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Abstract
Punching is a wide-spread production process, applied when massive amounts of the ever-same cheap parts are needed.
The punching process is sensitive to a multitude of parameters. Unfortunately, the precise dependencies are often unknown.
A prerequisite for optimal, reproducible and transparent process alignment is the knowledge of how exactly parameters
influence the quality of a punching part, which in turn requires a quantitative description of the quality of a part. We
developed an optical inline monitoring system, which consists of a combined imaging and triangulation sensor as well as
subsequent image processing. We show that it is possible to capture images of the cutting surface for every part within
production. We automatically derive quality parameters using the example of the burnish height from 2D images. In addition,
the 3D parameters are calculated and verified from the triangulation images. As an application, we show that the status of tool
wear can be inferred by monitoring the burnish height, with immediate consequences for predictive maintenance. Although
limited by slow images processing in our prototype, we conclude that connecting machine and process parameters with
quality metrics in real time for every single part enables data-driven process modelling and ultimately the implementation
of intelligent punching machines.
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1 Introduction

Punching (Fig. 1a) and blanking are manufacturing pro-
cesses for the mass production of high quality and econom-
ical parts especially for the automotive industry and elec-
tronic contact elements [1]. The cutting surface can often be
used directly as a functional surface. A high proportion of
the burnish surface is desired. We therefore regard the bur-
nish height (hB ) to be one quality and process-determining
factor [2–5]. A surface with a higher percentage of burnish
height represents a higher quality. Other quality indicators
defined in the literature are the rollover, fracture height and
burr height [6], see Fig. 1b. We collectively refer to these
parameters as “cutting surface parameters”.

� Maximilian Lorenz
maximilian.lorenz@hs-kempten.de

1 Laboratory for Optical 3D Metrology and Computer Vision,
University of Applied Sciences Kempten,
87435 Kempten, Germany

2 Laboratory for Machine Tools and Production Engineering,
University of Applied Sciences Kempten,
87435 Kempten, Germany

Attempts to optimize the quality of punching parts
with respect to cutting surface parameters are currently
based exclusively on expert knowledge and the trial-and-
error method. This is due to the fact that there are
many factors influencing the process in unknown ways;
examples are shown in Fig. 2. Moreover, the wide variety of
machine-, tool-, material- and process-parameters and their
mutual dependencies render it very difficult to compare
the results of different process studies [5, 8, 9]. These
studies are often carried out in a controlled environment
and therefore exclude fluctuation of these parameters within
their tolerances paired with a degrading process over its
lifetime. As summarized by [3, 10, 11], the process is still
not fully captured by any comprehensive process model.
Different experiments with different parameters show either
an increase or a decrease in the cutting edge/surface
parameters and thus come to contradictory conclusions; the
high-dimensional parameter space renders comparison and
interpretation of the results very difficult. Facing shorter
product life cycles and customer-oriented serial production,
it is important to improve the manufacturing process by an
automated quality monitoring [3, 12–14].

In metal forming the monitoring of the product quality
has been used to measure and improve the process. Purr
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(a)

(b)
Fig. 1 Definition of the cutting surface parameters [6, 7]. (a) Terming of
a punching process. (b) Cutting surface parameters of the sheet metal

et al. [15] showed the need for a quality analysis within a
stamping plant of car body parts. Maier et al. [16] showed
the benefits of the integration of a measuring system within
the process and compared them to offline measurement sys-
tem. Both studies also state that inline monitoring of quality
metrics is important for a data mining approach or a con-
trolled process. Other examples can be found for additive
manufacturing [17].

Numerous studies have investigated the influence of param-
eters within the punching process (e.g. acceleration [18],
force [19], acoustic emission [20]). In addition, different
approaches for expert systems [21], feature engineering
approaches [5, 11, 12, 22] or by artificial neural networks
[23, 24] were made to predict the process quality. To our best
knowledge, the current state-of-the-art of inline measure-
ment systems for quality monitoring of the cutting surface
parameters is only established via the correlation with indi-
rect measured parameters or engineered features. However,
these investigations are often verified by a small number of
specimens. In terms of the large parameter space, a contin-
uous quality measurement of the cutting surface is required.

