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A B S T R A C T   

Lithium-ion batteries are used for both stationary and mobile applications. While in the automotive industry 
standard profiles are used to compare the performance and efficiency of competing vehicles, a similar 
comparative metric has not been proposed for stationary battery energy storage systems. Because standard 
profiles are missing, the comparable evaluation of different applications with respect to efficiency, long-term 
behavior and profitability is very difficult or not possible at all. This work presents a method to create these 
standard profiles and the results are available as open data for download. Input profiles including frequency data, 
industry load profiles and household load profiles are transformed into storage profiles including storage power 
and state of charge using a holistic simulation framework. Various degrees of freedom for the energy manage
ment system as well as for the storage design are implemented and the results are post-processed with a profile 
analyzer tool in order to identify six key characteristics, these being: full-equivalent cycles, efficiency, depth of 
cycles, resting periods, number of changes of sign and energy throughput between changes of sign. All appli
cations examined in this paper show unique characteristics which are essential for the design of the storage 
system. E.g., the numbers for annual full-equivalent cycles vary from 19 to 282 and the efficiency lies between 
83% and 93%. With aid of this work in conjunction with the open data results, users can test and compare their 
own cell types, operation strategies and system topologies with those of the paper. Furthermore, the storage 
power profiles and state of charge data can be used as a reference for lifetime and profitability studies for sta
tionary storage systems.   

1. Introduction 

A high share of renewable energies poses new challenges to the 
power grid. Due to decreasing costs of Lithium-Ion Battery (LIB), sta
tionary Battery Energy Storage Systems (BESSs) are discussed as a viable 
building block in this context. In Germany, the installed storage power 
with batteries increased from 126 MW in 2015 to over 700 MW in 2018 
[1]. Many use cases seem to be of interest for BESSs, as summarized in a 
report by Eyer and Corey [2]. In particular, the provision of Frequency 
Containment Reserve (FCR), Peak Shaving (PS) in the industry sector 
and Self-consumption Increase (SCI) in the private sector are seen as the 
most prominent applications for BESSs [3,4]. There seems to be 

consensus, that these applications are the main drivers for the stationary 
battery storage market. However, if it comes to quantitative analyses of 
profitability, efficiency and aging of storage systems in a singular use 
case or even across applications, striking differences in numbers become 
apparent. In order to make single applications easier to compare, 
open-source available reference profiles for stationary BESS, similar to 
the widely used Worldwide Harmonized Light Vehicles Test Procedure 
(WLTP) for electric vehicles applications, are suggested herein and may 
help to assess the performance of BESSs. 

1.1. Literature review 

The state of the art of LIB based stationary BESSs is reviewed e.g. by 
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Diouf et al. [5] and Hesse et al. [3]. Both conclude that LIB based sta
tionary BESSs have advantages in different stationary applications 
compared to alternative technologies. A more general overview of sta
tionary storage systems, including other storage technologies, is given 
by Palizban and Kauhaniemi [6], Resch et al. [4] and Dunn et al. [7]. All 
authors highlight the high efficiency of LIB-based BESSs, but the 
numbers, due to different definitions, vary from less than 90% up to 
94%. A systematic review of Energy Management System (EMS) for 
BESS was published by Weitzel and Glock [8]. The placement in dis
tribution grids of stationary BESS is summarized in the review of Das 
et al. [9]. An example for optimized placement using simultaneous 
perturbation stochastic approximation method was published by 

Carpinelli et al. [10]. 
Regarding the provision of FCR with BESS, a number of papers have 

been published in the past. Specifically for several techno-economic 
evaluations different approaches exist [11–15]. Münderlein et al. [16] 
analyzed a large scale 5 MW and 5 MWh BESS in the FCR market. Apart 
from the fact that the focus of the individual authors is different, it is 
noticeable that many different numbers exist. For example the authors 
in [16] determined 147 Full Equivalent Cycles (FEC) per year, while the 
numbers of FECs in [13] varies from 207 to 254 per year. 

In the case of SCI, many publications with various objectives exist. 
The publications can be split into economic analyses [17–20] and sizing 
of the system [21–23]. All authors conclude that a BESS for SCI can be 

List of Abbreviation 
AC Alternating Current 
BESS Battery Energy Storage System 
C Carbon-Graphite 
DC Direct Current 
DOC Depth of Cycle 
DOF Degrees of Freedom 
E-rate Energy Rate 
ECM Equivalent Circuit Model 
EMS Energy Management System 
FCR Frequency Containment Reserve 
FEC Full Equivalent Cycles 
IDM Intra-Day Market 

IP Input Profile 
LFP Lithium-Iron-Phosphate 
LIB Lithium-Ion Battery 
NMC Nickel-Manganese-Cobalt-Oxide 
OCV Open Circuit Voltage 
PE Power Electronics 
PER Power to energy ratio 
PS Peak Shaving 
PV Photovoltaic 
SCI Self-consumption Increase 
SimSES Simulation Tool for Stationary Energy Storage Systems 
SP Storage Profile  

Fig. 1. Graphical overview of this work. The input profiles including frequency data, industry load profiles and household load profiles are transformed into storage 
profiles including storage power and state of charge using the simulation framework SimSES. The selection of suitable reference profiles is done with a profile 
analyzer tool developed as part of this publication. 
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economically viable, if the Photovoltaic (PV) unit and the storage ca
pacity are dimensioned correctly. However, a wide variety of input data 
and parameters for the storage system (e.g. the efficiency for the LIB 
varies from 95% in [21] to 98% in [20]) are used in the publications, 
which makes comparability difficult. 

For industry PS BESSs with LIB, fewer publications are available, in 
contrast to SCI BESSs. Martins et al. [24] present an approach for an 
optimal component sizing and the authors also performed an economic 
analysis. They showed in a case study that the number of FEC varies 
between 1 and 51 per year. Dagdougui et al. [25] show an EMS for a real 
world example. They optimized the size of a PS BESS for a university 
campus. It has been found that in this example the economically optimal 
storage capacity is 436 kWh. Telaretti and Dusonchet [26] concucted an 
economic analysis and compared the use of LIB in PS applications with 
three other electrochemical technologies: Lead-acid, flow based batte
ries and sodium-sulphur. 

Although each author makes different assumptions and sets the focus 
differently, the results, some of which are very diverse, indicate that 
open data available standards for stationary BESS are desired. 

1.2. Scope of this work 

This work presents a method to create standard Storage Profile (SP) 
including the storage power and the SOC from Input Profile (IP) 
including frequency data, industry load profiles and household load 
profiles. The IPs are transformed into SPs by using the holistic simula
tion framework Simulation Tool for Stationary Energy Storage Systems 
(SimSES). Various Degrees of Freedom (DOF) for the EMS and the sys
tem configuration are implemented in SimSES and the results are post- 
processed with a newly developed profile analyzer tool in order to 
identify some key characteristics, such as efficiency, FEC or Depth of 
Cycle (DOC). 

