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Abstract

Precise forecasting of thermal loads is a critical factor for economic and efficient operation of district heating and cooling
etworks. If thermal loads are known with high accuracy in advance, use of renewable energies can be maximized, and – in
ombination with thermal storage units – fossil generation, in particular in peaking units, can be avoided. Machine learning has
roven to be a powerful tool for time series forecasting, and has demonstrated significant advancements in recent years. This
aper presents the scientific methodology and first results of the publicly funded research project “deepDHC”, which aims at
broad benchmarking of traditional and advanced machine learning methods for thermal load forecasting in district heating

nd cooling applications. The analysis covers autoregressive forecasting approaches, decision trees such as “adaptive boosting”,
ut also latest “deep learning” techniques such as the “long short-term memory” (LSTM) neural network. This work is based
n data from the district heating network of the city of Ulm in Germany. First, different performance metrics for evaluating
orecasting qualities are introduced. Second, approaches for data screening and results of a linear and non-linear correlation
nalysis are presented. Third, the machine learning tuning process is described. For thermal load forecasting, weather data are
ey input parameters. This work uses hourly weather forecasts from weather models provided by the German meteorological
ervice. These weather data are updated automatically, and have been statistically corrected in order to represent very accurate
oint forecasts for up to ten days ahead. In addition, a user-friendly web interface has been developed for use by the district
eating network operator. The performance of different machine-learning algorithms is compared based on 72 h heating load
orecasts.
c 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the 17th International Symposium on District Heating and Cooling, DHC2021, 2021.
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1. Introduction

Precisely forecasting thermal loads is crucial for operating district heating networks efficiently, economically and
n an environmentally friendly way. If precise load forecasts are available to the operator, the use of fossil-fueled
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peaking boilers can be significantly reduced. In addition, the integration of fluctuating renewables into the grid
can be maximized. A precise long-term load forecast several days ahead also simplifies ordering fuel, or planned
maintenance. Hence this work focuses on thermal load forecasts throughout 72 h in advance, based on hourly data
from the district heating network for Ulm, a medium-sized city in southern Germany with about 125,000 inhabitants.

1.1. State of the art of thermal load forecasting for district heating networks

Accurately predicting heat loads has become an interesting field of application for modern time-series forecasting
ethods. Its importance even increases with rising global energy demand, decreasing reserves of fossil fuels and the

mpact of using fossil fuels on climate change [1]. District heating and cooling can be an efficient way of reducing
arbon dioxide emissions by optimizing fuel consumption [2]. Machine learning has also proven to be an attractive
ption for generating accurate thermal load predictions in the context of district heating and cooling (e.g. [3]).
ifferent algorithms have been evaluated in recent years for this purpose, such as Adaptive Boosting (AdaBoost) [4],
ong Short-Term Memory (LSTM) recurrent neural networks [5], the Seasonal Autoregressive Integrated Moving
verage Exogenous model (SARIMA) [6], Echo State Networks (ESN) [7] and Trajectory Tracking [8]. Most of

he work previously conducted on this topic focused on a 24-h time horizon [1,9]. This project instead focuses on
n extended forecasting period of up to 72 h to further optimize dispatch planning for power plants and thermal
nergy storage units. After analyzing single machine learning algorithms in the first phase of the project, stacked
eneralization is addressed thereafter to further improve forecasting precision. This involves combining an ensemble
f algorithms in order to minimize individual error rates [10,11].

.2. Project structure

Fig. 1 illustrates the basic structure and key activities of the “deepDHC” project. Weather and operating data,
ncluding smart metering data from the grid in the future, form the basis for analyzing a diverse set of machine
earning-based thermal load forecasting methods. Important elements of the process are data pre-processing and
tatistical optimization, e.g., by imputation of missing data to increase the quality of the training data. After training
nd validation, the machine learning methods are optimized by tuning key parameters. Different forecasting methods
re then benchmarked against one another. The best model for each method is used to make predictions for the
ext 72 h. In operation those predictions are updated hourly. The best predictions are then either selected based
n their benchmarking performance for the current season and network section or all predictions are stacked. The
rocessed load forecasts are made available to the operator via a web-based user interface. The experiences gained
uring the first phase of the project are used to develop automated machine learning. This approach would enable
utomatically generated load forecasts for new or changed heating and cooling networks, with minimal user input.
ll tools and forecasts are implemented and tested directly in the operator’s central control station in Ulm.