Current methods for cutting surface analysis always
require samples to be taken and analysed separately from
the process. This is a crucial drawback for an industry which
faces even shorter development processes with increased

quality requirements as well as customized and application-
individualized products. Therefore, an economic process
design using empirical knowledge or the trial-and-error
method is not possible [14].

Cutting surface measurement For the cutting surface anal-
ysis, different measurement methods are used. Metallogra-
phy microsection and contour gauges are the oldest, which
suffer from the inaccuracy of the subjective reading of the
values and from the tactile procedure. Behrens et al. [4]
developed a device with a higher degree of automation for
a measurement based on laser triangulation and a curve-
matching-algorithm. Although the part must be prepared for
the measurement the cutting surface parameters are detected
automatically by the algorithm. For quality control of coils
during manufacturing, a chromatic confocal sensor is pro-
vided by Burghardt+Schmidt GmbH (Germany). Only the
rollover, burr height and fracture angle can be measured. All
these measuring methods only deliver partial or not repro-
ducible results, require significant amount of time and only
measure one profile section. This is a drawback because
of the fluctuating cutting surface parameters over the sur-
face. The transition from one cutting surface parameter to
another is not smooth and constant rather than depending
on, e.g. material variations. If a larger area of the surface has
to be observed often, a confocal microscope is used. While
the high accuracy is an advantage, confocal microscopy is
a time-consuming measurement because the surface has to
be scanned several times; in addition, the microscope is a
high price instrument. Furthermore, a survey with experts
from different companies showed that there is no common
standard for cutting surface analysis and documentation.
Rather the metrics are defined with each customer sep-
arately. This leads to time consuming negotiations with
every customer and to many different approaches for cutting
surface analysis even within one company.

The goal of our contribution is twofold. First, we want
to provide a monitoring system that is capable of measuring
the shape and the texture of the cutting surface parameters
of produced parts, thus providing clear and reproducible
metrics—including the variability along the surface—to
derive and document the quality of the parts. This enables
manufacturers to provide a 100 % quality inspection and
customers to standardize the quality requirements. Second,
an inline monitoring system for cutting surface properties
provides the chance to link machine parameters to quality
metrics, as described by [3]. As an example, we show that
the punch condition is reflected in the burnish height over
time, which can be used to determine the ideal point in time
for predictive maintenance.
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Fig. 2 Selection of process parameters that are most likely to influence the cutting surface parameters [22, 25]

2 Optical monitoring system

Monitoring by an optical system seems to be particularly
suitable for this task. Optical methods ensure high process-
ing speeds and through combination with image processing
a high degree of automation and reproducibility of measure-
ment results. Furthermore, all optical measuring methods
combine the properties of high accuracy and non-contact
inspection. The developed system captures data of cutting
surface within the process for each part. It combines an
image capturing and a triangulation method. Both share
the same CMOS-sensor and a telecentric lens (see Fig. 4).
This expands the analysis into a surface view rather than
only a (traditional) profile section of the cutting surface.
For the development, a rectangular punch with dimensions
5 × 5 mm2 and a coil material with a minimum thickness
of 0.5 mm was used (see Fig. 3). With respect to the accu-
racy of the measured cutting surface parameters, we aim
for an accuracy of ±5μm for all linear measures, which
corresponds to ±1% of the coil thickness, and ±1◦ for
the angular measure. For the production, a Bihler GRM-
NC was used with a maximum production speed of 250
strokes/minute. For more process parameters, see Table 1.
The system was placed close to the tool outlet.

2.1 Image capturing

The image capturing provides 2D images of the cutting sur-
face and is used to determine most of the linear measures

such as the burnish height. The required accuracy of the
linear measures of 5 μm translates to a resolution of 200
line pairs/mm at cutting surface level. To meet this require-
ment, we chose a telecentric lens with a magnification factor
of M = 2 and a modulation transfer function (MTF) con-
trast of approximately 35 % at the desired image resolution.
According to Nyquist sampling theorem, the image sam-
pling resolution at sensor level needs to be 2.5 μm or less
such that we decided for a sensor with a pixel pitch of
p = 4.8 μm.