Fig. 1 shows the scope of this paper in detail. The simulation 
framework, as well as the results, including SPs and the SOCs, are made 
available as open-source. The results are available in one second reso
lution and may facilitate the comparison of the same applications among 
each other in the future. As an example, own system configurations or 
developed EMS can be compared with the numbers of this paper. 
Furthermore, the open-source available data can be used as a reference 
for lifetime and profitability studies for LIBs. 

1.3. Paper structure 

Section 2 gives an overview of the origin of the IPs and the pre- 
processing of the raw data sets. Section 3 describes the simulation tool 
SimSES with various DOFs and the developed EMS. In the remaining 
part of the paper, the SPs are analyzed (Section 4) and the choice of the 
reference profiles (Section 5) is described. Section 6 gives an outlook to 
future work and concludes this paper. 

2. Profile data and preparation 

In this chapter, the database of household load profiles, industry load 
profiles and frequency data is explained (Section 2.1). Herein, the data 
sources and time frames are described. The processing of this data is 
covered in Section 2.2. Subsequently, the normalization of the profiles is 
illustrated, which is required for comparison of data (Section 2.3). 
Finally, Section 2.4 covers the clustering of profiles. 

2.1. Data basis 

The creation of reference load and storage profiles demands a data
base that is sufficiently detailed to represent the specific type of profile. 
As described in Section 1, this paper considers three different applica
tions of storage systems: SCI in the private sector, PS in the industry 
sector and the provision of FCR. These three applications require specific 

data with specific resolution which is displayed in Table 1. 
Firstly, high resolution frequency data is required to investigate the 

storage application of FCR [27]. This one second resolution data for the 
years 2013 until 2017, that can be measured at every socket within the 
synchronous grid of Continental Europe, is provided by the transmission 
system operator 50hertz Transmission GmbH [27]. Exemplary data of the 
year 2017 is shown in Fig. A.12. 

The analysis of the performance of SCI requires household load 
profiles and photovoltaic generation profiles. Therefore, 74 load profiles 
published by the HTW Berlin are used [28]. Moreover, one photovoltaic 
profile measured at TU Munich which was already published in several 
previous papers [17,19,29] was used. These profiles also have a reso
lution of one second. To perform PS with a storage system, industry load 
profiles are needed. Therefore, 36 annual industry profiles with a reso
lution of 15 min are gathered within the EffSkalBatt project2Frequency 
data, household load profiles and industry load profiles work as IPs for 
SimSES (see Fig. 1) which will be explained in Section 3. 

2.2. Data processing 

The gathered data of frequency, load and photovoltaic profiles is 
processed before using them within the simulations. The frequency data 
for performing FCR with a BESS contains some doubtful values ( < 49 
Hz or  > 51 Hz). All such values were replaced by linear interpolation of 
frequencies before and after. As the raw industry load profiles used for 
PS have a resolution of 15 min, this data is transformed into profiles with 
a resolution of one second. For this reason, the following procedure is 
applied to create second-based profiles: First, the 15-min points are 
interpolated linearly to create points based on minutes. Then random 
numbers are build, which replace each interpolated value. Each random 
number lies within the coefficient of variation of 0.25 of the normal 
distribution with a mean of the interpolated value. Afterwards, the 
minute-based values are interpolated linearly again to reach a second- 
based load profile. 

This procedure only estimates the high-resolution load profile. 
Possible load peaks that just appear for a few seconds are not taken into 
account. Those short peaks are crucial when regarding battery lifetime 
and safety [30,31]. Within the application of PS the presented procedure 
to reach second-based load profiles is sufficient, as the storage system 
only has to provide the required energy when peaks appear as long as 
the storage’s power is sufficient. The required energy can also be 
extracted from the 15-min load profile. Moreover, the yearly industry 
load profiles are chopped to match a Monday to Sunday pattern. 

2.3. Normalization 

After the aforementioned data pre-processing, the industry profiles 
are normalized, which is necessary for a comparison of profiles. The 

Table 1 
Storage applications, the data basis, the required data and the data resulution 
used in this work.  

Application: FCR SCI PS 

Database 5 years of 
Frequency Data 

74 yearly load profiles 
& one PV generation 
profile 

36 yearly 
industry load 
profiles 

Data resolution 
(raw data) 

1 s 1 s 15 min 

Data resolution 
(simulation) 

1 s 1 s 1 s  

2 EffSkalBatt Project: Efficient scalable system technology for stationary 
storage systems. Research project funded by the Federal Ministry for Economic 
Affairs and Energy (BMWi) with grant number 03ET6148 (http://www.ees.ei. 
tum.de/en/research/effskalbatt/). 
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industry profiles are normalized to their maximum value within the 
year. Thus, the maximal value of each profile is one and the minimal 
value is zero. This normalization method on each highest peak might 
differentiate profiles that are similar except for their highest peaks. If 
only those load profiles were compared, this method would not be 
appropriate. However, regarding the application of peak shaving, which 
concentrates on the highest peaks, those profiles are very different. With 
this method of normalization users can compare their own profiles with 
the published ones and add their profiles to the simulation. The raw data 
of household load profiles is already normalized to each maximal value. 

2.4. Clustering 

Prior to the creation of reference profiles from the pre-processed 
data, a clustering of the different groups of profiles is considered. This 
is due to the fact that, for example, the industry profiles do not all have 
homogeneous curves. Thus, similar profiles are clustered into groups. 
The clustering is performed using the simulation platform MATLAB® 
and the clustering algorithm k-means with euclidean distances as mea
sure of dissimilarity [32]. The k-means algorithm was chosen, as it ap
pears to be the most prominent one when comparing electric load 
profiles [33–35]. Other possible clustering methods would have been 
the hierarchical clustering or self-organizing maps, as published in [36] 
and [37]. 

When comparing the household load profiles to each other, they 
appear very homogeneous. The average value of each yearly household 
load varies between 0.6% and 4.4% of its yearly maximum value. In 
addition, the mean absolute deviations of the profiles’ offsets lie be
tween 0.8 and 3.6 percentage points. In contrast to that, the industry 
load profiles show bigger variations. The mean load of each profile lies 
between 30% and 75% of the profile’s yearly maximum. Thus, the in
dustry profiles’ offsets are substantially higher than the households’ 
ones due to their increased base load. The industry loads’ mean absolute 
deviations vary between 0.8 and 23 percentage points. 

