type (ii), the largest reduction of stress factors for
odel type (iii) is seen in the cyclic aging stress factors Crate and DOC

s expected, but a slight reduction in the average SOC is seen as well.
he 5695.4 FECs until the end of life translates to an average profit per
EC of 108.9 EUR.

.3. Impact of interest rate, end-of-life threshold and price profile

After the previous sections have focused on the cumulative profit
s the main financial indicator, we now investigate the net present
alue (NPV) of future profit. The NPV is a common financial metric
o assess investment options. It discounts future profit and thereby
onsiders that profit in earlier years is more valuable than in later years
f an investment, since the earlier profit can be invested elsewhere and
enerate return. The NPV here is calculated as follows:

PV =
𝑀
∑

𝑚=0

Parb
𝑚

(1 + i)𝑚
(27)

Here, Parb
𝑚 is the cumulative profit from energy arbitrage in year 𝑚 and

the interest rate.
The top of Fig. 9 shows the NPV of arbitrage profit for different

ging cost values and interest rates. Furthermore, the lifetime in years
s given until the EOL criterion of 80% SOH is reached for each aging
ost value. Aging cost model type (i) is used here which only considers
he energy throughput. The time horizon here is increased to 20 years
o investigate the influence of the interest rate 𝑖 on the optimal lifetime.

With an interest rate of i = 0%, the NPV simply equals the cumu-
ative profit from energy arbitrage from the previous sections. With
= 0% and the optimal aging cost of 825 EUR/kWh, a cumulative profit
f 444.5 EUR/kWh is reached after 20.0 years, at an average yearly
rofit of 26.7 kEUR. While for the 12-year time horizon with optimal
ging cost of 538 EUR/kWh, a cumulative profit of 399.7 EUR/kWh
s reached, at an average yearly profit of 40.0 kEUR. Prolonging the
nvestigated horizon from 12 to 20 years and extending the BESS
ifetime by increasing the aging cost, therefore does not lead to a
roportional increase in the cumulative profit.

In the previous sections, the optimal cumulative profit was never-
heless reached when the aging cost are chosen such that the EOL is
eached at the end of the investigated time horizon, i.e. 12 years. By
sing the NPV as the main financial metric, this relationship changes.
he higher the interest rate, the lower the value of future profit.
herefore, for high interest rates, the optimal aging cost and resulting

ifetime decrease, as it is beneficial to generate a higher profit in early
ears and forego additional profit in later years. For an interest rate of
= 7.5%, the optimal NPV of 265.9 EUR/kWh is reached if aging cost
re set to 250 EUR/kWh, which results in a BESS lifetime of 8.7 years.
he interest rate can therefore be the starting point for designing an
ging aware operation strategy, by choosing the aging cost value that
ields the optimal NPV and the resulting BESS lifetime for the relevant
nterest rate.

The bottom of Fig. 9 shows how different thresholds for the EOL
ffect the optimal aging cost. In general, the higher the SOH limit for
he EOL threshold, the higher the aging cost should be chosen, as
ow aging cost would lead to a particularly early EOL in that case.
he results highlight the importance of the EOL assumption for the
ssessment of the expected lifetime profit. The degradation model used
ere was validated until around 80% SOH [48,49]. Insights into the
ging behavior towards the EOL, such as when an aging knee [16] can
e expected, would be of use twofold. First, a more accurate assessment
f the expected lifetime profit can be obtained in the planning phase of
BESS project. Second, if the aging behavior towards the EOL is known,

he aging cost can be set accordingly to optimize the lifetime profit for
he operation phase of a BESS project. Instead of having all information
vailable at the beginning of a BESS project, one may choose though
9

Fig. 9. NPV of arbitrage profit after 20 years of operation for different aging cost
values. Aging cost model (i) was used here. The top figure shows the impact of the
interest rate on the optimal definition of aging cost, while assuming a constant EOL
threshold at SOHEOL = 80%. The bottom figure shows the impact of the EOL threshold
while assuming a constant interest rate of i = 7.5%.

to update the aging aware operation strategy, i.e. the chosen value for
the aging cost or the aging cost model itself, once more information
becomes available through the analysis of field data over the years of
operation.

