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• Methodology for a feature-conserving 
gradual anonymization of load profiles. 

• Application of the methodology to 
different load profiles and storage 
applications. 

• Analysis of the effects on storage system 
operation using different KPIs. 

• Demonstration of the open-source load 
profile anonymization tool LoadPAT. 

• Methodology allows publishing load 
profiles similar to protected original 
profiles.  
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A B S T R A C T   

Electric load profiles are highly relevant for battery storage research and industry as they determine system 
design and operation strategies. However, data obtained from electrical load measurements often cannot be 
shared or published due to privacy concerns. This paper presents a methodology to gradually anonymize load 
profiles while conforming to various degrees of anonymity. It segregates the original load profile into base and 
peak sequences and extracts features from each of the sequences. With the help of the features, a synthetic, 
anonymized load profile is created. Different levels of anonymization can be selected, which transform the 
original profile to the desired extent. A random permutation of the peak sequences or base sequences is used to 
achieve this transformation. Exemplary profiles from a household and an electric vehicle charging station are 
used to demonstrate the functionality of the anonymization. The indicators of the anonymized load profiles are 
compared with the original ones in both time and frequency domains, and the effects of load profile anonym
ization on the operation of battery storage systems in two scenarios are analyzed. While the anonymized load 
profiles retain the time-invariant indicators from the original profile, the permutation causes a loss of regularity 
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in the load profiles. As a result, relevant indicators of battery storage systems subjected to these anonymized 
profiles deviate to a greater extent in time-dependent applications such as self-consumption increase. This is 
reflected in the overestimation of equivalent full cycles by up to 6% and underestimation of self-sufficiency by up 
to 9 percentage points. In time-independent applications such as peak shaving, however, the indicators can be 
well reproduced with deviations of up to 3% despite the lost regularity. In order to make the anonymization 
methodology usable for everyone, we present the open-source tool LoadPAT, in which users can anonymize their 
load profiles and choose their desired level of anonymization. This work is intended to further encourage the 
dissemination of open-source data.   

1. Introduction 

We live in a time where individuals as well as companies and 
research institutions are constantly generating data. Between 2012 and 
2020, the volume of digital data generated each year worldwide 
increased tenfold from 6.5 to 64.2 zettabytes [1]. Although not all of this 
data is stored, the data volume of storage capacity in 2021 also 
amounted to 7.9 zettabytes [2]. In the electricity sector, this develop
ment is being driven by the digitalization of grid monitoring and control 
and the increasing installation of smart meters [3,4] At the same time, 
there is a trend towards openness of data, publications and code [5,6]. 
Research institutions, on the one hand, are interested in sharing 
collected and generated data and thus making it available to the com
munity. Companies, on the other hand, often have privacy concerns 
about the possible sharing of data. This conflict gave rise to the present 
work. The goal is to develop a methodology for anonymizing electric 
load profiles. We present a load profile anonymization tool (LoadPAT), 
which can gradually anonymize load profiles, that may aid to a greater 
usage of sharing data through industry and facilitate an increase of re
sources available for applied research. In this work, we show the gradual 
anonymization in various levels that is possible using the tool and the 
impact on load profile key performance indicators (KPIs). In addition, 
simulations show the effects of the load profile anonymization on the 
behavior and load of battery storage systems (BSS) in different appli
cations. With the help of LoadPAT, companies and research institutions 
can modify and thus anonymize load profiles according to their desired 
level before sharing with partners. 

In the following, the existing literature on the topic of anonymization 
of load profiles is presented and the research gap is identified. 

Subsequently, the research questions of this work are introduced before 
the scenario and the usage area of the tool are described. 

1.1. Summary of existing literature 

The topic of load profiles is relevant for research institutions and 
companies. The former need load profiles, for example, for simulations 
of the electricity grid or of BSSs. Companies such as distribution network 
operators make use of load profile data for estimating current and future 
consumption and for classifying customers [7]. Basically, in research on 
load profiles, a distinction can be made between load profile analyses 
including feature extraction and synthetic load profile generation. For 
the former, Table A1 in the Appendix shows existing literature, which 
will be described in more detail below. 

1.1.1. Load profile analysis and feature extraction 
In 2010, Price published methods for analyzing load profiles [8]. He 

defined five parameters for characterizing load shapes in the time 
domain: base load, peak load, rise time, high load duration and fall time. 
Li et al. built on Price’s work in 2021 and published a load profile 
analysis in the time and frequency domains using Discrete Fourier 
Transformation (DFT) [9]. To do so, they used smart meter data from 
188 buildings in Northern California with a time resolution of 15 min. 
The advantage of frequency domain analysis is that it captures the 
periodicity of the load profile as a baseline feature while allowing to 
reduce the amount of data to be stored [9]. DFT was also used by 
Campestrini et al. to evaluate SOC algorithms [10]. In this work, a 
number of driving profiles were analyzed to develop a representative 
synthetic profile in the frequency domain. 

When clustering load profiles, a basic distinction can be made be
tween direct clustering of time series profiles and indirect clustering via 
feature extraction [11]. In 2016, Haben et al. presented an analysis of 
smart meter data in which they identified the four key time periods 
overnight, morning, daytime, evening that should be considered for 
clustering residential load profiles [12]. In the same year, Al-Otaibi et al. 
published a feature extraction method to cluster daily load profiles 
based on these features [13]. In addition, clustering was performed after 
z-normalization, which considers the shape and disregards the magni
tude of the profiles. The results showed that compared to using the 
whole daily load profiles (48 values), extracting features can reduce the 
dimensions significantly while the clustering is still successful. A similar 
procedure was used by Park et al. in 2019, who compared the direct 
clustering after z-normalization using the k-means algorithm with a 
Gaussian mixture model [14]. In this publication, the k-means algorithm 
produced better results with a shorter runtime. The same algorithm was 
used by Trotta 2020 to cluster one-hour annual load profiles of Danish 
households [15]. The result of this publication are four clusters 
describing the typical behavior of Danish households. Czétány et al. also 
used the k-means algorithm to cluster Hungarian households, as k- 
means was advantageous over a fuzzy k-means and an agglomerative 
hierarchical clustering [16]. In 2022, Elahe et al. published a new 
feature extraction technique for load profiles that can be used to identify 
households with plug-in hybrid vehicles [17]. For this purpose, they 
used different classifiers that utilize a set of extracted features from the 
load profile. 

Abbreviations 

BSS Battery storage system 
BTM Behind-the-meter 
CDA Conditional demand analysis 
DFT Discrete Fourier Transformation 
EFC Equivalent full cycles 
EMS Energy-management-strategy 
EV Electric vehicle 
FTM Front-of-the-meter 
DOD Depth of discharge 
FCR Frequency containment reserve 
GUI Graphical user interface 
KPI Key performance indicator 
LoadPAT Load profile anonymization tool 
PS Peak shaving 
PV Photovoltaic 
RQ Research question 
SCI Self-consumption-increase 
SimSES Simulation of stationary energy storage systems 
SOC State-of-charge  
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1.1.2. Synthetic load profile generation and anonymization 
In addition to load profile analysis, clustering, and feature extrac

tion, synthetic load profile generation and anonymization are most 
relevant to this work. Table 1 gives an overview of literature on syn
thetic load profile generation and anonymization. While some of the 
papers presented describe the generation and anonymization of general 
datasets and sequences, others deal explicitly with household load 
profiles. Basically, load profiles can be created using bottom-up and top- 
down methods [29]. The former use behavior and data from individual 
consumers to generate a load profile. The advantage of bottom-up 
methods is that user behavior can be aggregated, and thus general 
statements can be made. The disadvantage, however, is that user data 
must be available in sufficient quantity. For example, Widén et al. and 
Richardson et al. used household member activities to generate high- 
resolution load time series [21,22]. Müller et al. extended the idea of 
electric household behavior to thermal and mobility behavior [27]. 
Another bottom-up approach was presented by Li et al. in 2021, which 
can be used to generate synthetic load profiles for households, busi
nesses, and industries based on the geographic location [30]. They use 
publicly available data and make three types of transformations: Tem
poral shifts, temporal permutations, and adding noise. Through these 
transformations, the authors perform a kind of anonymization without 
explicitly naming it anonymization. Top-down approaches do not use 
data from individual electrical appliances or persons, but aggregated 
data, such as national data, and break them down to individual house
holds [29]. The advantage of these approaches is that no individual user 
data is required. The disadvantage is that it is not possible to draw 
conclusions about individual user behavior. As early as 1984, Aigner 
et al. published a study that made it possible to break down total 
household load to individual parts [18]. For this purpose, the authors 
used the conditional demand analysis (CDA) which uses various 
regression equations to account for factors such as desired temperature 
and size of the residence when creating load profiles [29]. The advan
tage of the methodology at that time was the significantly lower effort 
compared to direct measurements at the end user [18]. In 1992, Bartels 
et al. presented DELMOD, a model that also uses CDA to generate load 
profiles for different types of days for a given scenario [19]. This model 

uses typical load profiles for different days and seasons and weather data 
that change the load profile. DELMOD has the advantage that detailed 
scenarios can be investigated and predictions can be made. In 2015, 
Jambagi et al. combined Richardson’s approach (time use surveys) with 
a top-down approach of a standard load profile, making the aggregate 
results more realistic [26]. To generate hourly electrical load time series, 
Han et al. used statistical methods in 2022 [28]. In their top-down- 
approach, they used three components of public data: seasonality, dis
tribution of residuals and the trend. A different approach to the gener
ation of synthetic load profiles was chosen by Pinceti et al [31]. They 
used generative adversarial networks to learn from hourly resolved real 
weekly load profiles and to generate synthetic load profiles. The 
disadvantage of this approach is that the training of the network takes a 
relatively long time. In contrast, the advantage is that the network can 
be used easily and quickly after training. 

