Zentrum für Innovative Energiesysteme (ZIES)
Refine
Year of publication
Document Type
- Conference Proceeding (55)
- Article trade magazine (21)
- Article (9)
- Part of a Book (5)
- Announcement (1)
- Preprint (1)
Keywords
- SUW-MFH (10)
- BestHeatNet (9)
- ST2000-LangEff (6)
- Solare-Prozesswärme-Standards (6)
- energiBUS4home (6)
- Abwasser-Gas-WP/KM (5)
- Kraft-Wärme-Kälte-Kopplung im Leistungsbereich von 10 kW (5)
- Solare Kühlung (5)
- Fast-Energy-Design (4)
- Coolplan (3)
Department/institution
The energy sector faces rapid decarbonisation and decision-makers demand reliable assessments of the security of electricity supply. For this, detailed simulation models with a high temporal and technological resolution are required. When confronted with increasing weather-dependent renewable energy generation, probabilistic simulation models have proven. The significant computational costs of calculating a scenario, however, limit the complexity of further analysis. Advances in code optimization as well as the use of computing clusters still lead to runtimes of up to eight hours per scenario. However ongoing research highlights that tailor-made approximations are potentially the key factor in further reducing computing time. Consequently, current research aims to provide a method for the rapid prediction of widely varying scenarios. In this work artificial neural networks (ANN) are trained and compared to approximate the system behavior of the probabilistic simulation model. To do so, information needs to be sampled from the probabilistic simulation in an efficient way. Because only a limited space in the whole design space of the 16 independent variables is of interest, a classification is developed. Finally it required only around 35 minutes to create the regression models, including sampling the design space, simulating the training data and training the ANNs. The resulting ANNs are able to predict all scenarios within the validity range of the regression model with a coefficient of determination of over 0.9998 for independent test data (1.051.200 data points). They need only a few milliseconds to predict one scenario, enabling in-depth analysis in a brief period of time.
Assessing the effects of the energy transition and liberalization of energy markets on resource adequacy is an increasingly important and demanding task. The rising complexity in energy systems requires adequate methods for energy system modeling leading to increased computational requirements. Furthermore, with complexity, uncertainty increases likewise calling for probabilistic assessments and scenario analyses. To adequately and efficiently address these various requirements, new methods from the field of data science are needed to accelerate current methods. With our systematic literature review, we want to close the gap between the three disciplines (1) assessment of security of electricity supply, (2) artificial intelligence, and (3) design of experiments. For this, we conduct a large-scale quantitative review on selected fields of application and methods and make a synthesis that relates the different disciplines to each other. Among other findings, we identify metamodeling of complex security of electricity supply models using AI methods and applications of AI-based methods for forecasts of storage dispatch and (non-)availabilities as promising fields of application that have not sufficiently been covered, yet. We end with deriving a new methodological pipeline for adequately and efficiently addressing the present and upcoming challenges in the assessment of security of electricity supply.
Parabolrinnen nutzen parabolisch gekrümmte Spiegel, um die direkte Globalstrahlung auf ein Vakuum-Absorberrohr zu konzentrieren. Eine Effizienzsteigerung dieser Technologie wird durch eine vollständige Automatisierung der Sonnennachführung optimiert. Die an einem Parabolrinnen-Versuchsträger der Hochschule Düsseldorf realisierte Steuerung und Berechnung der Nachführung werden kontinuierlich über einen Microcontroller realisiert. Eine Kalibrierung der Parabolrinne im Labormaßstab zur Erkennung des Winkels erfolgt über Infrarotsensoren. Die Berechnung des Sonnenstandes, durch den Algorithmus, kann unabhängig von einer Stromzufuhr durch eine Real-Time-Clock bestimmt werden. Mittels Schrittmotor und Treiber verfährt die Parabolrinne in die errechnete Position. Die Feinausrichtung der Parabolrinne erfolgt über ein Verschattungsmodul und zwei Photowiderstände. Durch den Einsatz von 3D-gedruckten Bestandteilen sind die genutzten Komponenten kostengünstig und können standortunabhängig reproduziert werden. Durch das Zusammenspiel der Komponenten ist ein autonomer Einsatz möglich.