After previously using ID-1 price data from the year 2021, Fig. 10
now shows the NPV for different aging cost values with ID-1 prices from
the years 2019 to 2022. The price data was obtained from [45] as well.
Table 3 summarizes the optimal values when either aiming to maximize
the lifetime NPV with an interest rate of i = 7.5% or maximizing
profit over a 12 year horizon. Most noticeably, the maximum lifetime
NPV and profit significantly increase from 2019 to 2022. The higher
maximum lifetime NPV is a consequence of the increasing electricity
prices and higher electricity price volatility as shown by the mean and
standard deviation of the ID-1 price index in Table 3. In addition, the
more profitable energy arbitrage opportunities also lead to a higher
aging cost value yielding the optimal lifetime profit. With price data
from the year 2019, 𝑐aging = 225 EUR/kWh leads to the optimal
lifetime NPV of 109.7 EUR/kWh, while with price data from the year
2022, 𝑐aging = 1150 EUR/kWh leads to the optimal lifetime NPV of
571.0 EUR/kWh.

For the investigations here, price data from the respective year was
looped over the full time horizon. However, the dependence of the op-
timal aging cost on the price profile shows that the lifetime profitability
in real applications can be increased by using a realistic prognosis of
long-term future price data or by re-determining the optimal value for
𝑐aging regularly over the years that a BESS is operated.
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Table 3
Mean and standard deviation (SD) of the ID-1 prices for 2019 to 2022 and key simulation results (aging cost model type (i) and SOHEOL = 80%) with those price profiles: optimal
aging cost and resulting lifetime to achieve a maximum NPV (i = 7.5%), as well as optimal aging cost to achieve maximum profit over 12 years.

Year Mean ID-1 e/MWh SD ID-1 e/kWh Max. NPV with i = 7.5% Max. profit over 12 years

𝑐aging Max. NPV Lifetime 𝑐aging Max. profit
e/MWh e/kWh years e/kWh e/kWh

2019 37.6 22.6 225 109.7 11.9 225 168.4
2020 31.7 32.4 250 148.2 10.3 288 226.8
2021 97.2 78.4 400 265.4 9.5 538 399.8
2022 236.1 156.2 1150 571.0 11.5 1225 872.0
Fig. 10. NPV of arbitrage profit and lifetime after 12 years of operation for different
aging cost values. Aging cost model (i) was used here. The results are depicted
for the ID-1 price profiles of the years 2019 to 2022. A constant EOL threshold at
SOHEOL = 80% as well as an interest rate of i = 7.5% are considered for all simulations.

The results of this subsection and the previous subsection highlight
hat the optimal aging cost depends on the application (e.g. the interest

rate of concern and the price profile), the aging characteristics of
the BESS and the selected aging cost model. Therefore, the standard
approach from literature to choose the aging cost 𝑐aging based on the
attery system cost (c.f. Section 1.1) leads to non-optimal lifetime
rofit. For example, in literature for the year 2022 values in the range
f 340 to 580 USD/kWh are stated as BESS investment cost [52]. In this
ase study however, the optimal aging cost range between 225 EUR/kWh
nd 1225 EUR/kWh. Instead of setting the aging cost equal to the
attery system cost, the here proposed MPC framework may be used to
ompare different optimization models and determine the optimal aging
ost for the investigated application, thereby increasing the lifetime
rofitability of the BESS.

.4. Impact of scaling aging cost and increasing lifetime profitability by
ccounting for the interest rate

As indicated in Section 2.3.2 and Section 2.3.3, implementing the
quare root dependency of calendar capacity loss on time and square
oot dependency of cyclic capacity loss on the number of FECs, would
ead to detrimental behavior in terms of the lifetime profitability. This
s highlighted in Fig. 11, which shows three different adaptions of aging
ost model type (iii). The first version in light gray and light blue is
ith the non-scaled aging cost, which refers to including the square

oot dependency of cyclic and calendar capacity loss on the number
f FECs and time. The second version in gray and blue is with the
caled model, which means that the linearized degradation model at
loss,cal = 5% and 𝑄loss,cyc = 5% is used for the optimization model,

egardless of the actual total past calendar capacity loss 𝑄loss,cal and
otal past cyclic capacity loss 𝑄loss,cyc of the digital twin. This is the
10