Regarding anonymization of load profiles, Efthymiou et al. have 
published a paper in which they present a method for anonymizing 
smart meter data [23]. For this purpose, they use an escrow service that 
aggregates data from different households. This method does not focus 
on the modification and adaptation of time series-based load profiles, 
but rather on the process of transmitting high-frequency data via a data 
aggregator. Focus on the anonymization of temporal sequences put, for 
example, Pensa et al., who use k-anonymization for this purpose. [20]. 
The k-anonymization can be applied to data sets and describes that the 
information of an individual cannot be distinguished from at least k-1 
other individuals [32]. Pensa et al. applied this type of anonymization to 
datasets of sequences achieved k-anonymization of the data [20]. Shouh 
et al. extended the k-anonymization approach to another level, P-ano
nymization, which represents patterns within grouped time-series 
datasets [25]. This (k, P)-anonymization was shown in experiments to 
be resistant to linkage attacks while preserving pattern data. The 
concept of k-anonymization was extended by Machanavajjhala et al. to 
include l-diversity, which requires that for each sensitive attribute in 
data sets, at least l different attributes must occur [33]. A combination of 
k-anonymization and l-diversity consequently enables an anonymiza
tion that is more secure against attacks. 

The presented variants of the anonymization of data sets have in 

Table 1 
Summary of literature on synthetic load profile generation and anonymization of load profiles.  

Source Date Focus Method Sampling 
rate 

Results 

Aigner et al. [18] 1984 Creation with top-down 
approach 

Conditional demand 
analysis 

15 min Breakdown of total household load to individual parts using the 
conditional demand analysis. 

Bartels et al. [19] 1992 Creation with top-down 
approach 

Conditional demand 
analysis 

15 min Publication of DELMOD which uses conditional demand analysis to 
create household load profiles for different days and seasons. 

Pensa et al. [20] 2008 Anonymization of time 
series 

k-anonymity Arbitrary Application of k-anonymity to records of sequences, which can be used 
for all types of records and profiles. 

Widén et al. [21] 2010 Creation with bottom-up 
approach 

Stochastic modeling 1 min Activities of household members are simulated to create high  
resolution series. A validation with real data showed that the  
generated household load profiles are realistic. 

Richardson et al. [22] 2010 Creation with bottom-up 
approach 

Stochastic modeling 1 min Creation of one-minute resolution household load profiles based  
on specific activities and patterns of active occupancy. Validation  
with field data in East Midlands, UK. 

Efthymiou et al. [23] 2010 Anonymization of smart 
meter data 

Escrow mechanism 1–5 min Development of a method for anonymizing high frequent smart  
meter data using a third party escrow mechanism. 

Ogasawara et al. [24] 2010 Normalization approach 
for time series 

Normalization Arbitrary Presentation of ways to normalize all types of load profiles  
including dividing by maximum value, by using minimum and  
maximum value, and with adaptive neural networks. 

Shouh et al. [25] 2013 Anonymization of time 
series 

(k,P) - Anonymity Arbitrary Extension of k-anonymity by P-anonymity to (k, P)-anonymity. This can 
be used to preserve patterns effectively in addition to the standard k- 
anonymization. 

Jambagi et al. [26] 2015 Creation with bottom-up 
and top-down approach 

Activity based 
modeling 

1 s Development of a residential electricity demand model combining time 
use surveys with standard load profiles. A validation with measured data 
shows that the properties of the synthetic profiles are correct. 

Müller et al. [27] 2020 Creation with bottom-up 
approach 

Activity based 
modeling 

1 min Bottom-up approach model for electrical and thermal household load 
modelling regarding mobility behavior. 

Han et al. [28] 2022 Creation with top-down 
approach 

Decomposition and 
recombination 

1 h Generation of hourly household electrical load profiles using a statistical 
method of decomposition and recombination.  
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common that several load profiles must exist. However, the focus of the 
present work is on the anonymization of individual time series-based 
load profiles, which means that the presented variants are not appli
cable. For the modification of individual load profiles, Savov et al. 
published a paper in 2017 in which they analyzed the degree to which 
load profiles can be discretized [34]. The result was that the greater the 
discretization of the data, the greater the error in power loss evaluations 
in distribution grids. Ogasawara et al. presented ways to normalize load 
profiles in 2010 [24]. The normalization can be done by dividing by the 
maximum value, by using minimum and maximum of a profile and more 
complex by adaptive normalization with adaptive neural networks. The 
latter are a kind of sliding window techniques and have the advantage of 
creating individual data sequences from which statistical properties are 
determined for normalization. In their bottom-up approach, Li et al. 
used the aforementioned temporal permutation to change individual 
load profiles [30]. In their hourly load profiles, they permuted pairs of 
values every 50–100 h to add randomness. 

Few open-source tools already exist for anonymization of data and 
creation of load profiles. The ARX tool, for example, is an anonymization 
tool for structured data sets [35]. With this tool, data can be adapted 
according to k-anonymization and l-diversity, among other methods. It 
also has a graphical user interface (GUI) that allows users to anonymize 
their data sets. However, multiple datasets are required for anonym
ization in this tool. Thus, it cannot be used for anonymizing individual 
load profiles. To generate synthetic load profiles, the aforementioned 
Pinceti et al. have published the LoadGAN tool [36]. This tool uses the 
methodology of generative adversarial networks and users can directly 
generate a desired number of load profiles in a desired resolution and 
length. The LPAT tool by Schaefer et al. splits load profiles into sub-load 
profiles, which are then used to dimension storage for a hybrid energy 
storage system [37]. The division into sub-profiles is done by DFT, low- 
pass filter and inverse DFT. As a result, a load profile is decomposed into 
several load profiles that have different frequencies and thus can be 
covered by different storage technologies. However, the goal here is not 
anonymization, but the determination of the storage requirements. 
Therefore, no permutation or normalization takes place. 

1.1.3. Battery storage systems 
Load profiles have a fundamental influence on the design and 

operation of BSS [38-40]. A collection of load profiles or a generation of 
anonymized load profiles is especially relevant for battery research, 
since simulations on storage applications depend strongly on the load 
profile of the household or company [38]. In general, stationary BSS are 
operated in various applications. These applications can be divided, for 
example, into in-front-of-the-meter (FTM) and behind-the-meter (BTM) 
applications [41]. The former are related to markets and the electricity 
grid, such as arbitrage trading and frequency containment reserve 
(FCR). The latter describe applications behind the meter on the con
sumer side, which can be peak shaving (PS) or self-consumption increase 
(SCI) of energy generated by photovoltaic (PV) systems. In addition to 
these singular applications, the applications can also be combined in 
multi-use scenarios, which can increase the profitability, but bring 
regulatory barriers with it [41]. Since the focus of this paper is on the use 
of the load profiles in the SCI application and the PS application these 
are considered in more detail below. At SCI, BSSs are installed to in
crease the consumption of self-generated energy and feed less energy 
into the grid. This can be done by private households or businesses. In 
Germany, for example, 430,000 home storage systems have been 
installed by the end of 2021 [42]. The household load profile has an 
impact on the design of home storage systems [40]. If a large part of the 
energy consumed is covered by PV during the day, the BSS can be 
designed smaller than if a large part is consumed in the evening or at 
night. BSS in PS application are used to cover peaks in the load profile 
[39]. This is mainly relevant for industrial customers, who must pay a 
fee per kW for the peak power in a year over a 15-minute period. 
Accordingly, the load profile is also relevant for the storage design in this 

application. 
Several KPIs are relevant for BSSs, which are being discussed in the 

following [38]. The parameters extracted at this point will be used in 
Section 4.2 to estimate the storage performance with the anonymized 
load profiles versus the original load profiles. The appendix Section 7.2 
shows the equations of the different KPIs with a short description. In 
general, the degradation of BSSs is highly relevant in every application 
as it is decisive for the profitability. The degradation can be divided into 
cyclic and calendric ageing. On the one hand, cyclic degradation de
pends on the number of equivalent full cycles (EFCs), the depth of 
discharge (DOD), and the C-rate [43,44]. More EFCs, deeper DODs and 
larger C-rates lead to increased cyclic aging [44]. Calendar degradation, 
on the other hand, depends primarily on temperature and the state of 
charge (SOC) [45,46]. Particularly high, as well as particularly low 
temperatures and SOCs, usually lead to accelerated aging [44]. Two 
further parameters are of relevance especially for the SCI application: 
One is the self-consumption rate and the other is the degree of self- 
sufficiency [47,48]. The self-consumption rate describes the propor
tion of PV energy consumed locally and not fed into the grid. The degree 
of self-sufficiency specifies the independence from the electricity grid, 
thus the proportion of electricity consumption that can be covered by PV 
energy and battery discharge. The load profile of the household has a 
major impact on the two parameters [40]. For the PS application, 
another KPI is of particular importance: the fulfillment factor or per
formance criterion [49]. This factor describes at what proportion of the 
time a storage system was able to deliver the power requested by the 
energy management system. If a BSS operates in the PS application, 
failures and non-fulfillments of requested power can lead to enormous 
increases in power-related costs for the business. In addition, round-trip 
efficiency is described as a relevant parameter in the PS application 
[49]. 

The research gap we identified is manifold. On the one hand, many 
load profile analyses are limited to extracting features to cluster a set of 
profiles. On the other hand, bottom-up and top-down approaches exist 
to generate load profiles from, for example, user data. Various methods 
exist for anonymizing data, but these cannot be applied to individual 
load profiles because they require a larger data set. Existing open-source 
tools can either anonymize data (but not load profiles) or generate load 
profiles (but not anonymize existing ones). Often, the analyses, clus
tering methods and load profile generation methods are also limited to 
profiles with resolutions of 15 min [9,16], 30 min [13] or one hour 
[15,30,31]. In our point of view, what is missing is a methodology that 
can be used to gradually anonymize individual original load profiles 
with a high resolution of one to five minutes. In a publication by Beck et 
al, for example, 5 min was shown to be relevant for the sizing of the 
power of a storage system [50]. The presented methodology gives users 
the flexibility to decide to which degree the original load profile should 
be modified. Since modifying or anonymizing the load profile affects the 
design and operation of BSSs as described, we also investigate the 
impact of load profile anonymization on stationary BSSs in different 
applications. We will answer the following research questions (RQs) 
throughout the paper: 

RQ1) How can load profiles be anonymized gradually and how could 
an open-source tool look like that allows anonymization and enables an 
easy and straightforward use in industry and research? (Section 3). 