As a consequence, the industry load profiles are clustered into three 
different groups while the household load profiles remain in one group. 
The number of three is chosen because three is the best compromise 
between differentiation and effort. 

Cluster 1 and 3 have an average load of 70% to 80% during the day 
and a base load of 20 to 30% at night but are shifted by a few hours. 
During the weekend, Cluster 1 exhibits the typical nightly base load 
while the load of Cluster 3 only sees the base load on Saturdays. In 
comparison, Cluster 2 does not have a typical day vs. night load profile. 
During working days the load varies between 50% and 100% and on 
weekends between 35% and 70%. 

3. Simulation framework for stationary energy storage systems 

To generate battery profiles and SPs from the IPs in Section 2 the 
software SimSES was used. SimSES is a modular object-oriented simu
lation tool, which was initiated by Naumann and Truong [38] and is now 
being further developed by the authors. The software allows the flexible 
usage of components, such as the power electronic or battery cell, of a 
BESS. The software code is programmed in MATLAB®, but will be 
converted to Python in the future and made available completely 
open-source. The current open-source version, including the simulation 
scripts for this publication and a link to the code of SimSES can be found 
online3. In this chapter the structure of SimSES (Section 3.1), the 
developed operation strategies (Sections 3.2–3.4) as well as the com
ponents used (Section 3.5) will be described. 

3.1. Simulation structure 

In SimSES the battery is implemented as a single-cell Equivalent 
Circuit Model (ECM). The terminal voltage UT of each cell is calculated 
from the Open Circuit Voltage (OCV) and the voltage drop (overvoltage) 
ΔU across the series resistance Ri, due to the current I (Eq. 1). The OCV is 
a function of the SOC. The series resistance Ri is dependent on the cur
rent direction sign sgn(I), the temperature T and the SOC. 

UT = UOCV − ΔU = UOCV − I⋅Ri(SOC, sgn(I),T) (1) 

The Power Electronics (PE) efficiency is modeled as a function which 
relies on the absolute output power |PStorage|, the rated power PRated and 
the current direction sgn(I) (Eq. 2). Fixed PE efficiency values or other 
functions, for example based on own investigations, can be modeled in 
SimSES as well. Beside the Direct Current (DC)/Alternating Current (AC) 
link, the PE can also include a transformer model. 

ηPE = f
(
|PStorage|,PRated, sgn(I)

)
(2) 

The core of SimSES is the EMS, which allows to simulate various 
tasks for a stationary BESS. As described in Section 1, the focus of this 
work is on the single-use applications FCR, SCI and PS. 

3.2. Frequency containment reserve 

The EMS for providing FCR in SimSES was developed according to 
the German regulatory framework [39,40]. The requested charging and 
discharging power PStorage,set is proportional to the frequency deviation 
Δf and is dependent on the prequalified power PPQ, which has a mini
mum of 1 MW (Eq. 3). Below 49.8 Hz or above 50.2 Hz PStorage,set is set 
to  ± PPQ. 

PStorage,set(t) = PPQ⋅
Δf (t)
0.2 Hz

for |Δf| ≤ 0.2 Hz

PStorage,set(t) = PPQ for Δf > +0.2 Hz

PStorage,set(t) = − PPQ for Δf < − 0.2 Hz

(3) 

If the SOC falls below a predefined lower limit (SOClow) or it exceeds 
an upper limit (SOChigh) the BESS in these simulations charges or dis
charges by trading energy on the electricity market, in particular the 
Intra-Day Market (IDM) [14]. Due to the current legal interpretation 
(May 9, 2019) [41], a BESS in the FCR market has to ensure that at all 
times the full prequalified power PPQ can be provided for 15 min as long 
as the frequency f is in normal progression. The normal progression 
means that the frequency deviation Δf is continuously less than 50 mHz 
or none of the following criteria is met:  

• |Δf| > 200 mHz  
• |Δf| > 100 mHz for more than 5  min  
• |Δf| > 50 mHz for more than 15  min 

The SOC limits also depend on the prequalified power PPQ and the 
storage capacity EBESS, and are calculated according to Eq. 4. 

SOChigh =
EBESS − 0.25 h⋅PPQ

EBESS
SOClow =

0.25 h⋅PPQ

EBESS
(4) 

To reach these limits as infrequently as possible, the efficiency must 
be taken into account and therefore the SOC setpoint is above 50% (Eq. 
5). The mean efficiency ηmean is calculated at the beginning of the sim
ulations and is dependent on the efficiency of the battery and PE. 

SOCOffset = 0.5⋅
(
1 − η2

mean

)

(
1 + η2

mean

) SOCSet = 50% + SOCOffset (5) 

Additionally to the SOC setpoint shift, the regulatory framework in 
Germany allows three different DOFs: 

3 http://www.ees.ei.tum.de/simses/ 
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• Frequency dead band: In the frequency range between 49.99 Hz and 
50.01 Hz, the output power of the BESS can be set to 0 MW and must 
not follow the frequency derivation according to Eq. 3.  

• Overfulfillment: It is allowed to overfulfill the requested power (Eq. 3) 
by 20 %.  

• Slope: The requested FCR power (Eq. 3) must be provided within 30 s 
or earlier. Therefore, the slope of the provided FCR power can be 
adjusted within the time interval of 30 s allowing to control the 
charging or discharging rate. 

In SimSES all DOF are only used, if the requested power either brings 
the SOC closer to optimum again or at least not further away. All degrees 
of freedom as well as the SOC limits, depending on the prequalified 
power PPQ, are shown schematically in Fig. 2. 

3.3. Residential photovoltaic battery storage system 

In SimSES two different operation strategies for the SCI of BESS are 
implemented: Greedy and an extension of feed-in damping based on Zeh 
and Witzmann [29]. 
Greedy 

The EMS for the greedy algorithm works with a simple comparison 
between the generation of the PV power system PPV and the consump
tion by the household Pload at each timestep. Whenever a solar surplus 
occurs (PPV > Pload), the BESS is charged and vice versa (Eq. 6). This 
conventional strategy is shown in Fig. 3 (top). These summer days show 
that the BESS is fully charged at around 9AM, which causes a rapid rise 
of the power fed into the grid. Another disadvantage of this strategy is 
the high charging power, which may lead to a faster decrease of the LIB 
capacity due to an increase of lithium plating as described in [30]. 

