Advances in Applied Energy 3 (2021) 100059

Contents lists available at ScienceDirect

 ADVANCES IN
AppliedEnergy

Advances in Applied Energy

journal homepage: www.elsevier.com/locate/adapen

Evaluating the interdependency between peer-to-peer networks and energy | R

Check for

storages: A techno-economic proof for prosumers e

Stefan Englberger®*, Archie C. Chapman®, Wayes Tushar, Tariq Almomani®, Stephen Snow”,
Rolf Witzmann¢, Andreas Jossen?, Holger Hesse?
a Institute for Electrical Energy Storage Technology, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany

b Faculty of Engineering, Architecture and Information Technology, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
¢ Associate Professorship Power Transmission Systems, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany

ARTICLE INFO ABSTRACT

Keywords:
Peer-to-peer

Energy storage
Energy management
Degradation
Prosumer

Linear optimization

The rapid decentralization of energy generation and storage facilitates an opportunity to redesign existing energy
systems. Here, peer-to-peer energy trading in local markets offers advantages for demand response and flexibility
of energy delivery, yet it still faces problems of customer acceptance, namely, concerns over sharing control of
batteries and the degradation impacts of increased cycles. To help overcome these hurdles, this research develops
a techno-economic model that optimizes the interplay between peer-to-peer trading and energy management
systems in a community. The model distinguishes between two decision making approaches in a local electricity
market: decentral, where the household retains full control over its storages, and central, where the flexibilities
are fully leveraged to maximize the community benefit. Both approaches demonstrate the significant monetary
benefit of peer-to-peer trading, with the central approach reaching the greatest profitability potential. Negative
effects on the battery lifetime only occur in the central case with bidirectional vehicles, and the degradation is

comparatively slight.

1. Introduction

Power networks, and distribution networks in particular, are facing
operational and planning challenges from rising levels of customer in-
vestment in distributed generation, storage and flexible loads, collec-
tively called distributed energy resources (DER). For instance, the in-
stalled rooftop capacity of photovoltaic (PV) systems globally has grown
from 8 GW in 2007 to over 400 GW in 2019 [1], and annual added bat-
tery capacity from private electric vehicle (EV) sales is projected to in-
crease from 170 GWh in 2019 to between 1.2 and 2.6 TWh per year by
2030 [2]. Consequently, members of the community who used to be pas-
sive consumers of the electricity network are becoming prosumers — con-
sumers who also produce electricity [3] — and are expected to play key
roles in deciding how the future power systems will evolve and operate.
The change in prosumers’ roles within the distribution network present
significant challenges to power network operators, who face daytime
minimum demand challenges due to prosumers’ solar export to the net-
work [4] and the peak demand problems owing to EV ownership [5].
One potential way to address these challenges is to enable prosumers to
interact among themselves and trade electricity with one another [6] —
also known as peer-to-peer (P2P) trading.
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P2P trading is a prosumer-centric energy sharing scheme in which
prosumers in a power network can share a part of their resources, such
as electricity [7], storage space [8], and negawatts [9], and information
with one another to attain certain objectives. It is important to note
that although existing power network regulatory regimes do not allow
P2P trading to occur in the today’s electricity markets, extensive pilot
trials around the world [10] and government initiatives to reform the
electricity sector [11] are moving towards a future where P2P trading
will be integrated into the broader electricity market.

Furthermore, P2P trading has several positive characteristics, includ-
ing relatively low computational and implementation overheads [12],
the ability to engage extensive user participation [13], reductions in
energy cost [14], and balancing local generation and demand [15] by
enabling secured trading [16]. P2P trading empowers both the pro-
sumers [17] and community managers [18] that are trading within a
community, which makes it a suitable candidate to operate within fu-
ture customer-focused regulatory regimes [19]. As such, research over
the last five years has established P2P as an indispensable element of the
future electricity market, considering its potential to benefit participat-
ing prosumers and provide useful services to other stakeholders [10].
However, to the best of our knowledge, there are still no large-scale
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Nomenclature

CEMS community energy management system
DER distributed energy resource

EFC equivalent full cycle

EMS energy management system

EV electric vehicle

HEMS home energy management system

HES home energy storage

P2P peer-to-peer

PV photovoltaic

Parameters & variables

Celectricity economic cost for electricity

Cleg economic cost for battery degradation

cinv economic cost for battery investment

Ctraloe economic cost for locally traded electricity

Ctraret economic cost for electricity taded with the retailer
EFC®P expected EFC until the battery’s end-of-life

E*t actual energy content of battery
[Edemandlocal  oca]ly traded energy demand

pdemandretail  eneroy demand traded with the retailer

[Edemand energy demand

EEBVact actual energy content of EV battery
EEV.buf buffer energy at the EV

EFBVCHext  external charging energy at the EV
EEVCH charging energy at the EV

EFV.DCH discharging energy at the EV

EBV.dri energy demand for driving at the EV
EEV:SD self-discharge energy at the EV
EMES.act actual energy content of HES battery
EHESCH charging energy at the HES
EMESDCH  discharging energy at the HES
EMESSD self-discharge energy at the HES