RQ2) In which parameters do the anonymized load profiles differ 
from the original profiles and in which are they similar? (Section 4.1). 

RQ3) How much may an original load profile be modified to main
tain parameters critical to a storage application? (Section 4.2). 

RQ4) How sensitive are the results from RQ 3 to storage system 
design and adjustable parameters, such as the threshold between base 
and peak sequences? (Section 4.3). 

1.2. Scope of this work 

The goal of the present work is to develop a methodology through 
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which users from industry and research can modify load profiles that are 
protected by data privacy laws so that they can share them with part
ners. The extent to which the load profiles must be modified for this 
purpose is to be decided by the owner of the data. For this reason, our 
methodology is intended to be flexible and allow users to anonymize 
gradually. Our approach is to extract features from the original load 
profile and then to recreate it based on these features. For this purpose, 
we divide the load profile into base and peak sequences, whereby the 
threshold between the ranges can be freely adjusted. Subsequently, 
features such as the mean value and the length of the sequence are 
determined for each sequence. The anonymized synthetic load profile is 
then formed from these stored features. The degree of anonymization 
can then be varied via levels, which determine the variant of the per
mutations. For example, simple normalization is possible in level 1, 
while only peak sequences are permuted in level 3 and base and peak 
sequences are permuted in level 5. The flexibility for users derives from 
the choice of the threshold between base and peak sequences and the 
choice of the anonymization level. After generating the anonymized 
load profile, a storage system simulation model can be called and 
executed that simulates the original and the anonymized load profiles in 
different storage applications. In this way, we test the impact of ano
nymization on BSS operation. The BSS applications we analyze in this 
work are PS (where peak loads are covered by storage systems) and SCI 
of PV-generated energy for households using storage systems. 

On the one hand, the developed methodology allows the anonym
ization of classical, continuous load profiles. On the other hand, it can 
also be used to anonymize load profiles that have idle sequences and 
peak sequences with high-power levels. In our analyses, such load pro
files are from charging stations at which electric vehicles (EVs) charge or 
whose load is zero apart from standby consumption. Users can thus 
anonymize daily, weekly, or annual load profiles. In addition, the tool 
can be used to generate several similar synthetic load profiles from one 
original load profile. In this way, small data sets can be multiplied and 
used for data augmentation. Furthermore, storage operators can use the 

tool to test a possible storage operation without having to give out or 
receive original load profiles. The contributions of this work are as 
follows:  

• Methodology to gradually anonymize load profiles by permutation of 
base and peak sequences while retaining the parameters essential for 
battery storage use  

• Analysis of effects of load profile anonymization on the parameters 
essential for battery storage utilization  

• Demonstration of the open-source tool LoadPAT for providing 
research and industry the opportunity to share data and present re
sults to public without conflicting with non-disclosure agreements 

2. Database 

For the present work, two types of load profiles were collected in 
exchange with an industrial partner and a research institution. These 
data can be classified in load profiles of a household and of an electric 
vehicle (EV) high-power charging station (see Fig. 1). The first is a 
typical load profile of a household, consisting of base load sequences and 
peak load sequences. The base load sequences result from appliances 
that always use electricity, such as refrigerators in private households. 
Peak load sequences are caused by more power demanding consumers 
used for a short time, such as kettles or electric stoves in private 
households. The EV high-power charging station load profile has a 
different pattern. It is composed of charging events and idle phases, in 
which the load is zero except for standby consumers. The charging 
stations for EVs provide high charging power during charging times but 
have very low power during resting periods without a connected EV. 

The data used in this work and their parameters are shown in 
Table 2. The household load profile was measured by the ISEA of RWTH 
Aachen University within the WMEP home battery storage program 
[51]. It is used over a whole year with a resolution of 1 min. The EV 
high-power charging station load profile was provided by an industry 
partner. It also originates from a storage application as it was measured 
at a charging station with a buffer BSS. It has a length of 6 months with a 
resolution of 1 min. The annual energy consumption of the household is 
approximately equal to the half-year consumption of the charging sta
tion. However, the peak power of the household is only 8.7 kW, while 
the charging station load profile showed a peak power of 248.1 kW 
within the six months. The complete load profiles are shown in the 
appendix. 

For this work, Python 3.8 was used with the Tkinter package to 
create LoadPAT and its GUIs [52]. Furthermore, MATLAB was used for 
data analysis and for the creation of the figures. 

3. Methodology of the gradual anonymization 

In this chapter, we describe the methodology of the feature- 
conserving load profile anonymization. First, the differences between 
the levels of anonymization are explained (Section 3.1). Subsequently, 
the features used for anonymization are described (Section 3.2). After
wards, the computational process of the anonymization is described in 
Section 3.3. In Section 3.4, the interface to the BSS tool Simulation of 
stationary energy storage systems (SimSES) is described, and the storage 
parameters of the applications are defined. Finally, we describe how 
Monte Carlo simulations can be used to determine the influence of the 
level of anonymization and to measure the respective deviations from 
the original profile (Section 3.5). Beyond this presentation of the 
methodology, there is a presentation of the open-source tool including 
screenshots in the appendix (Section 7.4). 

3.1. Levels of anonymization 

The gradual anonymization methodology allows differentiation into 
different levels. Before the exact synthesis of load profiles is presented in 

Fig. 1. Exemplary day of the household load profile (January 14th, 2021) and 
EV high-power charging station load profile (February 2nd, 2022). 

Table 2 
Database of load profiles of the different applications.   

Household load 
profile 

Charging station load profile 

Storage application Home storage 
system 

High Power EV Charger with 
buffer 

Length of datasets 12 months 6 months 
Time period 2021 Mid-January 2022 to Mid-July 

2022 
Resolution 1 min 1 min 
Consumption 10.8 MWh 9.47 MWh 
Peak Power 8.685 kW 248.1 kW 
Industry/ Research 

Partner 
ISEA RWTH Industry Partner  
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the following sections, an example is used to explain the levels of ano
nymization. To illustrate the various levels of anonymization, Fig. 2 and 
Table 3 show the differences. The top left diagram (a) shows an 

exemplary original load profile. This profile is an EV charging station 
load profile over the course of a day. At this point, a daily profile is 
chosen to explain the procedure of the anonymization. In the later 
course, the permutations are carried out over the half-year (EV charging 
station) or full-year profile (household). The original daily profile has 
three peak sequences and four base sequences. 

In the anonymization level 1, the original profile is merely copied 
and can be normalized if desired (Fig. 2 b). This is to enable an exclusive 
normalization of load profiles. From level 2 onwards, features are 
determined for every peak and base sequence from the original profile 
and the profile is then reconstructed based on these features. In this 
level, the order of base sequences and peak sequences is maintained. 
Fig. 2 c shows an example of an anonymized load profile of level 2. This 
profile is remarkably similar to the original profile at first glance. 
However, at second glance, differences within the peaks become clear. 
These are due to the recreation of the profile using the features presented 
later. Thus, this level of anonymization can be applied by users of the 
method who want to modify or hide variations within base or peak se
quences. The occurrence of peaks and base sequences in this level takes 
place at the same time as in the original profile. In level 3, sequences are 
exchanged for the first time (Fig. 2 d). The base or rest sequences are 
created identically to the original profile, while the peak sequences are 
randomly permutated (red colored circles). In the example, the 
maximum peak is now the second peak, whereas in the original profile it 
was the third one. Peak sequence 2 and 3 have swapped accordingly. It 
can also be seen that the peak shape differs. The random creation of the 
shape of the sequences will be explained in Section 3.3. The third level of 
anonymization can be applied when users want to hide the exact times at 
which conspicuous peaks occur. For example, times when industries use 
certain machines could be randomly shifted in the load profile. In level 
4, instead of the sequence of peaks, the order of base sequences is 
randomly varied. In Fig. 2 e the maximum peak is again the third peak, 
for example. The very long base period (number 1) of over 9 h between 
midnight and 9:30 in the original profile is no longer present at the same 
place in this level. Instead, the profile starts with base sequence number 
four of about 8 h, which is at the end of the day in the original profile. 
Base sequence number one is now after the second peak. Anonymization 
in the fourth level changes the load profile more than in the levels 
before. The times at which characteristic peaks occur change due to the 
permutation of the base sequences, which means that the use of ma
chines or larger household appliances can no longer be assigned to 
typical times in the load profile. Level 5 finally combines the variations 
of level 3 and level 4, randomly varying the order of base sequences and 
the order of peak sequences. As a result, it is now no longer possible to 
read the order of the peaks from the load profile. An example of this level 
is shown in Fig. 2 f. Users who select this level of anonymization change 
the load profile the most. Typical characteristics of the load profile still 
occur, but at completely randomized times. We will discuss the effects of 
the levels of anonymization in Section 0. The use of a daily load profile 
in this section serves to illustrate the levels. Within the results, the full 
profiles are used, resulting in a larger number of base and peak se
quences. The permutations are always performed over the entire load 
profile present. For the EV charging profile this means over half a year 
and for the household load profile over one year. At this point, it should 
be noted that the division into the two types of sequences, base and 
peak, is only one possible way of analyzing the load profile that is 
commonly used. Alternatively, we could also divide the load profile into 
four types of sequences, as Haben et. al did with household load profiles 
[12]. 