Fig. 3. Operation Strategies (top=greedy, bottom=feed-in damping) for the Residential Photovoltaic Battery Storage System. The shaded yellow area shows the 
generation of the PV power system, the blue line shows the load of the household and the gray line shows the storage power (positve=charging). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Degrees of freedom and the SOC limits, depending on the prequalified power PPQ. The top left subfigure shows the frequency dead band and the possible 
overfulfillment. The two subplots on the right show the slope and the bottom left subfigure shows the SOC limits. 
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PStorage = PPV − Pload (6)  

Feed-in damping 
In order to reduce the maximum power fed into the grid, a nearly 

constant BESS charging power PStorage, Ch during the whole daytime is 
calculated by the EMS. Reducing the maximum feed-in power allows for 
a higher self-consumption rate, if the maximum feed-in power is limited 
by the distribution grid operator as described in [19]. If a surplus (PPV >

Pload) occurs, the charging power PStorage,Ch is calculated by dividing the 
remaining battery capacity EBESS,re by the predicted remaining time tre, 
until the load is higher than the PV generation, and the mean efficiency 
ηmean of the BESS (Eq. 7). 

In this work, a perfect foresight for the duration of PV generation is 
assumed. If there is a higher consumption by the household than gen
eration by the PV power system, the BESS is discharged. Fig. 3 (bottom) 
displays this operation strategy. In contrast to the greedy algorithm, the 
charging power is constant during the whole first day. The second day 
shows a more cloudy day. The remaining time tre at this day is smaller 
than in day 1, so according to Eq. 7 the charging power PStorage,ch is 
higher. In addition, the second day also shows that after the PV gener
ation surpasses load again (PPV − Pload > 0), the remaining time tre is 
recalculated. In this case, the storage can be charged with the full power, 
due to the short remaining time tre. 

PStorage,ch =
EBESS,re

tre⋅ηmean
for PPV > Pload (7)  

3.4. Peak shaving storage system 

Motivated by a tariff system consisting of an energy and a power 
related component, the storage application PS has the goal to minimize 
the maximum power peak value within a defined accounting period. 
Particularly large electricity consumers (annual demand  > 100 MWh 
(in Germany)) can reduce the peak power provided by the power grid, 
which directly results in reduced operating expenses in form of reduced 
grid charges [42]. 

In order to reduce the power at the point of common coupling, the 
excess demand has to be covered by another power providing unit, such 
as a BESS. The BESS is used to decouple the supply and demand over a 
specified time. To maximize the benefit of the application, it is impor
tant that the dimensioning of the storage system is the best possible 
match for the power demand curve. Similar to other publications 
[43–45], a two-step approach of a linear programming algorithm and 
SimSES is applied. 

First, a pre-processing linear optimization algorithm is used to 

minimize the power value for the peak shaving threshold PSthreshold, 
while it complies with the necessary constraints, such as meeting the 
power demand, and satisfying the energy and power specifications of the 
BESS. Depending on the shape of the load profile, the resulting value of 
the power threshold varies. Secondly, the resulting peak shaving 
threshold is used as an input parameter for the operation strategy within 
SimSES. This operation strategy works as follows: as soon as the power 
at the point of common coupling (from the grid) is above the specified 
threshold, the additionally required power is provided by the BESS, as 
illustrated in Fig. 4. In addition, the BESS will recharge if the power 
value is below the previously determined optimal peak shaving 
threshold. This ensures that the charging of the storage system does not 
cause the exceedance of the threshold. 

Through a close coordination of the two simulation tools in the 
chosen two-stage approach, both a near optimal PS threshold is found 
and simultaneously, the detailed technical specifications of the BESS are 
simulated via SimSES. 

3.5. Simulation parameters 

The battery cell used in all simulations was a LIB with a Lithium-Iron- 
Phosphate (LFP) cathode and a Carbon-Graphite(C) anode [46]. It is 
worth to mention, that other LIB types are also implemented in the 
simulation tool but the LFP:C cell is a promising battery chemistry for 
stationary applications, because of its characteristics such as high 
thermal stability, long cycle as well as calendar lifetime [3,47,48]. The 
parameterization of the ECM for the simulated LFP:C cell was carried out 
by Naumann [49]. 

To analyze the effects of cell selection, another cell with a Nickel- 

Fig. 4. Exemplary week of an industry load profile and its optimized PS threshold PSthreshold following the PS operating strategy. The power above the threshold is 
provided by a stationary BESS. The solid blue line shows the industry load profile with the PS BESS. The associated SOC is illustrated at the subplot at the bottom. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Parameters of the simulated Lithium-ion cells. Celltype 1 is a Lithium-ion battery 
with a Lithium-Iron-Phosphate (LFP) cathode and a Carbon-Graphite (C) anode. 
Celltype 2 is a Lithium-ion battery with a Nickel-Manganese-Cobalt (NMC) and a 
Carbon-Graphite (C) anode.  

Parameter Unit Cell 1 [46] Cell 2 [50] 

Cell Identification - US26650FTC1 IHR18650A 
Manufacturer - Murata E-ONE Moli Energy Corp. 
Chemistry - LFP:C NMC:C 
Capacity mAh 2850 1950 
Max. Charge Current A 2.85 2 
Max. Discharge Current A 20 4 
Nominal Voltage V 3.2 3.7 
Voltage Range V 2 - 3.6 3 - 4.2  
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Manganese-Cobalt-Oxide (NMC) cathode and a C anode [50] was also 
simulated in the FCR application. The characterization of this cell is 
based on the work of Schuster [51]. The self-discharge and the tem
perature dependency of the cell is neglected in this work. Table 2 
summarizes the parameters of these battery cells. 

The PE is implemented as a function, which shows a high efficiency 
above 10% of the rated power PRated (Eq. 8). Exemplary values used for a 
high efficiency PE are k = 0.0345; p0 = 0.0072, according to Notton 
et al. [52]. Here ηPE is independent of the direction of the power flow 
and no hysteresis is implemented. The maximum efficiency is observed 
at 0.46 ⋅ PRated with an efficiency ηPE = 96.9%. 

ηPE =

|PStorage |

PRated

|PStorage |

PRated
+ p0 + k⋅

(
|PStorage |

PRated

)2 (8)  

Frequency Containment Reserve 
As already shown by others [3,13,14], a BESS in the FCR market is 

mostly in part-load operation. In order to achieve a high part-load effi
ciency, we minimized the inverter losses by modularization of the 
PE-unit into three identical smaller units based on the work of Schimpe 
et al. [53]. At 80% power of the rated power of PE unit 1, PE unit 2 starts 
to work. At 80% power of the rated power of PE unit 1 and PE unit 2, PE 
unit 3 starts to work. There is no hysteresis included in the simulations, 
which means that the switch-off values are equal to the switch-on 
values. According to the modeled PE efficiency, the average efficiency 
of this PE combination is 96%. This PE combination, together with the 
simulated LIB (ηLIB = 96%), results in an SOC shift, according to Eq. 5, 
of 54%. 