cenario of using the orange lines from Fig. 3 and Fig. 4, instead of
Fig. 11. Top: Cumulative arbitrage profit after 16 years of operation for different
aging cost values. Here, three different adaptions for the aging cost model (iii) are
investigated: non-scaled and non-discounted, scaled and non-discounted, as well as
scaled and discounted. Mid: Cumulative arbitrage profit and state of health over time
for the optimal aging cost from the top figure. Bottom: NPV of arbitrage profit for the
three different adaptions of aging cost model (iii).
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selecting the respective set of linearization points based on 𝑄loss,cal and
loss,cyc at the beginning of each optimization. It can be seen that the

caled aging cost has a beneficial effect on both the 16-year maximum
umulative profit (top plot) and the NPV (bottom plot). The maximum
umulative arbitrage profit is 8.7% higher and the maximum NPV of
rbitrage profit is 16.6% higher, compared to the non-scaled scenario.

The middle plot of Fig. 11 highlights why this is the case. The square
oot dependency leads to over-proportionally high aging cost in the first
ew years, resulting in a low amount of cycling and arbitrage profit in
he early years (light blue and light gray line). With non-scaled aging
ost, a profit of 5.4 kEUR is achieved in year 1 and 48.9 kEUR in
ear 10. This higher profit in later years is subject to a higher discount
ate and therefore less beneficial for the NPV, c.f. Eq. (27). With the
caled aging cost (blue and gray lines), the magnitude of aging cost
emains the same throughout the years, while the impact of the stress
actors SOC, Crate and DOC is still considered in the aging cost model. As
result, there is a more consistent level of profit over time. In addition,

he previous trend reverses, since the lower usable capacity and the
igher losses due to the increasing cell resistance, cause slightly lower
rofits in later years. With scaled aging cost, a profit of 49.1 kEUR is
chieved in year 1 and 41.7 kEUR in year 10.

The third adaption of aging cost model (iii) aims to further utilize
he fact that earlier profit is more valuable in terms of the NPV. The
ging cost formulation inside the optimization model is adapted as
ollows:
aging′ = 𝑐aging ∗ (1 + 𝑖)𝑚 (28)

With i being the interest rate that is used for the project evaluation,
here i = 7.5% and 𝑚 the current fractional year since the start of
the simulation horizon. Thereby, aging cost at the end of the 16-
year simulation horizon are 3.18 times higher than at the beginning,
leading to more profit in earlier than in later years. By both scaling and
discounting the aging cost, the maximum cumulative arbitrage profit is
4.4% higher and the maximum NPV of the arbitrage profit is 18.7%
higher than for the non-scaled and non-discounted scenario. A profit of
63.3 kEUR is achieved in year 1 and 36.7 kEUR in year 10.

In summary, scaling the aging cost to 𝑄loss,cal = 5% and 𝑄loss,cyc = 5%
n the scenario investigated here has a beneficial effect on both the cu-
ulative profit from energy arbitrage and its NPV. Further discounting

he aging cost leads to a lower cumulative profit but an even higher
PV, compared to only scaling the aging cost, since more profit is
enerated in earlier years.

. Conclusions

With the steadily growing amount of globally installed BESSs, aging
ware operation of these systems becomes increasingly relevant. Op-
rating a BESS under consideration of the relevant aging stress factors
romises higher profits over its lifetime and more resource-efficient use
f battery cells. For designing and benchmarking aging aware operation
trategies, this work presents a model predictive control framework. By
imulating the entire lifetime on a digital twin of the BESS, different
ging aware optimization models can be compared before the optimal
peration strategy is deployed to the real-world BESS. This work fo-
uses on the application of generating profit through arbitrage trading
n the EPEX Spot intraday electricity market. For that purpose, a
inearized MILP ready model for the calendar and cyclic capacity loss of
LFP battery cell is presented. The proposed MPC framework is made

vailable open-source [43] and designed in a modular way, such that
ifferent use cases and optimization formulations may be added and
nvestigated. In contrast to previous contributions, we investigate the
ntire lifetime with the MPC framework, which allows to quantify the
ffect of aging aware operation on the lifetime profitability of BESSs,
ncluding the benefit of different degrees of complexity for modeling

aging
11

attery aging. Furthermore, the effect of aging cost 𝑐 on lifetime
profitability is investigated in detail and the MPC framework is used to
determine the optimal aging cost.