3.2. Features extracted and used for the anonymization 

To generate the anonymized load profiles according to levels 2 to 5, 
features of the base sequences and the peak sequences are calculated. 
These features are shown in Table 4. For each base sequence, the length 
of the sequence, the mean value, the standard deviation, and the 

Fig. 2. Examples of daily anonymized load profiles depending on the level of 
anonymization. 

Table 3 
Difference between the levels of anonymization.  

Number of 
Level 

Description 

Level 1 Copying of profile and normalization 
Level 2 Feature extraction of sequences and profile creation based on 

features 
Level 3 Level 2 + permutation of peak sequences 
Level 4 Level 2 + permutation of base sequences 
Level 5 Level 2 + permutation of peak sequences and permutation of base 

sequences  

Table 4 
Features extracted for the anonymization. Every feature is calculated for every 
base and peak sequence.  

Peak Features Base Features 

Length/ timesteps of peak sequence 
without ramp-up and ramp-down (n) 

Length/ timesteps of base sequence (n) 

Maximum (Pmax) Maximum (Pmax) 
Minimum (Pmin) Minimum (Pmin) 
Mean of delta between two consecutive 

values (μΔ) 
Mean of delta between two consecutive 
values (μΔ) 

Standard deviation of delta between two 
values (σΔ) 

Standard deviation of delta between two 
values (σΔ) 

Probability of change of sign of the delta 
between two consecutive values 
(pchange of sign) 

Probability of change of sign of the delta 
between two consecutive values (pchange 

of sign) 
Mean of peak without ramp-up and 

ramp-down (μ) 
Mean (μ) 

Ramp-up length (nup)  
Ramp-down length (ndown)   
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maximum are saved. In addition, the mean delta between two values 
and the standard deviation of this delta are calculated. Moreover, the 
probability of a change in the sign of this delta is determined. For each 
peak sequence, basically the same values are determined. However, a 
distinction is made between ramp-up phase, peak without ramping and 
ramp-down phase. The mean value and the standard deviation are 
calculated for the peak without ramping. In addition, the length and the 
slope are determined for the ramp-up and ramp-down phases. 

3.3. Computational process of the anonymization 

This section describes the process of anonymization including the 
calculation of the individual values. Fig. 3 shows a flow chart of the 
process for clarification. If anonymization is to be performed in level 1 
with normalization, the profile is normalized to its maximum value. If, 
in contrast, the desired level is between 2 and 5, the original load profile 
is analyzed (a) and a synthetic load profile is created (b). 

In the profile analysis (a), the values of the original load profile are 
cleaned up by setting values smaller than zero to zero. Next, peak se
quences are determined by checking at which points in time the load 
profile has values above the defined threshold. Conversely, base se
quences are also determined in this way. If peak sequences are only one 
time step short, they are filtered out and count as part of the current base 
sequence. Afterwards, all peak sequences are analyzed one after the 
other. During this process, the features mentioned above are deter
mined. The average value of the respective peak sequence is used as the 
threshold value for the end time of the ramp up. Likewise, for the start of 
the ramp down phase the time is used in which the load falls below the 
average value for the last time before the end of the sequence. With the 
help of the lengths, the start and end values of the ramp up and ramp 
down sequences, their slopes are then determined. After the peak se
quences, the base sequences are analyzed, and the features shown in 
Table 4 are calculated. Finally, all values are saved for the subsequent 
creation of the synthetic load profile. 

In the profile creation (b), the procedure depends on the selected 
level. According to the selected level, the order of the peak and base 
sequences is kept (level 2), the order of the peak sequences is randomly 
mixed (level 3), the order of the base sequences is randomly mixed (level 
4) or both orders are randomly mixed (level 5). The synthetic profile is 

then created sequence by sequence. 
The procedure for generating the sequences is identical for peaks and 

base sequences. The general idea is to use the mean and standard de
viation of the delta of the original sequence together with the probability 
that the delta changes its sign to generate synthetic values successively 
as displayed in equation (1). The average value μ of the sequence is 
selected as the start value of the synthetic profile P1. Starting from this, 
the next value is determined using the mean μΔ and standard deviation 
σΔ of the delta of the original sequence. For this purpose, the standard 
deviation is multiplied by the absolute of a random value from the 
standard normal distribution X. As shown in equation (2), the sign sk 
used depends on the sign used in the last time step and the probability of 
a change of sign of the delta of the original profile pchange of sign. For 
example, if the probability were 100 %, the sign would be multiplied by 
− 1 each time and thus the direction of the delta would be reversed in 
each timestep. Since a low probability of a change of sign could result in 
very low or very high power values, the values are limited by the 
maximum Pmax and minimum Pmin of the sequence displayed in equation 
(3). If one of the limits is torn, the sign sk is reversed for the respective 
time step so that the range is maintained. If the other limit is exceeded 
due to the change of sign, the limit that was torn first is selected as the 
next value. This way, the synthetic sequence contains few more sign 
changes than the original sequence, but this is accepted by the advan
tage of the more realistic power range. Restriction to the range between 
maximum and minimum power may cause the mean value of the syn
thetic sequence to differ significantly from the mean value of the orig
inal. This is the case when the maximum is far above, or the minimum is 
far below the mean value. An outlier upwards then leads to higher 
values, for example. To reduce this discrepancy between the original and 
synthetic mean values, the sequence is scaled to the mean value of the 
original sequence. 

Pk = Pk− 1 + sk • (μΔ + σΔ • |X k| ) (1)  

sk = sk− 1 • s0 (2)  

Pmin ≤ Pk ≤ Pmax (3)  

With :

k = 2 ... n  

P1 = μ  

s1 = 1  

s0 =

{
− 1, pchange of sign
+1, 1 − pchange of sign  

X k ∼ N (0, 1)

n : Length of original sequence 

In addition to the individual base and peak sequences, the synthetic 
profile also includes ramp-up and ramp-down phases before and after 
peak sequences. To take the ramp-up into account, the ramp-up is syn
thesized based on the last power value of the previous sequence and the 
mean value of the following sequence. From these two values and the 
known length of the ramp-up and ramp-down from the original profile, 
the slope is determined, and the values are appended to the profile. The 
slope of the original profile is not used here because the last value of the 
previous sequence fluctuates over each simulation and using the original 
slope and length may cause an overshoot or jump in the profile. In the 
ways described, the base sequences, ramp-up phases, peak sequences, 
and ramp-down phases are iteratively appended to each other to 
generate the synthetic profile. The order of the sequences depends on the 
selected level of anonymization, as described above. 

Fig. 3. Flow chart of the process of the anonymization.  
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3.4. SimSES interface and storage parameters 

The storage system simulation tool SimSES is a python-based open- 
source tool that enables time-series-based simulation of storage systems 
[53]. In SimSES, a variety of parameters can be defined and varied. For 
example, users can select various energy-management-strategies (EMS) 
like PS or FCR or implement their own EMS [38]. Furthermore, various 
lithium-ion battery models with associated degradation models can be 
used. For a more detailed description of SimSES, please refer to [53]. 

In this work, SimSES is used to simulate BSSs in different applications 
using the original and the anonymized load profile. The applications are 
SCI for the residential load profile and PS for the EV charging station 
load profile. The standard sizing used in this work for the BSS in each 
application is shown in Table 5. In the SCI application the BSS is 
designed with 8.8 kWh and 7 kW, and the PV system has a power of 9.3 
kWp, since this was the design of the original system surveyed by the 
ISEA of RWTH Aachen University. As the focus of this work is on the load 
profiles, the PV profile available in SimSES is used as the default PV 
profile. The PV generation profile was measured at the Professorship 
Power Transmission Systems of the Technical University of Munich in 
2014. This profile corresponds to the location Munich and is scaled to 
the defined peak power of 9.3 kWp. The PV profile is open-source 
available as part of SimSES [53]. This peak power leads to a generated 
energy of the PV system of 8,373 kWh over the entire year. If the storage 
system is simulated with the described parameters and the original load 
profile over one year, 1,913 kWh are charged into the battery and 1,868 

kWh are discharged from the battery. 
In the PS application, the BSS is scaled to 140 kWh and 250 kW. The 

PS limit defined for the grid consumption is set to 32 kW in consultation 
with the industry partner whose load profile is being used. The designs 
are used for the simulations to show how the anonymization tool works 
and to quantify the impact on the BSS load. In Section 4.3, the influence 
of the design on the results is evaluated in more detail. 

The battery model used in both storage applications simulations is a 
lithium-ion nickel-manganese-cobalt cell from Sanyo, whose parameters 
have been published by RWTH Aachen [45]. The DC/DC converter is 
modeled as lossless and the AC/DC converter is modeled following a 
publication by Notton et al [54]. 

3.5. Monte Carlo simulations 

The generation of anonymized load profiles is based on random 
permutation of base and peak sequences in the different levels. This 
dependence on randomness leads to the fact that individual simulations 
can lead to special, non-representative results. Moreover, in the simu
lations, non-bijective mappings of load profile KPIs of the BSSs are 
created. Consequently, no inverse function can be formed to allow a 
correlation between storage behavior and load profile characteristics. 
Accordingly, 100 anonymized load profiles are generated for every level 
in Monte Carlo simulations. The results are ensembles in the solution 
space which are then evaluated statistically. In addition to the median of 
the typical KPIs, the scatter will also be shown in the results. In this way, 
we exclude the possibility that individual, very well-fitting results are 
displayed. 

Overall, this chapter and the tool description in the appendix show 
how an open-source anonymization tool can be designed to allow 
gradual anonymization in different levels for easy and straightforward 
use in industry and research. LoadPAT is available open source, it has 
GUIs that make anonymization easy for users and it has setting options 
like level of anonymization and threshold between base and peak 
sequences. 