In this work the BESS capacity EBESS is set to 1.6 MWh with a 
maximum power of 1.6 MW. The prequalified power PPQ is 1.12 MW, 
which results in a Power to Energy Ratio (PER) of 0.7. Thus, the avail
able IDM power is 30% of the total BESS power. The losses of a trans
former model for a potential integration to higher grid voltage levels, 
which would be necessary having a 1.6 MW / 1.6 MWh storage, are 
neglected. 

Residential Photovoltaic Battery Energy Storage System 
To ensure comparability, the simulations are carried out with a fixed 

annual household load Eload,a of 5,000 kWh, which rounded corresponds 
to the mean of the IP. According to the work of Weniger et al. [21] and 
Hoppmann et al. [54], the PV system and the BESS can be operated 
economically in the ratio 1:1:1. An annual household load Eload,a of 5, 
000 kWh leads to a PV peak power of 5 kWp and a BESS capacity EBESS of 
5 kWh. 

Peak Shaving Storage System 
For the PS application, 36 anonymized annual load profiles from 

commercial electricity consumers are utilized. In order to generate 
comprehensive standardized profiles, all normalized load curves are 
scaled to a peak power of 100 kW (see Section 2.3). The BESS is char
acterized by a nominal energy content of 100 kWh. We assume that 

100% of the nominal storage energy and a rated power of 40 kW for the 
system’s PE unit (consisting of a single inverter) can be used to operate 
the application. 

Table 3 summarizes the parameter set for each simulation in SimSES. 
Other components, such as  

• a transformer model for a potential integration to higher grid voltage 
levels,  

• a cell-to-cell connection resistance,  
• a battery management system,  
• a thermal model for each cell as well as a thermal model for the 

whole storage system,  
• an aging model of the battery cell as well as all other subcomponets, 

were neglected in this paper, but can be modeled in principle in SimSES. 

4. Storage profile analyzer tool 

One goal of this work is finding reference SPs for the different storage 
applications. Therefore, groups of SPs were created using the software 
SimSES. In this chapter, a storage profile analyzer tool is presented 
which aims to extract the reference SP for each of the groups. The idea 
and the reasons for the analyzer tool are described in Section 4.1. Af
terwards, the different characteristics are explained in Section 4.2. 
Finally, the determination of reference profiles from the characteristics 
is described in Section 4.3. Moreover, Appendix B provides some further 
analysis of the SPs including the distribution of the energy rate (E-rate). 
The E-rate at each timestep i is defined according to Eq. 9. 

Erate,i =
PStorage,i

EBESS
(9)  

4.1. Reasons for the storage profile analyzer tool 

The extraction of a reference SP can be done in different kind of 
ways. Taking the mean SP by calculating the mean of all the SPs for the 
different applications is one option. This would lead to a smoothing of 
the profiles. Distinctive peaks would be neglected and the profiles would 
not be representative anymore. A more viable approach is the selection 
of one SP as reference SP for each application. Here, a median profile has 
to be found which represents the group of profiles. This selection is done 
using the storage profile analyzer tool. The tool takes the load of the 
storage and SOC data as input variables and outputs the characteristics 
described in the following subsection. 

4.2. Extracted characteristics from profiles 

To better analyze and compare the storage load profiles, six char
acteristics were defined which are distinctive for the profiles of the 
different applications. Those six characteristics aim to represent the 
differences within the storage applications. 
1. Number of full equivalent cycles (FEC) 

The total number of cycles FECyear within the year is calculated by 
dividing the positive energy throughput Epos

year by the storage capacity 
EBESS (Eq. 10). The FECyear varies between the applications and affects 
the aging of the battery [30]. 

FECyear =
Epos

year

EBESS
(10)  

2. Efficiency (ηBEES) 
The efficiency of the analyzed storage ηBEES is calculated by counting 

the yearly energy that is extracted from the storage system Eneg
year divided 

by the energy that is stored in the storage system Epos
year. The SOC at the 

beginning of the year and at the end of the year is taken into account as 
well (Eq. 11). This characteristic displays the losses in the storage system 

Table 3 
Summary of the parameters for the simulation of the three applications with 
SimSES.  

Application: FCR SCI PS 

Battery LFP:CNMC:C LFP:C LFP:C 
Storage Capacity 1.6 MWh 5 kWh 100 kWh 
Max. Power 1.6 MW 5 kW 40 kW 
PE mode modular single 

unit 
single unit single unit 

PV Power - 5 kWp - 
Operation 

Strategy 
15 min criteria greedy feed-in 

damp 
simple 

PER 0.7 - - 
IDM Power 0.48 MW - - 
PS-Limit - - variable 62 - 

92%  
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while operating in the specific application. For the calculation of the 
efficiency the surrounding temperature and the thermal management 
are not taken into account. 

ηBEES =
|Eneg

year|

Epos
year − [SOCend − SOCstart]⋅EBESS

(11)  

3. Cycle depth in discharge direction (DOCdis) 
The average DOC in discharge direction is calculated by using the SOC 

data of the current profile. This characteristic describes how deep the 
battery is discharged before recharging it. A higher DOC may lead to a 
higher cyclic aging of the battery [55]. To enable a comparison between 
the applications (different capacities) the DOC is measured in percentage 
of the total battery capacity. In SimSES a half-cycle detector is imple
mented. The beginning of the half-cycle is a change from charging 
respectively resting to discharging. Analogously the end is at every 
change from discharging to charging or if the BESS reaches an SOC of 0%. 
Then the DOC is calculated by subtracting the SOC at the beginning and 
the SOC at the end of the half-cycle (see Eq. 12). Taking only the change 
from discharging to charging leads to a dependency of the DOC on the 
resolution. Many small changes of load might outweigh larger trends. 

DOCdis = SOCcycle,start − SOCcycle,end (12)  

4. Number of changes of sign (nswapsign) 
Depending on the storage application, the SP might change from 

charging to discharging and vice versa very often or just a few times per 
day. Those changes of signs activate the power electronics. When 
analyzing experimental SPs the user of the storage profile analyzer tool 
would have to define a threshold value to prevent faults of noise when 
the SP is close to zero. As the simulated SPs do not show the noise, a 
threshold value is not necessary. 
5. Length of resting periods (trest) 

As the BESS is not used continuously over time, the length of resting 
periods represent another characteristic. During those times, the BESS is 
neither charged nor discharged. Here, the average value of resting 

period length in minutes is calculated. Depending on the application the 
length of those resting periods may vary significantly. This characteristic 
is chosen because auxiliary users can be turned off and other applica
tions can be performed during long resting periods. 
6. Energy between changes of sign (Eswapsign) 

Another chosen characteristic is the energy that is charged or dis
charged between changes of signs, respectively. The amount of the en
ergy is normalized to the battery’s capacity and thus comparable 
between the different applications with different capacities. Here 
charged and discharged energy are calculated separately. 

