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a b s t r a c t 

The rapid decentralization of energy generation and storage facilitates an opportunity to redesign existing energy 

systems. Here, peer-to-peer energy trading in local markets offers advantages for demand response and flexibility 

of energy delivery, yet it still faces problems of customer acceptance, namely, concerns over sharing control of 

batteries and the degradation impacts of increased cycles. To help overcome these hurdles, this research develops 

a techno-economic model that optimizes the interplay between peer-to-peer trading and energy management 

systems in a community. The model distinguishes between two decision making approaches in a local electricity 

market: decentral, where the household retains full control over its storages, and central, where the flexibilities 

are fully leveraged to maximize the community benefit. Both approaches demonstrate the significant monetary 

benefit of peer-to-peer trading, with the central approach reaching the greatest profitability potential. Negative 

effects on the battery lifetime only occur in the central case with bidirectional vehicles, and the degradation is 

comparatively slight. 
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. Introduction 

Power networks, and distribution networks in particular, are facing

perational and planning challenges from rising levels of customer in-

estment in distributed generation, storage and flexible loads, collec-

ively called distributed energy resources (DER). For instance, the in-

talled rooftop capacity of photovoltaic (PV) systems globally has grown

rom 8 GW in 2007 to over 400 GW in 2019 [1] , and annual added bat-

ery capacity from private electric vehicle (EV) sales is projected to in-

rease from 170 GWh in 2019 to between 1.2 and 2.6 TWh per year by

030 [2] . Consequently, members of the community who used to be pas-

ive consumers of the electricity network are becoming prosumers – con-

umers who also produce electricity [3] – and are expected to play key

oles in deciding how the future power systems will evolve and operate.

he change in prosumers’ roles within the distribution network present

ignificant challenges to power network operators, who face daytime

inimum demand challenges due to prosumers’ solar export to the net-

ork [4] and the peak demand problems owing to EV ownership [5] .

ne potential way to address these challenges is to enable prosumers to

nteract among themselves and trade electricity with one another [6] –

lso known as peer-to-peer (P2P) trading. 
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P2P trading is a prosumer-centric energy sharing scheme in which

rosumers in a power network can share a part of their resources, such

s electricity [7] , storage space [8] , and negawatts [9] , and information

ith one another to attain certain objectives. It is important to note

hat although existing power network regulatory regimes do not allow

2P trading to occur in the today’s electricity markets, extensive pilot

rials around the world [10] and government initiatives to reform the

lectricity sector [11] are moving towards a future where P2P trading

ill be integrated into the broader electricity market. 

Furthermore, P2P trading has several positive characteristics, includ-

ng relatively low computational and implementation overheads [12] ,

he ability to engage extensive user participation [13] , reductions in

nergy cost [14] , and balancing local generation and demand [15] by

nabling secured trading [16] . P2P trading empowers both the pro-

umers [17] and community managers [18] that are trading within a

ommunity, which makes it a suitable candidate to operate within fu-

ure customer-focused regulatory regimes [19] . As such, research over

he last five years has established P2P as an indispensable element of the

uture electricity market, considering its potential to benefit participat-

ng prosumers and provide useful services to other stakeholders [10] .

owever, to the best of our knowledge, there are still no large-scale
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Nomenclature 

CEMS community energy management system 

DER distributed energy resource 

EFC equivalent full cycle 

EMS energy management system 

EV electric vehicle 

HEMS home energy management system 

HES home energy storage 

P2P peer-to-peer 

PV photovoltaic 

Parameters & variables 

ℂ 

elect ricit y economic cost for electricity 

ℂ 

deg economic cost for battery degradation 

ℂ 

inv economic cost for battery investment 

ℂ 

tra , loc economic cost for locally traded electricity 

ℂ 

tr a , r et economic cost for electricity taded with the retailer 

EFC 

exp expected EFC until the battery’s end-of-life 

𝐸 

act actual energy content of battery 

𝐸 

demand , local locally traded energy demand 

𝐸 

demand , retail energy demand traded with the retailer 

𝐸 

demand energy demand 

𝐸 

EV , act actual energy content of EV battery 

𝐸 

EV , buf buffer energy at the EV 

𝐸 

EV , CH , ext external charging energy at the EV 

𝐸 

EV , CH charging energy at the EV 

𝐸 

EV , DCH discharging energy at the EV 

𝐸 

EV , dri energy demand for driving at the EV 

𝐸 

EV , SD self-discharge energy at the EV 

𝐸 

HES , act actual energy content of HES battery 

𝐸 

HES , CH charging energy at the HES 

𝐸 

HES , DCH discharging energy at the HES 

𝐸 

HES , SD self-discharge energy at the HES 

𝐸 

Load energy consumption 

𝐸 

nom nominal energy content of battery 

𝐸 

PV energy provided by the PV generator 

𝐸 

supply, local locally traded energy supply 

𝐸 

supply, retail energy supply traded with the retailer 

𝐸 

supply energy supply 

𝐸 

trade , local locally traded electricity 

𝐸 

tr ade , r etail electricity traded with the retailer 

𝐸 

tr ade , t otal total traded electricity 

𝜖 share of locally traded electricity 

𝜂EV , CH charging efficiency of the EV 

𝜂EV , DCH discharging efficiency of the EV 

𝜂HES , CH charging efficiency of the HES 

𝜂HES , DCH discharging efficiency of the HES 

𝑁 set of households 

𝑛 household 

𝜙 peer’s economic incentive to trade locally 

𝑃 EV , CH , ext external charging power at the EV 

𝑃 EV , CH charging power at the EV 

𝑃 EV , DCH discharging power at the EV 

𝑃 EV , max maximum (dis)charging power of the EV 

𝑃 HES , CH charging power at the HES 

𝑃 HES , DCH discharging power at the HES 

𝑃 HES , max maximum (dis)charging power of the HES 

p pur chase , r etail retailer’s purchase price for electricity 

p sell , retail retailer’s sell price for electricity 

SOC 

EV , max maximum SOC of EV battery 

SOC 

EV , min minimum SOC of EV battery 

SOC 

HES , max maximum SOC of HES battery 

SOC 

HES , min minimum SOC of HES battery 

SOC 

pr efer ence SOC threshold for reserve energy 

𝑇 set of time steps 

𝑡 time step 

𝑥 plugged binary variable, defining if vehicle is connected 
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evelopment of P2P trading that is ready to be deployed in today’s elec-

ricity market. The reason could be partially attributed to the fact that

rosumers are more interested to use their DER such as batteries to go

ff-grid and become energy-neutral, rather than interacting with other

takeholders within the network, as found in [20] . 

A study of 268 prosumers who were asked about battery purchases

eported that 70% of the survey respondents purchased their batter-

es to reduce personal electricity costs with intensions to less interact

ith other stakeholders of the network [20] . Two important factors that

ave motivated their decision in separating themselves from any form

f interaction are (i) the fear of losing the ability to control their assets

21] and (ii) the concern about the reduction of the lifetime of their re-

ources due to their extensive usage for the local market support [22] .

hese place technology developers, network operators, and policymak-

rs in a conundrum, as the success of P2P trading and other smart energy

nfrastructure, relies on the proactive participation of prosumers [23] ,

nd therefore, prosumers’ reluctance to share their assets can negatively

mpact the lived experience of P2P energy trading [22] . 

To this end, this paper provides empirical evidence to close two gaps

n existing literature. Firstly, we incorporate the prosumer’s home en-

rgy management decision-making process into the subsequent decision

o trade on the local P2P market. We present an integrated P2P energy

rading algorithm that empowers prosumers to use an energy manage-

ent system to control their energy resources and optimally meet their

ome energy demand and then, whenever appropriate, share the sur-

lus in the local P2P market. By doing so, prosumers’ uncertainty of

osing control of their energy assets is eliminated. Secondly, using ex-

ensive data from a Germany-based pilot trial, we demonstrate that the
 m  

2 
xtra charging and discharging cycles of prosumers’ batteries due to P2P

rading has minimal effect on battery lifetime. 