[ElLoad energy consumption

Enom nominal energy content of battery

E®Y energy provided by the PV generator

Esvpplylocal —ocally traded energy supply

Esvpplyretail energy supply traded with the retailer

Esupply energy supply

[Etrade;local locally traded electricity

Etraderetail  electricity traded with the retailer

[Etrade;total total traded electricity

€ share of locally traded electricity

nEV-CH charging efficiency of the EV

yEV-DCH discharging efficiency of the EV

pHES.CH charging efficiency of the HES

#HES.DCH discharging efficiency of the HES

N set of households

n household

¢ peer’s economic incentive to trade locally

PEV.CHext external charging power at the EV

PEVCH charging power at the EV

PpEV.DCH discharging power at the EV

PEV.max maximum (dis)charging power of the EV

PHES.CH charging power at the HES

PHES.DCH discharging power at the HES

PHES,max maximum (dis)charging power of the HES

ppurchaseretail  retailer’s purchase price for electricity
sell,retail retailer’s sell price for electricity

SOCEV-max  maximum SOC of EV battery

SOCEV:min  minimum SOC of EV battery

SOCHESmax  maximum SOC of HES battery

SOCHESmin  minimum SOC of HES battery

socpreference g C threshold for reserve energy

T set of time steps

t time step

xPlugged binary variable, defining if vehicle is connected

development of P2P trading that is ready to be deployed in today’s elec-
tricity market. The reason could be partially attributed to the fact that
prosumers are more interested to use their DER such as batteries to go
off-grid and become energy-neutral, rather than interacting with other
stakeholders within the network, as found in [20].

A study of 268 prosumers who were asked about battery purchases
reported that 70% of the survey respondents purchased their batter-
ies to reduce personal electricity costs with intensions to less interact
with other stakeholders of the network [20]. Two important factors that
have motivated their decision in separating themselves from any form
of interaction are (i) the fear of losing the ability to control their assets
[21] and (ii) the concern about the reduction of the lifetime of their re-
sources due to their extensive usage for the local market support [22].
These place technology developers, network operators, and policymak-
ers in a conundrum, as the success of P2P trading and other smart energy
infrastructure, relies on the proactive participation of prosumers [23],
and therefore, prosumers’ reluctance to share their assets can negatively
impact the lived experience of P2P energy trading [22].

To this end, this paper provides empirical evidence to close two gaps
in existing literature. Firstly, we incorporate the prosumer’s home en-
ergy management decision-making process into the subsequent decision
to trade on the local P2P market. We present an integrated P2P energy
trading algorithm that empowers prosumers to use an energy manage-
ment system to control their energy resources and optimally meet their
home energy demand and then, whenever appropriate, share the sur-
plus in the local P2P market. By doing so, prosumers’ uncertainty of
losing control of their energy assets is eliminated. Secondly, using ex-
tensive data from a Germany-based pilot trial, we demonstrate that the

extra charging and discharging cycles of prosumers’ batteries due to P2P
trading has minimal effect on battery lifetime.
In summary, the main contributions of the work are:

¢ The impacts of peer-to-peer energy trading on energy storage sys-
tems are analyzed via a novel matching mechanism for coordinating
home energy management and peer-to-peer trading.

e We compare the financial performance and degradation effects of

our decentralized P2P matching mechanism to a centralized ap-

proach that optimizes the overall techno-economic outcome, con-

sidering both stationary and mobile energy storages.

The first evidence of the minimal impact on battery lifetime as well

as the shared techno-economic benefits to the prosumer due to P2P

trading.

e This paper examines the interaction between home energy manage-
ment and P2P trading, providing a crucial technical demonstration
to help overcome the techno-economic and social challenges.

The remainder of the paper is structured as follows. Section 2 intro-
duces the methodology of analysis, P2P framework, and its mathemat-
ical formulation. The results of our analysis are presented in Section 3,
discussed in Section 4, and concluded in Section 5.

2. Methods
2.1. Decentralized versus central decision making approach

We differentiate between two approaches for the energy manage-
ment of households in a P2P network, as illustrated in Fig. 1. In both
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Fig. 1. Schematic illustration of decentralized and central decision making in a peer-to-peer (P2P) network. Each peer is characterized by its energy inflexibilities
and flexibilities. The inflexibilities represent the supply and demand stemming from producing and consuming components. Stationary and mobile energy storages
allow the flexible charging and discharging of electricity, enabling the temporal shift of supply and demand. There are two decision making approaches to calculate
the offers, transactions, and operation strategies of the peers: decentralized (left) and central (right). For the decentralized approach a HEMS at each peer calculates
the offers and transfers them to the matching platform of the P2P network. With the larger information base and flexibility pool, the CEMS simultaneously calculates
the optimal operation strategies for all flexibilities and peers to yield the optimal techno-economic outcome.

approaches, each household contains inflexibilities, such as its electric-
ity base demand and the supply of PV generators, as well as flexibili-
ties, which allow for a temporal shift of supply and demand. The EMS
utilizes the expected energy values from demand and supply to calcu-
late an optimal operation strategy for the flexibilities and the techno-
economic optimum for electricity demand and supply offers. Here, as
shown in Eq. (1), the sum of the peers’ demand and supply matched
locally (Edemandlocal 3 psupplylocal regpectively) must be equal:

2 Ca ly,local
2 E;k;mdnd,locdl — 2 E's'urppy ocal (1)

neN neN

For any supply and demand unfulfilled in the local market, the elec-
tricity is cleared with the retailer.

