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Summary

Physiological storage disorders cause significant economic losses in a number of com-
mercially important pome fruit varieties worldwide. Under the same storage conditions
with the same cultivar, the incidence and frequency of disorders may vary in different
years in a manner that must be explained by an interaction of pre-harvest and post-
harvest factors. Major factors known to influence disorder incidence include annual
weather pattern, management in the orchard, such as leaf-fruit ratio, calcium content
of the fruit, harvest date and storage conditions. So far, the occurrence of the disorders
cannot be predicted with certainty, and thus to adapt the management in the orchard
or in the storage facility accordingly.
Analysis of large amounts of data using artificial intelligence (AI) offers new opportu-
nities to link large data sets into a meaningful context. The aim of the present work is
the small-scale and non-destructive monitoring of fruit development in orchards under
the above mentioned management practices. AI prediction models were created for the
cultivar ’Braeburn’. ’Braeburn’ is most susceptible to physiological storage disorders
which cause browning in the fruit tissue below the skin. With tent-like constructions
over the fruit trees, in which the temperature was controlled during two fruit physi-
ologically important periods (petal drop to T-stage, three weeks before harvest), the
temperature influence on disorder incidence was investigated. To the best of our knowl-
edge, this was the first time that different temperature profiles could be generated in the
orchard for mature ’Braeburn’ trees. Thereby a positive influence on the reduction of
internal browning caused by warm night temperatures (>10°C) before harvest was ob-
served. Overall, each trial year showed different occurrences of physiological disorders.
Orchard management and weather conditions resulted in significantly different fruit
growth patterns and optical non-destructive point spectroscopy. The bi-weekly spec-
troscopy measurements on the same fruit and subsequent use in partial least square
regression (PLSR) models were tested for their informative value. Additionally, the
future fruit state was predicted in models based on weather data. The statistical evalu-
ation of three years of data showed that the number of destructive soluble solids content
(SSC) samples required to be collected each year for the PLSR models with an accept-
able error rate was 100. These samples in particular needed to include the range of
low and high SSC values. An unbalanced laboratory error of 0.1-1.0 °Brix had no in-
fluence on the modeled SSC values. Compared to destructive SSC determination in
the laboratory, SSC could be non-destructively determined with an average deviation
of 0.5 °Brix. Field measurements after a rain event had no influence on visible spectral
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indices. However, orchard covers such as rain protection over the fruit trees led to lower
water absorption values at 975 nm.
The separation of data on a tree-sector level in this work was performed manually, but
initial steps were taken to display fruit growth and spectroscopy data via GPS signal
location within a map. The acquisition of small-scale data at the tree-sector level re-
vealed significant differences for SSC, chlorophyll and anthocyanin indices as well as
significant differences in the incidence of physiological disorders. In future research and
modeling approaches the tree sector information should be taken into account, even if
this is not yet feasible to implement in a completely automated system under the given
circumstances. The prediction models for the development of physiological disorders
(core browning, cavities) were able to predict with two years of data the development of
the disorders in the storage and the fruit flesh firmness at harvest 90 % correctly. Fur-
ther research using non-destructive fruit measurements in orchards and the influence of
weather conditions will provide further insights into apple quality improvement.
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Zusammenfassung

Physiologische Lagerkrankheiten verursachen weltweit beträchtliche wirtschaftliche Ver-
luste bei einer Reihe von kommerziell wichtigen Kernobstsorten. Bei gleichen Lagerungs-
bedingungen bei derselben Sorte kann das Auftreten und die Häufigkeit der Krankheiten
in verschiedenen Jahren in einer Weise variieren, die durch eine Interaktion von Vorernte-
und Nacherntefaktoren erklärt werden muss. Wesentliche bekannte Einflussgrößen sind
Jahreswetterverlauf, Management in der Obstanlage, wie z.B. Blatt-Frucht Verhältnis,
Calciumgehalt in den Früchten sowie Erntetermin und Lagerungsbedingungen. Bis-
lang kann das Auftreten der Krankheiten jedoch nicht sicher vorhergesagt werden, um
dadurch das Management in der Obstanlage oder im Lager entsprechend anzupassen.
Analysen großer Datenmengen mithilfe künstliche Intelligenz (KI) bieten neue Möglich-
keiten unterschiedliche Datenarten und -sätze zu verknüpfen. Das Ziel der vorliegenden
Arbeit ist die kleinräumig und nicht-destruktive Überwachung der Fruchtentwicklung
in der Obstanlage mit den oben genannten Managementmaßnahmen. KI Prognose-
modelle wurden für die Sorte ’Braeburn’ erstellt. ’Braeburn’ ist anfällig für physio-
logische Lagerkrankheiten, bei der im Fruchtfleisch oder unter der Schale Verbräu-
nungen auftreten. Mit zeltartigen Umbauungen über den Obstbäumen wurde die
Temperatur in zwei fruchtphysiologisch wichtigen Perioden (Blütenblattabfall bis T-
Stadium, drei Wochen vor der Ernte) erhöht oder abgesenkt, um den Temperature-
influss zu untersuchen. Unseres Wissens nach konnte dadurch zum ersten Mal in
der Obst- anlage über ausgewachsenen Bäumen unterschiedliche Temperaturverläufe
erzeugt werden. Dabei wurde ein positiver Einfluss auf die Reduzierung von inneren
Verbräunungen durch warme Nachttemperaturen (>10°C) vor der Ernte festgestellt.
Insgesamt zeigte jedes Versuchsjahr unterschiedliche Ausprägungen der physiologischen
Fruchterkrankungen. Managementmaßnahmen und Witterungsbedingungen führten zu
signifikant unterschiedlichen Fruchtwachstumsverläufen und optischer nicht-destruktiver
Punktspektroskopie. Die zweiwöchentlich wiederholten Spektroskopiemessungen an den
gleichen markierten Früchten und deren Weiterverarbeitung in PLSR Modellen wurden
einerseits auf ihre Genauigkeit überprüft und zusätzlich mit Modellen und Wetterdaten
deren zukünftige Zustände vorhergesagt. Die statistische Auswertung der dreijährigen
Daten zur nötigen Probenanzahl und Fehler bei der destruktiven löslicher Trockensub-
stanz (TS) Analyse resultierte in Probenanzahlen von 100 Stück pro Jahr, die eine
Bandbreite von niedrigen bis hohen TS Werten umfassen müssen. Ein unbalancierter
Laborfehler von 0.1-1 °Brix hat keinen Einfluss auf die modellierten TS Werte. Im Ver-
gleich zur destruktiven TS Bestimmung im Labor konnte die Spektroskopie die TS im
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Mittel mit einer Abweichung von 0.5 °Brix bestimmen. Spektralmessungen in der Ob-
stanlage nach einem Regenereignis führten dabei zu keiner Veränderung im sichtbaren
Spektralbereich. Jedoch können Kulturabdeckungen wie z.B. Regenschutzfolien über
den Obstbäume zu geringeren Wasserabsorptionswerten bei 975 nm führen.
Die Bereitststellung der Daten auf Baumsektor Ebene wurde in dieser Arbeit manuell
durchgeführt. Jedoch wurden erste Schritte unternommen, um Fruchtwachstums- und
Spektroskopiedaten per GPS Signal innerhalb einer Karte darzustellen. Die kleinräu-
mige Datenaufnahme auf Baumsektor Ebene ergaben für TS, Chlorphyll und Antho-
cyan Indexberechnungen, sowie auch für physiologische Krankheiten deutliche Unter-
schiede. Bei zukünftigen Forschungsarbeiten und Entscheidungsmodellierungen sollte
dies berücksichtigt werden, auch wenn dies unter den gegebenen Umständen noch nicht
voll-automatisiert umsetzbar ist. Das Prognosemodell zur Entstehung von physio-
logischen Krankheiten (Kernhausbräune, Kavernen) konnte mit zweijährigen Daten
die Entstehung der Lagerkrankheiten nach der Auslagerung und die Fruchtfleischfes-
tigkeit zur Ernte in 90 % der Fälle richtig vorhersagen. Somit konnte gezeigt wer-
den, dass eine kleinräumige Datenerhebung auf Baumsektor Ebene zur Prognose von
physiologischen Lagerkrankheiten mithilfe KI Modellierungen angewendet werden kann.
Weitere Forschungsarbeiten mit nicht-destruktiven Fruchtmessungen in der Obstan-
lage und dem Einfluss von Wetterbedingungen werden weitere Einblicke zur Qual-
itätsverbesserung von Äpfeln ermöglichen.
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1 General Introduction

Aim of the study

Physiological storage disorders (hereafter referred to as disorders) continue to cause
significant fruit losses during apple fruit storage and during the post-storage shelf-life
period. The underlying factors causing the development of disorders are partly under-
stood, but vary with cultivar and within orchard, growing season and with management
practices to an extent which cannot be explained by existing tools. The present study
links pre-harvest management practices, in particular crop load, calcium sprays and
seasonal weather conditions obtained by non-destructive sensor information with post-
harvest (id est / that is (i.e.) post-storage) fruit grading results within a ’big data’
modelling and classification process. The study involved a commercially important
apple cultivar (’Braeburn’), susceptible for a range of disorders, in a novel ’big data’
modelling approach to merge the complexity of fruit growth conditions and fruit pro-
duction processes to the development of disorders.

The study applied optical sensors in a ’Braeburn’ apple orchard to obtain non-destructive
time-series data on an individual tree sector level during the fruit growth period. This
digital time-series information together with the daily weather records was used in ’big
data’ analyses to predict the occurrence of physiological disorders and firmness to adjust
management strategies or post-harvest fruit handling (see Figure 1.1).
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Chapter 1

Figure 1.1: Graphical abstract of the study. Fruit growth and tree volume were mon-
itored during the vegetation season with optical sensors. Sensor data,
weather conditions and post-storage fruit quality data were saved on a tree
sector level in a database. Data were post-processed through a ’black box’
classifier to predict physiological storage disorders and fruit firmness after
controlled atmosphere (CA) storage. The prediction result leads to a smart
horticulture approach to adjust the management in the orchard and to op-
timise post-harvest handling of the fruit either for different storage types or
direct marketing.
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Chapter 1

Introduction

Apples (Malus x domestica BORKH.) are the world’s most important temperate tree
fruit crop. The annual German production of pome fruit is approximately 1 million ton
(t) (Faostat, 2022), whereas 24 kilogram (kg) were consumed in 2020/21 per capita per
year (Ahrens, 2022). The main production areas are the "Altes Land" nearby Hamburg
and the Lake Constance region in the Southwest of Germany (Garming et al., 2018).
Commercial apple orchards are mainly grown as slender spindle trees with heights of up
to 4 meter (m) with an average yield of some 30 t/hectar (ha). The majority of German
apple production goes into controlled atmosphere (CA) storage to ensure fresh fruit is
available in the market for up until approximately July the following year. On the one
hand this provides local harvested produce for marketing over the whole year. On the
other hand it helps to stabilize the market price. However, during and after storage
in the shelf-life period in shops or at home, a range of different disorders can develop.
The post-harvest losses for apples due to storage disorders are estimated at about 11 %
by Lake Constance marketers (Thinnes, 2017, personal communication) or 5-25 % in
the United Kingdom (Terry et al., 2011) for fruit not meeting the specifications. This
is due to disorders, as well as including other quality issues such as low levels of fruit
firmness, water content (for example (e.g.) shrivel) or the development of mealiness.
The European Union’s Farm to Fork strategy aims to halve food waste by the year 2030
and the application of digital techniques for a sustainable agriculture (Guyomard and
Bureau, 2020) is seen as one important approach to help achieve this goal. The present
study aims to provide an early prediction tool for the risk of disorder development based
on non-destructive sensor data from the orchard in order to adapt the post-harvest
storage and marketing and/or orchard management strategy.

Disorders are cultivar specific. ’Braeburn’ apples obtain high flesh firmness values and
have a high risk to develop internal disorders. Low gas exchange rates through cells
which is associated with high firmness can induce oxygen deficiency and membrane
break down. The brown color which is distinctive of internal disorders are caused by
phenolic compounds (Franck et al., 2007). There are a range of different disorders (see
Figure 1.2) which lead to, e.g. visible browning of the fruit skin (e.g. superficial scald) or
disorders non-visible from the outside of the fruit such as internal browning around the
core (core browning) or in the fruit flesh (e.g. flesh browning). Bitter pit is correlated
with calcium deficiency (Saure, 1996) in the fruit and results in brown spots on the
fruit skin and/or in the fruit flesh. When fruit tissues break down and lose moisture,
internal cavities can form in the fruit flesh that often occur together with core or flesh
internal browning. However, the consumer’s preference and therefore the fruit-grower’s
choice to plant new cultivars that produce apples with high levels of fruit firmness and
a crisp eating texture can also be associated with a higher risk of disorders.

Pre- and post-harvest factors influence the occurrence of apple fruit disorders. The main
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Chapter 1

Figure 1.2: Examples of physiological disorders.

drivers in the orchard are an advanced maturity at harvest, light crop loads with un-
balanced source-sink relationships of energy distribution or nutritional deficits such as
calcium which is an integral part of cell wall stability and deficits in calcium can increase
internal breakdown (Bangerth and Streif, 1972; Lau, 1998; Elgar et al., 1999; Ferguson
et al., 1999). The gas exchange through cells, which is influenced by crop load, impacts
on the development of disorders. However, they remain so far largely unexplained
(Wünsche and Ferguson, 2010). Elgar et al. (1999) and Rogers (2014) state that the
largest source of variation in disorder incidence are growing conditions (shoot growth,
light availability and growing degree hours) which are all factors strongly dependent on
seasonal weather conditions. Furthermore, incorrect cultivar-specific post-harvest han-
dling and storage regimes contribute to the development of disorders (i.e. temperature
and atmosphere settings, delayed or direct CA start) (Hatoum et al., 2016).

Manfrini et al. (2020) and Aggelopoulou et al. (2009) found a large spatial variability in
sensor data obtained within orchards. Consequently, individual trees or smaller areas
of land should be managed in a precision farming approach. Management practices
adopted to target excessive variation can lead to cost savings, e.g. nitrogen fertiliza-

4
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tion savings of 38 % (Aggelopoulou et al., 2010) and opportunities to maintain and/or
increase fruit yield and quality throughout the whole fruit production process. At
present, fruit growing management mainly depends on decisions made at a farm-scale
level. Experienced growers are capable of adjusting orchard machinery to match a
batch of single trees. For example, with mechanical flower thinning in an orchard with
alternate bearing trees, a good tractor driver can exclude trees with low flower intensity
or only conduct root pruning in areas of stronger tree growth. These grower decisions
are based on many years experience and background knowledge. So to say, a decision
support model sits within a good grower’s head. However, the area of land a single
grower now has to manage has increased (Garming et al., 2018) and it is increasingly
difficult or impossible to micro-manage large orchard areas to the same level as in the
past. Furthermore, qualified specialist personnel for orchard management are increas-
ingly difficult to find and this situation looks likely to continue into the future. Also,
increasing official regulation requirements such as different distances to waterways (non-
target areas) and non-target organisms for plant protection sprays as well as a growing
number of plant protections spray registrations under an emergency rule and further
regulations to protect the environment and consumer lead to a complicated situation
for the grower to prevent mistakes. Therefore, orchard management operations can be
supported by the development of decision support systems that take into account the
changing official regulations during the vegetation period. Another driver towards a
sensor based automation process (smart horticulture) is the high demand for manual
labour in fruit growing. Apple production requires around 466 hours/ha (Verbiest et al.,
2020) and due to rising costs with minimum wage salaries now at 12 €/hour (2022) ex-
cessive manual labor becomes unaffordable. The key to best management practice and
economically well-positioned orchards that have low fruit losses, is orchard information,
knowledge and advice.

Optical sensors

Within industrial production processes there are a range of sensor technologies available
to monitor in real-time the production line or regulate machines. The application of
sensors in this area is mainly within a controlled environment (e.g. even light condi-
tions or exact driveways). However, there are commercially available sensors already
in use in agricultural cropping. Harvesters (e.g. for hay or grain crops) are equipped
with moisture and chlorophyll sensors (e.g. Yara N sensor) to monitor produce qual-
ity and nitrogen imbalances. Anyhow, within apple orchards the adoption of optical
sensor technology is hampered by a range of factors. First of all, the target market
in terms of size and financial investment in horticulture is much smaller compared to
arable farming and many industrial production processes. Hence, sensor innovations
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have been deployed to a much lower extent. As compared to arable crops, a fruit tree
is a large complex 3D structure with the marketable product (i.e the fruit) largely
hidden by the foliage and branches. Also, optical recordings are required from both
sides of the tree row and there are problems with back-lighting when viewing one tree
side, especially under daylight conditions outside. To work around back-lighting, an
artificial light source can be used after sunset (Anderson et al., 2021b). Additionally, a
precise geo-location signal with a global positioning system (GPS) is required to map
the sensor information. A geo-located tree growth or crop load or fruit quality map can
be used in further decision support systems. Occlusion by the orchard trees themselves
(Underwood et al., 2015) can hamper the adoption. With the detection of a single tree,
there is an on-going challenge to link the sensor data to individual tree sectors (height)
and combine two tree sides to one tree. In Southwest Germany apple production is
under hail nets and this limits the use of un-manned aerial vehicles (drones) to capture
sensor data with an overview flight.
A range of optical sensors (spectrometers) are available for use in orchards as non-
destructive handheld proximal (point) devices that measure diffuse light reflection in
the visible (Vis) and near-infrared (NIR) range from the fruit skin. The Vis spectra
ranges from 400-750 nanometer (nm) and the NIR from 750-2500 nm. For handheld and
low-cost devices only the short-wave NIR wavelength until 1100 nm are measured- the
so called Hershel regions. Changes in fruit pigments such as chlorophyll, carotenoids,
xanthophylls and anthocyanins can be monitored in the Vis range (Solovchenko et al.,
2019). These plant pigments peak in different spectral ranges (Walsh et al., 2020) and
can be distinguished through that. However, the pigment spectra overlap which ham-
pers for example a clear separation of individual anthocyanins and carotenoids. Light
interactions in the Hershel region in particular with the oxygen and hydrogen bonds are
due to water and carbohydrates in the apple flesh. Further processing with destructive
laboratory fruit samples to determine dry matter content (DMC) and soluble solids con-
tent (SSC) values and the use of PLSR models allows these fruit quality parameters to
be tracked non-destructively in the orchard. At present the optical sensors used for fruit
quality determination in the orchard do not separate light absorption and scattering ef-
fects. However, the in-field determination of quality attributes through non-destructive
monitoring can aid growers in their decision making processes and further the under-
standing of fruit physiological processes that are important for the development of
fruit quality. Consequently, robots or drones can use this information for targeted or
precision machinery action or crop monitoring.

6



Chapter 1

’Big data’ analyses

Digital data in our daily lives is now ubiquitous. The collection of data within a
database and assembly of intelligent connections has resulted in ’big data’ analyses.
’Big data’ analyses should assess management complexity and raise economic value.
The machine learning approach aids humans in processing of widely scattered data
which seem to have no meaningful relationship and present new opportunities. Chi
et al. (2016) defined five criteria essential to achieve effective ’big data’. Naturally,
its the size of data (volume) and variety of data types such as images, field-based
and longitudinal data (variety). The subsequent real-time processing (velocity) for
decision support systems is another prerequisite. Furthermore, data should be reliable,
unbiased and qualified to solve the problem (veracity). Valorization defines the ability
to propagate knowledge. In various fields (banking, insurance, health care) ’big data’
analyses are already successfully applied. In contrast to orchard research, data points in
insurances or banking are assembled automatically through other electronic processes.
Up-to-date ’big data’ analyses have not been widely applied in agriculture, even less in
horticulture (Kamilaris et al., 2017). In orchard systems there are technical challenges
to save and store ’big data’ online at the time of data capture. On the one hand, the
wireless data transfer in orchards is problematic or the sensors, e.g. a light detection and
ranging (LiDAR) sensor gives out large quantities of data which cannot at present be
cost-effectively saved and/or process the raw data by the sensor device in the orchard.

Hypotheses

The expression of physiological disorders that occur after storage of two seemingly
identical lots of apples (same grower, cultivar, storage conditions and harvest date) can
vary markedly every year. Therefore, the question arises what influence the annual
weather conditions, especially changes in temperature, have on fruit quality formation,
maturation processes and storage stability of the fruit. Important fruit quality and
maturation processes were monitored in this work with sensors in different field experi-
ments (harvest date, calcium sprays, crop load and temperature profiles) for the cultivar
’Braeburn’ which is known to be susceptible for a range of disorders. Due to the above
mentioned constrains with the application of sensors in horticulture, the present study
solely used a handheld spectrometer at the sunny side of apple fruit skin together with
digital calipers.

The following hypotheses will be investigated:

1. Vis/NIR sensing can detect different management practices during fruit growth
through known spectral indices such as normalized difference vegetation index
(NDVI) and normalized anthocyanin index (NAI).
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2. Rain events prior to an optical sensor measurement on dry fruit skin won’t affect
fruit absorption or scattering properties.

3. Warm air temperatures in the orchard after flowering till the T-stage and cool
maturation conditions contribute to the development of disorders. The T-stage
is defined as the developmental stage of the fruit after which only cell elongation
occurs and the fruit stalk and stem form a T (T-stage). Warm temperatures will
shorten the period from fruitset until the T-stage and result in fruitlets with fewer
but larger cells which are more prone to breakdown during post-harvest storage.
In contrast, warm air temperatures before harvest will lead to a more active cell
defense that maintains higher energy levels against the formation of disorders.

4. Non-destructive hand-held sensors can provide SSC values through PLSR models
at a comparable accuracy to destructive laboratory measurements and can be
implemented for orchard determinations. The spectral range of the shortwave
NIR regions can be used for SSC and DMC determinations using PLSR models.

5. Non-destructive Vis/NIR sensor data collected during fruit growth, weather records
and treatment information can predict disorders after storage and firmness at har-
vest through ’big data’ modelling.

Structure of the cumulative dissertation

The overall aims of this work were to investigate the explanatory power of longitudinal
sensor data in the orchard in real-time, to link the interaction of pre-harvest seasonal
and orchard factors to build a prediction tool for disorders and bring apple fruit pro-
duction one step closer to smart horticulture farming. Smart farming in this context
will enable a grower to use a decision support system based on sensor information from
the orchard and thereafter conduct tasks site-specifically, i.e. decide on long-term stor-
age type or direct marketing of fruit or adopt management strategies in the orchard
(e.g. crop load, calcium sprays, harvest date). The thesis starts with an introduction
of the research topic and continues with a series of chapters of already published ar-
ticles in peer-reviewed, international, scientific journals. Chapters 2-4 concentrate on
the explanatory power of time-series sensor data obtained by non-destructive orchard
scanning. Chapter 5 describes the range of disorders obtained by different management
practices in different years. The 6th chapter shows the sensor and disorder information
from chapter 2-5 as input into a ’black box’ prediction. In the final chapter 7 the results
of the theses are discussed.

The light propagation through apple fruit tissue with the separation of absorption
and scattering properties were investigated together in a cooperative work with Stefan
Lohner from the Institut für Lasertechnologien in der Medizin an der Universität Ulm
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(ILM). These publications, see author contributions, focused on the technical setup and
modeling of light through apple fruit tissue and were excluded from this thesis.

The specific aims of each chapter are summarised as:

Chapter 2

In this chapter data from one year (2018) are presented for chlorophyll (red edge),
DMC and SSC obtained from the non-destructive spectral time-series collected from a
’Braeburn’ orchard as well as fruit diameter growth per tree sector level. The general
approach of ’big data’ generation in the orchard and statistical constraints for the
subsequent use of these data in ’black box’ modelling and classification were discussed.
Fruit diameter values showed a strong scatter starting from the end of July, similar to
the DMC values. The spectral data showed a large variance depending on the time of
season or storage. The apples from the bottom tree sector and also the light crop load
had a significantly higher severity of bitter pit.

Chapter 3

In chapter 3, the effect of precipitation on spectral scans was examined in 2019 for apples
grown under hail-netting or plastic sheet covers as data were obtained on a regular bi-
weekly cycle on dry fruit skins, as well as after a rain event. Additionally, a combined
data set from a handheld field spectrometer is compared to laboratory data obtained
with an integrating sphere. The study showed that the absorption of apple fruit skin
in the Vis and NIR wavelength range was not affected by rain events. However, fruit
grown under hail-netting show consistently higher water absorption values throughout
the study. Furthermore, the estimated water content obtained by the integrating sphere
setup showed apples grown under hail-netting have 4-5 % higher values as compared to
fruit covered by plastic sheets. However, the standard deviation of the spectral data
was 4 % which relativize the explanatory power of these findings.

Chapter 4

In this chapter, in-depth statistical analyses of SSC data modelled from PLSR models
were evaluated with regard to their explanatory power. Monte Carlo simulations were
undertaken to investigate model transferability to different years, accuracy, sample size,
seasonal variation and laboratory errors. Furthermore, a linear mixed effects (LME)
model assessed different management practices for differences in SSC values between
crop load, tree sector and calcium spraying. A multi-year PLSR model for SSC showed
good results. However, independent yearly models performed best. The laboratory
reference measurements of 100 samples was sufficient to develop the models. Sector
position and crop load had a significant effect on the development of SCC in the orchard.

Chapter 5

Chapter 5 investigated the effect of crop load and air temperature during cell division
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for three weeks post-petalfall as well as before harvest on the incidence and severity of
disorders. Plastic tents were built over trees in the orchard and equipped with heaters or
cooling machines in order to obtain different temperature regimes. Data were assessed
with receiver operating characteristic curves (ROC) and linear discriminant analyses
(LDA) to predict with binary classifiers for disorder risk using pre-harvest factors. The
three years of disorder data varied markedly over the experiments. Heavy crop loads
and warm night temperatures (>10°C) prior harvest showed a reduced expression of
disorders. ROC analyses showed a reasonable to good utility (78-90 % accuracy) for all
treatments to predict disorders.

Chapter 6

Chapter 6 used optical sensor information for NDVI, NAI, DMC and SSC together
with weather parameters as an input into a ’black box’ classification process to predict
disorder scores after long-term CA storage. The dataset was split into a training and
validation set. For the fruit growing season 2016/17 and 2017/18 a prediction success
for cavities and internal browning of 90 % on average was achieved. Also, a classifier
trained to predict changes in fruit firmness prior harvest and over the harvest window
obtained good correlation with measured results. A ’proof of concept’ for this modelling
and disorder classification approach was demonstrated. Fruit firmness along with SSC
predictions can be used to help non-destructively determine the optimal harvest window
for ’Braeburn’ CA storage.

10



2 A precision management approach to monitor
apple fruit growth and quality

K. Biegert, S. A. Lohner, R. J. McCormick, P. Braun

Acta Hortic. 1314 (2021)

11



 

Acta Hortic. 1314. ISHS 2021. DOI 10.17660/ActaHortic.2021.1314.55 
Proc. International Symposium on Precision Management of Orchards and Vineyards 
Eds.: R. Lo Bianco et al. 

447 

 

A precision management approach to monitor apple 
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1Kompetenzzentrum Obstbau-Bodensee, Ravensburg, Germany; 2Geisenheim University, Department of 
Pomology, Geisenheim, Germany. 

Abstract 
The application of precision management sensing technologies in apple 

production is challenging as many of the key physiological processes that influence 
fruit quality occur within the fruit tissue and are masked from the outside by the fruit 
skin. We report results from a three-year project at the Kompetenzzentrum Obstbau-
Bodensee in Southwest Germany to monitor ‘Braeburn’ apple fruit growth and quality 
using a precision management approach. Field time-series data were collected 
regularly with a standard type of hand-held spectrometer and a set of Bluetooth 
digital calipers from the same marked apples while growing on-tree. Data were 
collected from three tree sectors (bottom, middle and top, trees were ~3.8 m high) 
and different field treatments (e.g., calcium spraying and crop load). Fruit were placed 
in delayed CA storage for a period of ~5 months. After a shelf-life period all fruit were 
cut and assessed for internal physiological disorders. In 2018, fruit from the bottom 
tree sectors showed a higher disorder severity for bitter pit than those from the 
middle or top tree sectors. Total soluble solids content modelled from the spectral 
time-series data varied notably between measurement acquisitions, whereas 
chlorophyll (red edge) degradation and fruit diameter growth showed an overall 
smoother decline or increase, respectively. The results are discussed with some 
insights into the data management necessary for a precision orchard approach. 

Keywords: ‘Braeburn’, physiological storage disorders, VIS/NIR, Big Data 

INTRODUCTION 
Key factors influencing the development of internal physiological storage disorders 

(PSD) in apple include the picking date, orchard management (e.g., crop load, calcium 
chloride spraying), storage conditions and regional climate additionally altered by seasonal 
changes. While physiological disorders arise mostly in storage or shelf-life, the main 
influencing factors occur during growth and development processes in the field. Often there 
can be marked differences in disorder incidence even at the orchard level between different 
lots of the same cultivar (Ford, 1979; Ferguson et al., 1999; Sams, 1999; Lammertyn et al., 
2000; Hatoum et al., 2014). In general, more mature fruit, high CO2 partial pressures in 
storage, light crop load, higher potassium-calcium ratios and cool preharvest temperatures 
result in a higher incidence of internal storage disorders (Streif and Kittemann, 2018; 
Watkins and Mattheis, 2019). For apple and pear production quantifying the pre- and 
postharvest factors that influence PSD and their interactions has proven to be more complex 
than expected (Verlinden et al., 2002; Franck et al., 2007; Hatoum et al., 2014) and requires 
further research. 

Malus domestica ‘Braeburn’ and other recently developed apple cultivars with high 
flesh firmness values and low gas diffusivity (Ho et al., 2010) have an increased risk to 
develop PSD, especially during CA storage (Lammertyn et al., 2000). The fruit cellular 
defenses can be reduced by insufficient energy metabolism due to the above-mentioned 
processes. De-compartmentalization can occur and phenolic compounds oxidized by 
polyphenol oxidase result in brown tissue (Mayer, 2006). In addition, cavities can develop as 
                                                                        
aE-mail: Konni.biegert@kob-bavendorf.de 
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tissues dehydrate. Modern fruit sorting machines can detect PSD with non-destructive 
transmission spectroscopy before marketing. In 2016/2017, in the Lake Constance region of 
Southwest Germany substantial marketing losses occurred due to PSD in ‘Braeburn’. 

Non-destructive optical sensors for field applications are now available at reasonable 
prices and with relatively fast scanning times (Walsh, 2016). Optical spectroscopy is a non-
destructive technique capable of repeated scanning of fruit within an orchard and to obtain a 
broad band of information from the VIS (visible)/NIR (near infrared) spectra. The NIR 
spectral signatures can be correlated with a partial least square regression (PLSR) model to 
chemical compounds such as soluble solids content (SSC) or to obtain information from the 
VIS spectra on plant pigments in the fruit skin. Known non-destructive indicators of fruit 
ripeness/quality in apple are SSC, chlorophyll degradation or anthocyanins in terms of red 
blush skin colour for higher quality (priced) fruit (McGlone et al., 2002; Merzlyak et al., 
2003; Zude et al., 2006). Also, the VIS spectra can provide information about plant stress 
during ripening (Solovchenko et al., 2010). 

The present study was part of the ‘BigApple’ project running from 2016 to 2019 
(McCormick et al., 2017). The approach of the study was to obtain a ‘Big Data’ structure for 
field data as input (fruit growth, spectral indices, weather) and PSD scores after storage as 
output, using a black box artificial intelligence (AI) system analysis to predict PSD. Moreover, 
the study aimed to obtaining new information about fruit susceptibility to PSD from the fruit 
growth and spectral time-series data obtained at a small-scale orchard level. 

The objectives of the present study were to 1) explain the ‘Big Data’ generation in the 
‘BigApple’ project and 2) investigate if the fruit position on the tree has an influence on the 
severity of PSD. 

MATERIALS AND METHODS 

Experimental site 
The study was performed at the Kompetenzzentrum Obstbau-Bodensee (KOB) in 

South-West Germany, 47.767137°N, 9.556544°E with an average annual rainfall of 691 mm, 
temperature of 8.4°C and 1758 h of sunshine. Research was undertaken on ‘Braeburn’ apple 
(clone Hillwell) grafted on M9 rootstock and planted in 2006. Trees were grown as slender 
spindles in a North-South row direction (3.20×0.80 m) with an approximate tree height of 
3.80 m. Weather data were obtained from a weather station (Thiess, Germany) located 200 
m from the trees. Results are presented for the season 2018/2019. 

Study design 
The field layout used a randomized design containing seven trees for each repetition 

and replicated three times per treatment. Each tree was separated into three sectors of 1.25 
m tree height for bottom, middle and top and subsequently measured, harvested and stored 
sector-wise. A one-factorial experiment was established for crop load or calcium spraying. 
Three crop load levels of light (55%), standard (100%) or heavy (160%) were established 
by hand thinning after bloom (May 24 to June 2). In the calcium chloride experiment, sprays 
were applied on a weekly basis from July until harvest or not. Fruit were picked at an 
optimal harvest date as defined by the Streif-Index (Streif and Kittemann, 2018). The 
controlled atmosphere storage conditions were delayed for 21 days after harvest and set at 1 
kPa O2, 0.7 kPa CO2 and 1°C for 139 days followed by a shelf-life period of 7 days at 20°C. 

Fruit diameter and spectral reflectance 
Fruit growth measurements were undertaken with a set of digital Bluetooth calipers 

(Sylvac, Crissier, CH) and captured on an Android smartphone app developed at the KOB at a 
marked, equatorial position on a biweekly basis. 

A portable spectrometer with a spectral range of 310-1100 nm and a spectral 
sampling of 3 nm was used with daylight correction (F-750, Felix Instruments, Camas, USA). 
Single fruit were marked on the equatorial and sunny side of the fruit. Data were processed 
with software supplied with the instrument and a ‘BigApple’ PLSR reference model 
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developed for SSC (n=362, 6 principal components, R2=0.92; RMSEC/RMSECV = 0.48/0.49) 
and dry matter (DM) (n=329, 6 principal components, R2=0.67; 
RMSEC/RMSECV=1.07/1.09) for the 2018/2019 season. Samples were scanned at 10, 20 
and 30°C to help adjust for temperature effects in the NIR region. Changes in chlorophyll 
were followed as the red edge (RE) wavelength, calculated as the value where the second 
derivative between 680 and 700 nm was equal to zero. 

Disorder assessments after storage 
All fruit per tree and sector were cut after storage and a 7 days shelf-life period 

(~20°C), and visually assessed by trained staff for PSD (ordinal score 0 to 3 with 0.5 
intermediate steps, where 0 = no symptoms and 3 = most severe. A severity index (0-100) 
was calculated as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
∑ (𝑛𝑛𝑖𝑖𝑥𝑥𝑥𝑥)𝑥𝑥100𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁 ∗ 3
 

where I = score, ni = number of fruit with score i, B = {0,0.5,1,1.5,2,2.5,3} and 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖∈𝐵𝐵 . 

Statistical analyses 
Checking for homogeneity of variance and normal distribution was conducted with the 

Levene and Shapiro-Wilks tests. A one-way analysis of variance (ANOVA) was performed on 
the treatment groups and means were separated by Tukey’s HSD post-hoc test for various 
fruit parameters at harvest. Significance was defined as p<0.05. If not stated otherwise the 
standard deviation (sd) is given in brackets. Analyses were performed using R version 3.5.1 
(R Core Team, 2018) with the packages pwr for the power calculation and car for the 
ANOVA. 

RESULTS AND DISCUSSION 

‘Big Data’ approach 
Data were recorded on a sector per tree level to obtain a ‘Big Data’ structure for 

subsequent black-box processing (Osinenko et al., 2021). To structure and handle field and 
storage data in a database a “unique fruit group” (UFG) structure was assigned where each 
UFG represented one tree and sector. A precondition for data modelling was time-series 
measurements for each device within a day on a consecutive sampling rhythm. Digital 
calipers connected to an app allowed real-time tracking and a delete function while 
measuring in the field. This measurement setup allowed fruit growth data for the ‘BigApple’ 
project to be collected from n=846 fruit in a few hours. However, spectral scanning was more 
time consuming, and only n=423 fruit data were obtained during one day for a feasible 
three-year research. During this work, efforts were made to upload the field data in real-
time to a database. 

In horticultural systems, variability is high (Aggelopoulou et al., 2010). Therefore, a 
high number of fruit determinations per sample and/or replications are generally needed 
which can be difficult with limited resources. Additionally, the selection of fruit samples is on 
a subjective basis, e.g., picking a sample for maturity testing can result in varying FF or SSC 
values depending on who took the sample. Moreover, spectral data varied strongly between 
sunny or shade sides of fruit (Zude et al., 2006; Betemps et al., 2012) and among sampling 
dates (Figure 1). In order to face these problems, a measurement protocol was set up to 
reduce data variability while sampling and subsequently reducing measurement errors. The 
protocol was partly described in the Materials and Methods section. On the other hand, with 
the UFG structure a ‘Big Data’ approach was possible and might help to overcome unknown 
treatment factors which could not be addressed within a traditional research framework 
(see further discussion about the UFG structure below). 
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Figure 1. Spectral time-series for dry matter (top left), soluble solids content (SSC, top 
right) and red edge (bottom right) and fruit diameter (bottom left) data measured 
in the season 2018/2019. Each line represents individual fruit (n=423 for 
spectrometer; n=846 for caliper measurements). Fruit was harvested on 3 
October 2018. 
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No other ‘Big Data’ study within our research question was found in the literature to 
be able to compare results with. However, it is known that constraints exist to link 
physiological disorders with standard statistical methods since the factors interact in a 
complex way (Lammertyn et al., 2000; Verlinden et al., 2002). Hence, these models could 
have a problem with over-fitting. 

Statistical constraints 
There is always the question on how much data to collect. Reinhart (2015) described 

that it is possible to miss real effects by not collecting enough data for further statistical 
analyses. However, statistical power is defined as the ability to detect true effects with a 
given experimental design and sample size. It is mainly determined by natural variability 
between subjects, sample size, effect size and measurement errors. Assuming independent, 
normally distributed observations, power analyses (with a preferred significance level of 
0.05 and a power of 0.80) showed that a minimum sample size of n=29 is necessary to detect 
a conventional large effect size (0.5) for a t-test and n=144 for a three level ANOVA per 
group. The UFG structure in the present study contained one or two repeated measurements 
per device. With this structure a ‘Big Data’ modelling approach with numerous collections 
(information on PSD from one tree sector) containing always the same input data (e.g., 
VIS/NIR, fruit growth) was provided and “unimportant” information should get sorted out 
due to the numerous collections. Anyhow, the present research data were reviewed using 
standard statistical analyses with treatment means. 

Time-series data for SSC, DM, RE and fruit growth (non-destructive) 
Figure 1 shows the increase of SSC and DM during fruit maturation for single fruit 

(n=423). Single SSC values have a greater variance for the first measurement compared to 
DM in 2018. Additionally, there is a strong fluctuation across measurement dates for both 
DM and SSC in the field, whereas storage values seem to be more stable. The decrease in RE 
is overall smoother (Figure 1) and is towards harvest as expected (McGlone et al., 2002; 
Zude-Sasse et al., 2002; Merzlyak et al., 2003). We therefore expect that the oscillation seen 
in the SSC and DM values based on the NIR spectra is not due to mishandling the device in 
the field. Further research on the PLSR model needs to be undertaken, also with regard to 
temperature effects in the NIR region and differences in diurnal/seasonal fruit water content 
which also affects absorbance in the NIR region. Sample timing during a day should have no 
effect on RE (Zude-Sasse et al., 2002; Padilla et al., 2019). 

The mean RE (s.d. in brackets) for standard crop load treatment was 689.3 (0.49) nm. 
No differences were found between crop load and calcium treatments. In general, RE values 
at harvest differ every season (data not shown). 

The mean DM value for the standard crop load was 17.6 (0.81) % at harvest. There 
were no differences in DM among light, standard or heavy crop load. Calcium spraying 
resulted in a significant difference of DM content (Table 1). DM content with spraying was 
17.4 (0.64) % compared to no spraying 16.6 (0.95) %. 

Table 1. Results of one-way ANOVA for differences in treatment means at harvest in the 
season 2018/2019. 

Parameter Treatment Levels ANOVA 
Dry matter Calcium spraying With, without F(1.34)=9.20, p<0.01 
Soluble solids content Crop load Light, standard, heavy F(2.105)=6.05, p<0.001 
Fruit diameter Crop load Light, standard, heavy F(2.211)=80.46, p<0.001 
Fruit diameter Tree sector Bottom, middle, top F(2.836)=138.30, p<0.001 

Assumptions of homogeneity and normality for SSC were slightly violated with p=0.09 
and p=0.03, respectively. ANOVA showed a significant difference for SSC between crop load 
treatments. Post hoc comparisons using the Tukey HSD test indicated that the mean SSC 
values were significantly (p<0.001) different between light and heavy crop load with 12.3 
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(0.95) and 11.7 (0.60) °Brix, respectively. There was no difference in SSC for the calcium 
treatments. 

Fruit diameter showed a highly significant difference among the crop load levels. Post 
hoc comparisons using the Tukey HSD showed that the mean between each treatment was 
significantly different for light 75.9 (5.19), standard 70.8 (5.22) and heavy crop load 65.1 
(4.85) mm. No difference in fruit diameter for the calcium treatments were detected. 
Additionally, fruit diameter at harvest from all ‘BigApple’ treatments showed a significant 
difference in means between tree sectors of bottom 67.5 (5.53) mm, middle 69.5 (5.27) mm 
and top 74.6 (5.14) mm. Looking at the influence of the sector on spectral data, we also have 
a problem with homogeneity and normality. 

The mean number of fruit per tree at harvest were 75 (24), 135 (21) and 219 (63) for 
light, standard, and heavy crop load, respectively. 

Sector influence on physiological disorders 
Every season showed different severity of PSD. The 2018 growing season at the KOB 

was unusually warm and dry. A high severity for bitter pit (Figure 2) and also some 
superficial scald was observed. Superficial scald is a non-typical PSD for ‘Braeburn’. There is 
a positive correlation between shaded parts of the apple tree canopy and calcium related 
disorders (de Freitas and Pareek, 2019) which could be related to a decreased 
photosynthesis and a reduced transpiration rate from the bottom sector. Further, warm 
temperatures might have led to an inhibited translocation of important plant metabolites, 
such as SSC and DM, within different tree sectors and increased PSD susceptibility. The 
severity score data are strongly skewed to the right on the zero value (no PSD) which leads 
to a non-normal distribution. Therefore, no ANOVA is displayed. 

 

Figure 2. Bitter pit severity [0-100] for the crop load treatments (left) shown by crop load 
level and sector. Crop load treatments received good practice applications for 
calcium chloride spraying. Calcium treatments (right) with or without weekly 
sprays shown by sector. 

CONCLUSIONS 
The ‘Big Data’ approach resulted in a large data set with interesting side effects such as 

the sector influence on bitter pit in 2018. The sector influence on PSD occurrence and yield 
at harvest will be examined in future research. More research is needed regarding VIS/NIR 
prediction of soluble solids content and dry matter with PLSR field models to improve model 
reliability in the field. Given that the expression of PSD varies markedly each year and a high 
number of collections are needed to train AI models, a much longer period than three years 
is needed for a robust PSD prediction. 
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Abstract 
Vis/NIR (visible/near infrared) scanning is a promising tool to obtain non-

destructive information on apple fruit quality parameters. Changes in plant pigments 
like chlorophyll, anthocyanins and carotenoids can be followed in the Vis region during 
fruit growth. Soluble solids and dry matter content are obtained from partial least 
square regression models developed from the NIR spectra. However, the light 
absorption in the NIR wavelength range is particularly influenced by water and 
carbohydrates. This study investigates, if precipitation before field scanning can lead to 
changes in the NIR absorption. In Southwest Germany Vis/NIR orchard and lab 
scanning of ‘Gala’ apples were undertaken for seven weeks around harvest in 2019. 
Apples were either covered with hail net (standard orchard practice) or plastic sheet 
rain covers (RC). RC were installed to protect fruit from direct precipitation in order to 
reduce plant protection applications. The study showed no influence of precipitation 
on the Vis spectra. The NIR spectra revealed a 4-5% lower water concentration for the 
RC treatment in the lab, but no distinct effects for field scanning at 975 nm after rain 
events. Results from spectral indices and standard maturity testing during fruit 
ripening are shown. 