In summary, the main contributions of the work are: 

• The impacts of peer-to-peer energy trading on energy storage sys-

tems are analyzed via a novel matching mechanism for coordinating

home energy management and peer-to-peer trading. 
• We compare the financial performance and degradation effects of

our decentralized P2P matching mechanism to a centralized ap-

proach that optimizes the overall techno-economic outcome, con-

sidering both stationary and mobile energy storages. 
• The first evidence of the minimal impact on battery lifetime as well

as the shared techno-economic benefits to the prosumer due to P2P

trading. 
• This paper examines the interaction between home energy manage-

ment and P2P trading, providing a crucial technical demonstration

to help overcome the techno-economic and social challenges. 

The remainder of the paper is structured as follows. Section 2 intro-

uces the methodology of analysis, P2P framework, and its mathemat-

cal formulation. The results of our analysis are presented in Section 3 ,

iscussed in Section 4 , and concluded in Section 5 . 

. Methods 

.1. Decentralized versus central decision making approach 

We differentiate between two approaches for the energy manage-

ent of households in a P2P network, as illustrated in Fig. 1 . In both
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Fig. 1. Schematic illustration of decentralized and central decision making in a peer-to-peer (P2P) network. Each peer is characterized by its energy inflexibilities 

and flexibilities. The inflexibilities represent the supply and demand stemming from producing and consuming components. Stationary and mobile energy storages 

allow the flexible charging and discharging of electricity, enabling the temporal shift of supply and demand. There are two decision making approaches to calculate 

the offers, transactions, and operation strategies of the peers: decentralized (left) and central (right). For the decentralized approach a HEMS at each peer calculates 

the offers and transfers them to the matching platform of the P2P network. With the larger information base and flexibility pool, the CEMS simultaneously calculates 

the optimal operation strategies for all flexibilities and peers to yield the optimal techno-economic outcome. 
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Fig. 2. Exemplary illustration of the fairness policy in a peer-to-peer (P2P) mar- 

ket with offers from three peers. Peers A and B have positive net energy supply 

offers. Although peer A could meet the full demand from peer C, this would not 

be fair towards peer B. With the fairness policy all offers in the P2P community 

are considered for the creation of binding transactions. 
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pproaches, each household contains inflexibilities, such as its electric-

ty base demand and the supply of PV generators, as well as flexibili-

ies, which allow for a temporal shift of supply and demand. The EMS

tilizes the expected energy values from demand and supply to calcu-

ate an optimal operation strategy for the flexibilities and the techno-

conomic optimum for electricity demand and supply offers. Here, as

hown in Eq. (1) , the sum of the peers’ demand and supply matched

ocally ( 𝐸 

demand , local and 𝐸 

supply, local respectively) must be equal: ∑
 ∈𝑁 

𝐸 

demand , local 
𝑛,𝑡 

= 

∑
𝑛 ∈𝑁 

𝐸 

supply, local 
𝑛,𝑡 

(1)

For any supply and demand unfulfilled in the local market, the elec-

ricity is cleared with the retailer. 

The decentralized and central decision making approaches differ in

our main ways: type of EMS, information availability, computation

omplexity, and market mechanism. In the decentralized approach, each

eer has its own home energy management system (HEMS), whereas

 central authority or community energy management system (CEMS)

etermines the optimal operation strategies for all households in the

entral approach. 

To enable the central decision making, the CEMS has access to the

emand and supply data, as well as system states of the flexibilities, from

ll peers. It also has the capability to control and operate the flexibili-

ies in the network to maximize the P2P community’s techno-economic

otential. The peers have no access to data from the other households in

he network. The market mechanism determines how offers are matched

n the local market. Whilst offers are non-binding, once matched, these

ransactions between peers are binding and must be delivered. 

In the decentralized approach, on the other hand, offers are deter-

ined by the HEMS and then transferred to the clearing and matching.

f both demand and supply offers exist during a given trading inter-

al, they are cleared on a community level to reach the highest share

f locally traded electricity. This highest share is defined as the min-

mum value of the total offered demand and supply on a community

evel, as it is shown in Eq. (2) . After the clearing, the offers are matched

ith respective counterparts following a ’fairness policy’ (illustrated in

ig. 2 ). The fairness policy ensures that each received offer is consid-

red in the matching and that the volume matched is calculated based
3 
n the weighted offer volume (cf. Eqs. 3 and (4) for demand and supply

espectively). After clearing and matching, the offers are converted into

ransactions and transferred to the respective peers. Every peer needs to

now which offers became transactions on the P2P market, as well as the

olume, timing, and counterpart of electricity transaction. In the central

pproach, the energy management and matching occur simultaneously.

herefore, the offers are directly converted to binding transactions and

he operation strategies for all peers are calculated simultaneously. 

∑
 ∈𝑁 

𝐸 

trade , local 
𝑛,𝑡 

= min 

{ ∑
𝑛 ∈𝑁 

𝐸 

demand 
𝑛,𝑡 

, 
∑
𝑛 ∈𝑁 

𝐸 

supply 
𝑛,𝑡 

} 

(2)

 

demand , local 
𝑛,𝑡 

= 

𝐸 

demand 
𝑛,𝑡 ∑

𝑛 ∈𝑁 

𝐸 

demand 
𝑛,𝑡 

⋅
∑
𝑛 ∈𝑁 

𝐸 

trade , local 
𝑛,𝑡 

(3)

 

supply, local 
𝑛,𝑡 

= 

𝐸 

supply 
𝑛,𝑡 ∑ supply ⋅

∑
𝐸 

trade , local 
𝑛,𝑡 

(4)
𝑛 ∈𝑁 𝑛,𝑡 𝑛 ∈𝑁 
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.2. Assessing the financial benefit 

In our methodology, the benefit of P2P trading is characterized by 𝜖,

he proportion of electricity supplied or demanded in the network that is

raded locally ( Eq. (5) ). The total traded electricity, either by household

r on a community level, 𝐸 

tr ade , t otal , is defined in Eq. (6) as the sum of

lectricity traded with other peers ( 𝐸 

trade , local ) and with the electricity

etailer ( 𝐸 

tr ade , r etail ). 

= 

𝐸 

trade , local 

𝐸 

tr ade , t otal (5)

 

tr ade , t otal = 𝐸 

trade , local + 𝐸 

tr ade , r etail (6)

In Eq. (7) , 𝜙 represents the individual peer’s incentive to trade lo-

ally in Euro. A prerequisite for the design of a local market with more

avorable trading conditions than offered by the retailer is a price gap

etween the retail purchase and sale prices p pur chase , r etail and p sell , retail .
his price difference emerges in markets with demand-pull policies sub-

idizing decentralized production of electricity, where feed-in-tariffs are

eclining and where the retail price remains high, because risks of price

uctuations are covered by the retailer. The welfare gained due to local

rading on a community level is equal to the gap between the two price

ignals. In our approach, this economic gain is divided equally between

he peers – both the local supplier and consumer – so that the incen-

ive to either supply or purchase local electricity is equal for both. As a

esult, the unit 𝜙, allows us to draw general conclusions regarding the

nancial benefit per peer in a local market, isolating the effect of the

pecific underlying tariff structure, which differs with federal and state

egulations. 

= 

p pur chase , r etail − p sell , retail 

2 
(7)

From a mathematical point-of-view, the incentive to trade electricity

ocally arises as soon as a price corridor exists. In our approach, the mid-

oint of the price corridor (average between p pur chase , r etail and p sell , retail ), is
et as the static local market price. With this straightforward and simple

pproach, computation complexity is reduced significantly. Also, the in-

ividual incentive to trade locally, 𝜙, is the same for all peers. The offers

nd transactions consist of electricity values and the prices for traded

lectricity are equal and homogeneous for all peers. This eliminates the

ikelihood of market manipulation and arbitrage opportunities. 