The decentralized and central decision making approaches differ in
four main ways: type of EMS, information availability, computation
complexity, and market mechanism. In the decentralized approach, each
peer has its own home energy management system (HEMS), whereas
a central authority or community energy management system (CEMS)
determines the optimal operation strategies for all households in the
central approach.

To enable the central decision making, the CEMS has access to the
demand and supply data, as well as system states of the flexibilities, from
all peers. It also has the capability to control and operate the flexibili-
ties in the network to maximize the P2P community’s techno-economic
potential. The peers have no access to data from the other households in
the network. The market mechanism determines how offers are matched
in the local market. Whilst offers are non-binding, once matched, these
transactions between peers are binding and must be delivered.

In the decentralized approach, on the other hand, offers are deter-
mined by the HEMS and then transferred to the clearing and matching.
If both demand and supply offers exist during a given trading inter-
val, they are cleared on a community level to reach the highest share
of locally traded electricity. This highest share is defined as the min-
imum value of the total offered demand and supply on a community
level, as it is shown in Eq. (2). After the clearing, the offers are matched
with respective counterparts following a ’fairness policy’ (illustrated in
Fig. 2). The fairness policy ensures that each received offer is consid-
ered in the matching and that the volume matched is calculated based
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Fig. 2. Exemplary illustration of the fairness policy in a peer-to-peer (P2P) mar-
ket with offers from three peers. Peers A and B have positive net energy supply
offers. Although peer A could meet the full demand from peer C, this would not
be fair towards peer B. With the fairness policy all offers in the P2P community
are considered for the creation of binding transactions.

on the weighted offer volume (cf. Eqs. 3 and (4) for demand and supply
respectively). After clearing and matching, the offers are converted into
transactions and transferred to the respective peers. Every peer needs to
know which offers became transactions on the P2P market, as well as the
volume, timing, and counterpart of electricity transaction. In the central
approach, the energy management and matching occur simultaneously.
Therefore, the offers are directly converted to binding transactions and
the operation strategies for all peers are calculated simultaneously.
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2.2. Assessing the financial benefit

In our methodology, the benefit of P2P trading is characterized by e,
the proportion of electricity supplied or demanded in the network that is
traded locally (Eq. (5)). The total traded electricity, either by household
or on a community level, Etradetotal " ig defined in Eq. (6) as the sum of
electricity traded with other peers (E'r2delocaly and with the electricity
retailer (ElradeA,relail).

Etrade,local

=~ — (6))
Elrade,tolal

Elrade,tolal — Etrade,local + Elrade,retail (6)

In Eq. (7), ¢ represents the individual peer’s incentive to trade lo-
cally in Euro. A prerequisite for the design of a local market with more
favorable trading conditions than offered by the retailer is a price gap
between the retail purchase and sale prices pPUrehaseretail g psellretail
This price difference emerges in markets with demand-pull policies sub-
sidizing decentralized production of electricity, where feed-in-tariffs are
declining and where the retail price remains high, because risks of price
fluctuations are covered by the retailer. The welfare gained due to local
trading on a community level is equal to the gap between the two price
signals. In our approach, this economic gain is divided equally between
the peers — both the local supplier and consumer - so that the incen-
tive to either supply or purchase local electricity is equal for both. As a
result, the unit ¢, allows us to draw general conclusions regarding the
financial benefit per peer in a local market, isolating the effect of the
specific underlying tariff structure, which differs with federal and state
regulations.
¢ _ ppurchase,relail _ psell,retail

2

From a mathematical point-of-view, the incentive to trade electricity
locally arises as soon as a price corridor exists. In our approach, the mid-
point of the price corridor (average between ppPurchaseretail g psell.retaily ' jq
set as the static local market price. With this straightforward and simple
approach, computation complexity is reduced significantly. Also, the in-
dividual incentive to trade locally, ¢, is the same for all peers. The offers
and transactions consist of electricity values and the prices for traded
electricity are equal and homogeneous for all peers. This eliminates the
likelihood of market manipulation and arbitrage opportunities.

(O]

Celectricily — Edemand . ppurchase,retail _ ESUPPIY . nsellretail
nt

n,t n,t p

_ E::’ad&,local . ¢ (8)

In the P2P network, the individual households’ electricity costs,
Celectricily’ are given by Eq. (8), where Edemand’ Esupply’ and [Etrade.local
denote the total electricity demanded, supplied, and traded locally by
the household. The first term calculates the electricity costs, as if the
full demand is covered by the retailer. If the household is a prosumer,
these costs are compensated by revenues from electricity sold to the re-
tailer (second term) and if the household participates in a local market
(Etradelocal 5 () to more favorable conditions, the costs are reduced by
the incentive to trade locally, ¢.