The closed contour of the punching geometry does not
allow a head-on setup. The optical axis of the lens can not
be set orthogonal to the cutting surface. The whole system
has to be tilted downward with respect to the horizontal
plane (see Fig. 4). This in turn leads to a perspective

Fig. 3 Simplified produced punching part which was used to design
and test the developed monitoring system
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Table 1 Process parameters for production on the Bihler GRM-NC

Production speed 250 SPM

Sheet thicknes 0.5 mm

Sheet material X10CrNi18-10
CuSn6

Tensile strenght 1700 MPa
670 MPa

Lubrication no lubrication

Punch die clearance 0.025 mm (5%)

Punch material powder-
metallurgical
tool-steel

Punch geometry 5 × 5 mm2

Cutting edge radii 20 μ m

Blank holder force 23.6 kN

distortion of the 2D cutting surface image and hence leads
to a reduction of achievable image resolution in vertical
direction. With the given pixel pitch p one can calculate
an upper limit γmax for the tilt angle with arccos(p/5 μm)

resulting in an upper limit of γmax = 16, 3◦. Due to space
constraints, we chose for a slightly higher tilt angle of γ =
20◦ leading to a slightly lower resolution of approximately
195 line pairs/mm at cutting surface level. The tilting angle
is ensured mechanically.

2.2 Triangulation

The triangulation method is capable of measuring the 3D
topography of the cutting surface and is used to determine,
e.g. the fracture angle β, burr height. Available laser trian-
gulation sensors can not be used due to space constraints.
Hence, we utilize the image capturing sensor for our trian-
gulation by adding a laser line illumination. In this triangu-
lation configuration (see Fig. 4) the laser line illumination
is orientated such that:

– the triangulation angle ϕ between the laser axis and the
optical axis is set to ϕ ≈ 30◦

– the laser line is orientated along the yM-direction
– the laser line is imaged close to the center of the CMOS-

sensor in x - direction

The sensor (2D) data of projected laser line across the
cutting surface is transformed into the xM, yM, zM-coordinate
system with the triangulation angle ϕ. The 3D-Data is
extracted by projection this data the yM, zM-plane.

2.3 Components of themonitoring system

The monitoring system (see Fig. 5a) consists of a telecentric
lens with a magnitude M = 2 (f = 75 mm, NA = 0.164).
An industrial camera (CMOS-sensor) with a pixel pitch

Fig. 4 Imaging and triangulation setup with tilt angle γ and triangulation angle ϕ
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(a) (b)

(c)
Fig. 5 (a) Optical monitoring system with sensor, lens, laser mounted onto the baseplate. (b) Optical monitoring system mounted onto machine
(1 = sheet metal, 2 = monitoring system, 3 = punching tool). (c) Images from the monitoring system (I = image capturing, II = triangulation)

of p = 4.8 μm and a resolution of 1280 x 1024 Pixels
(Field of view: 3.072 mm × 2.457 mm) and a capturing
rate of 170 frames per second (fps) and a laser module
(Z-LASER Z30M18H3-F-450-lp45) with a wavelength of
470 nm which projects a line. The laser module comes with
an adjustable focus (f = 100 mm, 100 kHz). All parts are
mounted onto a baseplate. To adjust the laser line position
in reference to the lens, an adjustable mounting is received.
This allows to rotate the laser in his own axis, adjust the
triangulation angle and shift the laser position along the
image x-axis. The illumination is realized with two flashes
(470 nm). It is crucial set up one flash above the part (see
Fig. 5b). The angle between the normal on the burnish
surface and incoming light should be nearly the same as
the angle between the normal and optical axis. This ensures
that the burnish surface is brightly illuminated (see Fig. 5c).
Because of the different roughness of the fracture surface
and the different angle, this enables a distinction to be made.
The second flash is set up in such a way that the reflected
light of the lower side of the part is reflected into the lens.
The laser and the flashes are powered with 24 V and the
output is controlled with a potentiometer. Both devices are
connected to the camera for process control. The desired
workflow is show in Fig. 6.