 

elect ricit y 
𝑛,𝑡 

= 𝐸 

demand 
𝑛,𝑡 

⋅ p pur chase , r etail − 𝐸 

supply 
𝑛,𝑡 

⋅ p sell , retail 

− 𝐸 

trade , local 
𝑛,𝑡 

⋅ 𝜙 (8) 

In the P2P network, the individual households’ electricity costs,

 

elect ricit y , are given by Eq. (8) , where 𝐸 

demand , 𝐸 

supply , and 𝐸 

trade , local 

enote the total electricity demanded, supplied, and traded locally by

he household. The first term calculates the electricity costs, as if the

ull demand is covered by the retailer. If the household is a prosumer,

hese costs are compensated by revenues from electricity sold to the re-

ailer (second term) and if the household participates in a local market

 𝐸 

trade , local > 0 ), to more favorable conditions, the costs are reduced by

he incentive to trade locally, 𝜙. 

.3. Mathematical formulation 

The developed EMS is based on a linear optimization problem that

inimizes the electricity costs of the households and the P2P commu-

ity. Written in the MATLAB environment, it utilizes the Gurobi solver,

hich offers advantages in computation performance [24] . 

in 𝑧 dec 𝑧 dec = 

∑
𝑛 ∈𝑁 

∑
𝑡 ∈𝑇 

(
ℂ 

tr a , r et 
𝑛,𝑡 

+ ℂ 

deg 
𝑛,𝑡 

+ 𝐸 

EV , buf 
𝑛,𝑡 

+ 𝐸 

EV , CH , ext 
𝑛,𝑡 

)
(9)

in 𝑧 cen 𝑧 cen = 

∑
𝑛 ∈𝑁 

∑
𝑡 ∈𝑇 

(
ℂ 

tr a , r et 
𝑛,𝑡 

+ ℂ 

tra , loc 
𝑛,𝑡 

+ ℂ 

deg 
𝑛,𝑡 

+ 𝐸 

EV , buf 
𝑛,𝑡 

+ 𝐸 

EV , CH , ext 
𝑛,𝑡 

)

4 
(10) 

Eqs. 9 and (10) show the objective functions of the decentralized

nd central decision making approaches respectively. Mathematically,

hese differ only in one respect. While the decentralized EMS minimizes

he electricity costs from trading electricity with the retailer ( ℂ 

tr a , r et )

nly, the central CEMS also minimizes the electricity costs electricity

hared within the local network, ℂ 

tra , loc . This additional minimization

ever is attainable, because the CEMS has access to all offers placed in

he market, whereas in decentralized control each EMS only knows what

s occurring within one household. 

Besides the maximization of the profit from sharing and trad-

ng electricity the electricity retailer and with peers in the network,

qs. 9 and (10) also minimize the cost for cell degradation of the bat-

eries, ℂ 

deg . Thus, degradation awareness is introduced to the model.

efined in Eq. (11) , the cost of cell degradation is calculated using the

exibilities storage energy throughput, or equivalent full cycles (EFC)

nd the estimated opportunity costs per battery cycle ℂ inv 
EFC exp [25] . The

FCs are derived from the change in the state of charge over time (cf.

q. (12) ). With this active degradation awareness in place, the algo-

ithm only utilizes a battery if the financial benefit exceeds the costs of

egradation. 

 

deg 
𝑛,𝑡 

= EFC 𝑛,𝑡 ⋅
ℂ 

inv 

EFC 

exp (11)

FC 𝑛,𝑡 = 

|𝐸 

act 
𝑛,𝑡 

− 𝐸 

act 
𝑛,𝑡 −1 |

2 ⋅ 𝐸 

nom (12) 

𝐸 

EV , buf , which is also applied in Eq. (13) , incentivizes the optimiza-

ion algorithm to retain a minimum state of charge (SOC) in the EV bat-

eries reserved for driving when the vehicle is connected ( 𝑥 plugged = 1 ).
ue to the constraint formulation, the reserve SOC ( SOC 

pr efer ence ) is not

pplied when the vehicle is not connected, allowing the full energy con-

ent to be used for mobility purposes. This minimum state of charge is

mportant to the vehicle owner’s peace of mind, as they might need to

ake a spontaneous, unplanned trip. Guaranteeing this flexibility in this

odel increases user acceptance [26] . 𝐸 

EV , CH , ext enables that external

harging – outside of the home – is possible but discouraged by signif-

cantly less favorable conditions. Thus, the algorithm, avoids external

harging when possible. 

 

EV , nom ⋅ SOC 

pr efer ence ⋅ 𝑥 plugged 
𝑛,𝑡 

≤ 𝐸 

EV , act 
𝑛,𝑡 

+ 𝐸 

EV , buf 
𝑛,𝑡 

(13) 

In addition to the objective functions, to allow real world discussions

nd analysis, several constraints are implemented. The most important

f which are described here. Firstly, there is an energy conservation con-

traint for every HES and EV battery (cf. Eqs. 14 and (15) respectively).

 

act hereby represents the actual energy content of the battery and 𝐸 

CH 

s well as 𝐸 

DCH are the corresponding energy values that are charged

nd discharged to and from the battery. Due to efficiency losses during

harging and discharging the corresponding efficiency values 𝜂CH and
DCH are implemented. Ongoing energy losses due to self-discharge are

epresented by 𝐸 

SD . Besides the energy conservation constraint for the

ES, the EV’s constraint also considers 𝐸 

EV , CH , ext , which represents the

nergy that is charged into the EV battery externally (not at the house-

old and not in the community). The last variable, 𝐸 

EV , dri represents the

nergy that is consumed during driving. 

 

HES , act 
𝑛,𝑡 

= 𝐸 

HES , act 
𝑛,𝑡 −1 + 𝐸 

HES , CH 
𝑛,𝑡 

⋅ 𝜂HES , CH 

− 𝐸 

HES , DCH 
𝑛,𝑡 

⋅
1 

𝜂HES , DCH 
− 𝐸 

HES , SD 
𝑛,𝑡 

(14) 

 

EV , act 
𝑛,𝑡 

= 𝐸 

EV , act 
𝑛,𝑡 −1 + ( 𝐸 

EV , CH 
𝑛,𝑡 

+ 𝐸 

EV , CH , ext 
𝑛,𝑡 

) ⋅ 𝜂EV , CH 

− 𝐸 

EV , DCH 
𝑛,𝑡 

⋅
1 

𝜂EV , DCH 
− 𝐸 

EV , dri 
𝑛,𝑡 

− 𝐸 

EV , SD 
𝑛,𝑡 

(15) 

Further constraints are included in the optimization algorithm. For

nstance, Eq. (16) , which is the node constraint and ensures the en-

rgy conservation within each household. Therefore, all incoming en-

rgy flows must be equal to the outgoing energy flows. Other constraints
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Table 1 

Model parameters for the optimization algorithm, home energy storage system, electric vehicle (EV), and EV battery. 

Parameter Value UOM Parameter Value UOM 

General State of charge limitations [5,95] % [33] 

Sample time 0.25 h [33] Battery efficiency 99 % [39] 

Optimization period 24 h [25] Inverter efficiency 95 % [33,39] 

Rolling horizon 12 h Self discharge 0.6 %/month [33,39] 

Entities 1–50 Battery invest 800 EUR/kWh [27] 

Annual electricity consumption 3500 ∗ kWh [34] Cell temperature 25 ◦C [25] 

PV peak generation 10 ∗∗ kWp 

Feed-in limit 70 % [35] Electric vehicle & EV battery 

Grid charges 0.0739 EUR/kWh [36] Cell chemistry NMC [40] 

Distribution charges 0.0706 EUR/kWh [36] Average consumption 189 Wh/km [40] 

Electricity surcharges 0.1573 EUR/kWh [36] Annual driving distance 13 600 ∗∗∗ km [41] 

Subsidized remuneration 0.0845 EUR/kWh [37] Nominal energy content 65 kWh [40] 

Non-subsidized remuneration 0.0280 EUR/kWh [38] State of charge limitations [4,96] % [40] 

Home energy storage system Preferred minimum SOC 35 % [26] 

Cell chemistry LFP [33] Rated active power 11 kW [40] 

Nominal energy content 7 kWh [33] (Dis-)charging efficiency 89.4 % [42] 

Rated active power 3.5 kW [33] Self discharge 0.6 %/month [33,39] 

Battery invest 200 EUR/kWh [27] 

∗ The values are normally distributed with a standard deviation of 500. ∗∗ The values are normally distributed with a 

standard deviation of 1. ∗∗∗ The values are normally distributed with a standard deviation of 1500. 
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nsure compliance with the technical limitations of the energy storages.

or the HES and EV respectively, Eqs. 17 and (18) apply to the state

f charge and Eqs. 19 and (20) ensure that the maximum charging and

ischarging power is not exceeded. For the EV, 𝑃 EV , DCH is set to zero

f the bidirectional charging is not permitted in the examined case and

q. (20) ensures that the charging and discharging power remains zero

f the vehicle is not connected ( 𝑥 plugged = 0 ). 