Keywords: absorbance, scattering, fruit water content, field spectrometer, integrating sphere 

INTRODUCTION 
The optimum harvest date (OHD) determines fruit storability, quality and reduces post-

harvest losses in apple production. The OHD is influenced among others by seasonal weather 
conditions, cultivar or crop load. A commonly used destructive maturity index to determine 
the OHD is the Streif index (SI) calculated from fruit firmness, soluble solids content (SSC) and 
a starch index (Streif and Kittemann, 2018). The SI is usually calculated for representative 
samples taken from a wider fruit growing region and are often not specific enough to 
determine individual block differences. Currently, Vis/NIR spectrometer scanning is being 
investigated to predict OHD non-destructively in the field and in particular for orchard lots on 
a small scale. A detailed OHD mapping could potentially be used in automated harvest 
machines. Suitable Vis/NIR spectrometers are available, but their field application is still at 
its beginning (Walsh et al., 2020). Reasonably priced spectrometers for the Vis/NIR range 
between 400 and 1200 nanometer (nm) with relatively fast processing for field use can be 
obtained. However, the lower cost devices offer only a limited spectral range or a partial least 
square regression (PLSR) model control which means that PLSR models are limited only to 
reference values obtained from the manufacturer. PLSR models using the shortwave NIR 
region can be built to predict apple SSC and dry matter content (DMC) (Zhang et al., 2019). 
The light absorption in the wavelength range around 980 nm can be attributed to the influence 
of water, which generally depends on the temperature and the concentration of other organic 
substances (Giangiacomo, 2006). 

However, starch and firmness which are also input variables in the SI cannot yet be 
related to spectral information in the Vis/NIR wavelength. Additional fruit information from 
the Vis wavelength can be obtained from changes in the plant pigments using spectral indices 
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for chlorophyll, anthocyanin or carotenoids (Merzlyak et al., 2003). 
Current research approaches for OHD predictions are based on autoregressive time 

series to model chlorophyll, anthocyanin, SSC and DMC changes from the beginning of the 
growing season together with weather data to predict future values (Osinenko et al., 2021). 
Other approaches to separate light absorption and scattering with more advanced 
technologies like spatial frequency domain imaging to separate structural and chemical 
characteristics are being followed (Lohner et al., 2019, 2021). These methods all aim to find a 
reliable link between the sensor information and non-destructive OHD predictions, fruit 
physiological responses related to changes in weather and orchard management factors. 

Rainfall and subsequent uptake of water through the fruit skin might have an influence 
on the aforementioned results. In other words, sampling time in relation to rain events might 
influence the scan results. A possible influence of rain events on these apple Vis/NIR spectra 
has not been addressed before. Knoche (2014) explained the mechanism between rainfall and 
fruit cracking of soft fruit like cherries. Small micro cracks develop in the outer layers of the 
fruit during growth and can lead to a “zipper-type propagation” that increases the fruit’s water 
content after rain. The micro cracks are located only in the cuticula, and develop further into 
macro cracks in the epidermal cells, ultimately releasing cell contents into the apoplast 
(Grimm et al., 2019). It remains an open research question as to whether or not and to which 
extent apple fruit skin takes up water during growth. Lang (1990) suggested that water 
uptake through the skin has a marginal effect on apple fruit growth. 

This work presents time-series data for spectral absorbance and scattering properties 
on ‘Gala’ apples grown under hail net (HN) and plastic sheet rain covers (RC) before harvest. 
We examined, if precipitation prior to a Vis/NIR sampling has an effect on the shortwave NIR 
absorption which is used further in PLSR models to predict SSC and DMC. In addition, we 
present the temporal development of Vis/NIR spectral and conventional harvest indices for 
‘Gala’ apples in the season 2019. 

MATERIALS AND METHODS 

Study design 
The study was performed in 2019 during the ‘Gala’ harvest season at the 

Kompetenzzentrum Obstbau Bodensse (KOB) in Southwest Germany (47.767212 N, 9.558757 
E). Spectral Vis/NIR scans were taken on a weekly basis and additionally after heavy rain 
events for a period of four weeks prior to the first selective harvest and until the end of the 
harvest window. To exclude temperature effects on PLSR predictions the reference fruit in the 
lab were scanned at three different temperatures and the field scanning was always around 
mid-morning. The apple cultivar Malus × domestica ‘Gala’ (clone Simmons/Buckeye) was 
grafted on M9 rootstock and planted in 2017. Trees were grown as slender spindles in a North-
South row direction (3.20×0.60 m). Temperature and rainfall data were obtained from a 
weather station some 100 m from the trial plots (Bavendorf location www.wetter-bw.de). 

The trial plots were located in the 1.6 ha ‘Interreg’ model orchard to improve the 
integrated production toward a low-residue strategy (project “Modellanlage zur 
Weiterentwicklung des Integrierten Pflanzenschutzes”). A row of 54 ‘Gala’ trees was chosen 
at random in the middle of each of two blocks covered either with plastic sheet Rain Cover 
(RC) or Hail Net (HN). Within each respective row, 20 trees were hand thinned after June drop 
to approximately 50 fruit per tree. Thereof, 20 apples (10 on the east and 10 on the west side 
of the trees) in the middle sector of five trees were marked on the sun exposed fruit face for 
repeated Vis/NIR scanning. Ten comparable apples from the neighboring 15 trees in the rows 
were picked for weekly SI maturity tests (Streif and Kittemann, 2018) and six apples couriered 
for integrated sphere laboratory scanning (see below). 

Vis/NIR spectral measurements 
Repeated scans on tree were taken with a portable spectrometer (F-750, Felix 

Instruments, Camas, USA, spectral range of 310-1100 nm, spectral sampling of 3 nm, and 
daylight correction) from 20 apples per scanning date. The F-750 device does not provide the 

Chapter 3

23



 
 

 671 

user with absolute absorbance. The software uses an internal daylight correction with shutter 
open and closed scan per fruit scan and therefore gives a relative value for the absorbance. In 
comparison to other spectral devices the absorbance pattern is the same, but negative (Donis-
González et al., 2020). The mean of three scan repetitions per apple position were used. Water 
absorbance was derived at the wavelength value of 975 nm (close to the second overtone 
water absorbance peak). Pigment indices for a normalized difference anthocyanin index 
(NAI), a normalized difference vegetation index (NDVI) and a plant senescence reflection 
index (PSRI) were calculated from the following formulas: 

𝑁𝑁𝑁𝑁𝑁𝑁 =
(R780 − R549)
(R780 + R549)

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(R750 − R705)
(R750 + R705)

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
(R678 − R501)

R801
 

where R is the reflectance at the respective wavelength (Merzlyak et al., 2003; Zude, 2003). 
In the laboratory, the light remission and transmission of different apple samples in the 

spectral range of 400-1600 nm were measured with an integrating sphere setup (Bergmann 
et al., 2020; Foschum et al., 2020). Subsequently, an evaluation algorithm based on Monte-
Carlo simulations was used to determine the effective scattering coefficient μs and absorption 
coefficient μa. To estimate the water content of the samples, the ratio of their absorption 
coefficients relative to the absorption of deionized water at a wavelength of 975 nm (0.04485 
mm-1) was calculated (Hale and Querry, 1973). This procedure is based on the assumption 
that the absorption of water dominates in this wavelength range and that no other 
background absorbers are present. 

RESULTS AND DISCUSSION 

Laboratory results for fruit maturity 
There was no clear difference for the SI before harvest for the two treatments (Figure 

1). However, SSC was higher for the RC treatment, although it was expected that the RCs would 
have a higher shading effect on the trees resulting in a reduced SSC accumulation in the fruit. 
Elevated SSC values in the RC treatment might have an influence on the absorption at 975 nm 
(Giangiacomo, 2006). The laboratory reference values taken for SSC analysis were insufficient 
to build a suitable PLSR model. Therefore, no SSC predictions were made for the field scans. 
No difference in fruit size between RC and HN treatments was measured (data not shown). 

 

Figure 1. Mean maturity values (firmness, soluble solids content, starch index) for ‘Gala’ 
apples under hail net (dotted line) and rain cover (solid line). Harvest window 
defined by the Streif index was September 2 till 16 (shown as green box). 
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Spectral Vis/NIR measurements 
From the Vis/NIR spectra, the NDVI, NAI and PSRI indices for chlorophyll, anthocyanin 

and chlorophyll / carotenoids, respectively are shown in Figure 2. Spectral scans taken in the 
present study show a high variability. Therefore, only the standard error was plotted. 

 

Figure 2. Repeated non-destructive field measurements on same marked apples calculated 
from normalized difference anthocyanin index (NAI), normalized difference 
vegetation index (NDVI) and plant senescence reflection index (PSRI) shown as 
mean ± standard error for the rain cover and hail net treatment. Harvest window 
defined by the Streif index is shown as green box. 

Four weeks before harvest, the NAI values for the HN treatment were higher than for 
the RC, but at harvest no differences between treatments were found. High light levels and 
large daily temperature variations accelerate the built up of anthocyanins. On the other hand 
when night temperatures are warm or the difference between day and night temperatures is 
small, anthocyanins can decrease (Saure, 1990). It is assumed that light interception is lower 
and differences in temperature are smaller under the RC treatment (no data available). This 
could explain the NAI results long before harvest which was also observed in other years at 
harvest for both cover types (data not shown). However, it does not fit with the results just 
before and at harvest time. We assume that distinct temperature differences in the season 
2019 enhanced the anthocyanin built up in the RC treatment (Figure 2). 

The chlorophyll decrease, as shown by the NDVI, in Figure 2 for the two treatments is 
generally similar throughout the preharvest period with fruit from the RC treatment 
constantly having lower values. 

The PSRI is sensitive to changes in both chlorophyll and carotenoid pigments. In 
bicolored cultivars like ‘Gala’, this index is additionally affected by the overlapping influence 
of anthocyanins. The PSRI shows a slowly increasing difference between the RC and HN 
treatments. Assuming that foliar pesticide applications could affect the fruit coloration, the 
time of spray applications was compared to the measured reflectance indexes. However, no 
such effects could be detected. Plant protection sprays against apple scab were applied before 
the rain events (5.08. scab, 13.08. leaf fertilizer and codling moth, 22.08. leaf fertilizer, codling 
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moth and storage rots). Further information about precipitation amounts is given in Figure 3. 
In conclusion, pigment information alone is not a sufficient indicator for an OHD for apples. 
However, the time-series data for NAI and NDVI flatten around harvest for ‘Gala’. As expected, 
there was no obvious difference for the different spectral indices in the Vis spectra region after 
rain events. 

 

Figure 3. Daily mean air temperature (black line) and precipitation (turquoise bars) shown 
together with water absorbance at the 975 nm wavelength (dots) obtained with 
the F-750 field device for ‘Gala’ apples grown under plastic rain covers or hail 
net/control (mean ± standard error). 

Water absorbance at 975 nm and the daily mean temperature and precipitation sum are 
shown in Figure 3. The first scans with the field device took place only minutes after a 30 mm 
rain event and showed no difference between the two treatments (06.08.19). Unlike the large 
variance for the spectral data, both treatments showed only a marginal difference after the 
first rain event. Also, there was no distinct effect observed for either the HN or RC fruit in the 
following scanning period after rain events. However, the RC treatment consistently revealed 
smaller absorbance values compared to HN fruit throughout the study. We hypothesize 
therefore that it is possible for apple fruit to take up small amounts of water from direct 
precipitation which leads to higher fruit water content. The calculated water content in Figure 
4 with values around 100% or above (value on 15.07.19) is unrealistic and indicates that 
additional unknown absorbers like cellulose or sugars apparently affect the 975 nm scan 
absorbance. The amount of preharvest precipitation in August and September 2019 was 26% 
higher compared to the long-term station average. This wet weather pattern led to little 
difference in soil water availability between the HN and RC treatments. The precipitation run 
off from the plastic sheet RC, fell in the middle of the tractor driveway between the tree rows 
and was likely distributed laterally in the soil where it became available for the fruit trees. To 
ensure a similar water status, trees under RC and HN additionally received drip irrigation 
water throughout the study. For these reasons, the difference in water status between the two 
treatments was likely to be small. 

Integrating sphere measurements in the laboratory for both RC and HN took place only 
on two sampling dates and a standard deviation of 4% was obtained for all samples. The 
estimated water content with the integrating sphere setup shows for apples grown under HN 
that the water content increased by 4-5% compared to fruit grown under the RC treatment 
(Figure 4). However, as described above, both HN and RC treatments received sufficient rain 
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and drip irrigation water. Together with the high fruit variability this might explain why we 
found no clear treatment differences, at least with the laboratory scanning. The fruit scans 
taken in this study occurred mostly between 15 and 20°C and we conclude that no 
temperature effect altered the shortwave NIR spectra absorption. However, differences in the 
accumulation of SSC between the samples could have affected the NIR absorption. The 
apparent absorption spectra measured by the F-750 device are the result of both light 
scattering and absorbance effects. Additionally, scattering decreased during ripening. Within 
the limitations of the study methodology as discussed above we assume no direct effect of rain 
events on the Vis/NIR spectra. However, the consistent difference between the treatments 
might indicate that fruit can take up water through the apple skin. Further studies are needed 
to evaluate whether direct precipitation can lead to an increased apple fruit water content. 

 

Figure 4. Effective scattering coefficient (top), absorption coefficient (middle) and estimated 
water content (bottom) at a wavelength of 975 nm measured in the laboratory with 
integrating sphere for ‘Gala’ apples grown under rain covers (black dot) or hail net 
(white dot). Shown is the scan mean and vertical bars as ± standard error, dashed 
line indicates absorption for deionized water at 975 nm. 

CONCLUSIONS 
1) Apple fruit scans directly after a rain event did not lead to an increase of water 

absorbance values for the HN and RC treatments. 
2) Fruit grown under HN showed a consistently higher water absorbance for the field 

scans in comparison to fruit grown under RC. 
3) Integrating sphere calculation in the laboratory on two occasions (no more data 

available) showed a 4-5% higher water content for HN fruit compared to RC 
(standard deviation per single fruit scan is higher than the difference in water 
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concentration in total). Therefore, no significance can be stated. However, the 
absorbance derived from the field scans is consistently higher, see (2). More 
research is needed. 

4) Field and laboratory scans showed a similar decreasing course for absorbance 
values at 975 nm during maturation. 

5) Spraying of plant protection products showed no effect on any of the spectral 
indices (PSRI, NDVI or NAI). 
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Abstract: Optical sensor data can be used to determine changes in anthocyanins, chlorophyll and
soluble solids content (SSC) in apple production. In this study, visible and near-infrared spectra
(729 to 975 nm) were transformed to SSC values by advanced multivariate calibration models i.e.,
partial least square regression (PLSR) in order to test the substitution of destructive chemical analyses
through non-destructive optical measurements. Spectral field scans were carried out from 2016 to
2018 on marked ’Braeburn’ apples in Southwest Germany. The study combines an in-depth statistical
analyses of longitudinal SSC values with horticultural knowledge to set guidelines for further applied
use of SSC predictions in the orchard to gain insights into apple carbohydrate physiology. The PLSR
models were investigated with respect to sample size, seasonal variation, laboratory errors and the
explanatory power of PLSR models when applied to independent samples. As a result of Monte
Carlo simulations, PLSR modelled SSC only depended to a minor extent on the absolute number
and accuracy of the wet chemistry laboratory calibration measurements. The comparison between
non-destructive SSC determinations in the orchard with standard destructive lab testing at harvest
on an independent sample showed mean differences of 0.5% SSC over all study years. SSC modelling
with longitudinal linear mixed-effect models linked high crop loads to lower SSC values at harvest
and higher SSC values for fruit from the top part of a tree.

Keywords: Vis/NIR; repeated longitudinal measurements; apple maturation; precision horticulture

1. Introduction

In apple fruit production, tree physiological status, the farmer’s management decisions
in the orchard, together with environmental factors influence postharvest fruit quality
and storage pack-out. More specifically, factors that affect fruit quality can include crop
load [1,2], timing of harvest [3], application of calcium and potassium fertilizer [4,5], light
distribution within the orchard and temperature during important growth periods [6,7] as
well as single tree or tree sector physiology [3].

Many factors within apple fruit tissues (cells per apple, energy status, cell wall sta-
bility [8]) which can determine harvest date and storage pack-out cannot be seen from
the outside of the fruit. Depending on the wavelength, optical sensors (visible (Vis) and
near-infrared (NIR) point spectroscopy) can help to get a non-destructive view of the
fruit from 1–2 cm under the skin [9]. These portable optical sensors are now relatively
inexpensive and fast [10]. In addition, data handling and chemometric software are user
friendly (own experience). Light reflectance from the fruit can be monitored in the field
to give information about plant pigment development such as chlorophyll, anthocyanins
and carotinoids in the Vis spectra [11]. In addition, partial least squares regression (PLSR)
modelling for the NIR spectra can be used to estimate soluble solids content (SSC) and
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dry matter content [12–14]. Further information on fruit tissues can be obtained from the
light scattering of cell walls and other cellular components using more advanced technolo-
gies like spatial frequency domain imaging [15,16]. However, the latter laboratory based
technology is not available for applied field-sensing to separate the absorbance from the
scattering coefficient. One of the advantages of non-destructive sensor technology is the
possibility to gain a large data set on a small-orchard scale during fruit maturation and
link these spectral data together with other temporal and orchard field data. Biological
and spatial variation are typically high, even within a small-scale apple orchard [17,18].
Moreover, fruit should be harvested and managed according to orchard variation such
as site and cropping history to maintain the best possible fruit quality after long-term
controlled atmosphere storage [19].

The development of SSC in individual apples depends mainly on the light distribution
within the planting system and the fruit to leaf ratio per tree [20]. Furthermore, SSC
values vary between different fruit and even for the same measurement position [12,21].
However, spectral scanning allows a large sample size to be obtained relatively fast. These
measurements could provide a feasible alternative in the practice to labour intensive and
costly laboratory analyses to gain a better idea of the distribution in SSC values.

Furthermore, standard ANOVA analyses are used at a particular moment in time
(mostly at harvest) to determine the SSC distribution. This approach overlooks SSC devel-
opement over the course of time [22]. In the case of repeated measurements in agriculture
and horticulture, mixed-effects models show clear advantages with respect to missing
or unbalanced observations and different or restricted measurement periods [23]. When
modelling is based on repeated measurements during fruit development, the longitudinal
structure results in linear mixed-effect (LME) models to describe time-dependent changes
linked to treatment effects and physiological influences. This class of LME models is a
flexible subset of (generalized) regression models and can be used to model growth patterns
in horticulture [24,25] and other research areas such as physical anthropology [26], clinical
biometry [27] or ecology [28]. Modelling apple growth with expolinear, Gompertz and
logistic [29,30] functions and adapted von Bertalanffy models [31] is common but SSC
accumulation has been less frequently modelled. This is gradually changing through the
use of in-depth biochemical analyses and the use of optical handheld sensors. Vis/NIR
point spectrometers allow for repeated non-destructive spectral scanning on the same fruit.
In a further classification process, longitudinal Vis/NIR data can enable modelling and
classification of optimal harvest dates [32,33].

The present study focuses on non-destructive and longitudinal SSC accumulation in
fruit in the orchard and the practical application of the above outlined methodology to
set guidelines for their broader use. The carbohydrate physiology i.e., SSC accumulation
during apple ripening was monitored within the experimental field treatments, reviewed
from a user perspective and a statistical viewpoint. The results of the study were based on
a large data set of Vis/NIR scans obtained over three study years.

This study investigates in detail (1) the number of calibration samples needed for a
robust SSC prediction, (2) the effects of laboratory errors in wet chemistry analyses on
PLSR model results, (3) the reliability of modelled SSC values in the orchard in comparison
to standard laboratory tests of an independent sample and (4) time-dependent treatment
effects on longitudinal SSC accumulation.

2. Results

The apple cropping seasons of 2016, 2017 and 2018 in Southwest Germany were dis-
tinctively different. A very wet spring with a light frost event during bloom was recorded in
2016. In 2017, severe frosts occurred during bloom in many European horticulture regions.
At the Kompetenzzentrum Obstbau Bodensee, the number of trees available for research
studies was reduced to those protected with heaters in plastic tents. Furthermore, 2018
was a relatively hot and dry year with 398 mm of precipitation between April to October
compared to 956 mm and 730 mm for the same periods of 2016 and 2017, respectively.
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There were also clear differences between years in plant development for the growth stages
(BBCH) flowering and fruit ripe for picking with differences of up to 12 days.

SSC accumulation derived from the yearly calibrated PLSR model (Section 2.1.1)
(Figure 1a) and fruit diameter growth (Figure 1b) are plotted as days after full bloom
(DAFB) over the three study years. Fruit diameter and SSC were monitored at the same
measurement intervals and for the same fruit. Fruit growth will not be further discussed
here and serves only as additional background information on orchard data variance. SSC
increases over time following a linear trend. In general, these data indicate a continuous
mean SSC accumulation until apple maturity which is consistent with biochemical fruit
analyses. In 2017 around 120 DAFB, the within-fruit variability during the time-series
data acquisition shows either that the same fruit accumulate and degrade SSC between
the scanning intervals or that the measurement environment negatively affected data
acquisition. In 2016 and 2017, SSC had approximately the same values at around 120 DAFB.
For 2018 the highest SSC values for the three study years were observed. In order to obtain
a higher time-series resolution and larger time-series data for improved modelling in [33],
data acquisition took place on a daily basis for 120-180 DAFB and SSC scanning started at
50 DAFB in 2018.

Figure 1. Soluble solids content (SSC) accumulation derived from the yearly calibrated (Section 2.1.1)
partial least squares regression models (a) and fruit diameter growth (b) for the three study years
and all treatments are shown. Mean values per measurement day are plotted as solid line, single
values as grey dots and +/−standard deviations as black vertical bars.
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2.1. PLSR Calibration Models
2.1.1. Multi-Year (2016–2018) Calibrated Model

The multi-year model was built with calibration data from all study years (2016–2018).
The multi-year model was subsequently validated with either a multi-year or the respective
yearly data set.The multi-year model results in a root mean square error of prediction
(RMSEP) of 0.65% SSC (adjusted R2 of 0.77) in 2016, 0.67% SSC in 2017 (adjusted R2 of 0.72),
and 0.54% SSC in 2018 (adjusted R2 of 0.89) compared to 0.62% SSC (adjusted R2 of 0.81)
over all three years combined (Figure 2). A look at the RMSEP and the adjusted prediction
R2 is usually not sufficient to determine the presence of systematic errors in the PLSR
model. Fitting a linear regression to the prediction values resulted in a slight deviation
from a diagonal line indicating the presence of small but negligible systematic errors (bias).
More specifically, the multi-year PLSR model possibly underestimates or overestimates the
frequency of particularly low or high SSC values in 2017 and 2018. Residual plots (data
not shown) suggest a slightly heteroscedastic structure. In terms of model performance
over all years, the multi-year PLSR model appears to yield reasonable predictions with
minor restrictions.

Figure 2. Regressions between laboratory measured and modelled % SSC. The calibration model was
trained on 2016–2018 data. This model was thereafter evaluated with an independent validation data
set for all years together and separately. Regression lines are plotted for each validation data set and
adjusted prediction R2 is displayed.

2.1.2. Year-Dependent Calibration Model Transfer to Other Years

Independent PLSR calibration models for each study year were calculated to check
the transferability and adequacy of year-dependent PLSR model to other study years
(500 observations in the calibration data set, 100 observations in the validation data set).
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Results suggest that yearly calibrated models perform best for scans taken within the same
year (Table 1).

Table 1. Root mean square error of prediction (RMSEP) of % soluble solids content (SSC) to test the
transferability of calibration models after 500 Monte Carlo simulation runs per point (500 observations
in each calibration data set, 100 observations in each validation data set. Mean and standard deviation
(in brackets) for each point are shown.

Training Data Set
Validation Data Set of Respective Years

2016–2018 2016 2017 2018

2016–2018 0.65 (0.05) 0.68 (0.05) 0.68 (0.04) 0.57 (0.04)
2016 0.90 (0.16) 0.61 (0.05) 1.00 (0.30) 1.02 (0.21)
2017 0.83 (0.12) 0.95 (0.23) 0.57 (0.04) 0.90 (0.14)
2018 0.95 (0.10) 1.19 (0.20) 1.01 (0.08) 0.48 (0.03)

The multi-year PLSR model predictions (calibration data set) based on reference
samples measured from all years in equal parts show a slight increase in the mean RMSEP
values compared to the yearly calibrated prediction models. The calibration model based on
2016 data gives a RMSEP and standard deviation (sd) in bracket value of 0.61 (+/−0.05) %
SSC for 2016 validation data compared to a RMSEP value of 0.68 (+/−0.05) % SSC for the
multi-year model (2016–2018). In 2017 and 2018 similar results were obtained. Yet, all yearly
calibrated models performed poorly in other years. Standard deviations were considerably
higher when using validation data from years that were not part of the calibration data sets.
This suggests two conclusions: first, yearly calibrated models tend to overfit the data and
can hardly be used as general PLSR models. Second, as the range in SSC values in 2018
was wider than in 2016 or 2017, this increased range led to poor model performance for the
2016 and 2017 models which were not trained for particularly low or high SSC values.

2.2. Evaluation of the Training Data
2.2.1. Effect of Sample Sizes

To assess the effects of different calibration sample sizes, 500 repeated Monte Carlo
simulation runs were performed. For each simulation run a stratified random sample with
n = 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400 or 500 calibration measurements
per year (corresponding to 60 to 1500 calibration measurements in total) was used as a
calibration data set to calibrate a multi-year (2016–2018) PLSR model. The RMSEP was
determined using a validation set with n = 200 observations for each year. The mean RMSEP
of these Monte Carlo simulation runs and the standard deviations thereof are shown in
Figure 3. PLSR models based only on 20 calibration scans per year show a mean RMSEP of
0.93 (+/−0.18 sd) % SSC in 2016, 0.91 (+/−0.17 sd) % SSC in 2017 and 0.95 (+/−0.28 sd) %
SSC in 2018. PLSR models based on 100 calibration measurements per year result in a
mean RMSEP of 0.70 (+/−0.06 sd) % SSC in 2016, 0.70 (+/−0.06 sd) % SSC in 2017 and
0.60 (+/−0.07 sd) % SSC in 2018. Based on 500 calibration measurements per year, a mean
RMSEP of 0.67 (+/−0.05 sd) % SSC in 2016, 0.67 (+/−0.04 sd) % SSC in 2017 and 0.56
(+/−0.04 sd) % SSC in 2018 are obtained. As the 2018 calibration measurements include a
higher proportion of scans taken during early fruit development, the larger range of SSC
values available results in a supposedly lower RMSEP value. This fact, to a large extent,
explains the apparent model improvement in 2018. Besides, the accuracy of laboratory
calibration work may also have improved in the third year of the study. No differences in
mean RMSEP values were detected for scans conducted at different temperatures in the
laboratory with Monte Carlo simulation (∼10, 20 or 30 ◦C).
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Figure 3. Root mean square error of prediction (RMSEP) in % soluble solids content (SSC) based on 2016, 2017 and 2018
partial least squares regression (PLSR) models to test the effect of reduced calibration sample sets. For each setting, 500 Monte
Carlo simulation runs were performed. Mean and standard deviation for each point are shown and 500 observations in
each calibration data set and 100 observations in each validation data set used.

2.2.2. Effect of the Data Range

To assess the prediction quality at certain SSC values the RMSEP was also determined
with 500 repeated Monte Carlo simulation (1200 observations in the calibration data,
300 observations in the validation data set). The multi-year model (2016–2018) was split
into values of <9, 9–10, 10–11, 11–12, 12–13 and >13% SSC and resulted in a RMSEP of 0.59
(+/−0.08 sd), 0.55 (+/−0.05 sd), 0.57 (+/−0.04 sd), 0.65 (+/−0.06 sd), 0.73 (+/−0.08 sd)
and 0.82 (+/−0.09 sd) % SSC, respectively. The analysis of the mean RMSEP shows signs
of heteroscedasticity with a worse PLSR prediction for lower and especially higher SSC
values. However, there was a smaller calibration data set at the beginning and end of
fruit ripening.

In all years, mean RMSEP values were very high for a low number of calibration values
and decrease rapidly up to n = 100 reference values per year with only a slight additional
improvement in model adequacy as shown in the RMSEP for n > 100 calibration values per
year. Standard deviations for the RMSEP values are rather high for small calibration sets
and decrease with increasing sample size. This suggests that model accuracy might appear
high in some cases “by chance”. This has two implications: first, the number of calibration
measurements can be limited to a rather small number of observations per year and a
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reduced number of calibration measurements can be used in future experiments. Second,
a certain prediction error seems to be inevitable with a given PLSR model no matter how
many calibration measurements are available.

2.2.3. Effect of Refractometer Errors

In this simulation procedure, additional normally distributed noise with a mean value
of m = 0% SSC and standard deviations of s = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 2.0% SSC was
added to the laboratory reference values for each simulation run. The standard deviation
of s = 0% SSC corresponds to the standard PLSR calibration model. All the simulation runs
show highly robust PLSR models. Even moderate and substantial laboratory errors only
increase the RMSEP values slightly (Figure 4). The RMSEP in 2016 increased from 0.67
(+/−0.05 sd) % SSC to 0.74 (+/−0.06 sd) % SSC with an additional laboratory error and a
standard deviation of 2.0% SSC. The simulations show similar results for 2017 and 2018.

Figure 4. Root mean square error of prediction (RMSEP) in % soluble solids content (SSC) based on 2016, 2017 and 2018
partial least squares regression (PLSR) models to test for nonsystematic laboratory errors during wet chemistry analyses.
For each setting, 500 Monte Carlo simulation runs were performed. Mean and standard deviation for each point are shown
and 500 observations in each calibration data set and 100 observations in each validation data set used.
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2.3. Use of LME Models to Describe SSC Accumulation

At any given time, the SSC values follow a linear trend with a normal distribution
and a slight increase in variance during fruit development and maturation (Figure 1b).
A breakdown by different orchard factors/experimental management treatments for tree
sector, crop load, cell division temperature and calcium treatment for the 2018 season
mainly suggests a clear effect of sector position, lower effects of crop load and temperature
and no effect of calcium treatment (data not shown). These trends are consistent with the
observations made for the 2016 and 2017 seasons. Three different models are considered
to evaluate whether the specification of random effects and interaction terms yields a
substantial improvement in model quality.

Model 1 is a fully-specified LME model with tree-specific and fruit-specific random
intercepts, year, weeks after full bloom (WAFB), sector position, crop load, cell division
temperature and calcium treatment as fixed effects and interactions between time and the
above listed main effects. Model 1 is a fully-specified LME:

yijk = β0 + uj,0 + ui,0 + β1tk + uj,1tk + ui,1tk + βXXi + βYXitk + eijk (1)

with a population intercept β0, a population parameter β1 for modelling a time-dependent
linear accumulation trend, a time-independent population parameter βX for any other
fixed effects such as treatment effects and sector position, a time-dependent parameter
βY for these fixed effects, a random tree-specific intercept uj,0 with uj,0 ∼ N(0, σ2

uj,0
),

a random tree-specific slope uj,1 with uj,1 ∼ N(0, σ2
uj,1

), a random fruit-specific intercept

ui,0 ∼ N(0, σ2
ui,0

), a random fruit-specific slope ui,1 ∼ N(0, σ2
ui,1

) and a random error term
eijk ∼ N(0, σ2

e ). Model 2 is nested in Model 1 without interaction terms (βY = 0):

yijk = β0 + uj,0 + ui,0 + β1tk + uj,1tk + ui,1tk + βXXi + eijk (2)

Model 3 corresponds to a fully-specified linear regression model without random
effects (with uj,0 = ui,0 = uj,1 = ui,1 = 0) and serves as a baseline model to compare
the effects of the LME modelling. Model 3 is a standard linear regression model without
random effects:

yijk = β0 + β1tk + βXXi + βYXitk + eijk (3)

The fixed time and treatment effects for any given fruit i from tree j were calculated as:

E(yijk|i, j) = β0 + β1tk + βXXi + βYXitk (4)

Using Akaike information criterion (AIC) and Bayesian information criterion (BIC)
as indicators of goodness of fit, both LME models (Models 1–2) are clearly favourable
over the standard linear regression (Model 3). Based on 17,004 observations, Model 1,
2 and 3 result in an AIC of 27,896, 29,154 and 35,708 and a BIC of 28,074, 29,255 and
35,871, respectively. The root mean square error (RMSE) was 0.48, 0.50 and 0.69% SSC
for Model 1, 2 and 3, respectively. Further information about regression coefficients and
time-dependent treatment effect of Model 1 can be obtained from Tables 2 and 3. Of
these two mixed-effects models, Model 1 seems to give the best fit which suggests that
the specification of interaction terms is appropriate to reflect the spatial and temporal
dependencies between observations. Model 1 shows highly significant effects for year,
WAFB, sector crop load and cell division temperature and their interactions. No significant
effect is observed for the calcium treatments.
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Table 2. Time-dependent treatment effects in 2017 on % soluble solids content (SSC) accumulation at
different stages of fruit development given in days after full bloom (DAFB). The baseline configuration
(Base) corresponds to fruit from the bottom sector of a tree with medium crop load without alterations
of cell division temperature. Displayed effects are bottom, middle, top sectors and light, standard
(stand.), heavy crop load and cold, ambient (amb.), warm cell division temperature treatments. SSC
values of the respective effects need to be added or subtracted to the base value.

Sector Crop Load Temperature
DAFB Base in % SSC

Middle Top Light Heavy Cold Warm

40 5.54 0.21 0.53 0.02 −0.07 0.08 0.16
60 6.43 0.25 0.60 0.06 −0.09 0.05 0.13
80 7.31 0.30 0.67 0.11 −0.11 0.01 0.11
100 8.19 0.34 0.75 0.16 −0.13 −0.02 0.08
120 9.08 0.39 0.82 0.20 −0.15 −0.06 0.06
140 9.96 0.43 0.89 0.25 −0.17 −0.09 0.03

Table 3. SSC model simulations with a reduction of sample size and different measurement errors. Multi-year model (MYM)
corresponds to a linear mixed-effect model with all data from 2016–2018 included (LME Model 1), Model A was reduced to
samples from 100 trees of the MYM, Model B was reduced to 500 fruit samples of the MYM and Model C had an unbiased
error of 1.0% SSC added to the MYM. The estimate % SSC (standard deviation) is stated with a significance code with
*** <0.001, ** <0.01, * <0.05. The number of observations, different fruit and trees is shown.

Multi-Year Model Model A Model B Model C

Observations (N) 17,004 7457 6777 17,004
Fruit (N) 1274 540 500 1274
Trees (N) 237 100 211 237
Intercept 3.78 *** (0.084) 3.72 *** (0.115) 3.90 *** (0.127) 3.86 *** (0.157)
Year 2017 1.47 *** (0.096) 1.58 *** (0.136) 1.45 *** (0.148) 1.51 *** (0.183)
Year 2018 1.85 *** (0.081) 2.04 *** (0.114) 1.87 *** (0.125) 1.85 *** (0.150)
Week 0.31 *** (0.003) 0.31 *** (0.005) 0.31 *** (0.005) 0.31 *** (0.007)
Middle sector 0.11 * (0.054) 0.00 (0.078) −0.03 (0.087) 0.01 (0.100)
Top sector 0.39 *** (0.054) 0.38 *** (0.078) 0.35 *** (0.089) 0.423 *** (0.101)
Cold temperature 0.15 (0.089) −0.02 (0.126) −0.03 (0.131) −0.05 (0.152)
Warm temperature 0.21 ** (0.065) 0.15 (0.090) 0.26 ** (0.095) 0.09 (0.107)
Light crop load −0.07 (0.064) −0.05 (0.096) −0.17 (0.094) −0.11 (0.110)
Heavy crop load −0.03 (0.069) −0.11 (0.094) −0.18 (0.101) −0.01 (0.117)
Without calcium 0.17 (0.140) 0.00 (0.175) 0.43 (0.230) 0.03 (0.227)

The time-dependent effects of different treatment levels are displayed in Table 2.
Fruit from the light crop load treatment show increasing SSC values throughout fruit
development. At the end of cell division (∼40 DAFB), only small differences between
different crop loads (range of 0.09% SSC between light and high crop load) and cell
division temperature regimes (0.16% SSC between cold and warm temperatures) can be
observed. Close to harvest (140 DAFB), relatively large differences in SSC can be seen
between different levels of tree sector (range of 0.89% SSC between bottom and top sector)
compared to only minor differences in SSC for different crop loads (range of 0.42% SSC
between light and high crop load) and only negligible effects for different temperature
regimes (range of 0.12% SSC).

2.4. Sensitivity Analysis of the Experimental Setup

Data collection in large orchard trial designs is labour and cost intensive. Therefore,
it is of interest to investigate whether reduced sample sizes lead to different results. SSC
values were derived from the multi-year PLSR calibration model based on laboratory
reference measurements. The influence of reduced sample sizes and unbiased laboratory
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measurement errors of 1.0% SSC on research results was investigated with LME Model 1.
Different simulation settings are presented in Table 3.

Three settings are discussed and the standard Model respectively altered: Model A
shows the effects of a reduced number of trees (100 trees within three years, same number
of fruit per tree). Model B is based on a reduced number of fruit (500 fruit within three
years, same number of trees). While the first setting with less experimental trees makes
if possible to have additional experiments in the same orchard block, the second setting
reduces the number of working hours per tree. Additionally, Model C shows the effect of
an increased but unbiased measurement error (additional white noise of 1.0% SSC) in the
SSC measurements. As expected, Models A–C show increased standard deviations of all
estimates compared to the multi-year SSC model due to a reduced sample size (for Models
A and B) or an increased measurement error (Model C). In Model C, the cell division
temperature and calcium treatment are not marked as “statistically significant” due to
increased measurement errors. In most cases the effect of sample size remains comparable
to the multi-year SSC model.

In summary, these simulations show the possibility of reduced sample sizes when
the focus is on treatments with large effects. In order to detect small differences between
different treatments, large sample sizes are still required, especially in the presence of
measurement errors due to increased t-values of the estimates.

2.5. A Practical Comparison of Spectral and Conventional Laboratory Methods to Determine SSC
at Harvest

Traditional destructive laboratory samples for SSC were taken at harvest from eight
apples per tree sector, treatment (2 or 3× levels) and repetition (3×). At the same time,
the last non-destructive scans in the orchard were taken from an independent batch of
approx. seven apples, scanned and postprocessed with the yearly calibrated PLSR model.
Mean destructive laboratory values for 2016, 2017, 2018 and all study years from 2016 to
2018 were 11.3, 11.1, 12.3 and 11.7% SSC, respectively (2016: +/−0.52 sd, n = 63; 2017:
+/−0.55 sd, n = 9; 2018: +/−0.53 sd, n = 50). The non-destructive samples were 11.8, 10.7,
12.0 and also 11.7% SSC, respectively (2016: +/−0.85 sd, n = 63; 2017: +/−0.70 sd, n = 27;
2018: +/−0.56 sd, n = 68). There is a higher variance for the PLSR modelled SSC values
as compared to the laboratory values. The mean difference of each treatment level for the
two methods is 0.5% SSC for all study years. The obtained values from the two approaches
were not biased.

3. Discussion

Varying weather conditions during the three study years resulted in different SSC
values at harvest which is in accordance with the literature [34–36]. Using time-series data
in the orchard offers the possibility to see a linear carbohydrate development in the form
of SSC accumulation over time. For 2017, the severe frost year, the SSC increase showed a
larger variance (Figure 1a), as was also seen for fruit growth (Figure 1b). Non-destructive
technologies can provide researchers with new tools to study fruit physiology or offer
the possibility to use these values in digital orchard management information systems
to predict and manage fruit quality, as seen for fruit diameter [37]. The effects of field
treatments and physiological differences were directly related to the developmental stage
of the fruit. Differences in tree sector position and crop load [1,38] caused increasingly
large differences in SSC during fruit development and negligible differences due to early
season temperature (∆ 2 ◦C to ambient). Differences in sector position influence SSC early
in the season whereas crop load effects increase steadily during fruit development.

Up until now the practical application of non-destructive scanning in apple research
experiments has been restricted due to the intensive amount of laboratory work necessary
to obtain reference samples and to the unknown precision of PLSR calibration models
in the orchard. The results of the PLSR calibration only partially depend on the number
and precision of the reference laboratory measurements. The results suggest that special
emphasis should be placed on scanning fruit at low and high SSC values at the beginning
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and end of each season to cover a wider range of possible SSC values within a particular
growing season. These results have some practical implications and suggest that even a
considerably reduced sample size (100 samples) leads to comparable results, although the
standard deviations of the estimates increase with reduced sample size. It suggests that
repeated laboratory reference measurements of the same fruits to increase the accuracy of
reference values lead to almost negligible improvements of the PLSR calibration models.
These simulation results are consistent with standard results from statistical measurement
error theory for response variables [39]. Moreover, in future experimental designs a
reduced number of field scans would be sufficient to detect SSC differences between the
treatments. A classical experimental field design with blocks and repetitions did not play a
role in the LME modelling, which relaxes some limitations of the classical variance analysis
framework and provides a more flexible way to adapt to temporal, spatial and tree-specific
dependencies. A precision horticulture approach beyond research trials to monitor fruit
SSC development on large sample numbers aligned to orchard structure should be possible.

The accuracy and robustness of the PLSR models was examined in great detail and
only showed minor limitations to their broader use for our purposes. Yearly calibrated
models cannot be generalised to other years, but multi-year models can be used for the same
orchard and cultivar as was also seen in Peirs et al. (2003) [21]. The practical comparison
between all laboratory based destructive measurements and the non-destructive orchard
SSC data collection showed that the independent apple selection was unbiased and for the
apple cultivar ’Braeburn’ there was no difference between the two methods for determining
SSC values at harvest in the orchard. In the future, however, new developments with model
transfer methodology [40] together with neural networks or other ’big data’ applications
may facilitate the wider use of non-destructive sensor based SSC predictions for apples.

Our results may not be generalised to other apple cultivars or fruit species and to
other sites or other climate regimes. However, since all effects are comparatively large and
consistent with a literature review, additional measurements would probably confirm the
overall effects. Analyses of dry matter content which can also be obtained by PLSR models
were not considered in this study. As the number of non-destructive sensors available for
horticultural practice and research is expected to increase in the coming years, longitudinal
data will be available in ever greater quantities. The collaboration of horticultural science,
computer science and statistics will avoid the collection of data as an end in itself and allow
for new insights into currently hidden patterns of fruit physiology and development.

4. Materials and Methods
4.1. Experimental Setup

This research took place at the Kompetenzzentrum Obstbau-Bodensee (47◦46′01.9′′ N
9◦33′23.3′′ E) in the Lake Constance region of Southwest Germany using the apple cultivar
’Braeburn’ Malus domestica. A randomised field design with treatments of crop load (light,
standard, heavy), calcium spraying (with, without) and cell division temperature (ambient,
∆ + 2 and ∆ − 2 ◦C) were used. Each tree was divided into three sectors of ∼1.25 m height
each for the bottom, middle and top. Apple phenological growth stages were recorded
following the BBCH code scheme [41]. The experimental design (treatments and scanning
number/frequency) varied during the different study years. For a detailed description of
the field experiments see [33,42].