2.3. Mathematical formulation

The developed EMS is based on a linear optimization problem that
minimizes the electricity costs of the households and the P2P commu-
nity. Written in the MATLAB environment, it utilizes the Gurobi solver,
which offers advantages in computation performance [24].

. a d
min zdee gdec — 2 2 (qr?,ret +Cle Efy,buf n E’I:Z?/,CH,en) ©)
neN teT

..cen _cen _ tra,ret tra,loc deg EV.buf EV,CH,ext
min 2" z XYt o+ CE 4 BN 4 By )
neN teT
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10)

Egs. 9 and (10) show the objective functions of the decentralized
and central decision making approaches respectively. Mathematically,
these differ only in one respect. While the decentralized EMS minimizes
the electricity costs from trading electricity with the retailer (C'raret)
only, the central CEMS also minimizes the electricity costs electricity
shared within the local network, C"#!°¢, This additional minimization
lever is attainable, because the CEMS has access to all offers placed in
the market, whereas in decentralized control each EMS only knows what
is occurring within one household.

Besides the maximization of the profit from sharing and trad-
ing electricity the electricity retailer and with peers in the network,
Egs. 9 and (10) also minimize the cost for cell degradation of the bat-
teries, C9°¢, Thus, degradation awareness is introduced to the model.
Defined in Eq. (11), the cost of cell degradation is calculated using the
flexibilities storage energy throughput, or equivalent full cycles (EFC)

and the estimated opportunity costs per battery cycle % [25]. The
EFCs are derived from the change in the state of charge over time (cf.
Eq. (12)). With this active degradation awareness in place, the algo-
rithm only utilizes a battery if the financial benefit exceeds the costs of

degradation.

deg _ BR o 11

Cn,t - CrL,t : EFCS*P an
|Ea.ctl _ Eact_ll

BFC,, = — (12)

EEVY which is also applied in Eq. (13), incentivizes the optimiza-
tion algorithm to retain a minimum state of charge (SOC) in the EV bat-
teries reserved for driving when the vehicle is connected (xPUgged = 1),
Due to the constraint formulation, the reserve SOC (SOCPreference) jg not
applied when the vehicle is not connected, allowing the full energy con-
tent to be used for mobility purposes. This minimum state of charge is
important to the vehicle owner’s peace of mind, as they might need to
take a spontaneous, unplanned trip. Guaranteeing this flexibility in this
model increases user acceptance [26]. EEV:CHext enables that external
charging — outside of the home - is possible but discouraged by signif-
icantly less favorable conditions. Thus, the algorithm, avoids external
charging when possible.

C lugged
EEV,nom . SOCpreferenue . xz,rugée < Ef}/,acl + Erlli?/,buf (13)

In addition to the objective functions, to allow real world discussions
and analysis, several constraints are implemented. The most important
of which are described here. Firstly, there is an energy conservation con-
straint for every HES and EV battery (cf. Egs. 14 and (15) respectively).
E™! hereby represents the actual energy content of the battery and E°H
as well as EPH are the corresponding energy values that are charged
and discharged to and from the battery. Due to efficiency losses during
charging and discharging the corresponding efficiency values 7! and
#PCH are implemented. Ongoing energy losses due to self-discharge are
represented by ESP. Besides the energy conservation constraint for the
HES, the EV’s constraint also considers EEV-CHext which represents the
energy that is charged into the EV battery externally (not at the house-
hold and not in the community). The last variable, EEV-9'i represents the
energy that is consumed during driving.

EngES,act _ EH,ESl,act + E:’ES,CH . yHES.CH

HES,DCH 1 HES,SD
E,; yHES.DCH E.; a4
EV,act _ EV,act EV.CH EV,CH,ext . ,EV.CH
E; = En,t_1 +(E,; +E; )-n
EV,DCH 1 EV,dri EV,SD
-E; . —nEV,DCH -E /" -E; (15)

Further constraints are included in the optimization algorithm. For
instance, Eq. (16), which is the node constraint and ensures the en-
ergy conservation within each household. Therefore, all incoming en-
ergy flows must be equal to the outgoing energy flows. Other constraints
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Table 1

Model parameters for the optimization algorithm, home energy storage system, electric vehicle (EV), and EV battery.
Parameter Value uoM Parameter Value uoM
General State of charge limitations [5,95] % [33]
Sample time 0.25 h [33] Battery efficiency 99 % [39]
Optimization period 24 h [25] Inverter efficiency 95 % [33,39]
Rolling horizon 12 h Self discharge 0.6 %,/month [33,39]
Entities 1-50 Battery invest 800 EUR/kWh [27]
Annual electricity consumption 3500* kWh [34] Cell temperature 25 °C [25]
PV peak generation 10** kwWp
Feed-in limit 70 %[35] Electric vehicle & EV battery
Grid charges 0.0739 EUR/kWh [36] Cell chemistry NMC [40]
Distribution charges 0.0706 EUR/kWh [36] Average consumption 189 Wh/km [40]
Electricity surcharges 0.1573 EUR/kWh [36] Annual driving distance 13 600 km [41]
Subsidized remuneration 0.0845  EUR/kWh [37] Nominal energy content 65 kWh [40]
Non-subsidized remuneration 0.0280 EUR/kWh [38] State of charge limitations [4,96] % [40]
Home energy storage system Preferred minimum SOC 35 % [26]
Cell chemistry LFP [33] Rated active power 11 kW [40]
Nominal energy content 7 kwWh [33] (Dis-)charging efficiency 89.4 % [42]
Rated active power 3.5 kw [33] Self discharge 0.6 %/month [33,39]