.3. Characterization of analyzed district heating networks

The district heating network used for the evaluation has a total length of 40 km. It provides space heating for over
100 households with an average annual heating demand of 75 GWh, and a heat load ranging from 2 to 22 MW.
ater with a temperature between 70 ◦C and 100 ◦C is used as a heat transfer fluid. Fig. 2 shows significantly

different typical heat demands in winter, summer and transition times. Therefore, in addition to a full-year analysis,
the performance of the algorithms for each of these periods is evaluated. This information can be used beneficially
in the second phase of the project, when stacked generalization is analyzed, to identify the best-suited combinations
of forecasting models.

2. Methodology

2.1. Analyzed machine learning algorithms

Three different machine learning algorithms were analyzed, selected from three different machine learning

categories, namely autoregressive models (SARIMAX), meta-algorithms (AdaBoost), and neural networks (LSTM):
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Fig. 1. Basic project structure and key activities.

Fig. 2. Typical heat demand profiles during summer, winter and transition times.

• SARIMAX stands for seasonal auto regressive integrated moving average with exogenous factors. This
stochastic process for modeling time series dating from 1970 is based on a Box–Jenkins approach that
originates from economics [12]. To develop this model the statsmodels package was used [13].

• AdaBoost is a popular boosting strategy [4]. In each iteration, the individual training vectors are assigned a
selection probability. This indicates how likely a vector is to be drawn in the training of a newly added learner.
The data series that were underfitted by the previously executed learner receive a higher probability. Thus, the
algorithm adapts to the regression errors in each step. As the weak learner Random Forest was used. Both,
the Adaboost and the underlying Random Forest use the Scikit-learn library [14].

• LSTM is a gradient-based recurrent neural network with feedback connections. LSTM cells can remember
values over an arbitrary amount of time, which make them an attractive option for time series prediction [5].
For this model the Keras implementation for LSTM layers was used [15].

2.2. Weather data

A high-quality weather forecast is indispensable for a precise load prediction. The German Weather Service
(DWD1) offers a fully automated product named MOSMIX that provides statistically corrected weather forecasts

1 https://www.dwd.de/.
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for the next ten days for about 5400 locations around the world, mostly in Germany and Europe. The forecasts
include common meteorological parameters such as outdoor air temperature, dew point, wind speed, wind direction,
surface pressure, sunshine duration, and visibility.

2.3. Correlation analysis

Correlation analysis helps to reduce the amount of possible input parameters to those that have a relation to
he target figure. This improves the effectiveness, efficiency and speed of the training process [16]. The Pearson
oefficient is a method of numerically computing linear correlations [17]. However, not all correlations are linear,

uch as similar loads at the same days of different years. For covering such non-linear correlations, the Maximal
nformation Coefficient (MIC) [17] can be used. A linear and non-linear correlation analysis was performed on 24
arameters. Table 1 shows the results for some of the most important of these. Relevant parameters often have a
igh coefficient both with Pearson and with MIC. Although some parameters have a low linear correlation, they
an still be valuable input if they show non-linear correlations. E.g., the average outdoor air temperature does not
orrelate linear with the load demand, but it still provides information about the general temperature trend. The same
eems to be the case for seasonal parameters such as month and day of the year which provide meta information
hat can be connected to common upper and lower limits.

Table 1. Correlation analysis between load and all existing parameters.

Parameter Pearson MIC

Last load 0.9905 0.9309
Average load of the last 6 h 0.9718 0.9010
Average load of the last 12 h 0.9622 0.8801
Average load of the last 24 h 0.9605 0.8765
Outdoor air temperature −0.8304 0.5958
Season sine −0.8218 0.7948
Dewpoint −0.8073 0.5541
Month −0.1891 0.7175
Day of the year −0.1864 0.8006
Average outdoor air temperature of the last 6 h −0.0042 0.6940
Average outdoor air temperature of the last 12 h −0.0037 0.7387
Average outdoor air temperature of the last 24 h −0.0011 0.7867

2.4. Data pre-processing, training and validation approach

Measured data from the last six years were used for model training and validation. Each hourly data point
onsists of 20 parameters, i.e., measurement data from the district heating network, or weather information. 45,000
ata points (5.3 years) were used for training the forecasting models, and the remainder for validation. Four periods
ere used for a consistent comparison of the different algorithms:

• Summer period (27.07.2020–09.08.2020)
• Winter period (30.11.2020–15.12.2020)
• Transition period (19.10.2020–01.11.2020)
• Overall period (21.07.2020–15.12.2020)

In order to ensure that errors caused by inaccurate weather forecasts are taken into account in the training,
ecorded historical weather forecasts were used as input for the trained model.