 

demand , local 
𝑛,𝑡 

+ 𝐸 

demand , retail 
𝑛,𝑡 

+ 𝐸 

PV 
𝑛,𝑡 

+ 𝐸 

HES , DCH 
𝑛,𝑡 

+ 𝐸 

EV , DCH 
𝑛,𝑡 

= 𝐸 

supply, local 
𝑛,𝑡 

+ 𝐸 

supply, retail 
𝑛,𝑡 

+ 𝐸 

Load 
𝑛,𝑡 

+ 𝐸 

HES , CH 
𝑛,𝑡 

+ 𝐸 

EV , CH 
𝑛,𝑡 

(16) 

 

HES , nom ⋅ SOC 

HES , min 
≤ 𝐸 

HES , act 
𝑛,𝑡 

≤ 𝐸 

HES , nom ⋅ SOC 

HES , max (17) 

 

EV , nom ⋅ SOC 

EV , min 
≤ 𝐸 

EV , act 
𝑛,𝑡 

≤ 𝐸 

EV , nom ⋅ SOC 

EV , max (18) 

 

HES , CH 
𝑛,𝑡 

, 𝑃 
HES , DCH 
𝑛,𝑡 

≤ 𝑃 HES , max (19) 

 

EV , CH 
𝑛,𝑡 

, 𝑃 
EV , CH , ext 
𝑛,𝑡 

, 𝑃 
EV , DCH 
𝑛,𝑡 

≤ 𝑃 EV , max ⋅ 𝑥 plugged 
𝑛,𝑡 

(20) 

.4. Model predictive control 

At specified time intervals the optimization algorithm is executed.

his model predictive control approach allows the re-evaluation of pre-

ious optimizations based on updated input data [25] . In our frame-

ork, the optimization horizon for the EMS is 24 hours to follow a full

ay-and-night cycle. With each new evaluation of the optimization, the

lgorithm is fed with updated data that lies further in the future to deter-

ine the optimal operating strategy for all flexibilities and to calculate

he best offers for every household. These offers and transactions for

uture time steps are permitted and, once made, must be considered in

uture evaluations of the EMS. 

In this simulation, perfect foresight information is used for electric-

ty demand, PV generation, and EV usage patterns. However, in a real

orld application, these input profiles would be prediction values un-

erlying uncertainty. To deal with the inherent uncertainty, the rolling

orizon can be adjusted according to the quality of the prediction data.

hus, the strength of the model predictive control comes into play, and

lready optimized operation strategies are reevaluated with each update

f prediction values. 
5 
.5. Battery degradation models 

We differentiate between two cell chemistries in this contribution.

or the HES, a battery cell technology with a lithium-iron-phosphate

LiFePO4) cathode is applied, which is a suitable and widely used cell

hemistry for stationary storages due to its high cycle stability [27] . Due

o the requirement to use battery cells with a high energy density in mo-

ile applications [28] , for the EV, established cells with lithium-nickel-

obalt-manganese-oxide (LiNiCoMnO2) cathode material are used [29] .

o consider both, calendar [30] and cycle [31] degradation processes

ithin the two different cell technologies with graphite anodes, specific

egradation models are applied. The calculation for the capacity fade

n both models is examined via the battery cells’ physical conditions:

ifetime, temperature, voltage, and current [29] . Because of nonlinear

egradation mechanisms and battery safety conditions at lower state of

ealth levels, the end-of-life for the stationary and mobile batteries was

efined as 80% [32] . 

.6. Design of simulations and input data 

The results of this study are based on 1903 different parameter sets

cf. Table 1 ). For each of the scenarios, six use cases are simulated with

arying market schemes – reference (no local market), decentral, and

entral – and EV connection schemes – unidirectional and bidirectional.

he network size ranges from one to 50 households [1:1:10,15:5:50] and

he penetration rate of the technical equipment – PV generators, HES,

nd EV – varies between zero to one hundred percent [0%:20%:100%].

ith these scenario variations, 38,892 households, 25,928 PV genera-

ors, 12,964 home energy storages, and 19,446 EVs are simulated for

ach case. The data and code for this study is available upon release of

he paper. 

For the optimization framework four profile sets are used. The en-

rgy demand of the household is derived from one-year real measure-

ent data of German households [43] . In addition, the generation pro-

les from the photovoltaic (PV) generator is derived from one-year real

easurement data of a PV system installed in Munich, Germany [33] .

he necessary profiles for the electric vehicle (EV) are derived from the

ython tool emobpy [44] . From emobpy the two profile sets for the elec-

ricity consumption during driving and the availability time series at the

ousehold were used to conduct the study. Computational time strongly

aried with the complexity of the optimized case, lying between three

nd 20 minutes per annual optimization case (on an Intel i7-7600U pro-

essor and 16 GB RAM). 
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Fig. 3. Comparison of the net energy supply of a peer-to-peer network with 

three peers using a decentralized (left) and central (right) decision making ap- 

proach. The top two figures show the results for an exemplary winter day and 

the bottom two figures for a typical summer day. The peers’ offers (pastel col- 

ors) for both approaches differ, as the flexibilities are utilized differently on a 

peer level. It can be seen that the transactions (bright colors) for three peers are 

more dominant in the central approach. In both approaches, peer 1 (blue) pre- 

dominantly acts as an electricity supplier whereas peers 2 (red) and 3 (orange) 

act as net-consumers. Offers that are not matched in the local electricity market 

are traded with the electricity retailer. Due to the higher coexistence of supply 

and demand in summer, the locally traded energy is also significantly higher in 

this season. 

Fig. 4. The net supply power (top) of an exemplary scenario throughout a cal- 

endar year represents the net supply offers of an average peer within a local 

energy market. A clear increase during summer months shows the underlying 

effect of seasonality. The difference of the net supply power between the three 

cases comes from the different utilization of the flexibilities (energy storages) 

on a peer level. The share of locally traded electricity (bottom) distinguishes 

between the influence of seasonality and the effects of the network’s chosen de- 

cision making approach and electric vehicle (EV) operation scheme. Particularly 

during times of electricity surpluses, the central approach shows great economic 

advantages. 
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6 
. Results 

We develop an optimization framework to evaluate the techno-

conomic effects on peer profitability and storage degradation within

 P2P network. Our model comprises two main components: (i) the pro-

umer peers and their assets, and (ii) the coordination mechanism. 

Prosumers have inflexible load and PV generation profiles, as well

s sources of flexibility, in the form of stationary and mobile storages.

ollowing [33] and [45] , two EV connection schemes are considered:

i) unidirectional, in which the vehicle is charged only, and (ii) bidi-

ectional, the vehicle can discharge to the building or grid (i.e. vehicle-

o-X). Prosumers’ equipment penetration rates for PV, HES, and EV in

he network vary across the scenarios. Although the parameters and in-

ut profiles are oriented around German households, the model can be

pplied to any region that has feed-in-tariffs schemes. 