Battery invest 200 EUR/kWh [27]

* The values are normally distributed with a standard deviation of 500. ** The values are normally distributed with a
standard deviation of 1. *** The values are normally distributed with a standard deviation of 1500.

ensure compliance with the technical limitations of the energy storages.
For the HES and EV respectively, Eqs. 17 and (18) apply to the state
of charge and Egs. 19 and (20) ensure that the maximum charging and
discharging power is not exceeded. For the EV, PEV:.PCH ig set to zero
if the bidirectional charging is not permitted in the examined case and
Eq. (20) ensures that the charging and discharging power remains zero
if the vehicle is not connected (xPlugeed = ().

E;iimand,lncal + E;iimand,retuil +E,l,)y + E::,ES'DCH + E}][E;/,DCH

supply.local supply,retail 2 HES,CH EV.CH
= pppyoctl g proppbrelal g pload 4 plHESCH 4 pE (16)

EHES.nom | SOCHES'min < E']::ES.aCl < EHES,nom | SOCHES,maX an
EEV,nnm . SOCEV,min < E,liy,act < EEV,nom . SOCEV,max (18)
PSES’CH,P'?[ES'DCH < PHES,max (19)
PftV,CH, Pft\/,CH,ext’ PftV,DCH < PEV,max . xz};lgged (20)

2.4. Model predictive control

At specified time intervals the optimization algorithm is executed.
This model predictive control approach allows the re-evaluation of pre-
vious optimizations based on updated input data [25]. In our frame-
work, the optimization horizon for the EMS is 24 hours to follow a full
day-and-night cycle. With each new evaluation of the optimization, the
algorithm is fed with updated data that lies further in the future to deter-
mine the optimal operating strategy for all flexibilities and to calculate
the best offers for every household. These offers and transactions for
future time steps are permitted and, once made, must be considered in
future evaluations of the EMS.

In this simulation, perfect foresight information is used for electric-
ity demand, PV generation, and EV usage patterns. However, in a real
world application, these input profiles would be prediction values un-
derlying uncertainty. To deal with the inherent uncertainty, the rolling
horizon can be adjusted according to the quality of the prediction data.
Thus, the strength of the model predictive control comes into play, and
already optimized operation strategies are reevaluated with each update
of prediction values.

2.5. Battery degradation models

We differentiate between two cell chemistries in this contribution.
For the HES, a battery cell technology with a lithium-iron-phosphate
(LiFePO4) cathode is applied, which is a suitable and widely used cell
chemistry for stationary storages due to its high cycle stability [27]. Due
to the requirement to use battery cells with a high energy density in mo-
bile applications [28], for the EV, established cells with lithium-nickel-
cobalt-manganese-oxide (LiNiCoMnO2) cathode material are used [29].
To consider both, calendar [30] and cycle [31] degradation processes
within the two different cell technologies with graphite anodes, specific
degradation models are applied. The calculation for the capacity fade
in both models is examined via the battery cells’ physical conditions:
lifetime, temperature, voltage, and current [29]. Because of nonlinear
degradation mechanisms and battery safety conditions at lower state of
health levels, the end-of-life for the stationary and mobile batteries was
defined as 80% [32].

2.6. Design of simulations and input data

The results of this study are based on 1903 different parameter sets
(cf. Table 1). For each of the scenarios, six use cases are simulated with
varying market schemes — reference (no local market), decentral, and
central — and EV connection schemes — unidirectional and bidirectional.
The network size ranges from one to 50 households [1:1:10,15:5:50] and
the penetration rate of the technical equipment — PV generators, HES,
and EV - varies between zero to one hundred percent [0%:20%:100%].
With these scenario variations, 38,892 households, 25,928 PV genera-
tors, 12,964 home energy storages, and 19,446 EVs are simulated for
each case. The data and code for this study is available upon release of
the paper.