The results show that over the same investigated 12-year time
horizon, the lifetime profit from energy arbitrage can be increased by
24.9% with the linearized calendar degradation model and by 29.3%
with the linearized calendar and cyclic degradation model as part of
the optimization model formulation, compared to only assuming energy
throughput based aging cost. The linearized degradation models entice
the BESS to avoid those energy arbitrage opportunities that promise
high arbitrage profit but would also cause high battery degradation.
This in turn enables the BESS to complete more total FECs over its life-
time and thereby achieve the before-mentioned higher lifetime profit.
The results further show that the selection of the aging cost 𝑐aging

significantly impacts the lifetime profit and NPV. By determining the
optimal aging cost through parameter variation with the MPC frame-
work, the lifetime profit and NPV can be significantly increased. Most
notably, the standard practice from the literature of choosing 𝑐aging

based on the battery system cost would lead to sub-optimal lifetime
profit. Instead, the optimal aging cost is dependent on the aging behavior
of the system, the aging cost model used in the optimization, the price
profile, EOL-criterion, as well as the interest rate of concern. Scaling
the degradation model and discounting the aging cost to obtain higher
profit in earlier years of operation can further increase the lifetime
profitability, especially when using the NPV as the financial metric
of concern. In addition, the case study with price data from 2019 to
2022 shows, that the recent increases in wholesale electricity prices and
wholesale electricity price volatility directly translate into a substantial
increase of the achievable lifetime profit with BESSs used for arbitrage
trading.

For this work, some uncertainties and limitations are considered.
In the case study, price data from the respective year was looped over
the full time horizon and a degradation model was used, which does
account for accelerated capacity fade towards the end-of-life. As the
dependence of the optimal aging aware operation strategy on the price
profile and battery aging behavior highlights, the operation strategy
should be reevaluated periodically by rerunning the MPC framework,
once up-to-date price forecasts and additional insights into the BESS
aging behavior from field data become available throughout the course
of the BESS lifetime. Furthermore, the energy arbitrage application was
modeled in a simplified way for the case study. Perfect foresight of
the ID-1 price was assumed, which we believe to be a conservative
assumption. For real-time bidding, one may achieve higher sell and
lower buy prices than the ID-1 price and may place additional bids
that are compensated before execution by the BESS, which can generate
additional profit. On the other hand, the profit from energy arbitrage
stated here does not account for market access cost, taxes, or labor
costs. In addition, using the proposed framework requires the avail-
ability of a suitable degradation model, which cell manufacturers often
do not provide. However, there are some third-party providers who
offer degradation prognosis for BESSs. Finally, while this contribution
focuses on the impact of aging aware operation on lifetime profitabil-
ity, it can be worthwhile to also quantify the ecological benefit of a
widespread adoption of aging aware operation.
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ppendix A. Degradation model linearization

The degradation model by Naumann et al. describes the total ca-
acity loss 𝑄loss as the sum of calendar capacity loss 𝑄loss,cal and cyclic
apacity loss 𝑄loss,cyc[48,49]:
loss = 𝑞loss,cal(𝑡,SOC, 𝑇 ) +

𝑞loss,cyc(FEC, 𝐶 rate,DOC)
(29)

loss,cal = 𝑘ref ,T ⋅ (𝑐1(SOC − 0.5)3 + 𝑑1) ⋅
√

𝑡 (30)

𝑄loss,cyc = (𝑎2𝐶 rate + 𝑏2) ⋅ (𝑐2(DOC − 0.6)3 + 𝑑2) ⋅
√

FEC (31)

Here, 𝑡, SOC, 𝑇 refer to the time, state of charge, and temperature,
respectively. FEC, 𝐶 rate and DOC refer to the number of full equivalent
cycles, the charge–discharge rate, and the depth of cycle. In Eq. (30),
𝑘ref ,T, 𝑐1 and 𝑑1 are fitting parameters of the calendar degradation
model. In Eq. (31), 𝑎2, 𝑏2, 𝑐2 and 𝑑2 are the fitting parameters of the
cyclic model.