The technical objective of this work is to derive and validate a P2P

rading platform where local electricity can be traded, so that the hetero-

eneity between peers increases the profitability for both the individual

eer and the community as a whole, and reduces their collective reliance

n energy imported from the bulk grid. The coordination mechanism we

evelop is a P2P training model, based on a matching procedure. Specif-

cally, in this local energy market, all players can submit surplus energy

upply or demand in the form of offers. Once cleared and matched with

omplementary offers, these become binding transactions. We consider

wo decision making approaches, decentralized and central. In the de-

entralized case, every household has a home energy management sys-

em (HEMS) that determines the offers made to the local energy market.

n the central case, one community energy management system (CEMS)

etermines the offers for all households. 

As a baseline, we also consider a reference case, in which a house-

old’s power flows are optimized by the HEMS, but there is no local

lectricity market available for trading with peers. 

.1. Demonstration of peer-to-peer market mechanism 

Our demonstration examines 1903 simulated scenarios that explore

he influence of decentralized and central decision making for the en-

rgy management, at different levels of prosumer PV, HES, and EV pen-

tration. To begin, we illustrate the rationale behind the coordination

ramework and the P2P mechanism, by considering results for an exam-

le network with three peers. These are given in Fig. 3 , which shows

he net energy supply in the form of the peers’ offers and transactions.

his figure demonstrates that the offers in the decentralized and central

pproaches differ only slightly on the same winter or summer day, but

ignificantly more transactions are made in the central case. This is ex-

lained by the superior information and greater optimization scope of

he CEMS, which can utilize the flexibilities across prosumers to opti-

ize the benefit for the entire community. In contrast, the HEMS’ avail-

ble information and optimization scope is limited to one household

nd its flexibilities only. The benefit of the decentralized approach is

hat the participating households are not required to give the control

f their flexibilities over to a central authority, nor share their sup-

ly and demand information. In addition, significantly more net sup-

ly is offered to the local market on a summer day than in the win-

er, due to the seasonal nature of PV generation, which results in a

reater share of locally traded electricity in the summer (cf. Fig. 4 and

ig. 5 ). 

We quantify the effects of the market mechanisms on a typical sum-

er day in Table 2 , which shows the key metrics for each peer in the

eference, decentralized, and central cases. Across the three cases, the

nflexible loads and PV generation are identical. The results show that

he share of locally traded electricity is more than twice as high in the

entral case than the decentralized case, while the absolute cost reduc-

ion for both the decentralized and central cases is significant. 
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Fig. 5. Average profit increase of a peer within an exemplary scenario. The 

profit increase determines the economic added value compared to the same set- 

ting if no local energy market exists. Particularly during times of electricity sur- 

pluses of the peers’ profit increase due to the local energy network shows high 

growth rates. 𝜙 represents the monetary incentive per peer to trade electricity 

locally. 

Fig. 6. The annual share of locally traded electricity in a peer-to-peer network 

by number of participating peers shows a saturating effect as the heterogene- 

ity of peers declines with increasing network size. Scenarios differ in the deci- 

sion making approach (central vs. decentral) and electric vehicle (EV) charging 

scheme (uni- vs. bidirectional). 
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Fig. 7. Annual profit increase due to local peer-to-peer trading. The profit in- 

crease determines the economic added value compared to the reference case, 

where no local energy market exists. 𝜙 represents the monetary incentive per 

peer to trade electricity locally. The scenarios ( 𝑛 = 1,903) were examined using 

different decision making approaches (central vs. decentral) and electric vehicle 

(EV) charging schemes (uni- vs. bidirectional). 
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.2. Financial benefit of peer-to-peer trading 

Building on the energy flow results, our financial results show that

he benefits to individuals participating in a local P2P market are sub-

tantial, especially when decisions regarding the trading amount and

rading partners are managed by a CEMS. Fig. 6 shows that the share

f locally traded electricity increases strongly up to a network sizes of

en peers. There is a saturating effect up to 20 households, after which

he share of locally traded electricity remains stable. This means that

he marginal benefit per new peer is neither increasing nor decreasing;

hat is, constant returns to scale. This is a significant finding, because

t shows that a community of twenty or more peers has no disadvan-

age in allowing additional participants to join the local energy market.

urthermore, the peers’ incentive to form local markets is shown to be

trong, even for small network sizes. The heterogeneity of households

s the key especially in small communities, as offers are more likely to

e matched when the inflexibilities of the households are dissimilar.

ith an increasing network size, it becomes more difficult to maintain

eterogeneity, as the likelihood for similarities between the peers also

ises. 
7 
As the share of locally traded electricity increases, the profitability

n a community and peer level rises proportionally due to the prefer-

ble trading conditions on the local market. This monetary benefit per

eer is measured in units of 𝜙, the added value per kWh traded lo-

ally, as shown in Fig. 7 . The local electricity price equals the mid-

oint of the gap between the electricity retailer’s purchase and selling

rices and forms the incentive for all peers to first trade locally. The

entral decision making by a CEMS yields the highest monetary bene-

t, because the authority to define the actions of all peers simultane-

usly enables the full exploitation of given heterogeneity and flexibil-

ty. Further improvements can be reached with bidirectional charging

chemes for the EV, as the pool of flexibilities available to the commu-

ity is expanded when the vehicles are permitted to discharge to the

etwork. If the reference case (without P2P network) is already rela-

ively profitable, i.e. in scenarios with high flexibility penetration, the

otential for further profitability improvements through P2P trading

eclines. 

.3. Degradation costs of peer-to-peer trading 

This article aims to provide empirical evidence on the financial and

echnical merits of local P2P market participation. Besides the need for a

nancial advantage, the concern of potential participants over reduced

attery lifetimes due to P2P trading – especially where a central author-

ty controls the peers’ flexibilities – also needs to be assuaged. 

Fig. 8 shows the distribution of the battery lifetimes for the EVs

nd HESs to compare the degradation effects of the decision making

pproaches. For cases with unidirectional EVs, the battery lifetime of

oth the stationary and mobile storages is extended in the central ap-

roach. This is highly significant, and explained by the lower average

tate of charge values in the central case, which positively affect the

ell chemistries’ calendar degradation. With bidirectional EVs, the bat-

ery lifetime of the HES is prolonged further in the central case, whereas

hat of the EV is reduced. Still the central bidirectional case consistently

utperforms in terms of monetary benefit. The higher degradation re-

ults from the increased utilization of the EV batteries and corresponding

ise in energy throughput and cycle degradation. Also, the transforma-

ion of EVs from flexible loads in the unidirectional case to bidirectional

exibilities, shifts energy throughput from the HES to the mobile stor-

ges. Significantly, due to the degradation awareness integrated in the

odel, the EMS considers the opportunity costs of energy throughput;
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Fig. 8. Absolute change in battery lifetime of home energy storage (HES) and 

electric vehicle (EV) battery until reaching the end-of-life at 80% remaining 

capacity, compared to the reference scenario. For all scenarios, the reference 

case without local electricity market and the decentralized approach show very 

similar lifetime. In comparison to the other approaches, the central approach 

yields higher battery lifetimes for the HES, both in uni- and bidirectional EVs 

cases. The dark red areas depict the overlap of the two cases. For the EV battery 

lifetime the central approach shows a slight increase for unidirectional oper- 

ated vehicles and a reduction in battery lifetime for the bidirectional use case. 

( 𝑛 EV = 19,446, 𝑛 HES = 12,964). 

Table 2 

Techno-economic results of an exemplary peer-to-peer (P2P) network with three 

peers and different market schemes for one summer day. The variation between 

the net demand of inflexibilities and offers comes from the charging and dis- 

charging of available flexibilities. Transactions represent the local offers that 

are matched within the community. The net electricity costs consider both the 

costs and revenue earned from trading electricity in the local P2P market and 

with the electricity retailer. The net electricity costs represent the costs minus 

the revenues from trading electricity. Negative values refer to the revenues that 

exceed the costs. 