For the optimization framework four profile sets are used. The en-
ergy demand of the household is derived from one-year real measure-
ment data of German households [43]. In addition, the generation pro-
files from the photovoltaic (PV) generator is derived from one-year real
measurement data of a PV system installed in Munich, Germany [33].
The necessary profiles for the electric vehicle (EV) are derived from the
Python tool emobpy [44]. From emobpy the two profile sets for the elec-
tricity consumption during driving and the availability time series at the
household were used to conduct the study. Computational time strongly
varied with the complexity of the optimized case, lying between three
and 20 minutes per annual optimization case (on an Intel i7-7600U pro-
cessor and 16 GB RAM).
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Fig. 3. Comparison of the net energy supply of a peer-to-peer network with
three peers using a decentralized (left) and central (right) decision making ap-
proach. The top two figures show the results for an exemplary winter day and
the bottom two figures for a typical summer day. The peers’ offers (pastel col-
ors) for both approaches differ, as the flexibilities are utilized differently on a
peer level. It can be seen that the transactions (bright colors) for three peers are
more dominant in the central approach. In both approaches, peer 1 (blue) pre-
dominantly acts as an electricity supplier whereas peers 2 (red) and 3 (orange)
act as net-consumers. Offers that are not matched in the local electricity market
are traded with the electricity retailer. Due to the higher coexistence of supply
and demand in summer, the locally traded energy is also significantly higher in
this season.
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Fig. 4. The net supply power (top) of an exemplary scenario throughout a cal-
endar year represents the net supply offers of an average peer within a local
energy market. A clear increase during summer months shows the underlying
effect of seasonality. The difference of the net supply power between the three
cases comes from the different utilization of the flexibilities (energy storages)
on a peer level. The share of locally traded electricity (bottom) distinguishes
between the influence of seasonality and the effects of the network’s chosen de-
cision making approach and electric vehicle (EV) operation scheme. Particularly
during times of electricity surpluses, the central approach shows great economic
advantages.
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3. Results

We develop an optimization framework to evaluate the techno-
economic effects on peer profitability and storage degradation within
a P2P network. Our model comprises two main components: (i) the pro-
sumer peers and their assets, and (ii) the coordination mechanism.

Prosumers have inflexible load and PV generation profiles, as well
as sources of flexibility, in the form of stationary and mobile storages.
Following [33] and [45], two EV connection schemes are considered:
(i) unidirectional, in which the vehicle is charged only, and (ii) bidi-
rectional, the vehicle can discharge to the building or grid (i.e. vehicle-
to-X). Prosumers’ equipment penetration rates for PV, HES, and EV in
the network vary across the scenarios. Although the parameters and in-
put profiles are oriented around German households, the model can be
applied to any region that has feed-in-tariffs schemes.

The technical objective of this work is to derive and validate a P2P
trading platform where local electricity can be traded, so that the hetero-
geneity between peers increases the profitability for both the individual
peer and the community as a whole, and reduces their collective reliance
on energy imported from the bulk grid. The coordination mechanism we
develop is a P2P training model, based on a matching procedure. Specif-
ically, in this local energy market, all players can submit surplus energy
supply or demand in the form of offers. Once cleared and matched with
complementary offers, these become binding transactions. We consider
two decision making approaches, decentralized and central. In the de-
centralized case, every household has a home energy management sys-
tem (HEMS) that determines the offers made to the local energy market.
In the central case, one community energy management system (CEMS)
determines the offers for all households.

As a baseline, we also consider a reference case, in which a house-
hold’s power flows are optimized by the HEMS, but there is no local
electricity market available for trading with peers.

3.1. Demonstration of peer-to-peer market mechanism

Our demonstration examines 1903 simulated scenarios that explore
the influence of decentralized and central decision making for the en-
ergy management, at different levels of prosumer PV, HES, and EV pen-
etration. To begin, we illustrate the rationale behind the coordination
framework and the P2P mechanism, by considering results for an exam-
ple network with three peers. These are given in Fig. 3, which shows
the net energy supply in the form of the peers’ offers and transactions.
This figure demonstrates that the offers in the decentralized and central
approaches differ only slightly on the same winter or summer day, but
significantly more transactions are made in the central case. This is ex-
plained by the superior information and greater optimization scope of
the CEMS, which can utilize the flexibilities across prosumers to opti-
mize the benefit for the entire community. In contrast, the HEMS’ avail-
able information and optimization scope is limited to one household
and its flexibilities only. The benefit of the decentralized approach is
that the participating households are not required to give the control
of their flexibilities over to a central authority, nor share their sup-
ply and demand information. In addition, significantly more net sup-
ply is offered to the local market on a summer day than in the win-
ter, due to the seasonal nature of PV generation, which results in a
greater share of locally traded electricity in the summer (cf. Fig. 4 and
Fig. 5).

We quantify the effects of the market mechanisms on a typical sum-
mer day in Table 2, which shows the key metrics for each peer in the
reference, decentralized, and central cases. Across the three cases, the
inflexible loads and PV generation are identical. The results show that
the share of locally traded electricity is more than twice as high in the
central case than the decentralized case, while the absolute cost reduc-
tion for both the decentralized and central cases is significant.
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scheme (uni- vs. bidirectional).

3.2. Financial benefit of peer-to-peer trading

Building on the energy flow results, our financial results show that
the benefits to individuals participating in a local P2P market are sub-
stantial, especially when decisions regarding the trading amount and
trading partners are managed by a CEMS. Fig. 6 shows that the share
of locally traded electricity increases strongly up to a network sizes of
ten peers. There is a saturating effect up to 20 households, after which
the share of locally traded electricity remains stable. This means that
the marginal benefit per new peer is neither increasing nor decreasing;
that is, constant returns to scale. This is a significant finding, because
it shows that a community of twenty or more peers has no disadvan-
tage in allowing additional participants to join the local energy market.
Furthermore, the peers’ incentive to form local markets is shown to be
strong, even for small network sizes. The heterogeneity of households
is the key especially in small communities, as offers are more likely to
be matched when the inflexibilities of the households are dissimilar.
With an increasing network size, it becomes more difficult to maintain
heterogeneity, as the likelihood for similarities between the peers also
rises.
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different decision making approaches (central vs. decentral) and electric vehicle
(EV) charging schemes (uni- vs. bidirectional).

