Automotive mass production of camera systems: Linking image quality to AI performance

  • Artificial intelligence methods based on machine learning or artificial neural networks have become indispensable in camera-based driver assistance systems, and also represent an essential building block for future autonomous driving. However, the great successes of these evaluation methods in environment perception and also driving planning are accompanied by equally great challenges in the validation and verification of these systems. One of the essential aspects for this is the required guaranteed safety of the functions under mass production conditions of the vehicles. This article explains this point of view using a detailed example from the field of camera-based driver assistance systems: the determination of inspection limits at the end of the production line. The camera is one of the most important sensor modalities for vehicle environment sensing and as such, the quality of the camera systems plays a key role in the safety argumentation of the overall system. SeveralArtificial intelligence methods based on machine learning or artificial neural networks have become indispensable in camera-based driver assistance systems, and also represent an essential building block for future autonomous driving. However, the great successes of these evaluation methods in environment perception and also driving planning are accompanied by equally great challenges in the validation and verification of these systems. One of the essential aspects for this is the required guaranteed safety of the functions under mass production conditions of the vehicles. This article explains this point of view using a detailed example from the field of camera-based driver assistance systems: the determination of inspection limits at the end of the production line. The camera is one of the most important sensor modalities for vehicle environment sensing and as such, the quality of the camera systems plays a key role in the safety argumentation of the overall system. Several illustrative application examples (role of simulations, calibration, influence of the windshield) will be presented. The basic ideas presented can be well transferred to the other sensor modalities (lidar, radar, ToF, etc.). The investigations/evidence show that doubts are allowed whether or how fast autonomous driving on level L4/5 will take hold as robotaxis or – even more challenging – in private ownership on a larger scale.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander BraunORCiD
Qualitätssicherung:peer reviewed
Fachbereich/Einrichtung:Hochschule Düsseldorf / Fachbereich - Elektro- & Informationstechnik
Document Type:Article
Year of Completion:2022
Language of Publication:English
Publisher:Walter de Gruyter
Parent Title (English):tm - Technisches Messen
DOI:https://doi.org/10.1515/teme-2022-0029
ISSN:2196-7113
Tag:Electrical and Electronic Engineering; Instrumentation
Corresponding Author:Alexander Braun
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Licence (German):keine Lizenz - nur Metadaten
Release Date:2022/07/28
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.