4. Results 

This chapter presents the results of the work. In Section 4.1, exem
plary results of the anonymization are presented, and the load profiles 
are directly compared using various indicators. Subsequently, in Section 
4.2 the simulation results of SimSES of the original and the anonymized 
load profiles are compared. For this purpose, relevant storage KPIs are 
compared for the different storage applications. Finally, Section 4.3 
evaluates the influence of the threshold parameter between base and 
peak sequences, as well as the influence of BSS and PV design in sensi
tivity analyses. 

4.1. Comparison of the original and the anonymized load profiles 

In this section, exemplary results of LoadPAT simulation are pre
sented. Subsequently, the results of the Monte Carlo simulations are 
compared with respect to the similarity of the load profiles. An example 
of the anonymization of the EV charging station load profile is already 
shown in Fig. 2, where a one-day load profile was anonymized to 
demonstrate the functionality of the tool. Fig. 4 shows a one-day original 
household load profile together with exemplary profiles of the different 
levels of anonymization. The diagrams show that, as with the EV charge 
point load profile, the profile changes more as the level of anonymiza
tion increases. Especially the permutation of the base and peak se
quences is visible. 

For the following results, the two systems are designed according to 
Table 5 and the load profiles from Table 2 are anonymized. Conse
quently, the annual load profile is used for the household and the six- 
month load profile for the EV charging station. Permutations therefore 
take place over the entire profile length and not just over one day. For 

Table 5 
Storage parameters of the different applications used in the SimSES simulations.   

Home Storage System High Power EV Charger 
with buffer 

Profile description Household load 
profile 

Required load by charging 
EVs 

Energy-management 
strategy (EMS) 

SCI Peak-Shaving 

Battery capacity 8.8 kWh 140 kWh 
Max. power of storage 

system 
7 kW 250 kW 

Photovoltaic (PV) – nominal 
power 

9.3 kWp, Location: 
Munich 

– 

Peak-shaving-limit – 32 kW  

Fig. 4. Exemplary anonymized load profiles of a one-day household 
load profile. 
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each level, 100 anonymizations are performed in Monte Carlo simula
tions and the storage is simulated with SimSES. The evaluations in this 
section refer to the direct comparison of the load profiles without 
SimSES. 

Fig. 5 shows a comparison of four KPIs between the original and the 
anonymized profiles for the one-year household load profile. The KPIs 
are the mean (a), the standard deviation (b), the maximum value (c) and 
the energy (d). For each KPI, the results of the anonymization of the 
levels 2 to 5 are shown in boxplots. The boxes describe the inter quartile 
range from 25th to 75th percentile and the red line is the median. The 
black dashed vertical lines cover all values that are at most 1.5 times 
away from the maximum or minimum of the interquartile range. The red 
crosses show outliers that go beyond that. The horizontal dotted line 
represents the value of the original profile in each case. 

Within the three KPIs of mean, standard deviation, and energy there 
is no major difference between the original load profile and the ano
nymized load profiles. Only the occurring maximum in the original load 
profile cannot be reproduced exactly (c). This KPI is underestimated by 
up to 20%. As described in Section 3.3 the values of the anonymized 
sequence fluctuate randomly around the average original sequence 
value and between the maximum and minimum of the original 
sequence. By generating the sequences in this way, the maximum of the 
original sequence is not reached in every anonymized sequence. This 
effect can also be seen in Fig. 4. In the original profile, the maximum 
value is 4 kW. In the anonymized load profiles of level 2, 4 and 5, 
however, the value of 4 kW is not reached. The outliers in Fig. 5 whose 
maximum is above the maximum of the original load profile exist 
because each sequence is scaled to the mean value of the original 
sequence after generation. This can cause the maximum of the original 
load profile to be exceeded in rare cases. In general, forcing the original 
maximum to be reached would be possible. For example, the synthetic 
profile could be scaled so that the maximum corresponds exactly to the 
maximum of the original load profile. However, this would severely 
overestimate the mean value and energy consumption. If instead only 
the maximum value of the synthetic profile is set to that of the original, 
an unrealistically short, large peak would result, which is also not 
representative of the original profile. For these reasons, an underesti
mation of the load peak is tolerated at this point. Furthermore, Fig. 5 
shows that in all four KPIs, the differences between the levels of ano
nymization are not significant. This is because the permutation is not 

considered within these four KPIs as they are all time independent. 
Analogous evaluations are performed for the EV charging station 

load profile (appendix). The results are similar. Mean, standard devia
tion and energy are close to the original profile over all levels of ano
nymization. Furthermore, the maximum of the anonymized load profiles 
is again smaller than the original profile’s maximum. 

To determine the time-dependent similarity of the profiles to each 
other, a DFT of the original household load profile and of four exemplary 
profiles of the levels 2 to 5 was performed. This method has been used in 
the literature to cluster and classify load profiles based on periodic 
patterns [9,37]. The single-sided amplitude of the spectrum of the five 
profiles is shown in Fig. 6. The frequency range chosen is 0 mHz to 
0.0275 mHz, since this corresponds to a period of 10 h to the length of 
the profile (12 months). The top graph represents the single-sided 
amplitude of the spectrum of the original profile. The gray shaded 
areas correspond to periods of about 12 h, 24 h, and 7 days. The original 
profile shows a pronounced amplitude especially for a period of 24 h and 
for a period of 12 h. This profile therefore seems to have a period or 
regularity over days and half days. The period over 24 h emerges 
because peaks occur with a regularity at approximately the same times 
of the day. The period over 12 h, whose amplitude is smaller, can be 
explained by morning and evening load peaks. The spectrum of the 
profile in level 2, generated using the features from the original load 
profile, also shows regularity over days and half days. From level 3, 
where the order of the peaks is randomly permuted, the amplitudes 
disappear almost completely. There is only a slight increase at the 24- 
hour period in the spectrum. In Level 4 and 5, in contrast, regularity is 
no longer recognizable. This is due to the random permutation of the 
order of the base sequences, whereby the occurrence of peak sequences 
is shifted in time. 

Again, analogous to the industrial load profile, the frequency anal
ysis was performed for the EV charge point profile. The results are 
shown in Appendix. The original EV charging station load profile shows 
a regularity over 24 h. In level 2 this regularity can be maintained, while 
the amplitude in level 3 is smaller but still existing. From level 4 up
wards, the amplitude disappears completely. 

Overall, the analysis of the load profiles shows that time independent 
KPIs are preserved despite anonymization. In contrast, the regularity of 
base and peak sequences is lost due to anonymization, especially from 
level 3 upwards. 

Fig. 5. Comparison of time independent KPIs of original and anonymized one- 
year household load profiles. 100 anonymized profiles were generated for each 
level of anonymization. 

Fig. 6. Discrete Fourier transformation single-sided amplitude spectrum of one- 
year household load profile in the various levels. Resolution of data: 1 min. 
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4.2. Effects of the anonymization on relevant battery storage indicators 

After the load profiles were directly compared in the previous sec
tion, the battery storage applications are now simulated in SimSES using 
the load profiles. For this purpose, SimSES is invoked as described in 
Section 3.4 and the operation is simulated once with the original load 
profile and 100 times with anonymized profiles in every level. Subse
quently, various storage KPIs are compared, and it is checked to what 
extent the anonymization has influenced the behavior of the storage 
system. 

Fig. 7 shows six storage KPIs for the annual household load profiles. 
The load profiles were used to simulate a BSS in SCI application as 
described in Section 3.4. The appendix shows the same KPIs with the 
absolute values of the six storage KPIs. The calculations of the KPIs are 
shown in the appendix Section 7.2. The deviation over the anonymiza
tion levels 2 to 5 compared to the result when using the original load 
profile. The KPIs shown are the mean SOC (a), the EFCs (b), the mean 
DOD (c), the mean C-rate (d), the self-consumption rate (e), and the self- 
sufficiency rate (f). Diagrams a), c), e) and f), on the one hand, show 
deviations in percentage points, since their original values are already in 
percent. Diagrams b) and d), on the other hand, show the deviation in 
percent since their original values are absolute. Above each diagram the 
absolute value of the KPI of the original load profile is given. Since the 
deviation from the original is considered at this point, the value of the 
original is drawn as a dashed line at zero in each case. As in the previous 
section, the values of the 100 anonymized load profiles are shown as 
boxplots for each level. 

The figure shows that level 2 barely differs from the original in terms 
of the relevant storage KPIs. Mean SOC, EFCs, mean DOD and mean C- 
rate are close to the original load profile with small deviations within the 
100 anonymizations. The self-consumption rate and the degree of self- 
sufficiency deviate from the original by only about 1% on average. 
From level 3 upwards, the deviations from the original are greater with 
up to 10 percentage points for the self-consumption rate. However, 
despite the permutations and the abandonment of regularity (see Sec
tion 4.1), greater anonymization beyond Level 3 does not lead to greater 
deviations in the KPIs relevant for BSS. Accordingly, anonymization in 
level 5 does not appear to be more critical than in level 3 with respect to 
the KPIs relevant for home storage systems. From level 3 upwards, the 
average SOC can still be reproduced well. In simulations of the degra
dation of the BSS with the anonymized load profiles, this would mean 
that the calendar degradation can be represented well. The mean C-rate 
deviates only slightly from the C-rate of the original profile, at about 5%. 

The simulated BSSs make about 230 EFCs over the year from level 3 
instead of 218 in the original. This corresponds to an overestimation of 
under 6%. Mean DOD is also overestimated by about 2 percentage points 
resulting in a value of 8 to 9% instead of the 6.7% in the original. The 
bottom two plots show that the self-consumption rate and self- 
sufficiency rate are underestimated from Level 3, with deviations of 
up to 9 percentage points. 