4.3. Determination of reference profiles 

The storage profile analyzer tool extracts the different characteristics 
from each of the profiles of the specific group of SPs. For each applica
tion the characteristics can then be displayed in boxplots to visualize the 
spread and show the median values. 

To determine each reference profile the percentage error δ of each 
profile’s characteristic to the median characteristic is calculated (Eq. 
13). This is done by subtracting the median of the characteristic K̃j from 
the profile’s characteristic Kj, dividing the difference by the median of 
the characteristic and multiply the result with 100. Here, i is the number 
of the profile and j the number of the characteristic. 

Afterwards, the root mean square percentage error (RMSPE) is 
identified for each profile (Eq. 14). This is done by taking the sum of the 
absolute percentage errors, dividing it by six (six characteristics), 
squaring it and extracting the root. This way all characteristics are 
weighted equally. 

δi,j =
Ki,j − K̃j

K̃j
⋅100 (13)  

RMSPEi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(∑6

j=1

⃒
⃒δi,j
⃒
⃒

6

)2
√
√
√
√ (14) 

Fig. 5. Characteristics of a BESS providing FCR. The left box in each plot shows a BESS with one PE unit and a LFP:C cell. The center one in each plot shows a BESS 
with three modular PE units and a LFP:C cell and the right box in each plot shows a BESS with three modular PE units and a NMC:C cell. 
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The reference profile is then chosen as the profile which has the 
minimum root mean squared percentage error. Thus, this profile rep
resents the group of profiles, while maintaining its variations and 
peculiarities. 

5. Results and discussion 

The storage profile analyzer tool outputs characteristics and refer
ence SPs which will be compared and discussed in this section. First, the 
characteristics of the different applications (FCR, SCI, PS) are displayed 
in Section 5.1. Here, a comparison is done within each application be
tween power electronics and battery technology (FCR), operation stra
tegies (SCI) and the three PS clusters. Afterwards, the characteristics of 
the reference SPs for different applications are compared to each other 
and thus differences in usage and load are explained (Section 5.2). 
Finally, exemplary days and weeks of the reference SP are shown and 
discussed (Section 5.3). 

5.1. Characteristics of storage profiles of different applications 

As described in Section 3, the simulated storage applications are FCR, 
SCI and PS. For each group of SPs performing one application, the 
different characteristics can be displayed in boxplots. These boxplots 
show the spread of the characteristics of a storage system performing the 
specific application. Each boxplot is created by using the characteristics 
of all the SPs. That means that for FCR five SPs, for SCI 74 SPs and for PS 
36 SPs were used. Each profile contributes to each boxplot with one 
value. Those are the yearly number of FEC, the efficiency (ηEES) over the 
year, the average DOC in discharge direction, the average length of 
resting periods (trest), the average changes of sign per day (nswapsign) and 
the average energy between changes of signs (Eswapsign). Each boxplot 
contains a red line which represents the median value. Moreover, the 
blue boxes display the 25th and the 75th percentiles, while the black 
whiskers correspond to a maximal absolute value of 2.7 times the 
standard deviation. The red crosses which are displayed above and un
derneath the boxplots show outlier outside of the box and whiskers. In 

addition, the red dot in each boxplot shows the value of the reference 
profile’s characteristic (see Section 4.3). The average distance between 
the median value and the reference value is 2 %. The distributions of 
SOC, DOC in discharge direction and E-rate for all profiles and for the 
reference profiles of each application can be found in the appendix 
(Figs. B.21–B.28). 

Fig. 5 displays the SPs characteristics of a BESS providing FCR. The 
PE units were varied as one differentiation while using the same battery 
technology (LFP:C). First of all, one PE unit was used (each left boxplot). 
Then a modular PE device was applied (each center boxplot). In addition 
to that, as a third boxplot, the LIB technology was varied as described in 
Section 3.5. Here also a modular PE device was used with a NMC:C LIB. 

The first characteristic (Fig. 5 (a)) is the number of FEC within the 
year. Using only one PE unit leads to an increased number of FEC within 
the year compared to modular PE units. The high number of yearly 
cycles ( > 240 FEC in all simulations), in combination with a small DOC 
(Fig. 5 (c)) requires a BESS, which has a high cycle stability in the middle 
SOC range (see also Appendix B.21–B.23). 

The efficiency (Fig. 5 (b)) can be significantly increased when using 
modular PE units or at least having a PE with a high part-load efficiency. 
Furthermore, there are almost no long resting periods (Fig. 5 (d)) and the 
number of sign changes (Fig. 5 (e)) is higher compared to the other ap
plications under test. Therefore, the PE must have a high control speed to 
meet these requirements. The positive energy of changes of sign (Fig. 5 
(f)) is a little smaller when having modular PE compared to only one 
device. The variation of the cell shows hardly any influence - underlining, 
that choosing a suitable PE design is key for improving the system’s ef
ficiency. It is worth to mention here, that battery aging was not modeled. 

Fig. 6 displays the SP characteristics of a SCI BESS. The order of the 
six boxplot-types is the same as described before. Only the ranges of the 
y-axes are different as a comparison within the SCI BESS is done at this 
point. Here, each diagram contains one boxplot for the greedy operation 
strategy and one for the feed-in damping strategy (see Section 3.3). The 
smoothing of the load at feed-in damping strategy leads to a smaller 
number of FEC (Fig. 6 (a)), a smaller DOC (Fig. 6 (c)), a higher length of 
resting periods (Fig. 6 (d)) and a smaller amount of charged energy 

Fig. 6. Characteristics of an SCI performing BESS. The left box in each plot shows a SCI with greedy algorithm. The right box in each plot shows a SCI with the feed-in 
damping algorithm. 
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between sign changes (Fig. 6 (f)) compared to the greedy algorithm. The 
efficiency of the SCI BESS with feed-in damping algorithm is lower than 
with greedy algorithm (Fig. 6 (b)). This is due to the fact that the feed-in 
damping storage system is more often in the partial-load range where the 
PE has a lower efficiency. 

While the lower efficiency is a disadvantage, the feed-in damping al
gorithm also leads to smaller Es-rate and lower rest times of high SOC 
compared to greedy algorithm (Appendix B.24 and B.25). Those two 
properties are advantages of the feed-in damping algorithm as longer 
periods of high SOC may lead to an increased calendar aging [56]. Home 
storage system manufacturers should take these findings into consider
ation and try to avoid simple rule based strategies (greedy). Moreover, 
both algorithms lead to the same number of changes of signs per day 
(Fig. 6 (e)), as only the time of changes vary. 