Net supply (kWh) 
Locally 

traded 

Net 

electricity 

costs (EUR) 

Absolute cost 

reduction 

(EUR) Inflexibility Offer Transaction 

P1 31 .7 27 .2 -0 .58 

P2 -7 .0 -7 .0 0 .53 

P3 -3 .9 -4 .0 0 .30 

Reference 𝚺 20 .8 𝚺 16 .2 𝚺 0 .26 

P1 31 .7 27 .2 4 .4 16% -0 .70 0 .12 

P2 -7 .0 -7 .0 -3 .6 52% 0 .43 0 .10 

P3 -3 .9 -4 .0 -0 .8 20% 0 .28 0 .02 

Decentral 𝚺 20 .8 𝚺 16 .2 𝚺 0 .0 Ø 29% 𝚺 0 .02 0 .24 

P1 31 .7 24 .6 12 .8 52% -0 .85 0 .28 

P2 -7 .0 -8 .0 -8 .0 100% 0 .38 0 .15 

P3 -3 .9 -4 .8 -4 .8 100% 0 .22 0 .08 

Central 𝚺 20 .8 𝚺 11 .9 𝚺 0 .0 Ø 84% 𝚺 -0 .25 0 .51 
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Fig. 9. Comparison of the three operation approaches – reference (no local mar- 

ket), decentral, and central – for the energy management system based on an 

exemplary day. The inflexibility energy supply (top) for all cases is the same. 

The flexibility demand (middle), to charge and discharge the storages, for the 

central approach differs from the other two approaches. Due to the equal uti- 

lization of the flexibilities, the reference and decentralized approach have the 

same net energy supply (bottom). 
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hereby ensuring that the costs of the increased battery utilization are

utweighed by its benefits. 

There are no significant negative effects due to P2P trading when

he decentralized approach is applied. This is explained in Fig. 9 , which

hows the same utilization of flexibilities in the reference and decentral-

zed approaches. The only difference between the reference and decen-

ralized case is that the latter trades electricity in the local P2P market

efore sending unmatched offers to the retailer, and the former only

rades with the retailer. As a result, the stationary and mobile storages

ave the same degradation behavior with and without P2P trading when

sing a decentralized approach. 
8 
. Discussion 

Achieving the potential of this work involves addressing the social

hallenges of gaining user trust and acceptance [20] . Based on negative

ser experiences when P2P trading algorithms are opaque to users [22] ,

e recommend that the local market designers make the mechanisms

s simple, straight-forward, and transparent as possible. When market

esigns use dynamic price signals, arbitrage opportunities arise that are

empting to the sophisticated trader. However, to a risk averse prosumer

ousehold, the resulting complexity creates uncertainty whether they

ill be the winner or the loser of a trade. Our approach uses a fixed

rofit margin, equally distributed between trading parties. This way, it

s easy for the participants to understand the benefit of trading, which

ill subsequently increase the likelihood of the households being con-

inced to participate. For policy makers who are interested in boosting

he integration of renewables and the autarky of local grids, the authors

ecommend drafting policies that reduce or eliminate network charges

nd taxes on electricity traded between peers in a local market. This will

urther accelerate the proliferation of local P2P networks. 

Despite the significant strengths, the results of this paper are limited

y some assumptions. Firstly, the input profiles and parameters reflect

erman regulations. Secondly, network surcharges were neglected in

avor of simplicity. Though these would reduce the magnitude of the

rading incentive when deducted from the retail price corridor, the re-

ulting behavior and share of locally traded electricity would not be

nfluenced, as long as an incentive to trade locally remains. However,

he published method can be applied to any region with a tariff struc-

ure and appropriately adjusted to reflect any existing surcharges. The

cope of this article does not include effects on the electricity network,

here storage and P2P trading [46] and network operator-coordinated

attery dispatch [47] have been shown to contribute positively. Instead,

e focus on P2P market approaches, with the community and its house-

olds as the primary stakeholders. Further research can build upon our
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ndings and explore the resulting effects on distribution grids and the

istribution system operator’s interests in local electricity markets. 

As the central approach optimizes the benefit of the whole commu-

ity, situations can arise where an individual household could be dis-

dvantaged for the sake of the community. However, in over 99.99%

f cases, this disadvantage is only momentary and outweighed by the

dvantages offered during a one year time period. The algorithm is not

esigned to prohibit that an individual can be placed at a disadvan-

age, as this would limit the degrees of freedom of the optimization.

he threat, though negligible, of being put at a longer-term disadvan-

age might serve to prevent participation. Thus, it is extremely impor-

ant that the business model or agreement implemented by the peers

learly defines how the generated community profit is distributed so

hat any provision of flexibility is remunerated appropriately. The large

ariety of possible business model designs and their realizations in prac-

ice present a fascinating area for further research. 

. Conclusions 

Proof that the network benefits of peer-to-peer can be achieved with

egligible degradation of customer assets is vital to the social acceptance

hat underpins such schemes. Our results provide empirical evidence for

he techno-economic benefits that are possible with peer-to-peer trad-

ng when combined with home or community energy management sys-

ems. The strength of this model arises from the incorporation of 1903

cenarios, 38,892 households and consideration of specific battery cell

hemistries. We show that the strongest financial potential is reached

hen a central authority controls the flexibilities in the network and

lectric vehicles are bidirectional. There are no reduced battery lifetimes

n the central approach when electric vehicles are unidirectional, how-

ver, with bidirectional electric vehicles, peers need to take into account

hat the greater utilization of the electric vehicle battery comes at the

ost of increased cycle degradation. For decentralized peer-to-peer mar-

ets, results show that local electricity trading does not affect battery

ifetimes. We do not conclude which approach – central or decentral

is superior, instead evaluate their respective advantages and disad-

antages. Depending on local conditions and participant preferences,

arket makers can apply these results and design a peer-to-peer trading

arket that best reflects participants’ values. For instance, if indepen-

ence from the electricity retailer and financial profit is prioritized in

he local society, the central approach will offer a strong incentive to

articipate. Alternately, if participants are unwilling to share data with

r cede control over their flexibilities to a central authority, the decen-

ralized approach may foster greater acceptance and participation. 

We suggest three priorities for future work necessary to realize the

eer-to-peer benefits modelled by our findings: (i) This current mod-

lling is based on the German energy market. Future work should seek

o generalize the benefits of both approaches to other comparable mar-

ets, e.g. US, UK. (ii) Incentivizing customer participation is central to

he success of any peer-to-peer network. Our study suggests two op-

ions suitable to cater for different user values in a specific deployment

ontext, e.g. the desirability of a centralized approach if users value in-

ependence from electricity retailers, versus a decentralized approach

hich may be more favorable to a community who values control over

heir flexibilities. Prior to implementation, economic modelling should

e complemented by social research targeting user values and local

rivers of smart energy technology adoption. (iii) While beyond the

cope of this present paper, further work is also vital into the effect

f both approaches on grid operation and distribution systems. Bidi-

ectional charging can be problematic for local grid management when

eployed at scale and this effect should be modelled prior to implemen-

ation. 

eclaration of Interests 

The authors declare no competing interests. 
9 
RediT authorship contribution statement 

Stefan Englberger: Conceptualization, Validation, Writing – origi-

al draft, Methodology, Funding acquisition. Archie C. Chapman: Vali-

ation, Writing – original draft. Wayes Tushar: Writing – original draft.

ariq Almomani: Conceptualization, Investigation, Resources, Valida-

ion, Writing – original draft, Methodology, Resources, Formal analysis.

tephen Snow: Writing – original draft. Rolf Witzmann: Supervision,

unding acquisition. Andreas Jossen: Supervision, Funding acquisition.

olger Hesse: Conceptualization, Validation, Methodology, Resources,

ormal analysis. 

cknowledgments 

We gratefully acknowledge the financial support provided by the

avarian Ministry of Economic Affairs, Energy, and Technology via the

esearch project BASE.V (grant number DIK-1908-0008), supported by

ayern Innovativ. 

eferences 

[1] International Energy Agency (IEA). Trends 2020 in Photovoltaic Applica-

tions, Technical Report. 2020a. https://iea-pvps.org/trends_reports/trends-in-pv-

applications-2020/ . 