2.4 Calibration of the triangulation setup

In order to obtain precise 3D data, the triangulation angle ϕ

must be calculated through calibration. For this end, a cali-
bration target with four different height levels is used (see
Fig. 7b). A confocal microscope (Keyence Corporation VK-
X-100) was used to quantify the height levels zc of the target
in high precision. For the calibration procedure the moni-
toring system is placed in front of a motorized stage. The
calibration target is mounted onto the stage (see Fig. 7a). It
is ensured that the optical axis of the imaging system and the
surface normal of the calibration target coincide. The laser
is aligned such, that the laser line projected on a flat surface
illuminates a single pixel column on the CMOS-sensor, only.
The laser was projected onto the target and captured with
the CMOS-sensor. In this data the different height levels of
the calibration target show up as four line segments. Each
segment shifted to each other in x-direction (see Fig. 7c). To
calculate ϕ, the differences in x-direction between the line
segments have to be known. With a center of mass(COM)
calculation the average x-positions for each line segment
and the differences Δx between the line segments were
determined. With the known physical height level from the
microscope zc the triangulation angle ϕ is calculated.
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Fig. 6 Workflow of the
monitoring system

2.5 Influence of the tilting angle γ

As stated above, the whole monitoring system has to be
tilted around the xW-axis by γ = 20◦. As a side effect, the
laser line illumination, which is set during the calibration
process, is no longer orientated along the yW -direction.
Instead, the laser line is titled as well. On a flat cutting
surface orientated parallel to the xW, yW-plane, the laser
line will be rotated around the zW-axis by γ = 20◦. This
has to be kept in mind, in order to correctly calculate the
fracture angle β of the measured triangulation data along
the projected laser line.

After calibration, the monitoring system was mounted
onto a Bihler GRM-NC (see Fig. 5b). Special care was taken
to ensure that the optical monitoring system can be removed
for the calibration process.

3 Extracting data for process monitoring

3.1 Image processing for image capturing

For image processing, the OpenCV package for Python
was used. This is beneficial to create prototype applications
rapidly. The captured images showed a bright stripe which
is identified as the burnish surface (see Fig. 5c). Our desired
task was a segmentation process which delivers the edges of
the burnish surface. From that edges the burnish height was
calculated. Edge detection operations such as Sobel filters
were not applicable. Since a connected segmentation line
along the transition between burnish and fracture surface
could not be ensured due to the inhomogeneous gray values
inside the burnish surface. Active Contour methods enable it
to distinguish despite this fluctuation and create a connected

transition line even with missing data points based on
weighting factors [26, 27].

Active Contours or Snakes denote an iterative energy
minimization procedure, which deform a curve influenced
by energy contributions such as conformity with the under-
lying image or local curvature of the curve [28]. The curve
energy is divided into parts. The inner energy of the curve
consists of a point spacing and a curvature term control-
ling the smoothness and elasticity, where less stretched and
bent curves are favoured. The external energy depends on
the image features itself. The curve is described by a finite
amount n of points. The minimization problem is solved
iteratively. In each iteration step curve energy is calculated.
A minimization is made by a gradient descent method. All
points are moved along the gradient of the energy and the
energy is calculated and compared to its predecessor. The
process is stopped after a certain amount of iteration steps
or after the energy change is smaller than a convergence
threshold. Details are given in [28].

To control the elasticity and smoothness of the curve, the
weights ζ , η can be set, respectively. Also, the number of
points have to be considered as a trade-off between a good
approximation of the curve and speed of segmentation.

In order to attract the curve towards the interface between
burnish surface and fracture surface, a feature image is
derived from the original image, and the external energy of
the curve is calculated based on the feature image.

Feature image Since working with gradient decent, the pur-
pose of the feature image (see Fig. 8a) is to create descend-
ing values towards the interface between burnish and frac-
ture surface, with minima’s at the unknown transition. It
is constructed by first adding a background image to the
original image. The background image values are increasing
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Fig. 7 Offline calibration of the monitoring system. (a) Calibration setup (arrows depict degrees of freedom). (b) Geometry of calibration target.
(c) Calibration image

with the distance to the bright burnish surface. This new
image can be seen as a ‘ramp’ with decreasing structure
towards the burnish surface (see Fig. 8b,c). In addition, the
gradient magnitude of the original image is subtracted from
the new image. This decreases the intensity at the locations
of the edges and ensures the minima to be at the transition.