The SP characteristics of a BESS in the PS application are displayed in 
Fig. 7. The order of the diagrams is the same but the range of y-axes is 
different. The three box plots in each diagram contain the SP charac
teristics of the three clusters of IP (see 2.4). In contrast to the other two 
applications (FCR and SCI) the spread of the characteristics within each 
group is higher. The DOC, for example, varies between 2% and 10% for 
cluster 2. Thus, the storage’s load varies significantly depending on the 
industry IP. Only cluster 3 shows relatively consistent characteristics in 
all diagrams. 

5.2. Comparison of characteristics of reference storage profiles 

After the analysis of the characteristics of each application’s SPs, a 
comparison between application SPs is done in this subsection. There
fore, the six characteristics of each reference profile are displayed in 
spider diagrams with the same ranges to enhance comparability (Fig. 8). 
For the application of FCR the reference profiles’ characteristics of one 
PE unit and a modular PE device are displayed (top). The modular PE 
with an NMC:C cell is not displayed as its characteristics are almost 
similar to the LFP:C ones (see Fig. 5). For SCI the reference character
istics of the two algorithms are shown (middle) and the PS character
istics are displayed for the three clusters (bottom). 

FCR leads to a relatively high number of cycles ( > 240 FEC) and 
small average DOCs of 0.2%. Moreover, the average resting period 
length is small ( < 10 s) and the average number of changes of sign is 
relatively high (600 per day). This is due to the fact, that the grid fre
quency fluctuates around 50 Hz and the storage system reacts quickly on 
frequency changes by charging or discharging the battery (see 
Fig. A.12). The efficiency of the storage system performing FCR with 
modular PE is relatively high (93%). Using only one PE device leads to a 
reduced efficiency of 83%. This is because of the low converter effi
ciency in part-load operation. 

Operating the storage system for SCI leads to similar number of cy
cles within the year as the application of FCR. Compared to the modular 
PE FCR application, the efficiency is lower (approx. 85%). The average 
DOC is higher when performing SCI than when performing FCR (0.9% to 
0.75%). The average length of resting periods is much higher when 
operating as a SCI BESS than when performing FCR (38 to 65 min). 
During winter nights, for example, the storage rests for several hours, 
which increases the average resting period length. Moreover, the 
changes of signs per day are much lower than the characteristic of FCR. 
170 changes of signs per day on average still appear to be high for a SCI 
BESS. This is due to the fact, that during charging of the storage system 
by photovoltaic energy, a short increase of load or a decrease of gen
eration (e.g. clouds) can lead to a change of sign. 

Performing PS as an application leads to a much smaller number of 
cycles (FEC  < 30) and changes of sign (nswapsign  < 4 per day) compared 
to FCR or SCI. In contrast to that, the average DOC is higher than the 
other applications reference characteristics (2% to 5%). The average 
length of resting periods is in the same range as the SCI characteristics 
(20 to 65 min). Thus, it is in resting mode for a longer period of time, it 
does not switch between charging and discharging very often and it is 
discharged relatively deep, when a discharge cycle is initiated. The 
storage’s efficiency when performing PS is between 86% and 89%. The 
small number of FEC, in addition to the long average length of resting 
periods suggests potential benefits of application stacking (multi-use) 
for this application. However, this requires a sufficient power load 
forecast. 

Fig. 7. Characteristics of a BESS in a PS application. The left box in each plot shows the characteristics for IP cluster 1. The box in the center for IP cluster 2 and the 
right one for IP cluster 3. 
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5.3. Reference storage profiles of different applications 

After the analysis of the SP characteristics and the comparison be
tween the different storage applications, exemplary weeks of the refer
ence profiles are shown in this Section. As described in Section 2, the 
FCR reference profile and the SCI reference profile exist for a whole year. 
The PS reference profile is for 51 weeks starting with a Monday. 
Appendix A shows all complete reference profiles. All reference SPs as 

well as the SOC at each timestep are available online free of charge, and 
are hosted on the servers of TU Munich [57]. 

As an example, the 25th week of the reference profile of the FCR 
application with modular PE and LFP:C battery technology is displayed 
in Fig. 9. The diagram’s y-axis shows that the maximum power in this 
week is around 1.1 MW. IP for this resulting reference profile was the 
second year frequency profile [27] (year 2014, see Section 2.1). The 
profile shows a high fluctuation, which results in small DOCs, a lot of 
changes of sign and very short resting periods (see Section 5.2). To 
enable a greater degree of clarity, the profiles of FCR with one PE 
module and with NMC:C cell (modular PE) are not displayed within the 
diagram. These two show a similar course with high fluctuation. 

Fig. 8. Spider diagrams of the six characteristics of each reference profile (a: 
FCR, b: SCI and c: PS). 

Fig. 11. Reference Storage Profile of a BESS in a PS application. Exemplary 
week in June. (a: Cluster 1, b: Cluster 2 and c: Cluster 3). 

Fig. 10. Reference Storage Profile of a BESS performing SCI. Exemplary week 
in June. 

Fig. 9. Reference Storage Profile of a BESS providing FCR. Exemplary week 
in June. 
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Fig. 10 depicts the 25th week of the reference profiles of the two SCI 
BESS with greedy and feed-in damping algorithm. Input profile for those 
two resulting reference profiles was the 28th household load profile from 
the 74 HTW-Berlin load profiles [28] (see Section 2.1). As this week falls 
in June, the storage system gets charged by the PV generation during the 
day. In the evening and during the night it gets discharged until the 
battery is empty (e.g. Thursday night). The differences in the two 
operating strategies were explained in Section 3.3. The feed-in damping 
profile shows the typical limitation of the energy feed into the grid, 
which leads to lower Es-rate for the BESS. 

The reference profiles (exemplary week 25) of the three clusters of PS 
application are shown in Fig. 11 (a: Cluster 1, b: Cluster 2, c: Cluster 3). 
Here, the maximal storage power was chosen as 40 kW (see Section 3.5). 
As described in the previous section, the PS BESS has the fewest number 
of cycles and changes of signs per day. The reference SPs confirm these 
numbers. Moreover, the relatively long resting periods and the differ
ences between the three clusters are visible as well. The PS threshold 
values for the three clusters are set to 66 kW, 83 kW and 80 kW ac
cording to the pre-processing optimization in Section 3.4. 