4.2. SSC Sampling

Around June drop, one representative fruit per tree and sector was selected, marked
and repeatedly measured (scanned) until harvest. Fruit were scanned on the equatorial
and sun side with a handheld portable Vis/NIR device (F-750, Felix Instruments, Camas,
WA, USA). The device had a 3 nm spectral sampling over a 310–1100 nm spectral window,
a spectral resolution of 8–13 nm and corrected each scan for background daylight. The
spectral range of 729–975 nm was used in the PLSR models to predict SSC. Fruit were
replaced by a similar nearby fruit, if the fruit was lost or was not representative.
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Orchard sampling was performed weekly in 2016 between 15 August and 16 October
for n = 198 fruit from n = 33 trees. A total of n = 3994 scans were performed. In 2017,
sampling took place weekly between 3 August and 30 October for n = 603 fruit from n = 96
trees. A total of n = 5957 scans were made. In 2018, n = 473 fruit from n = 146 trees were
measured biweekly between 6 June and 25 October. In total, n = 7087 scans were recorded.
In 2018, data acquisition took place on a daily basis for 120–180 DAFB and SSC scanning
started at 50 DAFB.

4.3. PLSR Models

Reference measurements combined both destructive wet chemistry results and non-
destructive spectral scans. A sample of n = 30 reference fruit were taken regularly over
the fruit development and maturation periods from nearby trees in the same block and
around the same field at scanning time to ensure the transferability of the calibration
model to the SSC of sampled fruit. In total, n = 599 fruit in 2016, n = 211 fruit in 2017 and
n = 333 fruit in 2018 were selected. Non-destructive spectral reference measurements were
performed at different temperatures (∼10, 20, 30 ◦C) to help adjust for temperature induced
changes in hydrogen bonding [43]. The number of reference measurements is given as a
total of n = 1639 observations in 2016 (529 observations at 10 ◦C, n = 583 observations at
20 ◦C, n = 527 observations at 30 ◦C), in 2017 n = 631 observations (210 observations at
10 ◦C, n = 211 observations at 20 ◦C, n = 210 observations at 30 ◦C) and in 2018 n = 984
observations (n = 328 observations at each temperature level). Destructive wet chemistry
SSC measurements were obtained with a refractometer (Atago, Tokyo, Japan). PLSR models
were postprocessed on a year- and site-specific basis.

The original models were built with the Felix model builder software (v1.3.0.177).
Additional PLSR models were fitted using the R package pls [44]. Spectral data was
transformed using second derivative spectra from 729 nm to 975 nm. The maximum
number of principle components was set to 7 and the models were validated with leave-
one-out cross validation methods. The reference data set was split into a calibration data set
to train the PLSR model and a validation data set which was only used to test the prediction
quality. A stratified random sample was drawn for each year to generate equal parts for
all years. In total, n = 1200 observations were used as calibration data and n = 300 for
validation data, if not stated otherwise. The RMSEP and adjusted prediction R2 were used
to describe the model performance and goodness of prediction. Reference measurements
were taken as the longitudinal observations took place in the orchard. Therefore, we
assume that the RMSEP for the validation data corresponds to the RMSEP of the SSC
sampled fruit which could not be chemically analysed destructively due to the longitudinal
structure of the study.

4.4. Monte Carlo Simulations

Monte Carlo simulations were used to assess PLSR model sensitivity to changes in
input parameters and effects of sample size [45]. Measurement accuracy using standard
laboratory analyses was simulated with repeated random samples. For simulations a mod-
ified and randomly sampled calibration set was generated without replacement. Reference
measurements were split into a calibration data set with 1200 observations and a validation
data set with 300 observations. The modified calibration sets were used in an automatic
Monte Carlo simulation process to calculate the RMSEP and adjusted R2 values for each
setting. Each setting was repeated n = 100 times to calculate mean RMSEP values and
standard deviations.

For sample size analyses, calibration sets with a reduced sample size were sampled
for each year and all years combined. For laboratory errors, calibration sets were sampled
for each year and all years combined. Laboratory errors were assumed to be unbiased
and normally distributed. Additional normally distributed error terms (white noise) with
different magnitudes were added afterwards.

Chapter 4

43



Plants 2021, 10, 302 13 of 16

4.5. Longitudinal LME Models

LME models (hierarchical regression models, nested linear models, multi-level re-
gression models) are a subset of generalized regression methods to analyse repeated
time-correlated and cluster-correlated observations [46]. DAFB and WAFB were used for
time-dependent analyses in each year.

All time-correlated observations on a single fruit were part of a natural cluster of obser-
vations which shared the same fruit-specific and tree-specific characteristics. A hierarchical
(nested) data structure was therefore applied. The LME model combined population-
specific and subject-specific (spatial variation in the orchard) random effects.

The specification of the random effects needs special consideration as the longitudinal
data structure makes two adaptions necessary: first, a random effect is given by a fruit-
specific dependency as these observations are correlated over time (fruit-specific intercept
and slope). Second, a random effect is necessary due to tree-specific dependency for all
fruit from the same tree. Therefore, with respect to the natural dependency of observations
from the same tree, a tree-specific intercept and slope were specified. Two random effects
were modelled in addition to fixed effects which affect all fruit simultaneously. Details are
specified in the previous sections. Modelling was done with the R package lme4 which
provided various functions for fitting, analysing and evaluating mixed-effects models in
a linear, generalised linear and nonlinear framework [47,48]. The restricted maximum
likelihood method and full maximum likelihood method were used to estimate parameters.
The R package lmerTest was used to approximate the degrees of freedom and calculate
p-values for mixed-effects models using Satterthwaite’s method [49]. Yet no emphasis is
placed on the interpretation of these p-values, as there is an unresolved statistical discussion
about their theoretical applicability [50]. Coefficients of fixed effects with a t-value (ratio
of estimate and its standard deviation) of less than −2 or greater than 2 were considered
statistically significant. Model choice was based on the AIC and the BIC both of which use
the log-likelihood ratio and describe model quality by adjusting the goodness of fit with
a penalization term for model complexity [51,52]. RMSEP was used to compare model
predictions and observations.

4.6. Mann–Whitney–Wilcoxon Test

A Mann–Whitney–Wilcoxon test was conducted in R to compare the modelled SSC
values from the field scans based on the PLSR modelsto destructively measured fruit in the
laboratory. Refractometer values showed a normal distribution, whereas PLSR modelled
SSC were not normally distributed and Mann–Whitney–Wilcoxon test was used. For the
laboratory samples the top half of a fruit batch of eight apples was mixed in the laboratory
with a conventional fruit blender.

5. Conclusions

In summary, the non-destructive temporal development of SSC accumulation could
contribute new insights into apple fruit carbohydrate physiology. The present study linked
an in-depth statistical analysis of large data sets with horticultural knowledge in order to
test the application of ’Braeburn’ SSC prediction models with a special focus on model
transferability and accuracy.

• In terms of model performance over all years, the multi-year PLSR model appeared
to be reasonable with minor restrictions for especially low and high SSC predictions.
However, independent yearly calibration models performed best for the same year.

• A sample size of n = 100 fruit for a yearly PLSR model with a wide range of SSC
values seems to be sufficient.

• Differences in sector position and crop load resulted in increasingly large differences in
SSC during fruit development and offer the possibility for further physiological studies.
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A B S T R A C T   

Physiological storage disorders continue to cause sizable economic losses in a range of commercially important 
pomefruit cultivars. Given similar storage regimes, the incidence and severity of browning disorders in the apple 
cultivar ‘Braeburn’ can vary in different years in a way that can be explained by the interaction of preharvest 
seasonal and orchard factors. Over a three-year period (2016–2019) at the Kompetenzzentrum Obstbau Bodensee 
(KOB) in Southwest Germany a range of orchard and storage treatments were conducted for: air temperature 
during cell division for three weeks post petalfall or during four weeks preharvest, and crop load. Following 
controlled atmosphere (CA) storage, the disorder incidence for internal browning and cavity formation varied 
markedly over the three different growing seasons. Crop load treatments strongly influenced the expression of 
browning disorders in all years. Differences in air temperatures (△ +/- 2 ◦C compared to ambient) during the 
cell division period showed little effect on browning incidence. Warm night temperatures (>10 ◦C) prior to 
harvest can reduce internal browning in ‘Braeburn’ apples during CA storage and shelf-life.   

1. Introduction 

Physiological browning disorders in the apple cultivar ‘Braeburn’ 
can occur in the orchard but mostly symptoms develop during post
harvest handling and controlled atmosphere (CA) storage. Much of the 
variation in the occurrence of internal browning symptoms is due to 
preharvest factors as similar fruit handling and storage conditions often 
result in very different outcomes (Lau, 1998; Elgar et al., 1999; Watkins 
and Mattheis, 2019). 

A conceptual understanding of browning development in ‘Braeburn’ 
is supported by recent work to identify genetic biomarkers (Mellidou 
et al., 2014; Rudell et al., 2017) and technological advances with the 
non-destructive 3D microstructural analysis of whole fruit (Janssen 
et al., 2020). The genetic findings link changes in energy and lipid 
related genes with the spatial and temporal development of browning 
symptoms in fruit tissues. Furthermore, ‘Braeburn’ is an apple cultivar 
with a high resistance to gas exchange, the fruit skin has a low per
meance for O2 (Rajapakse et al., 1990) and the cellular microstructure is 
dense with narrow connecting pores especially within the inner cortex / 
core tissues (Dražeta et al., 2004; Herremans et al., 2013; Janssen et al., 
2020). Taken together these research findings are consistent with a 
model of browning development where failures in the functioning 

and/or structure of cell membranes occur when respiration processes 
either do not provide enough energy to maintain cellular defences / 
homeostasis or products such as CO2 accumulate to damage cells. When 
cell integrity is lost, cell contents mix, enzymatic oxidation browning 
occurs, cells can die and cavities can form when cell fluids are lost to 
surrounding tissues (Herremans et al., 2014). Variation in the cellular 
microstructure can explain the pattern of browning symptoms. Brown
ing develops in ‘hotspots’ that often stay localised when surrounding 
tissues allow for better gas exchange (Herremans et al., 2014). The 
management strategy of delayed-CA storage is very effective at con
trolling browning disorders in ‘Braeburn’. Fruit have a higher energy 
status after a three week period in air storage and begin to better tolerate 
low temperature CA conditions (Saquet et al., 2003). In addition, apples 
in air storage can show increases in intercellular volume (Ruess and 
Stösser, 1993) and these changes could also help fruit adapt to CA 
conditions by increasing gas exchange within the cortex and core tissues. 

Nevertheless, many questions remain about how environmental and 
orchard factors affect fruit during growth and development on the tree 
to influence the susceptibility and expression of browning disorders 
during postharvest handling and storage. Approaches to predict ‘Brae
burn’ browning disorder risk have often included air temperature data, 
e.g. growing degree day (GDD) models as a number of workers have 
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identified cool growing seasons as a higher risk for browning (Lau, 1998; 
Volz et al., 2000); with some data to suggest that low temperatures in the 
30 d preharvest period are correlated with a higher browning risk (Volz 
et al., 2000). 

Fruit growth is affected by orchard temperature. Air temperatures 
during the spring post bloom period (primarily involving cell division in 
the young fruitlets) and in the autumn preharvest harvest period (fruit 
maturation and ripening) are known to influence fruit growth and 
development in a different way compared to temperatures during the 
summer. Air temperatures in the post bloom and preharvest periods can 
affect the potential fruit size and the rate of fruit maturation (War
rington et al., 1999) and the incidence of internal browning in `Brae
burn’ (Volz et al., 2000). 

Light crop loads are a well-known risk factor for a range of post
harvest disorders including internal browning in ‘Braeburn’ however, 
there is very little literature to understand the physiological basis on 
how crop load affects final fruit quality following postharvest storage 
(Ferguson et al., 1999; Wünsche and Ferguson, 2005). Calcium spray 
treatments in the orchard strongly affect the incidence of bitter pit. 
However, the effects on ‘Braeburn’ browning susceptibility are reported 
as protective (Rabus and Streif, 2000) or less well correlated (Elgar et al., 
1999). Furthermore, while late harvests are generally associated with a 
higher risk of browning susceptibility this is not always the case (Lau, 
1998). 

From 2016–2019, a research project to encourage the use of digital 
technologies in the horticultural sector was undertaken at the Kompe
tenzzentrum Obstbau Bodensee (KOB) in Southwest Germany. The 
project focused on the prediction of storage disorder risk using a data 
based classification methodology (Osinenko et al., 2021). The experi
mental design enabled the linkage between a number of preharvest 
physiological processes and the occurrence of internal browning disor
ders during storage to be investigated. Specifically, the following hy
potheses were tested: 1) Warm conditions during the three week 
post-bloom cell division period will predispose ‘Braeburn’ apples to 
postharvest internal browning; 2) Warm conditions during the four 
week pre-harvest period will reduce postharvest internal browning; 3) 
High crop loads will reduce postharvest browning incidence/severity 
when preharvest air temperatures in the orchard vary. 

2. Materials and methods 

2.1. Orchard treatments 

Field experiments involving orchard day/night temperatures and 
crop load treatments were conducted at the KOB (Table 1). Treatments 
involved either two or three levels and were replicated three or four 
times in a randomised design using seven trees per plot. Experiments in 
all years used the same block of ‘Braeburn’ apple trees at the KOB 
(planted in 2006, 3.2 by 0.8 m spacing, 3.8 m in height). Tree canopies 
were divided into three sectors; top (1/3), middle (1/3) and bottom (1/ 
3) to obtain data on the disorder incidence with regard to fruit position 
within the tree canopy. 

All apples from a specific tree-sector and storage condition repre
sented one storage sample (Table 1). Each sample was harvested, stored 
and assessed separately excluding 2016, here trees were harvested as 
total apples per sector within a repetition (Table 1). 

2.1.1. Cell division temperature treatments 
Air temperature treatments were conducted in spring in all three 

experimental years for three weeks post petalfall. There were three 
treatment levels (warm +2 ◦C compared to ambient, ambient or cold -2 
◦C compared to ambient). Treatments were replicated three times and 
conducted in plastic greenhouse tents built over the plots in the orchard 
using either small 2.4 kW domestic fan heaters placed on the ground or 
3.0 kW cooling machines (Riedel, Kulmbach, Germany) mounted at the 
top of the tents covering the trees. The ambient control trees were 
covered in hail netting to adjust for the light reduction caused by the 
plastic sheeting and were not in a tent. Temperature difference con
trollers (HTronic TDR 2004, Hirschau, Germany) were used to control 
the heaters or cooling machines and `ibutton’ temperature dataloggers 
(Measurement Systems Ltd, Newbury, UK) placed at three heights 
within the tree canopies in each plot to record the temperature hourly. 
Cooling treatments were most effective during the night to maintain the 
intended -2 ◦C difference compared to ambient but were not effective 
when the sun shone brightly where the tents had to be opened and 
vented to maintain temperatures closer to ambient conditions. In 2017, 
a damaging late spring frost (-4.5 ◦C) occurred during full flowering. The 

Table 1 
Overview of the field and storage experiments* conducted on ‘Braeburn’ trees at the Kompetenzzentrum für Obstbau Bodensee (KOB) from 2016 to 2019.  

Year Orchard Experiment Levels Repetitions Crop load Mean fruit no. / 
storage sample 

Storage Data 

2016/17 

Temp. cell division 
post petalfall 

cold (-2 ◦C) 
ambient 
warm (+2 ◦C) 

3x standard 57 

Delayed-CA 
or 
direct-CA 
for 
5 months 

Pooled 
per sector 
per plot 

Crop load 
light 
standard 
heavy 

3x 
light 
standard 
heavy 

56 

Temp. preharvest >10 ◦C 
day and night 

ambient 
warm 

1x standard 25 

Pooled 
per sector 
per tree 

2017/18 
Crop load nested within Temp. 
cell division post petalfall 

cold (-2 ◦C) 
ambient 
warm (+2 ◦C) 

3x 
light 
standard 
heavy 

19 

2018/19 

Temp. cell division 
post petalfall 

cold (-2 ◦C) 
ambient 
warm (+2 ◦C) 

3x standard 20 

Delayed-CA 
for 
5 and 
7 months 

Crop load 
light 
standard 
heavy 

3x 
light 
standard 
heavy 

25 

Temp. preharvest >10 ◦C 
night temperature 

ambient 
warm 

4x 
light 
standard 
heavy 

21  

* Temperature cell division treatments conducted for 3 weeks post petalfall. Temperature preharvest treatments conducted for 4 weeks preharvest. Crop load 
treatments of approximately 50 % / 100 % / 180 % of a standard crop load. In 2017/18 (due to spring frost / limited tree availability) in the temperature cell division 
experiment and in the 2018/19 temperature preharvest experiment, crop load treatments were nested within the temperature plots. 
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cell division temperature treatment trees at the KOB were able to be 
protected with plastic sheeting and heated. 

Temperature data were used to calculate growing degree hours 
(GDH) by subtracting a base temperature of 10 ◦C (as used by Lau, 1998; 
Volz et al., 2000) from the mean hourly air temperature and summing (e. 
g. 3 ◦C above the base temperature for 1 h gives 3 GDHs). Hourly tem
peratures of 10 ◦C or less were set to zero. 

2.1.2. Preharvest temperature treatments 
Preharvest air temperature experiments during the final four weeks 

preharvest involved warm and ambient treatment levels only. In 2016, a 
small plastic greenhouse was built over one plot of seven trees and the 
air temperature maintained at >10 ◦C during the day and night up until 
harvest. In the frost year (2017/18) additional `Braeburn’ trees without 
frost damage were found on a commercial orchard at Kippenhausen 
some 25 km away from the KOB and eight experimental plots of four 
trees were established with five different timings of the warm periods, 
two levels of crop load (light or standard) and one replication (Table 2). 
Plastic greenhouse tents were built over the plots and heated (>10 ◦C) 
from the late afternoon until early morning. 

In 2018/19, a replicated (4x) preharvest experiment was conducted 
at the KOB. Plots of seven trees were either heated in plastic greenhouse 
tents to maintain >10 ◦C at night or kept at ambient under one layer of 
hail net. In addition, three levels of crop load were nested within each 
temperature plot (crop load details follow below in section 2.1.3). Tents 
were opened in the morning and closed at night. Large roof windows 
were designed to maximise the amount of daylight reaching the trees 
and also to allow any daytime rainfall to wet the trees. Ambient plots 
were covered with hail netting to try and maintain similar lighting 
conditions over all plots. 

In all study years, temperature dataloggers were placed at three 
heights with the tree canopies to record the temperature each hour and 
data used to calculate GDHs. 

2.1.3. Crop load treatments 
At the KOB in each experimental year, three levels of crop load were 

established as light, standard or heavy, corresponding to approximately 
50 %, 100 % or 180 % of a standard crop load, respectively (Table 1). 
Fruit numbers varied slightly each year due to differences in natural 
fruit-set, frost event and tree canopy growth. Hand thinning treatments 
were conducted during flowering and after June drop to establish the 
final crop load some 12 weeks preharvest. When bloom intensity was 
very heavy (2016/17), early flower cluster thinning was conducted to 
space clusters out at 10, 20 or 30 cm with additional hand thinning of 

fruitlets conducted directly after June drop. In the frost year (2017/18) 
with limited tree availability, crop load treatments were nested within 
the cell division temperature plots. In this year little hand thinning was 
required as in each plot of seven trees there were either two or three 
trees with a light, standard or heavy crop load. However due to the frost 
the fruit distribution over the tree was uneven with more fruit at the top 
and less at the bottom. 

In the Kippenhausen orchard preharvest experiment, mature `Brae
burn’ trees (3.1 by 0.9 m spacing, 3.5 m in height) were hand thinned 
some 5 weeks prior to harvest to two levels of crop load as light (50 %) or 
standard (100 %). 

In 2018/19 sufficient trees were available for all experiments so in 
addition to a crop load experiment, three levels of crop load were nested 
within the preharvest temperature experiment plots. 

2.2. Harvesting and postharvest CA storage conditions 

Standard apple maturity tests for fruit firmness (FF N), starch 
staining pattern index (scale 1− 10) and soluble solids content (SSC %) 
were used to calculate a harvest index [FF/(SSC x starch)] and set a 
harvest window following the usual commercial practice in Southwest 
Germany (Streif and Kittemann, 2018). At-harvest maturity data (three 
repetitions of eight fruit) from 2016 to 2018 are shown in Table 3. 
At-harvest, all fruit from trees were picked separately by sector. 
Immediately after harvest, the ‘Braeburn’ fruit were sorted (very small 
fruit <60 mm removed) and randomly allocated into storage treatments. 
In 2016 and 2017 fruit were placed in CA for five months in either a 
storage condition intended to reduce ’Braeburn’ browning disorder 
(BBD) by low CO2 concentrations (1 ◦C, 21 d delayed-CA establishment, 
1 kPa O2, <0.7 kPa CO2) or a storage condition intended to induce BBD 
symptoms (1 ◦C, direct-CA, 2.0 kPa O2 and 2.3 kPa CO2). In 2018, all 
fruit were stored in delayed-CA as given above and removed from 
storage after five and seven months. 

2.3. Assessments at storage removal 

At storage out-turn, fruit samples (Table 1) were kept at room tem
perature for 7 d and then all fruit (>10,000 in each study year) were 
individually assessed by trained staff for external disorders (bitter pit, 
CO2 damage, superficial scald) and by cutting for internal disorders 
(core browning, flesh browning, cavities, bitter pit). For assessments in 
2016, fruit samples were pooled together from each treatment repetition 
per sector. In 2017 and 2018 fruit were assessed separately for each tree 
and sector. All disorders were scored on the same 0–3 scale (in 0.5 
steps), where 0 = no symptoms and 3 = most severe symptoms. Apples 
with only slight symptoms (i.e. scores of 1 and below) would most likely 
be acceptable for consumers. Incidence was calculated as the total 
number of fruit with a score ≥ 0.5 divided by the total fruit number 
expressed as a percentage. A disorder severity index (0− 100) was 
calculated where i = disorder score as either 0, 0.5, 1, 1.5, 2, 2.5, 3, ni =

number of fruit with score i and N = total number of fruit assessed. 

Severity Index =

∑i=3

i=0
(ni x i) x 100

N ∗ 3  

2.4. Statistics and data analysis 

The disorder score data obtained after storage and shelf-life are 
shown as the mean percentage incidence and mean severity index 
(0− 100) with the standard deviation (sd). 

The core browning data from the crop load and temperature exper
iments (cell division and preharvest) were analysed further using box
plots and receiver operating characteristic (ROC) curves calculated with 
the software package ‘pROC’ available for R (Robin et al., 2011). ROC 
curve analyses are used in many medical fields to assess the performance 

Table 2 
Preharvest air temperature treatments conduced at Kippenhausen in 2017/18. 
Harvest date 18 October, N = approximately 200 fruit assessed per plot (4 trees).  

Temp. 
treatment, 
Crop load level 

Warm phase preharvest temp. 
treatments ~ >10 ◦C for 10 nights 

Mean core- 
browning 
% incidence 
(severity index) 

16− 26 
Sep. 

26 Sep.− 06 
Oct. 

06− 17 
Oct. 

ambient, light – – – 63 % (18) 
ambient, 

standard 
– – – 55 % (12) 

warm phase1, 
standard 

X – – 41 % (9) 

warm phase2, 
standard 

X X  38 % (8) 

warm phase3, 
light 

X X X 27 % (7) 

warm phase3, 
standard 

X X X 13 % (3) 

warm phase4, 
standard 

– X X 12 % (3) 

warm phase5, 
standard 

– – X 17 % (4)  
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of biomarkers as binary classifiers to predict disease risk. In postharvest 
biology, ROC curves have found application in fruit sorting when 
VIS/NIR non-destructive equipped graders are used to assess internal 
fruit quality (Walsh et al., 2020). And recently, Leisso et al. (2019) used 
ROC curves to assess the influence of preharvest factors like GDD, 
chilling hours and other fruit quality parameters as binary classifiers to 
predict the risk of disorders developing in ‘Honeycrisp’ apples. Here we 
have followed a similar approach. 

As a non-parametric assessment of binary classifier performance 
ROC curves are much less demanding for the assumptions of data 
normality, equal variance and balanced datasets as required for statis
tical methods based on probability distributions with deviations from a 
mean or variance value. ROC curves are commonly based on the fre
quencies with which a classifier produces true positives (TP = fruit with 
disorder), true negatives (TN = sound fruit), false positives (FP = sound 
fruit classed as disordered) and false negatives (FN = disordered fruit 
classed as sound) as shown as an example in Fig. 1. 

In all the ROC curves given below, the y-axis shows the true positive 
percentage (also known as sensitivity) = TP/(TP + FN) with the false 
positive percentage (1-specificity) = 1-(TN/ (TN + FP)) on the x-axis. 
The area under the curve (AUC) is shown in plots, as it is an important 

measure of classifier performance. When the AUC is close to 50 %, the 
classifier has no power to discriminate between sound and disordered 
fruit, while AUC values of ~ 75 % and above show good utility, with a 
perfect classifier having an AUC value of 100 %. The ‘pROC’ software 
package allowed 95 % confidence intervals (CIs) for the AUC to be 
calculated using 2000 stratified bootstrapping resamplings, these CIs are 
displayed in the plots as a shaded area. The CIs show the range of values 
the AUC would take if the experiment was repeated many times under 
identical conditions, but note also these CIs are not appropriate when 
the same classifier is applied in other situations. In addition, the ‘pROC’ 
software can calculate an optimal balance of true positive and false 
positive percentages and give the corresponding threshold value of the 
classifier. However, this threshold value may not always be appropriate 
in a practical sense i.e. when the negative cost of FNs is high and results 
in product rejection by a customer / end consumer. 

ROC curve analyses with data combined from all years were con
ducted for three different classifiers of core browning incidence and 
severity: 1) GDH > 10 ◦C for the cell division treatments (data as means 
per plot per sector); 2) GDH < 10 ◦C for the preharvest treatments (data 
as means per plot per sector per tree); 3) crop load, as the percentage of a 
standard full crop load per tree sector (100 %) (data for all years as 
means per plot per sector except 2017/18 as means per plot per sector 
per tree as crop load treatments were nested within the cell division 
temperature plots). The mean core browning data from each storage 
sample were subjectively allocated into two binary categories as either 
high or no / low incidence and severity. To achieve binary categories for 
the ROC curve analysis a subjective cut-off value of 30 was used for the 
severity index to separate the samples when incidence was high in 2016/ 
17 and when severity was much lower in 2017/18 and 2018/19, a 30 % 
incidence threshold was used. Fruit below this 30 % threshold had very 
slight symptoms (very low severity). The boxplots summarise the binary 
distributions but do not show p values as most of these data were skewed 
i.e. non-normal. 

Multivariate linear discriminant analysis (LDA) to classify fruit into 
binary classes as either no / low browning or high browning (using the 
incidence and severity cut-off values as explained above) was conducted 
for preharvest GDH < 10 ◦C and crop load data as predictor variables. 
LDA models were built for each year separately and combined for all 
years (N = 84, 96, 335 for 2016/17, 2017/18 and 2018/19, respec
tively). Models used the crop load data per plot per sector per tree and 
the temperature values for each plot per sector. The GDH < 10 ◦C data 
for 2017/18 and 2018/19 were able to be separated into two variables 
and entered in the LDA models as GDH < 10 ◦C during the last 10 
d preharvest and GDH < 10 ◦C during the 11–20 d preharvest period. 
GDH < 10 ◦C data in the 2016/17 LDA model could not be separated 
into two variables as it was collinear. GDH < 10 ◦C data from the earlier 
21–30 d preharvest period contained too many zero values and could not 
be used in the LDA models. The GDH < 10 ◦C and crop load predictor 

Table 3 
Full bloom and harvest dates and at-harvest maturity parameters of fruit firmness (FF), soluble solids content (SCC), starch pattern index and harvest index [FF/(SSC x 
starch)] for experiments on ‘Braeburn’ apples in 2016 to 2018.  

Year Full 
Bloom 

Location Experiment Harvest 
date 

FF 
(N) 

SSC 
(%) 

Starch 
(1− 10) 

Harvest 
Index** 

2016 
/17 

30. Apr 

KOB 

Crop load* 16/17. Oct 108 11.3 3.3 0.29 

2017 
/18 

18. Apr Crop load* 17. Oct 96 11.2 5.6 0.16 

2018 
/19 

23. Apr Crop load* 03. Oct 97 12.1 3.3 0.25 

2017 
/18 

21. Apr Kippen- 
hausen 

Temp. preharvest 18. Oct 89 11.2 5.6 0.14  

* Values for the middle sector of standard crop load trees. Other maturity tests taken on same day showed similar values regardless of crop load / tree sector / 
temperature cell division treatment. 

** Harvest index FF units as kg/cm2. 

Fig. 1. Theoretical distributions for sound fruit (TN = true negative) and 
disordered fruit (TP = true positive) separated by a binary classifier (vertical 
line) at a cut-off value of ~ 250 growing degree hours < 10 ◦C in the preharvest 
period. TN values on the right of the cut-off become false positives (FP) and TP 
values on the left become false negatives (FN). 
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data were non-normal bi-modal or skewed distributions and were forced 
into normal distributions by using transformations from the ‘best
Normalize’ package in R. These data were then mean centred (μ = 0) and 
scaled (sd = 1) and split into a training (80 %) and test data set (20 %) 
for input into LDA using the ‘Mass’ package in R. The LDA model per
formance to predict the test data was assessed from the % of correctly 
classified samples and the AUC values from a ROC curve. The sign and 
the absolute size of the linear coefficients can show the contribution and 
relative importance of each predictor variable in the LDA model. When 
LDA is used for a binary classification, the linear discriminant has one 
dimension only. 

3. Results and discussion 

3.1. Occurrence of browning disorders during the three experimental 
years 

The incidence of internal browning disorders varied greatly over the 
three study years (Table 4). The 2016/17 season was a severe internal 
browning year for ‘Braeburn’ with a mean core browning incidence 
(severity) of 58 % (16) and 82 % (31) over all field treatments in 
delayed-CA and direct-CA, respectively. The mean incidence (severity) 
of cavities was 9 % (2) and 33 % (9) over all field treatments in delayed- 
CA and direct-CA, respectively. The incidence of flesh browning was 
close to zero. 

In 2017/18, the severe frost event at the KOB during flowering 
strongly affected the incidence of storage disorders. Apples in direct-CA 
were extremely susceptible to external CO2 damage (bronzed areas on 
the fruit skin, mostly sunken with irregular shaped edges) with a high 
incidence (31 %) over all treatments, while fruit in delayed-CA showed 
no incidence (Table 4). Frosts during bloom can lower the apples’ 
tolerance for stress factors like high CO2, low O2 or low temperatures 
(Little and Holmes, 2000). Furthermore, an assessment of internal 
browning symptoms for the direct-CA storage samples was not possible. 
Core and flesh browning symptoms could not be clearly separated as 
internal CO2 damage (browning with numerous large cavities) was also 
present in the majority of samples. Thus, only data for the delayed-CA 
storage samples from 2017/18 are presented. At the KOB, the inci
dence (severity) of core browning, flesh browning and cavities over all 
field treatments was 37 % (12), 4 % (2) and 3 % (1), respectively and for 

the Kippenhausen orchard, symptoms were broadly similar to the KOB 
with 33 % (8), 7 % (2) and 0 % (0), respectively (Table 4). 

In 2018/19 all fruit were stored in delayed-CA storage and removed 
at five and seven months. The incidence (severity) of core browning over 
all treatments was 5 % (1) and 24 % (6) at the first and second storage 
removals, respectively. There was no incidence of flesh browning or 
cavities. 2018/19 was a bitter pit and superficial scald year (Table 4). 
Our observations of fruit industry pack-outs for ‘Braeburn’ over 
numerous years together with our storage results in this three year study 
suggest seasons with a high incidence of bitter pit are in general not 
severe internal browning years and vice versa. 

Over the three experimental seasons at the KOB, neither different 
harvest timings nor calcium spray treatments conducted in the same 
orchard block in adjacent plots and stored under the same CA conditions 
showed any clear effects on the postharvest browning disorders (details 
and results not given). 

3.2. Cell division temperature experiments 

The spring temperature field treatments aimed to influence growth 
processes occurring during cell division and it was difficult to maintain 
the intended temperatures. During the warmest parts of the day there 
were clear temperature gradients between the top and bottom of the 
trees within both the warm and cold treatments. During the day, the 
desired temperature differences (△ +/- 2 ◦C) to the ambient air tem
peratures were mostly not achieved and conditions in the plastic tents 
were too warm when the sun shone strongly around the middle of the 
day. However, at night there were minimal temperature gradients and 
the desired temperature differentials were generally well maintained. In 
each of the three study years, when the tents were removed after the 
three week post petal fall treatment period, there was a mean fruit 
diameter of 20 mm in the ambient treatment and mean diameters of +/- 
2 mm for the warm and cold treatments, respectively. Apple fruit are 
known to grow (expand) mostly at night (Lang, 1990) when leaf tran
spiration is at a minimum, so we assume that the night temperatures 
were mainly responsible for these initial differences in fruit diameter. 
After the treatments were removed and all plots experienced ambient 
conditions until harvest, the cold treated fruit showed a higher relative 
growth rate for around five weeks and reached a similar mean fruit size 
as the ambient treated fruit but never exceeded it. The warm treated 

Table 4 
Mean incidence and severity (over all field treatments) of storage disorders in ‘Braeburn’ apples after seven day shelf-life following direct-CA or delayed-CA from the 
Kompetenzzentrum Obstbau Bodensee (KOB) and Kippenhausen orchards over three different years.  

Year Storage Duration Orchard Symptom 
Delayed-CA Direct-CA 

Incidence (%) Severity (1− 100) Incidence (%) Severity (1− 100) 

2016/17 

5 months 

KOB 
Core browning 58 16 82 31 
Flesh browning 0 0 0 0 
Cavities 9 2 33 9 

2017/18 

Both orchards External CO2 0 0 31 17 

KOB 
Core browning 37 12 

n.a.  

Flesh browning 4 2  
Cavities 3 1  

Kippenhausen 
Core browning 33 8  
Flesh browning 7 2  
Cavities 0 0  

2018/19 KOB 

Core browning 5 1 

No Direct CA storage  

Flesh browning 0 0  
Cavities 0 0  
Bitter pit 22 9  
Superficial scald 8 2  

7 months 

Core browning 24 6  
Flesh browning 0 0  
Cavities 0 0  
Bitter pit 16 6  
Superficial scald 28 8   
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fruit maintained the initial difference of approximately 10 % larger fruit 
size over the ambient fruit until harvest. Our growth rate data are 
exactly in line with those described by Warrington et al. (1999) working 
with temperature treatments applied during cell division to potted apple 
trees in growth chambers and then moved outside to ambient condi
tions. However, unlike Warrington et al. (1999) we found no differences 
between treatments for fruit maturity at harvest (harvest index). 

In 2016/17 and 2018/19 all trees in the cell division temperature 
plots were hand-thinned to a standard crop load. In 2017/18, three 
levels of crop load were nested within each temperature treatment plot. 
These crop load differences were established early during bloom and 
adjusted slightly by hand thinning when the plastic tents were removed. 
We did not determine the internal cell structure at-harvest for possible 
differences in cell size, cell number or intercellular space (porosity). 
How apple fruit growth is influenced by the interaction of orchard air 
temperatures and differences in crop load is by no means clear and it is 
an ongoing research question (Malladi, 2020). Unpublished work sug
gests higher temperatures during cell division result in the fruit 
completing a set number of cell division cycles in a shorter time, thus 
allowing the fruit more time on the tree until harvest to grow larger, 
compared to fruit growing under cooler temperatures which take longer 
to complete the same number of cell divisions and are smaller at-harvest 
(Hirst, 2016). While differences in crop load and timing of when the 
final crop load is established on the tree will result in fruit having dif
ferences in carbohydrate supply, with the final fruit size due largely to 
differences in cell numbers (Hirst, 2016). 

We can find no literature on how spring air temperatures or changes 
in crop load during fruit development can influence the intercellular 
space of apples at-harvest and subsequently how the intercellular space 
may change during postharvest handling and CA storage. However, 
work by Ruess and Stösser (1993) determined changes in the intercel
lular volume for five apple cultivars (not including ‘Braeburn’) from two 
weeks after full bloom until harvest and during 20 weeks cool storage in 
air. All fruit were sourced from the same orchard site and trees were 
controlled for a similar crop load (standard for each cultivar). Results 
(common for all tested cultivars) showed that the intercellular space did 
not develop to any large extent until after cell division was completed 
some four to six weeks after full bloom. For a specific cultivar larger fruit 
(with a lower specific gravity) showed a higher intercellular volume. 
Thus, we have reasonable grounds to conclude our experimental cell 
division temperature treatments produced three distinct groups of fruit 
(each with very different growth rates and final mean fruit size) that 
would all have important differences in cellular structure at-harvest and 
different gas exchange characteristics during postharvest storage. In 
particular, for the 2017/18 season when fruit development in the or
chard was influenced by both temperature treatments and differences in 
crop loads that were established very early during bloom. 

Fig. 2A shows a box plot with all available data combined from all 
three experimental seasons for the two classes of high or no / low 
browning versus GDH > 10 ◦C during the three week spring post bloom 
period. The box plot shows a slightly higher median value of 2957 GDH 
> 10 ◦C for no / low browning compared to 2762 for high browning. 
When all these data are analysed as a ROC curve there is no utility for 
GDHs during the spring postbloom period to predict core browning 
(either high severity or high incidence) with an overall AUC value of 
56.7 % (Fig. 2B). Conducting analyses separately for each year showed 
very similar AUC values. In summary, we have no evidence that spring 
temperatures can influence browning disorders during storage and our 
initial hypothesis that warm temperatures (within the range of △ +/- 2 
◦C) after bloom during cell division result in browning disorders should 
be rejected. 

3.3. Temperature pre-harvest experiments 

The preharvest temperature experiment in 2016/17 had a very 
pronounced effect on core browning. Trees maintained at >10 ◦C in the 

four week preharvest period had very low core browning with a mean 
incidence (severity) of 6 % (2) from both storage conditions compared to 
fruit from trees at ambient conditions with 56 % (18). 

In the Kippenhausen orchard preharvest temperature experiment in 
2017/18, eight experimental treatments were established on ‘Braeburn’ 
trees (Table 2). The trends in mean core browning incidence (severity) 
for each treatment are given in Table 2. Warm treatments closer to 
harvest appear more effective at reducing core browning. 

2018/19 was not a severe browning year (Table 4). However, the 
2018/19 results are in line with the other two seasons. The first storage 
removal shows core browning incidence (severity) for all the warm 
treatments of 1 % (0) regardless of crop load (Table 5). At the second 
storage removal warm treatments show approximately half the inci
dence (severity) compared to the fruit from ambient conditions. 

Fig. 2. A) Boxplot of high or no / low core browning in ‘Braeburn’ apples after 
five or seven months controlled atmosphere (CA) storage versus growing degree 
hours (GDH) >10 ◦C in the three week postbloom period. Number of samples =
135 (54, 27, 54 for 2016/17, 2017/18, 2018/19, respectively). B) The corre
sponding receiver operating characteristic (ROC) curve for GDHs >10 ◦C in the 
three week postbloom period to predict core browning in ‘Braeburn’ apples. All 
available data from all three experimental years are combined in one ROC 
curve. Shaded area is the 95 % CI for the ROC curve (N = 135). 
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Fig. 3A shows a box plot with all available data combined from all 
three experimental seasons for the two classes of high or no / low core 
browning incidence versus GDHs <10 ◦C during the four week prehar
vest. The corresponding ROC curve (Fig. 3B) shows a good utility to 
predict core browning incidence with a AUC value of 78.6 %. The ROC 
curve suggests a threshold value of 266 GDHs <10 ◦C during the 4 week 
preharvest period shown as the point on the ROC curve and the dotted 
horizonal line in the box plot. Over the three study years, warm pre
harvest conditions are protective for core browning in ‘Braeburn’ and 
confirm our initial hypothesis. 

We know of no other literature where preharvest temperature 
treatments have been conducted on ‘Braeburn’ in regard to postharvest 
disorders. However, our results are in agreement with the GDD obser
vations from a range of workers (Lau, 1998; Volz et al., 2000) that link 
‘Braeburn’ browning incidence to cool preharvest conditions, in 
particular during the last 30 d preharvest as recorded by Volz et al. 
(2000). We also note that for the apple cultivar ‘Fuji’, cooler growing 
conditions during fruit maturation are associated with a higher inci
dence of watercore, commonly understood as a disturbance in carbo
hydrate uploading into the fruit (Ferguson et al., 1999). 

Our results from three consecutive seasons show strong evidence that 
temperature conditions very close to harvest can influence browning 
susceptibility, but without further experimental data we cannot explain 
a possible mechanism, however, we can share some ideas. 

Apples in the warm preharvest treatment in 2016 show a trend for 
higher starch degradation at-harvest with a starch pattern index of 4.1, a 
FF of 99 N and a SSC of 10.5 % compared to 3.5, 103 N and 10.6 %, in 
ambient conditions, respectively. In 2018, warm preharvest treatments 
also show a similar trend for higher starch degradation (Table 5), with a 
mean starch pattern index of 3.6, a FF of 92 N and a SSC of 11.5 % 
compared to 2.9, 93 N and 11.3 %, in ambient conditions, respectively. 
No maturity data for the different treatment levels are available from the 
Kippenhausen study in 2017. In summary, warm preharvest treated fruit 
compared to ambient fruit appear slightly more mature with an altered 
carbohydrate status i.e. more starch conversion but similar or slightly 
raised SSC. But these trends do not fit well with the literature and our 
experience where starch clearing and maturation is higher under cooler 
conditions (Smith et al., 1979; Sperling et al., 2017). The apparent 
higher starch conversion in the warm treated plots may be due to a 
smaller day night temperature difference and lower starch accumulation 
in the fruit (Toivonen, 2019). These aspects of carbohydrate metabolism 
require closer study during fruit maturation, in particular given that 
autumn temperatures are now in general warmer and diurnal temper
ature differences often less marked than were usual in the past. Fruit 
continue to upload carbohydrates while on the tree. Carbohydrate 
uploading via the apoplast is the most important pathway for sugars 

during the final stages of apple maturation and is an energy intensive 
process (Zhang et al., 2004). Fruit growth (expansion) is largely driven 
by osmotic pressure created by sugar accumulation in the vacuoles 
(Malladi, 2020) and largely occurs at night (Lang, 1990). After the first 
experimental year, the preharvest warming treatments were applied at 
night only to coincide with when cell expansion was mostly taking place. 
Thus, fruit from the preharvest warming treatments may have also had 
an altered energy / carbohydrate status at-harvest due to differences in 
uploading processes and these effects could be protective against 
browning occurring during postharvest handling and storage. However, 
fruit growth also involves dynamic ongoing changes in particular with 
the intercellular volume both on and off the tree (Ruess and Stösser, 
1993). Such internal structural changes within the fruit will affect gas 
exchange, these changes could be protective or not in regard to 
browning disorders. Fruit diameter growth was measured in this study 
but did not show any differences between preharvest temperature 
treatments. Measuring fruit diameter only will underestimate fruit 
growth during final maturation (Malladi, 2020), thus we cannot exclude 
that there may have been treatment differences in fruit length or growth 
expansion in and around the fruit shoulders of the calyx or stem ends. 

Some other environmental factors that could have influenced the 
fruits’ susceptibility to browning during final maturation were not 
controlled for in our experimental setup. Rainfall occurring in the days 
immediately preharvest is a factor now known to affect internal 
browning incidence in some of the more recent apple cultivars with a 
very firm fruit flesh texture (Johnston, 2018). The experimental tents 
used in the study were fitted with large roof windows to be open during 
the day to maximise photosynthesis and carbohydrate supply from the 
leaves and also to allow any daytime rainfall to wet the trees and fruit. 
But even so the tent treatments very likely reduced the amount of free 
moisture on the fruit skin from dew or fog (common in autumn in this 
growing region) with the warm treated fruit being somewhat drier 
overnight compared to ambient conditions, although we did not spe
cifically determine this. It is possible for apple fruit to uptake water 
osmotically through the skin (Lang, 1990) and as the skin of ‘Braeburn’ 
apples is the major barrier to gas exchange, any change in skin per
meance could also have affected browning susceptibility. 