Technically, the background image that ramps up towards
the boundaries is found by a distance transform. We first
determine the center of the burnish part by projecting the
intensity along the x-axis and finding two y-coordinates
such that all values with a projected intensity larger than
90% of the maximum intensity included between them (see
Fig. 9a). The center coordinate is defined as the mean of

those two y-coordinates. A distance transform then creates a
ramp that is falling linearly towards the center of the burnish
part. This image is called Eramp.

To add dependency to brightness the blurred Gaussian of
the original image EImage is added. The normalized gradient
image Egrad which is obtain with a Sobel-Operation of the
original image is subtracted. This is beneficial over the
distance transform of the gradient because this adds no
offset. This results in the profile show in Fig. 8b–c. The
feature image concludes to:

Eex = Efeat = [
Eramp + κEImage − χEgrad

]
(1)

The factors κ, χ are for weighting the terms.
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Fig. 8 Feature image for the
active contours algorithm to find
interface between burnish and
fracture surface. (a) Feature
image. (b) Profile of the left
vertical line. (c) Profile of the
right vertical line

Initial contour Since the burnish surface divides the image
horizontally, a closed contour is not required. It is a better
approach to work with two open contours, one for the
transition of the rollover/burnish surface and the other one
for the transition of the burnish/fracture surface.

Active Contours are strongly dependent on the initial
contour and the ratio of the weights ζ, η, κ, χ . To start with
a contour which is close to the segmentation is beneficial
in terms of processing time. Therefore, an iterative process
is carried out. A threshold value yheight has to be set by

(a) (b)

Fig. 9 (a) Rough selection of the burnish surface with normalized
cumulative intensity along x-axis for creation of the feature image.
Red surface exceed a threshold value and these rows are selected.
(b) Segments for initial contour. Each segment performs a cumulative

projection of the intensity along (in arrow direction) their length
as seen in image (a). The distance of the y-coordinates which are
below yheight are picked and represented as the blue points. The initial
contours (blue curves) are calculated based on the blue points
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the operator. This serves as an estimate for the burnish
height. At first the original image is divided along the x-
axis into area segments of the same length (see Fig. 9b).
For each area, a cumulative intensity projection within that
length is performed (see Fig. 9a). Again the y-coordinates
with intensity level above a certain threshold are selected
for each region. The maximum distance between these y-
coordinates is calculated. With pixel pitch, magnification
and tilting angle p, M, γ a compare value is calculated and
compared to yheight. If the compare value is below yheight,
these boundary points are selected. If the compare value is
greater than yheight, the threshold is increased until condition
one is satisfied. With the boundary points of all areas two
curves are calculated. One for the upper and one for the
lower contour.

Figure 10 shows the results of the image processing.
The initial contour shown as blue lines and result of the
segmentation shown as the red lines. The burnish height can
be calculated with respect to pixel pitch, magnification and
tilting angle p, M, γ .

3.2 Image processing for triangulation

The triangulation image (Fig. 11a) shows the laser line pro-
jected onto the surface and viewed in the coordinate system

of the CMOS-sensor. The triangulation image is mainly
dark and only the laser line appears bright. The objec-
tive is to calculate the laser peak with sub pixel precision.
Therefore, the laser image is blurred with a gaussian-
kernel, and a region of interest (ROI) which only contains
the data is defined by means of threshold. Background pix-
els are set to zero value. Since the laser diode sends a line
with a certain thickness a center of mass algorithm can be
performed (see Fig. 11b). A fast-performing algorithm is
desired. Therefore, only a 5-point neighbourhood around
the maximum is used to compute the position of the peak x

δ̂

for every row y
δ̂
. Details given in [29].

The estimated peak positions x
δ̂
, y

δ̂
are projected into the

distance space with:

xw = x
δ̂
· p

M
+ r (2)

yw = y
δ̂
· p

M · cos(γ )
(3)

zw = x
δ̂
· p

M · tan(ϕ)
+ y

δ̂
· sin(γ ) (4)

where xw, yw, zw are the world-coordinates of the scanned
surface points and r the travel distance between images.
Multiple images combine to a scan of the cutting surface
where the 3D data (e.g. fracture angle β) can be measured.

