TY - GEN A1 - Zeh, Thomas A1 - Haider, Arsalan T1 - Efficiency Improvement of Organic Solar Cells by Using solvent Vapor Annealing and Thermal Vapor Annealing T2 - Workshop Program: Eleventh Annual International Workshop on Advanced Materials (IWAM 2019) N2 - Fullerene solar cells are becoming a feasible choice due to advanced developments in donor materials and improved fabrication techniques of devices. Recently, sufficient optimization and improvements in processing techniques like incorporation of solvent vapor annealing (SVA) with additives in solvents has become a major reason for prominent improvements in the performance of organic solar cell-based devices . On the other hand, the challenge of reduced open circuit voltage (Voc) remains. This study presents an approach for significant performance improvement of overall device based on organic small molecular solar cells (SMSCs) by following a two step technique that comprises thermal annealing (TA) and SVA (abbreviated as SVA+TA). In case of exclusive use of SVA, reduction in Voc can be eliminated in an effective way. The characteristics of charge carriers can be determined by the measurement of transient photo-voltage (TPV) and transient photo-current (TPC) that determines the scope for improvement in the performance of device by two step annealing. The recovery of reduced Voc is linked with the necessary change in the dynamics of charge that lead to increased overall performance of device. Moreover, SVA and TA complement each other; therefore, two step annealing technique is an appropriate way to simultaneously improve the parameters such as Voc, fill factor (FF), short circuit current density (Jsc) and PCE of small molecular solar cells. KW - Organic Solar Cells, Annealing, Efficiency Y1 - 2019 UR - https://opus4.kobv.de/opus4-hs-kempten/frontdoor/index/index/docId/646 UR - http://iwam-rakcam.com/uploads/3/5/4/6/35462451/iwam2019program_webversion.pdf PB - IWAM 2019 CY - Ras Al Khaimah ER -