. Benchmarking results

.1. Benchmarking metrics

Benchmarking the forecasts is not an easy task, since no standardized metric is available. The Mean Absolute

ercentage Error (MAPE) is probably the most used metric for measuring forecast accuracy. The MAPE is
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dimensionless and independent of the magnitude of the values considered. At the same time, it can be clearly
interpreted. A MAPE of zero corresponds to the perfect forecast [18,19].

MAPE =
1
n

n∑
i=0

|ei |

di
(1)

The normalized Mean Absolute Error (nMAE) avoids the problem of interpretability, as does the MAPE, through
load-related weighting. Since the reference value of the nMAE is not averaged, but summed up, errors with a

igher reference are weighted more heavily than errors with a smaller reference. This kind of weighting is optimal
or a load forecast, since errors in times of peak loads have a significant influence on plant dispatch planning.

nMAE =

1
n

∑n
i=0 |ei |

1
n

∑n
i=0 di

=

∑n
i=0 |ei |∑n
i=0 di

(2)

In addition, the benchmarking metrics ‘Mean Squared Error’ (MSE) and ‘Mean Absolute Error’ (MAE) were
explored for training and evaluation purposes.

3.2. Comparison of load forecasting methods

To find the best model tuning hyperparameters, a broad search with randomly selected parameter settings
was performed for each training model. The results were used as a starting point for further tuning. Then, all
hyperparameters were kept constant except for one, which was explored over a broad range again to evaluate its
sensitivity and find an optimum value. This process was repeated for each hyperparameter.

SARIMAX does not have many hyperparameters. For that reason, autocorrelation function (ACF) and partial
autocorrelation function (PACF) plots were used. It was found that a (0,1,2) × (0,1,1)24 configuration gives the best
results. As an exogenous parameter, the outdoor air temperature showed the greatest influence on heat demand.

For AdaBoost, the analysis showed that it is necessary to have a sufficiently large amount of data, spanning at
least two years (17,520 data points). In addition, the number of implemented features plays a very important role.
The best training was achieved when all available input parameters were used.

For LSTM, a low number of epochs was found to provide better results. Generally, the neural network tended
to overfit when it was trained for too long. Also using MSE rather than MAE and MAPE as error functions during
training resulted in a lower nMAE value during the evaluation process.

Table 2 shows the nMAE forecasting errors of the best models in each category. LSTM achieved the best
overall results. While AdaBoost performed slightly better during hot months, LSTM had less deviations compared
to the measured load during colder months. SARIMAX showed the worst overall performance, mostly due to larger
forecasting errors, for warmer periods with lower heat demands. The error during winter was similar for all methods.

Table 2. Errors of different models for each evaluation period.

Forecast model AdaBoost LSTM SARIMAX

nMAE summer [%] 9.1 9.5 14.7
nMAE transition [%] 9.1 7.8 12.3
nMAE winter [%] 4.7 4.1 4.7
nMAE overall [%] 8.5 7.5 11.5

Fig. 3 shows the measured heat demand for a typical 72-h summer, winter and transition period in comparison
o 72-h load predictions for all three trained forecasting models. In addition, the Absolute Percentage Error (APE)
or each time step is given. The graphs show that the APE for the winter scenario is noticeable smaller than during
ummer and transition times. Also, the prediction seems to fit small fluctuations during the day better in winter. This
ight be due to a strong correlation between colder outdoor temperatures and the need to heat offices and living

pace. Heating big buildings is often automated and happens at the same time every day. The absolute deviation
uring summer seems small with less than 1 MW on average. Nonetheless it is still important for the operator to
redict peaks to meet the demand without overproducing heat. It should be mentioned that the evaluated network is
nly one of eight networks supplying the city. First tests shown significant differences depending on the network.
esides different area types, e.g., residential, industrial, commercial, the quality of training data can differ for each
323



S. Leiprecht, F. Behrens, T. Faber et al. Energy Reports 7 (2021) 319–326
Fig. 3. Measured and predicted heat demand for different evaluation periods and forecasting models.

network. Some networks have less data available due to long maintenance periods. Overall, it seems like each model
needs adjustment for each network to achieve the best possible result.