6. Conclusion and outlook 

In this paper we presented a method to create standard profiles for 
stationary battery energy storage systems, the results of which are 
available as open data for download. Input profiles including frequency 
data, industry load profiles and household load profiles are pre- 
processed using a normalization and clustering method. These input 
profiles are then transformed into storage profiles including the storage 
power and the state of charge using a holistic simulation framework 
(SimSES). This modular object-oriented tool was used to analyze three 
standard applications for stationary battery energy storage systems in 
detail and an energy management system was programmed for the 
different applications: (i) The energy management system for providing 
frequency containment reserve in SimSES was developed according to 
the German regulatory framework and various degrees of freedom; the 
efficiency was taken into account to minimize the intra-day market 
transactions. Moreover, a modular power electronics topology was used. 
(ii) In addition to a simple greedy algorithm, a feed-in damping algorithm 
has been implemented for a residential battery energy storage system, 
which charges the storage system at a low E-rate over the whole day. 
(iii) A two-step approach with a linear programming algorithm and 
SimSES was applied for an industrial peak shaving battery energy stor
age systems to minimize the maximum power peak value. 

The results have been post-processed using a storage profile analyzer 
tool in order to figure out six key characteristics of the different appli
cations. These characteristics are essential for the design of a stationary 
battery energy storage system. For example, for a battery energy storage 
system providing frequency containment reserve, the number of full 
equivalent cycles varies from 4 to 310 and the efficiency from 81% to 
97%. Additional simulations done with SimSES for one year showed a 
degradation from 4% (frequency containment reserve) to 7% (peak 
shaving). 

The open data available results, including storage power as well as 
state of charge for all reference storage profiles, with a resolution of one 
second can be used for comparison with other self-developed energy 
management systems. Furthermore other system topologies or self- 
developed power electronic models can be simulated with SimSES and 
the simulation-outcome can be assessed against the numbers presented 
in this paper. Scientists are encouraged to conduct aging studies or 
battery management system tests using the platform SimSES and data 
provided herein. 

In order to compare both different cell chemistries as well as storage 
technologies, future work could focus in more detail on battery degra
dation. Future applications for stationary battery energy storage systems 
could be: buffer-storage system to reduce the peak power at (fast-) 
charging stations, uninterruptible power supply or island grids. As soon 

as the first data sets are available, it might be worthwhile to analyze 
these use cases more precisely. 
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Appendix A. Input and reference profiles 

Fig. A.12 shows the frequency data (IP) of the whole year 2017 (top) 
and of one exemplary day (185) of year 2017 (bottom). The 
Figs. A.13–A.20 show the complete reference profiles. The FCR refer
ence profile and the SCI reference profile are for a whole year. The PS 
reference profile are for 51 weeks starting with a Monday. All reference 

Fig. A.12. Sample sections of frequency data of the whole year 2017 (top) and 
of one exemplary day (185) of year 2017 (bottom). 
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SP as well as the SOC at each timestep can be downloaded in a MATLAB 
R2019a® data format (mat) or hierarchical data format (hdf5) from the 
servers of TU Munich [57]. 

Fig. A.16. Yearly reference profile of a BESS for SCI with one PE unit and a 
LFP:C cell with the greedy algorithm. 

Fig. A.17. Yearly reference profile of a BESS for SCI with one PE unit and a 
LFP:C cell with the feed-in damping algorithm. 

Fig. A.18. Yearly reference profile of a BESS in the application of PS with one 
PE unit and a LFP:C cell in cluster 1. 

Fig. A.13. Yearly reference profile of a simulated BESS with one PE unit and a 
LFP:C cell providing FCR. 

Fig. A.14. Yearly reference profile of a simulated BESS with three modular PE 
units and a LFP:C cell providing FCR. 

Fig. A.15. Yearly reference profile of a simulated BESS with three modular PE 
units and a NMC:C cell providing FCR. 

Fig. A.19. Yearly reference profile of a BESS in the application of PS with one 
PE unit and a LFP:C cell in cluster 2. 
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Appendix B. Further analysis with SimSES 

B1. Frequency containment reserve 

Figs. B.21, B.22 and B.23 shows additional analysis for the simula
tions of a BESS providing FCR. The left-hand plots (a, d) show the 

distribution of the SOC, the middle one (b, e) show the distribution of 
the DOC and the right-hand plots (c, f) show the distribution of the E- 
rate. The three plots at the top (a-c) at each figure show the mean results 
of all 5 simulations. The three plots at the bottom (d-f) show at each 
figure the result for the reference profile. All plots have a logarithmic y- 
axis. 

Fig. A.20. Yearly reference profile of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 3.  

Fig. B.21. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with one PE unit and a LFP:C cell providing FCR. The three plots at the top 
(a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 
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Fig. B.22. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with three modular PE units and a NMC:C cell providing FCR. The three 
plots at the top (a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 

Fig. B.23. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a simulated BESS with three modular PE units and a LFP:C cell providing FCR. The three 
plots at the top (a-c) show the mean results of all 5 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 
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Fig. B.24. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a SCI BESS with one PE unit and a LFP:C cell with the greedy algorithm. The three plots at 
the top (a-c) show the mean results of all 74 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 

Fig. B.25. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a SCI BESS with one PE unit and a LFP:C cell with the feed-in damping algorithm. The three 
plots at the top (a-c) show the mean results of all 74 simulations. The three plots at the bottom (d-f) show the result for the reference profile. 
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Fig. B.26. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 1. The three plots 
at the top (a-c) show the mean results of all simulations in cluster 1. The three plots at the bottom (d-f) show the result for the reference profile in cluster 1. 

Fig. B.27. Additional analysis, SOC (a, d), DOC (b, e) and E-rate (c, f), of a BESS in the application of PS with one PE unit and a LFP:C cell in cluster 2. The three plots 
at the top (a-c) show the mean results of all simulations in cluster 2. The three plots at the bottom (d-f) show the result for the reference profile in cluster 2. 
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B2. Residential photovoltaic battery storage system 

Figs. B.24 and B.25 shows additional analysis for the simulations of a 
SCI BESS. The left-hand plots (a, d) show the distribution of the SOC, the 
middle one (b, e) show the distribution of the DOC and the right-hand 
plots (c, f) show the distribution of the E-rate. The three plots at the 
top (a-c) at each figure show the mean results of all 74 simulations. The 
three plots at the bottom (d-f) show at each figure the result for the 
reference profile. All plots have a logarithmic y-axis. 

B3. Peak shaving storage system 

Figs. B.26, B.27 and B.28 shows additional analysis for the simula
tions of a BESS in the application of PS. The left-hand plots show the 
distribution of the SOC, the middle one (b, e) show the distribution of 
the DOC and the right-hand plots (c, f) show the distribution of the E- 
rate. The three plots at the top (a-c) at each figure show the mean results 
of all simulations in the respective cluster. The three plots at the bottom 
(d-f) show at each figure the result for the reference profile in the 
respective cluster. All plots have a logarithmic y-axis. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.est.2019.101077 
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