Fig. 10 Images of the two
different materials captured with
the monitoring system within
the production process and
image processing of these
images. Blue line = initial
contour, red line = segmentation.
(a) Image of stainless steel. (b)
Image of copper. (c)
Segmentation of image a. (d)
Segmentation of image b

(a) (b)

(c) (d)
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Fig. 11 Images of the
triangulation captured with the
monitoring system within the
production process. (a)
Triangulation image with
projected laser line onto the
surface. (b) Segmentation of the
triangulation image with
purposed algorithm (a)

(b)

4 Verification of themonitoring system

In order to verify the monitoring system several tests have
been carried out. For the test of the 2D image processing,
images were recorded within the machine cycle and
processed. The process parameters can be seen in Table 1.
The test for the triangulation data took place offline on
the motorized stage. A confocal microscope was used for
ground truth data acquisition.

4.1 Verification of image processing

Three parts of stainless steel and copper each where manu-
factured and captured with the system (see Fig. 10). These
parts were taken from the production process and measured
with a confocal microscope. Because of lack of definition
of the cutting surface parameters in the surface view there is
no clear feature for comparison. Although existing human
heuristics, a manual point-by-point comparison—between
the microscope- and image processing-data—of the bur-
nish heights is considered as a good approximation for the
ground truth.

For each part, three positions were tested. Here, particu-
larly prominent places such as increases or decreases in the
transition between burnish/fracture surface were selected.
The settings for the image processing can be seen in Table 2.
The initial contours were calculated from 20 image segments.

Table 2 Transition settings for image processing

Transition ζ η κ χ

Rollover/burnish 0.15 0.8 1.5 1.0

Burnish/fracture 0.01 0.18 1.5 1.0

The maximum allowed iterations set to 80 and the conver-
gence limit was 0.0001.

The results of the validation can be seen in Table 3. The
data shows good precision with a spread from + 4.28 to
−2.70% and mean of −0.68%. This is within the desired

Table 3 Comparison of the burnish height between the monitoring
system and the microscope

Monitoring
system in μm

Microscope
in μm

Spread in %

Stainless steel 1 151.678 155.890 2.70

133.234 130.545 −2.06

138.097 139.541 1.03

Stainless steel 2 138.852 133.148 −4.28

133.560 134.507 0.70

154.533 151.391 −2.08

Stainless steel 3 136.259 134.156 −1.57

161.619 160.030 −0.99

135.242 131.534 −2.82

Copper 1 194.982 193.002 −1.03

205.210 203.003 −1.09

176.508 175.883 −0.35

Copper 2 170.842 170.067 −0.46

173.656 174.101 0.26

171.291 173.201 1.10

Copper 3 175.270 173.260 −1.16

146.591 144,894 −1.17

189.461 192.739 1.70

Mean −0.64
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accuracy of ±5 μm. With the implementation in Python the
processing of the images took 40 to 60 s.

4.2 Verification of triangulation data

To verify the triangulation method three cutting surfaces
of stainless steel were picked. For a clear assessment
of the characteristics of the cutting surfaces and to scan
the identical area notches were made. The surfaces were
recorded on the motorized stage. One scan consisted of 200
images with a step width in the x-axis of r = 5 μm between
them. The notched surfaces were also measured with the
microscope and the measured surface was exported. The
images of the triangulation were processed, and a point-
cloud was calculated. The processing of all 200 images took
about 20 s.

For the comparison of the data the surface from the
microscope and the point-cloud were imported in the
software CloudCompare. At first a manual alignment by
picking point pairs was performed. Afterwards an automatic
registration with the iterative closest point algorithm
followed and the distance between surface and cloud was
calculated. The same task was calculated with the free
version of GOM Inspect for a cross check. Since there
were many converting steps involved, differences can result
from this. This can therefore only be seen as a qualitative
verification.

The results of the three parts can be seen in Table 4.
The visual output of the software for the surface to cloud
distance for part 1 can be seen in Fig. 15, where subfigure
(a) shows the picture from the microscope, subfigure (b)
the exported surface from the microscope, subfigure (c)
the alignment of point cloud and surface, and subfigure
(d) the distribution the surface to cloud distance. The
results for the other two parts were qualitatively and
quantitatively similar. Both software products provided
comparable results. The mean difference of the data
generated by the image processing was always beneath
2 μm and their standard deviation was 10 μm. The notches
were clearly visible in all data. The largest deviations are
found at the strongly deformed burrs and the sharp surface
changes in the area of the notches. They cause changes
in reflection behaviour and thus create strong singularities.