In general, some of the results of the KPIs for the SCI case show a 
systematic overestimation (EFCs, DODs, C-rate) or underestimation 
(self-consumption rate and self-sufficiency rate) from level 3 to 5 
compared to the original values. The original load profile has distinctive 
peaks especially during the day. The anonymized load profiles between 
level 3 and 5 have their distinctive peaks distributed over the 24 h. A fan 
chart over the course of the day with all values for the year once for the 
original load profile (a) and once for an exemplary load profile in level 3 
(b) are shown in the appendix. This shows that the peaks from the 
daytime hours are distributed over the 24 h of the day due to the ano
nymization. The shift of the peak loads has an influence on the BSS KPIs. 
As a result, more energy is charged and discharged from the battery, so 
the BSS is fully discharged earlier at night and makes more EFCs overall. 
In addition, the BSS is discharged deeper during evening and night hours 
due to the load peaks which leads to an increase of mean DODs. The C- 
rate is slightly higher than the original since the BSS is charged more 
frequently during the day with high PV power because, for example, in 
level 3 higher day peaks are exchanged with lower peaks from the night 
and thus more power flows into the BSS. At level 4, the base sequences 
are permuted, which leads to even higher C-rates, since the higher base 
sequences from the daytime exchange with lower base sequences from 
the nighttime. Next, the self-consumption rate is lower, since less PV 
energy can be consumed immediately and, once the BSS is fully charged, 
a larger proportion of the PV energy is fed into the grid. In the evening 
and at night, more energy must be supplied from the grid, which de
creases the degree of self-sufficiency. Since the effects mentioned occur 
in levels 3, 4 and 5, but do not increase in levels 4 and 5, the KPIs remain 
relatively constant at higher levels. 

Fig. 8 shows BSS KPIs for the EV charging station load profile similar 
to Fig. 7 but over the period of six months instead of one year. Instead of 
self-consumption rate and degree of self-sufficiency, round-trip effi
ciency and fulfillment factor are displayed, as these are relevant for the 
PS application (see Section 1.1). The appendix again shows a diagram 
with the absolute values. The Y-axis scaling of the subfigures in Fig. 8 
differs from the scaling in Fig. 7 to show the spread of the boxplots. Fig. 8 

Fig. 7. Comparison of the deviation of BSS KPIs for the household load profile 
(1 year) in SCI application. a), c), e) and f) show the deviation in percentage 
points, b) and d) in percent. 100 anonymized profiles per level. PV: 9,3 kWp, 
E_Bat = 8,8 kWh, P_Bat = 7 kW. 

Fig. 8. Comparison of the deviation of BSS KPIs for the EV charging station 
load profile (6 months) in PS application. a), c), e) and f) show the deviation in 
percentage points, b) and d) in percent. 100 anonymized profiles. E_Bat = 140 
kWh, P_Bat = 250 kW, Peak-Shaving with Threshold 32 kW. 
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shows that in all KPIs, the anonymized load profiles show only minor 
deviations from the value of the original load profile of up to 3% for the 
C-rate and 3 percentage points for the mean DOD. For example, the 
mean SOC deviates by only up to 0.3 percentage points. More impor
tantly, the fulfillment factor corresponds to the original across all levels. 
In contrast to the SCI application, the deviation is constant over the four 
levels of anonymization. This is because the PS application does not 
depend on a time-varying PV generation. From level 3 onwards, the 
permutations cause a shift in the peaks, but this has no influence on the 
relevant BSS KPIs. This can also be seen from the fact that level 2, in 
which there are no permutations, deviates just as strongly in most KPIs 
as levels 3 to 5. The largest noticeable deviation across all six KPIs is 
mean DOD, which is underestimated by up to three percentage points, 
resulting in a mean of around 11.3% instead of 13.5%. To explain this 
underestimation, fan charts are included in the appendix showing the 
original load profile (a) and a level 3 anonymized load profile (b) over 
the course of the day. Similar to the fan charts of the household in, the 
diagrams show that there is a homogenization of the load peaks over the 
24 h. This homogenization decreases the mean DOD of the BSS, since the 
BSS is discharged less frequently by several consecutive load peaks. 
Furthermore, the maximum of the peaks is smaller as described in Sec
tion 4.1, which leads to a decrease of the DOD. For the same reason, the 
average C-rate is smaller compared to using the original load profile. 

Overall, our analyses reveal three results: First, load profiles for use 
in simulations of time-independent applications such as PS can also be 
anonymized up to level 5 and thus be strongly modified without 
changing KPIs relevant for BSS excessively. Smaller characteristic pe
culiarities in the sequences of the original load profile are consequently 
not relevant and can be replaced by mean values and random fluctua
tions. Second, load profiles in time-dependent applications such as SCI 
can easily be anonymized in level 2 without changing BSS KPIs drasti
cally (approximately 1% in all KPIs). Vice versa, the anonymized profiles 
can well be used to design a BSS with suitable sizing and realistic esti
mation of battery degradation. From level 3, the deviations are larger by 
up to 9 percentage points, and users would have to decide for themselves 
whether the deviation is still within a reasonable range in order to 
realistically represent the original load profile through anonymization. 
Third, if it is decided to anonymize the load profile beyond level 2 in 
time-dependent applications, higher anonymization in level 4 or 5 does 
not lead to larger deviations in the relevant BSS KPIs compared to level 
3. Accordingly, the load profiles can then be changed more strongly to 
achieve higher anonymization. 

4.3. Sensitivity analysis of threshold and system design 

In this section, we perform a sensitivity analysis of the SCI case with 
the household load profile to explain the impact of three sensitivity 
parameters on the results. The first sensitivity parameter is the threshold 
between base and peak sequences. This threshold describes the bound
ary between base and peak sequences as a multiple of the mean value of 
the load profile. It can be freely chosen by the users and is set to 130% in 
the base case, as this provides good separation between base and peak 
sequences. Basically, a shift in the threshold means that the division into 
base and peak sequences changes. If, on the one hand, the threshold is 
set very low, large power variations are all defined as peaks, which leads 
to larger fluctuations but lower maxima in the peak sequences of the 
anonymized load profile. If, on the other hand, it is set very high, the 
base sequences will have large fluctuations and the peak sequences 
become shorter but more pronounced. 

Fig. 9 shows for the household load profile the six BSS KPIs for the 
original load profile and the medians of the four levels of anonymization 
over the varying threshold. The threshold is varied in a range from 90% 

to 170% in 20% steps. The diagram shows the deviations of the KPIs 
from the original value, which is set to 0 as in Fig. 7. The values of levels 
2 to 5 correspond to the median value of 100 anonymizations. For a 
better understanding of the absolute values, a diagram showing the 
respective absolute KPIs is presented in Appendix. The number of EFCs 
increases over all levels slightly as the threshold rises (b). If the 
threshold is low, more shares of the profile are evaluated as peaks, so 
that the peak sequences have larger differences between their maximum 
and minimum. This leads to the fact that the maxima are reached less 
often and a larger part of the peak sequences can be covered by the PV 
energy. At a higher threshold the peak sequences become shorter, but 
more pronounced. These more pronounced peaks can no longer be 
covered directly by PV generation. Therefore, more peaks must be 
covered by the BSS, which increases the number of EFCs. Furthermore, 
the self-consumption rate (e) and self-sufficiency (f) decrease slightly in 
level 2 but remain relatively constant in levels 3 to 5. The decrease in 
level 2 comes from the larger fluctuations within the base sequences and 
the higher maxima in the peak sequences that occur at higher thresh
olds. This means that a slightly smaller proportion of the PV energy can 
be consumed directly. In the higher levels of anonymization, the per
mutations have already changed the load profiles in such a way that the 
influence of the threshold is lower than in level 2. Overall, Fig. 9 shows 
that level 2 deviates the least from the original across all thresholds, as 
expected. Over the varying threshold, however, the deviations within 
each level change only slightly. The influence of the choice of threshold 
is therefore small. 

As a second parameter, the BSS capacity of the home storage system 
is varied. Fig. 10 show the variation between 4.8 kWh and 12.8 kWh 
with a step size of 2 kWh in the same format as for the threshold vari
ation. Again shows the absolute values, while Fig. 10 shows the devia
tion. In contrast to the variation of the threshold, this variation of 
capacity also changes the value of the original profile. Therefore, the 
original value is shown as a single line and not as a horizontal line. Since 
Fig. 10 shows the deviation from the original, the respective original 
value is again shown as 0. 

Basically, shows that, for example, the EFCs decrease with increasing 
capacity, while the self-consumption rate and self-sufficiency increase. 
Here, the influence of the storage design on the six parameters exists as 

Fig. 9. Sensitivity analysis of the SCI use case with household load profiles: 
Threshold between base and peak sequences. Threshold defined as percentage 
of profile’s mean value. The levels’ values are the median values of 100 sim
ulations. The subplots show the deviation of the results in the levels compared 
to the original in percentage (b, d) and percentage points (a, c, e, f). 
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expected. Analogous to the analysis of threshold sensitivity, level 2 
again shows the smallest deviations from the original profile (Fig. 10). 
Furthermore, the deviation of levels 3 to 5 in terms of mean SOC 
(around + 1 to − 1.5 percentage points), mean DOD (around 2 per
centage points), self-consumption rate (-9 to − 5 percentage points) and 
degree of self-sufficiency (-7 to − 4 percentage points) is approximately 
constant over the increase in BSS capacity. An increase in storage ca
pacity, on the other hand, leads to greater deviations regarding EFCs (2 
to 10 %) and mean C-rates (1 to 10%). These deviations are constant 
over the levels. As described in Section 4.2, the presented anonymiza
tion leads to more EFCs. If the BSS capacity is now increased, more 
energy can be discharged at night by peaks occurring only in the ano
nymized load profile. Thus, the deviations of EFCs increase with 
increasing BSS capacity. The same applies to the C-rate, which is higher 
on average because the BSS must more frequently cover the peak loads 
that cannot be covered by the PV system. Overall, this sensitivity anal
ysis shows that anonymization is relatively robust with respect to the 
selected storage capacity. 