Experiments were intended to test our hypothesis that warm pre
harvest conditions will reduce postharvest browning and also provide 
some data as to when warming (time before harvest) was most effective. 
The results show that preharvest conditions can markedly change 
browning disorder incidence with evidence that conditions directly 
before harvest (within the last 11 days) can be effective. 

Table 5 
Incidence and severity of core browning and the starch pattern index at-harvest after five and seven months delayed-CA storage for the temperature preharvest 
experiment in 2018/19 at the Kompetenzzentrum Obstbau Bodensee (KOB).  

Storage 
Treatment 

Core browning 
Starch pattern index* 

incidence severity 

Temp. Crop load % (sd) 0− 100 (sd) 1− 10 (sd) 

5 
months 

ambient heavy 0 (0.0) 0 (0.0) 2.5 (0.3) 
ambient standard 3 (6.3) 1 (1.1) 3.2 (0.3) 
ambient light 13 (5.4) 2 (1.1) 3.1 (0.2) 
warm heavy 0 (0.5) 0 (0.1) 2.9 (0.6) 
warm standard 1 (1.4) 0 (0.3) 4.2 (0.7) 
warm light 1 (1.4) 0 (0.2) 3.5 (0.7) 

7 
months 

ambient heavy 0 (0.3) 0 (0.1) 2.5 (0.3) 
ambient standard 10 (14.0) 2 (2.9) 3.2 (0.3) 
ambient light 39 (8.0) 9 (1.5) 3.1 (0.2) 
warm heavy 0 (0.3) 0 (0.1) 2.9 (0.6) 
warm standard 4 (8.0) 1 (1.2) 4.2 (0.7) 
warm light 22 (5.2) 4 (1.2) 3.5 (0.7)  

* Starch pattern index, 1 = black, 10 = clear, at-harvest (10 Oct.), middle tree sector, Number of samples = 3. 
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3.4. Crop load experiments 

Fig. 4A shows a box plot with all available data combined from all 
three experimental seasons for the two classes of high or no / low core 
browning versus crop load as a % of a standard full crop (100 %). The 
corresponding ROC curve (Fig. 4B) shows a reasonable utility to predict 
core browning incidence with a AUC value of 77.7 %. The ROC curve 
suggests a threshold value of 76.5 % of a standard crop load shown as the 
point on the ROC curve and the dotted horizonal line in the box plot. 

In 2018/19, the clear protective effect of crop load treatments nested 
within the temperature preharvest treatments to reduce the incidence 
and severity of core browning can be seen in Table 5. At the first storage 

removal, fruit from the ambient heavy and standard treatments show 
either no or a very low core browning. The ambient light crop load 
treatment shows a higher but still relatively low incidence (severity) of 
13 % (2). At the second storage removal core browning in all treatments 
is higher overall but the disorder pattern is similar to the first removal 
with a clear influence of crop load. Heavy crop loads are totally pro
tective and show very low (no) symptoms. 

As other reviewers have noted, the effects of crop load on postharvest 
behaviour of apple in regard to gas exchange disorders, remain largely 
unexplained (Ferguson et al., 1999; Wünsche and Ferguson, 2005). With 
the exception of calcium physiology there is very little relevant litera
ture to help link crop load effects on postharvest behaviour. We can find 
only two papers that are partially relevant, both deal with carbohydrate 

Fig. 3. A) Boxplot of high or no / low core browning incidence in ‘Braeburn’ 
apples after five or seven months controlled atmosphere (CA) storage versus 
growing degree hours (GDH) <10 ◦C in the four week preharvest period. 
Number of samples = 515 (84, 96, 335 for 2016/17, 2017/18, 2018/19, 
respectively). B) Corresponding receiver operating characteristic (ROC) curve 
for GDHs <10 ◦C in the four week preharvest period to predict core browning 
incidence in ‘Braeburn’. All available data are combined in one ROC curve for 
all three experimental seasons. The optimal threshold from the ROC curve of 
266 GDHs <10 ◦C is shown as the point (x = 36, y = 80) and as a dotted 
horizontal line in the box plot. Shaded area is the 95 % CI for the ROC curve. N 
= 515. 

Fig. 4. A) Boxplot of high or no / low core browning in ‘Braeburn’ apples after 
five and seven months controlled atmosphere (CA) storage versus crop load as a 
% of a standard full crop (100 %). Number of samples = 290 (54, 182, 54 for 
2016/17, 2017/18, 2018/19, respectively). B) Corresponding receiver oper
ating characteristic (ROC) curve for crop load to predict core browning in 
‘Braeburn’ apples. All available data are combined in one ROC curve for all 
three experimental seasons. The optimal threshold from the ROC curve of 76.5 
% of a standard crop load is shown as the point (x = 36, y = 81) and as a dotted 
horizontal line in the box plot. Shaded area is the 95 % CI for the ROC curve. N 
= 290. 
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metabolism and do not address other aspects that could affect gas ex
change within the fruit such as skin characteristics, cell size, number or 
intercellular structure. Klages et al. (2001) could explain fruit size dif
ferences in ‘Braeburn’ apple between high and light crop load trees 
based on differences in the carbohydrate supply from the leaves or 
within high crop load trees by sink activity and Palmer et al. (2013) 
studied the crop load effects of ‘Scifresh’ apples on carbohydrate accu
mulation. However, neither of these two studies included any post
harvest assessments. 

In all study years, the heavy crop load treatments consistently 
reduced core browning when compared to standard or light treatments 
and our initial hypothesis that the protective effect of crop load could be 
maintained when preharvest temperatures varied was confirmed. 

3.5. Multivariate analysis of preharvest GDH < 10 ◦C and crop load to 
predict core browning 

The multivariate LDA model for the KOB 2016/17 data showed an 
accuracy of 88 % to correctly classify the test data set and a very high 
ROC curve AUC value of 92 % (ROC curve not given). The model co
efficients were -0.19, and +1.07 for crop load and GDH < 10 ◦C, 
respectively. The relatively small coefficient for crop load is due to the 
fact that all trees in the preharvest plots in 2016/17 carried a similar 
standard crop load and the dominant effect on the model was due to 
GDH < 10 ◦C. 

The multivariate LDA model for Kippenhausen in 2017/18 showed 
an accuracy of 89 % and a high ROC curve AUC value of 90 % for the test 
data set. The linear discriminant coefficients show the model was most 
influenced by the GDH < 10 ◦C (value of -1.12) during the 0–10 d pre
harvest period while the influence of crop load (+0.32) and GDH < 10 
◦C (-0.31) during the 11–20 d preharvest period had similar magnitude 
but opposite signs. 

The multivariate LDA preharvest model for the KOB in 2018/19 
showed an accuracy of 83 % and a high ROC curve AUC value of 83 % 
when applied to classify the test data set. The model coefficients were 
+0.99, -0.13 and -0.42 for crop load, GDH < 10 ◦C in the 0–10 d and 
11–20 d preharvest periods, respectively. Crop load had the most effect 
on the model but GDH < 10 ◦C also contributed, but mostly from the 
11–20 d preharvest period as it was colder than in the 10 d period 
immediately preharvest. 

The multivariate LDA model for all years showed an accuracy of 83 
% to correctly classify the test data set with a ROC curve AUC value of 87 
%. The model coefficients were +0.48, -1.28 and +0.32 for crop load, 
GDH < 10 ◦C in the 0–10 d and 11–20 d preharvest periods, respectively. 
The LDA model for all years was mostly influenced by the GDH < 10 ◦C 
during the 0–10 d preharvest period. A better understanding of the 
relative contribution of cool preharvest temperatures and crop load and 
their interactions on browning will require more experimental data from 
a year with a high browning incidence / severity. 

4. Conclusions 

In each study year, the cell division temperature treatments effec
tively produced three distinct populations of fruit each with different 
size profiles and growths rates and presumably these apples all had a 
range of different internal tissue structures / porosity at-harvest. How
ever, the field data we were able to collect over the three seasons does 
not support a strong effect (if any) of post bloom temperatures (△ of +/- 
2 ◦C from ambient) during cell division on internal browning incidence 
in ‘Braeburn’ apples. In contrast, preharvest temperature conditions of >
10 ◦C during the last four weeks preharvest can markedly influence the 
development of internal browning. Further studies are necessary in the 
preharvest period to try and untangle the effects of temperature on 
carbohydrate uploading into the fruit, fruit growth and expansion 
(ideally including non-destructive determination of porosity) and to 
explore these processes in relation to the stage and rate of fruit 

maturation and ripening. In all study years, the high crop load treat
ments consistently reduced core browning when compared to standard 
or light treatments. How crop load affects postharvest browning 
behaviour is not as yet clearly explained. 

ROC curve analyses are a useful methodology to form stronger links 
between preharvest factors and the postharvest behaviour of fruit. The 
crop load carried by the tree, the timing of thinning operations in rela
tion to fruit development together with the decision of when to harvest 
the apples are factors under grower control that can be managed to help 
reduce disorders in CA storage. In addition, a better understanding of the 
preharvest temperature effects on browning susceptibility has the po
tential to allow the duration of CA stored ‘Braeburn’ to be optimised. 
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A B S T R A C T   

Physiological storage disorders affect a range of commercially important pomefruit and result in fruit losses and 
wastage of resources. Disorders can develop during and/or after storage and symptoms are strongly influenced 
by the growing environment and orchard management. Furthermore, fruit which receive similar orchard man
agement and storage can vary greatly in disorder incidence and severity. Biological systems are complex and 
simple cause-and-effect approaches have not up until now resulted in robust methods to predict disorder risk. 
Reliable predictions are needed by fruit industries worldwide to better manage fruit production processes, to 
determine optimal harvest dates and long-term storage regimes. The current work proposes a new methodo
logical approach to model ‘Braeburn’ apple disorder risk. Autoregressive time series (ARX) models via model 
identification techniques for chlorophyll, anthocyanins, soluble solids and dry matter content were obtained 
from weather conditions and different orchard management treatments and then served as input into a classifier 
for internal browning, cavities and fruit firmness after long-term controlled atmosphere storage. The classifi
cation results for internal browning disorder show a 90% agreement between two separate years and for fruit 
firmness an 80% success rate was obtained by training the classifier with two years of data.   

1. Introduction 

1.1. Physiological storage disorders in apple production 

Pomefruit industries worldwide continue to suffer unexpected post
harvest losses due to the development of physiological storage disorders 
(simply referred to as disorders in the text below) such as core browning, 
flesh browning, lens shaped cavities in the fruit flesh, bitter pit and 
superficial scald (Watkins and Mattheis, 2019). Disorder symptoms 
typically develop during and/or after storage. In controlled atmosphere 
(CA) stored ‘Braeburn’ apples, internal browning symptoms typically 
develop during and/or after storage and can intensify as storage dura
tion increases (Hatoum et al., 2014; Elgar et al., 1999; Ford, 1979; 
Ferguson et al., 1999). 

Prior studies have identified the orchard as the greatest source of 
variation in disorder incidence (Elgar et al., 1998; Rogers, 2014). Pre
harvest factors that are known to influence the development of disorders 

in apple include advanced fruit maturity at-harvest, light croploads, 
high fruit potassium-calcium mineral ratios and seasonal weather con
ditions. Incorrect cultivar-specific postharvest handling and storage re
gimes also contribute to the development of disorders (Elgar et al., 1998; 
Clark and Burmeister, 1999; Hatoum et al., 2016). Studies have 
attempted to link the risk of disorder development with multiple pre- 
and postharvest factors using logistic regression analysis (Verlinden 
et al., 2002; Lammertyn et al., 2000). Other studies using growing de
gree days have tried to find an influence of temperature or determine a 
threshold temperature summation for disorder risk (Rogers, 2014; 
Moggia et al., 2015; Lau, 1998). Given the general lack of discriminatory 
power with existing postharvest disorder prediction models, Konopacki 
and Tijskens (2005) explored a conceptual model of disorder develop
ment based on fundamental enzyme kinetics. This method seems 
feasible but requires the use of non-destructive big data with repeated 
measurements on the same fruit. 

An understanding of the primary biological processes linked to 
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disorder development is increasing rapidly. In particular, how ripening 
and senescence processes are connected with stress reactions when fruit 
are stored under low temperatures, low O2 and/or high CO2 (Watkins 
and Mattheis, 2019). At the biochemical level, markers have been 
identified in pears to predict the risk of disorder development under high 
CO2 conditions (Deuchande et al., 2017). There is an improved under
standing of the molecular networks associated with chilling injury (e.g. 
superficial scald) in apples (Honaas et al., 2019) and there is a better 
basic knowledge of how fruit respond to low O2 conditions (Cukrov, 
2018). A consortium of researchers has filed for a US patent for a 
diagnostic tool to predict the risk of storage disorders in apples and pears 
based on a large group of pomefruit genes identified as biomarkers in 
fruit samples taken at-harvest or in the period shortly after (Rudell et al., 
2017). Such biomarker tools are currently unavailable for use in fruit 
industries and their efficacy under practical conditions has yet to be fully 
tested. Quantifying the interaction of all possible pre- and postharvest 
factors in disorder incidence and severity has up until now proven 
notoriously difficult for fruit researchers and industry managers to 
develop and apply a robust method of disorder prediction. 

1.2. Application of non-destructive sensors in apple production 

Non-destructive sensors used to obtain repeated measurements on 
the same fruit lot can contribute to a big data base containing potentially 
relevant information for use in fruit quality prediction models. Future 
data generation technologies will need to be fitted on-tractor and cap
ture data during standard orchard maintenance operations to ensure 
fruit growers adopt any new technology. To establish a harvest schedule 
for an apple orchard or production area, time-consuming and labour- 
intensive destructive tests of fruit quality and maturity development 
are generally required. Suitable sensors could replace these destructive 
quality tests and the data evaluated with big data methods to allow for 
precision farming. 

Vis (visible)/NIR (near infrared) spectroscopy in the Vis wavelength 

region can provide information on plant pigments in the apple skin such 
as chlorophyll, anthocyanins and carotenoids (Walsh et al., 2020). The 
shortwave NIR region spectra can be correlated with wet chemistry 
analyses and partial least square regression (PLSR) models to predict 
soluble solids content (SSC) and dry matter content (DMC) (Walsh et al., 
2020). Changes in plant pigments, SSC and DMC can be correlated with 
fruit maturity, but these data alone are insufficient to determine a har
vest window. Time-series data and system-theoretical methods as pre
sented in this study might help overcome these limitations. 

Other relevant factors that influence quality in fruit production 
include the light and fruit distribution within the tree canopy and need 
to be in an optimal balance for efficient photosynthesis rates and 
assimilate distribution to produce fruit with good internal quality 
characteristics and external appearance such as high blush color. With 
LiDAR (light detection and ranging) sensors a 2 or 3D point cloud of an 
apple tree can provide information on the leaf area (Sanz et al., 2013; 
Selbeck et al., 2013), tree height, stem position and canopy volume 
(Tsoulias et al., 2019). 

Furthermore cropload is an important factor to determine fruit 
quality and fruit growth monitoring is an indirect measure since light 
croploads lead to a larger sized fruit. Inexpensive self-built den
drometers (Morandi et al., 2007) or hand measurements with digital 
calipers (see Fig. 1) were other approaches tested in the present study. 

1.3. Contribution and approach of this work 

In pomefruit, the biological processes that result in physiological 
storage disorders are complex and currently are not fully understood in 
sufficient detail to allow for reliable predictions and to avoid sizeable 
fruit losses that can occur in some growing seasons. In this study (see 
Fig. 1), the commercially important apple cultivar ‘Braeburn’ was 
monitored for three years and various data from non-destructive sensors 
along with weather data were collected and stored in a central data- 
management facility. Ultimately, only Vis/NIR sensing data together 

Fig. 1. Flowchart of the suggested methodology in the project (IB- Internal browning, CS- Cavities score, NDVI- Normalized difference vegetation index, NAI- 
Normalized anthocyanin index, SSC- Soluble solids content, DMC- Dry matter content). 
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with weather and orchard/storage treatment information served as 
input into several dynamic parametric models. The use of relatively 
simple and fast devices was a key decision as the dynamic parametric 
models predict best when only a few parameters of apple development 
are used as input data. Apple parameters in the present study were: color 
pigments (chlorophyll, anthocyanins), SSC and DMC. Orchard treat
ments altered the air temperature during important physiological 
growth phases and also included calcium spraying, different croploads, 
harvest dates and storage conditions. Fruit quality information was 
obtained with standard destructive tests for fruit firmness, SSC and 
starch index to determine harvest dates. The combination of non- 
destructive sensor data along with the ARX modeling and classifica
tion is the major contribution of the current work. 

2. Materials and methods 

The methodical approach is summarized in Section 2.2. In this work 
‘Braeburn’ is used as a model pomefruit cultivar for a big data analysis to 
predict disorder risk based on experimental orchard and storage data for 
the severity of internal browning, cavities score and fruit firmness after 
storage. Post storage predictions are used as a backward prediction to 
adapt the harvest window to the current seasonal conditions for fruit 
intended to be placed in long-term CA storage. The development of 
anthocyanin, chlorophyll, SSC and DMC is used in ARX models. In this 
process, weather time-series data and orchard treatment information 
were used as inputs. Repeated orchard Vis/NIR scanning and PLSR 
models only provided reference values for the ARX models. The idea is 
that a disseminator (like a consultant) can obtain Vis/NIR scans once or 
twice in the growing season to check for ARX model correctness. Then, 
the modelled factors were plugged into a classification algorithm to 
predict the disorders scores and also fruit firmness after storage and 
shelf-life (see Section 2.3). The overall setup is illustrated in Fig. 2. 

2.1. Experimental field setup 

The study was conducted from 2016 to 2019 at the Kompetenzzen
trum Obstbau Bodensee in Southwest Germany (47.767137 N, 9.556544 
E) with Malus domestica ‘Braeburn’ apple trees planted in 2006 as 
slender spindles on M9 rootstock with a row spacing of 3.20 x 0.80 m. 
The randomized one-factorial study design was used with seven trees per 
plot and three repetitions (see Table 1). Due to a severe frost event 
during bloom in 2017, field treatments were conducted on a limited 
number of trees in a two-factorial design. Average climatic conditions 
were 8.4 ◦C, 691 mm of rainfall and 1758 total sunshine hours. 

To obtain more data on the influence of temperature within each 
season, different temperature treatments were applied in spring for 
three weeks immediately following flowering or preharvest. Here, plots 
of trees (covered by plastic thermofoil) were either heated or cooled in 
spring to maintain a 2 ◦C difference in air temperature compared with 
ambient (untreated control) trees or night temperatures maintained 
above 10 ◦C in the period immediately before harvest (McCormick et al., 
2021). The night temperature of 10 ◦C was selected as it is often used as 
a threshold in biological growth models (Moggia et al., 2015). In the 
cropload treatments, trees were thinned to levels of 50%, 100% or 180% 
of a standard tree yield. In addition, trees were harvested either ‘early’, 
‘optimum’ or ‘late’ within a harvest window based on the industry 
standard destructive harvest-index (Streif, 1996). After June drop, trees 
were sprayed weekly or not with calcium chloride (5 kg/ha). 

Trees were separated into three equal sectors (1.25 m) to obtain data 
with regard to fruit position (height) inside the tree canopy. Measure
ments were organized in a unique fruit group (UFG) structure to allow 
for data modeling and classification. Here, apples from a specific tree- 
sector and storage condition represented one UFG and consisted of ̃
20 fruit. The UFG apples were subsequently, harvested, stored and 
assessed separately excluding 2016, here trees were harvested as total 
apples per sector within a repetition. UFGs within a specific treatment 
level received a standard level for all other treatments, e.g. trees with a 
cold temperature post flowering treatment received ambient preharvest 

Fig. 2. Functional diagram of the approach (NAI- Normalized anthocyanin index, NDVI- Normalized difference vegetation index, SSC- Soluble solids content, DMC- 
Dry matter content, IB- Internal browning, CS- Cavities score). 

Table 1 
Naming convention to code the field treatments as unique fruit group (UFG).  

Season Orchard treatments   

Temperature cell division Temperature preharvest Cropload Harvest Date Calcium Tree sector UFG* 

2016/2017 C,A,W A,W L,S,H E,O W,O B,M,T 264 
2017/2018 C,A,W1 A,W1 L,S,H1 NA W,O2 B,M,T 708 
2018/2019 C,A,W A,W1 L,S,H E,O,L W,O B,M,T 1812  

Temperature cell division: cold (C), ambient (A), warm (W). 
Temperature preharvest: ambient (A), warm (W). 
Calcium: common practice with (W), without (O). 

Cropload: heavy (H), standard (S), light (L). 
Harvest date: early (E), optimum (O), late (L). 
Tree sector: bottom (B), middle (M), top (T). 

NA (Not available). 

Subscript 1: two-factorial field design with treatments temperature and cropload for the same trees. 
Subscript 2: treatments calcium with a light cropload. 
* Number of unique fruit group (UFG) information (on sector per tree basis). 
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temperatures, a standard cropload, an optimum harvest date and no 
calcium spray treatment. 

Fruit were stored for five months under two storage conditions 
(McCormick et al., 2021), one storage condition was intended to induce 
disorders symptoms (direct CA and high CO2) and one storage condition 
to avoid disorders (delayed CA and low CO2). At storage removal fruit 
were kept for a 7 d shelf-life at room temperature and then each fruit was 
visually assessed by a small team of trained assessors for external dis
orders (i.e. bitter pit, CO2 damage, scald) and by cutting for internal 
disorders (i.e. flesh browning, core browning, bitter pit). In the present 
study only disorder assessments for internal browning (IB) and cavities 
score (CS) were considered. Apples were ranked from 0 to 3 with 0.5 
increments, where 0 = no symptoms and 3 = most severe. Mean disorder 
values were used in the classification. 

From after June drop until harvest fruit growth measurements were 
taken with a set of digital Bluetooth calipers (Sylvac, Crissier, CH) and 
reflectance spectra (Vis/NIR) were collected using a portable hand-held 
spectrometer (F-750 Produce Quality Meter, Felix Instruments, Camas, 
USA). Measurements were done regularly (each week in 2016 and 
fortnightly in other years) from the same marked apples per season. The 
Vis/NIR data were subsequently used in autoregressive models with 
exogenous inputs, denoted by ARX (see Section 2.2). The Vis/NIR device 
used background light corrected scans in the range from 400 to 1100 nm 
with a spectral sampling of 3 nm. Spectra were used to calculate two 
pigment reflectance indices: a normalized difference vegetation index 
(NDVI) for chlorophyll and a normalized anthocyanin index (NAI). 

NDVI =
(R750 − R705)
(R750 + R705)

,NAI =
(R780 − R549)
(R780 + R549)

(1) 

Using the methodology and software supplied with the spectrometer 
(F-750 Modelbuilder v1.3.0177) PLSR models for SSC and DMC were 
built each season using independent wet chemistry reference samples 
(̃400) taken regularly during the scanning period from comparative 
trees within the same orchard block. Each year new PLSR models were 
built with an independent reference set (Biegert et al., 2021). Reference 
samples were scanned at approximately 10, 20 and 30 ◦C to help the 
models adjust for temperature effects. The models used 6 principle 
components with R2 and RMSECV values of 83–92% and 0.49–0.61 for 
SSC and 67–90% and 0.51–1.09 for DMC, respectively. 

Flesh firmness (N/cm2) was measured at-harvest and at storage 
removal plus a 7 d shelf-life using a fruit texture analyzer (Güss, Strand, 
South Africa) fitted with a 11 mm probe. 

2.2. Model identification 

The apple fruit factors (NAI, NDVI, DMC and SSC) were modeled 
depending on the integral daytime and nighttime temperature, humid
ity, precipitation and a global radiation integral index obtained from a 
weather station (Thiess, Germany) located 300 m from the trees. The 
ARX modelling structure should a) offer a real-time approach to predict 
apple factors for the next day and b) only use several seasonal Vis/NIR 
spectrometer measurements to avoid a farmer from regularly having to 
scan the orchard. NAI, NDVI, DMC and SSC were available as mean 
values for each respective UFG. Both input (weather conditions) and 
output data (apple factors) were given as time series with a sampling 
time of one day. At the modeling stage, a total of 84 UFG for 2016 and 
192 UFG for 2017 were considered. Due to difficult weather conditions 
in 2017 only 9 UFG were used. The models were then established per 
treatment pattern, i.e. a collection of UFGs that had the same treatment 
to achieve abstraction from a concrete tree and to consider only the 
average apple factors within a UFG depending on weather and treatment 
(see Table 1). 

The modeling was done using ARX-structures of the following type: 

x̂k+1 = θ⊤
A vk,l,m (2)  

where 

v⊤k,I,J = ( − xk − xk− 1 ⋯ − xk− l u⊤
k ⋯ u⊤

k− m )
⊤

Here, xk ∈ R, uk ∈ R4 denote the vectors of apple factor and inputs at day 
k respectively, θA is the parameter vector, l,m denotes the order of the 
model respective to the apple factor and input. The estimation of θA was 
done by solving the following least squares problem: 

min
θA

‖
∑N− 1

i=1
xi+1 − θ⊤

A vi,l,m‖
2,

where N is the number of available data of the corresponding output. 
The model (2) was used to predict the time series of the apple factor 
based on the initial value of the time series and the input data. The 
obtained models were analyzed for the normalized root mean square 
error (NRMSE) of the prediction as well as confidence intervals of its 
parameters. The NRMSE here serves as a measure for accuracy of the 
prediction and was calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=2(x̂i − xi)
2

N

√

,

NRMSE =
RMSE

xmax − xmin
,

where xmax is the maximal value and xmin is the minimal value of the 
respective apple factors. The confidence intervals were calculated for 
each model parameter in each treatment pattern using the t-distribution 
with significance of 95%. 

The resulting models were then used in the classification routine 
according to the principle depicted in Fig. 2. The respective methodol
ogy is described in the next section. 

2.3. Classification 

In general, it was assumed that the IB and CS depend on the apple 
factors. The apple factors in this study (NAI, NDVI, DMC and SSC) 
comprised multiple parameters and multivariate time series (MTS) that 
had to be addressed. This is a problem of finding a classification function 
fc, to predict which MTS class a test sample would fall into, based on a 
training set, denoted by ℳ, of the initial MTS treatment pattern, whose 
class membership is known a priori (the so called supervised learning 
setting). The MTS classification problem is a notoriously difficult task 
requiring a certain level of pre-processing, feature extraction and seg
mentation techniques (Wang et al., 2016; Gorecki and Luczak, 2014; 
Kadous and Sammut, 2005; Baydogan and Runger, Mar 2015; Spiegel 
et al., 2011). Recently, deep learning techniques have yielded good re
sults in overcoming these issues in regard to MTS classification. In this 
work, the approach selected for the MTS classifier was based on the 
methodology of Karim et al. (2018). In MTS via deep learning, the long 
short-term memory (LTSM) recurrent neural networks (RNN) are typi
cally used. Basic RNNs are capable of obtaining the temporal factor 
during learning by investigating the direct connections between the 
layers. At the time t the update of some hidden vector h is read as: 

ht = tanh(Wht− 1 + Ixt).

It is also useful to stack the RNNs in order to maintain the deeper 
learning by using the hidden vector as an input to the next RNN to obtain 
the following update rule: 

hl
t = tanh

(
Whl

t− 1 + Ihl− 1
t

)
.

An LSTM RNN consists of a hidden vector h and a memory vector m. 
The hidden vector controls the state updates and the memory vector the 
outputs at each time step respectively. 
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gu = sgd(Wuht− 1 + Iuxt)

gf = sgd
(
Wf ht− 1 + If xt

)

go = sgd(Woht− 1 + Ioxt)

gc = tanh(Wcht− 1 + Icxt)

mt = gf ⊙ mt− 1 + gu ⊙ gc

ht = tanh(go ⊙ mt)

where sgd is the sigmoid function and ⊙ is the element-wise matrix 
multiplication. The recurrent weight matrices are Wu, Wf , Wo, Wc. Ac
cording to Bahdanau et al. (2014), LTSMs can learn temporal de
pendencies. In order to achieve the ability of learning the long-term 
temporal dependencies the so-called attention mechanism has been 
proposed in Bahdanau et al. (2014). The prediction y is made using the 
hidden state h and the weight matrix W: 

yt = softmax(Wht− 1).

where for any x ∈ Rn and softmax(x)i :=
exi∑n
i=1

exi 
for i = 1,…, n is the 

normalized exponential function. 

3. Results and discussion 

3.1. Modeling apple factors 

For better numerical performance, the input data for modeling were 
normalized to have approximately the same scale. The input data are 
depicted in Fig. 3. 

The ARX-models for each apple parameter were computed. One 
particular example for a UFG from 2016 is depicted in Fig. 4. 

Table 2 shows the mean NRMSE over all treatment patterns sepa
rated by years. 

In each treatment pattern, the mean and standard deviation as well 
as the confidence intervals were calculated. In Fig. 5, particular exam
ples of the model parameters with the respective confidence intervals 
are shown (the complete set of parameters and respective confidence 
intervals is available in the supplementary material). The middle red 
line shows the mean value, the boxes show the standard deviation and 
the whiskers correspond to the confidence intervals. If the confidence 
interval contains 0, the respective parameter may be seen as non- 
significant and thus may be dropped in the modeling in order to 
reduce the complexity of the ARX-models. 

The constructed models were then used as input for classification as 

Fig. 3. Input data used in the current study.  
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functionally shown in Fig. 2. The respective results are presented in the 
next section. 

3.2. Apple disorder classification 

Based on the data set, the following MTS classification problem was 
defined:  

• The development of NAI, NDVI, DMC and SSC were described by 4 ×

T MTS  
• For each MTS, a class membership was given by the following 

characteristic of the IB score and CS:  
– Internal browning score (binary classification): 

Class
(

MTSi

)

=

{
0, if IB ≤ 0.9
1, else    

– Cavities score (binary classification): 

Class
(

MTSi

)

=

{
0, if CS ≤ 0.2
1, else    

– Internal browning score (three class classification): 

Class

⎛

⎝MTSi

⎞

⎠ =

⎧
⎨

⎩

0, if IB ≤ 0.4
1, if 0.4 < IB ≤ 1
2, if 1 < IB    

– Cavities score (three class classification): 

Class

⎛

⎝MTSi

⎞

⎠ =

⎧
⎨

⎩

0, if CS ≤ 0.2
1, if 0.2 < CS ≤ 0.4
2, if 0.4 < CS    

– Firmness (two class classification): 

Class
(

MTSi

)

=

{
0, if FM ≤ 85
1, if 85 < FM    

– Firmness (three class classification): 

Class

⎛

⎝MTSi

⎞

⎠ =

⎧
⎨

⎩

0, if FM ≤ 85
1, if 85 < FM ≤ 95
2, if 95 < FM   

The results of the algorithms are reported in Tables 3–5 for the IB 
index, CS index and firmness, respectively, for different sizes of 
randomly sampled training and test sets. Different sizes of the training 
sets were generated and the algorithms were applied 30 times. The first 
number shows the average classification error rate and the second 

Fig. 4. Comparison of model against the data for one particular UFG (NDVI- Normalized difference vegetation index, NAI- Normalized anthocyanin index).  

Table 2 
NRMSE of the models of the apple factors (NAI- Normalized anthocyanin index, 
SSC- Soluble solids content, NDVI- Normalized difference vegetation index, 
DMC- Dry matter content).  

Parameter Mean 2016 Mean 2017 

NAI 0.082 0.139 
SSC 0.110 0.256 

NDVI 0.100 0.100 
DMC 0.202 0.399  

P. Osinenko et al.                                                                                                                                                                                                                               

Chapter 6

67



Computers and Electronics in Agriculture 183 (2021) 106015

7

number (in parentheses) shows its standard deviation. 
These results show that, on average, the classifier is capable of 

“guessing” the IB score, CS and firmness in approximately 4 of 5 cases. In 
comparison, a simple random guess would on average yield a 50% 
success rate for a binary classification and 25% for a quaternary 

classification. In order to support this statement consider Fig. 6 which 
represents the receiver operator characteristic (ROC) curves of the bi
nary browning score classifier, which is essentially the relationship be
tween the false positive rate and the true positive rate. Here, “false 
positive” means the classifier predicts a good IB score, but is in fact bad 
(please keep in mind, here we are considering a binary classification). 
The orange and red lines represent the random choice and perfect 
classifier, respectively, whereas other lines represent the ROC curves for 
different split ratios. As one can see the lines are close to the perfect 
classifier. The 70% split model is the closest to the left top edge of the 
figure, which means that the model has the most predictive power and is 
robust against false positives. In this regard, the obtained results show a 
substantial advantage. In particular, the internal browning disorder 
show a 90% agreement between two separate years. However, the 
computed classifiers obviously have limitations and renewed training is 
required in future to achieve wider applicability and classification 
quality. The purpose of this study was to suggest and demonstrate a new 
methodology, based on big data analysis and classification, for IB, CS 

Fig. 5. Example of ARX-model parameters for one UFG (UFG- Unique fruit group, NAI- Normalized anthocyanin index, SSC- Soluble solids content, NDVI- 
Normalized difference vegetation index, DMC- Dry matter content). 

Table 3 
Classification results: Internal browning score.  

Training set split ratio C = 2  C = 3  

50%  0.204 (0.038) 0.275 (0.051) 
60%  0.186 (0.040) 0.244 (0.062) 
70%  0.181 (0.037) 0.225 (0.073) 
80%  0.161 (0.064) 0.211 (0.082)  

Table 4 
Classification results: Cavities score.  

Training set split ratio C = 2  C = 3  

50%  0.290 (0.074) 0.241 (0.070) 
60%  0.242 (0.043) 0.252 (0.073) 
70%  0.223 (0.065) 0.243 (0.083) 
80%  0.197 (0.090) 0.232 (0.080)  

Table 5 
Classification results: Firmness.  

Training set split ratio C = 2  C = 3  

50%  0.280 (0.054) 0.285 (0.074) 
60%  0.232 (0.043) 0.243 (0.075) 
70%  0.224 (0.060) 0.230 (0.083) 
80%  0.172 (0.080) 0.210 (0.081)  

Fig. 6. ROC curve for the Internal Browning classifier.  
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and firmness prediction. It may be utilized in the apple orchard based on 
the algorithms developed and the non-destructive sensors described in 
Section 2.1. 

The classifier was trained for the time series data for the seasons 
2016/17 and 2017/18. The results for the ratio of the UFGs which show 
a post-storage fruit firmness value below 85 N are given in Fig. 7 where 
the blue line is the prediction and the red dots are the true values for the 
three different harvest dates. 

One may see that the prediction captures the reality well and can be 
used for a backwards harvest date prediction. As time passes, the % of 
affected groups with an expected fruit firmness of ⩽85 N after storage is 
increasing from around 38% at 01 October to 50% around 08 October. 
The optimum timing to start the ‘Braeburn’ apple harvest (also depen
dant on other factors like suitable colour development) is predicted to be 
within this time window. 

4. Conclusion 

In the work presented, ‘Braeburn’ is used as model for a big data 
analysis to predict disorder risk based on experimental data for the 
severity of IB, CS and fruit firmness after storage. Post-storage pre
dictions of disorder risk and expected fruit firmness can also be used to 
adapt the harvest window to the current seasonal conditions for fruit 
intended to be placed in long-term CA storage. 

This work considered a new systematic approach to predict apple 
storage disorders using non-destructive sensors, parameter identifica
tion and classification algorithms. Preliminary results of modeling of 
various apple parameters are presented, in particular:  

• Development of NAI, NDVI, DMC and SSC indices depending on 
weather conditions and orchard treatment;  

• Prediction of fruit quality and firmness via the above factors using 
classification methods. 

The suggested approach seeks to overcome limitations of the existing 
models for disorder prediction. The work suggests a possible basis for 
quality maximization in apple production after long-term CA storage. 
The results of modeling show a good fitting accuracy on average, 
whereas the classification algorithm demonstrated an 80% success rate 
on average to predict the IB, CS and fruit firmness. The ‘proof of concept’ 
given can be considered generic and applicable to a range of other dis
orders/situations depending on the availability of suitable input data. 
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7 General Discussion

Discussion

Physiological disorders during the three study years

The three study years from 2016 - 2019 resulted in distinctively different expressions
of disorders in each year. The first season showed a high incidence of core browning.
The second season took place after a severe frost event resulting in a light crop load
which produced high numbers of cavities and browning disorders in the direct CA
storage regime. Optimal storage conditions for the cultivar ’Braeburn’ are delayed
CA conditions for up to three weeks with solely cooling the fruit. However, the present
study split fruit from the same tree sector into direct and delayed CA storage conditions
since growers occasionally have to mix different cultivars together in one CA storage
room. In the third year, superficial scald and bitter pit were the dominant disorders
observed after CA storage and shelf-life of the apples.

Varying orchard management factors affected the incidence and severity of disorders
to a great extent. Light crop loads consistently produced higher disorders as was also
found by Elgar et al. (1999) while disorders from different calcium and harvest date
treatments showed yearly differences in their expression as was also found by Rabus
and Streif (2000), Hatoum et al. (2014) and Buts et al. (2015).

This work achieved 15 different air temperature conditions through building plastic
greenhouse tents over trees in the orchard. However, establishing different temperature
regimes in an orchard situation is technically challenging. This was especially true for
the orchard cooling treatments. A re-construction of the tents with additional roof top
windows after the first study year was needed in order to provide more ventilation dur-
ing the warm sunny periods of the day. The tents required manual opening and closing
of the windows during the day as cloud conditions changed to prevent excessive temper-
ature overshoot. Energy consumption of heaters and cooling machines could at times
exceed the available power supply and the defrosting cycle of cooling machines reduced
the effective cooling capacity of the tent treatments. Lau (1998) in British Columbia
showed that apples grown in three cool growing seasons (<1300 degree-days >10°C)
had a higher susceptibility for disorders. We could show that warm night tempera-
tures (>10 °C) prior to harvest resulted in a lower incidence of disorders. In contrast,
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negligible effects could be detected of Δ+/- 2 °C to ambient conditions during the phys-
iological important post-bloom period until T-stage phase (chapter 5). Therefore our
hypothesis was rejected that post-bloom temperatures of Δ+/-2 °C have an effect on
the occurrence of disorders in ’Braeburn’ apples under Lake Constance growing con-
ditions. However, the programmed temperature change of Δ+/- 2 °C might not have
been sufficient to produce physiological effects. Another factor was that Δ+/- 2 °C was
not maintained during sunny days due to reduced cooling supply. However, the Δ+/-
2 °C was kept at night, but night temperatures might have been compensated in the
physiological tree status by the lack of cooler temperatures (i.e. difference to ambient
temperature conditions) during the day. Further experiments in this context should
try to induces stronger temperature differences during the day. In general, the above
mentioned limitations out-weighted the advantages of conducting research on mature
apple trees planted in orchard soil to gain ’big data’ within a triennial research. ’Big
data’ analyses need large data sets to achieve enough training data. As shown above
disorders are highly dependent on weather conditions and many years of data acquisi-
tion in different growing conditions are therefore required for a reasonable prediction
result for different types of disorders.

Fruit Vis/NIR sensor information

The present work monitored the growth of marked apples on the trees with repeated
spectral scans from after June drop until harvest. Scans were taken only in the centre
of an easy to reach apple, which was the side of the apple exposed to the sun. A
single scan position was used to avoid turning the apple and risk detaching it from the
tree. While fruit quality parameters vary around a fruit, a study conducted on pears
found comparable SSC values at multiple spectral scan positions on the same fruit when
compared to one scan position and with a difference of Δ0.7 % SSC obtained between
non-destructive and destructive measurements (Cruz et al., 2021).

During the study period, disorder incidence and/or severity varied greatly. In the or-
chard, different fruit growth rates were measured each year as affected by the prevailing
seasonal weather conditions and orchard experimental treatments (i.e post-bloom tem-
peratures, crop load, harvest date). For the three study years, in total a combination
of 41 experimental treatments, three orchard replications and three tree sectors were
monitored for the fruit spectral properties and diameter growth. Differences in man-
agement practices were related to different Vis/NIR spectral time-series data. In each
study year, heavy crop load treatments maintained the highest NDVI values at harvest
compared to trees with a standard or light crop load. Additionally, fruit positioned at
the bottom tree sector consistently showed slightly higher NDVI values. Furthermore,
in every year, NDVI values after June started from a different point and showed a near
linear decrease until harvest. In contrast, NAI values decreased till mid of August,
followed by a strong increase until harvest. For NAI, the lowest values were always in
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the bottom tree sector (Schuler, 2022). In storage, spectral absorption indices from the
Vis spectrum and fruit diameter showed no distinct development (chapter 2).

Information about fruit water content can be found in the shortwave NIR region. Ad-
ditional water absorption bands are situated further in the NIR region (Rubo and
Zinkernagel, 2022) but these longer wavelength bands could not to be measured with
the spectrometer used in this study. The spectrometer can only give fruit skin and tis-
sue information from approximately 1-2 cm beneath the skin due to light intensity and
cultivar-specific tissue structure of the hand-held spectrometer (Lohner, 2020, personal
communication). In chapter 3 we presented time-series Vis/NIR data of fruit covered
with plastic sheet rain covers or hail nets (standard production practice). Measure-
ments directly after a rain event on a dry fruit skin resulted in no differences for the
spectral indices obtained from the Vis range. Although no differences were measured
after a rain event, fruit grown under rain covers showed reduced absorption values at
975 nm throughout the study. Calcium transport into the fruit after calcium chloride
spraying is possible through lenticels and cracks in the cuticle (Harker and Ferguson,
1988) and the water content of fruit might therefore be affected from the rain covers
preventing direct wetting of the fruit from precipitation.

The diffuse reflection from apples in the shortwave NIR spectral region is affected
in particular by the oxygen and hydrogen bonds found in water and carbohydrate
molecules. PLSR models use this spectral information to non-destructively predict
DMC and SSC values in the orchard. However, these models have to be trained with
orchard and seasonally specific destructive laboratory measurements which have to
be additionally scanned at different temperature regimes in order to compensate the
temperature effect in the NIR region. Chapter 4 showed that SSC can be reliably
detected with non-destructive multi-year PLSR models for a specific orchard as was
also shown by Peirs et al. (2003), if the SSC values in the laboratory and orchard were
in a standard distributional range. Also, different seasons produced different SSC values
as was also observed by Sugiura et al. (2013). Differences in the SSC accumulation from
the different post-bloom temperature treatments were negligible.

Precision farming to obtain small-scale orchard data

We could show that the tree sector had a significant effect on the development of SSC
(chapter 4). Furthermore, tree sectors (chapter 2) and single trees developed differences
in disorder incidence and/or severity even within the same treatment repetition. Given
this amount of variation in disorder expression coming from the orchard, future decision
support systems should focus on developing a precise tree sector map of obtained field
data and link these field data to post-storage fruit quality grading results. The present
study only achieved this with manual data acquisition and manual data labeling linked
to specific tree sectors. Up until the time of writing this text, the connection of pre- and
post-harvest data on a tree sector basis is an unresolved research issue with no practical
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solution to effectively link fruit quality storage outcomes with the orchard trees. Praat
et al. (2003) reported similar results for kiwifruit. In the future, it is questionable
whether tree sector information can be mapped due to technical restrictions, the main
one being that apples are currently commercially picked into large bins containing
300 kgs of fruit mixed from a number of trees. But, we could show that there are
fruit quality differences between fruit from different tree sectors with tree heights of
3,80 m (planting distance 0.80 x 3.20 m). A transitional solution for a precision farming
would be an online decision support system where data is neither saved nor connected
to other sources and are processed online on the tractor and decisions are applied
immediately. With this, a precise GPS location is needlessly and an online tool with
immediate calculations of these data can be used to control one dimensional tasks such
as pesticide spray adjustments. However, this solution would only be sufficient for less
complex tasks where the connection to post-harvest grading results is not needed and
therefore is not an adequate solution for this work.