Table 4 Deviation between reference surface and measured point-
cloud in mm

Part 1 Part 2 Part 3

Mean (CloudCompare) 0.0010 0.0020 0.0002

Mean (GOM Inspect) 0.0040 0.0019 0.0002

Standard deviation (CloudCompare) 0.0050 0.0092 0.0153

Standard deviation (GOM Inspect) 0.0031 0.0031 0.0129

The microscope automatically corrects these behaviours
whereas the sensor lacks this option. Therefore, these
deviations can be neglected. Additionally, some geometries
could not be scanned because they were occulted due to the
triangulation angle. Therefore, delivered false or no data is
also neglected. The results show that the desired accuracy
of ±5 μm was not achieved but the similar result show high
confidence in the data.

4.3 Capabilities of themonitoring system

Depending on the field of view of the lens and the intended
cutting line geometry the system is capable of measuring
the burnish height with sheet thickness from 0.5 to 1 mm
and a length of 3 mm with an accuracy of ±5 μm. The depth
of field is 80 μm which allows for a maximum fracture
angle of β = 30◦. In addition the system is capable of
creating 3D-Data with an accuracy of ±10 μm. In theory,
the determining factor regarding image acquisition is the
capturing rate of our imaging sensor, which is 170 frames
per second. However, with our components the determining
factor is the exposure time for the triangulation image.
With the studied material the exposure time was set to
6.7 ms, resulting in 150 fps. Thus, we have shown that data
acquisition is easily possible within the cycle time (240 ms)
of the punching machine. Regarding data storage the image
sensor comes with a buffer. If the storage unit cannot store
the images immediately, the current images are placed in a
buffer and all images can be stored later.

Since the image processing with active contours took 40
to 60 s it was only possible to derive the burnish height
offline. This implementation was not optimized for per-
formance but only serve as a proof of concept. Real time
performance could be achieved with optimization and paral-
lelization of the code. Since the images are all independent
of each other an increase in performance can be achieved
with a multitasking approach. For this paper, a sequen-
tial algorithm with only one CPU was used. In addition
an increase in performance is expected by changing the
implementation from pure python to C++.

5 Case study: capabilities in production

The capabilities of this monitoring system can be seen with
an interesting example. We captured 17.000 images during
a material test where punch failure occurred. For process
parameters see Table 1. This is novel because it is the first
continuous data of the cutting surface within a process.
We analysed the cutting edge of the used punch with the
confocal microscope for wear within given intervals (5.000,
10.000, 25.000 strokes). Figure 12 shows the condition of
the punch recorded with the microscope. A fully functional

3595Int J Adv Manuf Technol (2022) 118:3585–3600



(a) (b)

(c) (d)
Fig. 12 Cutting edge measurement during a material test with con-
focal microscope within given intervals. Highlghted blue box marks
the cutting edge. (a) View direction (blue arrow) of the cutting edge

within the confocal microscope. (b) Functional cutting edge (punch) at
5.000 strokes. (c) Functional cutting edge (punch) at 10.000 strokes.
(d) Worn out cutting edge (punch) at 25.000 strokes

cutting edge at 5.000 and 10.000 strokes was observed.
Whereas the cutting edge at 25.000 strokes was damaged.
Within an interval of 15.000 strokes the point of failure can
not be specified more closely.

After the test has been carried out, the captured images
were processed for their burnish heights. The orientation of
the punch in the cutting tool and the position of the failure
is known. This position can be transferred to the image and
appears on its left-end side. Figure 13 shows a selection
of images from the monitoring system with the area of
failure marked. Since there are images for every cutting
surface, the point of failure can be localized more precisely
by manually analysing them. The failure emerged around
the 13.500 strokes.