Finally, Fig. 11 show the variation of the PV peak power between 5.3 
kWp and 13.3 kWp in 2 kWp steps for the household load profile case. 
First, as with the BSS capacity variation, the influence of the size of the 
PV system on the KPIs can be seen: If the PV system is larger, the EFCs 
increase because more PV energy can be stored. Likewise, the mean C- 
rate increases, since the BSS is charged with a higher power due to the 
larger PV system. In addition, the self-consumption rate decreases and 
the self-sufficiency rate increases with increasing PV nominal power, as 
has already been confirmed using field data [51]. The results in Fig. 11 
are similar to those in Fig. 10. The deviations across the enlarged PV 
system are relatively constant for mean SOC, mean DOD, self- 
consumption rate, and self-sufficiency. However, in contrast to the 
BSS evaluations, the deviations of the EFCs and mean C-rates are large 
for small nominal PV power of 5.3 kWp with up to 20% over the levels 3 
to 5. If the PV system is small, the EFCs are therefore overestimated. The 
EFCs of the BSS in the original load profile are 137, while they are 163 
when anonymized according to level 5 which is an overestimation of 
19%. Basically, a smaller PV system can only insufficiently cover the 
load by the household (degree of self-sufficiency decreases). The per
mutation of the peak sequences and the possible shift to times without 
PV generation means that the BSS can be charged more during the day 
but is also discharged more at night. For this reason, EFCs increase 
especially when the nominal PV power is small. 

Overall, this section answers the question of how sensitive the results 

are to the threshold between base and peak sequences and the system 
design. The influence of the threshold is rated as low. The BSS KPIs 
change only slightly by varying the threshold and the deviations be
tween original and the different levels of anonymization remain rela
tively constant. In principle, this also applies to the variation of the 
capacity of the BSS and the nominal power of the PV system. Only 
particularly large capacities of the BSS and small nominal PV power lead 
to stronger deviations between two KPIs of the anonymized load profiles 
and those of the original (EFCs and C-rate). A realistic dimensioning of 
the system design is therefore necessary. 

5. Conclusion and outlook 

This chapter summarizes the work in Section 5.1. Furthermore, in 
Section 5.2, we discuss the usability of the tool and the strengths and 
weaknesses of the methodology, and we give an outlook on how the 
presented work could be followed up. 

5.1. Conclusion 

In this work, a methodology of anonymization of load profiles is 
presented. For this purpose, the existing literature of load profile clus
tering and anonymization is presented first. Within this research we find 
that a methodology to gradually anonymize existing load profiles has 
not been published yet. Hence, we develop a methodology to fill this 
research gap. Our approach extracts features from the original load 
profile and separates the profile into base and peak sequences. A syn
thetic, anonymized load profile is then generated from the features of 
each sequence. The gradual anonymization is enabled by anonymizing 
in different levels. A simple normalization of the original load profile is 
possible in level 1. In Level 2, the features are extracted and used for 
profile generation along with random values of the standard normal 
distribution, which represent a type of noise. From level 3 on, peak or 
base sequences are permuted. In level 3, the peak sequences are 
permuted in a random way, which shifts peaks that are characteristic for 
the load profile in time. In level 4, the base sequences are permuted in a 
random manner. The order of the peaks is preserved, but they also shift 
in time due to the change in base sequences order. Finally, level 5 allows 
the combined permutation of base sequences and peak sequences. This 
results in more strongly modified load profiles. To make the presented 
methodology usable for the public, the open-source load profile ano
nymization tool LoadPAT was developed. LoadPAT is coded in Python 

Fig. 10. Sensitivity analysis of the SCI use case with household load profiles: 
Storage capacity. The levels’ values are the median values of 100 simulations. 
The subplots show the deviation of the results in the levels compared to the 
original in percentage (b, d) and percentage points (a, c, e, f). 

Fig. 11. Sensitivity analysis of the SCI use case with household load profiles: 
Nominal PV power. The levels’ values are the median values of 100 simulations. 
The subplots show the deviation of the results in the levels compared to the 
original in percentage (b, d) and percentage points (a, c, e, f). 
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and can be used on any computer. This allows companies, research in
stitutions and private individuals to keep the original data on their 
computers and to create and subsequently share the anonymized load 
profiles themselves. The methodology presented and LoadPAT answer 
our first research question, how load profiles can be anonymized grad
ually and how an open-source tool could look like that allows ano
nymization and enables an easy and straightforward use in industry and 
research (RQ 1). 

Two load profiles were selected as use cases for testing the meth
odology within LoadPAT: A household load profile and an EV charging 
station load profile. For both use cases, 100 anonymized load profiles 
were created in Monte Carlo simulations across all possible levels. 
Subsequently, the anonymized load profiles were compared with the 
original load profile in each case. The results showed that the anony
mized load profiles correspond to the original load profile in time- 
independent KPIs, such as the mean value or the standard deviation. 
However, a subsequent analysis of the amplitude of the DFT of the load 
profiles shows that the regularity of the load profiles is lost due to 
anonymization from level 3 upwards (RQ 2). 

Afterwards, the original and anonymized load profiles are used as 
input profiles for the storage simulation tool SimSES and various storage 
applications are simulated. The household load profiles are used to 
simulate a SCI scenario. The EV charging station load profiles are used 
for a PS scenario. Our results show that anonymizing load profiles has 
only minor impact on KPIs relevant to BSS in time-independent storage 
applications such as PS. However, if time-dependent storage applica
tions such as SCI (dependence on PV generation) are considered, ano
nymization from level 3 leads to larger variations in relevant KPIs. If, on 
the one hand, this variation is considered by users to be significant, 
anonymization should only be performed up to level 2. If, on the other 
hand, it is considered acceptable, anonymization can even be performed 
up to level 5, since the differences between the KPIs of level 3 and 5 are 
small (RQ 3). 

Finally, we perform a sensitivity analysis in which we evaluate the 
influence of the threshold value between base and peak sequences and 
the influence of the system design (RQ4). This analysis indicates that 
although the choice of threshold leads to slightly different results, the 
deviations are relatively constant across the different levels of ano
nymization. The system design of storage capacity and PV system shows 
similar results. The KPIs relevant to BSS change with capacity and PV 
system size, as expected. The deviations across levels are also relatively 
constant here, except for particularly large capacities and particularly 
small PV systems. 

5.2. Discussion and outlook 

The presented methodology of LoadPAT allows the modification of 
load profiles so that characteristic times of peak and base phases are no 
longer identifiable. The methodology works for various types of load 
profiles such as the rather continuous household load profiles, but also 
the more event-based load profiles of EV charging stations. Moreover, 
the original load profile cannot be reconstructed from the anonymized 
load profiles, especially from level 3 onwards, due to the random per
mutations of a large number of peak or base sequences. In addition, the 
approach is easy to understand, does not require large data sets or 
processes with artificial intelligence involved. LoadPAT is easy to use 
because of the GUI including graphical representation of the load pro
files. Users can select the threshold between base and peak sequences 
and the level of anonymization, and if needed, normalize the load profile 
to the maximum value. They can even simulate the created load profile 
in the tool in different storage applications. A weakness of the meth
odology is that characteristic peaks (e.g. typical machines of a company) 

are shifted in time but can still be recognizable even at the highest level 
of anonymization. Here, the tool could be extended in the future to 
explicitly blur selected peaks. Furthermore, in the present version of the 
tool the resolution of the load profiles cannot be changed, and profiles 
cannot be shortened or extended. In addition, the permutations from 
level 3 are always performed over the entire length of the profile. A 
selectable period for the permutations, for example over weeks, could 
maintain seasonal fluctuations within the load profile. Another 
approach would be to extract a daily load profile from a monthly orig
inal load profile that is as representative as possible but anonymized. 
Similarly, a methodology could be developed to extract an anonymized, 
representative load profile from a set of load profiles. An approach that 
has already been published several times is the clustering of load profiles 
to summarize similar load profiles [14-16]. The LoadPAT methodology 
could be used to aggregate larger data sets of anonymized load profiles 
that would not be allowed to be shared without anonymization. Here, 
users could be allowed to upload their anonymized load profiles to a 
publicly available platform. This database could be made freely avail
able to users from industry and research and thus contribute to the 
standardization of load profiles. In addition, the methodology could also 
be further developed and adapted so that real-time smart meter data can 
be anonymized with the goal of masking resident attendance times. 
Finally, the methodology could be extended to storage profiles that are 
not only positive but change sign through charging and discharging. 

Data availability 

The Load Profile Anonymization Tool (LoadPAT) presented in this 
paper can be downloaded as an open-source Python version from Gitlab 
[55]. The household load profile will be part of a future publication and 
the EV charging station load profile is subject to a non-disclosure 
agreement. 
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Appendix 

Existing literature on analysis and clustering of load profiles 

Table A1 

Equations of the storage KPIs 
The KPIs used in this work for the behavior of the BSS are presented below. First, the mean SOC results from all SOC values of the storage profile 

(Equation (4)). We calculate the number of equivalent full cycles (EFCs) analogous to [38] after equation (5) using the energy charged into the storage 
system over the entire profile divided by the energy of the storage system. The mean DOD is also calculated analogously to [38] from the SOC at the 
start of the cycle minus the SOC at the end of the cycle (equation (6)). According to equation (7), the mean absolute C-rate is calculated using the 
absolute mean value of the current in ampere divided by the battery capacity in ampere-hours. The two KPIs relevant to self-consumption increase, the 
self-consumption rate and the degree of self-sufficiency, are derived from equation (8) and (9), respectively. The self-consumption rate, on the one 
hand, describes what proportion of the energy generated by the PV was consumed by the household or industry consumer. For example, if no energy is 
fed into the grid, the self-consumption rate is 100%; if half of the PV energy is fed into the grid, the self-consumption rate is 50%. The degree of self- 
sufficiency, on the other hand, describes the independence from the grid and therefore depends on the total consumption and the grid supply. If no 
energy is drawn from the grid, the degree of self-sufficiency is 100%, if half of the required energy is drawn from the grid, the degree of self-sufficiency 
is 50%. The round-trip efficiency is the energy discharged from the storage divided by the energy charged into the storage (equation (10)) [38]. 