Smart farming with systems control and regulation

The ’big data’ analyses with two-year’s of data resulted in an acceptable prediction value
of 90 % correct predictions of disorders through a ’black box’ modelling and classifica-
tion approach. As the name indicates, ’black box’ classification provides a researcher
with no causal information about the relationship between the data in-feed and output.
Depending on data sources (biased or not), the amount of data in a ’black box’ classi-
fication and prediction approach is fully dependent on the type of data used. However,
chapter 6 provided a ’proof of concept’ and claimed that this approach might be rea-
sonable. The model and classifier contained treatment information (e.g. light, standard
and heavy crop load levels) as input factors. As explained above, these data sets were
obtained using as wide a range of management methods that possibly affected changes
in fruit growth and development, e.g. fruit sizing. As shown in chapters 2 and 4 crop
load treatments especially had a consistent and marked effect on the development of
disorders over all study years. Also, the post-bloom temperature treatments affected
fruit sizing from the T stage up until harvest. Spectral data showed a large variance for
individual scans taken during fruit growth. These spectral data trends were consistent
over all study years for sectors and treatments, i.e. crop load. In general, variability of
fruit quality parameters is high (Peirs et al., 2003). Future work should focus on the
development of non-destructive leaf-fruit ratio or crop load information linked to the
tree volume in order to use this in future modelling approaches which is missing up to
date.

Modelling of fruit properties

The present study combined different modelling approaches to investigate the explana-
tory power of longitudinal sensor data and derive prediction models. Orchard data was
modelled with Monte Carlo simulations, ROC plots, ARX models and ’black box’ mod-
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elling. As a ’proof of concept’ these approaches were sufficient as was shown in chapters
4-6. Here it was possible to form stronger links between pre-harvest factors and the
post-harvest fruit quality as has not been done up to date in other ’big data’ analyses
for apple disorders. Given the availability of large data sets, there are other possible
approaches to investigate fruit quality for example artificial training data produced
from Monte Carlo simulations (produced without field labour, only modelled). Monte
Carlo simulations for SSC supported PLSR modelling as a reliable non-destructive out-
put measure (chapter 4). Also, the modelling approach to predict post-harvest fruit
firmness resulted in a good agreement with the destructive measurements. However,
any disorder or fruit firmness model classifier needs to be robust in terms of usage with
new data from different sources, orchards and seasonal conditions. This is especially
challenging during this time as climate warming is resulting in growing conditions that
are unfamiliar and different to our previous growing experience. However, technical
advances like AI for real-time fruit detection and orchard fruit load estimation are un-
der current development (Koirala et al., 2019). Also work to model tree fruit bearing
capacity for precision fruit thinning is proceeding quickly (Penzel, 2022). Models are
clearly trying to reflect the real world but are built based only on the available data.
The challenge for smart horticulture in the future is the development of robust models
which reflect the real world best.

Implications on practical research

The broad practical expectation underlying the present work was to generate an ap-
plication to track fruit quality within the apple supply chain. Within the scope of the
project work a wireless smartphone application software (App) was developed to con-
nect with digital calipers. The App enabled fruit diameter measurements to be easily
linked to treatment codes and GPS location in order to map the growth of a tagged
fruit in the orchard. Immediate access to the data within the App meant the user could
check and correct any errors. However, in the end these growth data were not able
to be used in the ’big data’ classifier due to unresolved communication issues with the
data-bank server.

Another study outcome was that rain events had no effect on the Vis wavelength spectra
and orchard scanning could be repeated on a regular basis. Zude-Sasse et al. (2002) re-
ported that fruit temperature had no effect on the spectral reflection in the 600-750 nm
range. Furthermore, non-destructive SSC data modelling resulted in a reasonable good-
ness of fit and robustness (R2 of ∼75% and RMSE of ∼0.6%) with a handheld orchard
spectrometer. Although we could show that yearly models performed best, multi-year
models also achieved reasonable and comparable predictions.

Research experience with non-destructive spectral and laboratory reference measure-
ments to determine fruit quality parameters is developing rapidly. Progress with spec-
tral modelling and the use of extremely large data sets collected from orchards is help-
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ing and will help in the near future to extend the application of these methods in fruit
growing industries (Mishra and Woltering, 2021; Anderson et al., 2021b). Modern ap-
ple packing houses are now equipped with Vis/NIR non-destructive grading machines.
These machines generate ’big data’ as every apple is scanned which potentially generates
’big data’. However, in this study considerable efforts were made to access commercial
fruit grader data sets for our research fruit and link this spectral grader data with the
spectral time-series scans and other data obtained in the orchard. Unfortunately, tech-
nical difficulties did not allow to obtain individual fruit spectra from these commercial
machines. The individual apple spectra were mostly not saved. Up to date, the con-
nection between pre- and post-harvest fruit data on a commercial scale is hampered
by limited data storage, the associated costs of this and missing interfaces to exchange
data between different sources. However, with increasing availability of ’big data’ in
apple growing, fruit quality models that are robust for differences in orchard location
and growing seasons can be developed for use within the fruit quality chain. These
developments will be assisted by decreasing costs for real-time data storage, processing
and transmission of fruit quality data from all points within the apple production chain.

A research approach based on the use of ’big data’ is not as dependent on a classical
experimental layout to achieve reliable predictions assuming one has access to sufficient
’big data’. Anderson et al. (2021a) recently demonstrated this principle using a large
data set of orchard scans and a neural network classifier working to predict DMC of
mango. In our work, albeit with much smaller data sets, we demonstrated the same
trend with the prediction of SSC in apple (chapter 4). Although the amount of data
collected were insufficient to build robust prediction models across different seasons,
locations and cultivars, the use of spectral time-series scanning was an important step
towards achieving ’big data’ in apple fruit quality research. We demonstrated a ’proof
of concept’ for ’big data’ modelling in order to predict physiological disorders after
harvest and fruit firmness at harvest.

Investigations with other optical sensors such as LiDAR and hyperspectral imaging
didn’t lead to usable research data or practical outcomes. Analysis of the LiDAR data
proved to be too technically demanding for the project consortium and the hyper-
spectral camera lacked sufficient resolution and was unsuitable for use outdoors under
strong daylight conditions. However, in future research both these technologies will
very likely be increasingly used to monitor orchard tree and fruit growth. In a recent
study, a LiDAR sensor was able to distinguish between leaves and tree branches and
measure fruit diameter growth (Tsoulias et al., 2020). Especially for plant protection
sprays, LiDAR sensors can potentially reduce pesticide usage by 25-45 % with improved
application targeting in orchards with variable tree canopies (Solanelles et al., 2006).
However, Verbiest et al. (2020) showed that in horticulture there are almost no exist-
ing fully automated control and regulation production processes which are economical
viable despite a considerable research effort.
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Outlook

Presumably, the wide range of ’Braeburn’ fruit grown in the research trial plots, all
with measurable differences in growth rates, spectral time-series and final fruit size,
had differences in internal tissue structure (i.e cell size and number and differences in
intercellular porosity). Future experimental work in the orchard on carbohydrate mod-
elling can be supported by non-destructive DMC and SSC data to better understand
tree and fruit physiological processes as fruit with a higher energy status can main-
tain itself better when placed under storage stress (Saquet et al., 2003). Wünsche and
Lakso (2000) clearly formulated that there are only "two possible means to improve
crop performance: increase total dry matter yield and/or increase the magnitude of
partitioning of dry matter toward the fruits". Light spectra contain multiple informa-
tion dimensions. When separated, the scattering and absorption coefficients in light
spectra contain information about the fruit chemical composition and tissue structure
(Stefan A. Lohner and Konni Biegert and Steffen Nothelfer and Ansgar Hohmann and
Roy McCormick and Alwin Kienle, 2021; Lohner et al., 2021, 2022; Wang et al., 2020).
Zerbini (2006) considered the effective scattering coefficient as fundamental property
of fruit tissue as compared to standard diffuse reflectance spectra. The scattering co-
efficient can be directly related to tissue structure and fruit firmness and also used to
detect internal browning for example in pears (Zerbini, 2006). In the current work
efforts were initiated to measure the effective scattering and absorption coefficients on
apples still attached to the tree in the orchard. While our cooperative work with the
ILM in Ulm made very considerable progress in this direction (Stefan A. Lohner and
Konni Biegert and Steffen Nothelfer and Ansgar Hohmann and Roy McCormick and
Alwin Kienle, 2021; Lohner et al., 2021, 2022) the technical challenges for field scanning
were too high and these techniques remain laboratory based. Without further techni-
cal advances for optical monitoring of fruit growth to obtain non-destructive estimates
of fruit porosity or fruit firmness (chapter 6) one other possible research direction is
enhanced carbohydrate modelling. Using non-destructive DMC and SSC data together
with different field treatments (e.g. temperature sums, crop load, harvest date, calcium
sprays) and scanning from different positions within the tree canopy there is potential
to gain further insights into carbohydrate partitioning and fruit development.

The adoption of sensor technologies in fruit growing is dependent on many factors. An
outlook for future productions systems will probably require the tree architecture to be
simplified, i.e. to change from 3D to 2D tree canopy systems where fruit, leaves and
branches are less overlapping. To achieve an economical advantage, orchard driveways
will need to be narrower than the current 3.0-3.5ṁ driveway. Jackson and Palmer
(1972) cited in Tustin et al. (2022) showed that the interception of light is dependent
on the cropping latitude of the world and commercial apple orchards with a row width
of 50 cm were recently established in New Zealand (Tustin et al., 2022). The second
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step towards an economical feasible adoption process is the combination of sensing
tasks. For example, a LiDAR sensor fitted on an orchard sprayer to improve pesticide
applications can potentially calculate a fruit:leaf ratio per tree. However, to digitally
record the 3D structure of a standard spindle apple tree requires that two different row
scans are merged. In addition, LiDAR data need to be processed in real-time in the
orchard for subsequent machinery tasks which will need further technical development
to be feasible. In addition, it is assumed that problems associated with wireless data
transmission in orchards with poor GPS signal reception or other mobile signals can
be resolved in the near future with additional GPS base stations per farm. In the
end, the orchard should be robot-ready to accomplish manual intensive tasks, but tree
physiology and therefore yield and economical behavior must be targeted as well.

Conclusion

An experienced fruit grower having observed multiple seasons is capable of adjusting
orchard management strategies according to fruit growth, historical data and can au-
tomatically adapt his ’eyes’ to differing environmental light conditions. On the other
hand, humans are also error prone and subjective judgements can lead to poor crop
estimates, e.g. assessment of thinning efficacy when fruitlets are small. Also, increas-
ing official regulations and farm sizes are forcing growers to use electronic field data
management tools or decision support systems to deal with the data inflow. Other
not to be underestimated factors are the high manual labor input in fruit growing
with increasing wage costs and the decreasing availability of skilled or trained work-
ers. These trends are driving fruit growers into further mechanization. The present
study focused on the prediction of disorders with optical sensors. Up until now, the
causal factors and multi-factorial interaction of these factors, especially the influence
of changing weather conditions that leads to the formation of disorders, are not fully
understood. The present study showed that optical Vis/NIR sensor information from
the orchard can be linked to different management and environmental factors. Further-
more DMC, SSC, and spectral indices for chlorophyll, anthocyanins and carotenoids
showed differences within a tree sector. A precise decision support system is required
in order to treat tree sectors according to their physiological status in the pre- and
post-harvest period. However, within the current study data labelling on a tree sector
level was undertaken manually. The link between pre-harvest fruit growing factors of
crop load, picking date and calcium sprays to post-harvest disorders led within a ’big
data’ analyses to reasonable prediction rates. However, in tree physiology there are no
clear simple correlations at hand to improve fruit quality by enhancing or decreasing
only one factor. In contrast, annual field crops like corn can be fertilized with nitrogen
based on non-destructively obtained chlorophyll values. This leads to increased yields,
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but in apple production inappropriate fertilization will increase shoot growth and leaf
area which negatively affects fruit quality. Therefore smart farming should consist of
different sensor data which can detect the tree and fruit physiology. Further research
is necessary to use non-destructive sensor data in the orchard in order to collect phys-
iological important information (e.g. fruit-leave ratio). Future orchards to implement
sensor technologies within an automated platform should have a 2D orchard tree struc-
ture where leaves and fruit can be distinguished easily. Associated therewith is a better
understanding of interception of light and carbohydrate distribution within the tree.
Further research with large data sets is required to achieve robust ’big data’ models for
smart horticulture systems in the future.
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Determining the optical properties of apple tissue and their dependence on 
physiological and morphological characteristics during maturation. Part 1: 
Spatial frequency domain imaging 
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A B S T R A C T   

Relying on the optical properties of apple tissue for nondestructive quality or maturity prediction requires a 
detailed understanding of the dependence on its structure and ongoing physiological processes. In this study, a 
multispectral spatial frequency domain imaging (SFDI) setup was used to investigate local changes in the 
effective scattering coefficient μ′

s and absorption coefficient μa related to vascular bundles or heterogeneous 
starch distribution. Weekly measurements during the maturation period for the cultivars ‘Elstar’, ‘Gala’, ‘Jon
agold’, and ‘Braeburn’ allowed further study of how different ripening processes affect the scattering and ab
sorption properties. The results show both a characteristic location-dependent decrease of μ′

s between the cortex 
and core region of up to 30 % and an additional temporal decrease of up to 35 % during maturation. The absolute 
changes depended strongly on the respective cultivar. In general, transport structures such as vascular bundles 
led to a local decrease of μ′

s in combination with an increased absorption in the spectral regions that can be 
attributed to water and chlorophyll b. To our knowledge, it was demonstrated for the first time that the presence 
of starch granules in the cortex of immature apples had a significant effect on μ′

s, associated with an increase of 
up to 60 %. Based on the temporal development of μa, the buildup and degradation of important plant pigments 
in the cortex during the maturation period could be traced. At a wavelength of 656 nm, a decrease in chlorophyll 
content and at 447 nm, an increase in carotenoid content was observed upon reaching ripeness. Thus, SFDI 
proved capable of providing deeper insight into the heterogeneous optical properties of apple tissue and linking 
these properties to physiological variables. Part 2 of this study investigates the observed effects from a theoretical 
point of view based on a Mie model considering microstructural properties.   

1. Introduction 

The demand and acceptance of optical measurement methods for 
applications to assess the properties and quality of products in the field 
of agricultural technologies is constantly growing. In particular, this is 
the case for apples (Malus domestica Borkh.), as one of the most 
consumed fresh fruit. However, as a central question in this context, it is 
important to understand to what extent optical parameters are related to 
certain physiological and morphological characteristics. For example, 
predicting the harvest date for optimal medium- to long-term storage, a 
very current research question, requires a deeper understanding of the 
processes that occur during fruit maturation. In this regard, many 

conventional approaches have been able to establish correlations of 
spectral information obtained from VIS or NIR spectroscopy with 
various chemical (e.g., soluble solids and chlorophyll content) or 
structural properties (e.g., firmness) using chemometric modelling 
techniques (Zude-Sasse et al., 2002; Zude et al., 2006; Sánchez et al., 
2003; Qing et al., 2008). However, such models are not readily com
parable because of different experimental setups or algorithms. The 
regression models are often not robust when applied to samples from 
different cultivars or from different years (McCormick and Biegert, 
2019). To overcome these limitations, current research is increasingly 
oriented toward the development of measurement techniques that ac
count for light propagation in biological tissue based on physical 
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models. Although these require different assumptions and approxima
tions, the resulting quantitative parameters are generally independent of 
the particular measurement technique or the specific experimental 
setup. The descriptions by the absorption coefficient μa, the scattering 
coefficient μs, and the anisotropy factor g, the latter often combined to 
define the effective scattering coefficient μ′

s = (1 − g)μs, have proven to 
be suitable to describe and compare physiological changes during fruit 
maturation (Lu et al., 2020). While μa provides information about 
chemical constituents of the tissue (e.g., water, chlorophyll, caroten
oids), μ′

s is related to its structural properties (e.g., porosity, scattering 
particles). Despite the numerous chemical constituents, such as water or 
pigments, characteristic absorption bands can be identified quite easily 
in most cases and can be used, for example, to estimate their volume 
concentration. In contrast, when investigating the scattering properties, 
the concrete influence of structural elements such as intercellular space, 
starch granules, chloroplasts or cell walls usually remains unclear. 

A variety of measurement techniques and the associated evaluation 
algorithms have been developed and applied in recent years to study the 
optical properties of apples and other fruits. Important examples include 
integrating sphere setups (Van Beers et al., 2017; Wei et al., 2020), 
time-resolved spectroscopy (Cubeddu et al., 2001; Rizzolo et al., 2010, 
2014; Vanoli et al., 2020), and spatially resolved spectroscopy (Nguyen 
Do Trong et al., 2014; Van Beers et al., 2015; Sun et al., 2016). Although 
their basic findings are largely in agreement, a rather strong variation in 
absolute scattering and absorption properties is observed in the over
arching comparison. This includes results from different cultivars, at 
different dates during maturation or storage, and last but not least, 
comparison of measurements at different locations of the same apple. 
For these reasons, the study of temporal and spatial changes in μ′

s and μa 
is of great interest to better understand the relationships with underlying 
morphological and physiological properties. For this purpose, spatial 
frequency domain imaging (SFDI) or modulated imaging has proven to 
be a suitable technique for rapid and non-destructive determination of 
the optical properties (Cuccia et al., 2009; Hu et al., 2016). In this 
method, stripe patterns, which are usually sinusoidally modulated in 
one lateral direction, are irradiated obliquely onto the sample surface 
and the diffusely reflected light, which consists of modified stripes 
having the same stripe distance, is measured with a camera chip. From 
the change in amplitude and phase between the irradiated and detected 
signal, recorded at different stripe distances i.e., spatial frequencies, the 
optical properties of the sample can be determined spatially resolved 
with the aid of a suitable light propagation model. The separation of 
scattering and absorption offers great advantages for quantitative im
aging and is successfully used e.g., in metrology or medical technology 
(Gioux et al., 2019). In the agricultural sector, one of the first applica
tions was the detection of localized damage or bruises (Anderson et al., 
2007; Lu and Lu, 2019), while more recent studies have increasingly 
focused on the measurement of whole apples and the development of 
two-layer evaluation algorithms (Hu et al., 2019, 2020). 

The aim of this work was the spatially resolved determination of the 
optical properties of the core and cortex tissue of the apple cultivars 
‘Elstar’, ‘Gala’, ‘Jonagold’, and ‘Braeburn’ with a multispectral SFDI 
setup. Special attention was paid to local changes of μ′

s and μa, e.g., 
related to heterogeneous starch distribution or vascular bundles. In 
addition, the temporal development of the scattering and absorption 
properties was investigated in more detail by means of weekly mea
surements during the maturation period. 

2. Materials and methods 

2.1. SFDI setup 

A sketch of the SFDI setup used in this research is shown in Fig. 1(A). 
It consists of a projection unit based on a digital micro mirror device 
(DLP LightCrafter 6500, Texas Instruments, USA) in combination with a 
LED light source, and a cooled sCMOS camera (Zyla 4.2 sCMOS, Andor, 

UK). The DLP projects sinusoidal intensity patterns under an oblique 
angle of Θ = 35◦ onto the sample. The self-configured light source pro
vides subsequent illumination based on eight switchable LEDs (XLamp 
XP-E and XQ-E series, Cree, USA and LUXEON SunPlus series, Lumileds, 
USA) with peak emission at 447 nm, 471 nm, 521 nm, 619 nm, 656 nm, 
718 nm, 845 nm, and 945 nm, each with a narrow bandwidth of 
approximately 10 nm. The diffuse reflected light from a 20 mm × 20 mm 
region of the illuminated sample is captured by a vertically attached 
sCMOS chip with a numerical detection aperture of approximately 0.08. 

The system has to be calibrated once by measuring a calibration 
pattern in different orientations and heights within a measuring volume 
of 20 mm × 20 mm × 20 mm, which is limited by the projector optics and 
camera focus depth. A pinhole-model based calibration algorithm is used 
to fully characterize the system by means of its extrinsic parameters (e.g., 
coordinates of camera and projector in world coordinates) and intrinsic 
parameters (e.g., respective principal points, focal lengths, lens distor
tions) as presented in Zhang (2000) and Chen et al. (2009). This 
knowledge allows calculation of pre-distored images on the one hand, 
which form, once projected, a nearly perfect homogeneous sine pattern 
on a fixed calibration plane at the center of the measuring volume. On 
the other hand, camera distortion is considered by use of a correction 
algorithm, which is applied directly after acquiring the raw images. In 
the actual measurement, seven different spatial frequencies between 
0 mm− 1 and 0.5 mm− 1 are projected with three phase shifts of 0, 2π/3, 
and 4π/3, respectively, and the diffuse reflection is acquired in each case. 
The exposure time is typically 20 ms for one image, resulting in a total 
measuring time of approximately 450 ms for a complete sequence of 22 
patterns (21 phase patterns + 1 dark pattern) at one wavelength. Thus, 
the multi-spectral data acquisition takes less than 5 s in total. Finally, a 
pixel-wise demodulation algorithm provides for each spatial frequency q 
the modulation amplitude IAC (alternating component, AC), the offset IDC 

Fig. 1. Schematic drawing of (A) the spatial frequency domain imaging (SFDI) 
setup consisting of a sCMOS camera and a projector unit coupled to a tunable 
LED light source. Sinusoidal intensity patterns with spatial frequencies up to 
0.5 mm− 1 are projected obliquely onto a cut apple sample. In (B), the pixel-wise 
demodulation of the acquired images for a spatial frequency q is shown as an 
example, from which the offset IDC, the modulation amplitude IAC, and the 
phase are obtained. 

S.A. Lohner et al.                                                                                                                                                                                                                               

Appendix

89



Postharvest Biology and Technology 181 (2021) 111647

3

(direct component, DC), and the phase, as shown in Fig. 1(B). 

2.1.1. Data post-processing and evaluation 
After completion of the measurements, the raw data is post- 

processed before the actual evaluation. In a first step, inhomogeneities 
of the incident light intensity as well as the modulation transfer function 
(MTF) of the optical system are corrected. For a direct approach, a 
phantom with known reflectance RSFD,ref is measured at the same posi
tion as the samples within the measuring volume. The absolute spatial 
frequency domain (SFD) reflectance for a series of n different spatial 
frequencies q is then calculated as 

RSFD(q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n

i

(
IDC(qi)

IDC,ref(qi)
RSFD,ref(0)

)/

n q = 0

IAC(q)
IAC,ref(q)

RSFD,ref(q) q ∕= 0,

(1)  

where for the frequency q = 0, corresponding to homogeneous illumi
nation, the average of the DC images of all measured frequencies was 
taken. However, this method is only applicable, if the reference phantom 
and the sample surface are perfectly flat and lie exactly in the same 
plane. In general, however, the samples often have irregular shapes with 
a displaced or tilted surface relative to the reference plane. These de
viations can lead to large errors in both the absolute RSFD and the local 
spatial frequency, which are crucial for the following quantitative 
evaluation (Bodenschatz et al., 2014, 2015). To overcome this limita
tion, a new referencing method was developed for almost arbitrarily 
shaped objects. With the phase image obtained from the demodulation 
and the initial calibration, a triangulation algorithm can be used to 
assign each pixel a unique position in a coordinate system defined by the 
reference plane. Based on this 3D model and the coordinates of the 
projector and camera, which are also known from calibration, geometric 
calculations provide for each pixel the height offset relative to the 
reference plane, the angle of incidence and detection, and the surface 
normal vector. After measuring the reference intensity phantom at 
different positions within the entire measuring volume, a 3D-interpola
tion algorithm provides the appropriate intensity value for each pixel 
based on its known position within the reference grid. Similarly, the 
individual spatial frequency can be corrected by taking into account the 
height and tilt angle of the sample surface relative to the reference plane 
for which the frequency projection was calculated. 

To model light propagation in turbid media, an analytical solution of 
the radiative transfer equation for semi-infinite media and oblique 
projection of sinusoidal intensity patterns was used (Liemert and Kienle, 
2012a, 2012b, 2013). To distinguish between volume scattering and 
surface scattering, the model was extended by introducing a surface 
roughness parameter, which is presented in more detail in Section 3.1.2. 
The extended model was subsequently applied to the post-processed 
data using a nonlinear least squares algorithm with a computational 
accuracy of order N = 11, resulting in μa, μ′

s, and the surface roughness 
parameter rs for each pixel. To reduce the evaluation time and the 
amount of data, a 16 × 16 binning was generally used, which results in a 
sufficient resolution of 300 μm × 300 μm. 

Specifically for apple tissue, the refractive index and anisotropy 
factor are not precisely known and must be estimated for evaluation. 
Since water is by far the dominant component of apple tissue, it is 
assumed that its refractive index also largely corresponds to the 
refractive index of water (Hale and Querry, 1973). In Van Beers et al. 
(2017) and Saeys et al. (2008), a wavelength-independent constant of 
0.04 was added to the refractive index of water, giving an exemplary 
value of 1.37 at a wavelength of 650 nm. This approach is also adopted 
in this work. A uniform value of 0.9 was assumed for the anisotropy 

factor g for apple tissue, since forward scattering usually predominates 
in biological tissue. This assumption is also in agreement with experi
mental results, Van Beers et al. (2017) for example determined values in 
the range of 0.93 at a wavelength of 800 nm for the cortex tissue of 
different apple cultivars. 

2.2. Fruit samples 

2.2.1. Cultivars and origin 
Fruit samples were taken from the Kompetenzzentrum Obstbau- 

Bodensee (KOB) research orchard (47◦46′01.8′′N 9◦33′30.3′′E) in the 
season 2019. The cultivars were Malus domestica ‘Gala’ (Simmons/ 
Buckeye), ‘Elstar’ (P.C.P.), ‘Jonagold’ (Novajo), and ‘Braeburn’ (Hill
well) planted in 2017, 2012, 2012, and 2016 respectively. The trees 
were planted as slender spindles in a north-south row orientation and 
hand thinned to a defined cropload per tree. Trees carried a full crop, 
except ‘Gala’. This selection of cultivars covered the early to late harvest 
season with different ripening characteristics. In the present study, for 
each cultivar, 20 similar trees (growth and hand thinned after June drop 
to the same cropload) were selected and grouped into four lots of five 
trees. At each sampling time 16 fruit were picked from different tree lots 
to ensure the reduction in cropload over all trees was minimal, as a 
strong reduction in cropload is known to influence the rate of fruit 
maturation. Individual fruit at each sampling time were used as 
repetitions. 

2.2.2. Sample preparation and Streif index 
Fruit samples were taken in the middle tree sector weekly after June 

drop until two weeks after the optimal harvest date for long term- 
storage. The optimal harvest date was selected based on the Streif 
index (SI) commonly used in the fruit industry according to long-term 
experience (Streif, 1996). Six apples were sent by refrigerated over
night express to the SFDI laboratory and ten fruit remained at the KOB 
for a SI test. The SI was calculated with mean values for each fruit lot 
according to 

SI =
FF

SSC⋅SPI
(2)  

with fruit firmness (FF), soluble solids content (SSC), and starch pattern 
index (SPI). FF was determined with either an 8 mm (for small immature 
apples) or an 11 mm probe (Fruit Texture Analyzer, Güss, South Africa), 
SSC with a portable refractometer (PR-1, Atago, Japan) on both sun and 
the shade sides of each apple. Juice samples for SSC determination were 
taken with a micropipette directly from the FF probe hole on each side of 
the fruit. The SPI was visually assessed from one fruit half with an 
ordinal score from 1 (all starch) to 10 (no starch). 

In preparation for the SFDI measurements, a thin section of skin and 
underlying tissue approximately 3 mm thick was cut with a sharp slicer 
to expose the cortex tissue. The apple tissue was then carefully wiped to 
avoid reflections from small juice droplets and measured immediately 
before oxidative tissue browning could occur. To measure the entire 
transverse section, apples were cut along the equator to fully expose the 
cortex and core tissue. If necessary, multiple measurements were taken 
after moving the apple slightly in the transverse direction to cover the 
entire surface. 

A basic classification of apple fruit is shown in Fig. 2. Internally, the 
tissue consists of capillary tissue (hereafter core) surrounded by the 
floral tube or hypanthium (hereafter cortex). Both are separated by the 
core line (MacDaniels, 1940). The chemical and structural properties of 
both tissue types are highly associated with a complex transport system 
for water-soluble substances and gases. In particular, the intercellular 
space plays an important role in the exchange of oxygen and carbon 
dioxide resulting in a porous structure, while various types of embedded 
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capillary bundles supply the cells with water, minerals, and sugar 
(Herremans et al., 2015). 

3. Results and discussion 

3.1. Validation of the SFDI setup 

3.1.1. Determining the optical properties of intralipid phantoms 
The SFDI setup was validated with four different phantoms based on 

10 % intralipid (Fresenius Kabi, Austria) diluted with purified water to 
fat concentrations of 1.55 % (S1), 1.25 % (S2), 0.93 % (S3), and 0.55 % 
(S4). In addition, iron gall ink (4001 blue-black, Pelikan, Switzerland) 
was added at concentrations of 0.18 % (S1), 0.12 % (S2), 0.06 % (S3), 
and 0.02 % (S4) to achieve different absorption levels. Reference mea
surements were made with an integrating sphere setup recently 
described in Foschum et al. (2020) and Bergmann et al. (2020). Each 
sample was measured within two different glass cuvettes consisting of a 
spacer ring of 2 mm and 3 mm thickness, respectively, between two 
N-BK7 glass slides (34-427, Edmund Optics, USA). For the evaluation, 
the refractive index of water and an anisotropy factor of g = 0.7 were 
assumed for the samples, while the known thickness and refractive index 
of the glass slides were also taken into account. The resulting μ′

s and μa of 
the samples were calculated as the arithmetic mean of four measure
ments each. Subsequently, the samples were put in a beaker, measured 
with the SFDI setup and evaluated under the same assumption for the 

refractive index and anisotropy factor. In this case, μ′
s and μa were 

averaged over all pixels. Fig. 3 shows the results of both measurement 
methods in comparison. The SFD measurements generally show good 
agreement with a mean relative deviation of 4 % for μ′

s and 11 % for μa. 
Particularly for the low absorption range (μa < 0.01 mm− 1), larger de
viations in the resulting absorption properties become apparent. 

3.1.2. Consideration of surface roughness 
Especially for biological samples with typical irregular surface, the 

extension of the analytical model presented in Nothelfer et al. (2018) 
with a distinction between volume scattering and surface scattering 
proved to be useful. To illustrate the influence of surface roughness, 
Fig. 4(A) shows an example of the measured RSFD for the cortex of typical 
apple fruit (black dots) and the results of two nonlinear least-square fits, 
on the one hand considering an extended model with surface scattering 
parameter rs (orange markers) and on the other hand with the original 
model (blue markers). The measured RSFD was averaged over all pixels in 
both cases. The bottom plot in Fig. 4(A) shows the relative deviation 
δRSFD,fit between the measurement and the two different models. Obvi
ously, the extended model considering rs achieves a much smaller de
viation being below 1 % compared to the model neglecting surface 

Fig. 2. Schematic morphology of apple fruit in transverse section (adapted 
from MacDaniels (1940)). 

Fig. 3. Comparison of (A) the effective scattering coefficient μ′
s and (B) the 

absorption coefficient μa of four samples (S1-S4) with different intralipid and 
ink concentrations. The error bars indicate the standard deviation, for the 
integrating sphere based on four measurement repetitions and for SFDI based 
on averaging the optical properties over the entire image area. 

Fig. 4. Comparison of (A) the measured RSFD reflectance of apple tissue and (B) 
the results of a model-based nonlinear least squares fit with and without 
consideration of the surface roughness parameter rs. In (B), an integrating 
sphere measurement of the same apple cortex sample is shown as a reference. 
The error bars and colored shadows indicate the standard deviation, for the 
integrating sphere based on four measurement repetitions and for SFDI based 
on averaging the optical properties over the entire image area. 
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scattering, with deviations up to 25 % in the high spatial frequency 
regime. The obtained μ′

s and μa for both fit models are shown in Fig. 4(B). 
To validate the determined values for μ′

s, the same sample was examined 
using an integrating sphere setup. For this purpose, a 2 mm thick slice of 
the exact same apple sample was cut and measured between two glass 
slides. The resulting spectrally resolved μ′

s and μa are shown as black 
lines in Fig. 4(B). The gray shadow shows the standard deviation from 
four independent measurements of the sample, which was measured 
twice on one side toward the integrating sphere and twice after turning 
over. To strongly suppress the surface effects, the sample of apple tissue 
was pressed between two glass slides, and the interface between the 
tissue and glass filled sufficiently with escaping juice by itself. The 
resulting μ′

s and μa therefore are not influenced by the surface scattering 
of the apple sample (we note that the glass slides were considered in the 
evaluation of the integrating sphere measurements). The comparison 
with the SFDI results shows a clear overestimation of μ′

s when rs is 
neglected (blue dots). In contrast, when surface roughness is taken into 
account (orange dots), the results agree well with the integrating sphere 
measurements with a mean value found of rs = 2.6(1) %. This approach 
guaranteed a relative mean deviation between the SFDI and integrating 
sphere method of 6 %. As expected, μa remains almost unchanged for the 
two models with different surface roughness. The relative mean devia
tion of μa when comparing SFDI and integrating sphere measurements 
was 19 %. 

3.2. Spatially resolved optical properties of apple tissue 

To determine the spatially resolved optical properties, different 
‘Braeburn’ apples were selected 25 weeks after full bloom, bisected 
along the equator, and measured at different positions between the core 

and skin using the SFDI setup. Fig. 5 shows the resulting scattering and 
absorption properties and, in the left column, the corresponding RGB 
image of each view. The results were averaged over three measurement 
repetitions without moving the sample. Comparing the bulk scattering 
properties at a wavelength of 845 nm, a spatial variation of μ′

s between 
0.6 mm− 1 and 1.4 mm− 1 is noticed, with a tendency to increase from the 
core in Fig. 5(A) to the skin in Fig. 5(D). The core line and the petal 
bundle in Fig. 5(A) are clearly visible due to a local decrease of μ′

s 
relative to the surrounding area of about 0.2 mm− 1. A similar decrease 
also occurs for the dorsal bundle in Fig. 5(B) and the sepal bundles in 
Fig. 5(C) and Fig. 5(D). Marked increases in μ′

s occur near the endocarp 
in Fig. 5(B) and are particularly evident in the outer cortex in Fig. 5(D). 
Overall, μ′

s varies strongly depending on the local structural properties. 
The surface scattering parameter rs, on the other hand, seems to depend 
only to a small extent on these structures, with mean values between 
0.04 ± 0.02 (Fig. 5(D)) and 0.05 ± 0.02 (Fig. 5(A)). However, in Fig. 5 
(A), there is a significant change in surface texture that highlights the 
core line. The rs values and their changes are probably also related to 
water, which accumulates to varying degrees on the surface during the 
measurement and influences the total reflection. 

The corresponding absorption properties were investigated at two 
characteristic wavelengths of 656 nm and 945 nm. As known from pre
vious work, these spectral regimes are mainly related to the presence of 
chlorophyll b and water, respectively (Merzlyak and Solovchenko, 2002; 
Hale and Querry, 1973). Considering μa at 656 nm, increases above 
0.04 mm− 1 are observed mainly near the endocarp (Fig. 5(A,B)) and 
towards the skin (Fig. 5(D)). In contrast, the cortex shows less pro
nounced absorption, which is below 0.01 mm− 1. All types of capillary 
bundles show a locally strongly limited increase of μa combined with a 
radial decrease within a few millimeters of the surrounding tissue. In the 

Fig. 5. Spatially resolved bulk effective scattering coefficient (μ′
s), surface scattering parameter (rs), and absorption coefficient (μa) measured at four positions (A-D) 

of different ‘Braeburn’ apples bisected along the equator. Each measurement was averaged over three measurement repetitions performed without moving 
the sample. 
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case of the petal bundle in Fig. 5(B), a fan-shaped decrease in μa, starting 
at the endocarp and moving outward, can be seen. The corresponding 
measurements at 945 nm show a similar but overall more homogeneous 
distribution. A striking feature is the spatial offset of the absorption 
maxima in the comparison of both wavelengths, which is clearly 
observed near the petal bundle in Fig. 5(A). The radial decrease of μa 
around the bundles also covers a larger area. Taking all measurements 
into account, μa at a wavelength of 945 nm is approximately between 
0.01 mm− 1 and 0.04 mm− 1. 

To our knowledge, this was the first time that the optical properties 
of apple tissue could be determined at a sufficiently high resolution to 
identify characteristic morphological features. Based on SFDI measure
ments of mature ‘Golden Delicious’ apples, Hu et al. (2020) recently 
observed an averaged μa of about 0.02 mm− 1 at 650 nm and μ′

s between 
1.0 mm− 1 and 1.5 mm− 1 at 850 nm for the cortex tissue, which agrees 
well with the present results. Although Hu et al. (2015) observed 
generally lower absolute values when examining ‘Redstar’ apples with 
an average μa of 0.007 mm− 1 and μ′

s of 0.6 mm− 1 at 630 nm, they also 
noted a pronounced inhomogeneity of the optical properties. Our results 
also show broad agreement when compared with previous non-spatially 
resolved measurements reported by other researchers. For example, 
based on measurements with an integrating sphere setup, Van Beers 
et al. (2017) reported the following optical properties for the cortex of 
‘Braeburn’ apples with a comparable stage of maturity: 
μa = 0.014 mm− 1 at 656 nm, μa = 0.012 mm− 1 at 945 nm and μ′

s =

1.1 mm− 1 at 850 nm. However, the magnitude of the results is also 
consistent with other work on different apple cultivars in storage (Cen 
et al., 2013; Rizzolo et al., 2010; Vanoli et al., 2020). 

Since water and chlorophyll b are known absorbers in apple tissue, 
the interpretation of the absorption characteristics is quite straightfor
ward. The local distribution of these main absorbers is relatively uni
form and changes continuously between the skin, core, and capillary 
bundles. In contrast, the scattering properties show a much larger 
location-dependent variance, which, consequently indicates a very 
heterogeneous structure. This could be due to the relationship between 
μ′

s and many different structural and cellular components. In various 
studies, researchers have suggested that in particular cell walls, the 
intercellular space (gas pores) as well as starch granules, vacuoles, 
chloroplasts or other organelles have an influence on μ′

s (Van Beers et al., 
2017; Vanoli et al., 2009; Cen et al., 2013). However, since there is 
usually not enough quantitative information about all these properties 
simultaneously, often only qualitative conclusions can be drawn by 
combining different indications. Thus, based on a statistical analysis of 
spatially resolved spectroscopy measurements, Wang et al. (2020) 
demonstrated a close correlation between μ′

s, porosity, and pore surface 
density and a subordinate influence of cell properties. By a simplified 
description of scattering, which is mainly defined by the fraction of 
refractive index boundaries per volume element, a strong influence of 
the interfaces between aqueous cells (n ≈ 1.33) and pores filled with gas 
(n ≈ 1.0) on the light propagation seems plausible. In contrast, most cell 
components and the cell walls differ only slightly in their refractive 
index, which is evident, for example, in phase-contrast tomography 
measurements of apple cells (Verboven et al., 2008). From an experi
mental point of view, the intercellular space of apples has recently been 
studied by several researchers based on X-ray micro-computed tomog
raphy (micro-CT) (Janssen et al., 2020; Herremans et al., 2015), who 
observed a strong radial dependence of both the porosity and spherical 
equivalent diameter of the gas pores. They determined porosity by 
image post-processing, which exploits the high contrast between cells 
and intercellular spaces by additional segmentation, filtering and 
thresholding of the micro-CT data. Based on the resulting binary images, 
the volume fraction of both components and thus the porosity can be 
calculated. While the porosity increased from typically 10 % near the 
core to 30 % at the cortex, the mean pore diameter increased from 
100 μm near the core to 300 μm at the cortex. Considering Mie’s theory 

describing light scattering from spherical particles in a surrounding 
medium, the changing porosity and broad size distribution of the gas 
pores could explain the observed positive gradient of μ′

s between the 
core and the outer cortex. Therefore, in Part 2 of this work, a theoretical 
estimation of the local change of μ′

s based on a Mie model considering 
the mentioned microstructural properties follows. 

3.3. Starch granules influence light scattering 

Within the scope of this work, emphasis was placed on investigating 
the influence of starch on the scattering properties of apple tissue. The 
starch content of unripe apples is known to reach up to 50 % of the apple 
dry weight and thus represents an important component especially 
during maturation and ripening (Stevenson et al., 2006). Starch accu
mulates in the form of spherical granules in specific storage organs of the 
cells, such as chloroplasts or amyloplasts (Gaweda and Ben, 2010). 
These granules have a dense, semi-crystalline structure with mean di
ameters of about 9 μm and are insoluble in water (Oates, 1997; Ste
venson et al., 2006; Carrín et al., 2004). Their refractive index can be 
assumed to be in the range of 1.50 to 1.54 based on literature data on the 
granules of other starchy plants (Wolf et al., 1962; Borch et al., 1972). 
Starch content of apple fruit typically reaches its maximum about 21 
weeks after full bloom with the highest concentrations in the cortex and 
lower concentrations near the core (Brookfield et al., 1997). During the 
following period of starch degradation, the granules are hydrolyzed by 
metabolic enzymes into various kinds of soluble sugars (Oates, 1997). 
Normally, hydrolysis is first completed near the core and therefore ap
pears to spread from the center (Doerflinger et al., 2015). Although 
hydrolysis is assumed to start at the same time throughout the apple, its 
duration locally depends strongly on the initial content, granule size, 
and degradation rate in the particular part of the fruit (Doerflinger et al., 
2015; Brookfield et al., 1997). As a result, the starch distribution in 
apple tissue can vary greatly during maturation. While some fruit zones 
have a very high starch content, this may already be completely 
degraded in other areas at the same time. 

The spatially resolved measurement technique was applied to 
investigate the influence of the starch content onto the optical proper
ties. Different ‘Braeburn’ and ‘Elstar’ apples were selected 23 weeks 
after full bloom at an advanced stage of starch degradation. Each apple 
was cut transversely along the equator into two equal halves. The first 
half was immediately coated with iodine solution to stain the fruit zones 
with high starch content, analogous to the conventional determination 
of the starch pattern index (SPI). After a few minutes, the resulting 
staining pattern revealed suitable measuring positions where significant 
differences in starch content could be observed. The second half of the 
same apple was then measured with the SFDI setup at each of the regions 
corresponding to the stained opposite part without further treatment. 
Subsequently, the second half of the apple was also coated with iodine 
solution and the respective staining patterns were photographed with a 
single-lens reflex camera (SLR) for later comparison, in exactly the same 
perspective as in the previous SFDI measurements. Fig. 6(A-C) shows 
both the recorded starch patterns (top row) and the corresponding μ′

s 
maps measured at a wavelength of 845 nm. Each measurement was 
averaged over three measurement repetitions without moving the 
sample. For quantitative comparison, a zone with high starch content 
(lined frame) and a zone with almost completed starch degradation 
(dashed frame) with a size of 5.5 mm × 5.5 mm were selected for each 
measurement. The corresponding μ′

s and μa values were averaged in each 
of these zones, and their spectra are shown in Fig. 6(D) with the 
respective standard deviations indicated, taking into account error 
propagation. In all three cases, the difference in μ′

s between the two 
zones was around 0.4 mm− 1, which corresponds to almost 60 %. No 
characteristic change in the spectral shape of μ′

s was observed, but rather 
an offset. At the same time, μa remained essentially unchanged when 
comparing the two zones. 
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Overall, the results indicate a direct and considerable influence of the 
starch granules on the scattering properties. However, it must be taken 
into account that other cellular and structural characteristics may also 
change, e.g., with progress of starch degradation. No information was 
found on the extent to which porosity might be locally related to the 
progress of starch degradation. In addition, the starch staining pattern 
only allows a qualitative assessment of starch content and does not allow 
conclusions to be drawn about absolute concentrations. However, 
assuming that the granules are in an aqueous environment within the 
cell, a significant difference in refractive indices can be assumed. This, 
together with the temporarily high weight fraction of starch granules in 
the total dry weight, could explain the observed effects. A more accurate 
estimate, based on Mie’s theory considering the concentrations and 
granule diameters reported in the literature, will be investigated in Part 
2 of this work. 