Notably, 𝑘ref ,T in the original model by Naumann et al. describes
the dependence of calendar capacity loss on temperature with an
Arrhenius equation [48]. The battery cell temperature inside a BESS
depends highly on the thermal design and the heating/cooling system
and control [53]. To compare the different optimization models inves-
tigated here, we make the simplification of assuming a constant cell
temperature of 25 ◦C for both the digital twin and the optimization
model. This turns 𝑘ref ,T into a constant for the purpose of this work.

A.1. Calendar aging

To adapt Eq. (30) to varying external stress factors, the concept of
virtual time 𝑡virtual from [48] is implemented in SimSES as well. 𝑡virtual is
the time that would have needed to pass to reach the total past calendar
capacity loss under the present stress factors and can be calculated by
solving Eq. (30) for 𝑡:

𝑡virtual = ( 𝑄loss,cal

𝑘ref ,T ⋅ (𝑐1 ⋅ (SOC − 0.5)3 + 𝑑1)
)2 (32)

The additional calendar capacity loss in the current timestep 𝛥𝑞loss,cal

can then be calculated as follows:
𝛥𝑞loss,cal = 𝑘ref ,T ⋅ (𝑐1(SOC − 0.5)3 + 𝑑1)

⋅
√

𝑡virtual + 𝛥𝑡 −𝑄loss,cal
(33)

To solve this nonlinear degradation model in a MILP, it needs to be
linearized. Eq. (33) has a dependence on both the past capacity loss
𝑄loss,cal as well as on SOC.
12
𝑄loss,cal only shows minor change over the short-term optimization
horizon and can therefore be assumed as a constant for each optimiza-
tion horizon. However, due to the square root dependency of calendar
capacity loss on time, 𝛥𝑞loss,cal is significantly higher for low values
of 𝑄loss,cal than for high values of 𝑄loss,cal. Therefore, we performed
inearizations of the SOC for 229 different values of 𝑄loss,cal, as depicted

in Fig. 3. The cubic dependence of 𝛥𝑞loss,cal on SOC is represented by
resulting set of 10 lines for each of the 229 linearization points

or 𝑄loss,cal. For each optimization, the corresponding set of SOC lin-
arization points is chosen based on the total capacity loss 𝑄loss,cal at
he beginning of the optimization horizon. Through this method, an
verage relative error of less than +/−4% is achieved over all 𝑄loss,cal

anges.

.2. Cyclic aging

Analogously to the approach for calendar aging, the concept of
irtual full equivalent cycles FECvirtual is used to apply Eq. (31) to
arying external stress factors:

ECvirtual = ( 𝑄loss,cyc

(𝑎2𝐶 rate + 𝑏2) ⋅ (𝑐2(DOC − 0.6)3 + 𝑑2)
)2 (34)

he additional degradation after a cycle is then calculated as follows:

𝑞loss,cyc = (𝑎2𝐶 rate + 𝑏2) ⋅ (𝑐2(DOC − 0.6)3 + 𝑑2)

⋅
√

FECvirtual + 𝛥FEC −𝑄loss,cyc
(35)

n SimSES, a half-cycle counter is used which checks after every
imulation steps if the charge–discharge direction has changed and
hen evaluates Eq. (35) with the DOC and Crate from the last half-
ycle. This nonlinear model requires linearization as well in order to be
epresented as part of a MILP. FECvirtual and Crate are directly related for
ixed timesteps and can be expressed through the energy throughput
or those timesteps. However, determining the DOC would require
he implementation of half-cycle counting in the scheduling method
ased on integer variables. Furthermore, the dependency of 𝛥𝑞loss,cyc

on two multiplied decision variables, i.e. Crate and DOC, would make
the model inherently nonlinear. We therefore introduce the following
simplification to linearize this cyclic degradation model: We subdivide
the optimization horizon into 4 h time blocks. For each 4 h time block,
the DOC is expressed through the energy throughput as well. If the
DOC exceeds an increment of 100% for a given 4 h time block in either
charge or discharge direction, this is evaluated as one half-cycle plus
the remaining DOC as a partial cycle.

Analogously to calendar aging, 𝛥𝑞loss,cyc is significantly higher for
low values of 𝑄loss,cyc than for high values of 𝑄loss,cyc, due to the square
root dependency of cyclic capacity loss on the number of FECs. We
therefore perform the above linearization of Crate and DOC in 229
points of 𝑄loss,cyc. Applying this principle to Eq. (35), leads to the
linearized capacity loss from Fig. 4.
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