The charged energy is corrected in the formula to account for the SOC offset between the beginning and end of the simulated period. The fulfillment 
factor, which is the percentage of time that the system was able to fulfill the requested service, is calculated using equation (11) [49]. Here, P* stands 
for the realized power and Psys for the power requested by the system. 

SOCmean =

∑n
t=1SOC(t)

n
(4)  

EFCs =
Epos

total profile

EBSS
(5)  

DODmean =

∑m
k=1SOCcycle k,start − SOCcycle k,end

m
(6)  

C − rateabs,mean =
|̄I|

CBattery
(7)  

Self consumption rate = 1 −
Egrid feed in

EPV Generation
(8)  

Self sufficiency = 1 −
Egrid supply

Eload total
(9)  

ηBSS =

⃒
⃒
⃒Eneg

total profile

⃒
⃒
⃒

⃒
⃒
⃒Epos

total profile

⃒
⃒
⃒ − [SOCend − SOCstart] • EBSS

(10)  

Fulfillment factor = 1 −

∫ ( ⃒
⃒P*(t) − Psys(t)

⃒
⃒
)
dt

∫ ( ⃒
⃒Psys(t)

⃒
⃒
)
dt

(11)  

With :

n : Length of load profile 

Table A1 
Summary of literature on load profile analysis and feature extraction.  

Source Date Focus Results 

Price [8] 2010 Load analysis Definition of five parameters to characterize load shapes in time-domain: Base load, peak load, rise time, high-load 
duration, fall time. 

Haben et al.  
[12] 

2016 Load analysis & clustering Analysis of customer smart meter data including seven attributes that describe relative seasonal and intraweekly power 
and standard deviation. Those attributes of each profile are used in a finite mixture-based clustering. 

Al-Otaibi et al.  
[13] 

2016 Feature extraction for 
clustering 

Calculation of specific maxima and minima in time range as features together with normalization and scaling leads to 
sufficient clustering results with much fewer features compared to 48 half-hour values of a daily load profile. 

Wang et al.  
[11] 

2019 Load analysis, forecasting & 
management 

Review on smart meter data analytics: Load profiling can be done directly using the time-series and indirectly using 
suitable features extracted from the profile. 

Park et al. [14] 2019 Clustering Direct clustering of building load profiles extracting three fundamental profiles that 94% of 1,832,807 daily load 
profiles of 3,829 buildings can be assigned to 

Trotta [15] 2020 Clustering (k-means) Four clusters of Danish household load profiles are identified including seasonal fluctuations. 
Li et al. [9] 2021 Load analysis Combination of time-domain (based on the work of Price [2]) and frequency-domain load profile analysis of 

commercial office buildings. Time-domain analysis based on six key parameters of the load profiles. 
Czétány et al.  

[16] 
2021 Clustering Three clusters of Hungarian household load profiles on daily and on yearly basis are identified. The K-means algorithm 

is favorable against fuzzy k-means and agglomerative hierarchical clustering. 
Elahe et al.  

[17] 
2022 Feature extraction Identification of households with plug-in electric vehicles using a new feature extraction technique.  
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m : number of cycles  

Illustration of the two original load profiles 
The Figs. A1 and A2 describe the annual household load profile and the 6 months electric vehicle charging station load profile described in Section 

2. 

Description of LoadPAT 
In this chapter we describe the open-source load profile anonymization tool LoadPAT. The basic idea of LoadPAT is to characterize a load profile 

and generate an anonymous, synthetic load profile based on various features. The similarity between the synthetic load profile and the original load 
profile can be distinguished by the user based on five anonymization levels. A screenshot of the GUI is shown in Fig. A3. On the left side, the levels of 
anonymization are explained. On the right side, the anonymization can be performed step by step. In step 1, the users browse to a CSV of the original 
load profile. Afterwards, the original profile is already plotted. 

Fig. A1. Annual household load profile for 2021.  

Fig. A2. 6 months electric vehicle charging station load profile from Mid-January 2022 until Mid-July 2022.  

Fig. A3. Graphical User Interface of LoadPAT.  
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In step 2, users then select the level of anonymization. Here they can also click in a tick box on “Normalization to 1” to normalize the load profile to 
the maximum value. In addition, the threshold between base and peak sequences can be set in this step. This threshold is to be specified as a percentage 
value of the average value of the original profile. If, for example, 100% is selected, the threshold value corresponds to the mean value. In our sim
ulations we choose as threshold 130%, as this provides good separation between base and peak sequences. To support the selection of the threshold 
value, the plot of the original profile shows once the average value of the profile dashed and once the threshold value. By clicking on “Update Plot”, 
users can update the original plot after changing the threshold value. 

In step 3, the actual anonymization takes place. By clicking on the “Anonymize” button, the anonymization is performed. The methodology of the 
anonymization is explained in detail in Section 3.3. The anonymized profile then appears next to the original load profile, and the users can compare 
the profiles visually. Moreover, some key metrics like mean values, standard deviation and maximal values are displayed next to the “Anonymize” 
button. If users are not satisfied with the generated anonymous profile, they can generate a new profile by clicking the button again. 

In step 4, users can simulate the original profile and the anonymized profile in a battery storage application via the storage simulation tool SimSES. 
Finally, in step 5, users can save their anonymized profile. To analyze the operation of LoadPAT, it is furthermore possible to run many anonymizations 
in Monte Carlo simulations followed by storage system simulations across all levels in succession. 

In this work, SimSES is invoked by LoadPAT and a BSS is simulated in different applications using the original and the anonymized load profile. The 
GUI for using SimSES within LoadPAT, which appears when clicking the “SimSES Simulation” button in the main window of the GUI, is shown in 
Fig. A4. On the left side, users can set parameters. First, this is the storage capacity in kWh and the maximum power of the storage in kW, which is 
limited by the power electronics. In addition, the start SOC and the resolution of the time series simulation must be defined. Furthermore, a lithium-ion 
cell and the EMS can be selected via drop-down menus. Depending on the EMS, the size of the PV system (SCI) or the limit for PS must then be defined. 
Afterwards, the storage behavior can be simulated with the original load profile and with the anonymized load profile. By clicking the “Show Results” 
button after the simulations are completed, the results of the storage simulation are displayed on the right side. In the upper part, the key KPIs 
determined by SimSES for the original profile and the anonymized profile are displayed as a table together with the percentage deviation. Below this, 
histograms for the KPIs SOC, C-rate, DOD and temperatures are plotted, allowing users to compare these four KPIs graphically. Finally, users can save 
the results from SimSES by clicking on the corresponding button. If users are satisfied with the results, they can then save the anonymized profile in the 
main window of LoadPAT. As of this publication, users have access to three battery models, two NMC-based lithium-ion batteries (SanyoNMC and 
MolicelNMC) and one iron-phosphate lithium ion battery (SonyLFP), whose data have been published in various publications [43,45,46,56]. As EMS, 
users can choose between two strategies: A strategy of SCI of PV energy (ResidentialPvGreedy) and a PS strategy (SimplePeakShaving). 

Results of the comparison of the original and the anonymized load profile for the EV charging station load profile 
Fig. A5 shows the comparison of load profiles for the EV charging station load profile. Fig. A6 shows the single-sided amplitude spectrum of the 

original profile and 5 exemplary anonymized load profiles for the EV charging station. 

SimSES KPI comparison: Plots of absolute values 
Figs. A7 and A8 show the comparison of the BSS KPIS for the household load profile anonymization and the EV charging station load profile 

anonymization in absolute values. 

Fan chart of the original household load profile and an exemplary load profile anonymized in level 3 
The Figs. A9 and A10 show fan charts of the original load profiles and one exemplary anonymized load profile from level 3 over the course of the 

day as mentioned in Section 4.2. 

Results of the sensitivity analyses of Section 4.3 
The Figs. A11–A13 show the absolute values of the BSS KPIs of the sensitivity analysis. In Section 4.3 Figure Fig. 9, Fig. 10 and Fig. 11 the de

viations from the original values are displayed. 

Fig. A4. Graphical User Interface of SimSES in LoadPAT.  
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Fig. A5. Comparison of load profiles. EV charging station load profile (6 months). 100 anonymized profiles per original profile.  

Fig. A7. Comparison of the BSS KPIs for the household load profile (1 year) in SCI application. 100 anonymized profiles per level. PV: 9,3 kWp, E_Bat = 8,8 kWh, 
P_Bat = 7 kW. 

Fig. A6. Discrete Fourier Transformation single-sided amplitude spectrum of 6-months EV charging station profile in the different levels. Time resolution of profile: 
1 min. 
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Fig. A9. Fan chart of the household load profiles over the course of the day. 365 values per minute (data for 1 year). The top diagram (a) shows the plot for the 
original load profile, the bottom diagram (b) the plot for an exemplary level 3 anonymized load profile. 

Fig. A8. EV charging station load profile (6 months). Comparison of SimSES characteristics. 100 anonymized profiles. E_Bat = 140 kWh, P_Bat = 250 kW, Peak- 
Shaving with Threshold 32 kW. 
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Fig. A10. Fan chart of the EV charging station load profiles over the course of the day. 181 values per minute (data for 6 months). The top diagram (a) shows the plot 
for the original load profile, the bottom diagram (b) the plot for an exemplary level 3 anonymized load profile. 

Fig. A11. Sensitivity analysis of the SCI use case with household load profiles: Threshold between base and peak sequences. Threshold defined as percentage of 
profile’s mean value. The levels’ values are the median values of 100 simulations. The subplots show the absolute values of the results in the levels. 
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