3.4. Scattering and absorption profiles reveal characteristics of transport 
structures 

Both the scattering and absorption properties investigated so far 
show a pronounced radial dependence. As already noted, on a structural 
level this can be related to both the intercellular space and the starch 
distribution. On the chemical level, characteristic changes in water 
content or plant pigments can also be expected. The radial changes in 
scattering and absorption properties are examined in more detail below 
using ‘Braeburn’ apple, harvested 26 weeks after full bloom. Measure
ments of the skin area with the outer cortex and inner cortex were 
carried out successively. The two measurements could then be accu
rately aligned by comparing the topography of an appropriately chosen 
overlapping area, determined by triangulation. Using the combined 
maps, the radial profiles of μ′

s and μa were finally calculated by averaging 
the optical properties between the skin and the core line within a 2 mm 
wide region. Fig. 7(A) shows the RGB image of the examined apple 
tissue, with the radial profile shown as a black dashed line. At a distance 
of 14 mm from the skin, approximately in the center of the marked area, 
a petal cluster is visible as a greenish spot. Fig. 7(B) shows the corre
sponding μ′

s profiles, again measured at wavelengths of 656 nm and 
945 nm. As previously observed, μ′

s shows an almost linear decrease 
from values between 1.5 mm− 1 at the skin to 0.6 mm− 1 at the inner 
cortex. Beyond 20 mm from the skin, μ′

s tends to increase slightly over 

the last few millimeters toward the core region. At a distance of about 
12.5 mm from the skin, both scattering profiles show a dip with a 
modulation depth of about 35 %, apparently related to the petal bundle. 
Furthermore, the nearly identical shape of the profiles at different 
wavelengths indicates that μ′

s does not have a pronounced spectral 
dependence and thus the main scatterers are large compared to the 
wavelength used. In contrast, the corresponding absorption profiles in 
Fig. 7(C) show a clear difference between the two wavelengths. After a 
strong decrease near the skin, the μa profiles hardly change toward the 
outer cortex, reaching values of 0.015 mm− 1 at 656 nm and 0.022 mm− 1 

at 945 nm. It should be noted that the applied semi-infinite model leads 
to errors especially near the apple skin, which will be examined in more 
detail later. Towards the petal bundle, a slight increase followed by a 
subsequent absorption peak is observed in each case. At 656 nm, the 
absorption maximum occurs at a distance of 14 mm from the skin. In 
contrast, the rather flat absorption maximum at 945 nm occurs at a 
distance of 11 mm from the skin, offset by about 3 mm relative to the 
chlorophyll maximum seen at 656 nm, and increases again within a few 
millimeters after reaching the minimum absorption at a distance of 
about 16 mm. In both cases, the μa profiles increase continuously be
tween 0.01 mm− 1 and 0.04 mm− 1 toward the core region. 

Overall, it appears that the petal bundle at the core line separates the 
cortex from the core tissue, which differ in their structural properties as 
well as in their water and chlorophyll content. Similarly, Janssen et al. 
(2020) reported low mechanical connectivity between these regions 
based on micro-CT measurements. Since vascular bundles and the core 
line are composed of rather dense tissue with lower porosity, our ob
servations of a decrease in μ′

s assuming comparable pore sizes seem to be 
in agreement with Janssen et al. (2020) and Verboven et al. (2008). 
Further, good agreement of the radial progression of μ′

s is particularly 
evident when compared with the porosity profile reported in Dražeta 
et al. (2004), since both profiles were measured in comparable orien
tation near a petal bundle. Considering μa = 0.03 mm− 1 for pure water 
at 945 nm (black dashed line in Fig. 7(C)), the spectral bandwidth of the 
LED, and neglecting other background absorbers, the measured μa pro
file allows a rough estimate of the absolute water volume content. It 
ranges from about 50 % in the inner cortex to 80 % in the outer cortex, 
which seems generally reasonable and further illustrates the influence of 
the petal bundle on the water balance in cortex tissue. In addition, the 
offset between maximum water and chlorophyll absorption may 

Fig. 6. (A-C) Comparison of starch patterns (top row) for different cortex samples (‘Elstar’ and ‘Braeburn’) and the corresponding μ′
s maps (bottom row) measured at 

a wavelength of 845 nm before the sample was treated with iodine solution. Each measurement was averaged over three measurement repetitions without moving 
the sample. In (D), the spectrally resolved μ′

s and μa averaged within different tissue zones with either high starch content (dark stained zones, marked with lined 
frames) or nearly completed starch degradation (unstained zones, marked with dashed frames) are shown. The error bars indicate the standard deviations obtained 
from averaging over the marked zones. 
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indicate a collateral-type petal bundle. In this case, the vessels for the 
transport of water and minerals (xylem) on one side and for the trans
port of soluble organic compounds metabolized during photosynthesis 
(phloem) on the other side are separated (Verboven et al., 2008; Her
remans et al., 2015). Interestingly, μ′

s shows a local minimum exactly at 
the border between these two tissue types. 

3.5. Temporal evolution of scattering and absorption profiles 

Since optical sensors for the determination of optical properties are 
usually designed for measurements on intact apples, the outer cortex 
tissue in particular plays an important role in the investigation of light 
propagation, taking into account the wavelength and thus the penetra
tion depth. It is known from previous studies, for example, that the tissue 
under the skin in particular has a high chlorophyll content, which is 
degraded during maturation. To investigate this in more detail, the 
temporal changes in the absorption and scattering profiles of the outer 
cortex were examined. The cultivar ‘Jonagold’ was selected as an 
example for the study, and the profiles of six apples were measured 
weekly according to the procedure presented in Section 3.4. A single 

measurement of the outer cortex region was performed in each case, 
allowing the outer 16 mm of tissue to be recorded on average. The 
scattering profiles in Fig. 8(A) show the temporal evolution of μ′

s 
measured at a wavelength of 850 nm. 

In general, the μ′
s profiles initially show a slight increase starting from 

the skin to a maximum reached approximately within the outer 
5–10 mm of the cortex. Thereafter, a decrease is consistently observed 
toward the inner cortex. The lateral modulation of the profile is least 
pronounced at the beginning and end of the maturation period, at about 
15 %, and most pronounced 20 weeks after full bloom, at 25 %. At the 
same time, an absolute decrease in the scattering profiles is observed 
from week to week, which means that the mean μ′

s decreases by almost 
40 % during maturation. The absorption profiles in Fig. 8(B) were 
evaluated at a wavelength of 656 nm to draw conclusions about chlo
rophyll content. All profiles show an almost exponential decrease of μa 
from the outer to the inner cortex. The weekly decrease is very uniform 
and shows no pronounced location dependence, with an overall 
decrease by a factor of 3 during the studied period. However, it is 
noticeable that the degradation rate varies, in particular a very strong 
decrease was observed between week 19 and week 20 after full bloom, 
whereas no change is visible between week 15 and 16. 

Since the evaluation is based on a semi-infinite model, it was ex
pected that the skin area would exhibit artifacts due to the tissue-air 
boundary. To investigate the extent of this effect, a Monte Carlo simu
lation of the SFDI measurements was performed. For this, a hemisphere 
with comparable geometry but homogeneous optical properties (μ′

s =

1.0 mm− 1 and μa = 0.01 mm− 1) was assumed. Comparable to the 
experiment, the air-tissue boundaries were each aligned perpendicular 
to the sinusoidal patterns. In contrast to a parallel alignment, the 
boundary effects can be further minimized in this way. After evaluation 
of the simulated data with the same semi-infinite model as before, the 
black dotted profiles shown in Fig. 8(A and B) resulted. While optical 
properties were correctly determined at distances from the skin greater 
than about 2 mm, significant deviations are observed near the skin. The 
scattering properties are systematically under-determined in the 

Fig. 7. (A) RGB image of an equatorially sliced ‘Braeburn’ apple with a petal 
bundle (greenish spot) at a distance of 14 mm from the skin. The black dotted 
line in the magnified image marks the position of the profile. The corresponding 
radial profiles of (B) μ′

s and (C) μa were determined at wavelengths of 656 nm 
and 945 nm averaged over a range of 2 mm, respectively, based on two com
plementary measurement positions with three measurement repetitions each. 
The colored shadows show the standard deviation within the 2 mm profile 
range. For comparison, the black dashed line in (C) marks the expected 
absorbance of dist. water at 945 nm considering the spectral bandwidth of 
the LED. 

Fig. 8. Temporal evolution of radial line profiles for (A) μ′
s at a wavelength of 

850 nm and (B) μa at a wavelength of 656 nm measured on ‘Jonagold’ apples 
during maturation. The colored shadows indicate the resulting standard de
viations for a weekly sample set of six apples with one measurement each. The 
dashed lines show the optical properties obtained for simulated SFDI data for a 
sample with comparable geometry but homogeneous μ′

s and μa. Especially 
within the first 2 mm from the skin, boundary effects lead to deviations. 
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boundary zone, which explains the corresponding decrease in the apple 
measurements near the skin. Absorption, on the other hand, is over
estimated by the semi-infinite model, resulting in an incorrect μa within 
the first 3 mm. In particular, for week 25 after full bloom, the measured 
absorption profile agrees very well with the simulation, so an absorption 
gradient is no longer detectable in this case. This means that in the ripe 
apple, the low chlorophyll content in the outer cortex is relatively ho
mogeneously distributed. 

Overall, the results show that there is a very heterogeneous change in 
optical properties in the radial direction, especially during maturation. 
In the outer 1.5 cm of the cortex, a variation of μ′

s by up to 30 % and μa in 
the case of chlorophyll concentration even by up to 80 % relative to the 
skin area could be detected. This is relevant because typically the 
average penetration depths of optical measuring methods are exactly in 
this range of up to 1.5 cm (Lammertyn et al., 2000; Seifert et al., 2015). 
Depending on the wavelength and the depth sensitivity of the respective 
method, a considerable deviation of the results obtained with different 
devices can be expected. Also Vanoli et al. (2020) observed these dif
ferences, for example, when comparing measurements on the same ap
ples with spatially-resolved and time-resolved spectroscopy. Overall, the 
results also allow conclusions to be drawn about different physiological 
processes. The very similar relative decrease in μa from week to week 
compared for all distances to the skin indicates that the rate of chloro
phyll degradation depends primarily on the corresponding concentra
tion. At the same time, it was also observed that the largest change 
occurs in a relatively short period of 2 weeks after about 19 weeks after 
full bloom. The scattering profiles show features that can be attributed 
to structural changes. Particularly at week 25 after full bloom, when 
starch degradation was complete, μ′

s showed a relatively flat curve. This 
is probably mainly due to changes in porosity as reported by Janssen 
et al. (2020) and Herremans et al. (2013). Much larger differences be
tween the outer and inner cortex were observed in the weeks prior to 
this, most noticeably 20 weeks after full bloom, when starch degradation 
was about half complete. In this case, the larger gradient in the μ′

s pro
files could be related to an additional influence of the different starch 
content of inner and outer cortex. 

3.6. Temporal evolution of the cortex mean optical properties 

The optical properties are now compared for each of the four culti
vars. Six apples were measured weekly with the SFDI setup on the sun 
exposed and shaded sides after cutting off the skin and the outer tissue 
layer with a maximum thickness of about 4 mm. The resulting μ′

s and μa 
were first averaged over the measured area and over both sides of each 
apple. Then, taking into account error propagation, the results for each 
cultivar were also averaged over all apples per week and referred to as 
mean optical properties in the following discussion. 

In a first step, the optical properties at particularly important 
wavelengths were considered. Fig. 9(A) shows the temporal evolution of 
μ′

s at 845 nm and μa at 447 nm, 656 nm, and 945 nm. Weekly examina
tions began 12 weeks after full bloom with ‘Elstar’ and ‘Gala’, two early 
maturing cultivars. Their initial μ′

s in Fig. 9(A) were the highest at 
1.6 mm− 1 and 1.7 mm− 1, respectively. No significant change was 
observed in the first four weeks, only in the following six weeks was a 
decrease detected, here μ′

s decreased to 1.25 mm− 1 for ‘Elstar’ and 
1.1 mm− 1 for ‘Gala’. This corresponds to an overall decrease of 25 % and 
35 %, respectively. ‘Jonagold’ is a medium-early maturing cultivar that 
was examined starting 15 weeks after full bloom. In this case, a pro
nounced steady decrease in μ′

s was observed from 1.43 mm− 1 to 
0.91 mm− 1, also corresponding to a change of 35 %. ‘Braeburn’, a late- 
maturing cultivar, was examined from week 18 after full bloom. In this 
case, μ′

s increased to 1.22 mm− 1 in the first three weeks, followed by a 
slight decrease to 1.00 mm− 1 within eight weeks. With a change of less 
than 20 %, the decrease was detectable but least pronounced. For all 
four cultivars, measurements were made up to four weeks after the 

optimal harvest date for long-term storage, which was determined using 
the Streif index shown in Fig. 9(E). The Streif indices at harvest were 
0.44 for ‘Elstar’, 0.21 for ‘Gala’, 0.08 for ‘Jonagold’, and 0.30 for 
‘Braeburn’. Due to changing climatic conditions fruit were mature for 
harvest earlier than indicated by the long term SI values. The harvest 
dates determined according to these indices are marked by arrows in 
Fig. 9(A). 

The cultivars show characteristic differences with regard to their 
absorption properties. In addition to chlorophyll and water, which have 
already been discussed, carotenoids in particular are known to play an 

Fig. 9. Temporal evolution of mean (A) μ′
s at 845 nm, (B) μa at 447 nm, (C) μa at 

656 nm, and (D) μa at 945 nm of apple cortex compared for all four cultivars 
during maturation. Error bars indicate the resulting standard deviations for a 
weekly sample set of six apples with two measurements each. The colored ar
rows in (A) mark the recommended harvest dates for each cultivar, which were 
determined based on the Streif indices shown in (E). 
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important role in maturing apple tissue. In general, they are assigned to 
absorption characteristics in the range below 500 nm, Merzlyak et al. 
(2003) specifically mentioned 425 nm, 455 nm, and 480 nm. Thus, μa at 
447 nm, as shown in Fig. 9(B), can be associated with carotenoid content 
in apple tissue. All cultivars showed a significant decrease in μa during 
the first four weeks after the start of the study, most pronounced for 
‘Gala’ between 0.20 mm− 1 and 0.10 mm− 1. From week 23 after full 
bloom, ‘Gala’, ‘Jonagold’, and ‘Braeburn’ showed a rapid increase in 
absorption up to 0.15 mm− 1, corresponding to an increase of 50 %. A 
slight decrease during the last weeks was observed especially for 
‘Braeburn’. At 656 nm in Fig. 9(C), all cultivars show a fairly uniform 
decrease in μa from 0.06 mm− 1 to 0.02 mm− 1. More or less after the 
harvest date, no significant changes are seen. In Fig. 9(D), μa at 945 nm 

shows a continuous increase from 0.02 mm− 1 to 0.035 mm− 1. Since 
water is one of the main absorbers in this spectral region, the temporal 
change in μa indicates an increase in water content per volume. How
ever, μa exceeds the absorption of 0.03 mm− 1 that would have been 
expected for distilled water, especially in the case of ‘Braeburn’. This 
circumstance could be explained, for example, by the influence of 
additional background absorbers. 

An overview of the spectrally resolved representation of the mean 
optical properties is shown in Fig. 10. For clarity, the values are given 
only for every second week. As observed in previous measurements, μ′

s 
shows no significant spectral dependence, neither for the different cul
tivars nor for the different weeks. The weekly change is also approxi
mately the same for all wavelengths. The absorption properties hardly 

Fig. 10. Temporal evolution of spectrally resolved μ′
s and μa for the cortex of (A) ‘Elstar’, (B) ‘Gala’, (C) ‘Jonagold’, and (D) ‘Braeburn’. The respective harvest date 

was determined by the Streif index at week 18 (‘Elstar’), week 19 (‘Gala’), week 22 (‘Jonagold’), and week 25 (‘Braeburn’) after full bloom. Error bars indicate the 
resulting standard deviations for a weekly sample set of six apples with two measurements each. 
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show major difference in comparison for all four cultivars. The highest 
μa is at 447 nm, followed by two maxima at 656 nm and 945 nm, which 
can be assigned to carotenoids, chlorophyll b, and water, respectively. 
The most significant temporal changes occur at 619 nm and 656 nm and 
are therefore related to the general decline of chlorophylls during 
maturation. 

In summary, the results show the temporal development of the op
tical properties, which are directly related to physiological processes - 
for example, the buildup and degradation of important plant pigments 
can be traced on the basis of the measurement results. In addition, sig
nificant cultivar-dependent differences were demonstrated for structural 
properties over a very long period of fruit development. In particular, 
with respect to chlorophyll decrease, researchers have frequently shown 
similar results for intact apple (Zude-Sasse et al., 2002; Merzlyak et al., 
2003; McGlone et al., 2002), with the skin typically contributing by far 
the largest proportion of total chlorophyll content. With respect to the 
cortex, Van Beers et al. (2017) reported a decrease in μa at 680 nm from 
0.06 mm− 1 to 0.02 mm− 1 based on integrating sphere measurements, 
which was attributed to chlorophyll a degradation. When comparing the 
results with our μa at 656 nm, it must be taken into account that they 
examined a deeper layer of the cortex, with consequently lower chlo
rophyll content. Also, during this study, the absorption peak of 
chlorophyll a at 680 nm could not be resolved due to the fixed wave
lengths. However, a relative decrease of μa by a factor of 3 was found to 
be consistent for chlorophyll a and chlorophyll b considering both 
studies. This seems to confirm the observation of Merzlyak et al. (2003), 
who reported a constant ratio of chlorophyll a and chlorophyll b ab
sorption for several cultivars. Ampomah-Dwamena et al. (2012) also 
found a general decrease in chlorophyll a and chlorophyll b concentra
tions in the cortex, while the ratio of initial and final concentrations 
depended strongly on the particular apple genotype. Regarding the 
temporal evolution of carotenoids, Ampomah-Dwamena et al. (2012) 
reported a decrease in their concentration in the cortex during matu
ration, followed by an increase during ripening. This was confirmed by 
the results for all cultivars in our study, except for ‘Elstar’. One expla
nation for this effect could be the involvement of several carotenoid 
compounds with similar absorption profiles. In particular, Ampo
mah-Dwamena et al. (2012) reported a high lutein content in the cortex 
of ‘Royal Gala’ at early fruit stages, which then decreased during 
maturation, followed by an accumulation of violaxanthin and neo
xanthin during ripening. However, the predominant compounds and 
their proportions differed to a large extent in the different apple geno
types studied. The higher μa at 447 nm compared to 656 nm further 
indicates a predominant influence of carotenoids in apple cortex 
compared to chlorophyll, which is in agreement with Delgado-Pelayo 
et al. (2014). Lastly, the increase of μa at 945 nm remains to be dis
cussed, which is probably related to the water content of the tissue. In 
this context, the water-containing vacuoles play an important role, as 
they can occupy up to 90 % of the cell volume in ripe apples and also 
have a considerable sugar content (Yamaki and Ino, 1992; Shiratake and 
Martinoia, 2007). The influence of different types of sugars on water 
absorption was studied, for example, by Giangiacomo (2006) using NIR 
spectroscopy. A significant increase in water absorption at 1928 nm is 
reported, most likely due to the increase in H-bonds and the ”structure 
breaking effect” when sugar molecules are added. It is likely that this 
effect could also be responsible for the increase in μa at 945 nm observed 
in this work. A similar interpretation can be made of the results of Wei 
et al. (2020), who recently reported a high correlation between μa at a 
wavelength of 980 nm and sucrose content, measured with an inte
grating sphere on stored ‘Fuji’ apples. 

In contrast to the absorption properties, the temporal evolution of μ′
s 

of apple tissue during maturation has been investigated in only a few 
studies. Van Beers et al. (2017) reported a decrease from 1.3 mm− 1 to 
0.9 mm− 1 for ‘Braeburn’ and two other cultivars based on integrating 
sphere measurements at a wavelength of 850 nm, but no characteristic 
differences were observed when comparing between different cultivars. 

For ‘Elstar’ apples, Seifert et al. (2015) demonstrated a decrease from 
1.80 mm− 1 to 1.55 mm− 1 with time-resolved measurements at a wave
length of 850 nm. They mentioned a low dependence of μ′

s on wave
length and thus a flat spectral curve, which is in agreement with our 
findings. Other researchers focused on the study of μ′

s during storage, for 
example, Cen et al. (2013) noted a significant decrease during 30 d 
storage at 20 ◦C and Wei et al. (2020) during 150 d at, both, 0 ◦C and 
20 ◦C. In contrast to our results during maturation, other researchers 
observed a significant increase in μ′

s during storage and fruit softening, 
as recently reported by Vanoli et al. (2020) or Rowe et al. (2014). 
Overall, the temporal evolution of μ′

s under defined conditions during 
maturation and storage shows reproducible results, but cannot in all 
cases be clearly attributed to specific components or structural proper
ties of the apple tissue. Rather, it must be assumed that it is influenced by 
many parameters simultaneously and to varying degrees, as will be 
examined in more detail in Part 2 of this paper using Mie’s theory. 

4. Conclusions 

Based on SFDI measurements, high-resolution μ′
s, μa, and rs maps 

revealed considerable heterogeneity in the absorption and scattering 
properties of different types of apple tissue during maturation. 
Morphological features could be clearly visualized by their optical 
properties, e.g. the core line and vascular bundles cause local decreases 
in μ′

s. In contrast, μa maps at 656 nm and 945 nm indicate an overall 
homogeneous distribution of the main absorbers chlorophyll b and 
water, with characteristic increases in the cortex tissue under the skin, 
near vascular bundles, and near the core. There was a general tendency 
for μ′

s to increase from the core toward the skin by up to 30 %. This 
appears to be closely related to the radial-dependent properties of the 
intercellular space. Tissue with a high starch content has about 60 % 
higher μ′

s compared to tissue with low starch content. However, in
creases in μ′

s could not be fully attributed to the starch granules, 
although their size, concentration, and refractive index suggest it. The 
temporal decrease in μ′

s during maturation was up to 35 %, depending on 
the cultivar and also appeared to be related to changes in intercellular 
space and starch content. Lastly, the temporal evolution of μa during 
maturation indicated a decrease in chlorophyll b content at 656 nm and 
a sharp increase in carotenoid content at 447 nm just before ripening. 
However, the important question why μ′

s can increase during apple 
storage remains unresolved. Additional experimental approaches using 
micro-CT or phase contrast measurements may provide answers. Further 
theoretical considerations of the specific scattering components of apple 
tissue based on Mie’s theory are the subject of Part 2 of this study. 
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A B S T R A C T   

Mie’s theory was used to develop a theoretical model to describe light propagation in apple tissue based on its 
microstructural properties. Taking into account the size distributions and volume fractions of intercellular space 
and starch granules, which are known in detail from previous studies, the model predicted a decrease in the 
effective scattering coefficient μ′

s of about 30 % during maturation. For the lateral change of μ′
s within a ripe 

apple, the model predicted an increase up to 35 % from core to skin. In both cases, the relative changes agree well 
with the experimental results obtained with spatial frequency domain imaging (SFDI) and an integrating sphere 
setup. Based on the model, at least 70 % of total μ′

s is attributable to intercellular space, which accordingly plays a 
dominant role in the temporal and lateral change of scattering. Using an extended Mie model for layered particles 
assuming a dense cell structure, a negligible effect on μ′

s was observed for the cell wall. However, for cells 
separated from the surrounding tissue by a narrow air gap (e.g. dissolution of the middle lamella), μ′

s was 20 % 
higher than for cells theoretically isolated in air. Lastly, it was shown that an increase in soluble solids content 
(SSC) during maturation by up to 15 % and the associated higher refractive index in the cells led to an increase in 
μ′

s by about 3–5 % compared to the case without considering SSC. Overall, the application of Mie’s theory proved 
suitable to investigate the influence of different morphological structures on light scattering in apple tissue.   

1. Introduction 

Despite numerous studies focused on determining the optical prop
erties of agricultural products, the exact influence of individual 
morphological components at the microscopic level is still largely un
known. However, a deeper understanding of light propagation in 
different types of biological tissue is crucial for the future development of 
innovative optical measurement methods and applications. In recent 
years, this has led to an increase in using physics-based models for data 
analysis. The radiative transfer equation (RTE) provides a comprehensive 
theoretical approach to describe the propagation of light in scattering 
media and to obtain quantitative and thus comparable parameters. 
Besides the absorption coefficient μa, the scattering coefficient μs, and the 
anisotropy factor g derived from the phase function P(θ), the effective 
scattering coefficient defined according to μ′

s = (1 − g)μs is an important 
quantity to characterize the optical properties of fruit. In general, μa can 

be related to the chemical and μ′
s to the structural properties of the tissue. 

Various analytical solutions of the RTE can be found for simple and 
regular geometries. For example, a multilayer semi-infinite model allows, 
under certain conditions, the fast and accurate determination of the op
tical properties by solving the inverse problem based on measured data 
(Liemert and Kienle, 2012b, 2013; Liemert et al., 2017). The diffusion 
equation is also frequently used as an approximation of the RTE, but its 
validity is much more limited (Farrell et al., 1992). For complex geom
etries, numerical methods such as the Monte Carlo method are used to 
solve the RTE. The optical properties are then determined by a statistical 
simulation of scattering and absorption events for numerous light paths 
in the scattering medium. However, this requires a detailed knowledge of 
the structure and geometry of the individual components and their 
refractive indices, from which the scattering coefficient, the phase 
function, and the absorption coefficient can be calculated. In the case of 
biological tissue, these usually have to be determined empirically. If the 
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scattering medium can be described as a suspension of regular spheres or 
cylinders in a surrounding medium, Mie type theories are applicable. As 
an analytical solution of the fundamental Maxwell equations, they 
provide exact results for particles with arbitrary size-to-wavelength ratios 
and refractive indices. This also explains their great importance and 
widespread use in various fields of application, e.g. atmospheric research, 
material sciences, graphics, and biology (Jackèl and Walter, 1997; 
Frisvad et al., 2007; Ulicný, 1992). However, the extent to which Mie’s 
solution is applicable to model a particular type of scattering medium 
requires a profound knowledge of its microstructural properties. Exten
sive information is available for apple fruit (Malus domestica Borkh.), 
whose morphological and histological properties have recently received 
much attention through measurement techniques such as scanning 
electron microscopy (SEM) or X-ray computed microtomography 
(micro-CT) (Lapsley et al., 1992; Herremans et al., 2013; Janssen et al., 
2020). In this context, experimental findings indicate that the structure of 
apple tissue is mainly characterized by the cell organelles, cell walls, and 
intercellular space. However, the question remains open to what extent 
these individual microscopic components interact with light and thus 
influence the optical properties of apple tissue during maturation and 
storage. 

From an experimental point of view, extensive studies on the optical 
properties of apple tissue are available. Using various time-, spatially-, 
and spatial frequency-resolved techniques, a characteristic decrease in 
μ′

s was observed during maturation (Van Beers et al., 2017; Seifert et al., 
2015; Lohner et al., 2021), while an increase in μ′

s was partially observed 
during storage (Vanoli et al., 2020; Rowe et al., 2014). Spatially resolved 
scattering property studies showed a high degree of heterogeneity with a 
tendency for μ′

s to increase from the core to the skin (Lohner et al., 2021). 
As part of a correlation analysis, Wang et al. (2020) suggested that the 
intercellular space has a major influence on the scattering properties, 
while the shape, size, and components of the individual cells play a 
minor role. Additional influences of the starch granules or the cell walls 
are often discussed and first experimental evidence has been provided 
(Lohner et al., 2021), but a doubtless separation of the different effects 
has not yet been achieved. On the theoretical side, there have been few 
attempts to directly simulate the optical properties of apples. Basic 
studies based on the Monte Carlo method investigated for example, the 
penetration depth of light at different wavelengths or the influence of 
the skin to determine the optical properties of apple tissue (Vaudelle and 
L’Huillier, 2015; Askoura et al., 2015; Qin and Lu, 2009). Mie’s solution 
has mostly been used to roughly characterize the average size of the 
involved scatterers by assuming a power-law function for the spectral 
dependence of μ′

s (Seifert et al., 2015; Vanoli et al., 2011; Saeys et al., 
2010). 

The aim of this work was to develop a polydisperse Mie model to 
describe light scattering in apple tissue with realistic assumptions for its 
microstructure. Using the size distribution and volume content of air 
pores and starch granules known from literature, the associated tem
poral and lateral change of μ′

s can be simulated and compared with re
sults from spatial frequency domain imaging (SFDI) and an integrating 
sphere setup. Another objective was to estimate how the change in the 
relative refractive index, e.g. by increasing soluble solids content (SSC) 
during maturation, affects scattering. Lastly, the extension of Mie’s 
theory to layered particles should provide an approach to investigate the 
influence of cell walls on the scattering properties for different cell 
configurations. In particular, to clarify whether changes in cell walls 
may be associated with an increase in μ′

s during storage. 

2. Theory 

2.1. Mie solution for spherical particles 

The Mie solution to Maxwell’s equations (also called Lorenz–Mie 
theory) describes the electromagnetic scattering by single homogeneous 

and isotropic spheres in a surrounding medium. The results are char
acterized by the size parameter x = πd/λ, which is the ratio between 
sphere diameter d and light wavelength λ, and the ratio m between the 
complex refractive index nsph of the sphere and the real refractive index 
nmed of the surrounding non-absorbing medium 

m =
nsph

nmed
. (1)  

In addition to this basic model, numerous extensions have been pub
lished which consider, e.g. an absorbing surrounding or layered spheres 
(Mundy et al., 1974; Kai et al., 1994). Advantageously, numerous fast 
and efficient implementations are available for these extended solutions, 
which have been used in the context of this work (Bohren and Huffman, 
1983; van de Hulst, 1957; Wiscombe, 1980; Schäfer et al., 2012; Schäfer, 
2016). Most often, a vector harmonic approach based on spherical Bessel 
functions is used to compute the far-field solution of a given configu
ration, providing, e.g. the scattering cross section Csca, the absorption 
cross section Cabs, and the extinction cross section Cext, which are linked 
via 

Cext = Csca + Cabs. (2)  

Mie’s solution further provides the phase function P(θ, ϕ), which de
scribes the dependence of the scattered light intensity in spherical co
ordinates, and the anisotropy factor g, which takes on values between 
− 1 (backward scattering) and +1 (forward scattering) (Bohren and 
Huffman, 1983). For rotationally symmetric particles, the phase func
tion P(θ) depends only on the scattering angle θ and is normalized so that 
∫ π

0
P(θ)sin(θ)dθ = 1. (3)  

If a medium consists of several spheres of the same type, the scattering 
coefficient μs and the absorption coefficient μa can be calculated by 
scaling with respect to their particle density ρN (particles per unit vol
ume) as 

μs/a = ρNCsca/abs. (4)  

The scattering coefficient and the anisotropy factor can be combined to 
yield the effective scattering coefficient μ′

s = μs (1 − g). 

2.1.1. Polydisperse particles 
Real systems usually consist of particles with different diameters, 

which are subject to a characteristic size distribution. In the case of a 
normal distribution, it can be defined by specifying a mean particle size 
μ and the standard deviation σ. In naturally formed systems, the log- 
normal distribution 

fN(r) =
1

r s
̅̅̅̅̅
2π

√ exp
[
− (lnr − m)

2

2s2

]

, for r > 0, (5)  

with particle radius r and 

m = ln

(
μ2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ2 + σ2

√

)

and s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln
(

1 +
σ2

μ2

)√

, (6)  

plays a particularly important role for describing the size distribution of 
biological tissue such as cells or colloids (Koch, 1966; Hergert and 
Wriedt, 2012). Since Mie’s solution can only be applied for discrete 
particle sizes, a discretization of the size distribution is necessary. The 
distribution is divided into i intervals with a mean radius ri and the 
distribution function fN(r) is normalized such that 

fv =
∑

i

4
3

πr3
i fN(ri), (7)  

where fv is the volume fraction and fN(ri) is the respective particle 
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density. After calculating Mie’s solution for all particle sizes ri, the op
tical properties of the polydisperse system for a normalized phase 
function P(θ, ri) consequently result as (Modest, 2003) 

μs =
∑

i
Csca(ri) fN(ri), μa =

∑

i
Cabs(ri) fN(ri), (8)  

P(θ) =
∑

iCsca(ri) P(θ, ri) fN(ri)

μs
, (9)  

g =

∑
iCsca(ri) g(ri) fN(ri)

μs
. (10)  

The choice of a suitable discretization plays an important role since the 
number of size intervals influences, on the one hand, the accuracy, and 
on the other hand, the computation time, if a large wavelength range is 
examined (Aernouts et al., 2014). As a compromise, 200–400 size in
tervals were mostly considered for the following calculations. 

2.1.2. Mie model for biological tissue 
Due to its complex composition and structure, biological tissue 

cannot be regarded without restriction as a suspension of spherical 
particles in the sense of Mie’s solution. In reality, for example, non- 
spherical particles, strong absorption of the surrounding medium or a 
high volume concentration of the particles cause considerable de
viations compared to the theory. Nevertheless, Mie’s theory is regularly 
used to solve the inverse problem based on experimental data, e.g. to 
determine the effective diameter or the size distribution of different cell 
types in human tissue (Wilson and Foster, 2005; Wang et al., 2005; 
Hammer et al., 1998). Forward calculations for the prediction of optical 
properties based on Mie simulation considering the microstructure of 
the investigated samples have also been successfully performed. In 
addition to Mie models for milk (Frisvad et al., 2007), seawater and sea 
ice (Zhang et al., 2007; Hamre et al., 2004), more complex models for 
human skin or other tissue types (Schmitt and Kumar, 1998; Bhandari 
et al., 2011; Wang et al., 2013) should be mentioned. 

The deviations from the Mie model caused by a non-spherical shape 
of the particles or rough surfaces are particularly well studied in the 
field of atmospheric science. Using ice crystals as an example, Grenfell 
and Warren (1999) have shown that approximating cylinders, hexa
gons, or plates by spheres with an equivalent volume-to-surface ratio 
leads to very accurate results, with deviations usually below 5 % for 
the scattering and extinction coefficients, but larger deviations for the 
phase function. Similarly, for elliptical or Chebychev-shaped particles, 
the scattering and absorption cross sections can be approximated 
assuming a sphere in many cases, while the phase function can have 
large deviations in individual cases (Gronarz et al., 2017; Chýlek, 
1977; Mugnai and Wiscombe, 1986). For high volume fractions and 
correspondingly densely packed particles, there is an overall decrease 
in μs due to the interaction of their near fields, which is referred to as 
dependent scattering. While this effect can occur for particles with 
small size parameters (x ≈ 1) even at volume concentrations below 
10 %, particles with large size parameters (x ≈ 100) can often be 
considered independent at volume concentrations up to 70 % (Brew
ster and Tien, 1982). 

From these results it follows that apple tissue can also be described in 
principle by Mie’s theory. For air pores with large size parameters from 
200 to 5000 and volume concentrations up to 25 %, mainly independent 
scattering can be expected. In general, Mie’s theory approaches 
geometrical optics in this size range. Although the assumption of 
spherical air pores is a severe simplification, a sufficiently accurate 
description of the scattering properties can be expected if the correct 
volume or better volume–surface ratio is taken into account (Grenfell 
and Warren, 1999). In contrast, starch granules with size parameters 

below 100 are significantly smaller and have a spherical shape by na
ture. With volume fractions of maximum 3 %, mainly independent 
scattering can be expected here as well. 

3. Materials and methods 

3.1. Spatial frequency domain imaging 

The spatially resolved optical properties of different apple samples 
were determined using a setup for SFDI, which has already been pre
sented in detail in the first part of this work (Lohner et al., 2021). The 
setup provided sequential illumination at eight switchable wavelengths 
between 447 and 945 nm, each with a narrow bandwidth of approxi
mately 10 nm. To prepare the apple samples, the skin and outer 3 mm of 
underlying tissue were removed with a sharp slicer. The underlying 
cortex tissue was carefully dried to avoid reflections from juice droplets 
and measured immediately, i.e. before oxidative browning occurred. 
During the measurement, a digital light projector (DLP LightCrafter 
6500, Texas Instruments, USA) projected sinusoidal patterns with 
different spatial frequencies obliquely onto the sample, and the diffusely 
reflected light was measured with an sCMOS camera (Zyla 4.2 sCMOS, 
Andor, UK). By recording three phase-shifted patterns each at spatial 
frequencies between 0 and 0.5 mm− 1, the characteristic amplitude and 
phase modulation could be determined using demodulation algorithms. 
During post-processing, the raw data were corrected for 
location-dependent deviations in intensity or spatial frequency, which 
are characterized by a one-time calibration of the system. During eval
uation, a light propagation model was fitted to the raw data based on an 
analytical solution of the RTE for semi-infinite geometries (Liemert and 
Kienle, 2012a, b, 2013). This provides the optical properties for each 
pixel, in particular μ′

s, μa and optionally the surface scattering parameter 
rs (Nothelfer et al., 2018), taking into account further parameters such as 
the refractive index or the anisotropy factor. 

3.2. Integrating sphere measurements 

As a further method for the measurement of the optical properties, an 
integrating sphere setup was used, which was recently designed and 
developed by Foschum et al. (2020) and Bergmann et al. (2020) in 
combination with an evaluation method based on Monte Carlo simula
tions. Essentially, it consists of a 3D-printed and barium sulfate-coated 
sphere with an inner diameter of 150 mm, a halogen light source and 
two spectrometers: one for the predominantly VIS from 200 to 1100 nm 
(Maya2000Pro, Ocean Optics, USA) and one for the NIR from 900 to 
1700 nm (NIRQuest512-1.7, Ocean Optics, USA). A 100 W halogen lamp 
(Halostar Starlite, Osram, Germany) in combination with an open-frame 
power supply served as a light source. For sample preparation, the skin 
and outer coarse-pored layers of the apple were first removed and then a 
2–3 mm thick slice of the cortex was cut using a vegetable slicer. Since 
the sample thickness is included in the evaluation, care was taken to 
ensure that the slices were as uniform as possible. To suppress surface 
effects, the samples were measured between two glass slides. The leak
ing juice filled the interface between the tissue and the glass, which 
prevented the formation of air inclusions and thus undesirable refractive 
index differences. To obtain better statistics, each sample was measured 
twice on one side in the direction of the integrating sphere and twice 
after turning the sample over. Based on the recorded reflectance and 
transmittance spectra, μ′

s and μa were determined for each measurement 
using a look-up table calculated by the Monte Carlo method, specifying 
the thickness, refractive index, and anisotropy factor. Finally, the 
arithmetic mean of the optical properties was calculated from the four 
measurements for each sample. 
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3.3. Apple samples 

The apple samples examined for comparison purposes are identical 
to those presented in the first part of this paper (Lohner et al., 2021). 
They were collected from the research orchard of the Kompetenzzen
trum Obstbau Bodensee (47◦46′01.8′′N 9◦33′30.3′′E) during the 2019 
harvest season between July and November. In this work, the cultivar 
‘Jonagold’ (Novajo) was studied in particular. 

4. Results and discussion 

4.1. Mie model for the temporal development of the scattering properties 
during maturation 

During maturation, a number of physiological processes occur 
simultaneously which can influence the morphology and microstructure 
and thus also the scattering properties of apple tissue. In this context, the 
temporal development of the intercellular space and the build-up and 
degradation of starch granules are of particular importance. Several 
studies based on micro-CT measurements are available to investigate the 
intercellular space from a microscopic perspective. Specifically, Herre
mans et al. (2015) documented the temporal variation of average pore 
size and absolute porosity in ‘Jonagold’ apples over a period of 7–22 
weeks after full bloom. For a quantitative description of the air pores 
size, they give a cumulative distribution of equivalent sphere diameters, 
which correspondingly describes the pores as spheres with the same 
volume. Since the distribution was explicitly given for only six weeks, it 
was interpolated for the remaining weeks and extrapolated for weeks 23 
and 24. The size distributions shown in Fig. 1(A) for different weeks 
were determined by fitting a log-norm distribution to the cumulative 
distribution functions according to Eq. (5). The mean pore diameters 
increased from approximately 100 μm at week 7 to 410 μm at week 22 
with corresponding standard deviations of 40 and 120 μm. For better 
comparability, the area under the curves was weighted to the corre
sponding volume fraction of the air pores, which indicates the porosity. 
It increased from 10 % to 26 % over the same period. 

For the Mie model, the air pores with a refractive index of 1.0 were 
considered as scattering particles embedded in a homogeneous and 
highly aqueous environment. This assumption is based on the fact that, 
due to the strong cell-to-cell adhesion associated with the middle 
lamella, the cortex tissue represents a relatively densely packed cell 
structure, especially in the early stages of fruit development (Harker and 
Hallett, 1992; Allan-Wojtas et al., 2003). In addition, apples generally 
have comparatively few but large air pores (Rojas-Candelas et al., 2021; 
Mebatsion et al., 2009). Consequently, the model does not take into 
account refractive index differences of the surrounding medium, whose 
mean refractive index was estimated to be 1.37 (Choi et al., 2007). 

Furthermore, the build-up and degradation of starch granules were 
considered. In Ohmiya and Kakiuchi (1990), absolute starch content and 
mean granule size were reported for ‘Jonagold’ apples over a period of 
3–22 weeks after full bloom. Based on the reported mean granule di
ameters from four different weeks and the associated standard de
viations, a log-normal distribution function was again assumed, as 
shown in Fig. 1(B). The mean particle diameters range from 7 to 12.5 μm 
with corresponding standard deviations between 0.1 and 0.2 μm. The 
starch volume fraction fV was calculated from the known mass fractions 
fM assuming a density of ρT = 0.9 g/cm3 for apple tissue (Vincent, 1989) 
and ρS = 1.5 g/cm3 for starch granules (Dengate et al., 1978) according 
to 

fV =
fW

fW + (1 − fW)
ρS
ρT

. (11)  

The area under the curves in Fig. 1(B) was weighted according to the 
corresponding starch volume fraction, which initially increases steadily 
to about 1.50 % (corresponding to a mass fraction of 2.48 %) until week 
18 and then drops almost completely in the last weeks of maturation. 

Since no reference values for the refractive index of starch granules 
are known specifically for apples, data from other starch-containing 
crops were used. For example, Wolf et al. (1962) report a refractive 
index of 1.53 for isolated wheat starch granules and Borch et al. (1972) 
report a refractive index between 1.50 and 1.54 for isolated tapioca 
starch granules. Therefore, the choice of an average refractive index of 
1.52 for starch granules in apples seems reasonable. Since the starch 
granules are located inside the chromoplasts, the refractive index of the 
surrounding medium was assumed to be 1.37 in this case. 