As the share of locally traded electricity increases, the profitability
on a community and peer level rises proportionally due to the prefer-
able trading conditions on the local market. This monetary benefit per
peer is measured in units of ¢, the added value per kWh traded lo-
cally, as shown in Fig. 7. The local electricity price equals the mid-
point of the gap between the electricity retailer’s purchase and selling
prices and forms the incentive for all peers to first trade locally. The
central decision making by a CEMS yields the highest monetary bene-
fit, because the authority to define the actions of all peers simultane-
ously enables the full exploitation of given heterogeneity and flexibil-
ity. Further improvements can be reached with bidirectional charging
schemes for the EV, as the pool of flexibilities available to the commu-
nity is expanded when the vehicles are permitted to discharge to the
network. If the reference case (without P2P network) is already rela-
tively profitable, i.e. in scenarios with high flexibility penetration, the
potential for further profitability improvements through P2P trading
declines.

3.3. Degradation costs of peer-to-peer trading

This article aims to provide empirical evidence on the financial and
technical merits of local P2P market participation. Besides the need for a
financial advantage, the concern of potential participants over reduced
battery lifetimes due to P2P trading — especially where a central author-
ity controls the peers’ flexibilities — also needs to be assuaged.

Fig. 8 shows the distribution of the battery lifetimes for the EVs
and HESs to compare the degradation effects of the decision making
approaches. For cases with unidirectional EVs, the battery lifetime of
both the stationary and mobile storages is extended in the central ap-
proach. This is highly significant, and explained by the lower average
state of charge values in the central case, which positively affect the
cell chemistries’ calendar degradation. With bidirectional EVs, the bat-
tery lifetime of the HES is prolonged further in the central case, whereas
that of the EV is reduced. Still the central bidirectional case consistently
outperforms in terms of monetary benefit. The higher degradation re-
sults from the increased utilization of the EV batteries and corresponding
rise in energy throughput and cycle degradation. Also, the transforma-
tion of EVs from flexible loads in the unidirectional case to bidirectional
flexibilities, shifts energy throughput from the HES to the mobile stor-
ages. Significantly, due to the degradation awareness integrated in the
model, the EMS considers the opportunity costs of energy throughput;
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Fig. 8. Absolute change in battery lifetime of home energy storage (HES) and
electric vehicle (EV) battery until reaching the end-of-life at 80% remaining
capacity, compared to the reference scenario. For all scenarios, the reference
case without local electricity market and the decentralized approach show very
similar lifetime. In comparison to the other approaches, the central approach
yields higher battery lifetimes for the HES, both in uni- and bidirectional EVs
cases. The dark red areas depict the overlap of the two cases. For the EV battery
lifetime the central approach shows a slight increase for unidirectional oper-
ated vehicles and a reduction in battery lifetime for the bidirectional use case.
(ngy=19,446, nyps=12,964).

Table 2

Techno-economic results of an exemplary peer-to-peer (P2P) network with three
peers and different market schemes for one summer day. The variation between
the net demand of inflexibilities and offers comes from the charging and dis-
charging of available flexibilities. Transactions represent the local offers that
are matched within the community. The net electricity costs consider both the
costs and revenue earned from trading electricity in the local P2P market and
with the electricity retailer. The net electricity costs represent the costs minus
the revenues from trading electricity. Negative values refer to the revenues that
exceed the costs.

Net supply (kWh) Net Absolute cost
Locally electricity reduction

Inflexibility Offer Transaction  traded costs (EUR) (EUR)

P1 31.7 27.2 -0.58

P2 -7.0 -7.0 0.53

P3 -3.9 -4.0 0.30

Reference X 20.8 X 16.2 X 0.26

P1 31.7 27.2 4.4 16%  -0.70 0.12

P2 -7.0 -7.0 -3.6 52% 0.43 0.10

P3 -3.9 -4.0 -0.8 20% 0.28 0.02

Decentral X 20.8 X16.2 X 0.0 ?29% X 0.02 0.24

P1 31.7 246 128 52%  -0.85 0.28

P2 -7.0 -8.0 -8.0 100% 0.38 0.15

P3 -3.9 -4.8 -4.8 100% 0.22 0.08

Central X 20.8 X119 X0.0 ? 84% X -0.25 0.51

thereby ensuring that the costs of the increased battery utilization are
outweighed by its benefits.

There are no significant negative effects due to P2P trading when
the decentralized approach is applied. This is explained in Fig. 9, which
shows the same utilization of flexibilities in the reference and decentral-
ized approaches. The only difference between the reference and decen-
tralized case is that the latter trades electricity in the local P2P market
before sending unmatched offers to the retailer, and the former only
trades with the retailer. As a result, the stationary and mobile storages
have the same degradation behavior with and without P2P trading when
using a decentralized approach.
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Fig. 9. Comparison of the three operation approaches - reference (no local mar-
ket), decentral, and central — for the energy management system based on an
exemplary day. The inflexibility energy supply (top) for all cases is the same.
The flexibility demand (middle), to charge and discharge the storages, for the
central approach differs from the other two approaches. Due to the equal uti-
lization of the flexibilities, the reference and decentralized approach have the
same net energy supply (bottom).