3.3. Discussion of results

The performance of forecasting models can vary significantly depending on the season. All in all, AdaBoost and
LSTM were able to produce the most reliable and accurate thermal load predictions. In particular, the SARIMAX
approach exhibited significantly higher deviations for most evaluation periods. There is potential to further improve
forecasting accuracy by specifically optimizing models for different seasons, or by stacking different forecasting
methods. Optimizing colder months is of particular interest due to the high peaks and fluctuations from day to day.
Predicting those peaks precisely would have the biggest potential to reduce CO2 emissions and operating costs [20].

4. Practical implementation

Apart from the machine learning activities described above, a tool was developed that gives the operator real
load predictions in a production environment. Such a system should be robust, fast, and intuitive to use for people
that do not have any knowledge about the prediction processes running in the background. The final architecture
that fulfills these requirements is illustrated in Fig. 4.

The core component of the system is a database, containing both historical data and predictions made by the
system itself. It receives data from two other systems, namely the Preprocessor and the Predictor. The Preprocessor
handles the gathering and filtering of any external data, such as historical weather data, current loads and weather
forecasts. It then adds the processed data to the database. The Predictor can query the data relevant to the current
point in time for predicting the loads for the next 72 h, which are then added again to the database. A Web-Interface

can query these predicted loads and any other additional data and present it to the operator in a visually appealing
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Fig. 4. Components of an end-user system.

way. It gives the operator the ability to manipulate the data visualization, e.g., turning on and off certain parameters,
to focus only on the data currently needed.

This multi-system architecture closely resembles the architecture of Self-Contained Systems (SCS) proposed by
Tilkov and Ghadir [21], but some parts, e.g., a web interface for each system, were not required in this project.
Still, the proposed configuration shares many advantages with SCS architectures, such as the ability to make local
decisions that affect only one system, faster iteration time during development, and an easy replaceability of systems.
This allows improvements to the quality of predictions without continuously deploying slightly changed versions
to the end user. The decoupling also makes the system more robust against failures, in that if one of the systems
crashes, all the others can continue their work. There is no communication between the systems, which allows for
either running all on one server or distributing them onto multiple machines.

Besides a robust backend, the application must be easy to use for the operator. Designing a good user experience
requires gathering feedback from actual operators from the outset and developing the interface iteratively [22].
The interviews conducted in this study showed that the operators preferred a more complex solution over a simple
integration of the predicted load into their current workflow. Based on this information, the currently implemented
user interface displays graphs showing the actual load and the predicted load for a longer timeframe, in order to give
the operator the opportunity to reason about the predictions made by the system. Additionally, the user interface
also provides a means of inspecting older load and prediction data to compare them to the current situation and to
help make educated guesses based on past results.

5. Conclusions and outlook

Using machine learning techniques could contribute to significantly improving thermal load forecasting. This
paper presents the initial results of a broader research activity that focuses on thoroughly analyzing and bench-
marking different machine learning-based forecasting approaches for district heating and cooling networks. As
a starting point, both typical seasonal characteristics of measured thermal load profiles as well as correlations
between key parameters and the load itself were analyzed. All measured data, including statistically optimized
point weather forecasts, were automatically pre-processed prior to the actual training and validation steps. Based on
detailed historical and actual operating and weather data, different types of machine learning algorithms were used to
predict thermal loads 72 h in advance. The algorithms were benchmarked against one another by means of different
standardized load regimes. Live operation of machine learning-based load forecasting is going to be demonstrated at
one of the heating network operator’s facilities. To allow robust and flexible operation, a multi-component software
architecture and a user interface showing the actual and predicted loads for a longer timeframe were implemented.

As a next step, more advanced machine learning approaches, including stacking of different techniques, is
planned. In addition, integration of smart metering data and automated training and generation of load forecasts
will be investigated. Furthermore, the web interface will be made available to selected persons within the power
plant. Thereby it is possible to gather vital information about the general performance, unexpected edge cases and
the usability of the interface. If those tests are satisfactory it is planned to also integrate the interface in the control
center.
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