Fig. 2(A–C) shows the spectrally resolved μs calculated with the Mie 
model considering the intercellular space, the starch granules and the 
sum of both. In the case of the starch granules, a maximum of about 
5 mm− 1 is reached at week 18, while μs is nearly zero at week 24. Due to 
the small particle size dispersion, μs shows wavelength-dependent os
cillations. For the intercellular space, a decrease from 7 to 2.5 mm− 1 can 
be observed, especially in the first weeks, but it hardly changes after 
week 11. In this case, almost no spectral dependence is visible. Taking 
both components into account, μs decreases from about 10 to 2.5 mm− 1 

within less than 20 weeks. Fig. 2(D) shows the corresponding anisotropy 
factors. In the case of the air pores, the values range between 0.85 and 
0.70, with a decrease observed with increasing maturity. In addition, the 
anisotropy factors tend to slightly increase with increasing wavelength. 
For the starch granules, the anisotropy factors range between 0.90 and 
0.95, with no pronounced dependence on the wavelength. The resulting 
anisotropy factor from the sum of both components ranges from 0.9 at 
the beginning of maturation period to 0.8 at the end. Fig. 3(A) shows the 
resulting change in μ′

s during maturation evaluated at a wavelength of 
600 nm again for the intercellular space (blue), starch granules (red), 
and their sum (black). The error bars indicate the mean square deviation 
for a variation of the mean particle diameter by ±10 % and the volume 
fraction by ±2 %. For the intercellular space, a significant decrease in μ′

s 
from 1.08 to 0.64 mm− 1 at week 12 was observed, followed by a small 
decrease to approximately 0.6 mm− 1 by week 24. Scattering due to the 
starch granules increased slightly from 0.21 mm− 1 at the beginning and 
reaches a maximum of 0.30 mm− 1 in week 18. In the last six weeks, a 

Fig. 1. Temporal variation of the size distribution for (A) the equivalent 
spherical diameter of air pores as reported by Herremans et al. (2015) and (B) 
the starch granules as reported by Ohmiya and Kakiuchi (1990) for ‘Jonagold’ 
apples during maturation. In both cases, a log-norm distribution was assumed 
based on the mean diameters and standard deviations reported in the literature. 
For better illustration, the areas under the curves were weighted to their 
respective volume fractions. 
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rapid decrease to almost 0 can be observed. Combining both compo
nents results in an overall decrease in μ′

s from 1.29 to 0.61 mm− 1 during 
the studied period. A linear regression illustrates this trend between 
weeks 12 and 24. In Fig. 3(B), the period between end of July (14 weeks 
after full bloom) and begin of October (24 weeks after full bloom) was 
selected for which experimental data were available for μ′

s of cortex 
tissue from ‘Jonagold’ apples. These were measured and analyzed 
weekly on six identical apple samples using a SFDI and an integrating 
sphere setup. For the integrating sphere measurement, two samples 
were taken from the sun and shade sides of each apple and four mea
surement repetitions were performed in each case. With the SFDI setup, 
the apples were also measured on both sides and the optical properties 
were averaged over the entire image area. In both cases, the mean value 
of μ′

s was then calculated by averaging over all samples per week, taking 
into account error propagation. In both cases, an anisotropy factor of 0.9 
and the refractive index of water plus a wavelength-independent con
stant of 0.04 were used for the evaluation, resulting in an exemplary 
value of 1.37 at a wavelength of 650 nm. Comparison shows that the 
relative change of μ′

s in the range of about 30 % agrees well for both 

experimental data and the simulation results. In detail, the decreases 
obtained by linear regression during the studied period are 30 % for the 
Mie model, 32 % for the integrating sphere measurements and 36 % for 
the SFDI measurements. The absolute changes range between 0.31 and 
0.50 mm− 1 over ten weeks. Table 1 shows the individual regression 
parameters. 

In addition, the experimental data show overall larger values of μ′
s 

between 15 % (integrating sphere) and 30 % (SFDI) compared to the 
simulation. Thus, the Mie model only approximates the scattering 
properties and certainly does not take into account all effects that can 
occur that would explain the deviation from the absolute values. The 
differences between the two experimental methods could be explained 
by the different sample preparation. In the case of the integrating 
sphere, thin slices of apple tissue were cut and positioned between two 
glass plates. Inevitably, juice escapes and fills part of the air pores, 
especially at the interfaces. This corresponds to a reduction of the 
relative refractive index and causes on average a lower μ′

s. In the SFDI 

Fig. 2. Modeled scattering coefficients μs of starch granules (A), air pores (B) 
and their sum (C) for different weeks after full bloom and their corresponding 
anisotropy factors g (D). 

Fig. 3. (A) Changes in modeled effective scattering coefficients μ′
s for air pores 

and starch granules from 7 to 24 weeks after full bloom for ‘Jonagold’ apples, 
with the error bars indicating the uncertainty for 10 % variation in mean par
ticle diameter and 2 % variation in volume content. (B) Comparison of μ′

s ob
tained with the Mie model and weekly measured with SFDI and integrating 
sphere for six ‘Jonagold’ apples over a period of 15–25 weeks after full bloom. 
The error bars indicate the total standard deviation, for the integrating sphere 
based on four measurement repetitions and for SFDI based on averaging the 
optical properties over the entire image area, for both at two measurement 
positions per apple. A linear regression was performed for each data set (dashed 
lines) with the functional parameters summarized in Table 1. (For interpreta
tion of the references to color in this figure citation, the reader is referred to the 
web version of this article). 

Table 1 
Parameters obtained from linear regression of the effective scattering co
efficients μ′

s over the weeks after full bloom, shown in Fig. 3(B). R2 indicates the 
coefficient of determination.  

Data set Offset Slope R2 

Mie model 1.389 − 0.031 0.678 
SFDI 2.143 − 0.050 0.930 
Integrating sphere 1.645 − 0.035 0.950  
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measurements, this effect certainly also occurs in the area of the cut 
surface, but here the light can generally penetrate deeper into the tissue 
and interact accordingly with intact tissue. This suggests that the SFDI 
measurements reflect the absolute scattering properties more realisti
cally. However, the good agreement of the relative changes in all these 
cases is an indication that the temporal change of μ′

s can be understood 
primarily by changes in the air pores and starch granules. 

The results are in good agreement with experimental studies by other 
researchers. For the anisotropy factor g, specifically for apple tissue 
using integrating sphere measurements, values between approximately 
0.70 and 0.92 have been reported (Van Beers et al., 2017; Saeys et al., 
2008). The relative decrease in μ′

s was also observed in other apple 
cultivars during maturation, although in some cases less pronounced 
(Van Beers et al., 2017; Seifert et al., 2015; Lohner et al., 2021). The Mie 
model predicted a strong influence of at least 70 % of intercellular space 
on total μ′

s which is in good agreement with the results of Wang et al. 
(2020). However, especially for the influence of starch, there are hardly 
any experimental comparative data available, but a maximum contri
bution of 0.3 mm− 1 corresponds very well to the differences of about 
0.4 mm− 1 for cortex tissues with high and low starch content found in 
the first part of this work (Lohner et al., 2021). 

4.2. Mie model for the spatial change of the scattering properties 

In addition to temporal changes, literature data are also available to 
show lateral changes in intercellular space within the apple fruit. 

Therefore, the Mie model was used in the same way to estimate the 
scattering properties of the tissue between the core and the skin area. 
Both the porosity and the size distribution of air pores in ripe ‘Jonagold’ 
apples are reported in Janssen et al. (2020), Wang et al. (2020) and 
Dražeta et al. (2004) for different distances within fruit tissue relative to 
the skin, as shown in Fig. 4(A) and (B). For the remaining positions, the 
mean data were interpolated and based on the standard deviations 
indicated by the error bars, a corresponding log-norm distribution was 
calculated according to Eq. (5). The interpolated values considered in 
the Mie model are shown as blue lines, with the shaded area indicating 
the standard deviation. For the data taken from Wang et al. (2020) near 
the skin area, a slightly higher standard deviation than specified was 
assumed to ensure better agreement with the significantly higher stan
dard deviation in Janssen et al. (2020). Overall, literature values are 
available ranging from the skin at a relative radial position of 
0 throughout the cortex to the coreline, which is localized at a relative 
radial position of about 0.6. Since no quantitative data on the local 
starch distribution are known, the additional influence of the starch 
granules was not considered in detail. Its influence will be addressed in 
the discussion based on our previous results. The effective scattering 
coefficient resulting from the Mie model is shown in Fig. 4(C). The error 
bars indicate the mean square deviation for a variation of the mean pore 
diameter by ±10 % and the porosity by ±2 %. After reaching a local 
minimum of 0.62 mm− 1 at the core line, μ′

s increases towards the outer 
cortex. The maximum of 1.0 mm− 1 is reached at a relative radial posi
tion of approximately 0.2, with μ′

s decreasing rapidly thereafter towards 
the skin. Thus, relative to the maximum, the radial decrease in the inner 
cortex is around 35 %. For comparison, the results of SFDI measure
ments on ‘Jonagold’ apples from two different weeks at the end of the 
maturation period are shown. The individual profiles were first aver
aged laterally over a range of 2 mm and then these results were averaged 
again for six different apples per week. In both cases, the absolute μ′

s is 
about 25 % higher compared to the simulation, the relative radial 
change is in the range of less than 20 %. Larger deviations are particu
larly noticeable in the skin area, where μ′

s shows only a slight decrease in 
the measured data. As shown in Lohner et al. (2021), an underestimation 
is to be expected in this area due to the underlying semi-infinite model. It 
should also be taken into account that small pores in the skin area lie 
below the resolution limit of about 5 μm of the micro-CT measurements 
(Janssen et al., 2020; Wang et al., 2020). Due to their small size, a 
considerable influence on light scattering can be assumed, which could 
explain the differences to the measured data despite lower porosity. 

Overall, the Mie model can correctly reproduce the radial change of 
μ′

s over large parts of the apple tissue. The higher absolute values of the 
experimental data can be attributed to the neglected influence of other 
components on μ′

s. In reality, scattering properties also depend strongly 
on local structures such as vascular bundles, which can lead to larger 
deviations between modeled and experimental data. In principle, other 
components, such as the starch granules, also have an influence on the 
scattering profiles, since their concentration can exhibit a considerable 
radial dependence. During starch degradation, the granules in the inner 
cortex are often already completely degraded, while considerable 
amounts can still be found in the outer cortex (Doerflinger et al., 2015; 
Brookfield et al., 1997). In this case, additional light scattering of the 
granules in the outer cortex would presumably lead to an overall larger 
gradient of the scattering profile. 

4.3. Consideration of cell walls based on layered particles 

To estimate the influence of the cell walls on the scattering proper
ties, the Mie model was extended to include layered particles. For 
quantitative comparison, single apple cells were studied in four different 
configurations as shown in Fig. 5(C): cells in air (i), cells with cell walls 
in air (ii), cells with cell walls in tissue (iii), and cells with cell walls and 
a thin air gap in tissue (iv). For direct comparison, the same log-normal 

Fig. 4. Spatial change in porosity (A) and mean air pore diameter (B) between 
the skin and coreline of ‘Jonagold’ apples, interpolations based on literature 
data with standard deviations given as shaded area. The radial positions are 
given relative to the skin, the coreline is in the range of 0.6. (C) Effective 
scattering coefficient μ′

s calculated using a Mie model based on the data in (A) 
and (B). Error bars show the uncertainty for 10 % variation in mean air pore 
diameter and 2 % variation in porosity. For comparison, the scattering profiles 
of ‘Jonagold’ apples measured with SFDI are shown with the shaded area 
indicating the standard deviation of measurements on six different apples per 
week. The profiles were averaged within a range of 2 mm. 
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size distribution with a mean size of 100 μm, a standard deviation of 
40 μm and a volume fraction of 1 % was chosen for all cells. Configu
rations (i) and (ii) are based on isolated cells in air to directly compare 
the influence of the cell wall on light scattering. The refractive indices 
were assumed to be 1.37 for the cells and 1.0 for the surrounding air. In 
configuration (ii), a cell wall with a thickness of 2 % of the mean 
diameter and a refractive index of 1.425 was added, based on experi
mental results reported by Mebatsion et al. (2009), Woolley (1975) and 
Gausman et al. (1974) respectively, without changing the outer cell 
diameter. Relative to an average mean diameter of 100 μm, the average 
cell wall thickness of 2 μm is relatively small. The resulting scattering 
properties are shown in Fig. 5(A) and (B). While μs shows little difference 
for both configurations, the anisotropy factor is slightly smaller and thus 
μ′

s is slightly larger for configuration (ii). The differences are primarily 
caused by the phase function, as the comparison in Fig. 5(A) shows. In 
configurations (iii) and (iv), the cells were placed in surrounding tissue 
having the same mean refractive index as the cells themselves. This 
corresponds to the assumption of a dense and homogeneous cell struc
ture with strongly pronounced cell-to-cell adhesion. Light scattering in 
configuration (iii) is thus completely attributable to the influence of the 
cell wall due to its higher refractive index. In configuration (iv), a thin 
air gap with a thickness of 1 μm was added around the cell as a third 
layer to simulate a cell detached from the cell compound. The results in 
Fig. 5(A) and (B) for these two cases show large differences in their 
phase functions and less pronounced also in μs. For configuration (iii), 
pronounced forward scattering with g of almost 1 leads to a very small 
μ′

s, while in configuration (iv) a smaller anisotropy factor and thus a 
significant increase in μ′

s are observed. 

Overall, two main conclusions can be drawn from these results. In 
the case of a dense and relatively homogeneous cell structure, the direct 
influence of cell walls on light scattering is rather small with an increase 
of about 5 % compared to a homogeneous cell. This is in good agreement 
with the results of Wang et al. (2020), who reported a subordinate in
fluence of cell organelles on light scattering. When the adhesion be
tween cells decreases during ripening and storage or the cells lose 
volume, small air gaps may form between the cells as reported by Varela 
et al. (2007) and Harker and Hallett (1992). This process is accompanied 
by an increasing change in the composition and texture of the cell wall in 
terms of pectin, hemicellulose, and cellulose, with the pectin-rich mid
dle lamella in particular increasingly dissoluting (Goulao and Oliveira, 
2008). In this case, the increased light scattering would only be indi
rectly related to the properties of the cell walls and specifically the 
middle lamella, but as a result this could explain the increase in μ′

s 
already observed experimentally. As further evidence, Vanoli et al. 
(2009) reported, based on the study of ‘Jonagored’ apples by 
time-resolved spectroscopy, that the increase in μ′

s during storage was 
related to pectin content and composition. 

4.4. SSC influences the scattering properties 

During maturation, starch granules stored in the cells are converted 
by enzymatic processes into various sugars, leading to an increase in 
SSC. Yamaki and Ino (1992) showed that about 90 % of the sugar con
tent is present in vacuoles, which in turn account for most of the cell 
volume (Shiratake and Martinoia, 2007). Depending on cultivar and 
growth conditions, SSC increases from about 5 % in immature apples to 
as much as 15 % in mature apples (Yamaki and Ino, 1992; Lu et al., 
2000; Wei et al., 2020). This is associated with a change in the refractive 
index of the vacuoles and thus of the entire cell. Based on measurements 
of invert sugar solutions with different concentrations by Weast (1986) 
and Snyder and Hattenburg (1963), an increase in the refractive index 
from 1.340 to 1.355 can be estimated. To determine the effect of this 
change on μ′

s, the refractive index of the cell compound in the Mie Model 
was adjusted for different SSCs. Fig. 6(A) shows, as an example for week 

Fig. 5. (A) Phase functions for different layered particles at a wavelength of 
600 nm obtained in the context of simplified cell model for the configurations 
shown in (C). For direct comparison of the results, a log-norm size distribution 
with a mean size of 100 μm and a standard deviation of 40 μm was chosen for 
all particles with a volume fraction of 1 %. (B) shows the resulting scattering 
coefficient μs, the anisotropy factor g derived from the phase function, and the 
combined effective scattering coefficient μ′

s in the visual spectral range. 

Fig. 6. (A) Modeled changes in relative scattering properties of air pores and 
starch granules at week 20 after full bloom as a result of increasing SSC, based 
on literature data. (B) Comparison between the previously presented effective 
scattering coefficient μ′

s assuming a constant refractive index (nmed) during 
maturation and an extended model considering the experimentally determined 
changes in SSC (nmed + δnSSC). 
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20 after full bloom, the change in μ′
s for an SSC ranging from 0 to 15 % 

separately for the intercellular space and starch granules. The SSC in
creases the refractive index difference of the cells relative to the air 
pores, resulting in an increase of μ′

s by almost 7 % for 15 % SSC. At the 
same time, within the cells, the relative refractive index difference 
relative to the granules decreases, resulting in a decrease of μ′

s by about 
4 %. The sum of both components predicts an increase of about 4 %. In 
Fig. 6(B), the simulation of μ′

s with and without consideration of the 
refractive index change was compared for different weeks. SSC was 
determined by refractometer measurements of ‘Jonagold’ apples during 
the corresponding period, ranging from 10.0 % at week 14 to 13.7 % at 
week 24. Overall, it was observed that the increase in the refractive 
index of the cells resulted in an increase in μ′

s of about 3 %. However, it 
must be taken into account that the refractive index of other cell com
ponents, such as the granules themselves, may also change over the 
same period. 

5. Discussion 

A Mie model was presented to estimate the scattering properties of 
apple tissue based on its microstructure. The intercellular space, i.e. the 
air pores, were assumed to be scattering particles located in a relatively 
homogeneous and dense cell structure. In reality, of course, this is only 
an approximation, since the refractive index of individual cell compo
nents varies to a certain degree (Drezek et al., 2000; Dunn and 
Richards-Kortum, 1996): 1.36–1.39 (nuclei, cytoplasm, nucleoli) (Choi 
et al., 2007), 1.40–1.42 (cell walls, mitochondria) (Haseda et al., 2015), 
and 1.52 (starch granules) (Wolf et al., 1962). Specifically, in plant cells, 
vacuoles, and cytoplasm alone account for nearly 70 % of cell volume 
(Yamaki and Ino, 1992). Thus, a mean refractive index of cells in the 
range of 1.37 seems plausible. As shown by the increase in SSC, the 
refractive indices of individual components can also change during 
maturation. Another example is the enzymatic degradation of starch 
granules, whose refractive index presumably also depends on the 
progress of hydrolysis (Oates, 1997). Since a quantitative estimation of 
such processes is hardly possible, this was not considered in the present 
model. For the cell walls, as another important component, the simu
lations showed a very small direct influence on scattering. Even with a 
fresh weight cell wall mass content of up to 3 % (Lapsley et al., 1992), 
which is comparable to the maximum starch content (Stevenson et al., 
2006), this seems plausible because of the much smaller refractive index 
difference relative to the surrounding tissue. Less important for the 
cortex, but still conceivable, is the influence of chloroplasts and espe
cially chlorophyll-containing grana on light propagation. Especially in 
high concentrations, as found in apple skin, they can lead to interesting 
effects due to their strong absorption (Capretti et al., 2019). Overall, the 
results of the investigated Mie model compared with experimental re
sults suggest that air pores and starch granules are responsible for about 
70–80 % of the total light scattering in the apple cortex and other 
components have a correspondingly small influence. 

The intercellular space, as the presumably dominant component, is 
also subject to changes during maturation and storage. While the air 
pores are relatively isolated, especially at the beginning of fruit devel
opment with a volume content of about 10 %, their connectivity in
creases further on and their number decreases accordingly (Herremans 
et al., 2015). With a sphericity in the range of 0.7, they can be consid
ered relatively spherical. As the fruit ripens, the average size of the air 
pores and their degree of cross-linking increases. This leads to the 
conclusion that the approximation of spherical air pores in late stages of 
fruit development does not fit well with reality. With decreasing 
cell-to-cell adhesion during storage, the initially dense cell structure 
increasingly dissolves until finally there are no more strictly localized air 
pores. In the hypothetical case of a complete dissolution of the middle 
lamella, the cells themselves would have to be regarded as densely 
packed scattering particles surrounded by air. With a cell volume 

fraction of 70 % and the accompanying dominant dependent scattering 
effect, the Mie theory would no longer be suitable for a realistic 
description of light scattering under this assumption. Thus, up to which 
point the presented Mie model retains its validity during storage de
pends strongly on the cell structure. 

On a qualitative level, the results allow a general assessment of the 
importance of μ′

s in relation to fruit development. Although the micro
structural properties used for this study were all determined using 
‘Jonagold’ apples, some variability is to be expected due to different 
growing seasons and production regions. Therefore, the results can only 
represent the temporal development of the optical properties in an 
idealized way. Nevertheless, the model clearly shows that the relative 
change of μ′

s is strongly related to the influence of individual compo
nents, whose respective share is subject to fruit development. A large 
influence of the intercellular space was evident especially in the early 
stages between 6 and 16 weeks after full bloom, which is probably 
related to the cell enlargement occurring during this period (Bain and 
Robertson, 1951; Ruess and Stösser, 1993). The influence of starch 
degradation, on the other hand, was important at late stages of matu
ration, where intercellular space hardly changed. This relationship is 
also evident from the temporal evolution of μ′

s determined with SFDI 
from the first part of this work, shown in Fig. 7(A) (Lohner et al., 2021). 
In Fig. 7(B), the volume of the examined fruit increases steadily within a 
first period until about week 20 after full bloom. The mean volume was 
estimated from fruit size based on an elliptical model as shown in Iqbal 
et al. (2011). In the following second period, the volume change 

Fig. 7. (A) Temporal evolution of the mean effective scattering coefficient μ′
s 

compared for different apple cultivars measured with SFDI. The colored arrows 
mark the recommended harvest dates for each cultivar based on the Streif 
indices. (B) Temporal evolution of the mean volume estimated from the fruit 
size of six apples each week with an ellipsoid model. (C) Temporal evolution of 
the starch pattern index (SPI, ordinal score 1–10) with error bars indicating the 
standard deviations for a weekly sample set of six apples. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article). 
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stagnates, but at the same time starch degradation progresses rapidly, as 
indicated by the increase in the starch pattern index (SPI) in Fig. 7(C). It 
is noticeable that in early maturing cultivars such as ‘Elstar’ and ‘Gala’, 
which were examined in the first period, the change in μ′

s is much more 
pronounced (Δμ′

s ≈ 30%) than in late maturing cultivars such as 
‘Braeburn’, which were mainly examined in the second period 
(Δμ′

s ≈ 20%). In the case of ‘Jonagold’, whose maturation period covers 
both periods, the largest Δμ′

s ≈ 35% was observed in addition to a large 
volume increase and almost complete starch degradation. Generally, 
this could mean that a large relative change in μ′

s can be assumed for 
early maturing cultivars, while it is less pronounced for late maturing 
cultivars. In addition, the fruit growth itself and the progress of starch 
degradation play a major role, which in turn depend on the respective 
cultivar or climatic influences. For the absolute comparison of μ′

s and its 
relative changes, these parameters must therefore always be taken into 
account. The extent to which a correlation of μ′

s with individual 
macroscopic quantities such as firmness is applicable, e.g. for quality 
control, requires further investigation accordingly. For example, 
Rojas-Candelas et al. (2021) have recently shown that firmness at the 
microstructural level depends not only on air pore density, but in 
particular on cell diameter and cell density, which according to our 
results are related to μ′

s only to a minor extent. Apart from this, μ′
s 

nevertheless provides complex but important information about the 
structure of the tissue, which in combination with other optical pa
rameters, such as absorption at different wavelengths, could well pro
vide the possibility of defining a parameter for determining the degree of 
maturity or quality. 

6. Conclusions 

Part 2 of this study showed that a Mie model basically allows the 
estimation of scattering properties of apple tissue based on its micro
structure. It was found that intercellular space, and in particular 
porosity, has a dominant influence on μ′

s. When simulating the temporal 
change of μ′

s during maturation, it was found that light scattering from 
starch granules can contribute to up to 25 % of total scattering. Overall, 
the predicted relative decrease in μ′

s agrees well with experimental re
sults based on integrating sphere and SFDI measurements. It is note
worthy that μ′

s is differentially influenced by certain morphological 
components depending on the stage of maturation, which probably 
makes direct correlation with individual macroscopic quantities diffi
cult. Furthermore, the Mie model predicted a radial increase in μ′

s of up 
to 35 % from the core to the skin, which is also largely consistent with 
experimental SFDI results. It was shown that the change in refractive 
index associated with the increase in SSC in cells leads to an increase in 
μ′

s of up to 5 %. By extending the Mie model to layered particles in the 
context of a simplified cell model, we found that the cell walls do not 
have a large influence on light scattering under the assumption of a 
relatively homogeneous cell structure. In the presence of an additional 
thin layer of air, as expected with reduced cell-to-cell adhesion due to 
dissolution of the middle lamella, a significant increase in light scat
tering was predicted. This offers an explanation for the increase in μ′

s 
already observed experimentally during storage. 

In summary, the combined application of experimental SFDI mea
surements and a realistic Mie model provided many new insights into 
the complex relationships between optical properties, fruit morphology, 
and physiological processes during maturation. 
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Non-destructive Vis/NIR time-series to model apple 
fruit maturation on the tree 

R. McCormick1,a and K. Biegert1,2 
1Postharvest Workgroup, Kompetenzzentrum Obstbau-Bodensee, Ravensburg, Germany; 2Production Physiology 
Workgroup, Kompetenzzentrum Obstbau-Bodensee, Ravensburg, Germany. 

Abstract 
Apple growers make harvest decisions based on a few simple destructive tests e.g. 

soluble solids and starch content, and fruit firmness. However, non-destructive 
technologies also offer possibilities to monitor fruit maturation and ripening and to 
build prediction models for an optimum harvest date (OHD) for fruit intended for long-
term storage. Technological developments now enable point spectroscopy Vis/NIR 
spectral scans to be made on fruit in the orchard using portable hand-held devices. In 
fruit crops like mango, prediction models process spectral information in real-time and 
provide information about when to pick fruit. A standard type hand-held 
spectrophotometer (F750, Felix Instruments, USA) was used to collect spectral time-
series data from 2016 to 2018 for ‘Braeburn’ apples during fruit development, growing 
at the Kompetenzzentrum Obstbau Bodensee in Southwest Germany. Decreasing 
chlorophyll levels were closely associated with apple maturation, in particular the 
parameter rededge was consistently close to 689 nm at the OHD for ‘Braeburn’ over all 
three study years and was less variable than a normalized difference vegetation index 
(NDVI). Predictions of an OHD using partial least squares regression models based on 
all available spectral information were not robust enough to define an OHD with a 
narrow harvest window. Future efforts to model an OHD for a bicolored apple cultivar 
like ‘Braeburn’ should try to untangle changes in the visible spectrum from the 
carotenoid, anthocyanin and chlorophyll pigments. 

Keywords: Streif index, chlorophyll, anthocyanins, carotenoids, rededge 

INTRODUCTION 
Monitoring fruit maturity is critical to predict an optimum harvest date (OHD) of apples 

intended for long-term storage. The apple industry relies largely on simple destructive 
methods for maturity testing e.g. total soluble solids (TSS), fruit firmness (FF) and starch 
(iodine staining) pattern index (SPI) that are usually expressed as a harvest index (FF/TSS × 
SPI) with cultivar specific threshold values to define a start and close of a harvest window 
(Streif, 1996). 

From a practical viewpoint, fruit maturation should be considered more an on-tree 
preharvest process and clearly differentiated from fruit ripening. Fruit can be considered 
‘physiologically mature’ when they develop the ability to ripen adequately (i.e. obtain 
acceptable consumer eating quality free from physiological disorders) at some future time 
after picking, usually after long-term storage, postharvest handling and shelf-life. 

Destructive harvest maturity testing is multifaceted, as information is combined from 
different physiological ripening processes in the apple. The destructive tests (FF & SPI) 
measure aspects of fruit that are difficult to determine non-destructively. But even so, non-
destructive methods still show potential to monitor fruit maturation. New 
spectrophotometers, chemometric software and data communication now enable 
visible/near-infrared (Vis/NIR) spectra (as point spectroscopy versus hyperspectral imaging) 
to be collected in the orchard with portable hand-held devices, with the field data processed 
and the results made available in real-time, e.g. mango harvesting based on dry matter (DM) 
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content (Nicolai et al., 2007; Subedi, et al., 2013; Walsh, 2016). 
In the apple industry spectral devices for skin green color (DA-Meter, Turoni, IT) are in 

use and spectrophotometers that sample a wider range of multiple wavelengths as reported 
in this work are under trial (Walsh, 2016; Musacchi and Serra, 2018). Furthermore, with more 
advanced spectral methods like time resolved spectroscopy (still laboratory based), changes 
in the fruit flesh color (chlorophyll) can be related to fruit maturity (Tijskens et al., 2007). 

After harvest and storage outturn, the OHD can be confirmed as providing fruit of a 
suitable consumer quality. Furthermore, any Vis/NIR time-series data collected from 
maturing apples on the tree during the preharvest period can now be regressed in PLSR 
(partial least square regression) models against the known OHD and destructive maturity 
values. Such a modelling approach can provide a simple estimate of the how suitable spectral 
information is at OHD prediction. Researchers have obtained SEPs (standard error of 
prediction) of ~6 to 9 d from spectral scans of individual fruit from a range of apple cultivars 
using wavelength ranges of 300-1100 nm and/or 380 to 1680/2000 nm (Zude-Sasse et al., 
2002; Peirs et al., 2005; Van Beers et al., 2014). The PLS regression coefficients can also show 
which spectral regions are providing most information to the model e.g. the chlorophyll peak 
at ~670 nm and from the OH bond peaks of water and carbohydrates at 970, 1450 and 1940 
nm (Peirs et al., 2005). 

Changes in chlorophylls and carotenoids in the visible spectrum are related to fruit 
maturation, But there are numerous pigments all with overlapping spectral signatures; thus 
multicollinearity is a problem. Also, apparent absorbance from standard reflectance spectra 
(RS) is a combination of both light scattering and absorbance and light scattering can change 
at a different rate to absorbance as fruit ripen. Thus, absolute pigments concentrations are 
often not related to the RS in a linear manner (Merzlyak et al., 2003). Absolute chlorophyll 
concentration may not be a reliable indicator of fruit maturity (McGlone et al., 2002), while 
Knee (1988) proposed xanthophylls in the extra-thylakoid pool as an accurate parameter for 
apple ripeness. 

Apples have four physiologically different pigment pools (Merzlyak, 2006). The peel 
chloroplasts contain most of the chlorophyll and together with carotenoids are tightly 
associated with the thylakoid membrane, during ripening chlorophyll gradually decreases and 
carotenoids accumulate. Xanthophylls also accumulate in the peel during ripening in an extra-
thylakoid pool (Knee, 1972, 1988). Phenolics compounds are present in the cuticle and 
vacuoles, and absorb UV and some blue light. A fourth pool consists of anthocyanins in the 
peel cell vacuoles, although anthocyanins are not as closely related to fruit maturation as 
chlorophyll or carotenoids. 

Fruit ripeness seems best to be predicted by following changes in pigment patterns 
(McGlone et al., 2002), in particular the carotenoid/chlorophyll ratio (Merzlyak, 2006). A 
range of spectral indices with potential application on apple can be found in the literature 
(Acharya et al., 2016 and references within). Gitelson et al. (2006) proposed three-wavelength 
band models to estimate fruit pigment concentrations and to minimise multicollinearity. 
Other multivariate modelling approaches to separate pigment spectra exist but require wet 
chemistry reference values (Pflanz, 2014). The presence of high anthocyanin concentrations 
makes it difficult to accurately estimate carotenoids and chlorophyll. Even so the plant 
senescence reflectance index (PSRI) can show changes in the carotenoid/chlorophyll ratio in 
ripening of apples and correlations with internal ethylene concentrations (Merzlyak et al., 
1999). 

Depending on the optical geometry, NIR spectra can be used in PLS models to predict 
TSS and DM in the fruit flesh (McGlone et al., 2002; Subedi et al., 2013). As well, a better 
treatment of biological variation has shown clear benefits to improve ripening models in a 
range of fruit (Rizzolo et al., 2009). 

This work discusses the potential of Vis/NIR spectral data that could be used as a basis 
for non-destructive apple maturity prediction models. 

MATERIALS AND METHODS 
At the Kompetenzzentrum Obstbau Bodensee in Southwest Germany, as part of a larger 
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project (‘BigApple’, see McCormick et al., 2017), Vis/NIR spectral scans (310-1100 nm, 
spectral sampling 3 nm, spectral resolution, 8-13 nm) with an F750 hand-held fruit quality 
meter (Felix Instruments, Camas, USA) were repeatedly collected from the same position on 
the sunlit blush face of a population of ‘Braeburn’ apples still attached to the tree during fruit 
maturation. The F750 internally calibrates each scan, to remove the influence of sunlight and 
adjust the integration time. Fruit temperature is not taken into account during scanning in the 
field as spectral responses to changes of 4-30°C in the 600-750 nm region have been found to 
be minimal (Zude-Sasse et al., 2002). On the other side, there is a strong effect of temperature 
in the SWNIR region that can partly be taken into account in the laboratory when building wet 
chemistry based PLSR models, by scanning the same reference fruit samples at different 
temperatures (for changes in TSS and/or DM). Time-series data were obtained for 3 seasons 
from early August (2016, 2017) and from June in 2018 until harvest on 17, 18 and 3 October 
in 2016 to 2018, respectively [with harvest decisions based on destructive maturity tests 
following Streif, (1996)]. Fruit were scanned at 3 tree heights; bottom, middle and top thirds. 
Dropped fruit (~5% of total) were replaced with a similar fruit nearby. 

The ‘Braeburn’ trees were planted in 2006 and trained as splendour spindles (3.2×0.8 
m×~3.8 m high). Trees were hand thinned to 3 different cropload levels of 30-40 (light), 100-
120 (standard) and 180-200 (heavy) fruit per tree (2016 and 2018). In 2017, fruitset was 
severely affected by frost, overall trees had the required croploads, but fruit distribution from 
the top to bottom was uneven. Cropload treatments were replicated 3 times. Trees received 
no ground applied nitrogen fertiliser or calcium sprays during the entire study period. 

Raw F750.dat scan files were extracted as absorbance spectra (AS) using Dataviewer 
software (Felix Instruments, Camas, USA). AS were converted to RS values [RS=1/10^(AS)] 
and pigment indices calculated with ‘R’ software (R Core Team, 2018). A normalized 
difference vegetation index for chlorophyll [NDVI=(R750-R705)/(R750+R705 nm)] (Zude, 
2003), an anthocyanin index [AI=(R801/R549)-(R801-R699 nm)] (Acharya et al., 2016) and 
a plant senescence reflectance index [PSRI=678-501)/(801 nm)] (Merzlyak et al., 1999) were 
calculated. The rededge inflection point in the chlorophyll reflectance curve (Zude and 
Herold., 2002; Geyer et al., 2007) was calculated from the 2nd derivative AS between 678 and 
717 nm. The NIR 2nd derivative AS from 729 to 975 nm were used in Modelbuilder software 
(Felix Instruments, Camas, USA) to build local PLS models for TSS and DM in each year, 
calibrated with wet chemistry reference values for 30 fruit samples picked regularly over all 
the scanning periods. 

PLSR models to estimate the potential information available in the ‘Braeburn’ AS (429-
1110 nm) from 70 d preharvest up until the OHD (as determined by destructive testing i.e. 
Streif Index) were built with the ‘R’ software ‘pls’ package (Mevik et al., 2018) to predict the 
days to the OHD. In the 70 d preharvest period there were 9, 11, and 7 scanning dates for 2016, 
2017 and 2018, respectively. Scan data were pooled over the 3 years, per calendar week and 
tree sector using either all individual scans available (846) or mean data for each replication 
(111). Model cross validation was conducted with the leave one out method, also using groups 
as complete seasons and with an independent data set from 2018. Four scans were identified 
as outliers and removed. 

RESULTS AND DISCUSSION 
Figure 1 shows the changes in the raw AS during fruit development on the tree during 

2018. Marked changes within the visible region are due mainly to changes in chlorophyll, 
anthocyanins and carotenoids, changes in the NIR region (>~750 nm) are less marked. 

Estimating the potential amount information available in Vis/NIR field data set to 
predict an OHD 

When all available scans (846) from all years and the middle tree sector were used in a 
PLSR model to predict the days to the OHD (based on the Streif harvest index values), the 
RMSECV (leave one out method) was 10.8 d with R2=0.68 using 5 PCs. When all available scan 
data (111) where combined as mean scans per plot and calendar week and then used as model 
input, the resulting RMSECV reduced to 6.3 d, with R2=0.89 and 5 PCs. Pre-processing the AS 
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data by standardisation and/or multiple scatter correction before PLS did not improve the 
models. These results broadly correspond with Peirs et al. (2005). However, the models were 
clearly not robust enough when data from 2 years was used to predict the third year. Here the 
predicted OHDs differed from the measured by 5, 20 and 40 d when the 2017, 2018 and 2016 
years were used as test data, respectively. One independent data set was available from the 
middle tree sector in 2018 and was used as a test set with the model build from mean values 
per plot and calendar week from all years. In this case the model RMSEP for days to OHD was 
9.0 d with an R2=0.86 using 5 PCs. 

 

Figure 1. 2018 mean absorbance spectra (AS) from 11 separate dates from the same 
population of marked apples on the tree between calendar week 23 and 40 (harvest 
3 Oct.) n=108. 

The regression coefficients for the mean models are plotted against wavelength in 
Figure 2. Strong positive regression coefficients come from the visible spectrum around the 
blue/ green (501 nm), the red (630 nm) and near red (696 nm) regions just before and after 
the maximal chlorophyll absorbance and also from the NIR 960 nm region around the water 
absorbance peak. Regression coefficients for all the other tree sector models using individual 
scans and/or mean scan data showed similar patterns (data not shown). But to be of practical 
use, model RMSEPs need to be reduced to around ~3.0 d and in addition provide an increasing 
level of accuracy in the period from at least two weeks before and up to the expected ODH. 

 

Figure 2. PLS regression coefficients for the ‘days to optimum harvest date’ model for the 
middle tree sector using mean values (scans averaged by treatment replicate and 
calendar week). Peak wavelength positions are shown. 

Chlorophyll parameters (NDVI and rededge) 
The 2018 year rededge and NDVI data averaged over each tree sector are shown in 
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Figure 3A and over each cropload level in Figure 3B. Both the NDVI and rededge curves show 
a similar sigmoidal pattern where the changes in slope separate the curves into 3 periods 
(steep decrease, then flatter, then steeper) similar to Zude and Herold (2002) although in 
these ‘Braeburn’ data, the changes in slope occur earlier. Closer to harvest the rededge curves 
are more tightly grouped when compared to the NDVI. In Figure 3A, the NDVI indices for the 
top sector show lower values compared to the middle or bottom tree sectors. In Figure 3B 
both the NDVI indices and rededge wavelengths for the light cropload show lower values. Fruit 
from low cropload trees are normally large (which was the case here – data not shown) and 
as commonly observed especially in early season apple cultivars like ‘Gala’ or ‘Elstar’, tend to 
mature and ripen much faster compared to standard or heavy croploads. However, in all our 
‘Braeburn’ data from 2016 to 2018, we consistently found no differences in the Streif index 
at-harvest for light croploads treatments compared to standard or heavy croploads and thus 
all cropload levels were harvested on the same date. Reasons for this lack of cropload effect 
on harvest date are perhaps a specific late season cultivar effect, ‘Braeburn’ is a firm cultivar 
and is slow to soften before ethylene levels really increase and also in all study years the starch 
levels were high and the starch pattern index slow to change as fruit matured. However, while 
destructive maturity tests did not distinguish between cropload treatments, the ‘Braeburn’ 
apples showed differences in storage behavior (i.e. higher incidence of storage disorders in 
light cropload treatments, data not shown) and other non-destructive pigment indices could 
distinguish differences (e.g. see PSRI data below). 

 

Figure 3. (A) Changes in mean rededge and mean NDVI for ‘Braeburn’ apples in 2018 from 
week 23 and week 40 (harvest 3 Oct.) for different tree sectors (top, middle, 
bottom) and (B) different cropload levels (light, standard and heavy). n=36, 
bars=standard errors. 

The rededge data all show very low coefficients of variation (CVs < 1%). There are no 
rededge ‘Braeburn’ data in the literature, but our data show lower absolute values and are 
less variable than reported by Zude and Herold (2002) for ‘Elstar’ and ‘Jonagold’. In addition 
to cultivar differences, cropload and light exposure there are other factors known to affect 
apple skin green color, e.g. cultural practices (nitrogen applications), growing location 
(latitude) and spring temperatures (‘BigApple’ project unpublished data). Importantly, these 
rededge data show much lower CVs than the NDVI (~25%) suggesting rededge is the better 
parameter to use to model changes in chlorophyll. Remarkably, all the rededge values directly 
before the ODH in all three years were very similar at around ~689 nm (Table 1). 

Plant senescence reflectance index (PSRI) to show changes in chlorophyll and 
carotenoids 

Over three seasons, the PSRI remained constant until some 5 or 6 weeks preharvest 
when both the mean values and the variance began to increase exponentially (Figure 4). This 
fits with the expected ripening pattern, with a decrease in chlorophyll and increase in 
carotenoids following Merzlyak et al. (1999) and Knee (1972). Over 3 years the PSRI could 
consistently distinguish different cropload levels, with fruit from light cropping trees showing 
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a steeper rate of change compared to standard or heavy, see Figure 4A for 2018 data only 
(2016 and 2017 data not given). Both plots in Figure 4 are adjusted to show biological time 
using the methodology developed by Pol Tijskens (Rizzolo et al., 2009) to separate the 
variation and fit trend lines. A negative biological shift factor (here biological time) indicates 
less mature fruit. Biological time corrects so to speak for the state of development of 
individual fruit. 

Table 1. Mean NDVI and rededge for ‘Braeburn’ apples from Vis/NIR scans directly on or 
slightly before the ODH in 2016 (0 d), 2017 (-4 d) and 2018 (-1 d) for standard 
cropload and 3 different tree sectors. n=3, 12-18 & 12 apples for 2016, 2017 & 2018, 
respectively. 

Tree 
sector 

Mean NDVI at OHD (std dev) Mean Rededge (nm) at ODH (std dev) 
2016 2017 2018 2016 2017 2018 

Bottom 0.13 (0.03) 0.15 (0.04) 0.20 (0.05) 688.8 (0.4) 688.8 (0.5) 689.3 (0.5) 
Middle 0.10 (0.01) 0.16 (0.04) 0.20 (0.05) 688.8 (0.1) 688.8 (0.4) 689.4 (0.6) 
Top 0.09 (0.03) 0.11 (0.04) 0.17 (0.04) 688.6 (0.2) 688.6 (0.3) 689.1 (0.4) 

 

Figure 4. (A) Changes in the plant senescence reflectance index (PSRI) for ‘Braeburn’ apples 
from 3 different croploads (light, standard, heavy) in 2018. 36 apples per cropload 
level, repeatedly scanned 11 times from 6 June and 2 October. (B) Changes in the 
PSRI in cropload experiments in 2016, 2017 and 2018 with 27, 132 and 108 apples 
repeatedly scanned 21, 11 and 11 times per year, respectively. Scans from either 
early June (2018) or August (2016 and 2017) until optimum harvest date in 
October. The x-axis shows biological time, where zero is the model midpoint value 
and is only synchronised (indirectly related) to the actual harvest time. 
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In 2017 and 2018, the PSRI could also distinguish between fruit at the top of trees with 
a faster rate of change compared to the middle or bottom sectors (data not shown). The PSRI 
data for all study years are compared in Figure 4B. While each year shows a similar rate of 
change, the changes in PSRI do not match up with the actual maturity pattern observed in the 
orchard. The OHD in 2016 and 2017 was reached on 17 and 18 October and in 2018 was some 
two weeks earlier on 3 October. The PSRI patterns for fruit at the top of the tree or from light 
croploads can be explained partially by higher carotenoids in sun exposed fruit or a faster fruit 
development on light cropping trees. Understanding why the PSRI does not consistently show 
the same relationship to the OHD in all years will require further work (i.e. attempt to separate 
the confounding influence of anthocyanins). 

Anthocyanin index (AI), total soluble solids (TSS) and dry matter (DM) 
The AI shows a seasonal trend, at first decreasing (young apple fruitlets are known to 

be high in anthocyanins) and then as temperatures decrease and light conditions change 
closer to harvest red blush color increases particularly at the top of the trees with higher light 
exposure (Figure 5A). The seasonal trends for both TSS and DM % are slightly separated by 
the 3 cropload treatments (Figure 5B). 2018 was a very dry sunny year, differences in both 
TSS and DM by cropload level were greater in 2016 and 2017 (data not given). 