4. Discussion

Achieving the potential of this work involves addressing the social
challenges of gaining user trust and acceptance [20]. Based on negative
user experiences when P2P trading algorithms are opaque to users [22],
we recommend that the local market designers make the mechanisms
as simple, straight-forward, and transparent as possible. When market
designs use dynamic price signals, arbitrage opportunities arise that are
tempting to the sophisticated trader. However, to a risk averse prosumer
household, the resulting complexity creates uncertainty whether they
will be the winner or the loser of a trade. Our approach uses a fixed
profit margin, equally distributed between trading parties. This way, it
is easy for the participants to understand the benefit of trading, which
will subsequently increase the likelihood of the households being con-
vinced to participate. For policy makers who are interested in boosting
the integration of renewables and the autarky of local grids, the authors
recommend drafting policies that reduce or eliminate network charges
and taxes on electricity traded between peers in a local market. This will
further accelerate the proliferation of local P2P networks.

Despite the significant strengths, the results of this paper are limited
by some assumptions. Firstly, the input profiles and parameters reflect
German regulations. Secondly, network surcharges were neglected in
favor of simplicity. Though these would reduce the magnitude of the
trading incentive when deducted from the retail price corridor, the re-
sulting behavior and share of locally traded electricity would not be
influenced, as long as an incentive to trade locally remains. However,
the published method can be applied to any region with a tariff struc-
ture and appropriately adjusted to reflect any existing surcharges. The
scope of this article does not include effects on the electricity network,
where storage and P2P trading [46] and network operator-coordinated
battery dispatch [47] have been shown to contribute positively. Instead,
we focus on P2P market approaches, with the community and its house-
holds as the primary stakeholders. Further research can build upon our
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findings and explore the resulting effects on distribution grids and the
distribution system operator’s interests in local electricity markets.

As the central approach optimizes the benefit of the whole commu-
nity, situations can arise where an individual household could be dis-
advantaged for the sake of the community. However, in over 99.99%
of cases, this disadvantage is only momentary and outweighed by the
advantages offered during a one year time period. The algorithm is not
designed to prohibit that an individual can be placed at a disadvan-
tage, as this would limit the degrees of freedom of the optimization.
The threat, though negligible, of being put at a longer-term disadvan-
tage might serve to prevent participation. Thus, it is extremely impor-
tant that the business model or agreement implemented by the peers
clearly defines how the generated community profit is distributed so
that any provision of flexibility is remunerated appropriately. The large
variety of possible business model designs and their realizations in prac-
tice present a fascinating area for further research.

5. Conclusions

Proof that the network benefits of peer-to-peer can be achieved with
negligible degradation of customer assets is vital to the social acceptance
that underpins such schemes. Our results provide empirical evidence for
the techno-economic benefits that are possible with peer-to-peer trad-
ing when combined with home or community energy management sys-
tems. The strength of this model arises from the incorporation of 1903
scenarios, 38,892 households and consideration of specific battery cell
chemistries. We show that the strongest financial potential is reached
when a central authority controls the flexibilities in the network and
electric vehicles are bidirectional. There are no reduced battery lifetimes
in the central approach when electric vehicles are unidirectional, how-
ever, with bidirectional electric vehicles, peers need to take into account
that the greater utilization of the electric vehicle battery comes at the
cost of increased cycle degradation. For decentralized peer-to-peer mar-
kets, results show that local electricity trading does not affect battery
lifetimes. We do not conclude which approach — central or decentral
— is superior, instead evaluate their respective advantages and disad-
vantages. Depending on local conditions and participant preferences,
market makers can apply these results and design a peer-to-peer trading
market that best reflects participants’ values. For instance, if indepen-
dence from the electricity retailer and financial profit is prioritized in
the local society, the central approach will offer a strong incentive to
participate. Alternately, if participants are unwilling to share data with
or cede control over their flexibilities to a central authority, the decen-
tralized approach may foster greater acceptance and participation.

We suggest three priorities for future work necessary to realize the
peer-to-peer benefits modelled by our findings: (i) This current mod-
elling is based on the German energy market. Future work should seek
to generalize the benefits of both approaches to other comparable mar-
kets, e.g. US, UK. (ii) Incentivizing customer participation is central to
the success of any peer-to-peer network. Our study suggests two op-
tions suitable to cater for different user values in a specific deployment
context, e.g. the desirability of a centralized approach if users value in-
dependence from electricity retailers, versus a decentralized approach
which may be more favorable to a community who values control over
their flexibilities. Prior to implementation, economic modelling should
be complemented by social research targeting user values and local
drivers of smart energy technology adoption. (iii) While beyond the
scope of this present paper, further work is also vital into the effect
of both approaches on grid operation and distribution systems. Bidi-
rectional charging can be problematic for local grid management when
deployed at scale and this effect should be modelled prior to implemen-
tation.
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