[2] International Energy Agency (IEA). Global EV Outlook 2020. 2020b.

https://www.iea.org/reports/global-ev-outlook-2020 . 

[3] Morstyn T, Farrell N, Darby SJ, McCulloch MD. Using peer-to-peer energy-trading

platforms to incentivize prosumers to form federated power plants. Nat Energy

2018;3(2):94–101. doi: 10.1038/s41560-017-0075-y . 

[4] Australian Energy Market Operator (AEMO). Energy explained: Minimum op-

erational demand. 2020. https://aemo.com.au/en/learn/energy-explained/

energy-101/energy-explained-minimum-operational-demand . 

[5] Morais H, Sousa T, Vale Z, Faria P. Evaluation of the electric vehicle impact in

the power demand curve in a smart grid environment. Energy Convers Manage

2014;82:268–82. doi: 10.1016/j.enconman.2014.03.032 . 

[6] Tushar W, Saha TK, Yuen C, Smith D, Poor HV. Peer-to-peer trading in elec-

tricity networks: an overview. IEEE Trans Smart Grid 2020;11(4):3185–200.

doi: 10.1109/TSG.2020.2969657 . 

[7] An J, Lee M, Yeom S, Hong T. Determining the peer-to-Peer electricity trading price

and strategy for energy prosumers and consumers within a microgrid. Appl Energy

2020;261:114335. doi: 10.1016/j.apenergy.2019.114335 . 

[8] Tushar W, Chai B, Yuen C, Huang S, Smith DB, Poor HV, et al. Energy storage

sharing in smart grid: a modified auction-based approach. IEEE Trans Smart Grid

2016;7(3):1462–75. doi: 10.1109/TSG.2015.2512267 . 

[9] Tushar W, Saha TK, Yuen C, Smith D, Ashworth P, Poor HV, et al. Challenges and

prospects for negawatt trading in light of recent technological developments. Nat

Energy 2020;5:834–41. doi: 10.1038/s41560-020-0671-0 . 

10] Tushar W, Yuen C, Saha TK, Morstyn T, Chapman AC, Alam MJE, et al.

Peer-to-peer energy systems for connected communities: a review of re-

cent advances and emerging challenges. Appl Energy 2021;282:116131.

doi: 10.1016/j.apenergy.2020.116131 . 

11] The Canberra Times. Peer to peer solar energy trading to begin. 2020.

https://www.canberratimes.com.au/story/7048390/peer-to-peer-solar-energy- 

trading-to-begin/?cs = 14231 . 

12] Khorasany M, Dorri A, RezaRazzaghi, Jurdak R. Lightweight blockchain framework

for location-aware peer-to-peer energy trading. International Journal of Electrical

Power & Energy Systems 2021;127:106610. doi: 10.1016/j.ijepes.2020.106610 . 

13] Tushar W, Saha TK, Yuen C, Morstyn T, McCulloch MD, Poor HV, et al. A motiva-

tional game-theoretic approach for peer-to-peer energy trading in the smart grid.

Appl Energy 2019;243:10–20. doi: 10.1016/j.apenergy.2019.03.111 . 

14] El-Baz W, Tzscheutschler P, Wagner U. Integration of energy markets in micro-

grids: adouble-sided auction with device-oriented bidding strategies. Appl Energy

2019;241:625–39. doi: 10.1016/j.apenergy.2019.02.049 . 

15] Kirchhoff H, Strunz K. Key drivers for successful development of peer-

to-peer microgrids for swarm electrification. Appl Energy 2019;244:46–62.

doi: 10.1016/j.apenergy.2019.03.016 . 

16] Noor S, Yang W, Guo M, Dam KH, Wang X. Energy demand side management

within micro-grid networks enhanced by blockchain. Appl Energy 2018;228:1385–

98. doi: 10.1016/j.apenergy.2018.07.012 . 

17] Wilkinson S, Hojckova K, Eon C, MMorrison G, Sandén B. Is peer-to-peer electricity

trading empowering users? evidence on motivations and roles in a prosumer busi-

ness model trial in australia. Energy Research and Social Science 2020;66:101500.

doi: 10.1016/j.erss.2020.101500 . 

18] Paudel A, Chaudhari K, Long C, Gooi HB. Peer-to-peer energy trading in a prosumer-

based community microgrid: a game-theoretic model. IEEE Trans Ind Electron

2019;66(8):6087–97. doi: 10.1109/TIE.2018.2874578 . 

19] Tushar W, Saha TK, Yuen C, Azim MI, Morstyn T, Poor HV, et al. A coali-

tion formation game framework for peer-to-peer energy trading. Appl Energy

2020;261:114436. doi: 10.1016/j.apenergy.2019.114436 . 

https://iea-pvps.org/trends_reports/trends-in-pv-applications-2020/
https://www.iea.org/reports/global-ev-outlook-2020
https://doi.org/10.1038/s41560-017-0075-y
https://aemo.com.au/en/learn/energy-explained/energy-101/energy-explained-minimum-operational-demand
https://doi.org/10.1016/j.enconman.2014.03.032
https://doi.org/10.1109/TSG.2020.2969657
https://doi.org/10.1016/j.apenergy.2019.114335
https://doi.org/10.1109/TSG.2015.2512267
https://doi.org/10.1038/s41560-020-0671-0
https://doi.org/10.1016/j.apenergy.2020.116131
https://www.canberratimes.com.au/story/7048390/peer-to-peer-solar-energy-trading-to-begin/?cs=14231
https://doi.org/10.1016/j.ijepes.2020.106610
https://doi.org/10.1016/j.apenergy.2019.03.111
https://doi.org/10.1016/j.apenergy.2019.02.049
https://doi.org/10.1016/j.apenergy.2019.03.016
https://doi.org/10.1016/j.apenergy.2018.07.012
https://doi.org/10.1016/j.erss.2020.101500
https://doi.org/10.1109/TIE.2018.2874578
https://doi.org/10.1016/j.apenergy.2019.114436


S. Englberger, A.C. Chapman, W. Tushar et al. Advances in Applied Energy 3 (2021) 100059 

[  

 

[  

 

[  

 

 

[  

[

[  

 

[  

 

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[

[  

[  

 

[  

 

 

[  

[  

 

[  

 

 

[  
20] Agnew S, Dargusch P. Consumer preferences for household-level bat-

tery energy storage. Renewable Sustainable Energy Rev 2017;75:609–17.

doi: 10.1016/j.rser.2016.11.030 . 

21] Immonen A, Kiljander J, Aro M. Consumer viewpoint on a new kind

of energy market. Energy Power Systems Research 2020;180:106153.

doi: 10.1016/j.epsr.2019.106153 . 

22] Ransan-Cooper H, Lovell H, Watson P, Harwood A, Hann V. Frustration, con-

fusion and excitement: mixed emotional responses to new household solar-

battery systems in australia. Energy Research and Social Science 2020;70.

doi: 10.1016/j.erss.2020.101656 . 

23] Morstyn T, McCulloch MD. Multiclass energy management for peer-to-peer energy

trading driven by prosumer preferences. IEEE Trans Power Syst 2019;34(5):4005–

14. doi: 10.1109/TPWRS.2018.2834472 . 

24] Gurobi Optimization, LLC. Gurobi Optimizer. 2021. http://www.gurobi.com/ . 

25] Englberger S, Jossen A, Hesse H. Unlocking the potential of battery storage with the

dynamic stacking of multiple applications. Cell Reports Physical Science 2020;1(11).

doi: 10.1016/j.xcrp.2020.100238 . 

26] Haupt H, Bäuml G, Bärwaldt G, Nannen H, Kammerlocher M. The INEES research

project – intelligent grid integration of electric vehicles to provide system services.