 

Figure 5. (A) Changes in the anthocyanin index (AI) for ‘Braeburn’ apples in 2018 from 3 
different tree sectors (bottom, middle, top). (B) Changes in total soluble solids 
(TSS) and dry matter (DM) for ‘Braeburn’ apples from 3 different cropload 
treatments in 2018. n=36 apples per sector or cropload level scanned 11 times 
from 6 June to 02 October Bars=std. error. Harvest date was 3 October (CW 40). 

CONCLUSIONS 
Standard Vis/NIR time-series data scanned from marked apples on the tree contain 

multiple information ‘dimensions’ that can be used to model apple maturity. Changes in the 
visible spectrum, primarily chlorophyll found largely in the fruit skin should be used as a basic 
model ‘framework’ with other components modulating the relationship. A different 
experimental approach is required to try and non-destructively separate aspects of the 
xanthophyll cycle. More information about changes in carbohydrate metabolism from the NIR 
wavelength region over multiple seasons and growing regions is needed to build better 
maturity models based on non-destructive data. Moreover it should be considered that the 
light penetration decreases depth at high wavelengths (1450-1600 nm) reducing the amount 
of information available from tissues further inside the fruit. Advanced spectral technologies 
i.e. spatial or time resolved Vis/NIR should be developed for hand-held devices to obtain more 
non-destructive information from fruit maturing on the tree. 
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Abstract 
Apple skin contains several groups of strongly absorbing cell organelles with pigments that change dynamically in type and 
concentration during fruit maturation. Chlorophylls and carotenoids, both primarily involved in photosynthesis, are found 
in the grana of chloroplasts, while anthocyanin vacuolar inclusions (AVIs) accumulate for light protection in red-skinned 
cultivars. A Mie model describing light scattering by absorbing spherical particles in a non-absorbing medium allowed to 
theoretically investigate the explicit influence of grana and AVIs on the effective scattering coefficient �′

s
 and the absorption 

coefficient �
a
 . The reconstruction of the complex refractive indices of the organelles predicted anomalous dispersion, i.e., a 

local increase in the real part of the refractive index in the spectral regions with high chlorophyll and anthocyanin absorption, 
in agreement with the Kramers–Kronig relations. As a result, peaks in �′

s were predicted to be shifted to longer wavelengths 
compared to the corresponding �

a
 bands. This selective scattering effect was confirmed experimentally with integrating 

sphere measurements for red- or green-skinned apple samples of the cultivars ‘Elstar’, ‘Gala’ or ‘Jonagold’. Comparison 
between simulations and measurements indicated that the Soret bands of chlorophyll a and chlorophyll b are at 435 nm and 
469 nm, respectively, and overlap with the absorption of carotenoids, whose red-most edge is at 488 nm. For anthocyanin 
absorption, a pronounced blue shift from 550 to 520 nm was observed, indicating structural or chemical changes of AVIs.
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1  Introduction

Some of the most obvious changes during apple matura-
tion concerns the pigmentation of the apple skin. Depend-
ing on the cultivar, the background coloration changes 
from green to yellow and the red blush color increases. 
The overall color impression is the combined result of 
several pigment types, which absorb the incident sunlight 
in one or more specific spectral bands. As in all higher 
plants, the chlorophylls in particular play an important role 
in photosynthesis by converting sunlight into chemical 
energy. Chlorophyll a and chlorophyll b have two distinct 
absorption bands, the more pronounced in the blue wave-
length region (Soret band) and the second in the red wave-
length region (Q band), while the green components of 
the incident light are almost completely reflected [1]. The 
light reactions of photosynthesis take place in special cell 
organelles, the chloroplasts, whose thylakoid membrane 
contains various light-collecting protein complexes. Local 
stratification of the membrane results in the formation of 
disc-shaped structures called granules (grana) with a typi-
cal diameter of around 500 nm [2]. In addition to chlo-
rophylls, various carotenoids, including carotenes (e.g., 
�-carotene) and xanthophylls (e.g., lutein), are involved 
in the light reaction in the thylakoid membrane [3]. The 
yellow coloration of apple skin, however, is determined 
by carotenoids independent of the photosynthetic system, 
e.g., xanthophylls such as lutein, neoxanthin and violax-
anthin, which are esterified with fatty acids [4]. The third 
important pigment class is phenolic compounds, e.g., fla-
vonoids and anthocyanins, which accumulate in cell vacu-
oles especially at the end of maturation [5]. They have a 
number of different functions, including photo-protection 
against harmful radiation in the ultraviolet (UV) and vis-
ible (Vis) spectral range or scavenging free radicals [6, 
7]. Cyanidin 3-O-galactoside (‘idaein’) is the predomi-
nant anthocyanin found in apples, it absorbs light in the 
green spectral range and causes the intense red coloration 
of many apple cultivars [5]. In vacuoles, anthocyanins, 
together with other copigments, form complexes [8], now 
being referred to as AVIs, that are separated from the sur-
rounding cell fluid but presumably have no membrane 
or distinct internal structure. All of these plant pigment 
types exhibit complex light interactions depending on 
their occurrence in particular cell organelles, although the 
specific effects on macroscopic absorption and scattering 
properties are still largely unknown.

In cell suspensions of green algae with high chlorophyll 
content, an early observed effect was selective scattering 
[9, 10] with a substantial increase in the effective scat-
tering coefficient �′

s
 for the prominent absorption bands 

as associated with chlorophyll. Using Mie’s theory and 

assuming simultaneously absorbing and scattering par-
ticles, indications of a correlation between the spectral 
course of absorption and scattering parameters with the 
structural properties of chloroplasts were found [11, 12]. 
In this context, determining the complex refractive index 
for the pigment-containing organelles plays an important 
role. The complex refractive index is generally composed 
of a wavelength dependent real part (ratio between the 
speed of light in vacuum to the speed of light in a medium) 
and an imaginary part, which is directly linked to the 
absorption properties. Both parts are physically dependent 
on each other, so that in case of strong absorption, i.e., an 
increase of the imaginary part, the real part of the refrac-
tive index also changes in a certain wavelength range [13, 
14]. For the chlorophyll-containing grana stacks in chlo-
roplasts, recent studies have reconstructed the complex 
refractive index by considering their molecular structure 
and their influence on light propagation [15]. In particu-
lar, the influence of plant pigments on the bulk optical 
properties of apple has so far mainly been the result of 
experimental investigations, based on integrating sphere 
measurements. For example, Saeys et al. [16] and Rowe 
et al. [17] reported an increase in �′

s
 at spectral bands cor-

responding to high pigment and water absorption and 
attributed this to the increase in the imaginary part of the 
refractive index [18]. However, Zamora-Rojas et al. [19] 
proposed in a similar study examining animal tissue that 
the effect was more likely the result of a faulty separation 
between absorption and scattering and that increasing the 
imaginary part should not result in pronounced peaks in 
�′
s
 . Thus, the influence of pigment-containing structures 

on the optical properties is still actively under discussion.
At the microscopic level, the interaction of light with 

grana and AVIs can be described approximately by scatter-
ing of spherical and absorbing particles within a non-absorb-
ing surrounding medium. For this case, Mie’s theory pro-
vides an analytical solution to Maxwell’s equations, which 
gives exact results for arbitrary particle sizes and refractive 
index differences [20]. Model simulations recently described 
by Lohner et al. [21], developed to study the influence of air 
pores and starch granules on scattering in apple core and 
cortex tissues, could be adapted for pigment structures.

The aim of this work was to investigate the influence of 
pigment-containing organelles such as grana and AVIs on 
the optical properties of apple skin. Both an experimental 
and a theoretical approach were chosen each with the objec-
tive to determine �a and �′

s
 in the Vis spectral range. The 

application of Mie’s theory for grana and AVIs required the 
reconstruction of their complex refractive indices, which 
was considered as an essential part of the modeling pro-
cess. Additional measurements with an integrating sphere 
were intended to verify from an experimental point of view 
the extent to which differences in the optical properties of 
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apple skin with either high chlorophyll or high anthocyanin 
content can be determined.

2 � Theoretical background

2.1 � Mie’s theory

Mie’s theory (also called Lorenz–Mie theory) is an analytical 
solution to Maxwell’s equations and describes electromag-
netic scattering by a homogeneous and isotropic sphere in a 
non-absorbing medium. The calculation is based on the size 
parameter x = �d∕� , as the ratio between sphere diameter d 
and light wavelength � , and the ratio m between the complex 
refractive index n

sph
 of the sphere and the real refractive 

index n
med

 of the surrounding non-absorbing medium. Mie’s 
theory provides exact solutions for the scattering coefficient 
�s , the phase function P(�,�) , which describes the scattered 
light intensity in spherical coordinates, the anisotropy fac-
tor g, the effective scattering coefficient ��

s
= (1 − g)�s and 

the absorption coefficient �a [20]. Since biological particles 
are usually subject to a broad size distribution, a polydis-
perse Mie model must be developed, in which the optical 
properties are averaged over different particle sizes, taking 
into account their volume fraction [22]. A detailed overview 
for the implementation using the MatScat function library 
[23] was recently presented by Lohner et al. [21]. It must 
be noted that for air and water, the absorption in the Vis 
is negligible, which means that in these cases the real part 
of the complex refractive index is sufficient for calculating 
the scattering properties. For pigment-containing particles, 
however, significant absorption has to be expected in this 
spectral range, which requires consideration of the complex 
refractive index.

2.2 � Reconstruction of the complex refractive index

The refractive index plays an important role for light propa-
gation in scattering media. In general, it is defined as com-
plex number

with a real part � and an imaginary part � . While the real 
part describes the ratio between the speed of light in vacuum 
and the speed of light in a medium, � , also called extinc-
tion coefficient, defines the attenuation. The two parts are 
not completely independent of each other, but rather con-
nected by Hilbert transforms, which are mathematically 
described by the Kramers–Kronig relations [24]. These are 
of particular importance for the investigation of biological 
tissue, since � and � are usually only partially known or even 
not at all. In many cases, the real part can be determined 

(1)n
sph

= � + i�,

experimentally, e.g. based on dispersion and refraction 
properties of a medium. The imaginary part is related to the 
absorption coefficient �a and the molar extinction coefficient 
�M according to

with wavelength � and the molar concentration cM [25]. Even 
though estimates can be made independently for the real and 
imaginary parts, they must be linked via the Kramers–Kro-
nig relations to maintain self-consistency. Especially in the 
wavelength range where strong absorption prevails, they lead 
to a physically reasonable adaptation of both parts. In this 
work, the function library presented by Lucarini et al. [24] 
was used with a numerical implementation of the Kram-
ers–Kronig relations that provides the complex refractive 
index based on an estimate for � over the full spectral range 
from UV to IR and a single estimate for �.

2.3 � Chloroplasts and grana

Apple skin has a mean thickness of about 100–150 μ m and 
can be divided into three different layers: the epidermis with 
cuticle on top and the hypodermis underneath [28]. With 
diameters in the range of 20–50 μ m, the cell size of the epi-
dermis and hypodermis is significantly smaller than that of 
the cortex tissue [29]. Their relatively dense cell structure is 
interrupted by many small air pores, which are important for 
gas exchange [30]. Photosynthesis takes place in certain cell 
organelles, the chloroplasts, which are found in large con-
centrations in apple skin [31, 32]. Chloroplasts essentially 
contain an aqueous phase, the stroma, interspersed with 
thylakoid membranes. These form local layered structures 
called grana, which are connected by individual membrane 
layers of stromal thylakoids. Figure 1A shows schemati-
cally the structure of grana and their composition, which in 
reality can vary largely in shape and size. In higher plants, 
mostly cylindrical grana stacks of 10–20 membrane layers 
and dimensions of about 500 nm × 300 nm are reported 
[2, 33]. An enlarged view of two superimposed thylakoid 
layers and their substructure with dimensions reported 
by Daum et al. [26] is shown in Fig. 1B. The membranes 
enclose a further cavity of aqueous phase, the so-called 
lumen. The membrane itself contains 20% lipids and 80% 
photoactive proteins, notably photosystem II (PSII) and 
light-harvesting complex II (LHCII) [34]. Together, these 
proteins form the supercomplex PSII/LHCII, which is 
essential for photosynthesis. Both the size and molecular 
composition of this protein complex have been extensively 
studied [35, 36]. According to Wei et al. [27] for spinach 
leaves, it has a size of 26 nm × 11 nm × 14 nm and con-
tains 80 chlorophyll a, 25 chlorophyll b and 28 carotenoid 

(2)�(�) =
�a(�) �

4�
=

ln 10 �M(�) cM �

4�
,
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molecules, resulting in molar concentrations of 0.063 mol/l, 
0.020 mol/l and 0.022 mol/l, respectively. As shown in an 
overview in Fig. 1C, approximately 48% of the grana vol-
ume is accounted for by the aqueous phase and 52% by the 
thylakoid membrane, which in turn consists of 80% pigment-
containing protein complex and 20% lipids.

2.4 � Anthocyanic vacuolar inclusions (AVIs)

In contrast to the rather well known structure of chloroplasts 
and grana, relatively little is known about anthocyanin-con-
taining structures in apple skin. These can be found in the 
aqueous vacuoles along with various sugars, organic acids, 
amino acids and other phenolic constituents [37]. Flavonols 
such as quercetin-3-O-galactoside (‘hyperoside’) or querce-
tin-3-O-rutinoside (‘rutin’) with absorption in the near UV 
range are among the most abundant phenolics ahead of 
anthocyanins, in particular idaein, with an absorption maxi-
mum in the green spectral range [38]. Anthocyanins have 

the ability to form molecular non-covalent bonds depend-
ing on various external factors, which allows the forma-
tion of anthocyanin complexes. Of particular importance 
are �-stacking interactions of aromatic rings underlying 
the mechanisms of self-association, i.e., binding between 
anthocyanin molecules, and co-pigmentation, i.e., binding 
of anthocyanin molecules with other phenols [39]. Com-
plex formation is often favored in an acidic pH environ-
ment, resulting in significant differences in molar extinc-
tion bands, both spectrally and in absolute terms, between 
free and bound pigments [39]. Depending on the pigment 
type and pH, both bathochromic and hypsochromic shifts 
of the absorption bands are observed, which explains the 
importance of these processes for color variation [39]. In 
cell vacuoles of apple skin, similar to other plants tending 
to have low pH in the vacuoles, the formation of so-called 
AVIs is reported [40], which can probably be regarded as a 
local accumulation of these anthocyanin complexes. Accord-
ing to Bae et al. [8], their diameter ranges from about 0.5 

Fig. 1   A Schematic illustration 
of a chloroplast consisting of 
aqueous phase (stroma) and 
thylakoid membranes forming 
cylindrical stacked structures 
(grana) with typical sizes 
of 500 nm × 300 nm. B The 
thylakoid membrane encloses 
the lumen, also aqueous phase, 
and contains 20% lipids and 
80% photoactive proteins. In 
particular, photosystem II (PSII) 
and the light-harvesting com-
plex II (LHCII) are significantly 
involved in photosynthesis. 
The dimensions are taken from 
Daum et al. [26]. In C, the vol-
ume fractions of the individual 
components are shown in an 
overview, for the PSII/LHCII 
complex indicating the number 
of molecules N of chlorophyll a, 
chlorophyll b, and carotenoids 
[27]
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to 5.0 μ m for apple skin, with generally high variability in 
shape and size, as schematically shown in Fig. 2. The obser-
vation that AVIs appear to have no outer membrane [8] also 
supports the interpretation of pigment complexes bound by 
intra- and intermolecular interactions. The dynamic forma-
tion of AVIs appears very complex, for example, Kallam 
et al. [41] found that the formation of AVIs is related to pH, 
with the acidic environment in the pH range of 4–5 likely 
changing during maturation [42]. In addition, the influence 
of flavonols and interactions with other biopolymers such as 
pectin and glycosides, whose concentrations in the vacuole 
are subject to considerable changes during maturation, are 
also conceivable [39].

3 � Materials and methods

3.1 � Integrating sphere setup

To determine the optical properties of apple skin over a 
wide spectral range in the Vis, an integrating sphere setup 
recently described by Foschum et al. [43] and Bergmann 
et al. [44] was used. It consists of a 3D-printed and barium 
sulfate-coated sphere with an inner diameter of 150 mm, 
combined with a halogen light source and two spectrom-
eters: one for the VIS from 200 to 1100 nm (Maya2000Pro, 
Ocean Optics, USA) and one for the near-infrared (NIR) 
from 900 to 1700 nm (NIRQuest512-1.7, Ocean Optics, 
USA). The light source is a 100 W halogen lamp (Halostar 
Starlite, Osram, Germany). During the measurement pro-
cess, the absolute reflectance and transmittance spectra of a 
sample with known thickness is recorded over a wide spec-
tral range. The evaluation is based on Monte Carlo simula-
tions taking into account sample geometry, refractive index, 
and anisotropy factor, and provides a lookup table to deter-
mine the corresponding �′

s
 and �a . For sample preparation, 

a peeler was used to remove pieces of skin from both the 
sun and shade sides of the apples, and the remaining pulp 
was carefully removed completely with a scalpel. The thick-
ness of the skin samples was determined individually with 
a micrometer screw and taken into account in the following 
evaluation, the arithmetic mean value was 0.22 ± 0.07 mm. 
Both skin pieces were measured in a cuvette between two 

N-BK7 glass slides (34-427, Edmund Optics, USA), taking 
care to completely cover the sample port, which has a diame-
ter of 25 mm. The addition of a few drops of water prevented 
the formation of air bubbles between the slides, which would 
lead to undesirable influences on the measurement process. 
The sample cuvette was measured from each side at two 
positions rotated by 180◦ , and the optical properties were 
then calculated as the arithmetic mean with the correspond-
ing standard deviation from four individual measurements. 
The spectrally resolved refractive index and the geometry 
of the glass sides were taken into account accordingly in 
the evaluation.

3.2 � Fruit samples

The examined apple samples are identical to those investi-
gated by Lohner et al. [21, 45]. They were collected from 
the research orchard of the Kompetenzzentrum Obstbau 
Bodensee ( 47◦ 46′ 01.8′′ N 9◦ 33′ 30.3′′ E) during the 2019 
harvest season between July and November. The cultivars 
were Malus domestica ‘Gala’ (Simmons/Buckeye), ‘Elstar’ 
(P.C.P.), and ‘Jonagold’ (Novajo). The selection of cultivars 
and the measurement period covered the early to late harvest 
period with different ripening characteristics and thus vari-
able pigment content. Six apples were picked weekly and 
measured with a laboratory setup on the sun and shade side 
of each apple with four repetitions.

4 � Results and discussion

4.1 � Complex refractive indices of grana and AVIs

The reconstruction of the complex refractive index of the 
grana and AVIs required an estimation of their absorption 
properties over a wide spectral range from UV to NIR. As 
an approach, the individual components and their volume 
fractions were estimated on the basis of literature data. The 
full absorption spectra were then calculated as a linear com-
bination of corresponding reference absorption spectra, as 
shown in Fig. 3A, B.

According to Fig. 1C, about 48% of the grana consists 
of aqueous phase, for which the absorption of water was 

Fig. 2   Schematic illustration of 
an epidermal cell vacuole with 
AVIs having an average size 
between 0.5 and 5.0 μm
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assumed [46]. Due to the excitation of electronic tran-
sitions, it absorbs light in the UV at wavelengths below 
180 nm, while in the Vis the absorption is negligible and 
increases in the NIR beyond a wavelength of 900 nm. The 
remaining 52% of the grana volume is occupied by the thy-
lakoid membrane, which contains the pigment-containing 
protein complexes and lipids. The absorption spectrum 
of the lipids was adapted from McHowat et al. [47], who 

reported an absorption peak at a wavelength of 203 nm 
with a molar extinction �M = 2 ⋅ 104  M −1 cm−1 for phos-
pholipids commonly found in cell membranes. Another 
absorption band in the UV at 187 nm can be attributed to 
the excitation of peptide bonds, which are present in large 
numbers in the protein complex of the membrane [48]. 
It was adapted from Gienger et al. [25] with �M = 4 ⋅ 104  
M −1 cm−1 . The pigments contained in the protein complex 
begin to absorb at about 200 nm, with maxima known to 
be mainly located in the Vis. In addition to chlorophyll a 
and chlorophyll b, �-carotene was chosen as an example 
for carotenoids because a molar extinction spectrum in 
diethyl ether was also available from Taniguchi and Lind-
sey [49, 50]. In general, the absorption properties of the 
carotenoids are quite similar, at least from a qualitative 
point of view [51]. Chlorophyll a and  b exhibit absorp-
tion bands at wavelengths of 429 nm and 453 nm with 
�M = 1.1 ⋅ 105  M −1 cm−1 and �M = 2 ⋅ 104  M −1 cm−1 (Soret 
bands), and at 661 nm and 644 nm with �M = 8.6 ⋅ 105  M −1 
cm−1 and �M = 5.6 ⋅ 105  M −1 cm−1 (Q bands), respectively. 
The absorption spectrum of �-carotene solubilized in hex-
ane shows three adjacent absorption bands at wavelengths 
of 429 nm, 451 nm, 477 nm, where the maximum extinc-
tion is given as �M = 1.4 ⋅ 105  M −1 cm−1 [50]. It should be 
noted that the absorption bands of these pigments behave 
differently in the solvent than in the protein environment, 
both in absolute values and in their spectral position. As 
shown in Fig. 3A, the absorption spectrum of grana was 
calculated as the sum of the weighted reference spectra, 
where �a was calculated from the indicated molar extinc-
tion coefficients according to Eq. (2). The enlarged figure 
in the wavelength range from 400 to 750 nm allows the 
assignment between characteristic absorption bands to the 
individual pigments in more detail.

Figure 3B shows the analogous procedure for modeling 
the absorption spectrum of the AVIs. It was assumed that 
the anthocyanin complexes in the case of copigmentation 
can be approximately described by an aqueous solution 
of 50 mm idaein and 100 mm hyperoside. The ratio of 2:1 
for flavonols and anthocynanins was assumed regarding 
the results of Huber et al. [38] at the end of the matura-
tion period. The absorption spectrum of idaein was taken 
from Liu et al. [52] and shows a broad absorption band with 
a maximum at a wavelength of 520 nm. Following Fuleki 
and Francis [53], the absorption maximum was assumed to 
be �M = 4.8 ⋅ 104  M −1 cm−1 . The absorption spectrum of 
hyperoside was taken from Kaeswurm et al. [54] and shows 
two smaller absorption bands with maximum wavelengths 
around 260 nm and 352 nm, respectively. The spectrum was 
scaled to �M = 2.2 ⋅ 104  M −1 cm−1 at 352 nm [54]. It is noted 
that, contrary to this simplified assumption, in reality both 
the molar extinction and the spectral position of the absorp-
tion bands probably change during complex formation.

Fig. 3   A Reconstructed absorption coefficient �
a
 of grana in the UV 

to Vis spectral region obtained by linear combination of weighted ref-
erence spectra considering aqueous phase, the thylakoid membrane 
composed of lipids, and the pigment-containing PSII/LHCII protein 
complex. The enlarged image section on the right below shows the 
Vis spectral region in detail with the Soret bands of chlorophyll a and 
chlorophyll b at 429 nm and 453 nm, their Q bands at 643 nm and 
661 nm, overlaid by the absorption maxima of �-carotene with maxi-
mum at 453 nm and shoulder at 477 nm. B Reconstructed �

a
 of AVIs 

composed of water, hyperoside, and idaein with dominant absorption 
bands at 352  nm and 520  nm, respectively. C Reconstructed com-
plex refractive indices of grana and AVIs with real part � (blue, upper 
curves) and imaginary part � (red, lower curves)
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Based on the reconstructed absorption spectra, the imagi-
nary parts � of the complex refractive indices were calcu-
lated using Eq. (2). The real parts � were then computed 
using the function library provided by Lucarini et al. [24]. 
To compensate for the unavoidable errors caused by uncer-
tainties in the estimation of the imaginary part, it proved 
useful to provide an estimate for the real part. For grana, a 
refractive index of 1.42 was chosen according to Margalit 
et al. [55]. Since AVIs do not have a distinct structure, a 
lower refractive index of 1.38 seems plausible. The results 
for self-consistent real and imaginary parts according to 
Kramers–Kronig relations are shown in Fig. 3C. Whereas 
� widely corresponds to the modeled absorption properties, 
the real part � shows anomalous dispersion in the region of 
high absorption, i.e., the refractive index increases in these 
regions with increasing wavelength. This behavior leads 
simultaneously to a local increase of � by about 3% with 
the spectral maximum shifted to longer wavelengths rela-
tive to the absorption band. In the case of grana, � shows a 
maximum at 429 nm with 0.035 and at 661 nm with 0.028, 
while � is in the range of 1.45. In the case of AVIs, � reaches 
a maximum of 0.023 at 520 nm, while � lies in the range of 
1.38.

For comparison, the results of Capretti et al. [15] were 
considered, who similarly modeled the complex refractive 
index of grana. For the Q band of chlorophyll a they reported 
also anomalous dispersion with � = 0.014 combined with 
a local change of � by up to 5%. Despite differences in the 
assumed composition and reference spectra used for mod-
eling, the magnitude of the obtained complex refractive 
index could thus be confirmed. The correct application of 
the Kramers–Kronig relations, which are certainly subject 
to considerable uncertainty in the case of heterogeneous 
structures and only partly known absorption properties, has 
a major influence on the results. This is particular evident 
in a less pronounced anomalous dispersion in our results 
despite the comparatively higher extinction. Generally, it 
must be taken into account that the assumptions are based 
on results of different studies and therefore correspond only 
to a limited extent to the conditions for real chloroplasts in 
apple skin. The composition and content of different chlo-
rophyll and carotenoids as well as the structure of the grana 
itself may differ. Since quantitative absorption spectra of the 
investigated pigments are only available for different types 
of solvents, the characteristic absorption bands are spectrally 
shifted compared to the natural protein environment. Nev-
ertheless, the modeled absorption spectra provide a good 
overview of the influence of the individual components and 
allow a qualitative assignment of characteristic absorption 
bands. In the case of grana in particular, it becomes clear 
that, in contrast to the widely known Q bands of chloro-
phyll in the red spectral range, several broad bands overlap 
at wavelengths below 500 nm, whose local maxima can be 

assigned to the Soret bands of chlorophyll a and b and �
-carotene with increasing wavelengths.

4.2 � Simulated optical properties of grana and AVIs 
using a Mie model

Based on the reconstructed complex refractive indices, a 
polydisperse Mie model was used to simulate the optical 
properties of grana and AVIs. In both cases, a log-normal 
size distribution was assumed, with a mean diameter for 
grana of 0.5 μ m and for AVIs of 2.5 μ m with a standard 
deviation of 0.1 μ m and 0.5 μ m, respectively. The surround-
ing medium in both cases was assumed to be water with 
the refractive index reported by Hale and Querry [56]. In 
the absence of literature data on the volume concentrations 
of grana and AVIs in apple skin, these were estimated to 
be 0.5% and 5%, respectively, which was considered as a 
realistic chlorophyll and anthocyanin content. For example, 
this volume concentration would correspond to 1.1 mg of 
idaein per 1 g fresh weight apple skin. In view of the subse-
quent comparison with real measurements, it was taken into 
account that the scattering properties of the apple skin are 
influenced not only by the grana and AVIs but also by other 
scattering particles, such as small air pores of the intercel-
lular space. These typically lead to a steady decrease in �′

s
 

with increasing wavelength, which can be described by a 
power law. For the simulation of these additional scatter-
ing particles, air pores with an average size of 3 μ m and a 
porosity of 5% were assumed, considering microscopic and 
micro-CT measurements [28, 57].

The results of the simulations for �s , g, �′

s
 and �a are 

shown in Fig. 4 compared for grana, AVIs, and air pores. For 
grana and AVIs, �s lies in the range of  2-6 mm−1 , whereas 
for air pores it is about 20 mm−1 due to the much higher 
refractive index difference. Larger differences can also be 
observed for the anisotropy factor g, which ranges from 0.9 
to 0.8 for grana, from 0.95 to 0.90 for AVIs, and from 0.90 
to 0.94 for air pores. In Fig. 4C, �′

s
 is shown for air pores in 

combination with grana or AVIs to realistically reproduce 
scattering in red and green apple skin. For comparison, scat-
tering of solely air pores is also shown and follows a power 
law ∝ �

−0.58 . In spectral regions with high absorption, sev-
eral corresponding peaks also occur in �′

s
 . For grana two 

small peaks at 437 nm and 461 nm correspond to the Soret 
bands of chlorophyll a and b, respectively, while the more 
pronounced peak at 671 nm corresponds to the Q band of 
chlorophyll a. All three are shifted between 8 and 10 nm 
to longer wavelengths relative to their associated absorp-
tion band. For AVIs, a broad increase of �′

s
 appears with 

maximum at  547 nm and a  27 nm red-shift of the central 
wavelength compared to idaein absorption.

When evaluating these results, it must be taken into 
account that the application of a Mie model requires different 
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assumptions. The approximation of cell organelles as spheri-
cal particles seems evident in the case of the AVIs, whereas 
the grana have a more cylindrical shape. The expected devi-
ations, however, are rather small at around 5%, as shown 
by Grenfell et al. [58] using the example of cylindrical ice 
crystals with an unchanged volume-to-surface ratio. The 
assumed size distributions and volume concentrations of 
AVIs and grana, for which only sparse data are available, 
probably have a larger influence. For example, studies of 
Phan et al. [59, 60] showed that besides to small granules in 
apple skin, chloroplasts with few or even single, but larger 
granules are present in the pulp. Other microscopic studies 
of apple skin indicated an overall large variability in shape, 
size, volume concentration, and molecular composition 
of all types of organelles [8, 32]. The Mie model further 
assumes a homogeneous refractive index for the particles in 
the sense of an effective medium approximation, whereby 
changes in the refractive index due to the microstructure are 
not taken into account. Although this approximation is often 
used for biological tissue, its range of validity is difficult to 
estimate, especially for only roughly studied structures such 
as AVIs.

4.3 � Integrating sphere measurements to determine 
the optical properties of apple skin

To experimentally investigate the influence of strongly 
absorbing pigments on the optical properties of apple skin, 
three different apple cultivars were measured with an inte-
grating sphere during maturation. Over a period of ten 

weeks, a sample set of six apples with four measurement 
repetitions was examined weekly using samples from the sun 
side. The mean �′

s
 and �a and their standard deviation were 

determined by averaging both the results of the repetitions 
and all apples of the same cultivar on a weekly basis. The 
results are shown in Fig. 5 for the cultivars ‘Elstar’, with 
high chlorophyll content at the beginning of maturation, and 
‘Gala’ with a high anthocyanin content at the end of matura-
tion. The insets show images of the skin color from the first 
and last week of the studied period.

For ‘Elstar’ in Fig. 5A, �′
s
 largely follows a power law 

of the form ��

s
(�) ∝ �

−� , i.e., �′
s
 decreases with increasing 

wavelength. In the first week, � = 1.60 was determined 
based on a regression. In the following weeks, �′

s
 shows 

a continuous decrease, e.g., at a wavelength of 600 nm 
from about 2.0 mm−1 in week 11 to 1.0 mm−1 in week 21. 
Especially in week 11, �′

s
 shows several peaks in the wave-

length range between 400 and 500 nm as well as at 678 nm. 
These peaks appear to correspond to the absorption bands 
in �a , with a peak at 678 nm known to be associated with 
chlorophyll a. It decreases from 1.38 mm−1 in week 11 to 
0.36 mm−1 in week 21. In the spectral range below 500 nm, 
several smaller peaks stand out, with relatively high absorp-
tion between 1.0 and 3.0 mm−1 . At the end of maturation in 
week 21, �a increases in the range of about 520 nm, which 
can be associated with anthocyanins and the corresponding 
slight red coloration.

Figure 5B shows the optical properties for the skin of 
‘Gala’ apples, which exhibit a much more intense red col-
oration compared to ‘Elstar’. Also in this case �′

s
 follows a 

Fig. 4   Modeled scattering 
coefficients �s (A), anisotropy 
factors g (B), effective scat-
tering coefficients �′

s
 (C), and 

absorption coefficients �
a
 (D) 

for grana, AVIs, and air pores 
with a mean size of 3 μ m in 
apple skin
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power law in all weeks, with � = 0.90 determined in week 
21. In addition, �′

s
 decreases from 2.1 mm−1 at week 13 to 

1.1 mm−1 at week 21 at 650 nm. Beginning at week 15, a 
broad increase occurs at a wavelength of 530 nm, which 
increases steadily until the end of maturation. The difference 
between �′

s
 at 520 nm with 4.5 mm−1 and at 700 nm with 

1.1  mm−1 at week 21 reaches about a factor of four. At the 
same time, �a also increases from 0.53 to 5.46 mm−1 , which 
is due to the absorption of anthocyanins and causes dark red 
coloration. At 678 nm, a small peak in �′

s
 is visible only in 

the first weeks of maturation with a corresponding decrease 
of �a from 0.76 to 0.33 mm−1.

To investigate the peaks in �′
s
 associated with either high 

chlorophyll or anthocyanin content, the optical properties for 
‘Elstar’ from week 11 and ‘Gala’ from week 21 are shown in 
Fig. 6 in more detail. In both cases, the obtained power laws 
shown in Fig. 5 were subtracted from �′

s
 . Without this back-

ground scattering, which is presumably caused by small air 
pores, the remaining fraction of �′

s
 can be attributed mainly 

to the influence of pigment-containing organelles. For apple 
skin with high chlorophyll content in Fig. 6A, four peaks 
can be identified at 435 nm, 469 nm, 488 nm, and 678 nm, 
whose central wavelengths were determined by regression 
of a Gaussian curve each. The two neighboring peaks at 
469 nm and 488 nm can be distinguished only vaguely by 
a small dip. The height of the peaks relative to background 
is between 0.25 and 0.5 mm−1 . The corresponding absorp-
tion spectrum shows increases of �a at corresponding spec-
tral positions, but slightly shifted by about 4 nm to shorter 
wavelengths. It must be taken into account that apart from 
the carotenoids bound in the grana, other xanthophylls with 
almost the same absorption properties are present in the 
skin [4]. However, their concrete influence on the height 
and spectral position of the absorption bands is difficult to 
estimate and requires further investigation. For apple skin 
with high anthocyanin content in Fig. 6B, a single peak in 
�′
s
 with a height of up to 3 mm−1 relative to the subtracted 

background occurs. The corresponding absorption peak has 
a maximum of 6 mm−1 and no spectral shift was observed 
in this case.

In a comparable study using integrating sphere measure-
ments, Van Beers et al. [61] observed a strong increase in 
�′
s
 at 550 nm during maturation from 1 to 5 mm−1 for two 

red-skinned cultivars, while no change was observed in 
‘Granny Smith’ apples which are known to form almost no 
anthocyanins in the skin. This observation clearly confirms 
our results and thus the significant impact of AVIs on �′

s
 . 

Naqvi et al. [62] presented a method to calculate the scat-
tering and absorption properties based on extinction spectra 
of chloroplasts or LHCII solutions taking advantage of the 
Kramers–Kronig relations. In both cases, the results show 
qualitatively very similar characteristics compared to our 
measurement results, in particular pronounced selective 
scattering effects and a spectral offset between the absorp-
tion and scattering peaks.

Further comparison between these experimental results 
and our Mie simulations allows a more differentiated eval-
uation of the influence of grana and AVIs on the optical 
properties of apple skin. Both approaches independently 
demonstrated the occurrence of selective scattering effects 
in the spectral range of high chlorophyll and anthocyanin 
absorption. In contrast to the simulation results, in the exper-
iment the peaks in �′

s
 are more pronounced relative to their 

Fig. 5   Spectrally resolved effective scattering coefficient �′
s and 

absorption coefficient �
a
 of apple skin measured for the cultivars 

‘Elstar’ (A) and ‘Gala’ (B) during maturation. The shaded areas 
indicate the standard deviation based on a sample set of six apples 
per week with four measurement repetitions each. To determine the 
scattering not directly related to pigments, e.g., caused by air pores, 
a power law was fitted in spectral regions with negligible pigment 
absorption in A at week 11 and in B at week 21 after full bloom. The 
insets show color images of apple skin taken with an SLR camera 
from the first and last week of the maturation period studied to illus-
trate the cultivar-dependent change in coloration
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corresponding �a band, and both are additionally spectrally 
shifted. Renge and Mauring [63] reported that chlorophyll 
absorption in protein environments is red-shifted by up to 
20 nm compared to reference spectra in a solvent due to 
exciton interaction between closely spaced chromophores, 
which agrees well with our results for grana. The shift of the 
peaks in �′

s
 to longer wavelengths relative to �a is smaller 

than predicted, but confirms the presence of anomalous 
dispersion. Considering the explicit reconstruction of the 
complex refractive index, for grana the change in �′

s
 thus 

can be interpreted as the combined result of high extinction 
and local increase in the real part of the refractive index. 
Despite the spectral shift, the number and relative position 
of the peaks in �′

s
 agrees quite well with the model. Besides 

to the known Q band of chlorophyll a at 678 nm, by direct 
comparison between experiment and simulation the maxima 
at 435 nm and 469 nm can be assigned to the Soret bands 
of chlorophyll a and b and the maximum at 488 nm to the 
red-most absorption band of carotenoids. This assignment 
is well confirmed by the results of Croce et al. [64], who 
reported for the LHCII supercomplex the Soret bands of 
chlorophyll a and b at 439 nm and 467 nm and the red-most 
absorption bands of three predominant carotenoids, namely 
lutein, neoxanthin, and violaxanthin, at 489 nm, 488 nm, 
and 492 nm, respectively. The comparable �a for the maxima 
at 469 nm and 488 nm suggests a larger influence of carot-
enoids than the model predicts, either due to a higher molar 

extinction or, more likely, due to a higher molar concentra-
tion compared to the chlorophylls than assumed.

In the case of the AVIs, the increase in �′

s
 is almost an 

order of magnitude higher than predicted by the model, 
while the expected spectral shift between �′

s
 and �a is com-

pletely absent. Since only sparse information is available on 
the structure and chemical composition of AVIs, the reason 
for this cannot be conclusively determined. However, the 
absence of the spectral shift indicates that there is probably 
no abnormal dispersion and, accordingly, the reconstruction 
of the complex refractive index is not close to reality.

4.4 � Anthocyanin absorption shifts blue

For the two cultivars ‘Gala’ and ‘Jonagold’ with intense red 
blush color at the end of maturation the anthocyanin absorp-
tion was investigated in more detail. In both cases, skin sam-
ples were taken weekly from the sun side of six apples and 
measured using the integrating sphere setup as previously 
presented. As shown in Fig. 7, their �a spectra show a domi-
nant absorption peak that increases from about 1 to 6 mm−1 
in less than 10 weeks. The central wavelength of the peaks, 
determined by regression of a Gaussian curve, shifts from 
an initial wavelength of about 550–520 nm, over the same 
period. It is noticeable that both the absolute absorption and 
the shift are very similar when comparing the results of the 
two cultivars.

Fig. 6   Spectrally resolved 
optical properties of apple skin 
measured for ‘Elstar’ in week 
11 (A) and ‘Gala’ in week 21 
(B). In both �′

s
 spectra, the 

background was subtracted by 
means of the obtained power 
laws shown as black-dotted lines 
in Fig. 5. The indicated central 
wavelengths of the peaks as 
well as their spectral shift Δ� 
were determined by regression 
of gaussian curves for �′

s
 and �

a
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There are essentially two different explanations for the 
observed effect. On the one hand, the observed changes 
could be the result of an overlap with absorption bands of 
other pigments, which in principle could explain both the 
shift of the central wavelength and an apparent increase 
of �a . Carotenoids in particular come into consideration, 
since for them an increase of �a in the spectral range up to 
about 500 nm at the end of maturation is documented [21, 
65]. On the other hand, it must be taken into account that 
anthocyanins are generally chemically reactive due to their 
molecular structure, resulting in a large number of pos-
sible complex interactions. In particular, copigmentation 
plays an important role, meaning that anthocyanins form 
non-covalent bonds with other anthocyanins, other phe-
nols such as flavonoids or even metal ions [66]. Under the 
influence of additional external factors, e.g., pH and tem-
perature, both a bathochromic shift (red shift) and a hyp-
sochromic shift (blue shift) in the central wavelength of 
the anthocyanin absorption as well as changes in the molar 
extinction coefficient can be observed [67]. According to 
Dangles et al. [39], the formation of AVIs can be under-
stood as agglomeration of acylated anthocyanins. Thus, 
the observed blue shift would be a direct consequence 
of a chemical restructuring of the anthocyanins, which 
could possibly provide more detailed information about 
the structure of the AVIs or the pH in the cell vacuole.

5 � Conclusions

Based on a combined theoretical and experimental study 
using apple skin as an example, the influence of grana and 
AVIs on the optical properties of biological tissue was 
described for the first time using quantitative quantities 
such as �′

s
 and �a . The reconstruction of the absorption 

spectra showed that grana has characteristic absorption 
bands in the blue and red wavelength regions, which can 
be assigned to chlorophylls and carotenoids. In contrast, 
the AVIs showed a broad absorption band between 520 
and 550 nm. Consideration of the complex refractive indi-
ces based on the Kramers–Kronig relations together with 
a polydisperse Mie model allowed in an innovative way 
the prediction of multiple peaks in �′

s
 associated with the 

main absorption bands but shifted by 8–27 nm to longer 
wavelengths. This effect, known as selective scattering, 
was confirmed experimentally by measurements of apple 
skin samples with an integrating sphere, although differ-
ences in the height and spectral position of the peaks in �a 
and �′

s
 were found. By direct comparison, the Soret bands 

of chlorophyll a and chlorophyll b at 435 nm and 469 nm, 
respectively, and at 488 nm the red-most edge of carote-
noid absorption could be located. Especially for anthocya-
nin absorption, red-skinned apples showed a strong blue 

Fig. 7   Temporal evolution of 
the absorption coefficient �

a
 in 

the Vis spectral range measured 
for the skin of A ‘Gala’ and 
B ‘Jonagold’ apples during 
maturation. The shaded area 
indicates the standard devia-
tion of measurements on six 
different apples per week. On 
the right side, the central wave-
length of the absorption band 
is plotted against the respective 
week after full bloom with error 
bars indicating the uncertainty 
of the underlying regression of a 
Gaussian curve
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shift from 550 to 520 nm associated with an increase in 
absorption. While a spectral shift of about 4 nm between 
the peaks in �a and �′

s
 was found for grana in agreement 

with the Mie model, this was not the case for AVIs, rais-
ing further questions about their chemical structure and 
composition.

Overall, it was shown that simultaneously determining 
�
′

s
 and �a provides complementary information about the 

chemical composition as well as structural parameters such 
as the size distribution of pigment-containing cell orga-
nelles or their refractive index difference relative to their 
surroundings. Due to the limited literature data specifically 
for apple skin, numerous assumptions had to be made in 
the modeling, which means that the comparison between 
experiment and theory in the context of this work is largely 
on a qualitative level. Nevertheless, it is conceivable to use 
the presented model on the basis of measured data also for 
quantitative evaluation, if individual aspects of the chemical 
composition or structure can be clarified in the future. For 
example, a regression model based on spectrally resolved 
�
′

s
 and �a could be used to determine the size distribution of 

cell organelles for a given complex refractive index or vice 
versa. Facing the strong influence of AVIs on the optical 
properties, this approach could be useful to better understand 
the complex formation of anthocyanins, which are increas-
ingly in focus due to their multiple physiological proper-
ties. In addition, the results are of interest in the growing 
field of applying optical properties for quality assurance of 
agricultural products, since high pigment concentrations in 
the skin and flesh of tomato, kiwi, or mango, for example, 
suggest comparable effects. In the long term, the develop-
ment of microscopic light propagation models, e.g., based 
on numerical solutions to Maxwell’s equations, would be 
desirable to obtain even more accurate and realistic results, 
especially with respect to heterogeneous cell organelles such 
as grana.
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