To gather additional information about the evolution of
the failure the burnish height of two regions of each image
have been compared. These regions were the known fail-
ure region (left-end of the image) and a fully functional
region (right-end of the image). To consider the feed tol-
erance of the production machine of ±0.1 mm the burnish
heights were averaged over a range of 0.2 mm in the x-
direction. The result for the analysed cutting surface in the
interval from 7.000 to 25.000 strokes can be seen in Fig. 14.
Even though the cutting edge of the punch was considered
fully functional at 10.000 strokes with the confocal micro-
scope one can see that burnish heights begin to decline
from the start. The burnish height on the left-end shows a
rapid decrease and higher fluctuation whereas the burnish
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Fig. 13 Images from the
monitoring system captured
within the production process.
Highlighted blue box shows the
position and development of the
punch failure. (a) Cutting
surface at 10.000 strokes. (b)
Cutting surface at 13.000
strokes. (c) Cutting surface at
13.500 strokes. (d) Cutting
surface at 25.000 strokes

height on the right-end stays on a constant level, despite
the fluctuation caused by material- and process tolerances.
Based on that data, the evolution of the failure starts around
7.000 strokes. In comparison, the new system enables ear-
lier detection of failure. The point of failure is also met
around 13.500 strokes. The following reapproach (grey) to
the right-end graph is misleading. The produced surface
quality of a worn-out punch still creates portions of burnish

surface which are detected by the algorithm. These portions
are often shifted to the normal burnish part or not contin-
uous and thereby do not meet the quality requirements or
the definition of the cutting surface parameters on which
the developed algorithm is based. In the sense of predictive
maintenance this result can be used for better planning reli-
ability and following processes. A faster image processing
would enable to view the graph during production.

Fig. 14 Evolution of the burnish
height with respect to the
lifetime of the punch.
Comparison of at the left-end
with failure and right-end
without failure
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Fig. 15 Verification of the
triangulation data with
microscope data for Part 1 with
CloudCompare. Arrow shows
handmade notch for recognition.
(a) Microscope image. (b)
Exported surface from
microscope data. (c) Aligned
point cloud from triangulation
with surface from the
microscope (green) and
calculated distance. (d)
Histogram of surface to cloud
distance distribution

(a)

(b)

(c)

(d)
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6 Conclusion

Measuring meaningful metrics of the cutting surface of
punching parts is key for process optimization and quality
management but is still not implemented in commercial
punching machines. We developed a combined 2D/3D
optical monitoring system with corresponding image
processing of punching parts for a thickness range of 0.5
to 1 mm and integrated it into a commercial punching
machine. Unlike state-of-the-art methods that rely on the
extraction of parts, this system captures data from the
cutting surface within the process cycle at 250 strokes per
minute. Although only evaluated offline at the moment,
the image processing allows for an automatic and accurate
measurement of the burnish height of the cutting surface
for every stroke. Thereby, it is now possible to monitor
the quality of produced parts over the tool lifetime. Within
a case study, we provide first data that show how such a
system can be used in the context of predictive maintenance.
Our case study focuses on the evaluation of the burnish
height with data that was collected within the process cycle.
Although only evaluated offline at the moment, in theory,
it is possible for the image processing to be accomplished
close to process cycle time.

Future research will focus on the collection of production
data and image processing within the process-cycle.
Especially an automated processing of the 3D data to
measure the burr height and fracture angle over the tool life
has to be implemented. In terms of predictive maintenance,
the increase and decrease of the cutting surface parameters
over the lifetime of the punches will be investigated. With
more data a correlation between process parameters and
quality of the product and wear could be established.
This could lead to a lifetime prediction of the punch/tool.
Furthermore, this monitoring system is an important step
towards data-driven modelling of the punching process. An
accurate model relies heavily on the process output, which
can now be captured for the first time with our system. In
combination with a multisensor network, this could finally
lead to an increased process understanding and a highly
efficient, self-regulating punching process.
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sung und automatisierte Kenngrößenermittlung: Ergebnisse eines
Vorhabens der Industriellen Gemeinschaftsforschung (IGF), EFB-
Forschungsbericht, vol Nr. 385. EFB, Hannover

5. Hernández JJ, Franco P, Estrems M, Faura F (2006) Modelling
and experimental analysis of the effects of tool wear on form errors
in stainless steel blanking. J Mater Process Technol 180(1-3):143–
150. https://doi.org/10.1016/j.jmatprotec.2006.05.015

6. Verein Deutscher Ingenieure (1994) Schnittflächenqualität beim
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