In: Liebl J, editor. Grid Integration of Electric Mobility. Wiesbaden: Springer Nature;

2017. p. 105–15. doi: 10.1007/978-3-658-15443-1 . ISBN 978-3-658-15442-4 

27] Tsiropoulos I, Tarvydas D, Lebedeva N. Li-ion batteries for mobility and stationary

storage applications scenarios for costs and market growth. Publications Office of

the European Union; 2018. doi: 102760/87175 . 

28] Ding Y, Cano ZP, Yu A, Lu J, Chen Z. Automotive li-Ion batteries: current

status and future perspectives. Electrochemical Energy Reviews 2019;2(1):1–28.

doi: 10.1007/s41918-018-0022-z . 

29] Schmalstieg J, Käbitz S, Ecker M, Sauer DU. A holistic aging model for

li(nimnco)O2 based 18650 lithium-ion batteries. J Power Sources 2014;257:325–

34. doi: 10.1016/j.jpowsour.2014.02.012 . 

30] Naumann M, Schimpe M, Keil P, Hesse H, Jossen A. Analysis and modeling of

calendar aging of a commercial lifepo4/graphite cell. Journal of Energy Storage

2018;17:153–69. doi: 10.1016/j.est.2018.01.019 . 

31] Naumann M, Spingler FB, Jossen A. Analysis and modeling of cycle ag-

ing of a commercial lifepo4/graphite cell. J Power Sources 2020;451:227666.

doi: 10.1016/j.jpowsour.2019.227666 . 

32] Severson KA, Attia PM, Jin N, Perkins N, Jiang B, Yang Z, et al. Data-driven predic-

tion of battery cycle life before capacity degradation. Nat Energy 2019;4(5):383–91.

doi: 10.1038/s41560-019-0356-8 . 

33] Englberger S, Hesse H, Kucevic D, Jossen A. A techno-Economic analysis of vehicle-

to-Building: battery degradation and efficiency analysis in the context of coordinated

electric vehicle charging. Energies 2019;12(5). doi: 10.3390/en12050955 . 
10 
34] Federal Statistical Office of Germany. Electricity consumption of private house-

holds according to household size classes. 2020. https://www.destatis.de/DE/

Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/ 

stromverbrauch-haushalte.html . 

35] Gesetz für den ausbau erneuerbarer energien: § 9 technische vorgaben. Federal Min-

istry of Justice and Consumer Protection, editor. Federal Ministry of Justice and Con-

sumer Protection; 2017 . https://www.gesetze-im-internet.de/eeg_2014/__9.html 

36] BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.. Strompreis für

Haushalte. 2019. https://www.bdew.de/service/daten-und-grafiken/strompreis-

fuer-haushalte/ . 

37] Federal Network Agency for Electricity, Gas, Telecommunications, Post and

Railway. Reference values for payment for PV installations. 2020. https://www.

bundesnetzagentur.de/EN/Areas/Energy/Companies/RenewableEnergy/Facts_ 

Figures_EEG/Register_data_tariffs/EEG_registerdata_payments_node.html . 

38] Fraunhofer Institute for Solar Energy Systems ISE. Annual electricity

spot market prices in Germany. 2020. https://energy-charts.info/charts/

price_average/chart.htm?l = en&c = DE&interval = year&year = -1 . 
39] Hesse H, Martins R, Musilek P, Naumann M, Truong CN, Jossen A. Economic op-

timization of component sizing for residential battery storage systems. Energies

2017;10(7). doi: 10.3390/en10070835 . 

40] Electric Vechicle Database. EV Database - v4.2. 2020. https://ev-database.org/ . 

41] Federal Ministry of Transport and Digital Infrastructure. 2019. https://www.kba.de/

DE/Statistik/Kraftverkehr/VerkehrKilometer/vk_inlaenderfahrleistung/vk_ 

inlaenderfahrleistung_inhalt.html?nn = 2351536 . 

42] Sears J, Roberts D, Glitman K. A comparison of electric vehicle Level 1 and Level

2 charging efficiency. In: 2014 IEEE Conference on Technologies for Sustainability

(SusTech); 2014. p. 255–8. doi: 10.1109/SusTech.2014.7046253 . 

43] Tjaden T., Bergner J., Weniger J., Quaschning V.. Representative electrical load pro-

files of residential buildings in Germany with a temporal resolution of one second.

2015. Dataset, HTW Berlin University of Applied Sciences, License: CC-BY-NC-4.0,

downloaded on 2020-09-08. 10.13140/RG.2.1.3713.1606 

44] Gaete-Morales C., Zerrahn A., Schill W.-P.. emobpy. 2019.

https://gitlab.com/diw-evu/emobpy/emobpy . 

45] Gough R, Dickerson C, Rowley P, Walsch C. Vehicle-to-grid feasibility: a techno-

economic analysis of EV-based energy storage. Appl Energy 2017;192:12–23.

doi: 10.1016/j.apenergy.2017.01.102 . 

46] Guerrero J, Gebbran D, Mhanna S, Chapman AC, Verbi č G. Towards a transactive

energy system for integration of distributed energy resources: home energy manage-

ment, distributed optimal power flow, and peer-to-peer energy trading. Renewable

Sustainable Energy Rev 2020;132:110000. doi: 10.1016/j.rser.2020.110000 . 

47] Scott P, Gordon D, Franklin E, Jones L, Thiébaux S. Network-aware coordination of

residential distributed energy resources. IEEE Trans Smart Grid 2019;10(6):6528–

37. doi: 10.1109/TSG.2019.2907128 . 

https://doi.org/10.1016/j.rser.2016.11.030
https://doi.org/10.1016/j.epsr.2019.106153
https://doi.org/10.1016/j.erss.2020.101656
https://doi.org/10.1109/TPWRS.2018.2834472
http://www.gurobi.com/
https://doi.org/10.1016/j.xcrp.2020.100238
https://doi.org/10.1007/978-3-658-15443-1
https://doi.org/102760/87175
https://doi.org/10.1007/s41918-018-0022-z
https://doi.org/10.1016/j.jpowsour.2014.02.012
https://doi.org/10.1016/j.est.2018.01.019
https://doi.org/10.1016/j.jpowsour.2019.227666
https://doi.org/10.1038/s41560-019-0356-8
https://doi.org/10.3390/en12050955
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/stromverbrauch-haushalte.html
https://www.gesetze-im-internet.de/eeg_2014/__9.html
https://www.bdew.de/service/daten-und-grafiken/strompreis-fuer-haushalte/
https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/RenewableEnergy/Facts_Figures_EEG/Register_data_tariffs/EEG_registerdata_payments_node.html
https://energy-charts.info/charts/price_average/chart.htm?l=en\04526c=DE\04526interval=year\04526year=-1
https://doi.org/10.3390/en10070835
https://ev-database.org/
https://www.kba.de/DE/Statistik/Kraftverkehr/VerkehrKilometer/vk_inlaenderfahrleistung/vk_inlaenderfahrleistung_inhalt.html?nn=2351536
https://doi.org/10.1109/SusTech.2014.7046253
https://gitlab.com/diw-evu/emobpy/emobpy
https://doi.org/10.1016/j.apenergy.2017.01.102
https://doi.org/10.1016/j.rser.2020.110000
https://doi.org/10.1109/TSG.2019.2907128

	Evaluating the interdependency between peer-to-peer networks and energy storages: A techno-economic proof for prosumers
	1 Introduction
	2 Methods
	2.1 Decentralized versus central decision making approach
	2.2 Assessing the financial benefit
	2.3 Mathematical formulation
	2.4 Model predictive control
	2.5 Battery degradation models
	2.6 Design of simulations and input data

	3 Results
	3.1 Demonstration of peer-to-peer market mechanism
	3.2 Financial benefit of peer-to-peer trading
	3.3 Degradation costs of peer-to-peer trading

	4 Discussion
	5 Conclusions
	Declaration of Interests
	CRediT authorship contribution statement
	Acknowledgments
	References


